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Abstract. The purpose of this paper is to expose several recent challeng-
ing control problems for mono-dimensional fluids or reactive fluids. These
problems have in common the existence of a moving interface separating two
spatial zones where the dynamics are rather different. All these problems are
grounded on topics of engineering interest. The aim of the author is to expose
the main control issues, possible solutions and to spur an interest for other
future contributors. As will appear, mobile interfaces play key roles in various
problems, and truly capture main phenomena at stake in the dynamics of the
considered systems.

1 Introduction

The purpose of this paper is to expose several recent challenging control
problems for mono-dimensional fluids or reactive fluids. These problems have
in common the existence of a moving interface separating two spatial zones
where the dynamics are rather different. All these problems are grounded on
topics of engineering interest. The aim of the author is to expose the main
control issues, possible solutions and to spur an interest for other future con-
tributors. As will appear, mobile interfaces play key roles in various problems,
and truly capture main phenomena at stake in the dynamics of the considered
systems.

The paper contains a brief panorama. It is organized as follows. In Sec-
tion 2, a Diesel oxidation catalyst for the automotive industry is considered.
A boundary control problem is formulated for the outlet temperature control
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of this distributed reactive gaseous system. A model mobile interface sepa-
rates the upstream reactive zone from the downstream transport zone. The
location of this frontier is dependent on several variables, including measured
disturbances and the control variable. In Section 3, a classic Stefan problem
is presented. This system represents the melting of a solid phase into a liquid
phase which is heated on its boundary. Heat propagates inside the system and
generates a melting which occurs at a distance from the heat source which
varies as the solid phase melts or grows. As will appear, both the temperature
and the location of the moving interface can be controlled by the boundary
actuation. In Section 4, some mixing models for stirring vessels are exposed.
The proposed models use a mobile interface separating a distributed plug
flow regime from a continuously stirred homogenous zone. The motion of the
interface is generated by the variations of the blending speed which is a con-
trol variable. Finally, in Section 5, some recent developments on multiphasis
slug flow are exposed. They appear in the petroleum industry. Slugs are large
bubbles of gas separating pockets of liquid. They appear under certain flow
conditions, and must be avoided as they have malicious effects. Models for
them, involving a virtual choke which plays the role of a controlled interface,
are discussed.

2 Diesel Oxidation Catalyst

This introductory example comes from the automotive engine control world.
On most modern diesel vehicles, the increasing requirements regarding par-
ticulate matter emissions are satisfied using a particulate filter (DPF). This
device is now widely spread among new vehicles. The filter, located in the
vehicle exhaust line, stores particulate matter until it is burnt during an ac-
tive regeneration process. This regeneration is achieved by raising the filter
temperature (between 450 and 600 degrees) in the presence of oxygen in a
diesel oxidation catalyst (DOC).

Historically, oxidation catalysts have been the first aftertreatment sys-
tems in the automotive industry. Catalysts used for diesel applications have
appeared only recently because of the relative lower values of hydrocarbon
reductants HC and CO emissions found in compression ignition engines com-
pared against spark ignition engines. Because the HC and CO reactions are
strongly exothermic, the DOC is also used to control the exhaust line temper-
ature. In particular, it is used to generate the temperature required for the
already mentioned DPF active regeneration. To increase the DPF inlet tem-
perature, reductants are oxidized inside the DOC, which, in turn, increases
its outlet temperature.

After treatment systems use monolith converterswhich are designed to max-
imize the mass transfer to the catalytic surface. To this end, the channels
of the monolith are narrow and numerous (a typical order of magnitude is
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400 cpsi). This geometric configuration (see Figure 1) also yields highly-efficient
heat transfer between gas and solid. Hence, the solid phase (i.e. the monolith)
acts as a spatially-distributed storage of energy and species. As can be ex-
perimentally observed, the induced propagation phenomenon leads to highly-
delayed responses. Models for these devices are based on one-dimensional
distributed parameter equations. These one-dimensional effects must be in-
cluded in the modeling and further, they must be accounted for in the control
strategies if performance is desired.

Fig. 1. Phenomena involved in the numerous channels of a Diesel Oxidation Cata-
lyst. Reductant species in the exhaust gas are converted on the distributed catalyst
surface.

