
ANNALES DE L’INSTITUT FOURIER

VELIMIR JURDJEVIC

IVAN KUPKA

Control systems on semi-simple Lie groups

and their homogeneous spaces

Annales de l’institut Fourier, tome 31, no 4 (1981), p. 151-179

<http://www.numdam.org/item?id=AIF_1981__31_4_151_0>

© Annales de l’institut Fourier, 1981, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »

(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-

nérales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-

tion commerciale ou impression systématique est constitutive d’une in-

fraction pénale. Toute copie ou impression de ce fichier doit conte-

nir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1981__31_4_151_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
31, 4 (1981), 151-179.

CONTROL SYSTEMS ON SEMI-SIMPLE LIE GROUPS
AND THEIR HOMOGENEOUS SPACES (*)

by V. JURDJEVIC and I. KUPKA

INTRODUCTION

In essence, this paper deals with the accessibility problem for control
systems described by ordinary differential equations. The main contribution
of the paper is to give conditions for a class of such systems which ensure
that the system can be steered from any initial state to any final state by an
admissible control.

From the point of view of this paper, a control system, or a polysystem,
is a family ^ of vector fields on an n-dimensional manifold M. A
trajectory of ^F is a continuous curve x from an interval [0, T], T ^ 0
of the real line into M such that for some partition

0 < ti < ?2 < • • • < ^ = T there exist vector fields X ^ , . . . , X^ in ^

such that on each interval [^-i,^), x is an integral curve of X^. The
accessibility set of ^ through a point q in M consists of all points
w e M for which there exists a trajectory x of y such that x(0) = q

and x(T) = w. ^ is termed transitive if the accessibility set of ^

through each point q e M is equal to M.

Our main objective is to give conditions on ^ which ensure that it is
transitive. In this paper we concentrate our attention to systems ^ which
consist of right (resp. left) invariant vector fields on a Lie group G. The
transitivity results which we obtain for such systems are directly applicable
to the corresponding systems on homogeneous spaces of G.

(*) A.M.S. Classification : 49E15[93B05|22E15-46.
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The prototypes of such systems are the so-called bilinear systems in the
control theory literature; these are systems of the form

(1) dx == Ax + ^ ^-(O^
at ,= i

where A and B ^ , . . . , B^ are n x n matrices with real entries, x e R"
and the controls u^, . . . , u^ are unbounded. A very natural way to the
accessibility properties of (1) is to consider the matrix differential equation :

d\ (
 m

 \
(2) — = A + I: u,(t) ]x(t)

dt \ ,=i /

where XeG4(R).

The vector fields X -> AX and X -> B,X i = 1, 2, . . . , m are right
invariant on GL^(R) or on any closed subgroup G of GL^(R) provided
that A and B i , . . . , B ^ lie in the Lie algebra L(G) of G. The
accessibility set of (1) through any point q e R" is simply the action of the
accessibility set through the identity of (2) applied to q.

When the controls u = (u^, . . . , uj consist of all piece-wise constant
functions on [0, oo) taking values in some set Q c: R"1, then the set of
accessibility of (2) through the identity is a semi-group in G generated

by (J {e^ : t ^ 0} where
MeF

(3) F = { A + ^ uft, :ueQ\.

In the more general situation when ^ is any family of right (resp. left)
invariant vector fields on a group G, the situation is quite similar in that
the accessibility set of ^ through the identity is a semi-group generated
by (J {e^ : t ^ 0} where V is the subset of the Lie algebra of G

MeF

constituted by the values of the elements of ^ at the identity. We call
such semi-group S(F), and our main problem in this paper is to find
conditions on F such that S(F) is equal to G, for then ^ is transitive
on G.

The requirement that Lie (F), the Lie algebra generated by the set r,
be equal to L(G) means that the group generated by S(F) is equal to G.
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However, there are many distinct semi-groups of G with this property
and hence this condition is not a sufficient condition for transitivity.

Our results are based on the following technique. Rather than working
with the family ^ we work with J^S(^), which in this paper we call the
Lie saturate of ^ . ^S(^) is the largest (in the sense of set inclusion) family
of vector fields such that :

i) The closures of the sets of accessibility of ^ and ^S(^) through
each point q e M are the same.

ii) J^fS(^) is contained in the Lie algebra generated by ^.

The most useful property of ^S(^) is that when it spans the tangent
space of M through each point in M then ^ is transitive.

In this paper we construct a sequence of operations on a given system
^ which permits us to conclude that J^fS^) = T^M V^ e M.

In particular we use the following facts :

i) If V c ^fS(^), then cov(V), the closed (in the C°° topology of
vector fields on M) convex positive cone spanned by V is contained in
J^S(^), and

ii) If V and - V are contained in ^S(^), then the Lie algebra
generated by V is contained in ^S(^).

In the context of invariant vector fields the above ideas admit the
following description : If r(^) is the subset of L(G) defined by the values
of the elements of ^ at the identity, then r(J^S(^)), which we in this
paper simply call LS(F), is the largest subset of L(G) such that

a) The closure of S(F) = the closure of S(LS(F)), and

b) LS(r) is contained in the Lie algebra generated by F.

In this setting, ^fS(^) spans the tangent space of G at each point if
and only if LS(F) = L(G).

In order to introduce our main results and to elucidate the techniques
used, we next mention certain well known results of transitivity in the
context of the preceding formalism.

a) G compact, 3F either right or left invariant family. Then, if
MeL(G),

{ ^ M t : t <0} c Cl^1: t ^ 0}.
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Hence, -re: LS(F), and thus by ii) LS(F) = Lie(F), the Lie algebra
generated by r. Thus, r is transitive if and only if Lie(r) = L(G)
(V. J. Sussmann [6], Lobry [9]).

b) For systems of the form
r m -)

^ = ̂ x -+- S u,\i: ue^
I 1=1 )

we have the following transitivity results. We distinguish between the
bounded control case and the unbounded one.

bl) The bang-bang case 0 = [u : |i |̂ = 1 i = 1, 2, . . . , m]. Then,
^o == {X,X±\i: ^'=1,2,. ..,m} c j^S(^') since ^o is contained in
cov (^). If in addition X happens to be Poisson stable, then the negative
trajectories of X lie in the closure of the positive trajectories of X and

hence -Xe^S(^). Thus, cov({-X} u^o) is GQ^ to the vector
space generated by { ± X, ± Y ^ , . . . , ± Y^}. Hence, in this case
^fS(^) = Lie^), and thus ^ is transitive whenever the Lie algebra
spans the tangent space of M at each point [9].

b2) The unbounded controls case, Q = R"1. In this case,
{X,±Yi , . . . ,±Y^} belongs to cov^, and hence to J^S(^). If
^o = { ± Y i , . . ., ±YJ- then - ̂ o = ^ \ hence, by ii) above Lie (^o)»
the Lie algebra generated by ^o? is contained in J^S(^). Thus, ^ is
transitive whenever Lie (^o) spans the tangent space of M at each point
of M. In this connection, there are several papers aimed at proving that
the set of all pairs (Y^Y^) of vector fields on a manifold M whose Lie
algebra generated by {Y^.Y^} spans the tangent space of M at each of its
points is open and dense (for instance, [10)]). Thus when m ^ 2
transitivity of systems of the form {X, ±Yi,. .., ±Y^} is generic.
Certainly, this is the case where all the vector fields which define the system
are invariant on a semi-simple Lie group G. In this sense, the most
interesting case is the scalar control case, i.e., the case when m = 1.

