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ABSTRACT 

This paper defines a reconfiguration method for the class of Discrete Event Systems (DES) that is subject 

to linear constraints as their control specifications. Some existing methods for enforcing these constraints 

make use of Petri-net P-invariants for controller synthesis.  These methods are quite appealing because 

their computational complexity is much more tractable than most other methods for controller synthesis.  

However, a common limitation of all existing P-invariant-based control architectures for DES plants is 

the assumption that the linear constraints defining the control specification of the plant do not change over 

time.  Here, we relax this assumption and allow the control specifications to change during the controller 

run-time.  Under certain assumptions on DES behavior, we automatically reconfigure the DES controller 

after the control specification is changed.  In addition, if the current state of the controlled DES has 

become infeasible under the new control specification, we automatically generate a so-called plant 

reconfiguration procedure whose execution leads the system back to a feasible state.  This 

reconfiguration procedure is optimal in that it seeks to minimize the cost of reconfiguration actions 

through an Integer Programming (IP) model.  The objective function of the IP model can be used to 

generate reconfiguration solutions that meet some desired properties.  Depending on the actual cost of 

each reconfiguration action, a minimum cost reconfiguration solution may use only actions contained in 

the current plant configuration (an internal response), or ask for a change in the plant configuration, for 

instance, by adding new resources (an external response), or a combination of both strategies. Finally, we 

illustrate our method by applying it to a hospital control system example. 

 

I. INTRODUCTION  

DES encompass a wide variety of systems such as manufacturing systems, transportation systems, 

supply chains networks, operating systems and communication systems [13]. These systems are dynamic 

and change their states with the occurrence of discrete events. DES controllers are used to restrict the 

behavior of DES to a desirable set of behaviors that do not violate the DES control specifications or 
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constraints. DES controller development consists of two phases, namely controller synthesis and system 

run-time. During controller synthesis, a DES and its control specifications are used to construct the DES 

controller. In the run-time phase, the constructed controller interacts with the DES in a closed loop 

structure. The interactions happen through the observation channels (by which the controller observes the 

controlled DES behavior) and control enforcement channels (by which the controller enforces the control 

commands to the DES). The behaviors of the DES controlled by this loop will comply with the given 

control specifications. 

To date different methods have been used for specifying DES controllers. Examples include Petri nets, 

finite state automata, ladder logic, and sequential function charts [9, 10, 11]. All such methods are able to 

synthesize a controller using a suitable model of the DES and its control specifications. The controller 

specification can be either executed directly, such as a Programmable Logic Controller (PLC) executing a 

ladder logic program, or transformed into executable control code. Either way, the synthesized controller 

can guarantee the enforcement of control specifications, as long as all the assumptions and information 

used in the design and run-time phases hold true. However, in practice, this information can change 

during the run-time phase. In this case, if the plant execution is continued using the existing controller, the 

DES might generate incorrect or illegal behaviors. Generally, any change in the controlled system during 

run-time can fall under one of four different categories: Changes in the uncontrolled behavior of the DES, 

changes in the control specifications or constraints, changes in the observation channels, and changes in 

the control enforcement channels. A control reconfiguration consists of the necessary steps to modify a 

DES controller, in the run-time phase, when one or more of these changes happen. The modified 

controller must continue a proper control of the DES under the new conditions. 

Different types of reconfiguration have been addressed by DES control researchers. Darabi et al. [5] 

and Liu and Darabi [21] developed a control switching formalism that revises the controller policy when 

the observation channels fail or are repaired. The DES and its control specifications are modeled by finite 

automata. A mega-controller monitors changes in the observation channels and selects the proper control 
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logic when changes occur. This work is an example of reconfiguration based on observation channel 

changes. 

Lucas et al. [2] propose a reconfiguration approach for a modular plant. They assume one control 

module for each machine, and other control modules for coordination. The interfaces between the 

modules are well-defined, and all communication between modules occurs via these interfaces. The idea 

behind their methodology is that the definition of the operation sequence should remain in one control 

module, called the control plan. The other control modules are independent of the operation sequence. 

Thus, when the manufacturing scenario is altered, only the control plan needs to be reconfigured or 

changed. Also, if mechanical modules are added or removed from the system, the appropriate mechanical 

control modules must also be added or removed. This research is an example of reconfiguration based on 

changes in both DES behavior and control specifications for a special class of machining systems. 

Oliver and Badouel [3] address another example of reconfiguration. They introduce a class of high 

level Petri nets, called reconfigurable nets that can dynamically modify their own structure by rewriting 

some of their components. The switch from one configuration to another due to a local change in DES 

behavior is carried out by introducing a new kind of place content which indicates whether a place does or 

does not exist in the current system state. The firing policy of transitions is similar to the case of the Petri 

net obtained by discarding the nonexistent places. This Petri net is called a configuration of the 

reconfigurable net. As long as no structure-modifying rule is fired, the reconfigurable net behaves exactly 

like this Petri net.  

Hanisch and Vyatkin [4,8] defined a reconfiguration method within the framework of IEC 61499, a 

control system modeling standard defined by the International Electrotechnical Commission. They 

developed a software package for model-based simulation and verification united by a homogeneous 

graphical user interface. The controllers defined in IEC 61499 automatically generate the formal code of 

the controller from a graphical specification. The analysis of verification results through simulation and 

visualization along selected process trajectories facilitates an understanding of the reasons of failures. 

This work is one of few investigations that show the potential application of IEC 61499 in reconfiguring a 
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control system. However, their work assumes the availability of an IEC 61499 model of the DES and its 

specification such as a model based on function-block diagrams. Such models are not available for 

systems other than manufacturing automation, and therefore the proposed reconfiguration may not be 

applicable in systems other than manufacturing.  

Lin [12] and Darabi et al. [20] discuss the class of finite automata based DES that are safely controlled 

based on a given controller. Those methods are additional examples of reconfiguration based on DES 

behavior changes. However, those methods are not applicable when the DES change makes the current 

controller state infeasible. 

Lawley and Sulistyono [22] investigate the problem of control reconfiguration subject to unreliable 

resources. The objective of this work is to avoid possible deadlocks generated due to the failure of 

resources. When a resource fails, the reconfiguration approach revises the set of control policies to ensure 

that the enabled polices do not set the system to a blocking state. 

In this paper, we present a reconfiguration method for a class of DES whose control specifications can 

change at run-time. Our approach is applicable to DES containing finite sets of tasks that can be executed 

in parallel.  Different types of resources are needed by the tasks; for each resource type a finite number of 

resources are available in the DES.  In addition, some tasks must precede other tasks.  Tasks may be 

synchronized at predetermined points in their execution; tasks may also choose nondeterministically 

among multiple possible alternative behaviors. Tasks are subject to resource and service constraints.  

Resource constraints state that a task (or a task subset) requires a given set of resources in order to be 

executed; resources can be shared among tasks.  Service constraints impose minimum levels of 

performance on the DES.   

The goal of our method is to define a reconfiguration strategy when the resource constraints and 

service constraints for tasks contained in a DES are modified during system execution.  We specifically 

assume that the following control specifications may change dynamically for some resources and/or 

service constraints:  Resource availability, resource consumption by tasks, system service requirements, 

and the satisfaction ratio of different service requirements by different tasks.  We define a reconfiguration 
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need to be a change in control specifications that occurs at run-time.  We define a reconfiguration 

response to be the set of actions that our method defines in response to a reconfiguration need. 

We model the DES subject to reconfiguration as an ordinary Petri net (PN).  We choose this 

representation for several reasons.  First, Petri nets can capture in a natural and compact way parallel 

execution, nondeterministic choice, and task synchronization, which characterize many classes of DES.  

Modeling this kind of system dynamics can be cumbersome using, for instance, pure integer linear 

programming models. Second, efficient methods for generating resource and service constraints exist for 

DES modeled as Petri nets.  (See, e.g., [19].)  Third, Petri nets support a linear-algebraic interpretation, 

which is the cornerstone our approach. 

 Our approach is subject to the following assumptions.  We assume that the control specifications can 

be captured by a set of linear equalities and inequalities on the markings of the PN. The coefficients used 

in these constraints are finite integer numbers.  The PN for the controlled system is constructed using the 

method introduced by Yamalidou et al. [19].  That method results in the addition of so-called controller 

places to the plant net that models the DES under consideration.  In addition to the controller places 

generated by that method, we introduce so-called controller transitions, one transition for each controller 

place. In some cases, the firing of one such controller transition means increasing the number of resources 

of a given type by one.  In other cases, firing a controller transition means decrementing the minimum 

level that satisfies a service constraint by one.  The coefficients of the right-hand side and/or the left-hand 

side of the linear constraints can change during the run-time of the controlled system.  Reconfiguration 

actions are limited to firing one or more plant or controller transition in a sequence. 

