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Abstract—In this paper, an efficient control strategy for 

physiological interaction based anaesthetic drug infusion model is 
explored using the fractional order (FO) proportional integral 
derivative (PID) controllers. The dynamic model is composed of 
several human organs by considering the brain response to the 
anaesthetic drug as output and the drug infusion rate as the 
control input. Particle Swarm Optimisation (PSO) is employed to 
obtain the optimal set of parameters for PID/FOPID controller 
structures. With the proposed FOPID control scheme much less 
amount of drug-infusion system can be designed to attain a 
specific anaesthetic target and also shows high robustness for 
±50% parametric uncertainty in the patient’s brain model. 
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I.  INTRODUCTION 
Control strategy formulation for anaesthetic drug dosage is 

very crucial in clinical surgery and falls in a particular category 
of biomedical system design known as pharmacology [1-3]. In 
pharmacology, there are two major steps involved known as 
pharmacokinetics and pharmacodynamics [4]. The anaesthetic 
drug injected in a patient’s body gets infused in the arterial 
blood flow and then the arterial blood carrying the drug reaches 
to different physiological organs. Determining the drug 
concentration in arterial blood flow and in different tissues i.e. 
dosage to concentration is known as the pharmacokinetics.  
The interaction of the drug with different physiological organs 
and the overall effect of the drug i.e. concentration to effect is 
known as pharmacodynamics [4]. Amongst many others 
anaesthetic drugs, fentanyl is widely used in relief of acute pain 
like cancer [5] and in different surgeries [6]. The drug dosage 
in clinical surgery is generally controlled by the 
Electroencephalogram (EEG) recording during the anaesthesia 
[7] until a predefined unconsciousness in not reached which 
can be characterized by observing slow oscillations in EEG 
signals. Since different physiological organs have different 
time constants to absorb, react and finally release the drug 
again in the blood stream, their interaction and contribution on 
the overall physiological dynamics of anaesthetic study is 
highly complex and may lead clinicians to misinterpret the 
observed event. As an example, some organs may store the 
drug in a larger extent or reacts to the drug slowly than the 
others and its immediate effect on the reduction of fast 

oscillations in EEG waves may not be significant. This type of 
phenomena may confuse the clinicians to enhance the drug 
dosage to attend a pre-specified EEG activity indicative to an 
anaesthetic state in a typical case which might be life-
threatening for the patient. In this scenario a physiological 
model based simulation study is necessary to device a control 
strategy with possible variation in patient’s mathematical 
model from the nominal case, since over dosage of the drug by 
an open-loop type EEG observation based control may 
endanger the patient in the process of anaesthesia. A realistic 
(data-based) model for control strategy formulation can thus be 
implemented for automated anaesthesia in clinical surgery 
using brain activity (EEG) monitoring as a sensory feedback to 
the comparator to generate the tracking error. This results in a 
control action going to an actuator to pump the drug into 
patient’s body [8], using a prior knowledge of the set-point or 
reference as quantitative measure of consciousness [4, 8]. 

Therefore the task of the controller design in the present 
scenario can be summarised as minimising the tracking error of 
the brain response given by the Hill equation, modified Hill 
equation (in frequency domain) and bispectral index (BIS) of 
EEG by delicately manipulating the drug input to the patient 
[4]. A realistic mathematical model for fentanyl drug was 
developed in [9-10] and is known as Mapleson-Higgins model. 
The Mapleson model was composed of a few set of algebraic 
equations derived from biochemistry. In this model, each organ 
of human body like lungs, peripheral shunt, kidney, gut and 
spleen, liver, other viscera, muscle, fat, sample brain is 
considered as a separate compartment. It is also assumed that 
each of the organs gets equal arterial blood flow. Mahfouf et al. 
[11] translated the static algebraic equation based Mapleson 
model into a dynamic model which considers the temporal 
variation in the drug concentration at the inlet and outlet of 
each physiological organ. They also carried out model 
reduction of the large dynamical system for generalized 
predictive control (GPC) design. In this paper, we use the 
original (unreduced) higher order dynamic model in order to 
design efficient control scheme. It has been shown by Das et 
al. [12]-[13] that fractional order (FO) controllers are very 
effective in handling higher order dynamics due to their 
inherent infinite-dimensional nature over integer order 
controllers which formulates the scope of the present study. 
Control strategies for anaesthetic dosage have been formulated 
on much simpler models using PID controllers [14]-[16], fuzzy 



