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Abstract 

Heat removal is the most extended method for food preservation in food manufacturing 

industry by lowering food temperatures to stop microorganisms growing, which might 

spoil the product and could cause toxicity. Therefore, walk-in freezers are used for that 

purpose consuming a relevant part of the energy on service sector. The compression 

refrigeration system of the walk-in freezers can be blocked by the frost accumulated on 

the evaporator. For that reason a defrost process, which requires an important part of the 

energy consumption, has to be launched from time to time. In this paper, the schedule 

which manages the defrost process is investigated to limit its activation only when it is 

necessary. Moreover, different fan operation strategies were tested regarding the energy 

efficiency of the whole refrigeration system. This study has provided a system control 

strategy both for defrost and fans operation, depending on the frost built up on the 

evaporator. The control improves the energy performance of the whole refrigeration 

system.  

Keywords: Compression refrigeration system; defrost cycle; fans operation; cooling. 

Nomenclature 

Ecompressor Active electrical energy consumption of the compressor 

Edefrost Energy consumed by the defrost process 

Efans Energy consumed per hour by fans 

Etotal Total energy consumption by the refrigeration system and defrost 

h hour 

kW kilo Watt 
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kWhe Electrical kilo Watt per hour 

min minute 

Pfans Fans power 

Pheat resistance Electrical heat resistance power 

RHcold room Cold room air relative humidity 

Tcold room Indoor air (freezer) temperature 

tcompressor,f Compressor ending time 

tcompressor,o Compressor starting time 

tdefrost,f Defrost ending time 

tdefrost,o Defrost starting time 

Tevap Evaporator surface temperature 

texpansion valve,f Expansion valve closing time 

texpansion valve,o Expansion valve opening time 

tfans,f Fans ending time 

tfans,o Fans starting time 

Wh Watt per hour 

ΔT Temperature difference between cold room and the evaporator surface 

ºC Degrees centigrade 

ºC/h Frost built-up rate in terms of hourly temperature difference increase 
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1. Introduction 
 

In the food manufacturing industry, the most extended method for food preservation is 

heat removal. To keep all nutrients, taste/flavour and texture from the product for as 

long as it is safe and healthy, food is frozen. From that moment, frozen product must 

remain at temperatures from -20ºC to -18ºC. Once the cold chain is broken the 

microorganisms awake from their lethargy and keep on damaging the perishable 

products [1]. To keep the cold chain, supermarkets spend from 40% to 60% of the total 

energy consumption on the refrigerated storage [2,3]. 

  

Freezing is the most energy consuming step in the food manufacture, for instance a ton 

of vegetables requires from 80 to 280 kWhe [1]. Moreover, the refrigerator systems 

efficiency can be lowered by frost formation on the evaporator coil, which incurs in 

higher energy consumption. As the frost layer grows, the thermal resistance between the 

evaporator and air increases. If the frost formation is not stopped, the evaporator can 

even stop running [4]. Frost is accumulated on coils because the evaporator works at 

very low temperatures, below dew and freezing point, and the air in cold storages has 

high relative humidity due to moisture from food as well as from door openings. To 

avoid a complete evaporator blockage, defrost process must be often performed [5,6]. 

There are several defrosting methods which are currently used. On chilled room “off-

cycle” defrost is usually employed, the frost built-up on the evaporator is melted at 

ambient room temperature, without any additional heat supply when the refrigeration is 

off. Other methods, which require an energy source for removing the frost, are electric 

heaters on the coil, hot gas passed through the evaporator, hot water sprayed on the coil, 

and reverse cycle [7,8]. By optimizing the defrost process, the energy consumption of 

refrigeration systems can be lowered. For instance, a cold storage system with electric 

heater for defrosting purposes, consumes around 25% of its total energy demand for that 

purpose [9]. Moreover, it must be taken into account that during the defrost periods the 

refrigeration is not running, as a consequence, the temperature of the stored product 

raises up which may cause the food spoilage [10-13], also part of the heat used for 

defrosting can be transferred to the cold room.  
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Some studies are focused on predicting the behaviour of the refrigeration systems by 

numerical models, so that the energy performance of the system can be improved.  

