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Abstract: Collaborative robots cooperate with humans to assist them in undertaking simple-to-
complex tasks in several fields, including industry, education, agriculture, healthcare services, security,
and space exploration. These robots play a vital role in the revolution of Industry 4.0, which defines
new standards of manufacturing and the organization of products in the industry. Incorporating
collaborative robots in the workspace improves efficiency, but it also introduces several safety risks.
Effective safety measures then become indispensable to ensure safe and robust interaction. This
paper presents the review of low-level control methodologies of a collaborative robot to assess the
current status of human–robot collaboration over the last decade. First, we discuss the classification
of human–robot collaboration, architectures of systems and the complex requirements on control
strategies. The most commonly used control approaches were presented and discussed. Several
methods of control, reported in industrial applications, are elaborated upon with a prime focus
on HR-collaborative assembly operations. Since the physical HRC is a critical control problem for
the co-manipulation task, this article identifies key control challenges such as the prediction of
human intentions, safety, and human-caused disturbances in motion synchronization; the proposed
solutions were analyzed afterwards. The discussion at the end of the paper summarizes the features
of the control systems that should be incorporated within the systematic framework to allow the
execution of a robotic task from global task planning to low-level control implementation for safe
and robust interactions.

Keywords: collaborative control; collaborative robots; human–robot collaboration; literature review;
modeling and control methodologies

1. Introduction

Human–robot collaboration is an innovative area aiming to construct an environment
for safe and efficient collaboration between humans and robots to accomplish a specific
task. This area introduces a new type of robot called collaborative robots or cobots. Unlike
traditional robots, collaborative robots are robots that can work together with humans to
perform tasks in several fields of life, including industry, education, agriculture, healthcare
services, security, and space exploration. The term “collaborative robot” was first intro-
duced in the academic literature by Peskin and Colgate in 1999 [1]. In the beginning, the
collaborative robots were known as intelligent assist devices (IADs) until the standards
of intelligent assist devices with personal safety elements were composed by the Robotic
Industries Association (RIA) in 2003. Later, the term collaborative robot became standard.
The first commercial collaborative robot that was capable of performing automated and
streamlined repetitive industrial tasks was developed by KUKA in 2003 [2]. Figure 1 depicts
the stages of development of collaborative robots since 2003. The considered cobots are
single-arm and dual-arm and with six or seven degrees of freedom.

The concept of collaborative robots is to combine the cognitive skills of humans with
the precision and dexterity of robots to accomplish complex tasks. Unlike the classical
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industrial robots, cobots are simple, lightweight, reliable, with easy-to-deploy enhanced
sensors. Thanks to these characteristics, they can detect a human’s motion and are equipped
with collision avoidance algorithms. Additionally, they can be programmed with mobile
phones. Recently, with the development of Industry 4.0 standards, the vital role of cobots in
automation, manufacturing in general and in small and medium enterprises (SMEs) in par-
ticular has become evident [3]. According to the recent survey report of Markets&Markets,
the market share for collaborative robots is estimated to grow from USD 981 million to
USD 7972 million during the period 2021–2026 [4]. The surge in demand for collaborative
robots motivates researchers and manufacturers to develop advanced collaborative robotic
systems that can integrate with the Internet of Things (IoT) [5,6].

Figure 1. Development of collaborative robotic system.

Human–robot (HR) interaction requires different levels of automation and human
intervention. These interactions are commonly classified as HR coexistence, HR cooperation,
and HR collaboration with various levels of automation (full, semi, collaborative). When
humans and robots share a workspace but are working independently without sharing
a task, this kind of interaction is known as HR coexistence. The terms HR collaboration
and HR cooperation are used interchangeably. However, the two vary slightly. When the
human and robot both seek to achieve the same goal and share the workspace, it is known
as HR collaboration. However, HR-cooperation implies a situation in which robots and
humans share a workspace and work simultaneously, but on separate sub-tasks.

The collaborative robot (cobot) can be a manipulator or mobile robot that can work
together on shared tasks in a shared workspace. In this article, the type of collaborative
robot addressed are manipulator robots that can work with humans on shared work in
the same workspace. However, collaborative robots are also known as multiple robots
that can interact with each other to perform shared tasks, e.g., co-transporting objects with
the help of multiple collaborative robots. However, this literature review focuses on the
collaborative robot (manipulator) that has physical human–robot interaction and control
methods relying on the motion-force control of the robot. While multiple collaborative
robots use cooperative distributed control methods based, e.g., on game theory, that is out
of the scope of our literature review presented in this paper.

Examples of this kind of interaction are the industrial robotic system which works on
specific tasks behind fixed and interlocked guards to prevent human intrusions into their
workspace. The second example in this type is cooperative robotic systems. These robots are
equipped with safety configurations to safeguard the interference of robots with a human in
an automatic manner. The third example is collaborative robotic systems, which are explicitly
designed for direct interaction with humans to perform collaborative jobs. Contact between
the collaborative robot and the human body might be either intentional as part of a normal
collaboration sequence; or unintentional as a result of unpredicted movement, sensor errors
or system malfunction. The scope of this article is to focus on the physical HR collaboration
for collaborative robot manipulators, as this field of research is still in its infancy. Therefore,
the fundamental purpose of this review is to describe various control methods developed
within the domain of collaborative robot manipulators for industrial applications.
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In the past decade, the field of HR collaboration has been widely investigated. Further-
more, issues such as strategies for integrating safety, ergonomics and speed, human–robot
task allocations, communication methods, and multiple human collaborations with multi-
ple robots as a team have also been analyzed for advanced collaborative robotic systems.
Recently, a systematic literature review by Luca Gualtieri et al. [7] presents emerging
research areas addressing the safety and ergonomics issues in the context of industrial
collaborative robots reported in the year 2015–2018. In industrial robotics, development is
based on modeling and simulation, sensor systems for object tracking, motion planning and
control, safety management, and artificial intelligence in industrial applications. The survey
concluded that motion planning and control to ensure overall safety focuses on developing
strategies for human contact avoidance rather than detection and mitigation solutions.
However, more research needs to be performed in industrial collaborative robots, where
the main challenges are physical ergonomics, cognitive and organizational ergonomics for
motion planning and control.