[17] and neuro-fuzzy [18] controllers in earlier research. Wada 
et al. [19] developed a more detailed physiological system 
level pharmacokinetic model without any control scheme. A 
three state nonlinear compartmental model for clinical 
pharmacology has been described for different control studies 
including adaptive control [20], neural network control [21-22], 
nonnegative dynamical systems [23], disturbance rejection 
control [24]. Results of clinical trials of anaesthesia control 
scheme, based on three-compartmental model with noise EEG 
measurements has been reported in Haddad et al. [25] for 10 
patients. The focus of the present study is to formulate an 
optimal FO control strategy [26-28] with the dynamical model 
reported in Mahfouf et al. [11] considering interaction amongst 
physiological organs.  

The rest of the paper is organised as follow: section II 
describes the overall system model for different physiological 
organs and their interaction with the drug. The optimal 
controller design task is described in section III and the system 
simulation in section IV. The paper ends with the conclusion in 
section V, followed by the references. 

II. DYNAMIC MODEL OF FENTANYL INTERACTION WITH 
PHYSIOLOGICAL ORGANS 

A. Overall System Description for Automated Anaesthesia 

 
Fig. 1. Overall fentanyl dose-effect model with proposed control strategy.   

 As described earlier, the first static model of fentanyl 
interaction from pharmacokinetics and pharmacodynamics 
point of view was known as Mapleson model [9]-[10]. 
Mahfouf et al. [11] extended the concept for dynamic models 
by representing each organs dynamics with ordinary 
differential equations or single-input-single-output (SISO) 
continuous time transfer function models. The model mainly 
captures the drug flow from one organ to other and not the drug 
concentration in a specific organ. The drug is added through 
intravenous (IV) injection which gets infused in the arterial 
blood and then is perfused in all organs with a fraction of the 
total arterial blood flow. The brain reaction to the drug ( )y t , 
manifested in the form of EEG is evaluated using the Hill-
equation or some index like BIS and then fed-back for 
comparison with the target anaesthetic level to generate an 
error ( )e t which will be minimised by the FOPID or PI Dλ μ  

controller to generate a control action ( )u t , giving a command 
to the actuator or mechanical pump to pump the drug (Fig. 1). 

B. Dynamical Model for Each Human Organs  
Mahfouf et al. [11] developed individual system models by 

applying system identification techniques on original Mapleson 
model with the consideration of 70 kg body weight and 
6.481/min cardiac output which represent a base-case clinical 
scenario. In order to study the generalising capability of the 
model outside the nominal range, an interpolation based model 
identification has been reported in [11] for realistic variation 
either in body-weight, cardiac output or simultaneously both of 
them. From the generalized interpolated scheme, a patient 
model was developed with 93 kg body weight, 5.41/min body 
weight while 100μg of fentanyl has been injected over a period 
of 60 sec. The corresponding interpolated transfer function 
models [11] of various human organs are described in (1)-(9). 
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( )Liver 0.006243 0.04257G s= +                      (5) 
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Brain 1.614 10 0.1533G s−= × +                      (8) 

( )6
Nasal 5.459 10 0.08507G s−= × +            (9) 

The peripheral shunt has been modelled as only as a gain 
without any time constants i.e. peripheral-shunt 0.0241K = . The 
above models explain the dynamic relationship between the 
outgoing drug concentration in the blood flow from each tissue 
and the incoming arterial pool drug amount whereas it cannot 
model the drug concentration in each issue. If the drug 
concentration in the outgoing flow from brain is represented as 

bC , then the drug effect on the brain be calculated by the Hill 
equation (10) using the effect-site concentration at 50% of drug 
effect ( 50EC 7.8=  ng/ml) and steepness or slope factor (γ ).  