We further assume that the controlled plant is frozen and no further reconfiguration need arises while a 

reconfiguration strategy is computed and executed.  Under these assumptions, our method guarantees that 

the reconfiguration sequence is live (i.e., free of deadlock) and feasible.  However, we assume also that all 

the transitions contained in the sequence can be forced to fire in their order in the sequence. This means 

that such transitions are controllable.  In addition, the plant transitions linked to the controller places must 
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be controllable [19].  We assume that there is a cost associated with the firing of each transition (whether 

a plant or controller transition).  Finally, we assume that all plant transitions are observable.  

Our reconfiguration solution is general for problems that satisfy our assumptions in that it can handle 

both cases in which the current state of the controlled DES is feasible or becomes infeasible after 

changing the control specifications. When the current DES state remains feasible under the new controller 

specification, we define a reconfiguration of the controller structure to adapt to the new set of control 

specifications. If, however, the current DES state becomes infeasible, we model reconfiguration strategies 

for both the plant (DES) and the controller. All the proposed reconfigurations are formalized and 

expressed in terms of specific control actions such as firing a sequence of transitions. 

Our approach to system reconfiguration can be fruitfully applied to a broad class of real-world DES.  

One example of application domain is hospital control systems. In these applications, tasks are different 

steps that a patient undergoes in the hospital (e.g., admission, test, and examination). Resources consist of 

medical personnel and hospital facilities. Service constraints could specify a minimum number of 

resources available in the hospital at all times. Reconfiguration needs may arise, for instance, when the 

number of nurses or doctors is decreased due to unforeseen circumstances. In these settings, two key 

assumptions of our approach are satisfied.  First, the frequency of reconfiguration needs is reasonably low 

(e.g., several hours or even days). Second, when a reconfiguration response is computed, it is usually 

enforceable before any other change in hospital state occurs. A plausible response in this case could 

consist of acquiring more resources (e.g. moving nurses between sections or asking on-call nurses to 

come to the hospital), reducing service attribute expectations (e.g. reducing the number of professional 

personnel in a given section of the hospital), or performing some tasks (e.g., transferring a patient) in 

order to adjust the levels at which resources and services are associated with tasks. 

Another application of our method is the reconfiguration of Project Management Control systems. In 

these systems, a large set of activities have to be completed over a lengthy period, such as several months. 

These tasks consume shared resources; in addition, safety (service) measures must be enforced on 

aggregated classes of resources.  Enforcing a transition in these systems could model starting or ending a 
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task that can be run at different costs for different durations. Also resources and safety/service attributes 

can be revised by project managers. The goal is to find the optimal (minimum cost) task execution rate, 

resource acquirement strategies, and service-attribute target points while the project is evolving.   

Note that the reconfiguration method of this paper is not appropriate for the systems that change 

frequently, such as computer operating systems or programmable logic controllers. In addition, our 

approach will fail if the requested reconfiguration actions are infeasible. For example if these actions ask 

for the addition of human resources for a specific task, and if these resources are not available, then the 

stated reconfiguration will not succeed. 

We distinguish between the reconfiguration method discussed in this paper and the class of methods 

for deadlock prevention/avoidance or recovery that have been extensively discussed in the literature. (See, 

e.g. [6, 22, 25—29].) The objective of the reconfiguration method addressed here is neither to remove a 

deadlock nor to recover the plant from a blocked state. The issue of deadlock may arise during 

reconfiguration, meaning that a deadlock-free controlled system may contain potential deadlocks after 

reconfiguration response takes place.  While deadlock detection is beyond the scope of this paper, we 

believe that one of various strategies for handling deadlocks should be used in combination with our 

method in the case of systems where deadlock is possible.  An example of such a strategy is the use of 

supervisory controllers that remove deadlocks.  (See, e.g. [26—30].)   

In the next section, we summarize a method for supervisor synthesis that forms the basis for our 

reconfiguration method.  We discuss our reconfiguration procedures in Section III. Section IV illustrates 

our reconfiguration method by two examples. In Section V, we discuss some preliminary empirical results 

of our approach.  Finally, in Section VI we present conclusions and future research directions. 

 

II. BACKGROUND 

Other authors have defined various frameworks for the construction of DES supervisory controllers, 

subject to a set of linear constraints [11—19]. The set of linear constraints is called a control 

specification. Giua et al. automatically generate controllers for a broad class of mutual exclusion 
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constraints expressed as linear equalities and inequalities on Petri net markings [1]. Yamalidou et al. 

generate similar controllers using a P-invariant based method for controller construction [19]. In the 

following, we summarize the construction procedure of Yamalidou et al.  The original (uncontrolled) 

DES is modeled by an ordinary Petri net, called the plant. We assume that the reader is already familiar 

with the basic concepts introduced in [19]; here we only provide a brief discussion of these concepts.  We 

denote the plant’s set of places and transitions by },,,{ 21 n
p pppP L=  and },,,{ 21 m

p tttT L= . We assume 

that all the transitions in T  are controllable and observable. This means that the PN marking is 

deterministic (due observation assumption), and that every transition in T  can be fired as soon as it 

becomes enabled. Let pD  be the mn×  incidence matrix of the plant. Also let pV0  be the initial marking 

of plant places. The objective is to restrict the behavior of the plant in such a way that it satisfies a set of 

linear constraints, the control specifications. In practice, each constraint in this set can be in one of the 

following forms: 

bvlvlvl nn ≤+++ .........2211      (1) 

bvlvlvl nn ≥+++ .........2211      (2) 

bvlvlvl nn =+++ .........2211      (3) 

Here nivi ≤≤1 ,  are constraint variables denoting the marking of plant places in all reachable states of 

the plant. All other elements are integer constants. We further require that 0≥ib , for all i with ki ≤≤1 . 

Therefore, such constraints are imposing conditions on the marking of plant places. Each type (3) 

constraint can be replaced with two constraints, one of type (1) and one of type (2). Assume that k  is the 

total number of constraints after replacing all type (3) constraints with their equivalent constraints of type 

(1) and (2). Without loss of generality, we assume that the first g  constraints are of type (1) and the last 

gk −  constraints are of type (2): 

ininii bvlvlvl ≤+++ .........2211   gi ≤≤1    (4) 

ininii bvlvlvl ≥+++ .........2211   kig ≤≤+1    (5) 



 9

Using a matrix format, we rewrite the constraint set by the following two inequalities:  

11 BVL ≤       (6) 

22 BVL ≥       (7) 

To impose (6) and (7) on the plant, a set of control places, one for each constraint, is added to the plant 

net. We denote this set by },,,{ 21 knnn
c pppP +++= L . The arcs connecting places in cP  to transitions in 

pT  are defined by the so-called controller incidence matrix cD :  

pc D
L

L
D 







−
=

2

1       (8) 

The initial marking of the control places, cV0  is defined by the following matrix equation: 













−

−
=

202

011
0

BVL

VLB
V

p

p
c      (9) 

The system consisting of the original plant and controller net is called the controlled plant. Yamalidou 

et al. [1] showed that the controller generated by equations (8) and (9) above is maximally permissive. 

This means that every behavior of the uncontrolled plant that does not violate constrains (4) and (5) is still 

allowed to happen in the controlled plant. 

 

III. CONTROL RECONFIGURATION 

A crucial assumption of the method presented in the previous section is that the coefficients in (6) and 

(7) do not change while the controlled plant is running. In many real-world problems this assumption may 

not be true. For example, a constraint of type (4) can represent a resource constraint with the terms on the 

right-hand side modeling the available amount of each resource; coefficients on the left-hand side show 

the consumption ratios of each resource by activities; and the marking variables show the level of 

activities. In this case, it is quite possible that consumption ratios and/or the available number of resource 

change while the controlled plant is running. As another example, a type (5) constraint may represent a 

safety stock level in an inventory system, where the right-hand side shows the minimum (safety) stock 
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that must be available at any time. In this case, the left-hand side coefficients would show the number of 

stock items in each inventory box type, while the variables show the number of each box type available in 

the warehouse. In this example the safety stock level might change due to new inventory policies. 

In this section, we consider a problem in which coefficients in (6) and (7) can arbitrarily change over 

time. We develop a controller that can be reconfigured on the fly whenever such a change occurs. We 

present the materials of this section in the following order. We first discuss the reconfiguration scenarios 

and their graphical representations.  Next, we discuss a mathematical model of the reconfiguration 

problem based on the control formalism of Section II. In the last part of this section, we present an IP 

model to select the best reconfiguration strategy when multiple strategies are available for a given change. 

