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Preface

This book originates from several editions of lecture notes that were used as teach-
ing material for the course ‘Control Theory for Linear Systems’, given within the
framework of the national Dutch graduate school of systems and control, in the pe-
riod from 1987 to 1999. The aim of this course is to provide an extensive treatment
of the theory of feedback control design for linear, finite-dimensional, time-invariant
state space systems with inputs and outputs.

One of the important themes of control is the design of controllers that, while
achieving an internally stable closed system, make the influence of certain exogenous
disturbance inputs on given to-be-controlled output variables as small as possible. In-
deed, in the appropriate sense this theme is covered by the classical linear quadratic
regulator problem and the linear quadratic Gaussian problem, as well as, more re-
cently, by the H2 and H∞ control problems. Most of the research efforts on the linear
quadratic regulator problem and the linear quadratic Gaussian problem took place in
the period up to 1975, whereas in particular H∞ control has been the important issue
in the most recent period, starting around 1985.

In, roughly, the intermediate period, from 1970 to 1985, much attention was at-
tracted by control design problems that require to make the influence of the exoge-
nous disturbances on the to-be-controlled outputs equal to zero. The static state feed-
back versions of these control design problems, often called disturbance decoupling,
or disturbance localization, problems were treated in the classical textbook ‘Linear
Multivariable Control: A Geometric Approach’, by W.M. Wonham. Around 1980,
a complete theory on the disturbance decoupling problem by dynamic measurement
feedback became available. A central role in this theory is played by the geomet-
ric (i.e., linear algebraic) properties of the coefficient matrices appearing in the sys-
tem equations. In particular, the notions of (A, B)-invariant subspace and (C, A)-
invariant subspace play an important role. These notions, and their generalizations,
also turned out to be central in understanding and classifying the ‘fine structure’ of
the system under consideration. For example, important dynamic properties such
as system invertibility, strong observability, strong detectability, the minimum phase
property, output stabilizability, etc., can be characterized in terms of these geometric
concepts. The notions of (A, B)-invariance and (C, A)-invariance also turned out to
be instrumental in other synthesis problems, like observer design, problems of track-
ing and regulation, etc.
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In this book, we will treat both the ‘pre-1975’ approach represented by the linear
quadratic regulator problem and the H2 control problem, as well as the ‘post-1985’
approach represented by the H∞ control problem and its applications to robust con-
trol. However, we feel that a textbook dedicated to control theory for linear state space
systems should also contain the central issues of the ‘geometric approach’, namely a
treatment of the disturbance decoupling problem by dynamic measurement feedback,
and the geometric concepts around this synthesis problem. Our motivation for this is
three-fold.

Firstly, in a context of making the influence of the exogenous disturbances on
the to-be-controlled outputs as small as possible, it is natural to ask first under what
conditions on the plant this influence can actually be made to vanish, i.e., under what
conditions the closed loop transfer matrix can made zero by choosing an appropriate
controller.

Secondly, as also mentioned above, the notions of controlled invariance and con-
ditioned invariance, and their generalizations of weakly unobservable subspace and
strongly reachable subspace, play a very important role in studying the dynamic prop-
erties of the system. As an example, the system property of strong observability holds
if and only if the system coefficient matrices have the geometric property that the as-
sociated weakly unobservable subspace is equal to zero. As another example, the
system property of left-invertibility holds if and only if the intersection of the weakly
unobservable subspace and the strongly reachable subspace is equal to zero. Also,
the important notions of system transmission polynomials and system zeros can be
given an interpretation in terms of the weakly unobservable subspace, etc. In other
words, a good understanding of the fine, structural, dynamic properties of the system
goes hand in hand with an understanding of the basic geometric properties associated
with the system parameter matrices.

Thirdly, also in the linear quadratic regulator problem, in the H 2 control problem,
and in the H∞ control problem, the idea of disturbance decoupling and its associ-
ated geometric concepts play an important role. For example, the notion of output
stabilizability, and the associated output stabilizable subspace of the system, turn out
to be relevant in establishing necessary and sufficient conditions for the existence of
a positive semi-definite solution of the LQ algebraic Riccati equation. Also, by an
appropriate transformation of the system parameter matrices, the H 2 control problem
can be transformed into a disturbance decoupling problem. In fact, any controller
that achieves disturbance decoupling for the transformed system turns out to be an
optimal controller for the original H2 problem. The same holds for the H∞ con-
trol problem: by an appropriate transformation of the system parameter matrices, the
original problem of making the H∞ norm of the closed loop transfer matrix strictly
less than a given tolerance, is transformed into a disturbance decoupling problem.
Any controller that achieves disturbance decoupling for the transformed system turns
out to achieve the required strict upper bound on H∞-norm of the closed loop transfer
matrix.

The outline of this book is as follows. After a general introduction in chapter 1,
and a summary of the mathematical prerequisites in chapter 2, chapter 3 of this book
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deals with the basic material on linear state space systems. We review controllability
and observability, the notions of controllable eigenvalues and observable eigenvalues,
and basis transformations in state space. Then we treat the problem of stabilization
by dynamic measurement feedback. As intermediate steps in this synthesis problem,
we discuss state observers, detectability, the problem of pole placement by static state
feedback, and the notion of stabilizability.

The central issue of chapters 4 to 6 is the problem of disturbance decoupling by
dynamic measurement feedback. First, in chapter 4, we introduce the notion of con-
trolled invariance, or (A, B)-invariance. As an immediate application, we treat the
problem of disturbance decoupling by static state feedback. Next, we introduce con-
trollability subspaces, and stabilizability subspaces. These are used to treat the static
state feedback versions of the disturbance decoupling problem with internal stability,
and the problem of external stabilization. In chapter 5, we introduce the central notion
of conditioned invariance, or (C, A)-invariance. Next, we discuss detectability sub-
spaces, and their application to the problem of designing estimators in the presence
of external disturbances. In chapter 6, we combine the notions of controlled invari-
ance and conditioned invariance into the notion of (C, A, B)-pair of subspaces. As an
immediate, straightforward, application we treat the dynamic measurement feedback
version of the disturbance decoupling problem. Next, we take stability issues into
consideration, and consider (C, A, B)-pairs of subspaces consisting of a detectability
subspace and a stabilizability subspace. This structure is applied to resolve the dy-
namic measurement feedback version of the problem of disturbance decoupling with
internal stability. The final subject of chapter 6 is the application of the idea of pairs
of (C, A, B)-pairs to the problem of external stabilization by dynamic measurement
feedback.

Chapters 7 and 8 of this book deal with system structure. In chapter 7, we first
give a review of some basic material on polynomial matrices, elementary operations,
Smith form, and left- and right-unimodularity. Then we introduce the notions of
transmission polynomials and zeros, in terms of the system matrix associated with
the system. We then discuss the weakly unobservable subspace, and the related no-
tion of strong observability, and finally give a characterization of the transmission
polynomials and zeros in terms of a linear map associated with the weakly unobserv-
able subspace. In chapter 8 we discuss the idea of distributions as inputs. Allowing
distributions (instead of just functions) as inputs gives rise to some new concepts in
state space, such as the strongly reachable subspace and the distributionally weakly
unobservable subspace. The notions of system left- and right-invertibility are intro-
duced, and characterized in terms of these new subspaces. The basic material on
distributions that is used in chapter 8 is treated in appendix A of this book.

In chapter 9 we treat the problem of tracking and regulation. In this problem,
certain variables of the plant are required to track an a priori given signal, regardless
of the disturbance input and the initial state of the plant. Both the signal to be tracked
as well as the disturbance input are modeled as being generated by an additional
finite-dimensional linear system, called the exosystem. Conditions for the existence
of a regulator are given in terms of the transmission polynomials of certain system
matrices associated with the interconnection of the plant and the exosystem. We also
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address the issue of well-posedness of the regulator problem, and characterize this
property in terms of right-invertibility of the plant, and the relation between the zeros
of the plant and the poles of the exosystem.

In chapter 10 we give a detailed treatment of the linear quadratic regulator pro-
blem. First, we explain how to transform the general problem to a so-called standard
problem. Then we treat the finite-horizon problem in terms of the solution of the
Riccati differential equation. Next, we discuss the infinite-horizon problem, both
the free-endpoint as well as the zero-endpoint problem, and characterize the opti-
mal cost and optimal control laws for these problems in terms of certain solutions of
the algebraic Riccati equation. Finally, the results are reformulated for the general,
non-standard case.

Chapter 11 is about the H2 control problem. First, we explain how the original
stochastic linear quadratic Gaussian problem can be reformulated as the determinis-
tic problem of minimizing the L 2 norm of the closed loop impulse response matrix,
equivalently, the H2-norm of the closed loop transfer matrix. Then we discuss the
problems of minimizing this H2-norm over the class of all internally stabilizing static
state feedback controllers, and over the class of all internally stabilizing dynamic
measurement feedback controllers. In both cases, the original problem is reduced to
a disturbance decoupling problem by means of transformations involving real sym-
metric solutions of the relevant algebraic Riccati equations.

Chapters 12, 13, 14, and 15 deal with the H∞ control problem, and its applica-
tion to problems of robust stabilization. In chapter 12, the H∞ control problem is
introduced, and it is explained how it can be applied, via the celebrated small gain
theorem, to problems of robust stabilization. Next, chapter 13 gives a complete treat-
ment of the static state feedback version of the H∞ control problem, both for the
finite-horizon as well as the infinite horizon case. Then, in chapter 14, the general dy-
namic measurement feedback version of the H∞ control problem is treated. Again,
both the finite, as well as the infinite horizon problem are discussed. In particular,
the celebrated result on the existence of H∞ suboptimal controllers in terms of the
existence of solutions of two Riccati equations, together with a coupling condition, is
treated. Finally, in chapter 15, the results of chapter 14 are applied to the problem of
robust stabilization introduced in chapter 12. The chapter closes with some remarks
on the singular H∞ control problem, and with a discussion on the minimum entropy
H∞ control problem.

The book closes with an appendix that reviews the basic material on distribution
theory, as needed in chapter 8.

As mentioned in the first paragraph of this preface, the lecture notes that led to
this book were used as teaching material for the course ‘Control Theory for Linear
Systems’ of the Dutch graduate school of systems and control over a period of many
years. During this period, many former and present Ph.D. students taking courses
with the Dutch graduate school contributed to the contents of this book through their
critical remarks and suggestions. Also, most of the problems and exercises in this
book were used as problems in the take-home exams that were part of the course, so
were tried out on ‘real’ students. We want to take the opportunity to thank all former
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and present Ph.D. students that followed our course between 1987 and 1999 for their
constructive remarks on the contents of this book. Finally, we want to thank those of
our colleagues that encouraged us to complete the project of converting the original
set of lecture notes to this book.

Harry L. Trentelman

University of Groningen, Groningen, The Netherlands

Anton A. Stoorvogel

Eindhoven University of Technology, Eindhoven, The Netherlands

Malo Hautus

Eindhoven University of Technology, Eindhoven, The Netherlands
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Chapter 1

Introduction

1.1 Control system design and mathematical control

theory

Very roughly speaking, control system design deals with the problem of making a
concrete physical system behave according to certain desired specifications. The ul-
timate product of a control system design problem is a physical device that, if con-
nected to the to be controlled physical system, makes it behave according to the spec-
ifications. This device is called a controller.

To get from a concrete to be controlled physical system to a concrete physical
device to control the system, the following intermediate steps are often taken. First, a
mathematical model of the physical system is made. Such a mathematical model can
take many forms. For example, the model could be in the form of a system of ordinary
and/or partial differential equations, together with a number of algebraic equations,
relating the relevant variables of the system. The model could also involve difference
equations, some of the variables could be related by transfer functions, etc. The usual
way to get a model of an actual system is to apply the basic laws that the system
satisfies. Often, this method is called first principles modeling. For example, if one
deals with an electro-mechanical system, the set of basic physical laws (Newton’s
laws, Kirchoff’s laws, etc.) that variables in the system satisfy form a mathematical
model. A second way to get a model is called system identification. Here, the idea
is to do experiments on the physical system: certain variables in the physical system
are set to particular values from the outside, and at the same time other variables are
measured. In this way, one tries to estimate (’identify’) the laws that the variables
in the system satisfy, thus obtaining a model. Very often, a combination of first
principles modeling and system identification is used to obtain a model.

The second step in a control system design problem is to decide which desirable
properties we want the physical system to satisfy. Very often, these properties can
be formulated mathematically by requiring the mathematical model to have certain
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qualitative or quantitative mathematical properties. Together, these properties form
the design specifications.

The third, very crucial, step is to design, on the basis of the mathematical model
of the physical system, and the list of design specifications, a mathematical model of
the physical controller device. It is this step in the control design problem that we

deal with in this book: it deals with mathematical control theory, in other words, with
the mathematical theory of design of models of controllers. The problem of getting
from a model, and a list of design specifications to a model of a controller is called a
control synthesis problem. Of course, for a given model, each particular list of design
specifications will give rise to a particular control synthesis problem. In this book
we will study for a great variety of design specifications the corresponding control
synthesis problems.

We restrict ourselves in this book to a particular class of mathematical models:
we assume that our models (both of the physical, to be controlled systems, as well
as the controllers) are linear, time-invariant, finite-dimensional state-space systems
with inputs and outputs. This class of models is rich enough to treat the fundamental
issues in control system design, and the resulting design techniques work remarkably
well for a large class of concrete control system design problems encountered in
engineering applications.

A final step in the control system design problem is, of course, to realize the
mathematical model of the controller by an actual physical device, often in the form
of suitable hardware and software, and to interconnect this device with the to be
controlled physical system.

As an illustration of a control design problem for a concrete physical system, we
consider the motion of a communications satellite. In order for a satellite to have a
fixed position to an observer on the earth’s surface, while moving with its jet engines
switched off, it has to describe a circular orbit, say in the equator plane, at a fixed
altitude of 35620 km, with the same velocity of rotation as the earth (this orbit of a
satellite is called a geostationary orbit). We wish to be able to influence the motion
of the satellite such that it remains in this geostationary orbit. In order to do this, we
want to build a device that exerts forces on the satellite when needed, by means of the
satellite’s jet-engines.