( ) ( )50Effect EC , 4.3b b bC C Cγ γ γ γ= + =          (10) 

III. OPTIMAL CONTROL SCHEME OF DRUG INFUSION WITH 
FRACTIONAL ORDER PID CONTROLLER 

A. Choice of the Control Objective 
In clinical practices of anaesthesia, computer controlled 

drug infusion is generally adopted to meet a target 



concentration infusion (TCI) rather than manually controlling 
the infusion rate [8, 14, 15, 22, 25]. Most of these techniques 
rely on open loop control which assumes that the population 
model is a good representative of any patient which may not be 
valid in many cases. A more sensible scheme should be to 
continuously monitor brain response (EEG) to the drug-dosage 
and use it as a feedback mechanism to minimise the set-point 
tracking error by an efficient controller structure. The control 
signal essentially modifies the intravenous drug infusion rate 
and should not be violently manipulated to reach a faster 
anaesthetic effect. So apart from minimizing the tracking 
error ( )e t , it is also an important task to minimize the variation 
(or derivative) of the drug infusion rate to prevent any sudden 
shock in the automated IV injection pump and chance of 
infusing large amount of drug in small time i.e. an increased 
control effort ( )u t . The objective function for the optimal 
controller design has been formulated as (11) as a weighted 
sum of Integral of Time multiplied Squared Error (ITSE) and 
Integral of Squared Deviation Control Output (ISDCO). 

( ) ( )( )( )22
1 20

J w t e t w u t dt
∞

= ⋅ ⋅ + Δ∫          (11) 

B. Controller Structure and its Tuning Using PSO Optimiser 
Fractional order PI Dλ μ controller design with various 

other time domain performance criteria has been explored in 
Das et al. [12] and the results shows that squared error term in 
(11) puts more penalties on the tracking error and the time 
multiplication term makes the overall response faster and 
reduces the chance of loop oscillations in later stages. It is 
evident that such a tracking criterion will definitely increase the 
required control effort whose variation (temporal derivative) is 
thus added as a minimising criteria in (11). The above control 
objective is to be met by an integer and fractional order PID 
controller structure (12) where the controller gains 
{ }, ,p i dK K K and the integro-differential orders{ },λ μ are to 
be tuned with a global optimisation algorithm. 

( ) ( )p i dC s K K s K sλ μ= + +                  (12) 

For PID controller only the gains are to be optimized by 
considering the orders as unity. In (12), each FO operator is 
continuously rationalised within the optimization process using 
a 5th order Oustaloup’s recursive approximation or ORA (13) 
for a chosen frequency band of { } { }2 2, 10 ,10l bω ω ω −∈ =  
rad/sec [29] and the rationalised pole-zero and gains are given 
by{ }, ,k kK ω ω′ . 
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 Here, the PID/FOPID controller parameters are optimized 
using the PSO algorithm which is a widely used global 
optimiser. The swarm starts with particles having velocity iv  
and position ix and in each time step they try to move towards 
the global best with latest value of the best found solution for 

individual particle or pbest ( ip ) and that of the global swarm 
or gbest ( gp ), while the velocity and positions are manipulated 
over successive iterations using (14), until all particles 
converges to the global best solution.  
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Here, { } { }1 2, 0.5,1c c = are known as the inertia factor, cognitive 

learning rate and social learning rate and{ }1 2,ϕ ϕ are uniformly 

distributed random variables within the interval [ ]0,1 . The 
parameterω , known as the inertia factor for the swarm is 
linearly varied from 0.9 to 0.1. In the present study, the 
unconstrained version of PSO is employed with only bound on 
the controller parameters as{ } [ ], , 0.001,10p i dK K K ∈ and 

{ } [ ], 0, 2λ μ ∈ . Due the implementation issues of ORA for FO 
operators for{ }, 1λ μ > , we explored four classes of FOPID 
structures (15) and tested the tracking performance and control 
effort of each controller structure. 
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IV. SIMULATION, RESULTS AND DISCUSSION 

 
Fig. 2. Convergence characterteristics of different controller structures. 

TABLE I.  OPTIMUM VALUES OF THE CONTROLLER PARAMETERS 

Controller Jmin 
Controller parameters 

Kp Ki Kd λ μ 

PID 499.2007 3.8243 8.6647 0.001 - - 

FOPID1 58.3018 0.0212 2.3014 0.0783 0.8301 0.1013 

FOPID2 792.1196 5.5757 3.3381 0.001 0.798 0.1488 

FOPID3 68.721 0.2106 1.5393 0.001 0.001 0.021 

FOPID4 728.6634 0.4213 1.6329 0.001 0.5237 0.1033 

 

 The PSO based optimal parameter selection is carried out 
for the 5 controller structure with a goal of minimizing the 
objective function (11) by considering a step input target at 



1t = min and has been reported in Table I. The located minima 
( minJ ) in Table I show that the FOPID1 structure with 

{ }, 1λ μ < gives the most optimal result than other FOPID 
variants and PID controller which is counter-proved by the 
PSO convergence characteristic, corresponding to FOPID1. In 
most of the case low derivative gain implies that a PI/PIλ type 
controller is more suitable for this particular system. 