Fig. 2. Scheme of governing phenomena in a Diesel Oxidation Catalyst

Considering thermal effects, a simple model for the DOC consists of the
following balance equations

∂T

∂t
+ v

∂T

∂z
= −k1(T − Ts) (1)

∂Ts

∂z
= k2(T − Ts) (2)

which represent the dynamics of the temperature of the gas (T ) and the
temperature of the monolith (Ts). These equations are pictured in Figure 2.
The control variable is the inlet temperature
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T (0, t) = u(t)

Mathematically, this system of equations has a surprisingly long response
time, which is consistent with experimental observations [16] discussed earlier.

In details, the input-output relationship can be easily calculated from the
following transfer function (in the Laplace domain)

T̂ (z, s) = û(s) exp(−z
v
s− k1z

v
+

m
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) (3)

which gives, in the time-domain,
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where H is the Heaviside function. The above formula, which involves a
modified Bessel function, kindly fits experimental data, as can be observed
in Figure 3.

Fig. 3. Experimental data versus the DOC model

For (open-loop) control design, the transfer function (3) can be readily
inverted. This gives

û(s) = exp(
z

v
s+

k1z

v
− m

s+ k2
)ŷ(s)

which, back in the time domain, yields an explicit formula using a Bessel
function and a compact support convolution (see [16]). This formula provides
a straightforward open-loop control law: given histories for the output
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temperature, one can simply determine the corresponding inlet temperature
histories.

In practical applications, the true dynamics of the DOC systems is not
simply a temperature-gas transport pass a solid monolith. In facts, the con-
trol variable is not the temperature, but, equivalently, the injected mass of
fuel. These reductants are oxidized at the entry of the DOC system and, in
turn, generate heat. One can model this heat generation using the mobile
interface scheme of Figure 4. In fact, the DOC consists of two zones. An
upstream reactive zone, and a temperature transport zone. The length of the
(upstream) reactive zone directly depends on the amount of reductants under
consideration, which is a control variable. It thus varies with the operating
point. In turn, the complementary downstream transport zone also has a
variable length.

Fig. 4. DOC heat release model: reductants are spatially uniformly oxidized on
the upstream part of the DOC. The system can be split into two zones separated
by a moving interface: a reactive zone and a transport zone.

The location of the mobile interface can be identified quite accurately on
experimental data. In practice, it is of great importance to account for the
location of the interface in the derivation of control strategies. In particular,
linear controllers reveal themselves to be efficient so long as they incorporate
this variability in the computation of the gain scheduling and feed-forward
actions [16, 17]. The reader can refer to [16, 18, 15] for practical vehicle
applications relying on this model.

3 A Nonlinear Stefan Problem

In this second example, we study a heat diffusion equation with an endother-
mic reaction on a varying length. This can be seen as a crystal growth prob-
lem. Here, as in the previous example, the location of the mobile interface
also depends on the control variable, but less directly, through the whole
system dynamics.
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In the papers [7, 8] it has been shown how to calculate open-loop trajec-
tories for a nonlinear Stefan problem. It is a system governed by a nonlinear
parabolic partial differential equation which has been vastly studied from a
numerical analysis point of view, i.e. to compute solutions for future times
knowing initial conditions and future control actions. We desire to solve the
inverse problem, i.e. knowing the behavior of the free boundary a priori we
seek a solution, here as a convergent series, to calculate the control and de-
scription trajectories between two stationary states.

x=0 x=y(t)

x
h(t)

Heating point Liquid phase Solid phase

Mobile interface

Fig. 5. Stefan problem with boundary control. Liquid phase with boundary control
governed by a reaction-diffusion nonlinear partial differential equation in contact
with a solid phase.

The classic Stefan problem considers a liquid phase column in contact at 0
degrees with an infinite phase solid, as shown in Figure 5. This problem is
presented in detail in [1]. A list of problem reducing to this one can be found
in [22] (including many processes formation and melting of crystals). Here,
the Stefan problem is amended by adding a diffusion term and a nonlinear
reaction term. This is a simplified model of reactant coolant fluid surrounded
by solid phase.