This paper is essentially devoted to such a case, and it is a generalization
of our previous paper [5] dealing with matrix systems in SL^(R) to systems
on a general semi-simple Lie group with a finite center.

In order to state our main results we will need several concepts related
to semi-simple Lie algebras. Let L be a real semi-simple Lie algebra,
L^ = L ®RC its complexification, ad : L -^ End (L) ,
ad,; : L^ -> End (L^) the corresponding adjoint representations.

We shall say that an element B in L is strongly-regular if : 1) all
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nonzero eigenvalues of ad3 are simple. 2) The generalized zero-
00

eigensplace (J Kerad^B, (ad^B = ad,B oad;-^), does not contain any
n=l

nontrivial ideal of L,. The set of all these elements is an open dense semi-
algebraic subset of L.

We will use the following notations throughout the paper : Sp(B) will
be the set of all nonzero eigenvalues of ad B, Sp+(B) [resp. Sp_(B),

Spo(B)] the set of all those a e Sp(B) such that Re a > 0
(resp. Re a < 0, Re a = 0).

4 (a) will denote the a-eigenspace Ker (ad,B - al) of ad,B and
L(a) = (L^(d) + L,(a)) n L the corresponding « real eigenspace » (a

complex conjugate of a). Then L(a) = L(a). L is the direct
sum L(0) ® {L(a)\a e Sp(B), Im a ̂  0}. Any A e L has a unique

decomposition A(0) + £A(a), A(0)eL(0), A(a)eL(a). A(a) will be
called the real a-component of A.

We also introduce the following spaces :

N+ = £{L(a)|fl E Sp+(B)} N_ = ^{L(a)\a e Sp_(B)}

K == 2;{L(^eSpo(B)} + ^{[L(a\L(-a)~]\a e Spo(B)}

L+ = N+ ® K L_ = N_ C K .

All these spaces are subalgebras of L. K is reductive in L and semi-
simple. It normalizes N+ and N _ . We also have the direct sum
representations :

L = L+ ® a ® N_ L = L_ C ^ © N+

where 0 c: L(0) is the centralizer of K + RB. Call n + (resp. TC_) the

projection L -> L with kernel 0 © N_ (resp. 0 + N+) and image L+
(resp. L_) . It commutes with ad,B and is in fact the unique projection

with image L+ (resp. L_) commuting with ad^B.
The next concept we need is :

DEFINITION 0. - A subset r of L containing the space RB, B strongly

regular, is said to satisfy the strong rank condition \vith respect to B if the

Lie subalgebras of L generated respectively by n+(r) + RB and
n
-(D + RB contain L+ and L_ respectively.

This is also equivalent to the condition : let R+<r) (resp. R-(r)) be the
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set of all a e Sp+(B) u Spo(B) (resp. Sp-(B) u Spo(B)) such that there is
an A e F with A(a) ^ 0. Then the space £{L(a)|a e R+(F)}
(resp. £{L(a)|a e R-(F)}) should generate L+ (resp. L_) .

Now we can state our theorem in the simple case where the statement is
simpler.

THEOREM 0. — Let G be a real connected Lie group with a finite center
whose Lie algebra L is a real form of a simple Lie algebra L^.

A subset r c: L 15 transitive if:

1) r contains a one dimensional space RB where B is strongly regular.

2) r satisfies the strong rank condition with respect to B. (*)
Let s = sup {Re a\a e Sp(B)}.

3) In the case where s ^ Sp(B) there are a^, a^ e Sp(B) and

AI , A^ € r such that Re a^ = s = — Re a^ and ^i(a^) ^ 0,
A^) ^ 0.

4) In the case where s e Sp(B), there are A ^ , A^ e F such that Trace
(adAi(s) oadA^t - s)) < 0.

This theorem is a particular case of the next one, dealing with the semi-
simple case. We could state it by decomposing L into its simple ideals and
asking that the conditions of Theorem 0 be satisfied in each ideal. But this
would mask the important role played by the restriction of the adjoint repr.
of L to K.

Since B normalizes K, K + RB is a subalgebra of L. In
proposition 9-(0) we show that K + RB is reductive in L and that L is
the direct sum of the centralizer of K + RB in L and the non trivial,
ad(K+RB)-irreducible, submodules of L. A representation module is
called trivial if the representation on the module is zero.

L = a ® 0 {T|T c= L, T non trivial, ad(K -+- RB)-irreducible}.

Also either T c: N+ or T c K or T c: N _ .

Notation. — If A e L, we denote by A(T) the component of A in the
irreducible module T with respect to the above direct sum decomposition.

(*) In an interesting paper to be published in SIAM Journal of Control, Bernard
and Gauthier have succeded in replacing condition (2) by the usual rank condition in
case G = SL(n;R) and F = R+A 4- RB.
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DEFINITION 1. — An Sid(K-}-RByirreducible submodule T o / L is

called maximal (resp. minimal) if it is contained in the center of N+
(r^sp.N_). This is equivalent to each of the following properties

(1) T is ad N+ (resp. adN_) invariant

(2) T is ad L+ (resp. ad L_) invariant.

THEOREM 1. — Let G be a real connected semi-simple Lie group with a

finite center whose Lie algebra is called L.
A subset r c L is transitive if:

1) r contains a space RB, B strongly regular.

2) r satisfies the strong rank condition with respect to B.

3) // T is a maximal or minimal submodule of L, which does not contain

any L(x), xeSp(B) n R , then some AeF should have a nonzero

component A(T) in T.

4) // T is as in 3) but contains a space L(r), r e Sp(B) n R, then there

should exist A ^ , A ^ e F such that Trace (adAi(r) oadA^— r)) < 0.

Remark. — Our methods prove easily the extension of theorem 1 to the
case where : 1) G is a reductive connected real Lie group such that the
integral subgroup generated by the semi-simple factor of Lie (G) has finite
center and 2) F satisfies the conditions 1-4 and moreover : 5) : the
projection along the semi-simple factor of the positive cone generated by r
onto the center of Lie (G) is equal to this center.



CHAPTER I

GENERALITIES

0. Notations and Definitions.

Throughout this paper we will use the following notations :

M : w-dimensional real C00 or C" (analytic) connected manifold.
TM : tangent bundle of M.

TqM : the tangent space of M at q e M.
F(M) : the vector space of all C00 or 0°/ vector fields on M.
^(M) : the pseudo grpup of all local C00 or C" diffeomorphisms of

M. An element of ^(M) is a couple (U,(p) where U is an open subset of
M and (p : U -> M is a C00 or 0° diffeomorphism.

Diff(M): the group of all C°° or 0° diffeomorphisms of M.
C1(M) : the class of all closed subsets of M.

If X e F(M), we recall the following elementary fact from the theory of
differential equations : there exist an open subset Ax of M x R which is a
neighborhood of M x {0}, and a function <Dx : Ax -> M which satisfy :

a) if te,s)eAx, and if (0>x(^s),0 e Ax, then (^, s-h Q € Ax and

^x(^s+0=0x(^xte,s),0.