A. Performance on Nominal Patient Model 
With the optimal parameters of the PID/FOPID controller 

in Table 1, the nominal anaesthetic drug delivery system, 
described in (1)-(10) and Fig. 1 is now simulated and the 
tracking performance and required control efforts are compared 
in Fig. 3 and Fig. 4 respectively. It is evident that although the 
with PID controller the tracking is much faster, it needs more 
amount of drug infusion within a short period of time (5 mins). 
Whereas the FOPID1 structure meets the same anaesthetic 
target while pushing much less amount of drug into patient’s 
body over a longer period of time (20 mins). 

 

Fig. 3. Tracking performance for different controller structures. 

 

Fig. 4. Control effort for different controller structures. 

B. Robustness of Control Scheme in Perturbed Condition 
In the previous subsection, the simulations have been 

reported for the nominal model whereas it is highly likely that 
the model differs significantly for different patients and for 
different conditions of the same patient. Since the brain model 
directly affects the output of the system as shown in Fig. 1, i.e. 
the brain response to fentanyl drug directly feedback to the 
controller, we here report simulation studies of the brain 
response for the drug in a ±50% dc gain perturbation scenario. 

Testing vulnerability of control loops with dc gain variation is 
a widely used robustness measure and has been described in 
Das et al. [12]. The dc gain of the nominal brain model is 
1.0528×10-4. The rest of the physiological organs i.e. 
peripheral-shunt, kidney, liver, other-viscera, muscle, fat, nasal 
receive the same arterial blood flow in Mapleson model 
described in Fig. 1, but does not directly affect the output ( )y t . 
Hence, they will have much less influence if the respective 
parameters are perturbed. Fig. 5-6 reports simulations with the 
best found cases of PID and FOPID controller respectively 
under a ±50% dc gain perturbation in the brain model (8). 

 

Fig. 5. Tracking performance and control effort with PID controller for 
±50% dc-gain perturbation of the brain model.    

 

Fig. 6. Tracking performance and control effort with FOPID controller for 
±50% dc-gain perturbation of the brain model.    

It is evident from Fig. 5 that for a decrease in the dc-gain of 
nominal brain model, the control effort rapidly increases, 
signifying that more drug is injected into the patient’s body. It 
is evident that the rise time of the PID controlled system is 
much faster (10 mins), but the amount of drug-injected is 
significantly high (17-35 units). On contrary, the FOPID 
controller in Fig. 6 provides a relatively slower tracking 
performance (50 mins). But there is a significant amount of 
saving in the drug injection level which is bounded within 7-18 
units even in the perturbed condition. In clinical practices, 
meeting the specified unconsciousness level is not the sole 
criterion because this may create a sudden shock in different 
human physiological systems which may be harmful for the 
patient [8]. Also, in order to attain same level of anaesthetic 
effect but within a shorter time- period, the drug concentration 
in brain needs to be raised rapidly which has both economical 



constraint and physiological ill-effects along with faster 
mechanical pumping needed for automated drug-delivery. 
Whereas a smoother and bounded control action with less 
amount of drug infusion into the patient can attain the same 
level of anaesthesthetic fentanyl drug, if equipped with an 
efficient control strategy i.e. using proposed optimal FOPID 
controller.    

V. CONCLUSION 
The paper devises a new fractional order control strategy 

for automatic fentanyl drug dosage control for anaesthesia in 
clinical practices. The proposed FOPID control scheme 
requires less amount of dug to be injected than with a PID 
controller to meet same anaesthetic target. The smoother 
control action provided by FOPID controller outperforms 
classical PID controller in a sense of restricting the chance of 
feeling a sudden shock in the brain response due to rapid 
increase in the amount of anaesthetic drug concentration in 
arterial blood flow within a very short time interval. Future 
work may be directed towards validation of the control scheme 
applied on Mapleson’s dynamic model, with real clinical data. 
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