Note (x, t) �→ u(x, t) the temperature in the liquid phase, and t �→ y(t) the
varying location of the liquid/solid interface. The mappings h(t) and ψ(x)
are the temperature on the fixed boundary (x = 0) and the initial condition,
respectively (t = 0). The nonlinear Stefan problem consists in finding u(x, t)
and y(t), for given h(t) and ψ(x) satisfying

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT

u(0, t) = h(t) ≥ 0, 0 < t ≤ T
u(x, 0) = ψ(x) ≥ 0, 0 ≤ x ≤ y(0)
u(y(t), t) = 0, ux(y(t), t) = −ẏ(t), 0 < t ≤ T

⎫⎪⎪⎬
⎪⎪⎭ (4)

with

DT ≡ {(x, t) : 0 < x < y(t), 0 < t ≤ T }

where the boundaries are noted

BT ≡{(0, t) : 0 < t ≤ T } ∪ {(x, 0) : 0 ≤ x ≤ y(0)} ∪ {(y(t), t) : 0 < t ≤ T }
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The boundary condition ux(y(t), t) = −ẏ(t) expresses that the heat flux at
the interface is used for melting (or crystallization) of the solid phase. The
parameters of conductivity and heat latent liquefaction are standard here,
but without limitation, one may consider any factors in changes of variables
x and t.

The inverse problem is to calculate the boundary control h(t) allowing the
transition between two stationary states. As noted in [11], it is a non-Cauchy
problem characteristic with the Cauchy data. This nonlinear problem can be
solved by the following method. One can seek solutions (4) under the form
of the following series

u(x, t) =
∞∑

n=0

an(t)
n!

[x− y(t)]n (5)

where the coefficients (an(t)) satisfy the induction relations which are
necessary and sufficient

an = ȧn−2 − an−1ẏ + νan−1 + ρ

n−2∑
k=0

(
n− 2
k

)
an−2−k ak

for n ≥ 2, with a0 = 0 (from u(y(t), t) = 0) and a1 = −ẏ (from −ux(y(t), t)
= ẏ(t)).

By increments, one can show that the series (5) is absolutely convergent
where there exists strictly positives parameters M , R, T such that

|y(l+1)(t)| ≤M
l!α

Rl
, ∀ l = 0, 1, 2, ...,∀t ∈ [0, T ]

A lower limit to its radius of convergence can be easily determined. The
main difficulties lie in the calculation of recurrence bounds on the suc-
cessive derivatives of the coefficients (an(t)). This involves development of
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combinatorial derived cross terms from the nonlinear in u2, for which one
can use Chu-Vandermonde inequalities (see [21]). The lower bound on the
radius of convergence is then calculated by analysis of roots of a polynomial
of third degree. This lower bound can justify the use of this solution as series
to solve the inverse problem of melting (or crystallization) of the solid phase
by the control h(t).

Suppose the liquid phase has an initial length L and that we wish to reach
the length L + ΔL in finite time. It is a challenging problem because the
actuator h(t) is located at the opposite end fixed the liquid-solid interface
which will move over time. The control must compensate the energy loss due
to melting solid and that due to diffusion and reaction term. To solve this
problem, simply use the function

y(τ) =

⎧⎨
⎩
L+ΔL if τ ≥ T,
L+ΔLg(τ/T ) if T > τ > 0,
L if τ ≤ 0,

where

g(τ) =
f(τ)

f(τ) + f(1 − τ)
, τ ∈ [0, 1],

and

f(τ) =
{
e−

1
τ if τ > 0,

0 if τ ≤ 0.

This function defines a smooth transition between the lengths L and L+ΔL.
By choosing the parameter T depending on other physical parameters, one
can guarantee that the radius of convergence of the series is larger than
L+ΔL proving that that the series expansion, and therefore the solution to
the inverse problem are valid.

This work follows [19] on reaction diffusion equation with fixed boundary.
Besides convergence of this series for a very special class of Gevrey functions
(as defined in [1]) used in an explicit assumption depending on physical pa-
rameters of the system, one can also prove a maximum principle stating that
the maximum temperature is always achieved on the sides of the domain [8].
Asymptotic positivity property of the solution can also be established.

4 Mixing Models

We now pursue our panorama of distributed systems with mobile interfaces
by considering mixing systems1. In this case, a rather unusual model can be
1 The interested reader can refer to [20, 2] treating the related problem of blending

systems.



Control Problems for One-Dimensional Fluids and Reactive Fluids 331

proposed, where the motion of the moving interface separating a homoge-
neous zone and a distributed zone depends on the derivative of the input
signal.