S
b) —^>x = X o(Dx on Ax.

ot

c) For each (q,t) e Ax there exists a neighborhood U of q in M such
that (U,<Dxlu.M)e^(M).

To any X e F(M) we attach the set ^(X) of all local diffeomorphisms

(U,(p) where there exists t e R such that U x {t} e Ax and (p = ^xux^}-

^(X) is a sub-pseudo group of ^(M). Of particular interest in this
exposition will be the subset ^+(X) defined by all local diffeomorphisms

(U,(p) where U x {t} e Ax for some non-negative t e R and where

(p = OxIU x
 {

t
} ' ^+(X) is a sub-pseudo semi-group of ^(M).

DEFINITION 0. - A subset of F(M) mil be called a polysystem ([8]).
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DEFINITION 1. - If ^ is a polysystem, ^(J^) mil denote the pseudo-

sub-semi-group of Q(M) generated by {^+(X), X e ̂ }.

DEFINITION 2. - a) The accessibility mapping of a poly system ^ is the

mapping Ay : M -> 2M
 defined b y : if qeM, Ay(q) is the orbit

^^W(q) of ^^) at q.

b) The closed accessibility mapping of ^ denoted by Ay is the mapping

M -. C1(M) defined by Ay(q) = C\Ay(q).

DEFINITION 3. - a) Two polysystems ^ and ^ are said to be weakly
equivalent if Ay = Ag-.

b) A polysystem ^ is said to be saturated if for any polysystem <F which

is weakly equivalent to ^, <F c: ̂ .

c) If ^ is a given polysystem we shall denote by Sat (^) the set

U{^ : ^ weakly equivalent to ^}, and we shall refer to it as the saturate
of ^ .

DEFINITION 4. - The normalizer of a polysystem ^ is the set of all

diffeomorphisms (peDiff(M) such that: (p [AF(<P ~1 (<?))] c: Ap(q) for all
q e M. This set will be denoted by Norm (F).

In particular, if (peDiff(M) is such that ^>(q) e Ap(q) and

^>~
l
(q)eAp(q) for all qeM, then (p and (p~1

 belong to Norm (F).

LEMMA 0. — 1) The normalizer is a subsemigroup of Diff(M).
2) It does not depend on ^ but on Sat (^) :

Norm (^) = Norm (Sat (^)).

The proof of this lemma is easy and left to the reader. The next lemma is
trivial but useful.

LEMMA 1. — 1) The weak accessibility correspondance

A : 2^ -, Map(M, C1(M)) is order preserving for the inclusion order on

2F(M)
 and the order induced by the inclusion order on C1(M), in

Map(M,Cl(M)).

2) If p.qeM and p e Ay(q) then Ay(p) c: Ay(q).

1. Invariancc of closed accessibility mapping under certain changes of the
polysystem.

In the next proposition we collect facts, some of which are more or less
known. The vector space F(M), being a subset of the space C°°(M, TM)
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of all 0°° mappings M-^TM, inherits the classical C00-topology of that
space. It is a locally-convex topology on F(M) and it is complete if F(M)
is the set of all C°° vector-fields.

PROPOSITION 0. — 1) For any polysystem ^, the polysystem

^ ' = {(p^X^cpeNormG^Xe.^} is weakly equivalent to ^. In

particular (p^(Sat(^)) c Sat(^) for all (peNorm(^).

2) Given a polysystem ^, the closed convex cone in F(M), generated

by y, is weakly equivalent to ^.

The proof of this proposition is long but not difficult. Hence we omit it.
Let us remark only that the proof of assertion 2 is based on the well
known fact that weak convergence of controls implies the uniform
convergence of trajectories.

2. A general procedure for checking whether a polysystem is transitive.

Notation. — Given a polysystem y , let us denote by Lie(^) the Lie
subalgebra of ^(M) generated by ^.

The procedure is based on the following quite easy proposition.

PROPOSITION 1. — Lei ^ be a polysystem such that : 1) for all q e M,
Lie(^')(q) = T^M. 2) for all qeM, A^(q) = M. Then ^ is transitive

on M.

Proof. — It is well known ([12], [7]) that condition 1 implies that the
closure of the interior of P+(^)q is A^) for any qeM. Since
Lie(- ^) = Lie(^), int(P+(- ^)(q)) ^ 0 for all qeM.

1) and 2) imply that for every q e M mt(P+(^){q)) is open dense in
M. If p and q belong to M, int(P+(^)(p)) nint(P+(- ^)(q)) ^ 0.

Let r be a point of this intersection. There is a (peP.^^) and a
v|/ e P+( - ̂ ) such that (p(p) = r and ^(q) = r . Hence v(/~1 o (p(p) = ^
but i|/~1 6P+(^).

DEFINITION 5. — Given a polysystem ^ we denote by ^fS(^) the

polysystem Lie(^) n Sat(^).

COROLLARY TO PROPOSITION 1. — A polysystem ^ is transitive if

^S(^)(q) = T,M for all qeM.
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PROPOSITION 2. - 1) J^fS o J^fS = JSfS.

2) Ji^fS^) is a conu^x con^ in F(M). It is closed if and only if Lie(^)
15 closed in F(M).

3) The subset of all X e J^S(^) such that - X e J^S(^) is a Lie

subalgebra of F(M) and it is the largest subalgebra of F(M) contained in

J^S(^).

4) // X and -X belong to J^S(^) and if X is complete then

exp(X)^JSfS(^)) c j^S(^).

This proposition follows almost immediately from the definition and
Proposition 0.

Remark. — In general if (p e Norm(^), (p^(^fS(^')) is not contained in
J^S(^).

The procedure to check if a given polysystem ^ is transitive consists of
the transfinite repetition of the following two steps.

Step 1. — Given ^, one constructs the closed convex cone cov(^)
generated by ^ in F(M).

Step 2. — Given ^, one constructs the polysystem

Lie(^) n {(p^(X) | (p e Norm(^), X e ̂ }.

Starting from a polysystem y, one constructs a transfinite sequence
{^Ja ordinal} of polysystems in F(M) as follows : if a is an even or a

limit ordinal, ̂  is step 1 applied to (J ^p ; if a is an odd ordinal, ̂
(3<a

is step 2 applied to ^a-i.

All these ^ are contained in ^fS(^). If this transfinite sequence
becomes stationary at some ordinal a and if for all q 6 M, ^^(q) = T^M
then the procedure is Successful and ^ will be transitive.

In practice usually, Norm^J is not known, just a subset of it. So
when the procedure is applied in practice, step 2 is replaced by step 2'.

Step 2'. — Given ^ and given a subset N of Norm(F) containing the
identity, one constructs the polysystem

Lie(^) n {(p^(X)|X e ̂ , (p e N}.