A. Reconfiguration Scenarios and State Space Representation of Reconfiguration 

Assume that the rectangle in Figure 1, denoted by S, defines all the states that can be reached by an 

uncontrolled plant. Let C1, a subset of S, define all the states that can be reached by the controlled plant 

as defined in the previous section. If the control specifications defined by (6) and (7) do not change 

during run-time, then the method discussed in Section II guarantees that the state of the plant cannot be 

out of C1 at any time. But if the control specifications change while the controlled plant is running, then it 

is possible that some states (perhaps all states) in C1 do not satisfy the new control specifications. Let C2 

show the set of all plant states that satisfy the new specifications. For the sake of generality, we assume 

that C1 and C2 have a nonempty intersection, shown by A2 in Figure 1. When the control specifications 

change, the controlled plant can be in a state contained either in A1 or A2. A1 is the C1 subset that does 

not satisfy the new control specifications, whereas A2 is the C1 subset that satisfies the new 

specifications. Consequently, we define the following two cases: 

Case 1: At the time of the change in control specifications, the controlled plant is at a state that satisfies 

both the old and the new specification. For example if, at the time of change in control specifications, the 

controlled plant is at state B in Figure 1, then this case occurs.  
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Case 2: At the time of the change in the control specifications, the controlled plant is at a state that does 

not satisfy the new specification. For example if the controlled plant is at point A in Figure 1 at the time 

of change in control specifications, then this case occurs. 

The reconfiguration responses are different in the two cases above. Our reconfiguration response is the 

sequence of all steps needed to reach the following two objectives without resetting either the plant or the 

controller: 

1. Modify the controller and/or the plant, without resetting them, such that the new control 

specifications are satisfied; and 

2. If the current plant state is infeasible under the new specifications, bring the plant to a state 

complying with these specifications.  

The objective of the configuration response is to continue from the current state of the controlled plant 

and to define a sequence of transitions that will navigate the plant and controller to a point that is 

acceptable under the new control specification. If more than one reconfiguration response is available 

then we need to identify an optimal response. The criteria that define the optimal response depend on the 

nature of the plant and its users.  We discuss the specification of criteria for optimality and the selection 

of an optimal solution in Section III.C below. 

In Case 1 above the state of the plant is feasible at the time of specification change. Therefore, the 

controlled plant can stay in its current state. But the control policy of the controller must change as it 

should now restrict the plant to states in C2 rather than C1. This response is called controller 

reconfiguration, as the only change must happen in the control program; the current state of the plant 

need not change. We notice that a change in the control program can immediately change the feedback 

policy sent by the controller to the plant, which in turn can change the set of states that plant is allowed to 

reach from the current state. However, in this case the plant is not required to change its current state. 

In Case 2, controller reconfiguration is not sufficient, as the current state of the system is no longer 

feasible. In addition to a controller reconfiguration, a plant reconfiguration is also needed in this case. 

The plant reconfiguration includes all the necessary steps to force the plant to change its current state to a 
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state (called the target state), which is feasible under the new set of specifications. This state can be any 

point in C2. This means that the plant reconfiguration response may not be unique, as there could be 

several alternatives for target points and the transitions paths to reach these points from the current state. 

The target points must belong to either region A2 or A3 in Figure 1. Table 1 summarizes the above 

discussion. 

As we saw earlier, we assume that control specification changes leading to a plant reconfiguration do 

not happen while the controller and plant reconfiguration procedures are executed.  This assumption is 

met when all the reconfiguration steps can be completed before the specification change event occurs. 

Since the controller reconfiguration involves only controller software updates that can be performed 

instantaneously, the assumption is always true for this type of reconfiguration. 

However, if plant reconfiguration is required, the physical plant update may not happen 

instantaneously. In this case, the assumption implies that the minimum interval of time between two 

consecutive specifications change events (that need plant reconfiguration responses) is greater than the 

maximum execution time of all plant reconfiguration alternatives. In the sequel, we present the 

mathematical formulation of reconfiguration.  

 

 

 

 

 

 

 

 

B. Mathematical Formulation of Reconfiguration 

Figure 1: State space representation 
of control reconfiguration.   
. 

Description Case I Case II 
Plant State is feasible at the time of 
change in specification Y N 

Controller reconfiguration is needed Y Y 

Plant reconfiguration is needed N Y 

Reconfiguration response is unique Y N 

 Table 1: Summary of reconfiguration cases. 

C1 C2

A B

S

A1
A2

A3
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We define formally a change in control specification as follows.  We call the set of control 

specifications shown by (6) and (7) the old specifications, or the specifications before the change. Let the 

new control specifications, or the specification after change, be shown by the following equations: 

11 BVL ′≤′       (10) 

22 BVL ′≥′       (11) 

We assume that all the coefficients in (10) and (11) are finite. Without loss of generality, we do not 

consider any change in the inequality signs of (6) and (7); we also assume that no new constraint is added 

to the system and the current constraints are not removed. We notice that a change from ≤  to ≥  (or vice 

versa) can be easily handled by our formalism, by changing the number of rows defined in (6) and (7). 

The same is true when a new constraint is added or a current constraint is removed. Therefore in the 

following formulation we assume that g  and k do not change without loss of generality. 

The first step of reconfiguration is to test if the current state of the plant is feasible with respect to 

equations (10) and (11). We call this the feasibility test. This test determines whether we must follow 

Case1 or Case 2 above. Let vectors [ ]Tp
n

ppp vvvV
 

21 ,,, L=  and [ ]Tc
k

ccc vvvV
 

21 ,,, L= denote the plant and 

controller markings at the time of change in control specifications. Using (6) and (7), we have: 













−

−
=

22

11

BVL

VLB
V

p

p
c      (12) 

Define [ ]Tc
k

ccc wwwW
 

21 ,,, L=  as follows: 













′−′

′−′
=

22

11

BVL

VLB
W

p

p
c      (13) 

Lemma 1: The plant state, pV , is feasible with respect to the new control specifications if and only if 

0≥cW . 

Proof: If part.  0≥cW  implies that both 011 ≥′−′ pVLB  and 022 ≥′−′ BVL p .  Thus pV  satisfies both 

kinds of feasibility constraints:   
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.

,

22

11

BVL

BVL
p

p

′≥′

′≤′
      (14) 

Only if part.  A feasible solution will satisfy inequalities (14). Thus, we have also: 

0≥












′−′

′−′

22

11

BVL

VLB
p

p

 

By the definition of cW  we have also 0≥cW  and the proof is complete.■ 

We recall that if the control specifications do not change, then the controller marking vector is always 

nonnegative due to the P-invariant design described in Section II. However, if a change in control 

specifications occurs, this property may no longer be preserved by the P-invariant design, leading to an 

infeasible marking. Lemma 1 provides necessary and sufficient conditions for the feasibility test. 

Based on the result of Lemma 1, when 0≥cW  Case 1 has happened; otherwise, Case 2 is true.  When 

Case 1 is true, only a controller reconfiguration is needed. If Case 2 holds, then both controller and plant 

reconfigurations are needed. 

As we mentioned before, the objective of controller reconfiguration is to update the controller state 

(policy) due to changes in the control specifications. This update can be realized using the elements of 

cW . Given that cW  represents the new state of the controller, the controller reconfiguration can be 

simply carried out in the following two steps: 

1. Setting the number of tokens in the control places to those specified by cW , and  

2. Updating the controller incidence matrix using pc D
L

L
D 









′

′−
=′

2

1 . 

By doing so, we recall that it is possible that some control places will have negative tokens—

corresponding to negative elements of cW —after the update. These negative tokens are sources of 

infeasibility and they must disappear during the plant reconfiguration phase. 

To mathematically model the plant reconfiguration, we define the following set of transitions cT , one 

transition for each controller place inp +  with ki ≤≤1 .   Each transition in cT  has no input places but it 
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has a single controller place as output.  Thus, if },,,{ 21
c
k

ccc tttT L= , then for ki ≤≤1 , we have 

}{ in
c
i pt +=
•

 and {}=
• c

it , where 
•

t ( t
•

) denotes all the output  (input) places of transition t . We call cT  

the set of controller transitions; these transitions are used for plant reconfiguration. Firing the transitions 

in cT  is likely to result in changes to the right-hand-side or the left-hand-side coefficients in (10) and 

(11). The difference between this change and the change that triggers the reconfiguration is that the latter 

is an uncontrollable event observed by the reconfiguration algorithm; whereas the former is a controllable 

strategy that is issued by the reconfiguration algorithm in order to respond to the uncontrollable change. 

In this paper, we assume that firing the transitions in cT  are equivalent to changing the right-hand sides 

of (10) and (11), and we do not consider the responses that contain changes in the left-hand side 

coefficients.  We chose this approach because left-hand-side changes signify additional modifications to 

the new control specifications.  Our first objective is for the plant and controller to reflect as faithfully as 

possible these specifications without causing the plant to be halted and reset. We will briefly discuss 

reconfiguration strategies based on changes in left-hand-side coefficients in Section VI below. 