We expose ways to model mixing phenomena for Newtonian fluids under
unsteady stirring conditions in agitated vessels using helical ribbon impellers.
A model of torus reactor including a well-mixed zone and a transport zone
is considered. The originality of the arrangement of ideal reactors developed
in [5, 6] lies in the time-dependent location of the boundaries between the two
zones. Interestingly, this concept is applied to model the positive influence of
unsteady stirring conditions on homogenization process. It appears that this
model allows the easy derivation of a control law, which is a great advantage
when optimizing the dynamics of a mixing process. We now detail this model.

Fig. 6. Sketch of torus model proposed in [5, 6]

The mixing system is as follows. Consider a torus of fixed volume V divided
into two ideal reactors (a constant stirred tank reactor of volume Vd and a
plug flow zone of volume Vp = V −Vd) in which flows a Newtonian fluid with
a uniform time-varying flow rate Q̇ in a clockwise direction (see Figure 6).
Further, y refers to the fluid concentration (kg/m3) which varies with time
and space. It is assumed that the total material quantity of the component
y in the reactor remains constant. The originality of the torus reactor arises
from the time-dependent position of the interfaces (S1 and S2) which separate
the two ideal flow zones. Indeed, it is assumed that S1 and S2 move alternately
in a counter-clockwise direction to the flow rate fluctuations. Consequently,
when the flow rate is non-steady, the volumes (Vd and Vp) of the two ideal
reactors are time variant. In particular, it is assumed that S1 (respectively, S2)
moves only when positive (respectively, negative) variations in the flow rate
occur in the torus volume and is otherwise motionless. Note also, that when a
variation of flow rate occurs, not only the volumes of the zones vary but their
location within the torus evolves counter-clockwise. We assume that at each
time t the flow rate Q̇(t) is proportional to the impeller rotational speed N(t).
For steady operations simulation results obtained with this model are close to
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Fig. 7. A mixing vessel used for experimental validation of the proposed mixing
model, from [6]

Fig. 8. The torus model reproduces well the experimentally observed mixing mea-
sured by a conductivity probe, from [6]

the reference results [14]. In the case of unsteady stirring, the model accounts
for the experimental observation that an improvement in mixing occurs when
a positive variation in the rotational speed is enforced. For example, in the
case of a positive variation in impeller rotational speed, the volume of the
stirred tank reactor increases while that of the plug flow decreases. As the
whole volume of the torus loop is unchanged, an enhancement in mixing is
expected.

Note V̇ +
d (respectively, V̇ −

d ) the variation of volume Vd due to the motion
of S1 (resp., S2) in the torus, and let θ be the residence time of the par-
ticle leaving the plug flow zone at time t. Then, the whole system can be
characterized by the following differential equations
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V = Vd(t) + Vp(t)∫ t

t−θ

Q̇(σ)dσ = V − Vd(Q̇(t− θ)) −
∫ t

t−θ

V̇ +
d (σ)dσ

Vd(Q̇(t))
d (y(t))
dt

= (Q̇(t) + V̇ +
d )(y(t− θ) − y(t)),

Q̇(t) = αN(t)

with

V̇ +
d = k

dN

dt
, if

dN

dt
> 0, V̇ +

d = 0 otherwise,

V̇ −
d = −kdN

dt
, if

dN

dt
< 0, V̇ +

d = 0 otherwise.

This model represents experimental data well. To check its validity, a mixing
vessel pictured in Figure 7 was used. The agitated fluid is an aqueous solu-
tion of glucose. The rotational speed was controlled to reproduce increasing
and decreasing ramps. A conductivity probe was used to obtain the circula-
tion curves in the vessel. The rotational speed and the conductivity signal
were recorded throughout the mixing process. The values of the rotational
speed varied from 0.16 to 1.5 rev/s. Mixing and circulation times were deter-
mined from the response signal recorded after tracer injection. As is pictured
in Figure 8, for the experimental conditions tested, the probe conductivity
measurements are in close agreement with the expected behavior reproduced
by the model.

5 Multiphasis Slug Flow

Finally, we wish to complete our catalogue of distributed systems with mov-
ing interfaces with a problem of multiphase flow. This problem is of great
importance in the oil industry where long pipes (named risers, or flowlines)
are used to transport large blends of gas, oil and water. The gas and the liquid
phase do not mix, and, in the case when the dispersed bubbles gather, they
form large bubbles, named “slugs” which induce malicious pressure variations
which are highly detrimental for industrial facilities. In such cases, the inter-
face is the boundary between liquid and gas phase. It is indirectly controlled
by remote inputs.