This procedure seems very effective in many classical situations, for
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example those mentioned in the introduction. It can also be used to prove
the well known controllability results for the linear systems. As a way of
illustration of the technique we outline this case in the following :

r m -)
Example 1 (The linear systems). - Let ^ = ^X 4- ^ i^Y, : M»el0

I 1=1 J
be a polysystem on M = R" where X is a linear field and where
YI, . . . , Y^ are constant vector fields. Let X(q) = A^, and let
Y,(g) = f c f , i = 1, . . . , m where A is n x n matrix and where
f c i , . . . , f c ^ are vectors in R". A basis for Lie(^) is given by
{X} u {ad^Y,), k = 0, . . . , n-1, i = 1, 2, . . . , m]. We shall now show
that LS(^) = Lie(^).

Step 1. - y^ = {X, ± Yi, ± Y2, . . . , ± Y^} is weakly equi-
valent to ^ because ^\ cz cov(^). For each integer i = 1, 2, . . . , m

and for each real r^eNorm^).

Thus, e^i^t) = {^^(X),X, ± Y ^ , . . . , ± YJ- is weakly equivalent

to ^i. Also, ^'(X) = Id ± tAb, = Id ± r ad X(Y^) where Id is the
identity mapping on R".

Step 2. — By passing to the closed convex cone generated by the fields

^(^i) we gGt that

^ = {X, ± Yi, . . . , ± Y,, ± adX(Yi), ..., ± adX(YJ}

is weakly equivalent to ^ .

Now, ^^X) e LS(^) for each i e R and each i = 1, 2, . . . , m.

This shows that ad^Y^eLS^), and hence it follows by an easy
induction that ad^YJ e LS(^) for each integer k and for all
i = 1, 2, . . . , m. Thus, LS(^) = Lie(^).

Hence, the linear systems are transitive if and only if Lie(^) spans R"
at each point qeR". And this^ happens exactly when

{b,, . . . ,b„Afcl, . . . ,Afc„.. . ,An- l fc,, . . . ,An- l^}

contains n linearly independent vectors. If B is the matrix whose columns
are b^, . . . , fc^, then the preceding rank condition is equivalent to saying
that the rank of n x (nxm) matrix (B,AB . . . A""^) is equal to n.
Thus our methods give yet another proof of the celebrated rank condition
for the linear systems.
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3. Polysystems associated to group action.

A. Let G be a connected Lie group whose Lie algebra will be denoted
by L. Let 6 : G x M -> M be a C00 or C" action of G on the
manifold M.

6 induces a linear mapping 6^ : L -^ F(M).

DEFINITION 4. — A polysystem ^ on M will be called subordinated to

the action 9 if ^ is contained in the image of Q^. If^= O^F), ^ will

be said induced by F.

DEFINITION 5. - In particular if M = G and 9 is either the left or the

right translation action of G on itself, given a subset T of L, the

polysystem induced by F under the right (resp. left) translation action will be

called the left (resp. right) invariant polysystems induced by V and will be

denoted by Y^ (resp. r^).

The mapping G -> G, x -> x~
1 transforms the left action into the right

action. It transforms a left invariant polysystem 1̂  induced by F into the
right invariant polysystem ( - F\ induced by - r. Hence one needs only
to consider one type of action.

PROPOSITION 3. - Let r be a subset of L and let S(F) denote the

closed semi-group of G generated by the one-parameter semi-groups

{e^\teR+} for all X e F . Then :

1) For any g e G , Ap/^) = ^S(F), A ^ ( g ) = S ( F ) g . In particular

A^(e)=A^(e)=S(r).

2) If r, A c L, r^ and A^ (resp. F^ and A,.) are weakly equivalent if

and only if S(T) = S(A). We will say then that F and A are weakly

equivalent.

3) The union, Sat(F), of all subsets of L weakly equivalent to F

induces both

Sat(r^) n {Left invariant vector fields on G} and

Sat(r^) n {Right invariant vector fields on G].

4) Sat(F) = {X|X e L, e^ e S(F) for all t ^ 0}. It is a closed convex

cone.

5) If p^ (resp. p,.) : G -> Diff(G) denotes the homomorphism associated
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to the left (resp. right) translation action, then

p^Norm )̂) = {g\geG,gS(r)g-1 ^ 8(0}

p^NormO = {g\geG,gS(r)g-1 c S(r)}.

PROPOSITION 4. - Let 9 : G x M -> M ^ a C°° or C" acrion of G

on M, F a SMfcs^ o/ L an^ ^ == 9^(0 the induced polysystem. Then

1) P+(^) is r/16? pseudo-semi-group generated by pe(S(r)) where

Pe : G -^ Diff(M) is the homomorphism associated to the action Q.

2) For any qeM, A^(q) => 9(8(0 x {q}).

3) 6^(Sat(r)) c: Sat(^).

COROLLARY. - If G is transitive on M, and F is transitive on G,
then ^ = 6^(0 is transitive on M.

Proposition 4 is straightforward. Proposition 3 is a direct consequence
of proposition 0.

B. A criterion/or the transitivity of right and left invariant poly systems.

DEFINITION 6. - Given a subset Y of L, \ve call LS saturation of F

and \ve denote by LS(F), the intersection Sat(F) n Lie(F) where Lie(F) is

the Lie subalgebra L generated by F.

PROPOSITION 5. - (0) Given V cz L, LS(F) induces both ^S(r.) and
^S(O).

1) LS o LS = LS.

2) LS(F) ;'s a closed convex cone.

3) The subset of all X G LS(F) such that - X e LS(F) is a Lie

subalgebra of L and is the largest subalgebra of L contained in LS(F). It

is also the largest vector subspace of L contained in LS(F).

4) If X and - X belong to LS(F) then ^dx(LS(r)) c LS(F) where

ad : L -> End(L) is the adjoint representation of L.

5) // XeLS(F) and X is compact, then RX c LS(F).

Proof. - (0) is obvious. 1-2-3-4 follow immediately from Proposition 2.
As for 5, X compact means that the group {e^teR} is relatively

compact in G. Then the semi-group {e^t e R+} is relatively compact in
G. Its closure -T is then a compact semi-group in G. Hence it is a group
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and T => {e^teR}. Since S(F) is closed, T c: §(r). §(r) =) {^ j r eR} .
By Proposition 3-4) this implies that - XeLS(r).

PROPOSITION 6. — Given a subset Y of L, the right (resp. left) invariant

poly system r, (resp. Y^) induced by Y on G is transitive if LS(Y) = L.

This proposition is a consequence of the corollary to Proposition 1 and
of the assertion (0) of Proposition 5.

DEFINITION 7. — Given a subset Y of L we call End (F) the subset of

End (L) of all linear endomorphisms A : L -> L such that A(Y) c: r.
End (r) ^ 0 for ML e End (Y).

LEMMA 2. — 1) End(r) i5 a sub-semi-group o/End(L).

2) If r is a closed convex cone. End (F) is a closed convex cone.

3) If r is a closed convex cone, any projection operator P : L -> L
sucA r^ar KerP <= r belongs to End(r).

4) If r is LS-saturated (i.e. F =LS(F)) and if H fs the integral

subgroup generated by the largest Lie subalgebra contained in F, then

adjH c: End(r) : that is if heH, hTh~
1
 ^ Y.

Remark. - Since ^eH, h-^Yh^Y and hence hYh~
1
 = Y.

The proof of this lemma is easy and left to the reader.