In the actual control design problem, this physical system should first be described
by a mathematical model. In this example, a first mathematical model of the satellite’s
motion (based on the assumption that the satellite is represented by a point mass)
will consist of a set of non-linear differential equations that can be deduced using
elementary laws from physics. From this model, we can obtain a simplified one in
the form of a linear, time-invariant, finite-dimensional state-space system with inputs
and outputs.

In this simplified model, the geostationary orbit corresponds to the zero equilib-
rium solution of this finite-dimensional state-space system. Of course, if initially the
satellite is placed in this equilibrium position, then it will remain there for ever, as
desired. However, if, for some reason, at some moment in time the position of the
satellite is perturbed slightly, then it will from that moment on follow a trajectory
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corresponding to an undesired periodic motion in the equator plane, away from the
equilibrium solution. Our desire is to design a controller such that the equilibrium so-
lution corresponding to the geostationary orbit becomes asymptotically stable. This
would guarantee that trajectories starting in small perturbations away from the equi-
librium solution converge back to that equilibrium solution as time runs off to infinity.
In other words, the design specification is: asymptotic stability of the equilibrium so-
lution of the controlled system.

Based on the linear, time invariant, finite-dimensional state-space model of the
satellite’s motion around the geostationary orbit and on the design specification of
asymptotic stability, the next step is to find a model of a controller that achieves the
design specification. The controller should also be chosen from the class of linear,
time-invariant, finite-dimensional state-space systems with inputs and outputs. In
mathematical control theory, the mathematical model describing the physical system
that we want to behave according to the specifications is called the control system, the

system to be controlled, or the plant, and the mathematical model of the controller
device that is aimed at achieving these specifications is called the controller. The
mathematical description of the system to be controlled, together with the controller
is called the controlled system. In our example, we want the controlled system to be
asymptotically stable.

An important paradigm in control systems design, and in mathematical control
theory, is feedback. The idea of feedback is to let the action of the physical con-
trolling device at any moment in time depend on the actual behavior of the physical
system that is being controlled. This idea imposes a certain ‘smart’ structure on the
controlling device: it ‘looks’ at the system that it is influencing, and decides on the
basis of what it ‘sees’ how it will influence the system the next moment. In the ex-
ample of the communications satellite, the controlling device, at a fixed position on
the earth’s surface, takes a measurement of the position of the satellite. Depending on
the deviation from the desired fixed position, the controlling device then exerts certain
forces on the satellite by switching on or off its jet-engines using radio signals.

Any physical controller device that has this feedback structure is called a feedback

controller. In terms of its mathematical model, the feedback structure of a controller
is often represented by certain variables (representing what the controller ‘sees’) be-
ing mapped to other variables (representing the influence that the controller exerts on
the system). The first kind of variables are called measured outputs of the system, the
second kind of variables are called control inputs to the system. Typically, the input
variables are considered to be caused by the measured outputs. Mathematically, the
relation between the measured outputs and the control inputs can be described by a
map. Often, designing a controller for a given system can be formulated as the pro-
blem of finding a suitable map between measured outputs and control inputs. The
controlled system corresponding to the combination of a control system and a feed-
back controller is often called the closed-loop system, and one often speaks about the

interconnection of the control system and the feedback controller. The principle of
feedback is illustrated pictorially in the diagram in Figure 1.1 on the next page.

The control synthesis problems treated in this book are all concerned with the
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Figure 1.1: The principle of feedback

design of feedback controllers: given a linear time-invariant state-space system, and
certain design specifications, find a feedback controller such that the design spec-
ifications are fulfilled by the closed-loop system, or determine that such feedback
controller does not exist.

1.2 An example: instability of the geostationary orbit

In this example we will take a more detailed look at the system describing the motion
of a communications satellite. The principle of such a satellite is that it serves as a
mirror for electromagnetic signals. In order not to be forced to continuously aim the
transmitters and receiving antennas at the satellite, it is desired that the satellite has
a fixed position with respect to these devices. This also has the advantage that the
satellite does not go down and rise, so that it can be used 24 hours a day.

In order to simplify the example, we will consider the motion of the satellite in
the equator plane. By taking the origin at the center of the earth, the position of the
satellite is given by its polar coordinates (r, θ). Introduce the following constants:

ME : = mass of the earth,

G : = earth’s gravitational constant,

� : = earth’s angular velocity,

MS : = mass of the satellite.

We assume that the satellite has on-board jets which make it possible to exert forces
Fr (t) and Fθ (t) to the satellite in the direction of r and θ , respectively. Using New-
ton’s law it can be verified that the equations of motion of the satellite are given by

r̈(t) = r(t)θ̇ (t)2 − G ME

r(t)2 +
Fr (t)
MS

,

θ̈ (t) = −2 ṙ(t)θ̇(t)
r(t)

+ Fθ (t)
MSr(t)

.
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The desired geostationary orbit is given by

θ(t) = θ0 +�t,

r(t) = R0,

Fr (t) = 0,

Fθ (t) = 0,

where R0 still has to be determined. We first check that this indeed yields a solution to
the equations of motion for suitable R0. By substitution in the differential equations
we obtain

0 = R0�
2 −

GME

R2
0

,

which yields

R0 =
3

√

GME

�2 .

By taking the appropriate values for the physical constants in this formula, we find
that R0 is approximately equal to 42000 km. Thus the geostationary orbit is a circular
orbit in the equator plane, at an altitude of approximately 35620 km over the equator
(the radius of the earth being approximately 6380 km). It is convenient to replace the
equations of motions by an equivalent system of four first order differential equations
by putting

x1 : = r(t)− R0,

x2 : = ṙ(t),

x3 : = θ(t)− (θ0 +�t),

x4 : = θ̇ −�.

Note that x3 is the deviation from the desired angle. This value can at any time
instant be measured by an observer on the equator by comparing the actual position
of the satellite to the desired position. In terms of these new variables, the system is
described by









ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)









=











x2(t)

(x1(t)+ R0)(x4(t)+�)2 − G ME

(x1(t)+R0)
2 +

Fr (t)
MS

x4(t)

− 2x2(t)(x4(t)+�)
x1(t)+R0

+ Fθ (t)
MS(x1(t)+R0)











(1.1)

The equations (1.1) constitute a nonlinear state-space model with inputs and outputs.
The control input is u = (Fr , Fθ )

T, for the measured output one could take x 3. The
geostationary orbit corresponds to the equilibrium solution given by

(x1, x2, x3, x4) = (0, 0, 0, 0), Fr = 0, Fθ = 0.
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By Kepler’s law it is clear that if at time t0 the equilibrium solution is perturbed to,
say,

(x1(t0), x2(t0), x3(t0), x4(t0)) = (ξ1, ξ2, ξ3, ξ4),

then the resulting orbit will be an ellipsoid in the equator plane with the earth in one
of its focuses. The angular velocity of the satellite with respect to the center of earth
will then no longer be constant, so to an observer on the equator the satellite will
not be in a fixed position, but will actually go down and rise periodically. Mathe-
matically this can be expressed by saying that the equilibrium solution is not locally
asymptotically stable. What can we do about this? We still have the possibility to
exert forces to the satellite in the r -direction and in the θ -direction. Also, the variable
x3 can be measured. The control synthesis problem can now be formulated as: find
a feedback controller that generates a control input u = (Fr , Fθ )

T on the basis of the
measured output x3, in such a way that the equilibrium solution corresponding to the
geostationary orbit becomes locally asymptotically stable. Of course, it is not clear a
priori whether such controller exists.

system

?

(

Fr

Fθ

)

✻
❄x3

1.3 Linear control systems

The above is an example in which the system to be controlled is a nonlinear system.
The vector (x1, x2, x3, x4)

T is called the state variable of the system. Solutions to the
differential equations (1.1) take their values in the state space R

4. The control input
u = (Fr , Fθ )

T takes its values in the input space R2, the measured output x3 takes its
values in the output space R. More generally, a control system with state variable x ,
state space Rn , input variable u, input space Rm , output variable y, and output space
Rp is given by the following equations:

ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t), u(t)).

Here, f is a function from Rn × Rm to Rn and g is a function from Rn × Rm to Rp .
If f and g are linear, then we obtain a linear control system. If f is linear then there
exist linear maps A : Rn → Rn and B : Rm → Rn such that f (x, u) = Ax + Bu. If
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g is linear then there exist linear maps C : Rn → Rp and D : Rm → Rp such that
g(x, u) = Cx + Du. The equations of the corresponding control system are then

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t).

This is called a linear, time-invariant, finite-dimensional state-space system. In this
book we will exclusively deal with the latter kind of control system models. Many
real life systems can be modeled very well by this kind of system models. Often, the
behavior of a nonlinear system can, at least in the neighborhood of an equilibrium
solution, be approximately modeled by such a linear system.

1.4 Example: linearization around the geostationary

orbit

Again consider the motion of the satellite. We arrived at a nonlinear control system
described by the equations

ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t)),
(1.2)

where u = (Fr , Fθ )
T is the control input, x = (x1, x2, x3, x4)

T is the state variable,
and where y denotes the measured output x 3. The function f : R4 × R2 → R4 is
given by

f ((x1, x2, x3, x4)
T, (Fr , Fθ )

T) =











x2

(x1 + R0)(x4 +�)2 − G ME

(x1+R0)2 +
Fr

MS

x4

− 2x2(x4+�)
x1+R0

+ Fθ

MS(x1+R0)











,

and the function g : R4 → R is simply given by g(x1, x2, x3, x4) = x3. Using a
Taylor expansion in a neighborhood of 0, we know that for x and F small

f (x, u) ≈ f (0, 0)+ Dx f (0, 0)x + Du f (0, 0)u.

Here, Dx f and Du f are the derivatives of f with respect to x = (x1, x2, x3, x4)
T and

u = (Fr , Fθ )
T. In our example we have f (0, 0) = 0 and

Dx f (0, 0) =









0 1 0 0
3�2 0 0 2�R0

0 0 0 1
0 − 2�

R0
0 0









,

Du f (0, 0) =









0 0
1

MS
0

0 0
0 1

MS R0









.
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Here, we have used the fact that G ME

R3
0
= �2. Thus, for small x = (x1, x2, x3, x4)

T

and u = (Fr , Fθ )
T, the original nonlinear control system can be approximated by the

linear control system

ẋ1(t) = x2(t),

ẋ2(t) = 3�2x1(t)+ 2�R0x4(t)+
Fr

MS
,

ẋ3(t) = x4(t),

ẋ4(t) = −
2�
R0

x2(t)+
Fθ

MS R0
.

(1.3)

Of course this can be written as

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),
(1.4)

with A : = Dx f (0, 0), B := Du f (0, 0), and C : = (0 0 1 0). This linear control sys-
tem is called the linearization of the original system around the equilibrium solution
(u, x, y) = (0, 0, 0).

1.5 Linear controllers

As explained, a feedback controller for a given control system is a mathematical
model that generates control input signals for the system to be controlled on the basis
of measured outputs of this system. If we are dealing with a system in state space
form given by the equations

ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t), u(t)),
(1.5)

then a possible choice for the form of such a mathematical model is to mimic the
form of the control system, and to consider pairs of equations of the form

ẇ(t) = h(w(t), y(t)),

u(t) = k(w(t), y(t)).
(1.6)

Any such pair of equations will be called a feedback controller for the system (1.5).
The variable w is called the state variable of the controller, it takes its values in R ℓ

for some ℓ. The controller is completely determined by the integer ℓ, together with
the functions h and k. The measured output y is taken as an input for the controller.
On the basis of y the controller determines the control input u.

If we are dealing with a linear control system given by the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t),

then it is reasonable to consider feedback controllers of a form that is compatible
with the linearity of these equations. This means that we will consider controllers of
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the form (1.6) in which the functions h and k are linear. Such controllers are also
represented by linear, time-invariant, finite-dimensional systems in state space form,
given by

ẇ(t) = Kw(t) + Ly(t),

u(t) = Mw(t) + Ny(t),
(1.7)

where K , L, M and N are linear maps. The state variable of the controller is w. Any
pair of equations (1.7) is called a linear feedback controller .

1.6 Example: stabilizing the geostationary orbit

Our design specification is local asymptotic stability of the geostationary orbit. With-
out going into the details, we mention the following important result on local asymp-
totic stability of a given stationary solution of a system of first order nonlinear differ-
ential equations: if the linearization around the stationary solution is asymptotically

stable, then the stationary solution itself is locally asymptotically stable. This means
that if we succeed in finding a linear controller for the linearization (1.4), then the
same linear controller applied to the original nonlinear control system will make the
geostationary orbit locally asymptotically stable!

Consider the linearization (1.4) around this stationary solution. If we interconnect
this linear system with a linear controller of the form,

ẇ(t) = Kw(t) + Ly(t),

u(t) = Mw(t) + Ny(t),
(1.8)

then the resulting closed-loop system is obtained by substituting u = Mw + Ny into
(1.4) and y = Cx into (1.8). This yields

(

ẋ(t)

ẇ(t)

)

=

(

A + B NC B M

LC K

)(

x(t)

w(t)

)

. (1.9)

This system of first order linear differential equations is asymptotically stable if and
only if all eigenvalues λ of the matrix

Ae : =

(

A + B NC B M

LC K

)

satisfy ℜe λ < 0, i.e., have negative real parts. A matrix with this property is
referred to as a stability matrix. The problem is to find matrices K , L, M and N such
that this property holds. Once we have found these matrices, the corresponding linear
controller applied to the original nonlinear system will make the geostationary orbit
locally asymptotically stable. Indeed, the interconnection of (1.2) with (1.8) is given
by

ẋ(t) = f (x(t), Mw(t) + Ng(x(t))),

ẇ(t) = Kw(t) + Lg(x(t)),

and its linearization around the stationary solution (0, 0) is exactly given by (1.9).
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1.7 Example: regulation of the satellite’s position

In the previous section we discussed the problem of making the geostationary orbit
asymptotically stable. This property guarantees that the state x = (x 1, x2, x3, x4)

T,
after an initial perturbation x(0) = (ξ1, ξ2, ξ3, ξ4)

T away from the zero equilibrium,
converges back to zero as time runs off to infinity. In the satellite example, we are very
much interested in two particular variables, namely x 1(t) = r(t) − R0 and x3(t) =

θ(t)−(θ0+�t). The values of these variables express the deviation from the satellite’s
required position. It is very important that, after a possible initial perturbation away
from the zero solution, these values return to zero as quickly as possible. The design
specification of asymptotic stability alone is too weak to achieve this quick return to
zero.