We notice that one can always fix the problem of “negative tokens” in the controller places by firing 

the transitions in cT . Because these transitions are always enabled, this provides a trivial solution to the 

plant reconfiguration problem that always succeeds. The physical interpretation of firing the controller 

transitions depends on the application system. For example, if transition c
it , gi ≤≤1  is selected for firing 

in a system in which ib  denotes the available quantity of a given resource, then firing c
it  once could be 

interpreted as adding a unit of this resource to the existing resource pool.  In general, there is a cost for 

firing the transitions in cT  and our framework can easily model these costs.  This is important because 

these costs can capture the dependency of the system on external factors and the level at which a control 

engineer may rely on external factors for reconfiguration.  For instance, by increasing the cost coefficients 

of firing the transitions in cT an engineer can absolutely avoid any external interference in the system 

reconfiguration. We further discuss this subject in Subsection III.C. 
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In addition to firing the controller transitions, plant transitions can also be fired as part of 

reconfiguration response. Again, firing a plant transition is likely to be costly because it corresponds to a 

physical action in the plant.  It is also possible that a reconfiguration action involves firing a combination 

of plant and controller transitions. Later, we will formulate a mathematical model which comprises all 

possible combinations of reconfiguration actions that can be realized for a given problem. This model will 

help us in selecting the reconfiguration response that yields the minimum cost. 

Let [ ]Tc
k

ccc yyyY
 

21 ,,, L=  and [ ]Tp
n

ppp yyyY
 

21 ,,, L=  be the controller and plant marking vectors after 

the plant reconfiguration is executed.  Plant reconfiguration consists of the following steps: 

Step 1: Select a target state for the plant and the controller, that is, a vector 











=

c

p

Y

Y
Y . 

Step 2: Find a transition firing sequence F  that takes the system from its current state 











c

p

W

V
 to its target 

state 











c

p

Y

Y
. 

Step 3: Execute the selected firing sequence. 

Step 4: End the plant reconfiguration.■ 

In Step 1 of the plant reconfiguration a target state must be selected. As we mentioned before, the 

objective of the plant reconfiguration is to change the infeasible state of the system to a feasible one by 

firing a sequence of plant and controller transitions. Therefore the target state must be a feasible state. 

Such a sequence is found in Step 2 of the above procedure. We notice that for a given system, in Step 1, 

one might have many alternative target states, and it is possible that each of these alternatives can be 

reached from the system current state, 











c

p

W

V
, through several firing sequences. This means that the plant 

reconfiguration solution is not unique. In real world problems, possible plant reconfiguration alternatives 
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could be too many to enumerate. In the following, we define an IP model which helps in selecting the 

target state and its corresponding firing sequence. 

C. An Integer Programming Model for Plant Reconfiguration 

Before introducing the IP model in this section, we would like to review the concept of feasible firing 

count vector found by solving the state equation of a given PN [6]. Consider the PN state equation, 

0.Aσ µ µ= − , where A is the incidence matrix of the PN, µ  is a given target marking, and 0µ  is the initial 

marking of the PN. By solving this state equation one can find the firing count vectorσ . In general, this 

solution provides necessary but not sufficient conditions for the existence of a firing sequence with σ as 

its corresponding firing count vector.  This is so because the transitions in σ  may not be enabled in 

sequences of states leading from the current marking to the target marking.   

Based on the discussion in the previous section, the target state marking vector 











c

p

Y

Y
 is a set of 

marking variables that must be decided. Consequently, the firing sequence that leads to 











c

p

Y

Y
 is also a 

vector whose variables denote the firing counts of transitions needed to bring the plant to a feasible state. 

Define c
ji tt =  where kj ≤≤1  and jmi += . Let iσ , kmi +≤≤1  be the variable that shows the 

number of times that transition it , kmi +≤≤1 , is fired in order to reach the target state 











c

p

Y

Y
 from the 

current state 











c

p

W

V
.  In the following, we define an optimization model that determines the values of iσ , 

for kmi +≤≤1 , and 











c

p

Y

Y
 resulting in the minimum reconfiguration cost.  

∑
+

=

km

i
i

1
i .c Minimize σ      (15) 

Subject to: 
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.
p p p

c c c

D Y V

D Y W
σ

     
= −     

′          

0

1
     (16) 

r
km

i
i ≥∑

+

=1
i .c σ       (17) 

0≥σ,, cp YY  and integer      (18) 

In the above IP model we used the following notation: 

ic : cost of firing transition i  once where kmi +≤≤1 ; 

0 : an kn× zero matrix (all elements are zero); 

1 :  a kk ×  identity matrix; 

[ ]T
km

 
21 ,,, += σσσσ L . 

Interpretation of Constraints: 

The vectorσ in (16) represents a firing count vector which is expected to set the current marking of 

the system, 











c

p

W

V
, to a target marking 












c

p

Y

Y
. The non-negativity constraints and integer constraints 

shown by (18) guarantee that the system target state (











c

p

Y

Y
) is accepted as a marking vector, and that 

σ can be a firing count vector. As mentioned in the beginning of Section III.C, such a vector may not be 

feasible. Consequently, the IP model may provide an infeasible reconfiguration solution. We use the 

algorithm below to test whether the solution of the IP model is feasible. If the solution is infeasible, then 

the IP model is revised by changing the value of parameter r  shown in (17). This parameter is in fact a 

lower bound for the objective function value that prevents the IP model from generating solutions that 

have been experienced as infeasible.   At the outset, r  is set to zero. This allows the IP model to generate 

any solution that satisfies (16) and (18). If at least one of the optimal solutions (it is possible for the IP 

model to generate multiple optimal solutions for a given r ) is feasible, then it is selected as the plant 

reconfiguration solution. If, however, none of these solutions is feasible, then the value of r  is set to the 
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current value of the objective function (corresponding to the infeasible firing vector solution) plus one.  

Evidently, this mechanism prevents the IP model from generating its previous infeasible solutions. This 

process is repeated until a feasible solution is generated. The feasible solution can then be executed (given 

that all transitions are assumed to be controllable) and the plant reconfiguration is complete. If the 

reconfiguration solution asks for the firing of one or more controller transitions, we accordingly revise the 

right-hand sides of (10) and (11). (We recall that firing the controller transitions means revising the right-

hand sides of the linear constraints in the control specification.)  This revision will not affect the current 

plant reconfiguration but it will be used in (12) for the next reconfiguration.  

Interpretation of Objective Function: 

The cost coefficients in the objective function are interpreted as follows. Coefficient ic , mi ≤≤1  

shows the cost of firing plant transition it . Coefficient ic , kmim +≤≤+1  reflects the cost of adding a 

token to place minp −+  of the controller. We recall that the goal of the plant reconfiguration is to remove 

the negative tokens from the controller places. The negative tokens in place inp + , gi ≤≤1  show that the 

slack variable of the constraint i  (the right-hand side of this constraint minus its left-hand side) has 

accepted a negative value. Also the negative tokens in place inp + , kig ≤≤+1  show that the surplus 

variable of the constraint i  (the left-hand side of this constraint minus its right-hand side) has accepted a 

negative value. Therefore ic , gmim +≤≤+1  reflects the cost of increasing upper bound mib −  by one in 

the corresponding constraint in (10). Similarly ic , kmigm +≤≤++ 1  shows the cost of lowering the 

lower bound mib − , required by its corresponding constraint in (11).  By setting ∞=ic  (i.e., to a suitably 

high finite value) for any i, one can prevent transition it  to play any role in the reconfiguration procedure. 

For example if ∞=ic  for kmim +≤≤+1 , then control transitions are not considered in the 

reconfiguration solution (unless no reconfiguration solution with cost less than infinity exists). In the 

example of the next section we will show how different combinations of objective function coefficients 

will generate different reconfiguration policies. 



 20

D.  Feasibility of the Firing Vector Generated by the IP Model 

We check for the feasibility of a firing vector by conducting a limited state space exploration starting 

from the current state 











c

p

W

V
 and using transition firing vectorσ  returned by the IP model solution. We 

define the firing vector to be feasible if there is a sequence of transition firings, θ = θ1,…,θm, subject to 

the following three conditions: 

1. Transition θ1 is enabled in state 











c

p

W

V
; 

2. Transition θi is enabled in the state reached by firing θi-1, for 2 ≤  i ≤  m; and  

3. For each transition ti in T, the total number of occurrences of ti in θ exactly equals iσ , the entry 

corresponding to ti in σ . 

At the outset, we note that we are not required to check the feasibility of the solution to the IP problem 

above when this solution contains nonzero entries only for controller transitions. In this case, plant 

reconfiguration requires only the firing of control transitions; these transitions are always enabled because 

they have empty input place sets. Thus, plant reconfiguration is conducted by firing each control 

transition ti exactly as many times as indicated in the corresponding entry, iσ , of solution vector σ  in an 

arbitrary order. If, however, vector σ  contains at least a nonzero entry corresponding to a plant 

transition, we must check whether vector σ  is feasible. 