Another earlier review by Zoltan Dobra et al. [8] describes the potential research trends
introducing multiple humans and robots teamwork collaboration based on the measure-
ment of the degree of collaboration and task relocation in human&robot. Hentout et al. [9]
presented a comprehensive review classifying HR collaborative applications into software
and hardware designs, and discussing robotic programming, augmented reality, physi-
cal and cognitive interactions, safety mechanisms, and the fault tolerance of industrial
collaborative robots.

Furthermore, Umbrico et al. [10] proposed a shared ontology suitable for human–robot
collaboration. The ontology is based on DUL (DOLCE+DnS Ultralite) and semantic sensor
network (SSN) ontologies. It used the concepts of ProductionMethod, ProductionTask,
ComplexTask and SimpleTask. The study facilitates reasoning regarding agents’ capabilities
and the analysis of possible collaborations. The interaction between humans and robots is
defined in the class ProductionAction. The concept of risk level is introduced to measure
the risk related to the interaction between agents. Such an approach is deemed very helpful
in defining the tasks, objectives and constraints of control systems.

Comprehensive reviews are presented in the literature to describe the safety and
human ergonomics in collaborative robotic systems for HR collaboration. However, an
in-depth analysis of control methodologies for collaborative robots over the recent years
has not been reported to the best of the author’s knowledge. Therefore, this review article
attempts to provide an overview of the development of various control methods for col-
laborative robots and challenges for designing controllers for collaborative robotic systems
in industrial applications. The concept of human–robot collaboration and its design and
implementation for human–robot collaborative control architectures are discussed in detail
to make the integration safe, robust and precise. The physical human–robot collaboration
is a complex control problem. This article addresses low-level control challenges posed to
collaborative robots and their proposed solutions addressing the following key challenges:
the prediction of human intentions, safety, and human-caused disturbances in motion syn-
chronization. As the focus of this article is restricted to low-level controller strategies, the
modeling techniques and high-level control methods are beyond the scope of this article.

This article is organized into seven sections. Section 1 introduces the development of
collaborative robots and the complex requirements of human–robot collaboration. Section 2
describes the review methodology used in this paper. Section 3 defines the key terminolo-
gies and features of human–robot collaboration for collaborative robots. Sections 4 and 5
report the collaborative control system architectures followed by a review of various con-
trol methodologies for collaborative robot manipulators used in physical HR-collaborative
assembly applications in the industry, as reported in various publications. Section 6 summa-
rizes and discusses the main attributes and requirements of the control systems presented
in the previous sections, hence providing recommendations for the most important fea-
tures: the estimation of human intention, safety, and human-caused disturbances. Finally,
Section 7 concludes the paper.
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2. Literature Review Methodology

The traditional literature review approach was used to analyze scientific articles
published from 2010 and 2020 that highlighted the control strategies developed for physical
HR collaboration in collaborative robots for industrial applications. To limit the review
scope, the focus was restricted to manipulator collaborative robots with a particular focus
on HR collaborative assembly tasks. To this end, the peer-reviewed publications were
comprehensively evaluated based on controllers developed and practically validated on
collaborative robots that highlight control advantages, challenges, and drawbacks.

Next, we identify three major challenges which have been encountered while design-
ing control techniques: (i) estimation of human intention; (ii) safety; and (iii) human-caused
disturbance. On the basis of the identified factors, we analyzed the control techniques, con-
trol objective, and performance of controller used in the collaborative robot. We summarize
the chronological development in this area in tabular form to prioritize highlighting the
control features with a robotic platform details requisite for HR interaction. It is worth
mentioning here that the articles not included in the review are those that considered
control methods applied on traditional robots and do not deal with direct physical HR
interaction and theoretical studies. Three search engines were utilized to obtain scientific
articles that were selected using the following search string: (collaborative robot OR cobot)
AND (Human–robot collaboration) AND (Control) AND (Industry OR assembly). Since
collaborative robots have only been commercially available for the previous decade. Hence,
the scientific articles cover the period 2010–2020. IEEExplore returned 38 results, from
which 30 were found to fit our literature review criteria after reading the title and abstract.
ScienceDirect returned 191 results, among which 40 were found to be suitable for our
literature review. Web of Science returned 120 results, among which 45 were selected
based on relevance to our application. Out of all these relevant results, 10 were duplicated
results, leaving us with 41 papers to analyze. Following a thorough evaluation of the
articles, 41 papers were considered to fully meet our criteria and were therefore included
in this review. It is important to note that 22 articles were cited in the analysis of the co-
assembly application. The parameters considered for systematic analysis are a collaborative
robot, robotic platform detail, collaborative configuration, physical HR interaction, sensors,
control methods, control objective, and controller performance.

3. Human–Robot Collaboration

Before elaborating the concept of human–robot collaboration in the collaborative robot,
it is important to discuss the concept of human–robot interactions, types of human–robot
collaboration and human–robot collaborative operation modes in collaborative robots.
Human–robot collaboration is a sub-category of human–robot interaction [11,12].

3.1. Human–Robot Interaction

The human–robot interactions are divided into three subcategories: (i) Human–robot
co-existence; (ii) Human–robot cooperation; and (iii) Human–robot collaboration. This
classification is based on four criteria: (i) workspace; (ii) working time; (iii) working aim or
task; and (iv) the existence of contact (contactless or with-contact).

The workspace can be described as a working area surrounding humans and robots
wherein they can perform their tasks individually, as shown in Figure 2. The time during
which a human is working in the collaborative workspace is known as the working time.
Humans and robots interact in a workspace to achieve a common goal or distinct goals.
Therefore, if the workspace is shared between the two entities along with simultaneous
action, this interaction is known as HR coexistence [13]. HR cooperation implies an interaction
when they work simultaneously towards the same aim in a shared workspace. However,
HR collaboration covers scenarios in which there is direct contact between humans and
robots to accomplish the shared aim or goal. Examples of these interactions are classical
industrial robots, cooperative robots, and collaborative robots, respectively.
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It is important to consider that the term HR collaboration is ambiguous in its defini-
tions [14,15]. In Figure 2, HR collaboration is shown as the final category of HR interaction
that describes a human and robot executing the same task together, wherein the action of
the one has an immediate impact on the other.