This motivates the following approach. Given the linear model (1.3) of the satel-
lite’s motion around the geostationary equilibrium and a possible perturbation x(0) =

ξ = (ξ1, ξ2, ξ3, ξ4)
T away from the equilibrium, express the performance of the sys-

tem by the following functional of the control input u = (Fr , Fθ )
T:

J (ξ, Fr , Fθ ) =

∫ ∞

0
αx2

1 (t)+ βx2
2(t)+ γ F2

r (t)+ δF2
θ (t)dt (1.10)

Here, α, β, γ , and δ are non-negative constants, called weighting coefficients. A
reasonable control synthesis problem is now to design a feedback controller that gen-
erates input functions u = (Fr , Fθ )

T, for example on the basis of measurements
of the state variables x = (x1, x2, x2, x4)

T, such that the performance functional
J (ξ, Fr , Fθ ) is as small as possible, while at the same time the closed-loop system is
asymptotically stable. More concretely, one could try to find a feedback controller of
the form

u = Fx,

with F a linear map from R4 to R2 that has to be determined, such that (1.10) is
minimal, and such that the closed-loop system is asymptotically stable. Such feed-
back controller where u is a static linear function of the state variable x is called a
static state feedback control law. By a suitable choice of the weighting coefficients,
it is expected that in the closed-loop system both

∫∞
0 x2

1(t)dt and
∫∞

0 x2
3(t)dt are

small, so that x1(t) and x3(t) will return to a small neighborhood of zero quickly, as
desired. A feedback controller that minimizes the quadratic performance functional
(1.10) is called a linear quadratic regulator. This terminology comes from the fact
that the underlying control system is linear, and the performance functional depends
quadratically on the state and input variables.

1.8 Exogenous inputs and outputs to be controlled

Often, if we make a mathematical model of a real life physical system, we do not only
want to specify the control inputs, but also a second kind of inputs, the exogenous
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inputs. These can be used, for example, to model unknown disturbances that act on
the system. Also, they can be used to ‘inject’ into the system the description of given
time functions that certain variables in the system are required to track. In this case
the exogenous inputs are called reference signals. Often, apart from the measured
output, we want to include in our mathematical model a second kind of outputs, the
outputs to be controlled, also called the exogenous outputs. Typically, the outputs to
be controlled include those variables in the control system that we are particularly
interested in, and that, for example, we want to keep close to certain, a priori given,
values.

A general control system in state space form with exogenous inputs and outputs
to be controlled is described by the following equations:

ẋ(t) = f (x(t), u(t), d(t)),

y(t) = g(x(t), u(t), d(t)),

z(t) = h(x(t), u(t), d(t)).

(1.11)

Here, d represents the exogenous inputs. The functions d are assumed to take their
values in some fixed finite-dimensional linear space, say, Rr . The variable z repre-
sents the outputs to be controlled, which are assumed to take their values in, say,
Rq . The variables x , u and y are as before, and the functions f, g and h are smooth
functions mapping between the appropriately dimensioned linear spaces. Typically,
the function h is chosen in such a way that z represents those variables in the system
that we want to keep close to, or at, some prespecified value z ∗, regardless of the
disturbance inputs d that happen to act on the system.

Again, if f , g and h are linear functions, then the equations take the following
form

ẋ(t) = Ax(t) + Bu(t) + Ed(t),

z(t) = C1x(t) + D11u(t) + D12d(t),

y(t) = C2x(t) + D21u(t) + D22d(t),

for given linear maps A, B, E, C1, D11, D12, C2, D21 and D22. These equations are
said to constitute a linear control system in state space form with exogenous inputs

and outputs. Many real life systems can be modelled quite satisfactorily in this way.
Moreover, the behavior of nonlinear systems around equilibrium solutions is often
modelled by such linear systems.

1.9 Example: including the moon’s gravitational field

In the equations of motion of our satellite we did not include gravitational forces
acting on the satellite caused by other bodies than the earth. Now suppose that in our
satellite model we want to include the forces caused by the gravitational field of the
moon. We can do this by including into our system the forces exerted by the moon on
the satellite as disturbance inputs, whose values are unknown. Let FM,r and FM,θ be
the forces applied by the moon in the r and θ direction, respectively. Including these
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into the model, we obtain









ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)









=











x2(t)

(x1(t)+ R0)(x4(t)+�)2 − G ME

(x1(t)+R0)
2 +

Fr (t)
MS

+
FM,r (t)

MS

x4(t)

− 2x2(t)(x4(t)+�)
x1(t)+R0

+ Fθ (t)
MS(x1(t)+R0)

+
FM,θ (t)

MS(x1(t)+R0)











(1.12)

We are particularly interested in the variables x 1(t) and x3(t), describing the deviation
from the desired geostationary orbit (R0, θ0+�t). Thus, as output to be controlled we
can take the vector (x1, x3). In this way we exactly obtain a model of the form (1.11),
with control input u = (Fr , Fθ )

T, exogenous input d = (FM,r , FM,θ )
T, measured

output y = x3, and output to be controlled z = (x 1, x3)
T.

Of course, an equilibrium solution is given by

(x1, x2, x3, x4) = (0, 0, 0, 0),

(Fr , Fθ ) = (0, 0),

(FM,r , FM,θ ) = (0, 0).

By linearization around this stationary solution, we find that for small (x 1, x2, x3, x4),
small (Fr , Fθ ) and small (FM,r , FM,θ ), our original control system is approximated
by

ẋ1(t) = x2(t),

ẋ2(t) = 3�2x1(t)+ 2�R0x4(t)+
Fr (t)
MS

+
FM,r (t)

MS
,

ẋ3(t) = x4(t),

ẋ4(t) = −
2�
R0

x2(t)+
Fθ (t)
MS R0

+
FM,θ (t)

MS R0
.y(t) = x3(t),

z(t) =

(

x1(t)

x3(t)

)

.

Of course, these equations constitute a linear control system in state space form with
exogenous inputs and outputs:

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

y(t) = C1x(t),

z(t) = C2x(t),

(1.13)

with A and B as before, E : = B, C1 : =
(

0 0 1 0
)

and

C2 : =

(

1 0 0 0
0 0 1 0

)

.

If we interconnect this system with a linear controller of the form (1.8), then the
closed-loop system will be given by

(

ẋ(t)

ẇ(t)

)

=

(

A + B NC1 B M

LC1 K

)(

x(t)

w(t)

)

+

(

E

0

)

d(t),

z(t) =
(

C2 0
)

(

x(t)

w(t)

)

.

(1.14)
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Our control synthesis problem might now be to invent a linear controller such that,
in the closed-loop system, the disturbance input d (= (FM,r , FM,θ )) does not influ-
ence the output z. If a controller achieves this design specification, then it is said
to achieve disturbance decoupling. If this design specification is fulfilled, then, at
least according to the linear model, the satellite will remain in its geostationary or-
bit once it has been put there, regardless of the gravitational forces of the moon. Of
course, part of the design problem would be to answer the question whether such con-
troller actually exists. If it does not exist, one could weaken the design specification,
and require that the influence of the disturbances on the outputs to be controlled be
as small as possible, in some appropriate sense. One could, of course, also ask for
combinations of design specifications to be satisfied, for example both disturbance
decoupling and asymptotic stability of the closed-loop system, in the sense of section
1.6. Alternatively, one could try to design a controller that makes the influence of
the disturbances on the output to be controlled as small as possible, while making the
closed-loop system asymptotically stable, again in the sense of section 1.6.

1.10 Robust stabilization

In general, a mathematical model of a real life physical system is based on many
idealizing assumptions. Thus, in general, the control system that models a certain real
life phenomenon will not be a precise description of that phenomenon. Thus it might
happen that a controller that asymptotically stabilizes the control system that we are
working with, does not make the real life system behave in a stable way at all, simply
because the control system we are working with is not a good description of this real
life system. Sometimes, it is not unreasonable to assume that the correct description
rather lies in a neighborhood (in some appropriate sense) of the control system that
we are working with (this control system is often called the nominal system). In order
to assure that a controller also stabilizes our real life system, we could formulate
the following design specification: given the nominal control system, together with a
fixed neighborhood of this system, find a controller that stabilizes all systems in that
neighborhood. If a controller achieves this design objective, we say that it robustly

stabilizes the nominal system.

As an example, consider the linear control system that models the motion of the
satellite around its stationary solution. This model was obtained under several ideal-
izing assumptions. For example, we have neglected the dynamics of the satellite that
are caused by the fact that, in reality, it is not a point mass. If these additional dynam-
ics were taken into account in the nonlinear control system, then we would obtain a
different linearization, lying in a neighborhood (in an appropriate sense) of the orig-
inal (nominal) linearization, described in section 1.4. One could then try to design a
robustly stabilizing controller for the nominal linearization. Such controller will not
only stabilize the nominal control system, but also all systems in a neighborhood of
the nominal one.
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1.11 Notes and references

Many textbooks on control systems design, and the mathematical theory of systems
and control are available. Among the more recent engineering oriented textbooks
we mention the books by Van de Vegte [202], Phillips and Harbor [145], Franklin,
Power and Emami-Naeini [49], and Kuo [101]. Among the textbooks that concentrate
more on the mathematical aspects of systems and control we mention the classical
textbooks by Kwakernaak and Sivan [105] and Brockett [25]. The satellite example
that was discussed in this chapter is a standard example in several textbooks; see for
instance the book by Brockett [25]. We also mention the seminal book by Wonham
[223], which was the main source of inspiration for the geometric ideas and methods
used in this book. Other relevant textbooks are the books by Kailath [90], Sontag
[181], Maciejowski [118], and Doyle, Francis and Tannenbaum, [40]. As more more
recent textbooks on control theory for linear systems we mention the books by Green
and Limebeer [66], Zhou, Doyle and Glover [232], and Dullerud and Paganini [42].
For textbooks on system identification and modelling we would like to refer to the
books by Ljung [112] and Ljung and Glad [113]. For textbooks on systems and
control theory for nonlinear systems, we refer to the books by Isidori [86], Nijmeijer
and Van der Schaft [134], Khalil [99], and Vidyasagar [208].



Chapter 2

Mathematical preliminaries

In this chapter we start from the assumption that the reader is familiar with the concept
of vector spaces (or linear spaces) and with linear maps. The objective of this chapter
is to give a short summary of the standard linear-algebra tools to be used in this book
with special emphasis on the geometric (as opposed to matrix) properties.

2.1 Linear spaces and subspaces

Linear spaces are typically denoted by script symbols like V,X, . . .. We will only be
dealing with finite-dimensional spaces. Let X be a linear space and V,W subspaces
of X. Then V ∩W and V +W : = {x + y | x ∈ V, y ∈ W} are also subspaces.
The diagram in Figure 2.1 symbolizes the various inclusion relations between these
spaces. It is easily seen that V +W is the smallest subspace containing both V and

0

V ∩W

V +W

W

X

V

Figure 2.1: Lattice diagram
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W , i.e., if a subspace L satisfies V ⊂ L and W ⊂ L then V +W ⊂ L. Similarly,
V∩W is the largest subspace contained in both V and W . The fact that for every pair
of subspaces there exists a smallest subspace containing both subspaces and a largest
subspace contained in both spaces, is expressed by saying that the set of subspaces of
X forms a lattice, and diagram in Figure 2.1 is called a lattice diagram.

If V,W and R are subspaces and V ⊂ R then

R ∩ (V +W) = V + (R ∩W). (2.1)

This formula, which can be proved by direct verification (see exercise 2.1), is called
the modular rule. Let V1,V2, . . . ,Vk be subspaces. Then they are called (linearly)

independent if every x ∈ V1 + V2 + · · · + Vk has a unique representation of the
form x = x1 + x2 + · · · + xk with xi ∈ Vi (i = 1, . . . , k), equivalently, if x i ∈

Vi (i = 1, . . . , k) and x1 + · · · + xk = 0 imply x1 = · · · = xk = 0. Still another
characterization is

Vi ∩
∑

j 	=i

V j = 0 (i = 1, . . . , k). (2.2)

Here, the symbol 0 is used to denote the null subspace of a vector space, i.e. the
subspace consisting only of the element 0. If V1, . . . ,Vk are independent subspaces,
their sum V is called the direct sum of V1, . . . ,Vk and it is written

V = V1 ⊕ · · · ⊕Vk =

k
⊕

i=1

Vk .

If V is a subspace then there exists a subspace W such that V ⊕W = X. Such a
subspace is called a (linear) complement of V. It can be constructed by first choosing
a basis q1, . . . , qk of V and then extending it to a basis q1, . . . , qn of X. Then the
span of qk+1, . . . , qn is a complement of V, as can easily be verified. Obviously, a
complement is not unique.

The linear spaces we are interested in are spaces over the field R of real num-
bers. For some purposes, however, it is convenient to allow also complex vectors and
coefficients. We denote by C the field of complex numbers. We use the complex
extension XC of a given linear space X, consisting of all vectors of the form v+ iw,
where v and w are in X. Many statements made in terms of XC can easily be trans-
lated to corresponding results about X. In this book, we will freely use the complex
extension, often without explicitly mentioning it.