The algorithm appearing in Figure 2 checks the feasibility of the solution vector σ  that solves the IP 

problem above. If the vector is feasible, the algorithm returns also a sequence of transition firings 

satisfying the three feasibility conditions above. In brief, the algorithm builds a portion of the state space 

of the controlled net, starting from the current state of the plant net, 











c

p

W

V
. The portion of the state space 

is represented by a limited reachability graph G.  Graph nodes have two components: (1) a reachable net 

state (i.e., marking) and (2) an updated vectorσ . Graph arcs represent state transitions caused by net 



 21

transition firings. The goal of the construction is to fire each such transition ti exactly iσ  times, where iσ  

is theσ entry corresponding to ti. 

The initial node of G corresponds to the current state and vector σ  returned from the IP solver; 

subsequent graph exploration is limited in the following sense. For each graph node n, corresponding to a 

net state x and vector nσ , we consider only transitions corresponding to nonzero entries in nσ  when 

looking for the successors of n. Whenever one such transition ti is found to be enabled in n, we add a 

successor n′  to n in G. The state x′  corresponding to n′  is obtained from x by removing an appropriate 

number of tokens from the input places of ti and by adding one or more tokens to the output places of ti. 

The number of tokens removed from each input place of ti (or added to each output place of ti) is equal to 

the weight of the arc connecting that place to ti. Finally, the vector nσ ′ for node n′  is obtained from nσ  

by decrementing the nσ  element corresponding to ti, the transition that fired, while leaving all other nσ  

entries unchanged. If a node corresponding to n′  already exists in G, we add an arc from n to that node. 

Otherwise, we add a new node n′  to G, along with an arc from n to n′ .   

 

 

 

 

 

 

 

 

 

 

1. Set initial graph node s to the pair ( , )
p

c

V

W
σ

 
 
 

, queue Q to empty, graph G to empty. 

2. Add s to Q. 
3. Add s to G. 
4. While Q not empty: 

a. Dequeue the first node, n, from Q.  
b. For each it T∈  such that σi>0 in n check whether ti is enabled in n. 
c. If ti is enabled in n, do the following actions: 

i. Compute node, u, obtained by firing ti in n; 
ii. If u is not in G, add u to G and enqueue u in Q; 

iii. Add arc from n to u in G. 
d. If all entries in nσ = 0, return with success.  Any path from s to n in G yields a feasible 

reconfiguration sequence. 
5. Return with failure. 
 

Figure 2: Algorithm for checking feasibility of firing vector returned by integer programming model. 
 



 22

The algorithm in Figure 2 stores open nodes (i.e., nodes to be explored) in a queue, Q. The queue is 

initialized with the root node of graph G, which corresponds to net state 











c

p

W

V
 and vector σ . The 

algorithm subsequently checks, for any open state n, whether any transition Tt i ∈ , whose entry in nσ is 

strictly greater than zero, is enabled in n.  For each such transition, we build a successor state of the 

current state by removing a suitable number of tokens (i.e., corresponding to the weight of the arc into ti) 

from each place in it
•  and by adding a suitable number of tokens (i.e., corresponding to the weight of the 

arc into ti)  to each place in •
it .  For each such state, we update vector nσ  by decrementing the entry, iσ , 

corresponding to the transition it  that we fired.  We repeat this process until either all entries in σ have 

become zero or no transition it   with 0>iσ  is enabled. In the first case, we determine that vector σ is 

feasible. In addition, the sequence of transitions leading from the initial node ),( σ








c

p

W

V
 to the target 

node ])0...0[,( 








c

p

Y

Y
 yields the optimal plant reconfiguration procedure. In the second case, we conclude 

that vector σ is infeasible and we modify our integer programming model. As mentioned earlier, a 

special case of controller reconfiguration occurs when only controller transitions (i.e., transitions in cT ) 

must be fired. This will happen whenever nonzero entries in σ correspond only to transitions in cT .  In 

this case, vector σ is guaranteed to be feasible, because these transitions are always enabled.  Thus, these 

transitions can be fired an arbitrary number of times during controller reconfiguration. 

Petri-net-based state space exploration is known to be computationally intractable [6]. However, we 

believe that the limited state enumeration described here will be tractable for a wide class of 

reconfiguration problems. This is so because, when exploring a given state, we need consider only 

transitions corresponding to nonzero elements of vectorσ .  In addition, the values in σ are decremented 
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as nodes are added to the graph.  We expect that the size of the resulting state space will be relatively 

small even for realistic-size reconfiguration problems. 

Other authors have used linear programming-based methods in spite of the fact that integer solutions 

returned by those methods may not be feasible. Avrunin et al. [23] generate integer linear programming 

systems from regular expressions describing the behavior of concurrent programs. Feasible solutions to 

their linear programming problems show that a concurrent program may violate certain correctness 

properties, such as freedom from deadlock or compliance with mutual exclusion constraints. Avrunin et 

al. conduct a limited state-space exploration in order to check the feasibility of their solution.  If the 

integer solution is infeasible, the analysis of the concurrent program is inconclusive. However, Avrunin et 

al. showed empirically that their method works correctly (either because the linear system has no integer 

solution or because the solution is feasible) in the overwhelming majority of cases they considered [23].  

In fact, they were able to analyze correctly a number of sizeable examples of concurrent programs. The 

method was subsequently applied to the analysis of a large set of benchmarks for concurrency [24]. 

Murata et al. [25] exploit Petri net T-invariants and P-invariants in order to detect deadlocks in 

concurrent programs. Integer solutions to their invariant equations are again used to guide a limited state 

space exploration quite similar to our algorithm in Figure 2. 

E. Summary of Reconfiguration Operations and Their Complexity 

Figure 3 shows a complete picture of control reconfiguration with respect to the specification change. 

The figure consists of 9 steps. Please notice that based on this chart, the reconfiguration procedures 

(steps) are performed in a serial way. Step 1 and Step 2 show the normal operation of the controlled plant.  

In the normal mode, the plant is continuously controlled by its controller, and it waits until a change in 

specification is observed. When a change occurs, the reconfiguration mode starts. Steps 3, 4 and 5 are 

always followed in reconfiguration mode.  These steps establish the controller reconfiguration. After the 

controller reconfiguration phase is complete, the need for plant reconfiguration is tested. If needed, this 

reconfiguration happens in Steps 6 through 9. If the plant reconfiguration is not required, the plant is 

switched to its normal mode (Step 1) again. We recall the assumption that no change in the specification 
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may occur during plant and controller reconfiguration. Upon completion of the plant reconfiguration, 

control is switched back to the plant’s normal mode (Step 1).  It must be noted that the plant 

reconfiguration is always possible in our formalism; this is why in Figure 3, the flow is eventually (in 

finite number of iterations) returned to Step 1 after the plant reconfiguration phase. The reason for the 

eventual completion of the plant reconfiguration is that from the definition of the controller transitions, 

there is always at least a (plant) reconfiguration solution which only involves the firing of the controller 

transitions. Although the cost of this solution might be high (even infinity), its related firing sequence is 

considered a reconfiguration solution. 

 

 

 

 

 

 

 

 

 

 

 

From the complexity point of view, all controller reconfiguration steps (3 to 5) as well as Steps 8 and 9 

of the plant reconfiguration involve simple comparison and matrix operations, and therefore have 

polynomial complexity. However, Steps 6 and 7 are computationally NP-hard. Step 6 solves and IP 

model and Step 7 involves the computations of state reachability. While the worst-case computational 

complexity of both problems is intractable, in practice we expect that typical run times will be much 

better than the worst case. Branch-and-bound methods have proven effective in solving integer linear 

Figure 3: Reconfiguration procedure steps. 
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systems with thousands of variables and constraints [7]. In addition, the complexity of our state space 

exploration is sharply curtailed by vector σ . We are currently conducting empirical evaluations of the 

scalability of our method. Moreover, we plan to investigate heuristics for reducing the complexity of 

these steps even further.  In Section V, we report on empirical data that we obtained by running a realistic 

version of the emergency-room example discussed in Section IV. 

 

IV. EXAMPLES OF RECONFIGURATION SYSTEMS 

In this section we illustrate the proposed reconfiguration formalism with two examples. In the first 

example, we discuss three scenarios. In scenario 1, the system needs both controller and plant 

reconfigurations. But in the plant reconfiguration, only plant transitions are fired. In scenario 2, only 

controller transitions are used for reconfiguration. In scenario 3 both plant and controller transitions are 

used for reconfiguration. In example 2, we show how constraint (17) can force the model to generate a 

real reconfiguration firing vector.  