Zsembinszki et al. [14] succeeded in developing a numerical model to predict the 

steady-state performance of a simple vapour compression refrigeration system. Ge and 

Tassou [15] achieved to simulate different control strategies; the simulation shows the 

benefits when using a variable-head-pressure control. Bendaoud et al. [16] developed a 

mathematical model which includes the effect of the built-up frost on heat exchangers. 

The study concludes that as frost grows the heat transfer between air and refrigerant 

decreases. Mastrullo et al. [17] developed a transient mathematical model which 

incorporates door openings, frost formation, and defrost process. Datta and Tassou [18] 

included artificial neural network on refrigeration systems for predicting the energy 

consumption.  

 

Other than numerical investigations, important efforts have been done to experimentally 

study the performance of these systems. Within this context, Melo et al. [4] investigated 

the defrost efficiency of three distinct types of electric heaters (distributed, calrod and 

glass tube) combined with three different heating operating modes (integral power, 

power steps and pulsating power). The results showed approximately same efficiency 

results for all studied heaters, however the step mode, which lowers the heater power 

gradually along the defrost, presented the best efficiency. Hai-Jiao [8] tested an air 

bypass circulation and electric heater method, which isolate the cold storage while hot 

air passes through the electric resistance and the evaporator. Along the experimental 

study done by da Silva et al. [19], which tested the system with different evaporator 

geometries, it was noticed that increasing the time between successive defrosting 

processes improves the thermal performance of the system, so the pair fanevaporator 

must be designed as a coupled system. Moreover, Votsis et al. [20], reached similar 

conclusions demonstrating that defrost cycles should be kept to a minimum.  

 

Defrost are usually scheduled at pre-set times, typically every 6 or 8 hours. This defrost 

launching method can result in unnecessary cycles with the consequent energy waste 

and temperature fluctuation. The indicators used for ending a defrost cycle are usually 

temperature or time, whichever comes first [7]. Many researches have designed accurate 

defrost control systems. By means of detecting the frost formation, defrost process can 
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be launched just on demand, hence the energy consumption will be reduced no matter 

the defrost method used. Different parameters were measured and used to determine the 

amount of frost in the evaporator, such as air pressure difference across the evaporator 

[20], temperature difference between room air and evaporator [¡Error! No se 
encuentra el origen de la referencia.-24], fan power [25], frost thickness by measuring 

frost thermal conductivity with optic sensors [26,27] or with acoustic oscillators [28], 

refrigerant flow instability [7,29], air humidity [30,31], measuring the heat transfer rate 

on the air and refrigerant side of the evaporator [32], or use of photo-electrical sensor 

[33-37]. However, there is no method which can measure the frost formation accurately 

enough to avoid what Wang et al. [38] called mal-defrost phenomena.  

 

In this paper, the energy consumption of the cooling system depending on the frost level 

on the evaporator coil has been explored experimentally to determine the optimum level 

of frost to program defrost cycles. Moreover, different fan control strategies have been 

experimentally investigated when operating at different frost levels on the evaporator 

coil. This research will provide important guidelines for the operation and management 

of fans and defrost activations according the detected level of frost at evaporator. 

 

2. Methodology 
 

The main goal of this paper is to present a novel control strategy for defrost and 

evaporator fans to optimize the performance of a simple vapour compression system at 

different levels of frost in the evaporator. The schematic of the refrigeration cycle is 

shown in Figure 1, which consists of a condensing unit, an expansion valve, and an 

evaporator. 
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 Mode 2, fans always on: This control strategy will keep the fans of the 

evaporator always running, no matter if the compressor is on or off, regardless 

of the room temperature (Figure 4). The compressor will work as described on 

mode 1. At first sight, this strategy means an increase on the energy 

consumption; however, it may have some benefits on the whole system 

operation such as reducing stratification inside the refrigerated space. Moreover, 

the use of this control strategy makes that less frost is accumulated on the 

evaporator because the heat transfer is higher due to convection between air flow 

and the evaporator, when compressor is off. Also, it allows the use of the “cold 

energy stored” to delay the temperature rising on the cold room, while the 

compressor is not working, which makes refrigeration cycles longer so that 

compressor suffers less start-stops sequences. 