2.2 Linear maps

For a linear map A : X→ Y, we define

ker A : = {x ∈ X | Ax = 0},
im A : = {Ax | x ∈ X},

(2.3)
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called the kernel and image of A, respectively. These are linear spaces. We say that
A is surjective if im A = Y and injective if ker A = 0. Also, A is called bijective (or
an isomorphism) if A is injective and surjective. In this case, A has an inverse map,
usually denoted by A−1. It is also known that a bijection A : X → Y exists if and
only if dim X = dim Y (supposing, as we always do, that the linear spaces are finite
dimensional).

In general, if A : X→ Y is a, not necessarily invertible, linear map and if V is a
subspace of Y, then the inverse image of V is the subspace of X defined by

A−1V : = {x ∈ X | Ax ∈ V}

Given A : X → X and a subspace V of X, we say that V is A-invariant (or,
if the map A is supposed to be obvious, simply invariant) if for all x ∈ V we have
Ax ∈ V, which can be written as AV ⊂ V. The concept of invariance will play a
crucial role in this book.

One can consider various types of restriction of a linear map:

• If B : U → X is a linear map satisfying im B ⊂ V where V is a subspace
of X then the codomain restriction of B is the map B : U → V satisfying
Bu : = Bu for all u ∈ U. We will not use a special notation for this type of
restriction.

• If C : X → Y and V ⊂ X then the map C : V → Y defined by Cx : = Cx

for x ∈ V, is called the (domain) restriction of C to V, and it is denoted C | V.

• If A : X → X and V ⊂ X is an A-invariant subspace then the map A : V →

V defined by Ax : = Ax for x ∈ V is called the restriction of A to V, notation
A | V.

These somewhat abstract definitions will be clarified later on in terms of matrix
representations. If X is an n-dimensional space and q1, . . . , qn is a basis then every
vector x ∈ X has a unique representation of the form

x = x1q1 + · · · + xnqn.

The coefficients of this representation, written as a column vector in R n , form the

column of x with respect to q1, . . . , qn:

x =







x1
...

xn






.

For typographical reasons, we often write this column as (x 1, . . . , xn)T, where the ‘T’
denotes transposition. If q1, . . . , qn is a basis of X and r1, . . . , rp is a basis of Y and
C : X→ Y is a linear map, the matrix of C with respect to the bases q1, . . . , qn and
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r1, . . . , rp is formed by writing next to each other the columns of Cq 1, . . . , Cqn with
respect to the basis r1, . . . , rp . The result will look like

(C) : =







c11 · · · c1n

...
...

cp1 · · · cpn






,

where (c1i , . . . , cpi )
T is the column of Cqi with respect to r1, . . . , rp . We use brack-

ets around C here to emphasize that we are talking about the matrix of the map. We
will use the notation R p×n for the set of p × n matrices. Hence (C) ∈ R p×n . Once
the bases are fixed, the map C and its matrix determine each other uniquely. Also, the
operations of matrix addition, scalar multiplication, product of matrices correspond to
addition of maps, scalar multiplication of a map, composition of maps, respectively.
For this reason it is customary to identify maps with matrices, once the bases of the
given spaces are given and fixed. The advantage of the matrix formulation over the
more abstract linear-map formulation is that it allows for much more explicit calcula-
tions. On the other hand, if one works with linear maps, one does not have to specify
bases, which sometimes makes the treatment much more elegant and transparent.

If V ⊂ X then a basis q1, . . . , qn of X for which q1, . . . , qk is a basis of V (where
k = dim V) is called a basis of X adapted to V. More generally, if V1,V2, . . . ,Vr

is a chain of subspaces (i.e., V1 ⊂ V2 ⊂ · · · ⊂ Vr ), then a basis q1, . . . , qn of X is
said to be adapted to this chain if there exist numbers k 1, . . . , kr such that q1, . . . , qki

is a basis of Vi for i = 1, . . . , r . Finally, if V1, . . . ,Vr are subspaces of X such that
X = V1 ⊕V2⊕ · · · ⊕Vr , we say that a basis q1, . . . , qn is adapted to V1, . . . ,Vr if
there exist numbers k1, . . . , kr+1 such that k1 = 1, kr+1 = n+1 and qki , . . . , qki+1−1
is a basis of Vi for i = 1, . . . , r .

We illustrate the use of matrix representations for the restriction operations intro-
duced earlier in this section.

• If B : U → X is a linear map satisfying im B ⊂ V, we choose a basis
q1, . . . , qn of X adapted to V. Let p1, . . . , pm be a basis of U. Then the
matrix representation of B with respect to the chosen bases is of the form

(B) =

(

B1
0

)

, (2.4)

where B1 ∈ Rk×m (k : = dim V). This particular form is a consequence of the
condition im B ⊂ V. The matrix of the codomain restriction B : U→ V with
respect to the bases p1, . . . , pm and q1, . . . , qk is B1.

• Let C : X → Y and V ⊂ X. Let q1, . . . , qn be a basis of X adapted to V.
Furthermore, let r1, . . . , rp be a basis of Y. The matrix of C with respect to
q1, . . . , qn and r1, . . . , rp is (C) = (C1 C2), where C1 ∈ Rp×k and C2 ∈

R
p×(n−k). The matrix of C | V with respect to these bases is C1.

• Let A : X → X,V ⊂ X such that AV ⊂ V. Let q1, . . . , qn be a basis of X
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adapted to V. The matrix of A with respect to this basis is

(A) =

(

A11 A12
0 A22

)

. (2.5)

The property A21 = 0 is a consequence of the A-invariance of V. The matrix
of A | V is A11.

2.3 Inner product spaces

We assume that the reader is familiar with the concept of inner product. A linear
space over the field R with a real inner product is called a real inner product space. A
linear space over the field C with a complex inner product is called a complex inner

product space. The most commonly used real inner product space is the linear space
Rn with the inner product (x, y) : = x T y. The most commonly used complex inner
product space is the linear space Cn with the inner product (x, y) : = x ∗y (here, ‘∗’
denotes the conjugate transposition, i.e. x ∗ = x̄ T).

If X is a (real or complex) inner product space and if V is a subspace of X, then
V⊥ will denote the orthogonal complement of V. It is easy to see that for any pair of
subspaces V, W of X the following equality holds:

(V ∩W)⊥ = V⊥ +W⊥

Let X and Y be (real or complex) inner product spaces with inner products ( , ) X

and ( , )Y, respectively. If C : X→ Y is a map, then the adjoint C ∗ : Y → X of
C is the map defined by

(x, C∗y)X = (Cx, y)Y (2.6)

for all x in X and y in Y. It can easily be seen that there exists a unique map satisfying
these properties. If X is a (real or complex) inner product space and if A : X → X

is a map, then it can be shown by direct verification that the following holds:

(A−1V)⊥ = A∗V⊥.

It is also easy to verify that if V is A-invariant, then V⊥ is A∗-invariant.

If X and Y are real inner product spaces, if q1, . . . , qn and r1, . . . , rp are or-
thonormal bases of X and Y, respectively, and if (C) is the matrix of C with respect
to these bases, then the matrix of the adjoint map C ∗ is equal to the transposed (C)T

of (C). Indeed, if x and y denote the columns of x and y, respectively, with respect
to the given bases, then (2.6) is equivalent to

xT(C∗)y = x T(C)T y

for all x in Rn and y in Rp .

In the same way, one can show that if X and Y are complex inner product spaces,
if q1, . . . , qn and r1, . . . , rp are orthonormal bases of X and Y, respectively and if
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(C) is the matrix of C with respect to these bases, then the matrix of the adjoint map
C∗ is equal to the conjugate transposed (C)∗ of (C).

As noted in section 2.2, once the bases are fixed, we will identify maps with
matrices. In this book we will usually work with the real inner product space R n with
inner product (x, y) : = x T y. Therefore, instead of using the terminology ‘adjoint’
of a map and using the notation C ∗, we will in this book often use the terminology
’transposed’ and use the notation C T.

2.4 Quotient spaces

A linear subspace V gives rise to the equivalence relation:

x ∼ y :⇐⇒ x − y ∈ V.

on X. The set of equivalence classes is called the quotient space or factor space of
X modulo V, and it is denoted X/V. For any x ∈ X, the equivalence class of which
x is an element is often denoted by x̄ . There is a natural mapping 
 : X → X/V,
called the canonical projection of X onto X/V and defined by 
x : = x̄ . The set
X/V =: X̄ is made into a linear space by

x̄ + ȳ : = x + y, λx̄ : = λx .

It can be shown that addition and scalar multiplication are well defined by these for-
mulas.

Also, these formulas state that 
 is a linear map. Obviously, 
 is surjective and
ker 
 = V. The following result is of importance:

dim V + dim X/V = dim X.

In fact, let q1, . . . , qn be a basis of X adapted to V and let dim V = k. Then q̄1 =

· · · = q̄k = 0, where the bar denotes the projection. Hence, if x̄ is an arbitrary
element of X/V and x is a representative, we write x = λ1q1 + · · · + λnqn . Taking
the image in X/V, we get

x̄ = λ1q̄1 + · · · + λn q̄n = λk+1q̄k+1 + · · · + λn q̄n.

It follows that every element of X/V can be written as a linear combination of
q̄k+1, . . . , q̄n . On the other hand q̄k+1, . . . , q̄n are independent. In fact, if λk+1q̄k+1+

· · · + λn q̄n = 0, then q : = λk+1qk+1 + · · · + λnqn ∈ V, hence q can be written as a
linear combination of q1, . . . , qk . The result is

λk+1qk+1 + · · · + λnqn = λ1q1 + · · · + λkqk .

Now it follows from the independence of q1, . . . , qn that λk+1 = · · · = λn = 0.

Let A : X→ X, let V denote an A-invariant subspace and let X̄ : =X/V. Then
we define the quotient map Ā : X̄ → X̄ by Āx̄ : = Ax . It is easily verified that
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the map Ā is well defined, i.e., that Āx̄ is independent of the particular choice of the
representative of x̄ . Also, this map is linear. Note that the defining formula of Ā can
be rewritten as Ā
 = 
A. The following commutative diagram illustrates the above
definition:

X
A

−−−−→ X








�





�



X/V
Ā

−−−−→ X/V

That this diagram commutes (i.e. that if we go from top-left to the bottom-right, it
yields the same solution whatever route one takes) is obviously equivalent to Ā
 =


A.

We will use the notation A | X/V for Ā. More generally, if V and W are A-
invariant subspaces satisfying V ⊂ W , then we define A | W/V to be the map
obtained by first restricting A to W and then taking the quotient over V as described
a moment ago.

Let V ⊂ X be k-dimensional and A-invariant. Let q1, . . . , qn be an adapted
basis. The matrix of A with respect to q1, . . . , qn has the form

(A) =

(

A11 A12
0 A22

)

.

We have seen before that A11 is the matrix of A | V with respect to the basis
q1, . . . , qk . It can easily be verified that A22 is the matrix of A | X/V with respect to
the basis q̄k+1, . . . , q̄n of X/V.

Let V ⊂ X and C : X → Y be such that V ⊂ ker C (equivalently, CV = 0).
Then we define the quotient map C̄ : X/V → Y by C̄ x̄ : = Cx . Again, this is easily
seen to be well defined. The defining formula for C̄ can be written as C = C̄
.

2.5 Eigenvalues

If A : X→ X is a linear map then λ ∈ C is called an eigenvalue of A if there exists
a nonzero vector v ∈ X such that Av = λv. The set of eigenvalues, which contains
at most n elements, is called the spectrum of A and denoted σ(A). Necessary and
sufficient for λ to be an eigenvalue of A is det(λI − A) = 0. The spectral radius

ρ(A) is defined as follows:

ρ(A) = max{ |λ| | λ ∈ σ A }

The function

χA(s) : = det(s I − A) (2.7)

is a polynomial of degree n. This polynomial is monic, i.e., the leading coefficient is
1. Hence the polynomial is of the form χ A(s) = sn + a1sn−1 + · · · + an . It is called



22 Mathematical preliminaries

the characteristic polynomial of A. Its zeros are exactly the eigenvalues of A. Any
nonzero vector v such that Av = λv is called an eigenvector of A corresponding to
the eigenvalue λ. The set of eigenvectors corresponding to λ is a linear space equal
to ker(λI − A) with the zero element removed.

Let V be an A-invariant subspace and let B : = A | V (the restriction, see section
2.2). Then, obviously, every eigenvalue of B is an eigenvalue of A. We can make a
stronger statement: χB is a divisor of χA. In order to see this, we choose a basis of
X adapted to V, and we obtain the matrix representation

(A) =

(

A11 A12
0 A22

)

. (2.8)

Hence χA(s) = det(s I − (A)) = det(s I − A11)det(s I − A22). On the other hand,
A11 is the matrix of B with respect to the chosen basis. Hence

det(s I − A11) = χB(s),

which proves the statement. We also see that the quotient map Ā : X/V → X/V

has a divisor of χA as characteristic polynomial, because A22 is the matrix of Ā with
respect to a suitable basis (see section 2.4).

From section 2.3, recall that if X is an inner product space and if V is A-invariant,
then V⊥ is AT-invariant. Let C : = AT | V⊥. We claim that the characteristic
polynomial χ Ā of the quotient map Ā is equal to the characteristic polynomial χC

of the restricted map C . To see this, choose an orthonormal basis of X adapted to
V,V⊥ to obtain the matrix representation (2.8). Obviously,

(A)T =

(

AT
11 0

AT
12 AT

22

)

is a matrix representation of the adjoint map A T. Thus, A22 is a matrix representation
of Ā, while AT

22 is a matrix representation of C . Hence,

χ Ā = det(s I − A22) = det(s I − AT
22) = χC .