Example 1: A Hospital Service Allocation System 

We illustrate our control reconfiguration procedure for a real world hospital modeling example. The 

hospital is considered as a service system where a patient is diagnosed for some symptom and provided 

treatment based on the patients’ diagnosis. Here we consider the case of a patient entering the emergency 

department (ED) with right lower quadrant abdominal pain. We assume that there is an ED bypass state in 

which the ED management does not accept any new patients. This state is reached when 23 patients are in 

the ED. Place 0p  (See Figure 4) is used to model the maximum number of patients that can be accepted 

simultaneously in the ED. When a patient enters the ED, he is admitted into the triage. After triage, the 

patient is assigned a bed space and admitted into the ED. Next the patient is seen by the ED medical 

doctor (ED MD) or the ED registered nurse (ED RN). Once seen, the patient is prepared for laboratory 

procedures. This could include taking a CT Scan or X-ray. Next the patient is moved by either the ED 

MD/ ED RN/ Transport to the medical floor for consultation. We have not included the resources that are 



 26

used in the consultation process in this example. Once the consultation is complete, the patient is ready to 

exit the ED. The unmarked PN model of the plant is shown in Figure 4. Table 2 details the meaning of 

each place in the net. We assume that all the transitions are controllable. The service provided to each 

patient requires work by different hospital resources. Bed space is required for providing treatment to 

patients; ED MDs and ED RNs check the patients and provide consultation in the ED; ED MDs, ED RNs 

or transports are required for moving the patients within the hospital; and CT Scanner and X-ray 

machines are required for laboratory procedures. 

The following constraints are imposed on the ED operations by the less-than-or-equal (≤ ) and greater-

than-or-equal (≥ ) constraint types discussed in section II.  

3 4 5 6 7 14 15

8 9 10 11 12 13

4 5 17 18

12 (Permanent bed space constraint)

12(Temporary bed space constraint)

8 (Number of ED personnel on professional assignment)

v v v v v v v

v v v v v v

v v v v

+ + + + + + ≤

+ + + + + ≤

+ + + ≥

 

The explanation of these constraints is straightforward. Constraints 1 and 2 restrict the number of 

permanent and temporary bed spaces available in the ED for providing treatment. Constraint 3 specifies 

the combined number of ED MDs and ED RNs that need to be available to perform professional 

functions. By professional assignment, we mean assignments exclusive to ED MDs and ED RNs; for 

example, transporting a patient is not a primary function of either the ED MD or ED RN but performed by 

them on a need basis. We have: 

1
0  0  1  1  1  1  1  0  0  0  0  0  0  1  1  0  0  0  0  0  0 0

0  0  0  0  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0  0  0 0
L

 
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 

; 1
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B

 
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 

; 

[ ]2 0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0 0L = ; [ ]2 8B = . 

The first 21 columns of 1L  and 2L matrixes are corresponding to places 1p  to 21p respectively. The last 

column is for place 0p  . The incidence matrix of the plant is: 



 27
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The first 21 rows of the incidence matrix are corresponding to places 1p  to 21p . The last row is for place 

0p  . The controller matrix cD is:  
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c pL
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=  
 

 0     0     -1    0     0     0     0     0     0     1     1     0    0     0      0   0     -1     -1     -1     0   1    0

 0     0     0     0     0     0     0     0     0    -1    -1     0    0=      0     0    0      1      1      1     0   0    0

 0     0     0     0     0     0     0     0     0     0     0     0    0    -1    -1    0      1      1      0     0   0    0

 
 
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. 

Suppose that 0 [2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 7 ;9; 4; 2; 2; 23]p TV = . Again the order of values in P
oV  is 

from the marking of 1p  (first value) to 21p  (one to the last value) and the last marking value shows the 

marking of 0p . Using equation (9), the initial marking of the control places is given by [ ]0 12;12;8 TcV = . 

Figure 5 shows the controlled plant and its initial state. In Figure 5, the box represents the hospital plant 

PN of Figure 4 and the three places show the control places added to the hospital PN to impose the 

constraints.  
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Figure 5: Hospital service modeling 
system with its initial controller. 

Figure 6: Plant-controller of Example 1 
with negative marking after controller 
reconfiguration. 

Figure 4: Hospital plant model. 
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Reconfiguration Scenario 1  

Suppose that the hospital decides to lower the available number of bed spaces (both temporary and 

permanent) in the ED due to a huge influx of patients to other departments of the hospital (such that the 

released beds spaces from ED can be assigned to the other departments needs). Also, suppose that the 

hospital wants to increase the number of available ED personnel for professional (MD and RN roles) 

assignments to increase its professional personnel productivity. Accordingly, suppose that the right-hand 

side of the related constraints are revised from [12;12;8]B =   to [10;6;14]B′ =  . Assume that the hospital is 

Table 2: Place and transition descriptions for Figure 4. 

0p  Patient Community 

1p  Patient waiting in triage to be admitted 

2p  
Patient waiting to be assigned space in 
the hospital 
 

3p  Patient waiting to be seen by ED staff 

4p  ED MD seeing patient 

5p  
ED RN seeing patient 
 

6p  
Patient waiting for CT Scan  
 

7p  
Patient waiting for X-ray 
 

8p  
CT Scan being performed 
 

9p  X-ray being taken 

10p  Patient waiting to be moved to medical 
floor for medical consultation 
 

11p  ED MD moves patient  

12p  ED RN moves patient  

13p  Transport moves patient  
 

14p  Patient waiting for medical  consultation 

15p  Patient being consulted 

16p  Patient ready to exit the system 

17p  ED MD Available 

18p  ED RN Available 

19p  Transport Available 

20p  CT Scanner Available 

21p  X-ray Available 

1t  Patient enters ED 

2t  Patient admitted  
 

3t  Space assigned  
 

4t  Admitted to be seen by ED MD 
 

5t  Admitted to be seen by ED RN 
 

6t  Seen by ED MD & prescribed CT Scan 

7t  Seen by ED MD & prescribed X-ray 

8t  Seen by ED RN & prescribed CT Scan 

9t  Seen by ED RN & prescribed X-ray 

10t  CT Scan start 
 

11t  X-ray start 
 

12t  CT Scan complete 
 

13t  X-ray complete 
 

14t  Patient move start by ED MD 
 

15t  Patient move start by ED RN 
 

16t  Patient move start by transport 
 

17t  Patient move complete by ED MD 
 

18t  Patient move complete by ED RN 
 

19t  Patient move complete by transport  
 

20t  Medical consultation starts 
 

21t  Medical consultation complete 
 

22t  Patient exits   

 



 30

in a state described by the marking [2; 1; 2; 2; 2; 0; 1; 1; 1; 2; 3; 2; 2; 1; 1; 0; 2; 5; 2; 1; 1]pV = . The 

controller markings ( cV ) at the time of specification change, calculated based on equation (12), is given 

by [3;1;3]c TV = . Also, cW  is calculated using equation (13), [1; 5; 3]c TW = − − . Since ,0≥/cW  from 

Lemma 1, the current plant state pV  is not feasible with respect to the new control specifications. Based 

on the reconfiguration procedure discussed in the previous section, Case 2 is true. In other words, the new 

control specifications have caused negative tokens to be present in the controller places. Hence for this 

DES, we have to perform a reconfiguration procedure to change the infeasible state to a feasible one. The 

PN model for the new constraints along with the token addition transitions associated with each control 

place are shown in Figure 6. In this figure, the markings of the controller places show the number of 

tokens after the controller reconfiguration phase. 

The negative tokens in control places p23 and p24 imply that under the new constraints, the ED will 

have negative number of temporary bed spaces and ED personnel on professional assignment. This is not 

a feasible state for the hospital; at this point, the hospital has two options: 1) Add additional temporary 

bed spaces and ED personnel and bring the hospital back to a state of positive resources; or 2) Modify the 

existing resource allocation structure so as to cause availability (or overcome negative availability) 

without adding new resources. Both these options involve costs. Both these alternatives can be 

represented by an IP model, where the objective function consists of minimizing the cost associated with 

different decisions. It is generated as follows: 

Controller Reconfiguration: 

 Using the controller reconfiguration procedure, we have: 

Step 1: The marking of the controller places is set to [ ]1 5 3
T

− − . 

Step 2: The updated controller matrix c cD D′ =  since 1 2, , andpD L L  remain unchanged. 

Plant Reconfiguration: 
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The plant reconfiguration procedure is based on the IP optimization model proposed in Section III.C. 