CHAPTER II

0. Some preliminary results and definitions.

Let L denote a real finite dimensional semi-simple Lie algebra,
Lc = L ®R C its complexification, CT : L^. -^ L,, the anti-involution of L .̂
associated to L ((7= Id ® conjugate). Let ad: L-^End(L). ad^ :
Lc -> End (L^.), denote the adjoint representations and Kil : L x L -> R,
Ki\, : L, x L, -^ C the respective Killing forms Kil,(X,Y) = Trace
(ad,Xoad,Y).

The next proposition collects some known facts about semi-simple Lie
algebra.

PROPOSITION 7. — Let B e L be such that : 1) all nonzero eigenvalues of

ad^B are simple.

2) (J Ker ad^B does not contain any ideal of L other than 0.
n^l

(ad?B = ad,B o ad,B o . . . o ad,B).

n times

LetSp(B) = {a |aeC,^0,Ker(ad,B-aId)^{0}},

L,(a) = Ker(ad,B-aId)

the eigenspace of a and L^(0) = (J Ker ad^B the generalized eigenspace of 0.
n$sl

ra^n ;

1) L, = L,(0) © @ L,(a) (direct sum !).
oeSp(B)

2) L^(0) is stable under a and a{Lc(a)) = L^(a) (<a complex conjugate

ofd).

3) L == L(0) © @ {L(a)\a e Sp(B), Im a^O} where

L(0) = 4(0) n L, L(^) = (4(a) © L,(a)) n L.

4) L^(0) = Ker ad^B anrf ^ is a Cartan algebra of L,.
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5) For any a, fceSp(B) such that a + b -> 0

L,(a+b}

[4(a),4(fc)]= or ,

{0}

L(a+b) + L(a+5)
[L(a), L(b)] = or

{0}.

6) Sp(B) 15 invariant under conjugation and under the symmetry

a -> — a.

7) [4(^)» L^(—a)] is a one dimensional vector space contained in 4(0)
for every aeSp(B). The union

u{[4(a),4(-a)]|aeSp(B)}

generates 4(0) as a vector space.

Proof. - 1), 2), 3) are trivial. By Theorem 1.9.3 of [3] or Prop. 10,
Chap. 7 of [I], applied to the commutative algebra CB, we see
that L,(0) is a subalgebra, [L,(0), L,(a)] <= L,(a) and
[4(a),4(^)] <= L,(a-\-b), where by definition L,(d) is taken to be {0} if
d ^ { 0 ] u Sp(B). It follows immediately that 4(0) is orthogonal to
(B {L,(a)\a e Sp(B)} with respect to Kil, (see Prop. 1.9.5 of [3]) : Kil,

being non-degenerate, its restriction to 4(0) x ^(O) is non-degenerate.
This implies that 4(0) is reductive (see Prop. 1.7.3 of [3] or Prop. 3.2 of
[2]). Hence 4(0) = Z © [4(0), 4(0)] where Z is the center of 4(0).

If p : 4(0) -> End (4) is the restriction to 4(0) of ad^, the spaces
4(^)» a e Sp(B) are p-invariant. Since they are one dimensional
p([4(0), 4(0)])4(a) = {0} for every aeSp(B). This shows that
[4(0), 4(0)] is an ideal in 4. By condition 2 on B, itis{0}. 4(0) = Z.
Since Be 4(0)» 2 = Kerad^B and Z is its own normalizer. Hence 4(0)
is a Cartan algebra (see 1.9.1 of [3]).

Let 4(0)* be the dual space of 4(0) and A c 4(0)* be the set of roots
of 4(0) (see 1.9.10 of [3]). Condition 1 on B implies that the mapping
A -> C, a -> a(B) is a bijection of A onto Sp(B) (see Thm. 1.10.2 of [3]).
Thus, Theorem 1.10.2 and Proposition 1.10.7 of [3] imply 5, 6, 7.

Notation. — Because of the bijection A -> Sp(B) (a->a(B)) we will
indifferently use the notations 4(°0» L(a) instead of 4(a(B)), L(a(B)).
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Remark. — If B satisfies the further condition : 3) For any a, (3, y e A
such that a + P + Y ^ 0, then a(B) + (3(B) + y(B) ^ 0, property 5)
above can be replaced by the stronger :

8) For any a, b e Sp(B) such that a -+- b e Sp(B),

[4(a),4W] =4(a+fc).

This is a consequence of Prop. 1.10.7-(V) of [3].

PROPOSITION 8. — The assumptions and notations are the same as in

Proposition 7. Moreover let G be a real connected semi-simple Lie group

with finite center having L as Lie algebra.

1) If aeSp(B) n R^/- 1 and XeL,(a), X ^ 0, then the element

^/ — 1 [X, oX] belongs to L(0) and is compact.

In other words every element in [L(a),L(—^)] is compact.

2) If aeSp(B) n R , XeL(a), YeL(-a) an^ Ki l (X,Y)<0, then

X + Y is a compact element in G.

Proof. — Let Int(L) be the adjoint group of L. It is sufficient to
consider the case G = Int(L). In fact if G is any connected group with
Lie algebra L, let adj : G -> Int(L) be the adjoint representation of G.
adj is surjective and its kernel is the center of G. If this center is finite,
adj is a finite covering map. Hence a subset K <= G is compact if and
only if adj(K) is compact. This shows that an X e L is compact in

Int(L).
An element X e L will be compact in Int(L) if and only if all

eigenvalues of adX are purely imaginary.

Now (see [11]) there is a unique anti-involution T : L^ -> L^ called
the Weyl anti-involution such that cr and T commute and
r(L,(a)) = L,(—a) for all a e Sp(B) and the form H : L, x L, -^ C,
H(X,Y) = Kil,(X, T(Y)) is hermitian negative-definite. Then :

H(aX,aY) = Kil,(aX,Ta(Y)) = Kil,(aX,aT(Y)) = Kil,(X,r(Y)),

H(CTX,CTY) = H(X,Y).

Hence H is real negative-definite on L x L.

If ZeL^ the adjoint of ad^Z with respect to H is -ad^r(Z). Incase

1), let Z = ^/- 1 [X,CTX]. It is easy to see that a(Z) = Z. Hence

Z e L(0), T(X) € L,( - a) = L,(a) = a4(a)
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since aeR^/^T. So T(X) = uaX where u e C .

T(Z) = - y^Tc^X^TatX):] = - y^Tl^X^CTTCX)] = l^pZ.

Since T^Z) = Z, r(Z) = Z. Then ad Z is antisymmetric with respect

to H. Its spectrum lies on R^/— 1 .

In case 2) let Z = X + Y. r(X) e 4(-a). Since

OT(X) = TO(X) = T(X) , T(X) e L( - a).

Hence r(X) = uY where M e R .

H(X,X) = Kil (X,TX) = M Kil (X,Y).

Since H(X,X) < 0 , u>0. If u = 1, r(Z) = Z and as above Z is
compact. If i^l, let T=[X,Y]. Then (see 1.10.2 in [3]),

[T,X] = tX, [T,Y] = - rY where t e R. Let y = 1 log u and

Zi = c^Z). It is easy to see that x(Zi) = Z^ . Hence the spectrum of

adZi lies in R^/^l. But ad Z^ is conjugate to ad Z :
adZi = ^ a d T o a d Z o ^ - ^ d T ^his proves 2).

