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Invariant control affine systems

Left-invariant control affine system

(Σ) ġ = Ξ(g , u) = g (A + u1B1 + · · ·+ u`B`), g ∈ G, u ∈ R`

state space: G is a connected (matrix) Lie group with Lie algebra g

input set: R`

dynamics: family of left-invariant vector fields Ξ(·, u)

trace: Γ = A + Γ0 = A + 〈B1, . . . ,B`〉 is an affine subspace of g
A ∈ Γ0 ←→ homogeneous, A /∈ Γ0 ←→ inhomogeneous.

Σ : A + u1B1 + · · ·+ u`B`.
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Trajectories, controllability, and full rank

admissible controls: piecewise continuous curves u(·) : [0,T ]→ R`

trajectory: absolutely continuous curve s.t. ġ(t) = Ξ(g(t), u(t))

controllable: exists trajectory from any point to any other

full rank: Lie(Γ) = g; necessary condition for controllability.

Characterization of full-rank systems on 3D Lie groups

1-input homogeneous: none

1-input inhomogeneous: A, B1, [A,B1] linearly independent

2-input homogeneous: B1, B2, [B1,B2] linearly independent

2-input inhomogeneous: all

3-input: all.
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Equivalence

Detached feedback equivalence

Σ and Σ′ are detached feedback equivalent if
∃φ : G→ G′, ϕ : R` → R` such that Tgφ · Ξ(g , u) = Ξ′(φ(g), ϕ(u))

specialization of feedback equivalence

diffeomorphism φ preserves left-invariant vector fields

Proposition

Full-rank systems Σ and Σ′ equivalent
if and only if there exists a

Lie group isomorphism φ : G→ G′ such that T1φ · Γ = Γ′.
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Classification of 3D Lie algebras

Eleven types of real 3D Lie algebras (e.g., [Mub63])

3g — R3 Abelian

g2.1 ⊕ g1 — aff (R)⊕ R cmpl. solvable

g3.1 — Heisenberg h3 nilpotent

g3.2 cmpl. solvable

g3.3 — book Lie algebra cmpl. solvable

g03.4 — semi-Euclidean se (1, 1) cmpl. solvable

ga3.4, a > 0, a 6= 1 cmpl. solvable

g03.5 — Euclidean se (2) solvable

ga3.5, a > 0 exponential

g03.6 — pseudo-orthogonal so (2, 1), sl (2,R) simple

g03.7 — orthogonal so (3), su (2) simple

R. Biggs, C.C. Remsing (Rhodes) Control Systems on 3D Lie Groups ECC 2014 8 / 23



Classification of 3D Lie groups

3D Lie groups (e.g., [GOV94])

3g1 — 4 — R3, R2 × T, R× T, T3

g2.1 ⊕ g1 — 2 — Aff (R)0 × R, Aff (R)0 × T
g3.1 — 2 — H3, H∗3 = H3/Z(H3(Z))

g3.2 — 1 — G3.2

g3.3 — 1 — G3.3

g03.4 — 1 — SE (1, 1)

ga3.4 — 1 — Ga
3.4

g03.5 — N — SE (2), n-fold cov. SEn(2), univ. cov. S̃E (2)

ga3.5 — 1 — Ga
3.5

g3.6 — N — SO (2, 1)0, n-fold cov. A(n), univ. cov. Ã

g3.7 — 2 — SO (3), SU (2).

Only H∗3, An, n ≥ 3, and Ã are not matrix Lie groups.
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Case study: systems on the Heisenberg group H3

H3 :

1 y x
0 1 z
0 0 1

 h3 :

0 y x
0 0 z
0 0 0

 = xE1 + yE2 + zE3

Theorem

On H3, any full-rank system is equivalent to exactly one of the following
systems

Σ(1,1) : E2 + uE3

Σ(2,0) : u1E2 + u2E3

Σ
(2,1)
1 : E1 + u1E2 + u2E3

Σ
(2,1)
2 : E3 + u1E1 + u2E2

Σ(3,0) : u1E1 + u2E2 + u3E3.
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Case study: systems on the Heisenberg group H3

Proof sketch (1/2)

d Aut(H3) = Aut(h3) =


yw − vz x u

0 y v
0 z w

 :
x , y , z , u, v ,w ∈ R

yw − vz 6= 0


Single-input system Σ with trace Γ =

∑3
i=1 aiEi +

〈∑3
i=1 biEi

〉
.

ψ =

a2b3 − a3b2 a1 b1
0 a2 b2
0 a3 b3

 ∈ Aut(h3), ψ · (E2 + 〈E3〉) = Γ.