It is setup as follows: 

Minimize  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 500 500 500

σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ +

σ + σ + σ + σ + σ + σ + σ + σ + σ + σ
 

Subject to 

[ ]

1

1
21

1
25

3

  

0
.   2; 1; 2; 2; 2; 0; 1; 1; 1; 2; 3; 2; 2; 1; 1; 0; 2; 5; 2; 1; 1;0;1;-5;-3

1

  

p

p p pp
T

c c c c

c

y

y Y VD

D y Y W

y

 
 
 σ            = − = −      ′            σ   
 
 
 

M

M

M

 

0≥σ,, cp YY  and integer. 

In this model, we consider the case where the cost of adding new resources is expensive compared to 

rescheduling hospital operations (this need not always be the case in hospitals). This is seen by the high 

cost of 500 units assigned to transitions 23 24 25, ,t t t (resource addition transitions) and lower costs to the 

hospital operations reassignment transitions. Since our objective function is set to minimize cost, if both 

alternatives are available, the IP model will pick the hospital reassignment solution; if this alternative is 

not possible, it picks the other alternative whatever be the cost. Additionally, the IP model also shows 

how this decision can be enforced by returning a set of transitions as the solution. The plant 

reconfiguration procedure is executed based on the IP model above as follows: 

Step 1: Let the target state for the plant be denoted by [ ]Tcp YYY
 

= .  

Step 2: Based on ic  assigned in the IP model, the transition firing sequence F  that takes the plant from 

its current state [2; 1; 2; 2; 2; 0; 1; 1; 1; 2; 3; 2; 2; 1; 1; 0; 2; 5; 2; 1; 1; 0;1; 5; 3]− −  to its target state 

[ ]Tcp YY
 

at the least cost is obtained as 24 units through the firing vector 

17 19 20 213; 2; 3; 4 ;  and 0iσ = σ = σ = σ = σ =  for all other transitions.   Various feasible transition sequences 
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can lead the system to the target state; one such sequence is 

[ ]212121212020201919171717 tttttttttttt →→→→→→→→→→→ . 

This sequences first fires transition t17 3 times, removing the 3 tokens from place p11 and depositing 

these tokens in places p14 and p17.  These firings signify that MDs have finished pushing patients to the 

medical floor for consultation; the doctors are now available for future ED patients.  Next, transition t19 is 

fired twice, signifying that medical transports have finished pushing patients to the medical floor.  The 

two tokens in place p13 are moved to places p14 and p19.  The triple firing of transition t20 signifies that 

medical consultation is started for 3 patients. Three tokens are moved from p14 to place p15.  Finally, the 

firings of transition t20 signify that the consultation must be completed for 4 patients in order for the ED to 

reach the target state, which is feasible under the new specifications. Four tokens are moved from p15 to 

place p16. 

Note that many other feasible transition firing sequences are possible for the above firing vector.  In 

particular, the firings of transitions t17 and t19 may occur in an arbitrary order meaning that the order in 

which MDs and transports move patients to the consultation floor is irrelevant.  

Step 3: The firing sequence obtained is executed. 

Step 4: End the plant reconfiguration. 

Reconfiguration Scenario 2  

Now, consider the reverse scenario of adding additional resources being less expensive compared to 

reassigning current hospital operations and resources. In the new IP model, cost coefficient ic  in the 

objective function can be changed to model this scenario. It is illustrated by the following model. 

Consider the objective function of the IP model with the following revised set of cost coefficients:  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25

20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 20 20 20 20 20 20 20

σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ

+ σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ
  

By assigning higher cost to the firing of hospital (plant) transitions, we force the model to first return a 

solution which involves only controller transitions. If this alternative is possible, our optimization model 
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should return this solution. Otherwise, it returns the next feasible solution. Solving the IP model again, 

the least cost firing vector returned by this model is given by 24 253; 2 ;  and 0iσ = σ = σ = for all other 

transitions. This vector involves only controller transitions at a cost of 5 units.  

Reconfiguration Scenario 3  

In the previous two scenarios, we modeled the system such that it was forced to pick between only one 

of the available alternatives by assigning different costs. Sometimes, it is also possible that the optimal 

solution is a combination of the two scenarios. This scenario will be simulated in the following example. 

Revise the objective function to the following: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25

20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 20 20 20 20 20 3 3 3

σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ

+ σ + σ + σ + σ + σ + σ + σ + σ + σ + σ + σ
. 

Here, after solving the IP model, the optimal firing vector involves a combination of plant and controller 

transitions comprising of 17 23 243; 2; 2;  and 0iσ = σ = σ = σ =  for all other transitions, at a cost of 15 units.  

Example 2: 

Consider the PN in Figure 7. The constraints on the plant PN are translated into linear inequalities on 

the state space and expressed as:  

4212111 ≤+ vlvl  

Here 11l = 12l = 1 and all other 0=ijl . The plant incidence matrix pD  from Figure 7 is defined as 

















−−−−

−−−−

−−−−

====

0110

0031

1103
pD  

We have: 

[ ]0111 == LL ; [[[[ ]]]]41 ======== BB  

The controller cD  that imposes the above constraint on the DES is calculated as:  

pc DLD ×−= 1 [[[[ ]]]]1132 −−−−−−−−====  

TpV ]121[0 ====  
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Using equation (9), the initial marking of the control places is given by [[[[ ]]]]10 ====cV . Figure 8 shows the 

controlled plant and its initial state. At this state, a change in specification causes the value of 1'
1 ======== BB . 

After this change, pp VV 0====  and LL ====' . cW  using equation (13) is given by pc VLBW '' −−−−====  and 

0]2[ ≤−=cW .  

Controller Reconfiguration: 

Step 1: The controller place marking is set to [-2]. 

Step 2: The updated controller matrix c
c DD =′  since 1 and LD p  remain unchanged. 

Since 0]2[ ≤−=cW  a plant reconfiguration procedure must be executed.  

 

 

 

 

 

 

 

 

 

Plant Reconfiguration: 

Minimize 5544332211 σσσσσ ccccc ++++  
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Figure 8: Controlled  plant of Example 2. 
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0,...,,,,..., 51131

5544332211

≥

≥++++

σσ

σσσσσ
cpp yyy

rccccc
 

The above model is solved with 0,3,1 54321 ====== rccccc .  

Step 1: Let the target state for the plant be denoted by [ ]Tcp YYY
 

= .  

Step 2: By solving the IP model, the optimalσ   is obtained as [ ]11200
T  which is supposed to take the 

plant from its current state [1 2 1 1]T  to its target state [ ]Tcp YY
 

= T]0001[ .But such a firing vector cannot 

be realized by any firing sequence. Given that the value of objective function for this infeasible σ  is 4, 

we set the value of r  from 0 to 4+1=5 and solve the IP model again. This time T]00002[=σ  which 

yields the feasible firing sequence 55 σσ → . 

Step 3: The firing sequence obtained is executed. 

Step 4: End the plant reconfiguration. 

 

V. EMPIRICAL RESULTS 

In Section III.E we saw that the worst-case computational complexity of two crucial steps in our 

method is intractable.  The first of these steps involves solving the IP system that finds a minimum-cost 

solution to our reconfiguration problem.  The second step requires enumerating a portion of the state 

space reachable from the current state of the old controlled system when reconfiguration takes place.  

However, we also conjectured that in practice the average-case complexity of our method would be vastly 

more tractable than the worst case.  While an exhaustive empirical analysis of our method is beyond the 

scope of this article, here we report preliminary results that we obtained with a generalized version of the 

hospital example system discussed in Section IV.  Our generalized version, whose Petri net is much too 

large to be described here, is intended to provide a realistic-size reconfiguration problem for a hospital 
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with three wards in addition to the emergency room.1  We first discuss the reconfiguration problem, 

followed by our empirical results.  

Our generalized hospital example has a total of four wards, namely a children ward, surgery 

(including major and minor surgery sub wards) psychiatry, and an emergency room similar to the 

example in Section IV.  The ED example discussed in Section 4 had the following seven resources:  (1) 

Permanent beds, (2) temporary beds, (3) ED MDs, (4) ED RNs, (5) transports, (6) CT-scanners and (7) X-

ray machines.  In addition to those resources, the generalized hospital example has fifteen additional 

resources to support the three new wards: (1) Child beds, (2) surgical tables, (3) wheelchairs, (4) intern 

surgeons, (5) intern nurses, (6) surgeons, (7) pediatricians, (8) special child-care nurses, (9) psychiatrists, 

(10) inpatient rooms, (11) lab, (12) pharmacy, (13) operating rooms, (14) first-aid kits and (15) assisting 

nurses in the operation theater  .   

The general structure of the Petri net for the generalized hospital example is similar to the case of the 

Petri net appearing in Figure 4; however, the net for generalized example is much bigger than the 

previous version.  Similar to the previous case, the choice of treatment for patients in the hospital is made 

non-deterministically.  Different combinations of resources are required for different treatments.  