In the proposition and its proof ad, : L, -. End (4) (resp.
ad : L -> End (L)) denotes the adjoint representation of L, (resp. L).

Proposition 9. - (0) K, + CB (resp. K+RB) 15 a subalgebra, reductive

in L, (resp.L). Hence an ad,(K,+CB) (resp. 2id(K^-RB))-submodule of

4 (resp. L) is irreducible if and only if it is ad,K, (resp. ad K)-irreducible

and ad,B (resp. ad B)-stable. Moreover :

(i) Any ad,(K,+CB) (r^p. ad (K + RB)-submodule M of L is the

direct sum of M n 0 and its non trivial, ad,(K,+CB) (resp. ad (K + RB))-

irreducible submodules. (0 is the centralizer of K, + CB (resp. K + RB)
in 4 (resp. L)).

(ii) For any aeSp(B), the ad,K, (r^p. ad K)-module generated by
L,(a) (resp. L(a)) is irreducible.

(1) Let RQ be a conjugation invariant subset of Spo(B) such that

Z{L(^ ) [ aeRo} generates K. // a, b e Sp(B) and the ad K-module

generated by L(a) contains L(b), then there exist a^a^ . . . , ^ e R o such
that

(i) a = fco + a^ + ̂  + • • - + ^ w^r^ bo = b or S,
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(ii) if bj = bo + a^ -t- a^ + • • • -+- Oj, fc^ e Sp (B) anrf

[4(fc,_,),4(a,)] = 4(fc,) /or all 7, 1^7^.

(2) Z^t R fc^ a conjugation invariant subset of Sp_(B) u Spo(B) (resp.

Sp+(B) u Spo(B)) such that £{L(a) | aeR} generates L, (resp.L+). If

aeSp+(B) (resp. Sp_(B)) and a is not maximal (resp. minimal), then there

are bo, beSp+(B) (resp. Sp - (B)) such that :

(i) Re bo > Re a, (resp. Re bo < Re a).

(ii) 4(fc) belongs to the ad ^-module generated by 4(a).
( n i ) b - b o e R and [L,(b-bo\L,(bo)-] = L,(b).

Proof. — (0) It is sufficient to give the proof in the complex case since, in
the real case, it is identical up to the notations. If K^ = 0, the statement
(0) is trivial. We shall assume that K, ̂  0.

It is clear that B normalizes K^. Since K^ is reductive in L^,

K, -h CB = K, © D

where D is ad K.-stable and dimcD = 1. As [K,,K,-hCB] c K,, D
commutes with K^. B = B^ + B^, where B^ is a basis vector of D and
B 2 e K ^ . Since ad^ | K^ = ad^B | K^, B2 is semi-simple. Since B2 and
B commute, B^ is semi-simple. This shows that K^. -h CB is reductive in

4.

Let M be any ad,(K+CB) submodule of 4. If M n 0 ̂  0,
M n OC has a unique adc(K(.+CB)-stable complement M :
M = = M n ^ © M . If T is a non-trivial Ad,(K,+CB)-irreductible
submodule of M, then T c: M. Hence we can assume that
M n a = 0.

M = £ {T | T c M, T ad,(K, -+- CB)-irreducible}.

Each T is a direct sum of eigenspaces of ad^B. So either T <= K^. or
T c: N + , © N _ , . Hence

M = £{T|Tc:MnKj ® Z{T|Tc=M n(N+,+N_,)}.

If T c Kc n M, T is one of the simple summands of K^.. So the first sum
is direct. In (N.^+N_^.), ad^B has only simple eigenvalues. Hence the
second sum is also direct.

In particular, let M be the ad K^-module generated by 4 (a),
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aeSp(B). M is also an ad,(K,-hCB)-module and M n 0 = 0. (ii) is
an immediate consequence of(i).

(1) Let T, be the ad K^-module generated by L,(a). The ad K-
module generated by L(a) is (T,4-(r(T,))n L. Since the complex space
generated by L(b) in L, is L,(b) C 4(5), at least one of L,(fc), L,(E) is in
T,. (1) follows from (0), (ii).

(2) The Weyl involution commuting with CT, shows that
£ {4(^)1 - aeR} generates N+, (resp.N.,). Since a is not maximal
(resp. minimal), the ad L+ (resp. ad L_)-module M generated by L(a)

contains at least one L(x) with Re x > Re a (resp. Re x < Re a). Then
the ad,L+, (resp. ad,L_,)-module M, generated by L,(a) contains an
L,(u) with Reu > Re a (resp. Re M < Re a). If T, is the ad,K,-module
generated by L,(a), M, is the adN+, (resp. ad N_,)-module generated by
T,. Hence there is a b e Sp(B) and an OQ e R such that L,(^) c T, and

[4(fc),4(-ao)] ^ 0.

If b o = b - a o , ^eSp(B), R e & o > R e a and

[4(fc-^o),4(bo)] = [4(^o),[4(-^4W]] = 4W.

PROPOSITION 10. - // 4 is sfmpfc r/i^ set of all maximal (resp. minimal)

aeSp+(B) (resp. Sp_(B)) 15 the set

{a [ a e Sp(B),Re a = m} {resp. {a \ a e Sp(B),Re a = - m}

where m = sup {Re a\a e Sp(B)}. The space £{4(a)|Re a=m} (resp.

E{4(a)[Re a= -m}) is a irreducible ad K.-module (K, = K ®RC is the
complexification of K).

Proof. - Let, as before, A c= L,(0)* be the set of roots of L,(0). On
A we put a total order relation as follows : a » p if either
Re a(B) > Re P(B) or Re a(B) = Re f3(B) and Im a(B) > Im P(B). This
order is compatible with the additive structure of A.

L, being simple the ad^ representation is simple. By 7.1.6 and 7.2.2 of
[3] there is a unique root ^ which is maximal for the preceding order.
For any a e A + , the set of positive roots, there is a sequence
(Xi , . . . , o^ e A+ (possibly with repetition) such that

a = ^ - ai - • • • - o^ and ^ - oq - • • • - a, e A+
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for all 7, l ^ y ^ m . For all a e A Re a(B) ^ Re ^(B). If
m

Re a(B) = Re 'k(B) then ^ Re a/B) = 0. Since a, e A+ Re a/B) ^ 0.
j= i

Hence, Re a/B) = 0 for all 1 ^7 ^ m. Then

4(a,(B)) c: K, and 4(oc,(B)) = fl ad X,(L,(X(B))
j= i

where Xj e L^( — Oy(B)). As before in the proof of 1) of Prop. 9 if we choose

Y, e 4(a,(B)) - {0}, L^(B)) = Ft ad Y,(4(a,(B))).
j=m

This proves the case of maximal. The case of minimal is similar.

LEMMA 3. — If r e Sp(B) n R and r is not maximal (resp. minimal)

there is an a e Sp (B) such that Re a > r (resp. Re a < r) and

[4(-^),4(r)] =4(r-a)^{0}.

Proof: Let r = p(B), p e A , set of the roots of L^(0). Then by
Proposition 9, there exist o^ , . . . , a^ e A and P e A such that :
1) Re a/B) = 0 , 2 ̂ j ^ n. Re ai(B) < 0. 2) P + 04 + • • • + a^ = p.
3) For every 7, 1 ̂  j ^ n, P + o^ -t- • • • + o^ e A.