In particular, we have now proven the following useful formula:

σ(A | X/V) = σ(AT | V⊥). (2.9)

Let A : X→ X and let p(s) = a0sm + a1sm−1 + · · · + am be a polynomial. We
define p(A) : = a0 Am + a1 Am−1 + · · · + am I . This substitution has the following
properties (here p and q are polynomials):

p(A)q(A) = (pq)(A), p(A)+ q(A) = (p + q)(A). (2.10)

In particular, p(A) and q(A) commute. Furthermore, we have the spectral mapping

theorem (see exercise 2.3):

σ(p(A)) = {p(λ) | λ ∈ σ(A)}, (2.11)
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which is sometimes abbreviated to σ(p(A)) = p(σ (A)). Another very famous and
important result is the Cayley-Hamilton theorem:

χA(A) = 0. (2.12)

Theorem 2.1 Let A : X→ X and suppose that χ A is factorized as χA = pq, where

p and q are monic coprime polynomials. Define V : = ker p(A) and W : = ker q(A).

Then we have

(i) V = im q(A),W = im p(A),

(ii) V ⊕W = X,

(iii) V and W are A-invariant,

(iv) χA|V = p, χA|W = q.

We say that two polynomials are coprime (or relatively prime) if they do not have
a common factor, or equivalently, a common (complex) zero. An equivalent condition
is: there exist polynomials r and s such that r p + sq = 1. Furthermore, p | q means
that p is a divisor of q.

Proof of theorem 2.1 : Let r and s be such that r p + sq = 1. Substituting A into
this equation, we find that I = r(A)p(A)+ s(A)q(A) (see (2.10)). Hence, for every
x ∈ X, the following equations hold:

x = r(A)p(A)x + s(A)q(A)x = p(A)r(A)x + q(A)s(A)x . (2.13)

(i) Note that if x ∈ im q(A) then x = q(A)y for some y. Hence

p(A)x = χA(A)y = 0,

so that x ∈ V. Conversely, if x ∈ V then p(A)x = 0 and hence, by (2.13), x =

s(A)q(A)x = q(A)s(A)x ∈ im q(A). The proof of W = im p(A) is similar.

(ii) If x ∈ V ∩W then p(A)x = 0 and q(A)x = 0. Hence, by (2.13), x = 0.
That is, V and W are independent. It also follows from (2.13) that every x ∈ X is an
element of im p(A)+ im q(A) = W + V.

(iii) If p(A)x = 0 then p(A)Ax = Ap(A)x = 0.

(iv) We use lemma 2.2 which is stated directly after the current proof. Now let
α : = χA|V . Then α and q are coprime. In fact, if α(λ) = 0 there exists x ∈ V, x 	= 0
such that Ax = λx . Then p(A)x = p(λ)x = 0 and hence p(λ) = 0. It follows that
q(λ) 	= 0 (since p and q are coprime). As α | χ A, q | χA and α and q are coprime,
the lemma implies that αq | χA. As a consequence, α | p. Similarly, we have that
β : = χA|W divides q. Since deg(αβ) = deg(pq) = n, we must have α = p and
β = q. This completes the proof of theorem 2.1
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Lemma 2.2 If p, q and r are polynomials satisfying p | r and q | r , and p and q are

coprime then pq | r .

Proof : Let u and v be such that up + vq = 1. Then pq | vqr and pq | upr and
hence pq | r since r = upr + vqr .

Note that the matrix of A with respect to a basis q1, . . . , qn adapted to V,W is of
the form

(

A11 0
0 A22

)

.

where χA11 = p and χA22 = q.

2.6 Differential equations

In this section, we consider the linear homogeneous time-invariant differential equa-
tion

ẋ(t) = Ax(t), (2.14)

where A : X → X is a linear map and X an n-dimensional space. The equation
is called linear because the right-hand side is a linear function of x(t). It is called
homogeneous because the right-hand side is zero for x(t) = 0. (An equation of the
form ẋ = Ax(t) + f (t) with f (t) 	= 0 is called inhomogeneous). The equation is
called time invariant because A is independent of t . (One also says that the equation
has constant coefficients). If A would be allowed to be time dependent, the equation
would be called time varying.

In order to specify the solution of (2.14), one has to provide an initial value. The
solution of the initial value problem: find a function x satisfying

ẋ = Ax, x(0) = x0, (2.15)

is denoted by x(t, x0). In the scalar case (n = 1, A = a), it is well known that
x(t, x0) = eat x0.

In order to have a similar result for the multivariable case, we introduce the matrix
exponential function

eAt : = exp(At) : =

∞
∑

k=0

tk Ak

k!
. (2.16)

Since ‖Ak‖ � ‖A‖k for all k, the sum is dominated by
∑

(|t|‖A‖)k/k!. This series
converges for every t and hence so does the series (2.16). Also, (2.16) is a power
series, so that term by term differentiation is allowed. Hence, d

dt
eAt = AeAt = eAt A.

It follows that x(t, x0) = eAt x0.

The concept of invariant subspace has an important significance for systems of
differential equations:
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Definition 2.3 A subspace V is called an invariant subspace of (2.15) if every solu-

tion of (2.15) that starts in V, remains in V for all t � 0. More explicitly, if for every

x0 ∈ V, we have that x(t, x0) ∈ V for all t > 0.

Theorem 2.4 A subspace V is an invariant subspace of (2.15) if and only if V is

A-invariant.

Proof : If x0 ∈ V, then Ax0 ∈ V, A2x0 ∈ V, and, by induction, Akx0 ∈ V for all k.
It follows that for all m, the vector

m
∑

k=0

tk Ak

k!
x0 ∈ V.

Since V is a subspace of the finite dimensional linear space X, it is closed in the
Euclidean topology. Thus we infer that e At x0 ∈ V.

Conversely, if x(t, x0) ∈ V for all t > 0 and all x0 ∈ V, then

Ax0 = lim
t↓0

t−1(et A − I )x0 = lim
t↓0

t−1(x(t, x0)− x0) ∈ V,

again because V is closed.

The definition of e At is not very suitable for the investigation of the behavior of
x(t) for large values of t . This behavior is more adequately given by the spectrum
of A. We will not give a complete picture of the behavior in the most general case,
because it is rather complicated and also not necessary. A convenient formula for the
exponential function is given by Cauchy’s integral in the complex plane:

eAt =
1

2π i

∫

C

ezt (z I − A)−1 dz, (2.17)

where the contour of integration C encloses all eigenvalues of A. This formula can
be proven by using the Neumann expansion

(z I − A)−1 = z−1 I + z−2 A + z−3 A2 + · · ·

for |z| � ‖A‖. Because this is a power series, we can perform integration term wise.
Hence:

1
2π i

∫

C

ezt(z I − A)−1 dz =

∞
∑

k=0

fk(t),

where

fk(t) : =
1

2π i

∫

C

ezt z−k−1 dz Ak =
tk Ak

k!
.
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It follows from Cramer’s rule that (z I − A)−1 is of the form

B(z)/ det(z I − A),

where B(z) is a matrix of which the entries are polynomials of z. Hence, each entry of
(z I − A)−1 is a rational function and the poles of this function are eigenvalues of A.
If we perform partial-fraction decomposition, we find that the entries of (z I − A)−1

can be written as a linear combination of functions of the form (z − λ)−k . As a
consequence, e At is a linear combination of functions of the form

1
2π i

∫

C

ezt(z − λ)−k dz =
tk−1eλt

k!
,

where the λ’s are eigenvalues of A.

Definition 2.5 A function that is a linear combination of functions of the form t keλt ,

where the k’s are nonnegative integers and λ ∈ C, is called a Bohl function. The

numbers λ that appear in this linear combination (and cannot be canceled) are called

the characteristic exponents of the Bohl function. The set of characteristic exponents

of a Bohl function p is called the spectrum of the function and denoted σ(p).

The previous discussion implies:

Theorem 2.6 The entries of e At are Bohl functions. Their characteristic exponents

are eigenvalues of A. Each eigenvalue of A appears as a characteristic exponent of

some entry of e At .

The last statement of the theorem follows from the fact that for every λ ∈ σ(A)

with corresponding eigenvector v, the function x(t) : = e λtv is a solution of (2.14)
and hence equal to x(t, v). On the other hand, according to (2.16) we have x(t, v) =

eAt v. Hence there must be at least one entry of e At with exponent λ. Note that, if
one insists on having real functions and vectors, one has to define Bohl functions as
linear combinations of the functions of the form t keαt cos ωt and tkeαt sin ωt , where
k is an integer and α and ω are real numbers.

The following result is easily verified:

Theorem 2.7 If p and q are Bohl functions then p + q, pq and ṗ are also Bohl

functions. Furthermore, σ(pq) ⊂ σ(p) + σ(q), σ (p + q) ⊂ σ(p) ∪ σ(q) and

σ( ṗ) ⊂ σ(p). Also, if r(t) : =
∫ t

0 p(τ ) dτ then r is a Bohl function with σ(r) ⊂

σ(p) ∪ {0}.

The concept of Bohl function can be extended to vector-valued and matrix-valued
functions in the obvious way. Every vector or matrix whose entries are Bohl functions
will also be called a Bohl function.

Next we consider the inhomogeneous initial value problem

ẋ = Ax + f (t), x(0) = x0. (2.18)
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The solution to this problem can also be expressed in terms of the matrix exponential
function. For this, we introduce the function z(t) : = e−At x(t). We note that this
function satisfies

ż(t) = −Az(t)+ e−At (Ax(t)+ f (t)) = e−At f (t),

a differential equation which can be solved by quadrature. The solution is

z(t) = z(0)+

∫ t

0
e−Aτ f (τ ) dτ.

Since x(t) = eAt z(t), it follows that

x(t) = eAt x0 +

∫ t

0
eA(t−τ ) f (τ ) dτ, (2.19)

where we have used that z(0) = x0. Formula (2.19) is called the variations of con-

stants formula. It is valid for any continuous function f . If f is an arbitrary integrable
function, the expression in the right-hand size of (2.19) is still defined. We will view
the function defined by the right-hand side of (2.19) as the solution of (2.18) in a
generalized sense. As a corollary of theorem 2.7 and this formula we have

Theorem 2.8 If f (t) is a Bohl function then the solution of (2.18) is also a Bohl

function.

2.7 Stability

The concept of stability plays an important role in the theory of differential equations.
In the general theory, where time varying and nonlinear systems are considered, the
definitions are rather involved and the distinctions are subtle. For the very simple
situation we are considering here, a drastic simplification of the treatment is possible.
In particular, we will not need the concept that is called (Liapunov) stability, although
in section 3.8 we will briefly introduce the Liapunov equation and its relation to
stability will be presented.

What is important in control theory is a concept that is usually called asymptotic

stability in the theory of ordinary differential equations. We will refer to this concept
as stability, omitting the adjective ‘asymptotic’. For linear time-invariant systems,
this concept can be defined very simply:

Definition 2.9 The system ẋ = Ax is called stable if every solution tends to zero for

t →∞.

A condition for stability can be derived from the following result

Theorem 2.10 Let p be a Bohl function and let the spectral abscis of p be defined by

�(p) : = max{ ℜe λ | λ ∈ σ(p) }. (2.20)

Then the following statements hold:
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(i) If �(p) < 0 or, equivalently, every exponent λ of p satisfies ℜe λ < 0 then

p(t) → 0 (t → ∞). More specifically, for every γ > 0 there exists M > 0
such that for all t � 0 we have |p(t)| � Me−γ t .

(ii) For all α > �(p) there exists M > 0 such that for all t � 0 we have |p(t)| �

Meαt .

Proof : (i) It is well known that t keλt → 0 (t → ∞) if ℜe λ < 0. Hence a Bohl
function converges to zero if all its exponents have a negative real part. In particular,
such a function is bounded. For γ , take any positive real number such that �(p) <

−γ < 0. Then the function q(t) = eγ t p(t) still is a Bohl function satisfying that
�(q) < 0. There exists M > 0 such that |q(t)| � M , which implies that |p(t)| �

Me−γ t .

(ii) If p is a Bohl function and β = �(p) then for every α > β, the function
q(t) = e−αt p(t) is a Bohl function satisfying �(q) < 0. Hence q is bounded and
there exists a number M such that |p(t)| � Meαt .

We use the notation

�(A) : = max{ℜe λ | λ ∈ σ(A)} (2.21)

for the spectral abscis of a linear map. Then we have

Corollary 2.11 System (2.14) is stable if and only if �(A) < 0. In this case, there

exist positive numbers M and γ such that the inequality ‖e At‖ � Me−γ t holds for

all t > 0.

Proof : In view of the above, we only need to prove necessity. Suppose �(A) � 0
and let λ ∈ σ(A), Av = λv, v 	= 0 and ℜe λ � 0. Then eλtv is a solution of (2.14)
that does not tend to zero.

For some purposes, it is desirable to have different notions of stability. For in-
stance, one might be interested in having a special rate of convergence, i.e., one might
want the solutions to satisfy conditions like eαt x(t) → 0 (t →∞), for a prescribed
α. Or, one wants to avoid high frequencies in the functions, i.e., one imposes on the
exponents a condition like | ℑm λ| � β for a prescribed β. For discrete-time systems,
one can prove that the stability condition is |λ| < 1 for all eigenvalues. These ex-
amples suggest a generalization of the stability condition giving rise to conditions on
the eigenvalues and exponents of the form λ ∈ C g , where Cg is a prescribed part of the
complex plane, thought of as the ‘good’ part. The complement of C g is often denoted
Cb. For the original stability condition, we have Cg = C

− : = {λ ∈ C | ℜe λ < 0}.
Similarly we will use:

C
0 : = {λ ∈ C | ℜe λ = 0}

C
+ : = {λ ∈ C | ℜe λ > 0}
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We introduce a term for Cg :

Definition 2.12 A subset Cg of C is called a stability domain if Cg ∩ R is nonempty

and Cg is symmetric with respect to the real axis (i.e., λ ∈ Cg =⇒ λ̄ ∈ Cg). If Cg is

a stability domain, a Bohl function p is called Cg-stable if σ(p) ⊂ Cg . The system

ẋ = Ax is called Cg-stable if every solution is a Cg-stable Bohl function. Finally, a

linear map A is called Cg-stable if σ(A) ⊂ Cg . A linear map is called Cg-antistable
if σ(A) ∩ Cg is empty.