 Mode 3, fans frost discharging: This control strategy turns the fans on along 

certain temperature conditions, while the compressor is off. The idea is to keep 

the cold room at the set point temperature by discharging the stored cold on the 

build-up frost [39]. Thereby, the compressor turning on will be delayed and 

hence electrical energy consumption is reduced. Figure 3 shows how once 

achieved a temperature level out of set point plus dead band (-16ºC in case of 

Figure 5) compressor and fans work at the same time to lower the cold storage 

temperature to the set point (-18°C). Once the set point is reached both devices 

stop, and the temperature starts to rise. Before hitting the dead band (-16°C), at 

an intermediate temperature level (-17°C) the fans switch on to check if there is 

any chance of decreasing the room temperature by using the cold of the stuck 

frost on the evaporator.  
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time required in the defrost process to melt these different frost quantities. As 

previously stated, the stuck frost is calculated through the temperature difference 

between the evaporator and the cold storage. In the different experiments performed, the 

frost was built up by leaving the cold storage door open. The system is running 

normally for 2 hours before carrying out the defrost tests, that way the system works 

under steady state conditions. For developing the tests, deep-freeze rooms with set 

points lower than zero (-10°C and -15°C) were selected, instead of positive cold rooms, 

because the frosting effect is higher. The tests include four different frost levels (starting 

at dry conditions) and the three fans running modes per each frost level and set point. 

 

From latter experiments, the energy consumed by the system is related with the built-up 

frost through a regression. Three parameters are calculated, all of them regarding the 

built-up frost on the evaporator: 

 Energy consumed per hour by the compressor and the condenser fans at usual 

running (Ecompressor).   

 Energy consumed per hour by fans at usual running (Efans = Pfans ꞏ (tfans,f - tfans,o)).  

 Energy consumed by the defrost process, which includes the heat required for 

melting the frost accumulated on the evaporator, and energy consumed by the 

compressor and fans for lowering the room temperature to the set point. (Edefrost 

= Pheat resistance ꞏ (tdefrost, f - tdefrost,o) + Ecompressor + Efans). 

 Defrost required time. 

 

The results allow to calculate the daily energy consumption of the whole system 

depending on the defrost launching strategy (ΔT at which the defrost is launched) for 

each fan control strategy. 

 

3. Results and discussion 
 

With the developed tests, the energy consumption of the refrigeration system is related 

with the temperature difference between the cold storage and the evaporator. The 

energy consumed by the compressor and fans, and the defrost process are studied 

separately. From the experimental results, the relation between the energy usage by both 

compressor and fans, and the accumulated frost is obtained, as well as the relation 
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between the energy consumption of the whole defrost process, the required time, and 

the built-up frost. This calculus process is made for each fan control strategy and set 

point temperature. 

 

3.1. Control strategy for fan operation 
 

The first approach to determine the ideal control strategy is to analyse each fan control 

mode. To that purpose the refrigeration system energy consumption is isolated from the 

energy that the defrost process requires. Hence, the energy consumed by the 

compressor, the fans, and the condenser is studied when working at the three different 

modes separately from the energy required to carry out the defrost process. 

 

Figure 6 and Figure 7 show that in case the evaporator has no frost on it, the most 

efficient fan control strategy is Mode 1, in which fans work simultaneously with the 

compressor. This tendency changes when the frost layer is considerably increased (ΔT 

is over 9) in both studied cases. At the mentioned situation, fan control strategy of Mode 

3 steps forward to become the most energy efficient option. It has to be noticed that 

Mode 2 fan strategy reduces the energy consumed by the compressor when the 

evaporator has some frost stuck on it, but it does not provide overall savings due to 

excessive use of fans. Hence, if more efficient fans were used, the selection of the most 

appropriate fan control strategy according to frost level might have varied.  