Limitations on the available resources are captured by a system of (type ≤ ) linear inequalities and service 

constraints are captured by a system of (type ≥ ) linear inequalities.  Again, matrices L1 and L2 denote the 

coefficients of the two inequality systems.  The plant net for the generalized hospital example has 102 

places and 93 transitions.  For our empirical studies, we defined matrix L1 to contain 5 rows, and matrix 

L2 to contain 2 rows.  Consequently, the controlled net has a total of 109 places and 93 transitions, and the 

reconfiguration net, which includes also control transitions, has 109 places and 100 transitions.  We 

generated both the plant net and constraint sets manually. 

For our empirical studies we used a toolset consisting of the following components.  All tools below 

are implemented as Perl scripts, except for the state-space builder, which is implemented in Java. 

                                                 
1 The Petri net of the generalized hospital example is available from the corresponding author of this article. 
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1. Controller-generator. This tool generates a controlled net by combining the plant net first with L1 

constraints and then with L2 constraints. This tool also generates the reconfiguration net, by adding 

control transitions to the controlled net.  

2. Petri net simulator.  This tool fires enabled transitions in the controlled net.  When multiple transitions 

are enabled, a transition is chosen randomly for firing. 

3. Reconfiguration generator.  This tool first randomly generates new right-hand side vectors B1
’ and B2

’ 

for constraint systems L1 and L2.  Next, the tool computes vector WC.  If all coefficients in WC are 

nonnegative, a new right-hand side vector is generated until WC contains at least one negative 

coefficient, meaning that a plant reconfiguration is now needed.  When this happens, an input file for 

the HyperLindo IP solver is generated automatically.  Incidentally, the tool can generate a new set of 

linear coefficients L1
’ and L2

’ in a way consistent with our method.  We have not used this capability to 

date; however, we plan to use it in our future experiments. 

4. IP solver.  We use the popular HyperLindo package for the DOS operating system to solve the integer 

inequality system generated in the previous step.  The execution of HyperLindo returns one or more 

same-cost firing count vectors for the reconfiguration net generated under item 1. 

5. State-space builder.  This tool checks the feasibility of the firing count vector(s) returned by the 

previous step.  If all firing count vectors are found to be infeasible, the IP solver is executed again after 

adding a constraint that increments the cost to r+1, where r is the cost of the current firing count 

vectors. 

We conducted three sets of experiments for the generalized hospital example.  The experiment sets 

differ in the duration of the initial execution of the controlled net (performed by tool 2 above) before 

reconfiguration takes place.  The first set of experiments fires a random number of transitions between 25 

and 35 from the net’s initial state before reconfiguration.  Likewise, the second set fires between 50 and 

60 transitions, and the third set fires between 100 and 110 transitions before reconfiguration.  All 

experiments were run on a Dell Pentium 4 computer with 512 MB of RAM and a CPU speed of 2.4 GHz.   
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The first set consists of 263 reconfiguration runs.  In each experiment we measured the CPU time 

required by the two algorithms with intractable worst-case complexity, namely the time that HyperLindo 

uses to solve the IP system, and the time for limited state-space exploration.  Both times are measured in 

CPU seconds.  In all runs, HyperLindo finds an integer solution in two seconds or less using the branch-

and-bound method.  The longest time that the state-space builder requires for checking the feasibility of 

an integer solution is 1.2 seconds; the average over all runs is 105 milliseconds.  The second set of 

experiments consists of 189 reconfiguration runs.    The average and maximum run-times of the state-

space builder are 372 milliseconds and 2.3 seconds. Again, HyperLindo finds an integer solution in two 

seconds or less using the branch-and-bound method.  Finally, the third set of experiments consists of 753 

reconfiguration runs.  The average and maximum run-times of the state-space builder are 89 milliseconds 

and 219 milliseconds.  HyperLindo finds an integer solution in two seconds or less using the branch-and-

bound method.   

On the whole, we cannot draw general conclusions about the practicality of our method from just one 

reconfiguration problem.  However, the generalized hospital reconfiguration example is clearly too large 

a system for a human decision-maker to handle it manually; moreover, the example is large enough that it 

could model a real-world hospital situation.  We are strongly encouraged that our toolset was able to 

handle this example quite easily.  We believe that the toolset will handle similar service-delivery systems 

equally well.  Although we will need further empirical studies to assess the applicability of our approach, 

this approach clearly holds considerable promise. 

 
 

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this paper, we developed a framework for the reconfiguration of a system subject to control 

specification changes. The system is represented as an ordinary Petri Net and the control specifications 

are modeled with a set of linear constraints. We showed that a change in the control specifications causes 

a controller software update called a controller reconfiguration. We also provided necessary and sufficient 

conditions on the need to update the physical system due to the specification change. This update is called 
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a plant reconfiguration. The controller reconfiguration strategy is generated through simple matrix 

multiplications. The plant reconfiguration strategy is derived from an optimal solution of an integer 

programming model. Although the worst-case complexity of plant reconfiguration is NP-complete, some 

preliminary empirical data are quite promising. 

Several open research problems follow from the outcome of this work.  In the short term, we plan to 

relax some of our assumptions and to integrate deadlock avoidance into our reconfiguration algorithms. 

We also plan to conduct more empirical studies to assess the scalability and the computational complexity 

of the reconfiguration in practice, and to explore more application domains for the developed 

reconfiguration framework.  In the long run, we will explore the possibility of changing the left-hand side 

of our linear constraint systems as part of reconfiguration response.  Thus far, our reconfiguration strategy 

is allowed to change only the right-hand side (i.e., the known terms) in the linear inequality systems by 

firing controller transitions. 

The issue of deadlock avoidance is quite challenging.  The possibility of deadlock can arise 

unexpectedly in many kinds of DES.  For instance, in the hospital example that we discussed in Section 

IV deadlock is possible if the number of tokens in the patient community equals or exceeds the combined 

number of temporary and permanent beds in the emergency department.  We believe that a careful 

analysis of the (uncontrolled) plant net can lead to the definition of sufficient conditions on the form of 

the linear constraints for a controlled plant to be free of deadlock.  We intend to study various techniques 

for deadlock avoidance and to incorporate some of the techniques into our linear constraint systems. 

We will also look into relaxing some of the assumptions that we stated in Section I above.  For 

instance, we can allow the plant to contain some uncontrollable transitions.  The presence of 

uncontrollable transitions will have two adverse effects on our method.  First, we will be unable to force 

these transitions to fire during controller reconfiguration.  Second, these transitions may fire 

spontaneously during reconfiguration response, possibly causing a reconfiguration failure (i.e., a situation 

in which reconfiguration response cannot be completed or the system is still in an infeasible state after 

reconfiguration response is complete).  We can address the first problem by setting the cost of executing 



 40

to uncontrollable transitions to infinity in our IP system.  In this case, the IP solver will not include these 

transitions in the reconfiguration response if there is at least one feasible firing sequence that does not  

include any uncontrollable transitions.  The second problem (taking into account the possibility of 

uncontrollable transitions firing during reconfiguration response) is more difficult.  To solve this problem, 

we may have to modify our limited state space exploration algorithm in order to take into account the 

possibility that an uncontrollable transition may fire.  In this case, we would return a set of 

reconfiguration responses, differing in the firing of uncontrollable transitions, which must all be feasible. 

Alternatively, we could exploit assumptions on the fireability of uncontrollable transitions, for instance, 

by forcing a reconfiguration sequence to execute while an uncontrollable transition cannot fire.  

In this paper we also assumed that the specification changes do not occur during the execution of 

reconfiguration response. Relaxing this assumption is part of our future research directions. In the current 

plant reconfiguration phase, we allow controller transitions to fire. This means that we allow the system to 

change the right-hand sides of its constraints in response to specification changes.  The change in the 

right-hand sides of the constraints can be determined by the values of integer variables in the IP model.  

As a future research direction, the plant reconfiguration response may include changes in the left-hand 

side of the constraints or the coefficient matrix.  This will require a new IP model that is nonlinear as a 

new set of variables is required to model the changes in the left-hand side.  These variables will be 

inevitably multiplied by some of the current variables of the IP model.  Again, we recall that one should 

not confuse right-hand side changes and left-hand side changes of the constraints due to the specification 

changes (which are uncontrollable), and right-hand side changes that are given by the IP model.  The 

latter changes are controllably forced as a response to uncontrollable changes. Of course, forcing such 

changes has a cost which is modeled in the objective function of the IP model.  

Finally, improving the plant reconfiguration phase can be another interesting research problem. In the 

current plant reconfiguration phase, an IP model is solved and then its solution is checked for feasibility. 

This approach is computationally very expensive as the IP model might be visited several times. As a new 

research problem one can investigate the simultaneous handling of IP model and firing vector feasibility 
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test. Assuming that the IP model is solved using a branch and bound algorithm, one might be able to 

extend the branch and bound rules to cover the feasibility criterion.  
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