Control System Design Guide

USING YOUR COMPUTER TO DEVELOP AND DIAGNOSE FEEDBACK CONTROLLERS

George Ellis

Industrial Drives Radford, Virginia

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers San Diego New York Boston London Sydney Tokyo Toronto

Preface

 $\gamma \in \mathbb{R}^{n}$

xiii

1

CHAPTER 1 Introduction

CHAPTER 2	
The s Domain	3
Transfer Functions	3
Block Diagrams	4
Combining Blocks	s 4
The Laplace Transfor	.m 7
s-Domain Functio	ns versus Operations 8
Integration and D	ifferentiation 9
Filters 9	
Compensators	9
Delays 9	
Phasors 10	•
Decibels 11	
Bode Plots	12
Program for a Boo	le Plot 12
Disturbances 1	4
DC Response 1	5

۷

Implementation 16 Integrator 16 16 Differentiator Lag Compensator 17 Lead Compensator 18 References 20 CHAPTER 3 The z Domain 21 21 z Basics Definition of z21 z Transfer Functions 22 23 z Phasors 23 **Bode** Plots **Block** Diagrams 25 DC Gain 26 From Transfer Function to Algorithm 26 **Functions for Digital Systems** 28 Digital Integrals and Derivatives 28 **Digital Derivatives** 32 Sample-and-Hold 33 DAC/ADC—Converting to and from Analog 35 Converting T(s) to T(z)36 **Bilinear Transform** 36 Bilinear Transform with Prewarping 37 Advancing the Phase 39 Aliasing 40 **Miscellaneous Topics in Digital Control** 45 Reducing the Delay between Input and Output 45 Selecting the Sample Time 46 Fixed- and Floating-Point Math 47 Quantization 48 References 51

vi

CHAPTER 4
Tuning 52
Performance Criteria 52
Stability 52
Response 53
Noise 53
Disturbance Rejection 53
Parameter Sensitivity 53
Tuning Method 54
Step 1—Open Loop 54
Step 2—Evaluate the Closed Loop 58
Evaluating Disturbance Rejection 62
Evaluating Parameter Sensitivity 62
System Evaluation 66
General Topics in Controls 67
Digital versus Analog 67
Feedback 68
Saturation and Synchronization 68
Breakpoint Controllers 71
Filters and Phase Lags 72
Multiple Loops 73
Reference 75
CHAPTER 5
Five Types of Controllers 76
Descriptions of Controllers 76
Proportional 77
Proportional–Integral 77
Integral–Differential 78
Lead–Lag 78
Proportional–Integral–Differential 80
Other Controllers 81

83

86

83

82

Summary of Descriptions

Tuning a P System

Tuning a PI System

Tuning Procedure

vii

Tuning an ID System 89	
Tuning a Lead–Lag System 93	
Tuning $K_{\rm P}$ and $K_{\rm I}$ 96	
Tuning a PID System 100	
Digital Controllers 105	
Tuning Digital Systems 106	
Developing the Controller Equations	108
Comparison of Methods 109	
References 111	

CHAPTER 6
Introduction to Filters 112
Purposes of Filters 112
Broadband Noise Reduction 113
Narrowband Noise Reduction 113
Antialiasing 113
Resonance Reduction 113
Filter Characteristics 114
Passband 114
Low-Pass Filters 114
Selecting the Pole Placement 115
Selecting the Order 121
Selecting the Break Frequency 121
Designing a Low-Pass Filter 122
Analog Low-Pass Filters 126
Digital Low-Pass Filters 130
Notch Filters 131
Designing a Notch Filter 132
Analog Notch Filter 134
Temperature Sensitivity 136
Digital Notch 138
Finite Impulse Response (FIR) Filters 138
References 139

viii

CHAPTER 7	
Linear Models—Tools for Tuning	g 140
What Is a Model? 140	
Using Models for Tuning 141	
Linear Models 141	
Importance of Effects 142	
Basic Physical Elements 142	
Linearizing Common Elements 142	2
Friction 144	
Saturation 144	
Deadband 145	
Pulse Modulation 145	
Hysteresis Controllers 150	
Measuring Constants 152	
Operation outside the System 15	52
Operation within the System 15	3
Spice for Control Systems 154	

CHAPTER 8

Introduction to Advanced Modeling 156

Lime-Domain Models 156	
When to Use a Nonlinear Model	157
Purchasing a Modeling Environment	158
Time-Based Modeling by Yourself	161
The Model 161	
The Differential Equation Solver	165
The Model Control Section 1	68
Nonlinear Functions 169	
References 171	

APPENDIX A

Development of the BilinearTransformation173Bilinear Transformation173Prewarping174

Factoring Polynomials		175
Phase Advancing	176	

APPENDIX B

Alternative Methods of Deriving F(z) 177

Pole/Zero Mapping177Step Response Matching178References179

APPENDIX C

Alternative Forms of Digital Algorithms

The Parallel Form180Other Forms182References183

APPENDIX D

Alternative Measure of Parameter

Sensitivity 184

Absolute Variation 184 Per Unit Variation 185 References 185

APPENDIX E

Matrix Mathematics 186

Matrix Summation186Matrix Multiplication187References187

APPENDIX F

Fourth-Order Runge–Kutta Programs

The C Programming Language 1 FORTRAN-77 189 BASIC 191

188

180

188

APPENDIX G
PSpice Models 192
APPENDIX H
PSpice 197
PSpice Tutorial 197
File Conventions 197
Errors 198
Nodes 198
Units 199
Comments 199
End Statement 199
Passive Components 200
Initial Conditions 200
Independent Voltage Supplies (V) 200
Independent Current Supplies (I) 201
Voltage-Controlled Voltage Sources (E) 202
Current-Controlled Current Sources (F) 203
Voltage-Controlled Current Sources (G) 204
Current-Controlled Voltage Sources (H) 204
Sample-and-Hold 204
Frequency Analysis (AC) 205
Time Analysis (TRAN) 205
PROBE Command 206
PSpice Examples 207
Modeling Control Systems with Spice 212
Nonlinear Effects in Spice 213
Reterences 214
C Programs 215
APPENDIX J
IUIJIM MODELS 241
Index 045

•