
~ l

Bridging the gap between control theory and its application to complex

industrial processes requires translating process requirements into

economical, reliable software-a task control engineers can now undertake.

Control Software Specification

and Design: An Overview

Cláudio Walter, Universidade Federal do Rio Grande do Sul

A1though much remains to be done in control theory,

it has already developed a significant body af knowledge,

composed af models and ident ification and optimization

methods. This knowledge is often ve ry sophisticated

ando when applied 10 relatively rapid and complex in·

dustrial operations and design, it may requi re substantial

engineering support. While operations can already be

performed by compUlers, design remains largely a

human domain where trial and errar, experience and in·

tuitian come into play.

Currem cont rol system design fo r industrial applica·

tions corresponds essent ially to stat ing lhe process re

quirements, specifying lhe fu nclions to be performed,

then implementing them in software. This art icle surveys

techniques in lhe field of control software and design,

noting part icularly the need fo r clear specifications and

engineering methods. lt provides the basis for predicting

the general direction of improvements in contrai system

design allowed by the deve lopments in computer lechnol

ogy a nd artific ial intelligence.

Control system design needs

A glance at computing systems and process control ap

plications revea ls a significant reduct ion of the hardware

cosH o-funct ion rat io, leading to a much broader range

- <~ ~- ,~~~~~~ -

STATE
CONTROLLEO

L CONTROLLER
PLANT

COMMANOS

of appl ications lhan imaginable 20 years ago. This trend

is expected to hold duri ng lhe eighties, due to higher

scales of integration of electronic componenls. The

result ing sophistication of lhe applications and the in

creased complexity of their control algorithms turn soft

ware, which includes system analysis, engineering,

programming, and testing, into the most expensive item

of a controI system and often a significant part of lhe

overa ll investment in an industrial plant.

Unfonunately, one cannot consider software produc

tion without thinking about software errors, which stem

from several causes. To start with, the customer who

orders a software system may not know precisely what he

wants. When discussing his ambiguous, incomplete, and

sometimes contradictory specifications with the supplier,

both customer and supplier may make diverging assump

tions, thinking lhat they understand one another. The sup

plier then proceeds to introduce his own errors through in

ternai communication problems within his staff and

through the very nature of computer programrning.

The fault does not lie entirely with the people involved.

The culprits are the traditional means for specification

and developrnent. Free-syntax, informal specifications

are c1early inadequale to define software and lead to

unforeseeable costs, de lays, and often unsatisfactory

result s. It follows lhat praclical formalisms and software

productioo too ls and controls are needed. Some have

already been introduced. The existing efforts and their

contexts rnerit considerat ion.

Control and software engineering

A control system, or process, can be divided into lhe

controller and the controlled plaot, as shown in Figure 1.

ENV
PROCESS

IRON MENT A control design job can be broadly defined as specifying

and implementing the functions that drive lhe inputs 50

that a plaot performs a specified processo Design can be

Figure 1. Partition of a process Into controller and plant. broken down into two successive, but ofteo overlapping

20 00 18-9162/84/0200-OO20S01.00 © 19841EEE COMPUTER

tasks-control engineering and software engineering-as

illustrated in Figure 2.

Given a plant and lhe process that it is expected to per

forrn-lhe requirements specifications-control engineer

ing establishes the functions of lhe controller. CE is sup

ported by control and automata theories. A significant

part of its task is performed during lhe user-designer in

teraetioo at lhe beginning cf lhe project. It is straightfor

ward when applied, for instance, to monovariable, con

stant-pararneter, linear syslems, where a satisfactory feed

back ean be quite easily established from the given piam

transfer function and from the overall process-time and

frequency-domain requirements. Unfortunately, most

real processes are not so simple, and besides their

mathematical complexity, the uncertainty of the incom

pleteness and inconsistency of the process specifications

become sources of difficulty. Although such problems are

typical of control engineering, LOols borrowed from soft

ware engineering usually assist in structuring, consistency

checking, and providing documentation facilities to solve

them.

Software engineering, or more precisely control soft

ware engineering, implements the specified control func

tion as an executable computer program, accommodating

such criteria as safety. readability, and flexibility. While

control software engineering tools may help in stating the

function of the software to be generated, they generally

provide only very broad guidelines-structural rather than

CDNTlNUOUS ASPECTS

functional-for the actual design of the software specifi

cations from process requirements. Here control and soft

ware engineering may overlap because the process/ plant

specifications are included in the control software

specifications, instead of just leading to them. The overlap

can be explained by:

• Designer psychology: It is convenient for the designer

to simulate the process on paper and in his mind while

developing the control specifications.