Let CT* : L^(0)* -> L^(0)* be the mapping (p -^ (p o a. Then
<j*(A) = A and « Re a(B) = 0 » is equivalent to <7*a + a = 0. Let < >
the scalar product on L^.(0)* induced by the restriction of Kil^ to

L,(0) x L,(0). Then for any (p, v|/eL,(0)*, <a*(p,a*v|/> = <(p,<|/> .

Since Re a(B) < 0 , if p — a ^ e A then we can take
a = p(B) - ai(B). If p -ai ^ A then by 1.10.7-(ii)-(iv) of [3],
<p,ai> < 0. Since p(B) is real <T*p = p and hence <p,a*ai> < 0.

Now 2<P,p> = <P-(-a*P,p> and since

P == p - ai - • • • - a^, a*P = p - o*ai + a2 + • • • + a^

so 2<P,p> = <p-ai-CT*a,p> = <p,p> - <p,oq> - <p,(T*ai>. This

2<B,p>
shows that >0 . By 1.10.7 (ii) of[3], P - p e A . Hence we can

<P,P>
choose a = P(B).
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1. Some basic propositions.

We will keep the notations of part (0). In this section let r be a subset
of L containing a one dimensional space RB with B strongly regular.

Due to the decomposition L^ = 1 (̂0) © ffi Lc(^)» every A e L^ can be
aeSp(B)

written in a unique way A = AQ 4- SA,,, Ao e 1-^(0), A^ e L^(a). A^ will
be called the complex a-component of A. If A e L, the relation between
the real ^-component A(a) e L(a) and A^ is : A(a) = A^ + aA^ and
aA^ = A -̂. Hence A^ 0 o A(a) ^ 0 o A -̂ ̂  0.

PROPOSITION 11; — Let A e F anrf A = Ao-h SA^ be the

decomposition of A. Let r = sup {Re a\a e Sp(B),Aa7£0} (r^sp.
r = inf {Re ^ | a e Sp(B),A^ + 0}). Then :

a) if r i= Sp(B), LS(F) ^ £ {L(a) | Re a = r,A, ̂  0} ;

b) if reSp(B), LS(F) =) R+A, = R+A(r). Also for any a e Sp(B)
SMC/I r/iar A^ 7^ 0 anrf Re a = r,

LS(r)9A,±(A,+aAJ ^n^ LS(r) ^ A, ± ^T(A,-aAJ;

c) if r e Sp(B) and L(r) <= r r^n

LS(r) =3 £{L(a)|A, ^ 0,Re a = r};

^ z / A e r an^ - A e F , r^n LS(r) =3 £{L(a)|A^O}.

Proof. — It is sufficient to consider the case r = sup { R e ^ l A ^ ^ O } .
The case of inf is similar or it can be deduced from the sup case using
WeyPs involution.

By Lemma 2-4) of Chapter I, e
vsidB

(A)€LS(^) for all v e R . Since
LS(F) is a convex closed cone, for any 'T > 0 and any non-negative
continuous function g on the real line :

1 f2T

— e-^g^^^dveLSy).
T Jy

1 f2T

If lim — e'^ g(v)e
v!idB

(A)dv exists, it belongs to 'LS(r).
T-»+oo I JT
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Calling ("""""(A), A(v), for simplicity

A(i;) = Ai(tQ + A^v) where Ai(u) = ^ e'-'A,,
Rea=r

A2(t>) = ^ e-A,,. Let
Rea<r

e == inf{r-Rea |aeSp(B),Ref l<r}.

Then £ > 0 and ^"'^(i;) = O^"6") as i; -^ + oo.

If we take g a quasi-periodic positive function, then :

i r21
l im_ e-^g^A^dv^ ^ c(Im a^)A,
T->oo 1 JT Rea=r

1 f2T

TJ, "'
^-'^(^A^^)^ = O^-67)

f2T

= lim e
1

T-^+GO JT

where c(^) = lim e^g^dv is a Fourier coefficient of ^.
T-^+co JT

This shows that ^ c(Im a,g)A^ e LS(F), for any quasi-periodic
Rea=r

positive ^.

If we choose g = 1 + T| cos (ay) (resp. g=\-\-v[ sin (uy)) with |r|| ^ 1
and u e R+ we get :

^ = 0

1 X = 0

c^9^ = ) 2 rl ^ = ^ resp' c^^ =

0 otherwise

^TlV-1 ? l = U

1 .———

— ri^/-l ^ = - u

0 otherwise.

Hence if r^Sp(B), taking a = I m a for aeSp(B) with R e a = r we get

that r|(A^+aAJ and ^/- 1 r|(A^-<jAJ belong to LS(F) for all T|

|T|| ^ 1. Since {A^ + o^^l(A^ - aAJ} is a basis of L{a) if A^ 0,
we get that L(a) c LS(F). This is a).
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If reSp(B), taking T| = 0 we get A,eLS(r). Then taking
H = Im a, a e Sp (B), Re a == r, as above, we get the rest of b). c) and
d) are consequences of a) and b) and of the fact that LS(F) is a closed
convex cone.

LEMMA 5. — Let r be a positive real number set

E = £ {L(a) | |Re a\ > r,a e Sp (B)}
and

¥ = £{L(a)||Re^r,aeSp(B)} + L(0).

Assume that LS(F) => E. Let P : L -> L be the projection mth kernel

E and image F. Then for any Z e E, P o ad Z o P e End (LS(F)).

Proof. — By Lemma 2-1), 3) and Prop. 5-4), for any Z e E ,
p o^opeEndtF) .

Choose ZeL(a), aeSp(B) |Rea[ > r. Then by Prop. 7-5), for any
integer n ^ 1, and any x e Sp (B) :

ad"Z(L(x)) c ^ L(x-^-pa-\-qa).
p+q=n

If [Re x| < r , Re (x 4- pa 4- qa) > {n—l)r if Re a > r and
Re(x-hpa-h^) < — (n—l)r if Re a < — r, for all n ^ 2. As

^adz^ y J-ad"Z, P o ^ z o p = P + p o a d Z o p .
n=o" !

Now for any Z e L(a) and any v e R,

P + vP o ad Z o P == P o e^ o P e LS(F).

Then P o ad Z o P = lim - (P -h vP o ad Z o P) e LS(F). Since
u-»+oo y

End (LS(F)) is a convex cone and any Z e E is a sum of Z(a), Z(a) e L(a),
with Re a > r , we get the lemma.

PROPOSITION 12. — We use the same notations and assumptions as in

Lemma 5.

1) Given any a e Sp(B) \vith [Re a\ ^ r, assume there is a b e Sp(B)
and an A e LS(F) such that |Re b\ > r , a - be Sp(B),
[L^-fc),L,(fc)] ^ 0 and A,_, ^ 0. Then L(a) c: LS(0.
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2) Given any eeSp(B) with \Ree\ ^ r, assume there is an /eSp(B)
and an A e LS(F) such that A^ 0, |Re/| > r and [L,(6?),L,(-/)] ^ 0.
Then L(e) c: LS(r).

