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Invariant control affine systems

Left-invariant control affine system
(X)) &=Z(gu)=g(A+wuBi+--+uB), geG uecR’

@ state space: G is a connected (matrix) Lie group with Lie algebra g
e input set: R¢
@ dynamics: family of left-invariant vector fields =(-, u)

o trace: T=A+T9= A+ (By,...,By) is an affine subspace of g
A €0 «+— homogeneous, A ¢ 0 +— inhomogeneous.

2 A+ B+ 4 wbBy.
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Trajectories, controllability, and full rank

o admissible controls: piecewise continuous curves u(-) : [0, T] — Rf
@ trajectory: absolutely continuous curve s.t. g(t) = =(g(t), u(t))
@ controllable: exists trajectory from any point to any other

o full rank: Lie(I") = g; necessary condition for controllability.

v

Characterization of full-rank systems on 3D Lie groups

@ l-input homogeneous: none

@ l-input inhomogeneous: A, Bi, [A, Bi] linearly independent
@ 2-input homogeneous: Bj, By, [B1, B] linearly independent
@ 2-input inhomogeneous: all

@ 3-input: all.
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Equivalence

Detached feedback equivalence

Y and Y’ are detached feedback equivalent if
J¢:G— G, ¢: R — R such that T,¢-=(g,u) = ='(¢(g), p(u))

@ specialization of feedback equivalence

o diffeomorphism ¢ preserves left-invariant vector fields

Proposition

Full-rank systems ¥ and ¥’ equivalent
if and only if there exists a
Lie group isomorphism ¢ : G — G’ such that Tr¢-T =T".

R. Biggs, C.C. Remsing (Rhodes) Control Systems on 3D Lie Groups ECC 2014 6 /23



Outline

© Classification of systems
o Classification of 3D Lie groups
@ Solvable case
@ Semisimple case

R. Biggs, C.C. Remsing (Rhodes) Control Systems on 3D Lie Groups

ECC 2014

7/23



Classification of 3D Lie algebras

Eleven types of real 3D Lie algebras (e.g., [Mub63])
@33 — R3 Abelian
° g21® g1 — aff(R)OR cmpl. solvable
@ g3.1 — Heisenberg b3 nilpotent
@ g32 cmpl. solvable
@ g33 — book Lie algebra cmpl. solvable
e g3, — semi-Euclidean se(1,1) cmpl. solvable
@934, a>0,a#1 cmpl. solvable
e g3 — Euclidean se(2) solvable
@935, a>0 exponential
o gJ¢ — pseudo-orthogonal s0(2,1), sl(2,R) simple
e g3, — orthogonal so(3), su(2) simple

v
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Classification of 3D Lie groups

3D Lie groups (e.g., [GOV94])
° 3g1 —4— R} R*xT,RxT, T3
°omi1®g —2—  Aff(R)o x R, Aff(R)o x T
® g31 — 2 — Hs, H3 = Hs3/Z(H3(Z))
° g32 —1— G322
° g33 —1— G333
° g3, —1—  SE(1,1)
° 934 —1— 54
° 035 —N— SE (2), n-fold cov. SE,(2), univ. cov. SAE(2)
° 935 —1— 35 N
@ g36 — N — SO (2,1), n-fold cov. A(n), univ. cov. A
® g37 —2— SO (3), SU(2).

v

Only H3, A,, n> 3, and A are not matrix Lie groups.
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Case study: systems on the Heisenberg group Hsj

1 y x 0 vy x
Hs3 : |10 1 z hs : |0 0 z| =xE1 + yEx + zE3
0 01 0 0 O

On Hs, any full-rank system is equivalent to exactly one of the following
systems

T B+ uks

¥ (20) . w1 B> + wEs

2(12’1) D Er 4+ u By + wEs
TPV B4 uE + wb

¥ (3.0) . i E1 + wE + u3Es.
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Case study: systems on the Heisenberg group Hsj

Proof sketch (1/2)

32b3 — a3b2 al b1
0 a by| € Aut(hs), Y- (Ex+(E3)) =T.
0 as b3

(2

So ¥ is equivalent to (1),

@ Two-input homogeneous system with trace I' = (A, B); similar
argument holds.

v
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Case study: systems on the Heisenberg group Hsj

Proof sketch (2/2)
@ Two-input inhomogeneous system X with trace [ = A+ (By, By).

o If E; € (B1,By), then T = A+ (Eq, B)); like single-input case there
exists automorphism 1 such that ¢ - = E5 + (Ey, E).

o If E1 ¢ (Bi, Ba), construct automorphism 1 such that
T = B + (B, Es).