Figure 2. Classification of human–robot interactions.

3.2. Human–Robot Collaboration Types

Human–robot collaboration is the advanced property of robots that allows them to exe-
cute a challenging task involving human interaction in two ways: (i) physical collaboration;
and (ii) contactless collaboration [14]. Physical collaboration entails direct physical contact
of the force of the human hand exerted on the robot’s end-effector. These forces/torques as-
sist or predict the robotic motion accordingly [16]. However, contactless collaboration does
not involve physical interaction. This collaboration is carried out through direct (speech
or gestures) or indirect (eye gaze direction, intentions recognition, or facial expressions)
communication [15]. In these types of collaboration scenarios, human operator cognitive
skills and decision-making abilities are combined with the robotic attributes of repetitively
and more precisely performing the job with human involvement.

Contactless collaboration faces several issues, e.g., communication channel delay, input
actuator saturation, bounded input and output, and data transmission delay in bilateral
teleoperation systems. Therefore, various controller methods have been reported in the
literature to deal with these issues, such as output feedback control [17], fuzzy control [18],
adaptive robust control [19], model predictive control [20], and sliding mode control [21,22].
However, this survey focuses on the critical issues observed by collaborative robots during
physical HR collaboration. The key challenging issue in this regard includes the prediction
of human intentions, motion synchronization due to human-caused disturbances, and
human safety for efficient physical HR interaction. The following section introduces the
different robotic operations of a collaborative robot during HR collaboration.

3.3. Collaborative Robotic Operations

Norm ISO/TS15066 describes four operative modes for collaborative robots to en-
sure human safety: (1) power- and force-limiting; (2) speed and separation monitoring;
(3) a safety-rated monitored stop; and (4) hand-guiding [23,24]. In these operating modes,
collaborative robots work in collaboration with a human operator depending on the appli-
cation. Table 1 presents the four working modes of collaborative operations on the basis
of features, monitoring speed, torque-sensing, operator control, and a workspace limit for
safe HR collaboration.
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Table 1. Type of collaborative robotic operations.

Robotic
Operation Human Input Speed Techniques Torques

Power- and
force-limiting

Application-
dependent

Maximum
determined
speed to limit
forces

The robot cannot
exceed power
excessive force

Max.
determined
torques

Speed and
separation
monitoring

No human
control in
collaborative
workspace

Safety-rated
monitored speed

Limited contact
between robot
and human

Necessary to
establish a
minimum
separation
distance and to
execute the
application

Hand guiding Emergency stop Safety-rated
monitored speed

Motion
controlled with
direct operator
input

Operator input

Safety-rated
monitored stop

Operator has no
control

When human is
in collaborative
workspace,
speed is zero

Robotic
operation stops,
if the human is
present

Gravity and load
compensation
only

4. Control Design of Human–Robot Collaboration
4.1. Collaborative Control System Architectures

When designing a controller for human–robot collaboration, two essential factors need
to be considered; adjustable autonomy and mixed-initiative for integrating humans into
an autonomous control system. Adjustable autonomy and human initiatives switch the
control of tasks between an operator and an automated system in response to changing the
demands of the robotic system. In this survey, an application scenario of a collaborative ma-
nipulator robot having direct physical collaboration with the human operator in industrial
applications for collaborative assembly is considered.

Simple-to-complex control architectures have been presented in the literature. The
collaborative control architecture presents a systematic view of the interaction between
humans and robots at both low-level (sensors, actuators) and high-level control (perception
and cognition), as shown in Figure 3 [25,26].

Figure 3. Block diagram of collaborative control architecture.
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Another control architecture presented in [27,28] shows a more comprehensive review
of interaction control in human–robot collaboration. This framework explains the complex
requirements and diverse methods for interaction control, motion planning, and interaction
planning. This control architecture is unconventional compared to a classical control
architecture due to the planning for safe collaboration [29]. The control architecture is
composed of three abstraction layers, and the next subsection explains it in detail (Figure 4).

Figure 4. Interactive collaborative control framework.

4.1.1. Non-Real-Time Layer

The highest abstraction layer is the top layer of architecture that plans the global task
of the robot based on skill sets in offline mode. Such a task planner creates the different
skill states to accomplish the respective global tasks/actions. It generates the task state and
sends the initial desired behavior information to lower layers. Each skill state holds the
information regarding the current task and action to perform. The job of a robotic system
can be, e.g., to grasp the object or hand it over. The examples of non-real time control
architectures were presented in [30,31].

4.1.2. Soft Real-Time Layer

The second abstraction layer is responsible for dynamically executing and modifying
global plans; it does so by choosing the best action of the current task state, behavior
state, human state, and environmental state. This dynamic planning unit is followed by a
learning and adaption unit. The unit converts global task planning information into the
corresponding dynamic planning language. The planning unit can translate the robot’s
desired actions into safe and task-consistent actions, which instantaneously alter the global
task plan. Hence, this layer’s primary task is to modify the pre-planned course into safe
and consistent actions using the prediction of human intentions. Examples of soft real-time
architectures are described in detail in [32–36].

4.1.3. Real-Time Layer

The low-level control layer is the bottom layer with the desired action (ad) and behav-
ior (bd) that is directly forwarded to the robot for task execution. The expected behavior
(bd) can alter based on reflex behaviors when accidental situations or collision events occur.
The control layer provides feedback on the currently active activity (a) and behavior (b) to
the dynamic planning layer, allowing it to perform accordingly.