• Observer theory: It is often necessary for the con

troller to include a model-the observer-which

reconstitutes the state of the process from limited

captor information. This modeling occurs in some

classes of ar'.aptive control functions and very often

with the sequential aspects of processes, which can be

represented by finite automata.

Comparing contrai software and general-purpose soft

ware engineering, we see that both have software func

tional specifications as the starting point and an executable

program as a product. CS engineering extends GPS

engineering in the same way as, say, real-time Fortran ex

tends common Fortran. CS can be specified using GPS

specification languages, but' the resul! will probably be

harder to write and read because CS specification

languages incorporate as primitives some constructs that

would be expressed as composite instructions of GPS

specification languages. These constructs-real-time, syn-

DISCRETE ASPECTS

f
PlANT (PROCESS 11 PlANT ANO PROCESS (
SPECIFICATlON I SPECIFICATlON) SPECIFICATION

L------r- + -- ~.~=====r----~: L------,r----J

,---------'''---,

CONTROl
ENGINEERING

r:-- -- - -::l'
.. DS : DOCUMENTATION'I I

,...- L_SIMI!.:.A~O~ __ I I
L-___ +.---____ -' I ,--______ L-________ ---,

I

)

\

CONTROllER FUNCTION
SPECIFICATlON

+
SOFTWARE
ENGINEERING

CONTINUOUS CONTROl MODULES í ..

I

I

CONTROl ENGINEERING
SOFTWARE ENGINEERING

I L- -------r ---------- ~

I

\L-~ S ~Ea=U=E= N = TI = A = l = CO = N =T= R = Ol r- M _ OD_U_l _ ES ________ ~\

•
I SOFTWARE ENGlNEERING

["-------
- - I DS: STRUCTURING,

- -,
I

+ I PARAMETER CHECKI NG I

) (
1..- ___ ___ _ _ _ ...J

CONTROl PROGRAM

+
I COMPUTER ENGINEERING I

•
\ CONTROl SYSTEM \

Figure 2. Specification and design of the controller. OS identifies funct ions of the development system.

February 1984 21

22

chronization, co mmun ication , etc.-are related to

cont rol-system appl icat ions in envi ronments with real

lime constraints and orten wit h a high degree of

parallelism. Finally, the control program has to be ex

ecuted on a computing system with appropriate hardware

and software support, whose design/configuration is a

computer engineer ing task.

During the last decade, software designers have tried to

create"cont ro l-software development systems that provide

the designer-analyst-programmer wilh too ls fo r the cost

effeclive generation of dependable software. The tools

case the designer's task by

• guiding his steps as he deve lops software re

quirements,

• providing parameter and range checking when con

tinuous and sequential control modules are knit

together into a control program, and

• automating the documentation.

Among the most significant design tools are

• the EPOS 1 specification system, with severa l

modules now operat ional and others in development;

its starting point is a formal model of cont rol soft

ware requirements, which specifies the controller

funct ions for each state and event;

• PCSL,2 which is essentially a language based on the

PSL general software speci fication system,3 and its

improved offshoot, Espreso 4
;

• lhe SARS5 system, inspired by R-nets 6; and

• the Mascot 7 system, a software specification, de

velopment and management tool based on "channel

and activity" nets.

These systems are based on graphical and / or textual

speci fication formalisms.·

Controller design 01 industrial processes

The function of a development system is determined

largely by the different aspects-sequential and continu

ous-presented by industrial processes. An industrial pro

cess, for instance, is composed of concurrent sets of se

quential activ ities, each corresponding to a transformarion

on one o r more of the att ributes of the objects it acts upon.

Each activity within lhe process can be defined by lhe

range af attribute values acceptable for its incaming and

outgoing objects. When these abjects are observed from

the outside, an activity is a step among others performed

before, concurrently, or afterwards. But when an activity

is considered intrinsically, it is always continuous and con

tro lled by continuous control algorithms, which may be

inlerpre ted continuously o r sampled for computer

comroJ.