 

It also has to be taken into account that the set point can affect the control strategy 

efficiency, as it can be seen on Figure 6 and Figure 7, which show the hourly energy 

usage of the refrigeration system at set point temperatures of -10°C and -15°C 

respectively. For instance, at -15°C set point temperatures, Mode 2 becomes more 

efficient than Mode 1 when the frost layer grows (when ΔT is over 12ºC). However, it 

is required a frost level over 18ºC for Mode 2 to become a better option than Mode 1 at 

-10ºC set point temperature. Although at those built-up frost levels Mode 3 is still the 

most efficient in both situations. 
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The study also shows the daily energy requirement at several scenarios; each one 

simulates the frost built-up rate in terms of hourly temperature difference increase (x 

°C/h). Along these scenarios the frost level ramp up was considered lineal. Situations 

from extremely fast frost growing (3 ºC/h) to a considerably lower one (0.1 ºC/h) were 

considered. 

 

Total daily energy consumption  (Etotal = Ecompressor + Efans + Edefrost) when the 

system is working in Mode1 fan strategy with a set point fixed to -15°C is shown in 

Figure 12. It is observed that when the frost built-up rate is 0.1 ºC/h, the optimal frost 

level for launching the defrost is ΔT = 8°C. It has to be specified that the frost level 

(ΔT) when there is frost on the evaporator, is compared with ΔT measured at dry 

conditions, so each refrigeration system has its own optimal ΔT. However, the general 

tendency, which the other scenarios follow, is to become more efficient in case defrost 

is launched when there is significant frost accumulated on the evaporator (values of ΔT 

above 11ºC). The performance of the refrigeration system working in Mode 2 and Mode 

3 are similar, as shown in Figure 13 and Figure 14, respectively.  

 

Figure 12, Figure 13 and Figure 14 also show the required time for the whole defrost 

process, considering time to melt the accumulated frost and time required to achieve set 

point conditions after defrost. It has to be noticed that during this defrost period, the 

refrigerated space is out of desired temperature range, which could lead to extra costs 

and reduce the product shelf-life. Within this context, the authors want to highlight that 

even though from an energy consumption point of view, the most appropriate strategy 

to launch the defrost is to allow frost accumulation as much as possible (before 

evaporator blockage), the duration of the defrost is a crucial parameter which has to be 

considered when deciding the strategy to launch defrost processes. 
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This paper experimentally investigates the performance of a refrigeration system when 

programmed using different control strategies for the evaporators fan operation, as well 

as optimizes the defrost operation based on experimental results. In conclusion, the 

research findings of this study have provided evidence that there are no unique fan 

control strategies which can assure the most energy efficient running way, as the 

performance of each strategy depends strongly on the amount of frost accumulated in 

the evaporator during the operation. Therefore the combination of several working 

strategies, regarding the frost built-up on the evaporator, can improve the performance 

of the refrigeration system. Moreover, the results revealed that the longer the defrost 

launching is delayed, the lesser energy is consumed by the system. However, despite the 

fact that some fan control strategies take the cold stored in the stuck frost [39], the frost 

layer keeps increasing along the refrigeration system is running. So, delaying the defrost 

increases the energy efficiency, but also the defrost time required is longer, as well as 

the time the cold space temperature is out of the dead band.  

 

In terms of energy efficiency, refrigeration control strategy must combine Mode 1 and 

Mode 3 regarding the frost layer accumulated on the evaporator. For that reason, to 

manage any system, no matter its dimensions, an adaptive control, which combines the 

strategy tested, must be developed. As well as, an accurate frost detection method which 

can be used at any cold room, no matter the system installed. 
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