Human interaction in this control architecture is observed at various levels of abstrac-
tion. The human observer states gather all human-related information and knowledge in
the second layer (soft real-time) that can be further used for planning in the lower layer.
This control architecture ensures human safety in physical interaction for interactive and
cooperative tasks with a collaborative robot [37]. The following subsection highlights the
key challenges that are considered in our literature review.
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4.2. Controller Challenges
4.2.1. Estimation of Human Intention

The first challenge posed to HR collaboration is the precise estimation of human
intention for a controller design. It allows the system to select the correct dynamic planning
to anticipate the appropriate safety behavior. The goal here is to equip the robot with the
human intention that is easy to interpret and safe for humans and robots to participate in
the collaborative task. In the real-time control layer, there is a two-way interaction: the
human ability to anticipate the robot movement is as important as the ability of the robot
to anticipate human behaviors. The prediction of human actions relies on two factors:
(1) predicting the next action; and (2) prediction of action time. Human motion prediction
relies on predicting the desired tasks (manipulation, navigation) and the characteristics of
human motion. On the other side, with either explicit or implicit cues, the robot can make
its intended goals/tasks clearer to the co-located humans, facilitating the humans’ ability
to select safe actions and motions.

4.2.2. Safety

Industrial collaborative robots can work with humans and perform operations besides
them. These robots can move their arms and bodies and operate with dangerous and
sharp objects. Such a situation demands specific procedures to ensure human safety while
undertaking collaborative tasks. This is an important and emerging issue in the field of
human–robot collaboration. Such a problem can be tackled using a collision model for a
robot consisting of n joints and a particular link detecting a collision with a human [38].

The following equation combines linear and angular velocity vectors with joint angular
velocities (q)

ẋc =

[
vc
wc

]
=

[
Jc,lin(q)
Jc,ang(q)

]
q̇ (1)

where xc is a state vector, vc is a linear velocity vector and wc is an angular velocity vector
of the related robot link at the collision contact point, and Jc(q) is the contact Jacobian. In
case of the collision, the robot dynamics can be represented as

M(q)q̈ + C(q, q̇)q̇ + g(q) + τf = τ + τext (2)

where M(q) is a joint space inertia matrix, C(q) is a coriolis vector, g(q) is the gravity vector,
τf is the dissipative friction torque, τ is the motor torque, Fext is the external force observed
by the joint during collision, and then τext is external joint torque expressed as

τext = JT
c (q)Fext (3)

Then, the effective mass of a robot can be estimated as

mu =
[
uT Λv(q)−1 u

]−1 (4)

where Λv(q) is the Cartesian kinetic energy matrix. When the collision occurs, an important
entity is a force observed at the contact point. This force is characterized in two phases, as
shown in Figure 5. In phase I, FI represents a short impulsive force. In phase II, two types
of forces come into play in case there is quasi-static contact. If the human is not clamped,
then this force is called a pushing force FI Ia. When a human is clamped, the force is called a
crushing force FI Ib. The mathematical modeling of robotic systems that includes kinematic
modeling and dynamic modeling is a precursor for control design. The comprehensive
dynamic modeling of point contact between the human hand and robotic arm is described
in [39–42].
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Figure 5. Force profiles of collision occurrence.

4.2.3. Human-Caused Disturbances

The unpredictable disturbances of human motion significantly reduce the performance
of robotic control. To ensure stable and robust human–robot collaborative assembly ma-
nipulation, there is a need to minimize human disturbance. Control methodologies for
handling these challenges are described in the next section.

5. Control Methodologies

From a low-level-control perspective, the control methodologies enable smooth task
execution to address the complex and unpredictable nature of physical human–robot
collaboration. The aim of a controller includes the tracking of human motion trajectories by
avoiding collision during physical interaction. We briefly present control methodologies
designed and implemented for collaborative robots, particularly for HR-collaborative
assembly application. Then, we elaborate the related control methods.

5.1. Impedance Control Strategy

The most popular control technique is the impedance control which handles the hybrid
force/position control and disturbances in the unknown environments of human–robot
physical interaction [43,44]. This method was developed for robust collaborative object
manipulation, in which the impact of involuntary human motions can be compensated by
adjusting impedance parameters. Impedance control techniques can handle motion and
force in a unified manner for the robotic system. They benefit from hybrid force-motion
controllers to produce a motion not constrained by a kinematic workspace [45,46]. This
method expresses the system as a second-order closed loop system of a mass-spring damper.
The control objective is defined in operational space coordinates x as

Mx ¨̃x + Dx ˙̃x + Kx x̃ = Fext (5)

where Mx denotes the desired inertia, x̃ = x− xd is the position error vector, xd represents
the equilibrium position vector, Dx is the damping matrix, and Kx is the stiffness matrix in
the operational space.

In [47], the authors developed a modified impedance controller that requires angles
for the operational space and energy functions for physical interpretation. To eliminate
singularities, the end-effector orientation and displacement were used. The extension of
adaptive impedance controllers can utilize impedance and feed-forward torques. However,
the controller’s learning of the desired motion trajectories is a significant problem [48,49].
To address this issue, the authors proposed an adaptive impedance control method for
series elastic actuator (SEA) collaborative robots [50]. This method introduced a controller
with two operating modes: the first mode is “robot-in-charge”, implying that a robot
takes the primary role in job execution; and in the second mode, “human-in-charge”, the
human takes charge of executing the operation (Figure 6). The performance of the proposed
controller was found to be satisfactory as validated using an experimental setup.
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Figure 6. Controller layout for SEA robots.

Another control method is that of Cartesian impedance control, which is generally
used for grasping objects in co-manipulation tasks, where humans and robots share their
roles as leader and follower. However, the authors [51] proposed modifications in this
method that shift the human–robot role by sharing control through the operation. The
torques applied to the admittance controller developed a wrist deflection, which help
transform a virtual vertical force to carry the load. Using a second admittance controller,
this force was used to extend or lower the robot’s end-effector. The authors that employed
this controller approached the mobile robot helper’s base to perform the cooperative
carrying of a load [52,53]. The authors of [54,55] also used a lifting controller with cascaded
second-order virtual admittance controllers applied to the same applications. The authors
of [56,57] designed and evaluated an interactive controller for cooperatively carrying a
load with the help of the robot and human simultaneously. Figure 7 depicts a simplified
diagram for admittance-based collaborative task control.

Figure 7. Simplified diagram for an admittance-based collaborative task control.