The aspect lhat carries the most complex component of

a process or its main function determines whether a pro

cess is considered sequential or cont inuous. A pape r pulp

production process, for instance, is generally regarded as

continuous. It can, however, be regarded as a set of clearly

• A detailed discussion of Ihese syslems falls beyond the scope of this anicle:
refer to artides in the May 1982 issue of Cnmpuler(Vol. 15, No. 5) on Te

quiremenls speçifjcations for a survey covering several approaches and
syslems.

identifiable sequential steps, each with its own inpUI and

OUlput object specificat ions. In batch processes, such as

steel production, the operation on a batch within each ac

tivity (5uch as melting or refining) is continuous, while lhe

transfer of batches between furnaces and other equipment

can be regarded as an interval in lhe sequence of events.

Sequential and continuous aspects differ considerably

in difficuhy of analysis, controller specification, and

design techniques. The difference lies in lhe resolulion

characleristics produced when continuous phenomena are

partilioned imo discrete steps. Partitioning reduces resolu

tion. On the other hand, increased resolution results in an

increased bandwidth ; the o rder of the significant deriva

tives also increases, and lhe system becomes harder to

describe and to treat mathematically.

The sequential aspects of physical phenomena can be

represented by fin ite automala. which are easy to con

SIruct from the informa l underslanding of lhe processo We

have 10 consider only the successive states and lhe events

that indicate the state transit ion of the processo These tran

sitions are subject to few disturbances, and the ir conse

quences can be foreseen. At most, a dislurbance might

modify the expected behavior by taking the system into an

exceptional , but represented state or by altering lhe timing

of the expected transition.

The main formalisms derived from finite aUlOmata are

• state graphs, ge nerall y used in sw itc hin g

applications 8,9 ;

• finite interpreted Petri-nets,I O which facil itate the

specification of parallel activities; lhey are used as

theoretical models for the process specificat ion and

control language Grafcet 11 ; and

• LL (1) grammars, used for lhe specificat ion of the

process behavior. 12

The grammar that specifies a process can be translaled by

a grammar lransformer into a control programo Process

specificalion grammars are rarely used, possibly because

they require a bulky grammar lransformer. Still the con

cept is e1egam and may become of practical interest with

the increase of computing power.

When applied to the sequential aspecls of an industrial

processo the operation of a control software specificarion

and development system can be expressed by the following

sleps:

(1) Specify lhe contro lled plant: generally, the plant is

defined by lhe physical transforrnalions it is ex

pected to perform.

(2) Specify the process-the sequence in which these

transformations should occur-and their param

elers.

(3) From the specifications, derive the controller func

tion and the corresponding software analytically.

Besides lhe automatic derivation of the controller , lhese

formalisms al10w lhe verification of aspecls of interest,

such as the boundedness and deadlock potential provided

by analysis packages Iike Ovide. 13 The overlapping con

trol engineering and software engineering tasks can be

automatically perforrned by the developrnent systern, as

shown in Figure 2.

COMPUTER

Continuous aspects of industrial processes are often dif·

ficult to represent accurately because of the quantity and

resolution of the variables involved. Their behavior is af·

fected by noises and other environmental disturbances.

This complexity can be partially handled by adaptive con·

trol concepts and techniques, but as a whole, the auto ma

tic derivation of continuous control algorithms in practical

applications is still very limited. As a consequence, the

control engineering of continuous processes remains large

Iy an iterative process, in which successive simulations and

human interaction combine to yield satisfactory results.

Development systems are used mainly to provide docu·

mentation and simulation support to the designer. And

once the control function has been established, it is the

task of software engineering to support the implementa·

tion by means of programming languages that allow the

control function to be specified with a syntax related as

nearJy as possible to the nature of the application

(Figure 2).

Over the long term, significant advances can be ex·

pected. One contribution will certainly come from the

developrnent of software engineering. Another, which is

more significant from the control poim of view, originates

in the developrnent of better process models and artificial

intelligence. In the early nineties, fifth·generation com·

puters are expected to provide the computing power

necessary to develop expert systems-sophisticated pro·

grams and interpreters with predicate calculus and learn·

ing capacity. One of the most important results of this

development will be an explanation of why designs are as

they are; it will clarify a discipline that is now hidden

behind largely intuitive and/or empirical decisions.

According to reports about present experimental sys·

tems,I4 control design expert systems will operate along

the following lines:

(1) A human "expert" team will introduce and im·

prove technology by developing mathematical,

physical, chemical, econornic, and ergonomical

rules, as well as application·oriented process and

control models and rules.