In details, risers are long pipes connecting reservoirs to surface facilities
for oil production. Severe slugging is a flow regime that arises mostly when
entering tail production of an oil field. It is characterized by an unstable
multiphase flow, where slugs of liquid accumulate before being pushed up-
wards by the gas. It is also characterized by oscillations of the pressure in
the pipeline and oscillations of flow rates of gas and oil at the production end
of the pipe. Although the phenomenon itself can be observed and sometimes
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reproduced on test rigs, its causes are not always known. Because the severe
slugging flow regime can damage the installations (and most importantly re-
duce the oil production), various techniques have been investigated in view of
suppressing it. The riser length typically ranges from a few hundred meters to
several kilometers. To avoid instability, the most straightforward technique

Fig. 9. A vertical riser carrying a multiphase flow, from [3]. An elongated bubble
located at the bottom of the riser is subjected to a pressure buildup until it is
released and generate a slugging flow. The interface between this elongated bubble
and the rest of the riser is a virtually controlled interface.

Fig. 10. The successive steps of the slugging cycle reproduced by the simple model
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consists in choking down manually the pipes thanks to a choke located up-
stream the separator. Although this solution stabilizes the flow, it reduces
significantly the oil production which, in turn, motivates the investigation of
dynamic control of the valve. Indeed, it is possible, in closed-loop, to stabilize
at higher flow rates.

Two classes of models can be found in the literature. The most accurate
type is based on (usually nonlinear) partial differential equations represent-
ing two-phase (oil and gas) or three-phase (oil, water and gas) flows. These
models are able to reproduce the slugging phenomenon in many cases, but
fail to match the behavior of real-life wells in other cases, in particular when
the instability comes from reservoir dynamics, for which there is little knowl-
edge about. Unfortunately, it is not possible to derive control laws from these
models because of their complexity. The second class of models is based on
ordinary differential equations and represents a different trade-off between
accuracy and complexity. A prime example is the model presented in [13],
which, besides its numerous merits, does not sufficiently rely on physics to
accurately reproduce the physical response of the system. Finally, the model
is not general enough and is designed for a specific geometry. This is also the
case for the model of gas-lift presented in [23, 26, 25].

Consider a vertical riser subjected to a constant input flow. The output flow
of the riser is controlled by a choke. Unstable flow regime can occur, especially
when the choke is largely opened, which, unfortunately, corresponds to a
point of industrial interest. This kind of instability is also observed on related
systems: oil wells with a gas reservoir [28, 12], risers with low-point [27, 10, 9].
Generally, switches of valves are reported to be at the birth of the oscillating
phenomena: downhole choke plays a key role in the casing-heading in [23,
12, 24], while the geometric low-point acting as a valve is studied in [27]. In
the riser considered here, no such valve exists or is even suggested by the
geometry. Yet, one can model the riser using a virtual choke located at a
well chosen point at the bottom of the riser. In this approach, the riser is
modeled as a three-state set of ordinary differential equations. As is detailed
in [3], one can tune the model analytically to fit most physical systems of
interest. The equations reproduce the slugging flow regime as follows. The
elongated bubble is subjected to a pressure buildup until its pressure get high
enough so that the bubble is eventually released and travels through the rest
of the vertical riser and produced a slugging flow regime. Then, the pressure
buildup starts over again. The successive steps of this cycle are pictured in
Figure 10. Further, this model suggest a control design that allows to stabilize
the flow. One can refer to [3, 4] for an experimental study and a mathematical
derivation of this control law.

6 Conclusion

In this paper, several distributed parameter systems with an internal mo-
bile interface have been presented. In each case, the governing equations are
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relatively simple, and it appears that the introduction of a mobile interface
is a key feature to make this model realistic. At various levels, the location
or the nature of the mobile interface can be controlled by the input variables.
In the case of the DOC system, it is directly dependent on the amount of
reductants entering the system. In the Stefan problem, the liquid-solid inter-
face moves as the heat flux travels through the whole system. In the mixing
vessel, the interface moves according to sign of the time variations of the ro-
tation speed of the blender. In the multiphase flow, the interface is virtually
actuated by a the histories of the control variable. Interestlingly, all these
models are simple enough to provide direct insight into the solution of con-
trol problems of engineering interest: thermal response of the DOC system,
inverse control of crystal growth, optimization of blending dynamics, stabi-
lization of slugging flows. The interested reader can refer to [16, 8, 6, 3] and
the references therein for details.
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