The fundamental problem of collision detection and avoidance was addressed in
collaborative robotics. Geravand et al. [58] introduced a collision detection approach
for industrial robots that uses a closed loop feedback control strategy. They used the
measurement for joint positions and velocities as a reference signal for the controller.
This technique did not demand the robot’s dynamics model. The experimental scenarios
of human–robot collaborations with various forces on the KUKA KR5 manipulator and
DLR LWR-III were tested [59]. In addition, an impedance controller was designed that
adapted itself according to external force collision, obeying safety standards (ISO10218) for
force, velocity, and power limitations. The Kuka LWR4 robot was used for experimental
verifications for such a collision avoidance strategy [60].

Overall, two main approaches are commonly used. The first is that of active impedance
control, and the other is passive compliance control for human safety and protection. The
active impedance solution has a low latency [61] in the case of a human–robot collision,
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which could adversely affect human safety. On the other hand, passive compliance provides
an instantaneous, rapid, and robust reaction to the uncertain collision.

5.2. Invariance Control Strategy

The detailed development of a novel invariance control algorithm for dynamic con-
straints in a human–robot collision avoidance algorithm was designed and tested on a
torque-controlled robotic manipulator [62]. The controller is responsible for handling the
physical constraints (velocity/joint) and dynamic constraints (human movement) with
external disturbances. The idea of virtual constraints defines a safe zone for human ac-
tivity inside the collaborative workspace. The control scheme was built to maintain the
admissible subset while keeping the error minimum. This is also applicable in the pres-
ence of external disturbances. Figure 8 presents the invariance control strategy with two
control loops: the outer control loop has the nominal controller, and the inner loop has the
invariance controller. The nominal control law and robot motion (Pdes) generate control
torques (τno) that describe the desired behavior of the robotic manipulator. The invariance
controller in the inner loop calculates the corrective control input (τc), which is close to the
nominal control input (τno) and compensates for the effect of disturbances or violations of
the constraints. The torque-controlled robotic systems is described as [62][

q̇
q̈

]
︸ ︷︷ ︸

ẋ

=

[
q̇

−Mq
−1(Cq q̇ + gq

) ]︸ ︷︷ ︸
f (x)

+

[
0

Mq
−1

]
︸ ︷︷ ︸

G(x)=[g1(x)...gnq(x)]

(τc − eτ) (6)

The nominal control law is designed to generate control torque (τno) as

τno =J(q)>
(

fext + Mp p̈des + Dp( ṗdes − ṗ) + Kp(pdes − p)
)

+ Cq(q, q̇)q̇ + gq(q)
(7)

where the mass matrix Mq ∈ Rnq×nq , a sufficiently smooth desired trajectory pdes and
the positive definite Cartesian mass Mp ∈ Rnp×np , stiffness Kp ∈ Rnp×np , and damping
Dp ∈ Rnp×np matrices, Jacobian matrix J(q) ∈ Rnq×nq , Coriolis and centripetal forces
Cq(q, q̇) ∈ Rnq , and the gravitational torques gq(q) ∈ Rnq . External forces fext ∈ Rnp

are connected to the external torque τext . The stiffness and damping parameters may be
adapted, sometimes even online, to account for task requirements. Furthermore, solving a
constrained minimization problem given below yields corrective control (τc)

argmin||τc − τno||2 (8)

Figure 8. Invariance control architecture.
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This strategy is tested on the dual-arm robot with seven DOF with direct human
contact. One person exerts force to the end-effector and the robotic manipulator accurately
tracks movement.

5.3. Exteroceptive Sensor-Based Control Strategy

Another strategy to provide better human safety in manufacturing applications is
exteroceptive sensor-based control [63]. De Santis and Siciliano [64] suggested a sensors’
system combined with virtual reality under different scenarios of collisions. Moreover, it
is observed that the subjective comfort of humans relied on the shape and speed of the
robot during robot motion. Avanzini et al. [65] made a hardware/software platform to
optimize the safety of human–robot collaboration. The authors developed the distributed
distance sensor model integrated into an industrial robot, and the controller used these
sensors’ output to assess the risk level. The module’s functionality has been verified on the
ABB IRB140 robot manipulator [66].

The rigid body dynamics in task coordinates is [64]:

Λ(x, ẋ)ẍ + µ(x, ẋ)ẋ + JT g(x) = JTτ + f , (9)

where operational velocities Λ(x, x) = J−T M J−1, µ(x, ẋ) = J−1(C−M J−1 J̇
)

J−1, with
q ∈ RNq the vector of joint angles, M the inertia matrix, C the Coriolis/centrifugal matrix,
g(x) the vector of gravity torques, f is the vector of external forces, τ is the applied joint
torques, and J is the Jacobian.

Impedance control in the task space consists of the following control objective:

Λd ëx + Dd ėx + Kdex = e f (10)

where ex = x− xd is the position error between the actual position x and the reference
position xd; e f = f − fd measures how much the actual perceived force f deviates from
the predicted one fd2 . Λd, Dd, and Kd are the symmetric and positive definite matrices of
desired inertia, damping, and stiffness, respectively.

The Cartesian impedance controller can be implemented via the joint torques τ as
follows:

τ = u + JT k̃ex + JT D̃ėx + JTΛ̃ė f (11)

where u = g + JT(Λẍd + µẋd)
Meziane et al. [67] introduced two units: an inertial measurement unit that measured

the torque/force signal and an indication unit that tracks the human location and move-
ments in real time. The authors developed such a hybrid system for the flexible industrial
manufacturing system. However, other systems handled safety issues by creating safety
zones nearby the human and robot. The robotic speed varies in the overlapping zone.
Currently, researchers are trying to make these zones dynamic for both human movement
and robot behavior [68].

5.4. Proprioceptive Sensor-Based Control Strategy

The control strategies that rely on the internal sensor’s measurements of the robot are
known as proprioceptive sensor-based control strategies. Lacevic and Rocco [69] proposed
a mechanism for detecting collisions between an industrial robot and a human. It used
proprioceptive sensors, fully integrated into the internal software design, and did not rely
on external sensors. The experimental results showed that coordinated and collision-free
motion could be obtained in such a framework. Some researchers suggested different
approaches using pose estimation methods [70], extended Kalman filter [71], and a hybrid
extended Kalman filter [72].