Proof of 1). - If |Re(a-fc)| > r, L(a-fc) c: LS(r) and by prop. 7-5
L(a) c: [L(a-b\L(b}] c: LS(F). If \Re(a-b)\ ̂  r, apply lemma 5. For
any ZeL(fc) , P[Z,P(A)] e LS(F). From Proposition 11-d) it follows
that LS(F) =3 Z{L(x)|(P[Z,P(A)])^0}. Let X be a generator of L,(b).

Then L (fc) = {uX 4- uaX | u e C} . Taking Z == MX + uaX,
(P[Z,P(A)]), = M[X,A,_J + <aX,AJ where c = a - b and A, = 0
if c^Sp(B).

From the Assumption and Prop. 7-5) [X,A^_J ^ 0. As
dim4(a) = 1, [oX,AJ = z[X,A^_J where z e C . Hence

(P[Z,P(A)]),=(M4-zt7)[X,A,_J.

For a suitable choice of u, (P[Z,P(A)])^ ^ 0. This proves 1).

Proof of 2). - Since [L^),4(-/)]^0, 4(^-/) 9^ 0. If
\Re(e-f)\ ^ r, part 1 applied to a = e - f and b = — f shows
that L(^-/) c: LS(F). If \Re(e-f)\ > r , L(e-f) c LS(F) already.

By prop. 5-3), |L(e-/),L(/)] c LS(F). By [4]-20.5.12,

[L,(e-f\ 4(/)] = [[4(4 4(-/)],4CO] ^ 0.

Hence L(e) c= [L(^-/),L(/)] c: LS(F).

LEMMA 6. - Assume ^at a, fceSp(B), L(a) c LS(F) and

[L,(fc),L,(-a)] ^ 0. J/^^ is an U e LS(F) such that U^ ^ 0, r/ien
^r^ is an A e LS(F) such that A^, 7^ 0.

Proof. — Let a be complex first. Choose a basis vector X of L^(a).
Call Z : C -> L(a) the function Z(r) = uX 4- uaX. By Proposition 5-4)
and Lemma 2-4), A(i;) = e^^A) belongs to LS(F) for all y e C .

Since Z(u) is nilpotent, the function A(u) : C -> L is polynomial in
Re v and 1m v. The homogeneous component of degree 1 of A(r)^ is
y[X,A^,_J + y[<7X,A^,_j. By the assumption this component is not zero.
Hence the polynomial A(u)^ is not identically 0. So for an open dense set
of 1/5 in C, A(^ ^ 0.
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2. Proof of the theorems.

Theorem 0 follows from Theorem 1 and Proposition 10.

Proof of Theorem 1. — We can assume that F = LS(r). Denote by
R+(F) (resp. R_(r),Ro(r)) the set of all

a e Sp^ (B) u Spo(B) (resp. Sp-(B) uSpo(B),Spo(B))

such that there exists an A e F with A (a) ^ 0.

The proof will be an induction. We shall assume that there is a posi-
tive r such that F => £{L(a)| |Re a\>r} and show that
F =) £{L(fi)| |Rea| = r}. As before let P : L -> L be the projection
with kernel £ {L(a) \ |Re a\ > r} and image £ {L(a) \ |Re a\ ̂  r] 4- L(0).
For the proof we need two lemmas :

LEMMA 7. - Assume that either r ^ Sp(B) or r e Sp(B) and L(r) c: r
or there is no A e F mth A(r) + 0. Let aeSp+(B) and Re a = r. If the

ad K-module generated by L(a) contains an L(b) such that L(b) c r,
then L(a) c= F.

LEMMA 8. — Assume that r e Sp+(B) and that either r is maximal or it

is not but there is an A e F such that A(r) 7^ 0. Then L(r) c r.

Proof of the induction step. - It is sufficient to show that
r => £{L(^)|Re a=r}. The case of — r is symmetric.

Lemma 8 shows that either r ^ Sp(B) or L(r) c: r or there is no
A e r such that A(r) ^ 0. Take an a e Sp+(B) with Re a = r .

Case 1. — a is maximal. By Proposition ll-a),fc),c),

r => £{L(x) |Rex=rand 14 e F with A^O}.

By condition 3 ofThm. 1, the ad K-module generated by L(a) contains an
L(b) such that L(fc) c: r. By Lemma 7, L(a) c= F.

Case 2. — a is not maximal. By prop. 9-2 there are foo, fc e Sp + (B)
such that : 1) Re bo > Re b = Re ^ = r, 2) L(fc) is contained in the
ad K-module generated by L(a). 3) b — bo e R-(F).

This last condition shows that there is an A e r such that A^,_^ 7^ 0.
Then prop. 12-1 implies that L(b) c: r. By lemma 7, L(a) c: r.
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The induction shows that Z{L(a)|Re a^O} c: r. Hence

Z{[L(a),L(-a)]|Rea^O} c r.

Now L = K + S{L(a)+[L(fl),L(-a)]||Rea|^0}. Let Q : L -. L be a

projection with kernel in F and image in K, K = H^ ® ^ L(a)
Re a=0

where

H K = L ( O ) n K = ^ [L(a),L(-^)].

By Proposition 8-1), [L(-a),L(-a)] is made up of compact elements
for every a e Spo(B). Since HK is a commutative algebra, all elements in

HK are compact. Let A e F . Then Q(A)eF. Q(A) == Ao + ^ A(a),
Rea=0

A ( ) € H K , A(a)eL(a). Proposition 11 -b) shows that A o e F . Since Ao is
compact, RAo c= F. By proposition 11-b), c), RA(a) c: F. In particular
for every aeRo(r) , L{a) c= r. Since ^{L{a)\a e Ro(0} generates K,
K c: r. This shows that F == L and F is transitive.

Proof of Lemma 7. - By Proposition 9-2) there is a sequence
bo,b^ fc^ , . .. , ̂  such that : 1) ^ = fl, 2) fc,.^ - ̂ . = a^e Ro(F) for

0 ^7 ^ n - 1, 3) 4(fc^0 = [4(^.),4(a,)], 4) fco = b or ^ = ^. We
show by induction on j that L(bj) c: r.

For 7 = 0 , L(fco) = LW ^ F. Since ^.eRo(r), there is a U e F
such that U^ ^ 0. If L(^.) c F, by Lemma 6 there is an A e F with
A^ ^ 0. By Proposition 11-a), b\ c), since Refo^i = r, L(fc^i) c r.

Proo/ o/ Lemma 8. - If r is maximal, by condition 4 of Theorem 1
there are A ^ , A2 e F such that Trace (ad Ai(r) o ad A^-r)) < 0. Now

P(Ai), P(A2)er. Hence by Proposition 11-fc) Ai(r), A^-^eF. For
any real positive M , v , uA^(r) + vA^(-r) e F and it is a compact element
by Proposition 8-2). Hence F =3 {MAi(r)+i;A2(-r)|M,u e R,uv > 0}. Since
F is convex, F => L(r) + L(—r) .

If r is not maximal, by Lemma 3 there is an a€Sp(B), Re a > r

such that [L,(r),L,(--fl)] ^0 . By Proposition 12-2 applied to e = r,
/ = a , L(r)c:F.
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