° 252’1) and Zgz’l) are distinct as E; is eigenvector of every
automorphism.

@ Three-input system: trivial.
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Case study: systems on the orthogonal group SO (3)

SO(3)={gcR¥3 : gg" =1, detg =1}

0 —z vy
50(3): | z 0 —x|=xE+yEx+zE;
-y x 0

Theorem

On SO (3), any full-rank system is equivalent to exactly one of the
following systems

y (L1 . aby +uE,, a>0

y (20) . nE + wk

YU o 4+ wE + wE, a>0

Y60 uE 4 wE + usFs.

v
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Case study: systems on the orthogonal group SO (3)

Proof sketch

d Aut(SO (3)) = Aut(so (3)) = SO (3)

o Classification procedure similar, though more involved.
@ Product Ae B = a1b; + aoby + azbs is preserved by automorphisms.

o Critical point €*(I') at which an inhomogeneous affine subspace is
tangent to a sphere S, = {A€s0(3) : Ae A=} is given by

Ae B

“M=A-50B

B

()= A [B B [31.31 31.32]1 [AoBl]

BieB, BreB AeBy|"

e Y- €% =¢e*(¢-T) for any automorphism 1) € SO (3).
o Scalar a2 = ¢*(I') e ¢*(I") invariant under automorphisms.

V.
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Some controllability criteria for invariant systems

Sufficient conditions for full-rank system to be controllable

system is homogeneous
state space is compact
the direction space % generates g, i.e., Lie([?) =g
there exists C € I' such that t +— exp(tC) is periodic

the identity element 1 is in the interior of the attainable set
A ={g(t1) : g(-) is a trajectory such that g(0) =1, t; > 0}.

([Js72))

v

Systems on simply connected completely solvable groups

Condition Lie (I'%) = g is also necessary. ([Sac09])
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Characterization for systems on 3D groups

Q@ On Aff (R)o X R, H3, G3.2, G3.3, SE(].,].), and G§.4,
a full-rank system is controllable if and only if Lie (M%) = g.

@ On SE,(2), SO(3), and SU (2),
all full-rank systems are controllable.

@ On Aff(R) x T, SL(2,R), and SO (2,1)o,
a full-rank system is controllable if and only if it is homogeneous
or there exists C € [ such that t +— exp(tC) is periodic.

© On SE(2) and G35,
a full-rank system is controllable if and only if E}(I°) # {0}.
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Characterization for 3D groups

Proof sketch (1/2)

© Completely solvable simply connected groups; characterization known
([Sac09]).

@ The groups SO (3) and SU(2) are compact, hence all full-rank
systems are controllable.

SE,(2) decomposes as semidirect product of vector space and
compact subgroup; hence result follows from [BJKS82].
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Characterization for 3D groups

Proof sketch (2/2)

© Study normal forms of these systems obtained in classification.

o Full-rank homogeneous systems are controllable.

e For each full-rank inhomogeneous system we either explicitly find
A €T such that t — exp(tA) is periodic

e or prove that some states are not attainable by inspection of
coordinates of g = =(g, u).

o As properties are invariant under equivalence, characterization holds.
@ Study normal forms of these systems obtained in classification.

e Condition invariant under equivalence.

o Similar techniques with extensions ([JS72]); however for one system on
G35 we could only prove controllability by showing 1 € int A.
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Conclusion

@ Characterization of controllability for systems on 3D Lie groups.

@ Normal forms for controllable systems on 3D Lie groups.

@ Cost-extended systems associated to optimal control problems.
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