If the stability domain is obvious from the context, we omit the specification C g .
Some important properties are not valid without this condition. The condition im-
posed on a stability domain that there exists an element in R is for technical reasons.
We will study the spectrum of real matrices which should be contained in the sta-
bility domain. Since the spectrum is always symmetric, it is natural to also require
the stability domain to be symmetric. Note also that the condition of C g-stability is
only defined for Bohl functions. There seems to be no sensible way to extend this
condition to general functions.

Definition 2.13 Let Cg be a stability domain and let A : X → X be a linear map.

The Cg-stable subspace Xg(A) is the set of all x0 such that the solution x(t, x0) of

the differential equation ẋ = Ax with initial value x 0 is Cg-stable. The Cg-unstable
subspace Xb(A) of A is the set of all x0 such that x(t, x0) has only exponents in Cb.

We can obtain explicit expressions for Xg(A) and Xb(A) using the characteristic
polynomial of A. To this extent, we factorize χ A as χA = χ

g
A · χ

b
A, where χ

g
A and χb

A

are monic polynomials such that χ
g

A contains the factors of χA with zeros in Cg and
χb

A the factors with zeros in Cb . Then we have

Theorem 2.14 Xg(A) = ker χ
g
A(A),Xb(A) = ker χb

A(A).

Proof : We use the notation X̄g(A) : = ker χ
g

A(A), X̄b(A) : = ker χb
A(A). Since

χ
g

A and χb
A are coprime, it follows from theorem 2.1 that X̄g(A) and X̄b(A) are A-

invariant, that X̄g(A)⊕ X̄b(A) = X and that χA|X̄g (A) = χ
g
A, χA|X̄b(A) = χb

A. I.e.,

A | X̄g(A) is Cg-stable and A | X̄b(A) is Cg-antistable. Hence, if x0 ∈ X̄g(A)

then x(t, x0) is stable, since it satisfies the restricted differential equation ẋ = (A |

X̄g(A))x . The argument is similar if x0 ∈ X̄b(A). On the other hand, if x0 ∈ Xg(A)

then we can write x0 = xg + xb with xg ∈ X̄g(A) and xb ∈ X̄b(A). Then x(t, xb) =

x(t, x0) − x(t, xg). Both terms in the right-hand side have only exponents in C g

and hence so has x(t, xb). But since xb ∈ X̄b(A) it follows that xb = 0 and hence
x0 ∈ X̄g(A). Again one argues similarly when x0 ∈ Xb(A).

An intuitive way of thinking of Xg(A) is as of the space generated by the eigen-
vectors of A corresponding to stable eigenvalues. This characterization is generally
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not correct if A has multiple eigenvalues. In that case one has to use generalized
eigenvectors, which are a lot less intuitive. This is why we have avoided using this as
a formal definition.

Corollary 2.15 Let Cg be a stability domain. The system ẋ = Ax is Cg-stable if and

only if σ(A) ⊂ Cg , i.e., the map A is Cg-stable.

Proof : (⇒) If ẋ = Ax is Cg-stable then Xg(A) = X. Thus, according to theorem
2.14, χ

g

A(A) = 0. Let λ ∈ σ(A). By applying the spectral mapping theorem (see
section 2.5, with p(s) = χ

g
A(s), we get χ

g
A(λ) ∈ σ(χ

g
A(A)) = {0}, so λ ∈ Cg .

(⇐) Let σ(A) ⊂ Cg . Then χA(s) = χ
g

A(s). Thus, by the Cayley-Hamilton
theorem, Xg(A) = ker χ

g
A(A) = ker χA(A) = X, so ẋ = Ax is Cg-stable.

Definition 2.16 Given a linear map A : X→ X, an A-invariant subspace V of X is

called inner Cg-stable if the map A | V is Cg-stable and outer Cg-stable if A | X/V

is Cg-stable.

If the stability domain is fixed we often simply refer to inner stable and outer
stable respectively.

In the case Cg = C
−, these concepts can be interpreted as follows: V is inner

stable if and only if solutions starting in V (which will remain in V because V is
invariant) converge to zero. In fact, when we restrict the differential equation to V,
the differential equation has a stable coefficient map, viz. A | V. On the other hand,
V is outer stable if and only if the distance of arbitrary solutions to V converges to
zero as t →∞. It is easy to give conditions for a subspace to be inner stable.

Theorem 2.17 Let V be an A-invariant subspace. Then the following statements are

equivalent:

(i) V is inner stable,

(ii) V ⊂ Xg(A),

(iii) ∀λ ∈ Cb (λI − A)V = V.

Proof : (i)⇔ (ii). This equivalence is immediate from the definitions.

(i) ⇔ (iii). Because of the invariance of V it follows that (λI − A)V ⊂ V is
always true. Therefore we concentrate on the converse inclusion. If V is inner stable,
we know that no λ ∈ Cb is an eigenvalue of A | V. Hence for every λ ∈ Cb, the map
(λI − A) | V is invertible. Hence, we must have (λI − A)V = V. Conversely, if
V is not inner stable, there is an eigenvalue λ of A | V in Cb. For this λ, the map
(λI − A) | V is not invertible and hence (λI − A)V 	= V.

Similar characterizations for outer stability are not so easy to obtain. One way of
dealing with outer stability is via orthogonal complements. It is easily verified that V

is outer stable with respect to A if and only if V⊥ is inner stable with respect to AT.
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2.8 Rational matrices

If p(s) and q(s) are polynomials with real coefficients, then their quotient p(s)/q(s)

is called a rational function. This rational function is called proper if deg p � deg q

and strictly proper if deg p < deg q. Here deg p denotes the degree of p. Obviously,
a proper rational function has a limit as |s| → ∞. For a strictly proper rational
function this limit is zero.

If g(s) is the rational function obtained as the quotient of the polynomial p(s)

and q(s), then p(s) and q(s) can have common factors. After cancellation of these
common factors, we obtain g(s) = p1(s)/q1(s), with p1(s) and q1(s) coprime poly-
nomials. The poles of g(s) are the (complex) zeros of the polynomial q 1(s). The set
of all rational functions (with pointwise addition and multiplication) forms a field,
denoted by R(s).

A rational matrix is a matrix whose entries are rational functions. A rational
matrix is called proper if all its entries are proper, and strictly proper if all its entries
are strictly proper. A complex number λ is called a pole of the rational matrix if it is
a pole of at least one of its entries.

A rational matrix G(s) is called left-invertible, if there exists a rational matrix
GL(s) such that G L(s)G(s) = I , the identity matrix. The rational matrix G L(s) is
called a left-inverse of G(s). G(s) is left-invertible if and only if for every column
vector of rational functions q(s) we have: G(s)q(s) = 0 ⇔ q(s) = 0. In other
words, G(s) is left-invertible if and only if its columns (interpreted as elements of the
linear space of column vectors with rational functions as components) are linearly in-
dependent. The rational matrix G(s) is called right-invertible if there exists a rational
matrix G R(s) such that G(s)G R(s) = I . Any such rational matrix G R(s) is called a
right-inverse of G(s). G(s) is right-invertible if and only if for every row-vector of
rational functions p(s) we have: p(s)G(s) = 0 ⇔ p(s) = 0. Thus G(s) is right-
invertible if and only if its rows (interpreted as elements of the linear space of row
vectors with rational functions as components) are linearly independent. A square
rational matrix G(s) is called invertible if there exists a rational matrix, G−1(s), such
that G−1(s)G(s) = G(s)G−1(s) = I , the identity matrix. If such G−1(s) exists,
then it is unique, and it is called the inverse of G(s). G(s) is invertible if and only if
it is both right and left-invertible. Also, G(s) is invertible if and only if the rational
function det G(s) is non-zero.

The normal rank of a, not necessarily square, rational matrix is defined as

normrank G : = max{rank G(λ) | λ ∈ C}.

Except for a finite number of points λ ∈ C, one has normrank G = rank G(λ). A
p × m rational matrix G(s) is left-invertible if and only if normrank G = m, and
right-invertible if and only if normrank G = p.
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2.9 Laplace transformation

A function u(t) defined for t � 0 is called exponentially bounded if there exist num-
bers M and α such that |u(t)| � Meαt for all t � 0. The number α is called a bound-

ing exponent of u. It is of course not uniquely defined. Obviously, Bohl functions
are exponentionally bounded. Examples of functions that are not exponentionally
bounded are t t and et2

. For exponentionally bounded functions we can define the
Laplace transform:

Definition 2.18 If u(t) is exponentionally bounded with bounding exponent α then

L(u)(s) : =

∫ ∞

0
e−stu(t) dt .

for ℜe s > α is called the Laplace transform of u. The operation of forming the

Laplace transform is called the Laplace transformation.

Typically, one denotes the Laplace transform of a function u by û. It is easily
shown that the integral defining the Laplace transform converges uniformly in any
domain of the form ℜe s � β, if β > α. The Laplace transform is an analytic
function in that area. Furthermore, the following fundamental properties hold:

Theorem 2.19

(i) The Laplace transformation is linear, i.e.,

L(u + v) = L(u)+ L(v), L(λu) = λL(u),

for every λ ∈ C, and exponentionally bounded functions u and v. (The sum

and scalar multiple of exponentionally bounded functions is of course also ex-

ponentionally bounded)

(ii) If u(t) is continuously differentiable and u̇ is exponentionally bounded then u

is exponentionally bounded and

L(u̇) = sL(u)− u(0).

(iii) If u and v are exponentionally bounded then the convolution

w(t) : =

∫ t

0
u(τ )v(t − τ ) dτ

is exponentionally bounded and L(w) = L(u)L(v).

(iv) The Laplace transformation is injective, hence if L(u) = L(v) then u = v.

(v) Let u be exponentionally bounded and û : = L(u). Then û(s)→ 0 for ℜe s →

∞.
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As an example we take the function u(t) : = eat . A direct computation of the
integral yields û = 1/(s − a). Alternatively, using the previous theorem, we have
u̇ = au(t) and hence, L(u̇) = sû(s) − u(0) = aû(s). Solving for û gives the same
result. More generally, if u k(t) : = tkeat and k > 0 then u̇k(t) = kuk−1(t) + auk(t)

and hence sûk = kûk−1 + aûk (since uk(0) = 0). This yields ûk = k(s − a)−1ûk−1
for k = 1, 2, . . .. By induction, it follows that û k = k!/(s−a)k+1. Similarly to scalar
functions, the Laplace transformation can be applied to vector and matrix valued
functions. Therefore by the same reasoning as above, we can prove that L(e At ) =

(s I − A)−1.

The following property is fundamental for linear system theory:

Theorem 2.20 An exponentionally bounded function u is a Bohl function if and only

if L(u) is rational, i.e., is the quotient of two polynomials.

Proof : As we saw a moment ago, L(t keat) = k!/(s−a)k+1, which is rational. Hence,
by linearity, every Bohl function has a rational Laplace transform. Conversely, let u

be exponentionally bounded and its Laplace transform û rational. By theorem 2.19
(v), the degree of the numerator is less than the degree of the denominator. Using
partial fraction decomposition, we can write û as a linear combination of functions
of the form c(s − a)−k with k a positive integer and c a complex number. Each of
these functions is the Laplace transform of a Bohl function (viz. ct k−1eat/(k − 1)!)
and hence so is their linear combination.

It follows from the proof of theorem 2.20 that the Laplace transform of a Bohl
function is a strictly proper rational function.

Obviously, the Laplace transform of a Bohl matrix function (i.e. a matrix whose
coefficients are Bohl functions) is a strictly proper rational matrix.

2.10 Exercises

2.1 Let X be a linear space and V,W ,S subspaces of X. Prove the following
statements:

a. (V +W)∩ S ⊃ V ∩ S +W ∩ S and give an example where one does not
have equality

b. If V ⊂ S then equality holds in (a). (Note: this is the modular rule.)

c. dim(V +W) = dim V + dim W − dim(V ∩W)

d. dim((V +W)/W) = dim(V/(V ∩W)).

2.2 Let B : X → Y be a surjective linear map, and let v : [0,∞) → Y be
continuous. Show that there exists a continuous function w : [0,∞) → X

such that v(t) = Bw(t) for all t � 0.
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2.3 Let p be a polynomial.

a. Show that Av = λv implies p(A)v = p(λ)v.

b. Give an example where p(A)v = p(λ)v but Av 	= λv.

c. Show that if µ is an eigenvalue of p(A) then there exists an eigenvalue λ

of A such that p(λ) = µ (spectral mapping theorem).

d. Show that for an eigenvalue λ of A, p(A)v = p(λ)v does imply Av = λv

if p satisfies the conditions:

1. p′(λ) 	= 0 for λ ∈ σ(A). (Here ′ denotes the derivative)
2. p(λ) 	= p(µ) if λ,µ ∈ σ(A).

2.4 Let A : X → X and assume that all eigenvalues of A are simple. Prove that
for every q that divides χ A, the space ker q(A) is spanned by the eigenvectors
of A corresponding to the eigenvalues that are roots of q.

2.5 Show that Xb(AT) =Xg(A)⊥.

2.6 Consider the discrete-time equation

x(t + 1) = Ax(t)

for t = 0, 1, 2, . . .. Develop a treatment of the system similar to the treatment
of systems of differential equations given in section 2.6. In particular, give the
analogs of e At , the variation-of-constants formula, Bohl functions, stability.

2.7 The z-transform of a sequence u(t), t = 0, 1, 2, . . . is given by

û(z) : =

∞
∑

t=0

u(t)z−t .

Investigate the convergence domain and prove that û(z) is rational if and only
if u(t) is a discrete Bohl function.

2.8 Let A : X → X be a linear map and let V and W be A-invariant subspaces.
Show that the characteristic polynomials of A | (V +W)/V and A | W/(V ∩

W) are equal. Note that this implies:

σ(A | (V +W)/V) = σ(A | W/(V ∩W)).

2.9 Let f be a Bohl function which is not identically zero.

a. Show that σ( f ) 	= ∅.