(2) With the assistance of an application-oriented

dialog, users will introduce environrnent informa·

tion, such as raw materiaIs, human resources and

equipment availability, and cost, in addition to re·

quirements specifications that state desirable

features, acceptable ranges of process, and plant

variables.

(3) Users will extract controlJer specification and 50ft·

ware and process simulation data from application·

oriented dialogs.

(4) The systems' learning capacity will improve the

quality of results and knowledge introduced in (1),

by analyzing data provided by operating plants.

Present-day computer-aided specification and design tools

already emulate particular classes of applications of these

"true" expert systems. The pressing need for faster design

of more dependable software, together with the com

puting resources now at our disposal, promise a rich and

stimulating field of software research for the next 10 to 20

years .•

February 1984

Acknowledgments

This work is partially supported by grant 30.1461/81 of

the CNPq (Conselho Nacional de Desenvolvimento Cien

tifico e Tecnológico).

References

I. J. Biewald et aI., "Real-Time Features of EPOS: Formula
tion, Evaluation and Documentation," Proc. 10th
IFAC/IFlP Workshop Real-Time Programming, 1980, pp.
95-100.

2. J. Ludewig, "Process Contrai Speeification in PCSL,"
Proc. 10th IFAC/IFlP Workshop Real-Time Program
ming, 1980, pp. 103-108.

3. D. Teichroew and E. A. Hershey, "PSL/PSA: a Computer
Aided Technique for Structured Documentation and
Analysis of Information Processing Systems," IEEE Trans.
Software Eng., Vol. SE-3, No. I, lan. 1977, pp. 41-48.

4. J. Ludewig, "ESPRESO-A System for Process Control
Software Speeification," IEEE Trans. Software Eng., Vol.
SE-9, No. 4. July 1983, pp. 427-435.

5. W. K. Epple and G. R. Koch, "SARS; a System for
Application-Oriented Requirements Speçification," inter
nai report, Univ. of Karfsruhe. 1983.

6. M. V. Alford, "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE Trans.
Software Eng. Vol. SE-3, No. 1, lan. 1977, pp. 50-69.

7. The Official Handbook of Mascot, Mascot Suppliers
Association, London, 1980.

8. J. V. Landau, "State Description Techniques Applied to in
dustrial Machine Control," Computer, Vol. 12, No. 2, Feb.
1979, pp. 32-40.

9. B. Taylor, "A Method for Expressing the Functional Re·
quirements of Real-Time Systems," Proc. !Oth IFA C/lFIP
Workshop Real-Time Programming, 1980, pp. 111-120.

10. J. L. Peterson, "Petri-nets," Computing Surveys, Vol. 9,
No. 3, Sepe 1977, pp. 223-252.

li. AFCET, "Pour une representation normalisée du cahier de

charges d'un automatisme logique," AUlomatique et Infor
matique Industrielles, No. 61 , Nov. 1977, pp. 27-32.

12. F. Anceau and J. Bordier, "A Syntactic Method for Pro
gramming Sim pie Industrial Control Applications with
Microprocessors," Euromicro Symp. Large Scale Integra
tion, North-Holland. Amsterdam, 1978, pp. 324-328.

13. E. Le Mer, " OVIDE: A Software Package for Verifying

and Validating Petri -nets," Proc. Third IFAC/IFIP Symp.
Software for Computer Control, 1983 .

14. "The Concept of Expert Systems," lnfotech State oftne Art
Report, Sedes 9, No. 3, 1981.

Cláudio Walter is a professor for computer

contrai at the Universidade Federal do Rio
Grande do Sul in Porto Alegre, Brasil. He

has done research in the field of require
ments specifications and worked with

micraprocessor applications to instrumen·
tation, besides consulting in industry. He
holds a BSEE and a MSc in computer sei
ence from UFRGS. From 1978 until 1981,
he was at the Institut National Poly·tech

nique de Grenoble, France. where he earned a Docteur-Ingénieur
degree.

His address is Pós-Graduação em Cieneia da Computa
ção/Dep. Eng. Elétrica, Universidade Federal do Rio
Grande do Sul, 99 A v. Oswaldo Aranha, Caixa Postal 150 I,
90.000 Porto Alegre, RS, Brasil.

23

	ComputerFeb19840001
	ComputerFeb19840002
	ComputerFeb19840003
	ComputerFeb19840004