So Σ is equivalent to Σ(1,1).

Two-input homogeneous system with trace Γ = 〈A,B〉; similar
argument holds.
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Case study: systems on the Heisenberg group H3

Proof sketch (2/2)

Two-input inhomogeneous system Σ with trace Γ = A + 〈B1,B2〉.

If E1 ∈ 〈B1,B2〉, then Γ = A + 〈E1,B
′
2〉; like single-input case there

exists automorphism ψ such that ψ · Γ = E3 + 〈E1,E2〉.

If E1 /∈ 〈B1,B2〉, construct automorphism ψ such that
ψ · Γ = E1 + 〈E2,E3〉.

Σ
(2,1)
1 and Σ

(2,1)
2 are distinct as E1 is eigenvector of every

automorphism.

Three-input system: trivial.
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Case study: systems on the orthogonal group SO (3)

SO (3) = {g ∈ R3×3 : gg> = 1, det g = 1}

so (3) :

 0 −z y
z 0 −x
−y x 0

 = xE1 + yE2 + zE3

Theorem

On SO (3), any full-rank system is equivalent to exactly one of the
following systems

Σ(1,1)
α : αE1 + uE2, α > 0

Σ(2,0) : u1E1 + u2E2

Σ(2,1)
α : αE1 + u1E2 + u2E3, α > 0

Σ(3,0) : u1E1 + u2E2 + u3E3.
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Case study: systems on the orthogonal group SO (3)

Proof sketch

d Aut(SO (3)) = Aut(so (3)) = SO (3)

Classification procedure similar, though more involved.

Product A • B = a1b1 + a2b2 + a3b3 is preserved by automorphisms.

Critical point C•(Γ) at which an inhomogeneous affine subspace is
tangent to a sphere Sα = {A ∈ so (3) : A • A = α} is given by

C•(Γ) = A− A • B
B • B

B

C•(Γ) = A−
[
B1 B2

] [B1 • B1 B1 • B2

B1 • B2 B2 • B2

]−1 [
A • B1

A • B2

]
.

ψ · C•(Γ) = C•(ψ · Γ) for any automorphism ψ ∈ SO (3).

Scalar α2 = C•(Γ) • C•(Γ) invariant under automorphisms.
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Some controllability criteria for invariant systems

Sufficient conditions for full-rank system to be controllable

system is homogeneous

state space is compact

the direction space Γ0 generates g, i.e., Lie (Γ0) = g

there exists C ∈ Γ such that t 7→ exp(tC ) is periodic

the identity element 1 is in the interior of the attainable set
A = {g(t1) : g(·) is a trajectory such that g(0) = 1, t1 ≥ 0}.

([JS72])

Systems on simply connected completely solvable groups

Condition Lie (Γ0) = g is also necessary. ([Sac09])
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Characterization for systems on 3D groups

Theorem

1 On Aff (R)0 × R, H3, G3.2, G3.3, SE (1, 1), and Ga
3.4,

a full-rank system is controllable if and only if Lie (Γ0) = g.

2 On SEn(2), SO (3), and SU (2),
all full-rank systems are controllable.

3 On Aff (R)× T, SL (2,R), and SO (2, 1)0,
a full-rank system is controllable if and only if it is homogeneous
or there exists C ∈ Γ such that t 7→ exp(tC ) is periodic.

4 On S̃E (2) and Ga
3.5,

a full-rank system is controllable if and only if E ∗3 (Γ0) 6= {0}.
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Characterization for 3D groups

Proof sketch (1/2)

1 Completely solvable simply connected groups; characterization known
([Sac09]).

2 The groups SO (3) and SU (2) are compact, hence all full-rank
systems are controllable.

SEn(2) decomposes as semidirect product of vector space and
compact subgroup; hence result follows from [BJKS82].
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Characterization for 3D groups

Proof sketch (2/2)

3 Study normal forms of these systems obtained in classification.

Full-rank homogeneous systems are controllable.

For each full-rank inhomogeneous system we either explicitly find
A ∈ Γ such that t 7→ exp(tA) is periodic

or prove that some states are not attainable by inspection of
coordinates of ġ = Ξ(g , u).

As properties are invariant under equivalence, characterization holds.

4 Study normal forms of these systems obtained in classification.

Condition invariant under equivalence.

Similar techniques with extensions ([JS72]); however for one system on
Ga
3.5 we could only prove controllability by showing 1 ∈ intA.
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Conclusion

Summary

Characterization of controllability for systems on 3D Lie groups.

Normal forms for controllable systems on 3D Lie groups.

Outlook

Cost-extended systems associated to optimal control problems.
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