Define �( f ) := max{ℜe λ | λ ∈ σ( f ) }.

b. Show that there exists a λ ∈ σ( f ) satisfying ℜe λ = �( f ) and a k ∈ N

such that

lim
T→∞

T−1
∫ T

0
t−ke−λt f (t)dt

exists and is nonzero.
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c. Show that f → 0 (t →∞) if and only if �( f ) < 0.

2.10 Let f be a Bohl function and Cg ⊂ C a stability domain.

a. Show that f can be uniquely decomposed as f = f 1 + f2, where f1 is
stable (i.e. σ( f1) ⊂ Cg) and f2 is antistable (i.e., σ( f2) ∩ Cg = ∅).

b. Let f be stable and antistable. Show that f = 0.

Hint: Use the Laplace transform.

2.11 Let V and W be as in theorem 2.1. Let U be A-invariant. Prove

V ⊂ U ⇔ U+W = X.

2.12 a. Let A : X→ X be invertible and V ⊂ X be A-invariant. Show that V is
also A−1-invariant.

b. Let A : X→ X and V ⊂ X be A-invariant. Show that V is (λI − A)−1-
invariant for all λ 	∈ σ(A).

2.11 Notes and references

Linear algebra became a major tool in linear system theory ever since the state space
description of linear systems became the standard tool for developing the theory. In
the earlier literature, the results were expressed in rather explicit matrix terms, and
in a very basis-dependent way. Wonham in [223] stressed the basis-independent ge-
ometric approach using subspaces and quotient spaces rather than matrix decompo-
sitions. This approach is largely followed in this book, although in some situations,
matrix operations have been used to simplify the treatment.

Bohl functions as introduced in this chapter are named after the Latvian mathe-
matician Piers Bohl and his early work as presented in [24].

There are numerous books available on the topics introduced in this chapter. For
the first five sections a good reference is Halmos [67]. Differential equations and
stability are also treated in many textbooks, see for instance Perko [143], Arnold [8]
and Goldberg and Potter [64]. Finally the Laplace transform is treated in for instance
Kwakernaak and Sivan [107] or Kamen and Heck [97]. In particular properties as
listed in theorem 2.19 can be found in these references.
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Chapter 3

Systems with inputs and

outputs

3.1 Introduction

The following equations will be the main object of study of this chapter:

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t).
(3.1)

These equations are said to describe a system, which we usually denote by �. Here
A, B, C and D are maps between suitable spaces (or matrices of suitable dimen-
sions) and the functions x, u and y are usually considered to be defined on the real
axis R or on any subinterval of it. In particular, one often assumes the domain of
definition to be the nonnegative part of R. The function u is called the input, and its
values are assumed to be given from outside the system. The class of admissible input
functions will be denoted U. Often, U will be the class of piecewise continuous or lo-
cally integrable functions, but for most purposes, the exact class from which the input
functions are chosen is not important. However, it is important that U has the slicing

property, i.e., if u1 ∈ U and u2 ∈ U, then for any θ > 0, the function u 3 defined by
u3(t) : = u1(t) (0 � t < θ) and u3(t) : = u2(t) (t � θ), is in U. We will assume that
input functions take values in an m-dimensional space U, which we often identify
with Rm . The first equation of � is a differential equation for the variable x . For a
given initial value of x and input function u, the function is completely determined
by this equation. The variable x is called the state variable and it is assumed to have
values in an n-dimensional space X. The space X will be called the state space. It
will usually be identified with Rn . Finally, y is called the output of the system, and
has values in a p-dimensional space Y, which we identify with R p . Since the system
� is completely determined by the maps (or matrices) A, B, C and D, we identify
� with the quadruple (A, B, C, D).

In many cases, the map D is irrelevant in the given consideration. Therefore, it



38 Systems with inputs and outputs

is often assumed to be absent or zero. This gives rise to a slightly simpler theory. In
this case the system is often denoted (C, A, B), the order of the matrices reflecting
the order in which the matrices mostly appear in products. For some applications
and problems, however, the presence of the term Du, called the feedthrough term, is
essential.

The solution of the differential equation of � with initial value x(0) = x 0 will
be denoted as xu(t, x0). It can be given explicitly using the variation-of-constants
formula (2.19). The result is

xu(t, x0) = eAt x0 +

∫ t

0
eA(t−τ )Bu(τ ) dτ. (3.2)

The corresponding value of y is denoted by y u(t, x0). As a consequence of (3.2) we
have

yu(t, x0) = CeAt x0 +

∫ t

0
K (t − τ )u(τ ) dτ + Du(t). (3.3)

where K (t) : = CeAt B. In the case D = 0, it is customary to call K (t) the impulse-

response matrix. In the general case one would call the distribution K (t) + Dδ(t)

(see appendix A) the impulse response, but we will not use distributions at this point.
The integral in the right-hand side is a convolution integral (see theorem 2.19). This
suggests the use of the Laplace transformation. Using the properties of the Laplace
transformation as described in section 1.7, we find that the equations of � reduce to
the algebraic equations:

sx̂ = Ax̂ + Bû + x0, ŷ = Cx̂ + Dû,

from which we can eliminate x̂ . In the case x 0 = 0, we obtain:

ŷ(s) = T (s)û(s),

where

T (s) : = C(s I − A)−1 B + D. (3.4)

The function T (s) is called the transfer matrix of the system. If D = 0, it is easily
seen to be the Laplace transform of the impulse response. This is in correspondence
with (3.3) because of the convolution theorem. Note that T (s) is a proper rational
matrix and strictly proper if D = 0. We call the system � proper or strictly proper
if the transfer matrix is proper or strictly proper respectively. If λ is a pole of the
transfer matrix, then the matrix λI − A must be singular, i.e., λ must be an eigenvalue
of A. Therefore, the eigenvalues of A are often called the poles of the system. Note
however, that an eigenvalue of A is not necessarily a pole of T (s) because there may
be pole-zero cancellations. Conditions for every eigenvalue of A to be pole of � can
be expressed in terms of controllability and observability, to be introduced in the next
sections.
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3.2 Controllability

In this section, we concentrate on the differential equation of (3.1), hence on the
relation between u and x . We investigate to what extent one can influence the state
by a suitable choice of the control. For this purpose, we introduce the (at time T )
reachable space WT , defined as the space of points x1 for which there exists a control
u such that xu(T, 0) = x1, i.e. the set of points that can be reached from the origin
at time T . It follows from the linearity of the differential equation that W T is a linear
subspace of X. In fact, (3.2) implies:

WT =

{
∫ T

0
eA(T−τ ) Bu(τ ) dτ

∣

∣

∣

∣

u ∈ U

}

. (3.5)

We call system � reachable at time T if every point can be reached from the origin,
i.e., if WT = X. It follows from (3.2) that if the system is reachable, every point can
be reached from every point, because the condition for the point x 1 to be reachable
from x0 is

x1 − eAT x0 ∈ WT .

The property that every point is reachable from any point in a given time interval
[0, T ] is called controllability (at T ). Finally we have the concept of null controlla-

bility, i.e., the possibility to reach the origin from an arbitrary initial point. According
to (3.2), for a point x0 to be null controllable at T we must have

eAT x0 +

∫ T

0
eA(T−τ ) Bu(τ ) dτ = 0

for some u ∈ U. We observe that x0 is null controllable at T (by the control u) if and
only if −e AT x0 is reachable at T (by the control u). Since e AT is invertible we see
that � is null controllable if and only if � is reachable at T . Henceforth, we refer
to the equivalent properties reachability, controllability, null controllability simply as
controllability (at T ). It should be remarked that the equivalence of these concepts
breaks down in other situations, e.g. for discrete-time systems. Now we intend to
obtain an explicit expression for the space WT and based on this an explicit condition
for controllability. This is provided by the following result.

Theorem 3.1 Let η be an n-dimensional row vector and T > 0. Then the following

statements are equivalent:

(i) η ⊥ WT (i.e., ηx = 0 for all x ∈ WT ),

(ii) ηet A B = 0 for 0 � t � T ,

(iii) ηAk B = 0 for k = 0, 1, 2, . . .

(iv) η
(

B AB · · · An−1 B
)

= 0.
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Here, for given n × m matrices B1, B2, . . . , Bn , the expression

(

B1 B2 · · · Bn

)

denotes the n×nm block matrix we obtain by putting the matrices next to each other.

Proof : (i)⇔ (ii) If η ⊥WT , then (see (3.5)):

∫ T

0
ηeA(T−τ ) Bu(τ ) dτ = 0 (3.6)

for every u ∈ U. Choosing u(t) = B TeAT(T−t)ηT for 0 � t � T , we obtain

∫ T

0
‖ηeA(T−τ ) B‖2dτ = 0,

from which (ii) follows. Conversely, assume that (ii) holds. Then (3.6) holds and
hence (i) follows.

(ii)⇔ (iii) This is obtained by power series expansion of e At .

(iii) ⇒ (iv) This follows immediately from the evaluation of the vector-matrix
product.

(iv)⇒ (iii) This implication is based on the Cayley-Hamilton Theorem (see 2.12).
According to this theorem, An is a linear combination of I, A, . . ., An−1. By induc-
tion, it follows that Ak (k > n) is a linear combination of I, A, . . . , An−1 as well.
Therefore, ηAk B = 0 for k = 0, 1, . . . , n − 1 implies that ηAk B = 0 for all k ∈ N.

Corollary 3.2 WT is independent of T for T > 0. Specifically:

WT = im
(

B AB · · · An−1 B
)

.

Because of the above corollary we will often refer to W instead of W T .

Corollary 3.3 W is the A-invariant subspace generated by B : = im B, i.e., W is the

smallest A-invariant subspace containing B. Explicitly, W is A-invariant, B ⊂ W ,

and any A-invariant subspace L satisfying B ⊂ L also satisfies W ⊂ L. We will

denote the A-invariant subspace generated by B by 〈A | B〉, so that we can write

W = 〈A |B〉. For the space 〈A | B〉 we have the following explicit formula

〈A | B〉 = B + AB + · · · + An−1B,

Corollary 3.4 The following statements are equivalent:

(i) There exists T > 0 such that system � is controllable at T ,
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(ii) 〈A |B〉 = X,

(iii) rank
(

B AB · · · An−1 B
)

= n,

(iv) the system � is controllable at T for all T > 0.

We will say that the matrix pair (A, B) is controllable if one of these equivalent
conditions is satisfied.

Example 3.5 Let A and B be defined by

A : =

(

−2 −6
2 5

)

, B : =

(

−3
2

)

.

Then (B AB) =

(

−3 −6
2 4

)

, rank(B AB) = 1, and consequently, (A, B) is

not controllable. The reachable space is the span of (B AB), i.e., the line with
parameter representation x = α(−3, 2)T, equivalently, the line given by the equation
2x1 + 3x2 = 0. This can also be seen as follows: When introducing z : = 2x 1 + 3x2,
we see immediately that ż = z. Hence, if z(0) = 0, which is the case if x(0) = 0, we
must have z(t) = 0 for all t � 0.

3.3 Observability

In this section, we include the second equation of (3.1), y = Cx + Du, in our con-
siderations. Specifically, we want to investigate to what extent it is possible to recon-
struct the state x when the input u and the output y are known. The motivation is that
we often can measure the output and prescribe (and hence know) the input, whereas
the state variable is hidden.

Definition 3.6 Two states x0 and x1 in X are called indistinguishable on the interval

[0, T ] if for any input u we have yu(t, x0) = yu(t, x1) for 0 � t � T .

Hence x0 and x1 are indistinguishable if they give rise to the same output values
for every input u. According to (3.3), for x 0 and x1 to be indistinguishable on [0, T ]

we must have that

CeAt x0+

∫ t

0
K (t−τ )u(τ ) dτ+Du(t) = CeAt x1+

∫ t

0
K (t−τ )u(τ ) dτ+Du(t)

for 0 � t � T and for any input function u. We notice that the input function
is of no relevance to distinguishability, i.e. if one u is able to distinguish between
two states, then any input is. In fact, x0 and x1 are indistinguishable if and only if
CeAt x0 = CeAt x1 (0 � t � T ). Obviously, x0 and x1 are indistinguishable if and
only if v : = x0 − x1 and 0 are indistinguishable. We apply theorem 3.1 with η = v T

and we transpose the equations. Then it follows that Ce At x0 = CeAt x1 (0 � t � T )

if and only if Ce At v = 0 (0 � t � T ) and hence if and only if C Akv = 0 (k =



42 Systems with inputs and outputs

0, 1, 2, . . .). Using the Cayley-Hamilton theorem, we can show that we only need to
consider the first n terms, i.e.















C

C A

C A2

...

C An−1















v = 0. (3.7)

As a consequence, the distinguishability of two vectors does not depend on T . The
space of vectors v for which (3.7) holds is denoted 〈ker C | A〉, and called the unob-

servable subspace. It is equivalently characterized as the intersection of the spaces
ker C Ak for k = 0, . . . , n − 1, i.e.

〈ker C | A〉 =

n−1
⋂

k=0

ker C Ak .

One can also say: 〈ker C | A〉 is the largest A-invariant subspace contained in ker C .
Still another characterization is: ‘v ∈ 〈ker C | A〉 if and only if y0(t, v) is identically
zero’, where the subscript refers to the zero input.

Definition 3.7 System � is called observable if any two distinct states are distin-

guishable.

The previous considerations immediately lead to the following result:

Theorem 3.8 The following statements are equivalent:

(i) system � is observable,

(ii) every state is distinguishable from the origin,

(iii) 〈ker C | A〉 = 0,

(iv) CeAt v = 0 (0 � t � T ) =⇒ v = 0,

(v) rank















C

C A

C A2

...

C An−1















= n.

Since observability is completely determined by the matrix pair (C, A), we will
often say ‘(C, A) is observable’ instead of ‘system � is observable’.

There is a remarkable relation between controllability and observability proper-
ties, which is referred to as duality. This property is most conspicuous from the con-
ditions in corollary 3.4 (iii) and theorem 3.8 (v), respectively. Specifically, (C, A) is
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observable if and only if (A T, CT) is controllable. As a consequence of duality, many
theorems on controllability can be translated to theorems on observability, and vice
versa by mere transposition of matrices. Duality will play an important role in the
remainder of this book.