Another human–robot control scheme based on the kinematic control strategy was
implemented to handle human–robot collision avoidance [73]. The proposed algorithm
generates the optimal motion for velocity trajectory to ensure safety constraints. Experimen-
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tal validation was carried out on dual-arm robots at a joint level rather than in 3D Cartesian
space to reduce the computation time. Finite-state automata were used to implement the
collision detection and avoidance in the human–robot controller, and a linear optimization
algorithm was used for motion planning. The controller adjusts the joint velocities of the
robot relative to the distance from the human in the collaborative workspace to ensure that
the velocity scaling factor is bounded.

A kinostatic danger field for the control of multi DOF robot was presented in [73,74]
for the assessment of human–robot interaction. This assumed that there were N ∈ N
relevant obstacles in the robot environment and it let rj be the position of the obstacle j, j ∈
{1, 2, . . . , N}. We may refer to rj as the position of the point on the obstacle that is nearest
to the robot. Define m as:

m =

{
1 if

∥∥∥C~DF
(
rj
)∥∥∥ ≤ ∆j, ∀j ∈ {1, 2, . . . , N}

0 otherwise,
(12)

where C~DF is a vector representing the cumulative danger field pointing towards~r. This
means that m = 1 if and only if the value of the danger field at each of the relevant locations
rj does not exceed a certain threshold ∆j. Therefore, the control law:

T = mTtask +
[
(1−m)I + mNT(q)

]
Tsubtask (13)

The torque Ttask is responsible for the task behavior. If m = 1, then the subtask torque
Tsubtask only affects the robot posture, without altering the end-effector dynamic behavior.
This is guaranteed by the matrix N(q) = I − J̃(q)J(q) that projects an arbitrary torque
vector into the null-space of JT(q). If m = 0, Tsubtask affects the dynamics of the complete
robot. The torque Tsubtask is defined as:

Tsubtask =
N

∑
j=1

n

∑
k=1

JT(q, j, k)Fk(C~DF(rj), ṙj) (14)

5.5. Distance/Speed-Based Control Strategy

Another popular control strategy is control that prioritizes speed, which minimizes
the distance between robots and humans in the workspace. This control method is used to
handle the safety issue by utilizing the collision avoidance and detection algorithms based
on the speed and distance. The measured distance is often utilized to adjust the robotic
speed in the case of collision detection [75]. Tsarouchi et al. [76] developed and tested ROS
modules in the C5G open architecture, ROS sensors, and other sensor setups. Michieletto
et al. [77] generated the repulsive vectors of velocities dependent on lengths between the
robot and the moving human obstacles. This repulsive action was intended to assist the
manipulator’s end-effector stop collisions when performing a Cartesian motion task. The
experimental implementation on Kuka LWR4 confirmed the properties of this strategy.

The artificial potential field was introduced by Khatib in 1985 [76]. The idea was to
create an artificial potential field (Uart) in a robot’s environment. Minimal distance between
the robot and the obstacle should be kept: when the distance is too short, the robot is
repulsed by the obstacle because the potential is strong; however it is attracted by the
target because the potential field is weak. The artificial potential field (Uart(q)) is a sum
of both attractive (Uatt(q)) and repulsive potential fields (Urep (q)), where q is the robot’s
geometric configuration:

Uart(q) = Uatt(q) + Urep (q) (15)

The robot moves following the sum of attractive and repulsive forces generated by
the attractive potential and the repulsive potential, respectively. The artificial force is
determined by:

Fart(q) = Fatt(q) + Frep (q), (16)
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where Fatt(q) the attractive force and Frep (q) is the repulsive force at the current position q
of the robot. The attractive force is provided by the equation:

−→
Fatt = −ε[q− qt], (17)

where ε is a positive gain (similar to Hooke’s law spring constant), q is the current position
of the robot and qt is the target’s position. The repulsive force (

−−→
Frep ) is provided by

the equation : { −−→
Frep = η

d2

[
1
d −

1
d0

]
~∇d if d ≤ d0

0 if d > d0
, (18)

where d is the minimal distance between the robot and the obstacle, d0 is the influence
distance of the obstacle, and η is a positive gain (similar to Hooke’s law spring constant).

5.6. Probabilistic Method

Several probabilistic techniques have been proposed for translating human intentions.
For instance, the authors discussed the human intention estimation problem and proposed
a prediction mechanism for online trajectory planning using a hidden Markov model
(HMM) algorithm in [38,78]. The walking human’s current position and desired position
are used to adjust the robotic movements in industrial application for the collaborative
assembly, where the three types of human–robot interactions (coexistence, cooperation,
and collaboration) are considered. Each motion pattern θm is described by a set of Gaussian
distributions with the coordinate mean µk

m and its covariance Σk
mσ. In the first phase, online

trajectory prediction is performed for each observed human position with K discretized
states along with M motion patterns applying a hidden Markov model (HMM). During
the next phase, the probability of each estimated human state P(µk

m | πi) is calculated
according to

P(µk
m | πi) =

1√
2πσ

e
1

2σ2 |πi−µk
m |2 P−(µk

m) (19)

The probability of each state is modified during the observation process based on the
current state P−(µk

m) and the observed location of human πi = (xi, yi).
When the person at a specific time t in the future visited an interaction area Aj, then

the Bayes theorem defines the probability of interaction area P(Aj, t | πi) as

P
(

Aj, t | πi
)
= ∑ P

(
Aj, t, µk

m | πi

)
= ∑ P

(
Aj, t | µk

m, πi

)
P
(

µk
m | πi

) (20)

The experiments showed successful results when the intention estimation algorithm
was tested for coexistence, cooperation, and collaboration scenarios in predicting the correct
interaction zone between a robot and human. Ding et al. also suggested an HMM-based
approach for predicting the efficient generation of the safety-critical regions occupied by
the movement of a human arm over a long-term prediction horizon for planning a robot’s
motion planning [38]. This probabilistic method uses stochastic transitions between various
motion patterns and resolves the uncertainties in the prediction of human movement.

Classical estimation techniques and deterministic methods produce satisfactory short-
term predictions but fail to work well on a long prediction horizon [79,80]. The research
focuses on communicating more human motion information to the robot to make the
system efficient and replan its trajectories [81]. While prediction has been shown to be
helpful for ensuring safe HRC, the appropriate predictors for a given task and environment
are essential to determine the accuracy of the relevant predictors. The results reported
that low-confidence task-level predictors into motion-level prediction could deteriorate the
prediction performance [82]. Furthermore, one can use control-based safety methods to
handle incorrect predictions.
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5.7. Human-Caused Disturbance Methods

Different control methods are proposed in the literature to predict human motions,
which are described in an earlier section. However, probabilistic machine learning [83]
methods can predict human movements, but the impact of human motion on manipulated
objects is not considered in these algorithms. Despite the fact that an adaptive neural
network tracking control technique [84] can handle mismatched disturbances in linear
systems; however, it could not determine the unknown dynamic parameters in advance.

Recently, Li et al. [20] suggested a hybrid control method based on modified MPC
and impedance control methods to suppress human-caused disturbances that occurred
during direct interaction between a human and a robot for a co-manipulating task. The
experimental results showed that, when humans and robots hold the ball together, the
proposed controller could balance the ball by reducing the amplitude disturbances to 70%
compared to conventional MPC methods. It has been observed that more research is needed
in the field of human-caused disturbances in direct HR collaboration.

In the modified MPC control algorithm described in [20], the velocity of human hands
is obtained by the differential of its displacement, and it is assumed that the velocity will
be constant in a future time T for convenience.

bvh−y(t + s) =
blh(t)− blh(t− dt)

dt
, s ∈ [0, T] (21)

where bvh−y(t) is the velocity of the human hands in the vertical direction at time t, dt is
the sampling time, and blh(t) is left hand position with regard to base frame b. The state of
the system is controlled by both the human and robot.

x(t + dt) = Ax(t) + Bu(t) + Cw(t) (22){
u(t) = bvr−y(t)
w(t) = bvh−y(t)

where x(t) is the state vector at time t, u(t) is the input vector, w(t) is the disturbance,
bvr−y(t) is the velocity of robotic hands in the base frame, and bvh−y(t) is the velocity of
human hands in vertical direction. Furthermore, a cost function is designed to minimize u.

JN(x(t), u, w) =
N−1

∑
s=0

[
x(t + s | t)T D

]
+ x(t)TE (23)

Although an adaptive neural network tracking control technique can handle mis-
matched disturbances in linear systems, it cannot predict unknown dynamic parameters.
In dynamic nonlinear systems, the trajectory tracking and optimization control problem is
anticipated using dynamic and probabilistic movement primitives [85]. The experimental
results showed that these methods cannot support real-time control and disturbances.
Whereas model predictive control can handle uncertainties and tracking problems more
efficiently due to the prediction of the future trajectory of system [86], there has been a lot
of research into human–robot prediction and control optimization approaches.

6. Discussions

From our review of current control methods, it has been observed that several control
methods have been developed for collaborative robots to be applied to HR collaborative
assembly applications in the last decade. A collaborative assembly task involves several
tasks where a human operator is required to guide the robot from a random starting point
to a fixed target in the robot workspace. The robot participates in task completion in a
similar way. Table 2 presents the detailed analysis of the control methodologies of an
HR collaborative robotic system features designed and implemented for collaborative



Appl. Sci. 2023, 13, 675 16 of 23

robots in the last decade. It is apparent that the design of controllers depends upon the
underlying application.

Physical human–robot collaboration from a control perspective is a challenging task.
The challenging factors considered in this survey are human intention, the prediction of hu-
man intentions, safety, and human-caused disturbances in motion synchronization. These
factors are comprehensively investigated in the literature. Therefore, the challenges insti-
gate researchers and manufacturers to develop promising control methods that ensure safe,
robust and smooth physical human–robot collaboration. The control methods discussed
in this study are classified as an impedance control method, invariance control method,
exteroceptive and proprioceptive sensor-based control methods and distance-based control
method. Among these control methods, the impedance control method is a widely used
low-level control strategy for collaborative robots applied to HR-collaborative assembly
applications. This method relies on the choice of sensors, robotic platform, collaborative
interface, and application area. However, the impedance/admittance control methods do
not involve the explicit force feedback loop, resulting in an indirect control structure. On the
other hand, direct force control requires an explicit model of the system and environment,
which relies on the hybrid position/force control.

Furthermore, smooth HR collaboration requires visual feedback with the position
and force feedback to the controller for the co-manipulation task in assembly application.
Visual feedback significantly improves the human motion estimation. Therefore, this
area needs to be widely investigated. The safety and human ergonomics of collaborative
robots is an interesting area, and extensive research is underway in developing strategies
targeting the collision detection and avoidance. However, real-time responsive control
algorithms are needed for safe human–robot collaboration in collaborative robots. Human-
caused disturbances during motion synchronization are another under-explored area.
Effective control strategies can play a significant role in addressing this challenging problem.
Our focus is developing control strategies addressing human-caused disturbances for the
collaborative robot (FANUC CR7iA) in physical HR collaboration in our lab (Figure 9).

Figure 9. Experimental setup at WUT.
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Table 2. Comparison of control methods applied to collaborative robots in HR-collaborative assembly application.

Collaborative
Robot

Robotic
Platform

Collaborative
Robot Operation

Collaboration
Configuration

Collaborative
Interaction

Collaborative
Triggering
Parameter

Physical HR
Interaction

Collaborative
Scenarios

Goal Sensors Control Methods Control Objective Performance Year
(Reference)

ABB FRIDA Dual-arm
robot

Speed and
separation
monitoring

One robot–two
humans

Two interaction
zone

Distance Yes Automatic Safety Microsoft
Kinect

Impedance control HR-Collision
avoidance

Improve collision-free path for each robotic arm 2013 [87]

ABB FRIDA Dual-arm
robot

Speed and
separation
monitoring

Multiple
robots-multiple

humans

Two interaction
zones

Distance Yes Automatic Productivity Microsoft
Kinect

Impedance control Reduce speed Improve robotic functionality by reducing uptime
with safety constraints

2013 [88]

Universal Robots One-arm
robot

Power and force
limiting

Multiple
robots–multiple

humans

One interaction
zone

Euclidean
distance

Yes Automatic Productivity Position,
velocity,
camera

Control strategy Handle uncertainty
and perceptual
perturbations

Improves collaborative task efficiency by reducing
disturbances for multi path anticipation

2014 [89]

KUKA KR5 One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Distance Yes Automatic Safety Position,
force

Web-based control
systems

HR collision avoidance Improve assembly operation 2015 [90]

KUKA LWR4+ One-arm
robots

Hand guiding One robot–one
human

One interaction
zone

Distance Yes Automatic Productivity Force Safe and task
consistent control

HR collision avoidance Improve safety during HR interaction 2015 [91]

Kinova One-arm
robot

Speed and
separation
monitoring

One robot–one
human

One interaction
zone

Human trust
threshold

Yes Automatic Safety Vision Proprioceptive
sensor-based control

N/A Improves HR interaction by trust-based handover in
motion planning

2016 [92]

Rethink Baxter Dual-arm
robot

Hand guiding One robot–one
human

One interaction
zone

HR Team fluency,
human cognitive
workload, human

trust

Yes Automatic Productivity Vision Exteroceptive control Suboptimal autonomy
allocation

HR interaction is attain for sub-optimal allocation in
different sensing modes

2016 [93]

KUKA LWR IV Dual-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Vision Yes Automatic Safety Vision, force Joint space kinematic
control

HR collision avoidance Intrinsic collision detection obeys safety standard
using trajectory optimization and visual gesture

monitoring

2016 [11]

KUKA LBRiiwa One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Displacement Yes Automatic Productivity Force Impedance control Motion trajectory
tracking

Controller shows smooth trajectory following in
assembly application

2017 [94]

ABB YuMi Dual-arm
robot

No One robot–one
human

One interaction
zone

Stiffness Yes Manual Productivity Reduce
contact force

and trajectory
tracking

Iterative learning and
temporal scaled force

control

Productivity It increases assembly speed and adjusts reference
trajectory

2017 [95]

Kuka LWR One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Force Yes Manual Safety,
productivity

Position,
force

Invariance control HR collision avoidance Controller provide larger damping with dynamic
constraint perpendicular to assembly line

2017 [68]

KUKA KR5 One-arm
robot

Power- and
force-limiting

One robot–one
human

One interaction
zone

Velocity Yes Automatic Productivity,
safety

Position,
Force

Impedance control HR collision detection
and avoidance

Fast collision detection and safe robot reaction to
unexpected collisions

2017 [58]

DLR One-arm
robot

Power- and
force-limiting

One robot–one
human

One interaction
zone

Force Yes Automatic Safety Force Control strategy HR collision detection Effect of contact force and human body elasticity is
verified in simulation for collision

2017 [96]

Baxter Robot Dual-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Velocity No No Productivity Microsoft
Kinect,

acceleration

Control approach Online motion
tracking

Online perception-task planning is implemented for
collaborative assembly

2018 [97]

Kuka LBRIIWA Two-finger
gripper
robot

Hand guiding One robot–one
human

One interaction
zone

Position
mounting points

Yes Manual Productivity
and safety

Force Exteroceptive-
sensor-based control

Collision detection
with trajectory

tracking

Adaptation and verification of robot behavior is
performed through a simulation-based planning

subsystem

2017 [98]

COMAU One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Force Yes Manual Safety Force Admittance control HR collision avoidance Cycle time reduction and human’s operator strain is
minimized

2018 [99]

Universal robot One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position Yes Automatic Safety Distance Impedance and
admittance control

HR collaboration
collision detection

Safe HR collaboration is achieved 2018 [11]
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Table 2. Cont.

Collaborative
Robot

Robotic
Platform

Collaborative
Robot Operation

Collaboration
Configuration

Collaborative
Interaction

Collaborative
Triggering
Parameter

Physical
HR-

Interaction

Collaborative
Scenarios

Goal Sensors Control Methods Control Objective Performance Year
(Reference)

Cobot Dual-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position No Manual Productivity Camera Impedance and
admittance control

HR task coordination Coordination of HR assembly task scenario is
simulated on ROS platform

2018 [100]

COMAU Smart5
SiX

One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position Yes Manual Productivity Camera Multi-modal control Motion tracking in HR
collaboration

Controller guarantees same trajectory interpolation 2018 [101]

KUKA One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position Yes Automatic Safety force State observer control HR collision avoidance Collision avoidance guarantee through repulsion
vector reshaping

2019 [102]

Cobot One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position Yes Automatic Productivity Position Admittance control HR collision avoidance 3D motion tracking is achieved with accuracy and
stability

2019 [61]

Cobot One-arm
robot

Hand guiding One robot–one
human

One interaction
zone

Position, Vision No Manual Safety Position Exteroceptive control HR collision avoidance Collision avoidance algorithm is simulated and
tested

2019 [37]
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7. Conclusions

The controller plays a critical role in the development and design of collaborative
robots. This paper concluded with the findings of the literature review on the collaborative
robot’s control strategy with the concept of human–robot collaboration; then, implicit
and explicit human–robot collaboration methods were briefly explained. Imperative col-
laboration operations for collaborative robots in industrial applications were thoroughly
discussed, with a particular emphasis on HR co-assembly applications. Then, the inte-
gration of collaboration into the development of controller architectures is discussed in
detail. The systematic framework for collaborative robot control is described, allowing
the execution of a robotic task from global task planning to low-level control implemen-
tation for safe interactions. Since the physical HRC is a critical control problem for the
co-manipulation task, this article identifies key control challenges such as the prediction
of human intentions, safety, and human-caused disturbances in motion synchronization.
Finally, we provided a review of different low-level control methodologies that can handle
collision detection and implement avoidance mechanisms for human–robot collaboration.
The most frequently used control methods are discussed within the domain of collaborative
robotics, which is summarized in tabular form with respect to certain parameters, i.e., col-
laborative robotic platform, collaboration operations, control objectives, control methods,
etc. It was concluded that impedance control methods are most widely used for physical
HRC to address safety issues. Collision detection and avoidance in HRC is a very popular
topic in ongoing research. However, human-caused disturbances during the synchroniza-
tion of human–robot movements have not been well explored in the literature. Further
investigation into control strategies can play a significant role in alleviating this problem.
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