Example 3.9 Let

A : =

(

−11 3
−3 −5

)

, B : =

(

1
1

)

, C : =
(

1 −1
)

,

Then,

rank
(

C

C A

)

= rank
(

1 −1
−8 8

)

= 1,

hence (C, A) is not observable. Notice that if v ∈ 〈ker C | A〉 and u = 0 identically
then y = 0 identically. In this example 〈ker C | A〉 is the span of (1, 1) T.

3.4 Basis transformations

A choice of a basis in X induces matrix representations for A, B, C and D. Very
often, one chooses the standard basis for X and identifies the triple of linear maps
with their matrices. A change of basis results in a modification of the matrix repre-
sentations. Here we want to investigate this in more detail.

Let S be a basis-transformation matrix. Then the relation between the ‘old’ and
the ‘new’ state vector is: x = Sx̄ . When we substitute this into the equations of �,
we obtain:

˙̄x(t) = Āx̄(t)+ B̄u(t),

y(t) = C̄ x̄(t)+ Du(t),
(3.8)

where

Ā : = S−1 AS, B̄ : = S−1 B, C̄ : = C S. (3.9)

Obviously, D is not modified by such a transformation. As a result, the matrix D is
irrelevant in the considerations of this section and we will assume D to be absent.

We will say that the systems (C, A, B) and (C̄, Ā, B̄) are isomorphic if there
exists a nonsingular matrix S for which (3.9) holds. The following result shows that
isomorphic systems have similar properties.

Theorem 3.10 Let (C, A, B) and (C̄, Ā, B̄) be isomorphic. Then we have:

(i) ( Ā, B̄) is controllable if and only if (A, B) is controllable,

(ii) (C̄, Ā) is observable if and only if (C, A) is observable,
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(iii) C̄e Āt B̄ = CeAt B for all t ,

(iv) C̄(s I − Ā)−1 B̄ = C(s I − A)−1 B as rational functions.

(v) σ( Ā) = σ(A).

We see that isomorphic systems have the same controllability and observability
properties, the same impulse response and transfer matrix (i.e., the same i/o behavior)
and the same eigenvalues.

Proof : (i) Follows from
(

B̄ Ā B̄ · · · Ān−1 B̄
)

= S−1 (

B AB · · · An−1 B
)

so that

rank
(

B̄ ĀB̄ · · · Ān−1 B̄
)

= rank
(

B AB · · · An−1 B
)

.

(ii) is dual to (i).

(iii) and (iv) follow by straightforward substitution of (3.9) into the formulas.

(v) is a well-known result from linear algebra.

Basis transformations can be used to simplify the system in such a way that var-
ious problems can be solved more easily. For instance, one might want to choose S

such that A has a diagonal form (if possible). Such transformations are well known
in linear algebra. For system theory however, different transformations have shown
to be useful. These will not be discussed here in detail. We restrict ourselves to the
derivation of a transformation that displays the controllability properties of � very
clearly. Assume that � is not controllable and that B 	= 0. Then the reachable space
W = 〈A | im B〉 is not zero and not equal to X. Hence, it is a proper subspace of
dimension, say k. Let q1, . . . , qn be a basis of X adapted to W . The column of the
state variable x with respect to this basis will be denoted x̄ . We can decompose this
column into

x̄ =

(

x1
x2

)

,

where x1 has k and x2 has n − k components. Hence x ∈ W if and only if x 2 =

0. We decompose the new matrices Ā and B̄ accordingly (C̄ is irrelevant in this
consideration):

Ā =

(

A11 A12
0 A22

)

, B̄ =

(

B1
0

)

.

Here B2 = 0 because im B ⊂ W and A21 = 0 because W is A-invariant (see
(2.4) and (2.5)). It follows that x 1 and x2 satisfy the following system of differential
equations:

ẋ1 = A11x1 + A12x2 + B1u,

ẋ2 = A22x2.
(3.10)
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We observe that the variable x2 is completely uncontrollable. The input does not have
any effect on it. On the other hand, the equation for x 1 is completely controllable,
since W is the reachable subspace. Thus we have the following result:

Theorem 3.11 Let (A, B) be not controllable and B not zero. Then there exists an

invertible matrix S such that the pair ( Ā, B̄) given by Ā : = S−1 AS, B̄ : = S−1 B,

has the form

Ā =

(

A11 A12
0 A22

)

, B̄ =

(

B1
0

)

,

where (A11, B1) is controllable.

The above theorem basically splits the system described by the differential equa-
tion ẋ = Ax + Bu into two subsystems as illustrated in figure 3.1.

u
✲

�1

✲

✲

✻

�2

Figure 3.1

The result can also be formulated in a more geometric fashion, using subspaces
and quotient spaces as introduced in chapter 2. Since W is A-invariant, it is possible
to consider the restriction A of A to W . We also introduce B, the codomain restriction
of B to W and C , the (domain) restriction of C to W . If we assume that x 0 ∈ W , we
have that x(t) ∈ W for all t � 0. Then we obtain the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),

which represents a controllable system with state space W . On the other hand, we can
introduce the quotient space X̄ : =X/W and the corresponding state vector x̄ = 
x

(see section 2.4). They give rise to the quotient maps

Ā : X̄→ X̄, B̄ : U→ X̄,

defined by the relations Ā
 = 
A, B̄ = 
B. As B̄ = 0, the equation for this
quotient system is:

˙̄x = Āx̄, (3.11)

which is obviously completely uncontrollable. When comparing with the matrix de-
composition formulation, we note that A 11 corresponds to A, and A22 to Ā. In partic-
ular, σ(A11) = σ(A) and σ(A22) = σ( Ā). It is customary to call the system for x1
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given by the equations of (3.10) (under the assumption that x 2 = 0) the controllable

subsystem of �. Similarly one would like to call the part describing the equation for
x2 the uncontrollable subsystem. Unfortunately, this is not really possible, since this
part of the system is not unique, but depends on a particular choice of a basis of the
state space. It is possible, however, to talk about the uncontrollable quotient system,
i.e., the system given by (3.11).

Dual results can be given for observability (see exercise 3.7).

3.5 Controllable and observable eigenvalues

We consider again the system (3.1).

Definition 3.12 An eigenvalue λ of A is called (A, B)-controllable if

rank
(

A − λI B
)

= n.

The eigenvalue λ is called (C, A)-observable if

rank
(

A − λI

C

)

= n.

When there is no danger of confusion we omit the prefix (A, B), and we write
controllable instead of (A, B)-controllable, and similarly for observability. Note that
instead of the rank condition for controllability we can write:

‘for every row vector η, we have: ηA = λη, ηB = 0 =⇒ η = 0.’

I.e., there does not exist a left eigenvector of A corresponding to the eigenvalue λ

which is orthogonal to im B. Still another interpretation can be given in terms of
subspaces:

(A − λI )X+ BU = X, (3.12)

or, equivalently,

im(A − λI ) + im B = X.

Dual interpretations are possible for the observability of an eigenvalue. E.g., a condi-
tion for observability of an eigenvalue is

‘for every vector p we have: Ap = λp, Cp = 0 =⇒ p = 0’,

equivalently,

ker(A − λI ) ∩ ker C = 0.

The definitions will be motivated in theorem 3.15, but first we give a controllability
and an observability condition in terms of the new concepts:
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Theorem 3.13

(i) (A, B) is controllable if and only if every eigenvalue of A is (A, B)-control-

lable, i.e. if and only if

∀λ ∈ σ(A) rank
(

A − λI B
)

= n. (3.13)

(ii) (C, A) is observable if and only if every eigenvalue of A is (C, A)-observable,

i.e. if and only if

∀λ ∈ σ(A) rank
(

A − λI

C

)

= n. (3.14)

Proof : We prove the second statement. The first result is then obtained by dualiza-
tion. Suppose that (C, A) is not observable. Then N : = 〈ker C | A〉 is a nontrivial
A-invariant subspace. Hence, the map A restricted to N has an eigenvalue λ and
a corresponding eigenvector v ∈ N . Since N ⊂ ker C , we have, in addition to
Av = λv that Cv = 0, so that (3.14) is violated. Conversely, if condition (3.14) is not
satisfied, there exists an eigenvalue λ of A and a corresponding eigenvector v such
that Av = λv and Cv = 0. But then we have Akv = λkv and hence C Akv = 0 for
all k � 0, contradicting the observability of (C, A).

In order to give a justification of the terms controllable and observable eigenval-
ues, we are going to perform a basis transformation in the state space. First we note
that controllability and observability of eigenvalues are invariant under such transfor-
mations.

Lemma 3.14 If (C̄, Ā, B̄) and (C, A, B) are isomorphic, then λ is ( Ā, B̄)-control-

lable if and only if λ is (A, B)-controllable. Dually, λ is (C̄, Ā)-observable if and

only if λ is (C, A)-observable.

Proof : This is a consequence of

(

Ā − λI B̄
)

= S−1 (

A − λI B
)

(

S 0
0 I

)

and its dual.

Theorem 3.15 Let (A, B) be given and let ( Ā, B̄) be isomorphic to (A, B) and of

the form described in theorem 3.11. Then λ ∈ σ(A) is a controllable eigenvalue of

(A, B) if and only if λ 	∈ σ(A22) (= σ(A | X/〈A | im B〉).
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Proof : Because of the invariance of the controllability of eigenvalues under isomor-
phism, we may assume that (C, A, B) = (C̄, Ā, B̄). Assume that λ ∈ σ(A22). Let
η2 	= 0 be a row vector such that η2 A22 = λη2. Then the vector η : = (0 η2) satisfies
ηA = λη, ηB = 0 and η 	= 0. Hence, λ is not (A, B)-controllable. Conversely, if
there exists a row vector η 	= 0 such that ηA = λη and ηB = 0, we decompose η

into (η1 η2), according to the decomposition of A and B. Then

η1 A11 = λη1,

η1 A12 + η2 A22 = λη2,

η1 B1 = 0.

Since (A11, B1) is controllable, this implies that η1 = 0. Hence η2 	= 0 and η2 A22 =

λη2, so that λ ∈ σ(A22).

A dual result can be given for observable eigenvalues.

3.6 Single-variable systems

In this section, we consider the situation where m = p = 1, i.e., where there is one
input and one output. Systems for which this is the case are called single-variable

(or SISO, or monovariable) systems. When one wants to emphasize that the system
under consideration is not single variable, one speaks of multivariable (or MIMO)
systems. Single-variable systems arise when one has a higher order differential equa-
tion describing the relation between scalar inputs and outputs. For instance,

y(n) + a1 y(n−1) + · · · + an y = u. (3.15)

Introducing the variables x1 : = y, x2 : = ẏ, x3 : = y(2), . . . , xn : = y(n−1), one can
rewrite (3.15) in matrix-vector form:

ẋ = Ax + bu,

y = cx,
(3.16)

where

A : =

















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−an −an−1 · · · −a2 −a1

















, b : =















0
...

0
0
1















,

c : =
(

1 0 · · · 0 0
)

.

(3.17)

A system of this form is called a system in control canonical form. The matrix A is
said to be a companion matrix. We have written lower case letters for the B and C
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matrices to emphasize the fact that they are vectors. Somewhat more general is the
following equation.

y(n) + a1 y(n−1) + · · · + an y = cnu(n−1) + · · · + c1u. (3.18)

Such a system will not fit in our framework, because the input function must satisfy
differentiability conditions that conflict with the slicing property (see section 3.1).
However, if we introduce a variable x 1 satisfying

x
(n)
1 + a1x

(n−1)
1 + · · · + anx1 = u, (3.19)

the function y : = cn x
(n−1)
1 + · · · + c1x1 satisfies (3.18). Introducing the rest of the

state variables x2, . . . , xn as before, we obtain the system (3.16) with

A =

















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−an −an−1 · · · −a2 −a1

















, b : =















0
...

0
0
1















,

c =
(

c1 c2 · · · cn−1 cn

)

.

(3.20)

Remark 3.16 If y satisfies an equation of the form

y(n) + a1 y(n−1) + · · · + an y = d0u(n) + · · · + dnu, (3.21)

we introduce the variable z : = y − d0u and notice that z satisfies (3.18) with

cn : = d1 − d0a1, . . . , c1 : = dn − d0an.

Hence, equation (3.21) corresponds to the system � s : = (A, b, c, d) where (c, A, b)

is given by (3.20) and d : = d0. In the sequel of this section, we will assume that we
deal with equation (3.18).

We are now going to investigate the controllability and observability properties of
the system �s given by (3.20). First of all, it is easily seen that (A, b) is controllable.
In fact,

(

A − λI b
)

=

















−λ 1 0 · · · 0 0

0 −λ 1
. . .

...
...

...
. . .

. . .
. . . 0 0

0 · · · 0 −λ 1 0
−an · · · −a3 −a2 −a1 − λ 1

















.

Omitting the first column, we get a square matrix which is obviously nonsingular for
all λ ∈ σ(A). The question of observability is somewhat more subtle. Assume that
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λ ∈ σ(A) and that v is a corresponding eigenvector. Writing v = (v1, . . . , vn)T and
substituting (3.20) into the equation Av = λv, we find

λv1 = v2

...

λvn−1 = vn

λvn = −anv1 − an−1v2 − · · · − a1vn .

Hence vk = λk−1v1 for k = 1, . . . , n, and q(λ)v1 = 0, where

q(s) : = sn + a1sn−1 + · · · + an. (3.22)

Obviously, v1 	= 0, since otherwise the vector v would be zero. By homogeneity, we
may assume v1 = 1, so that vk = λk−1 and q(λ) = 0. Conversely, if for some λ ∈ C

we have q(λ) = 0, then λ ∈ σ(A) and v : = (1, λ, . . . , λn−1)T is a corresponding
eigenvector. (Note that this eigenvector is unique apart from scalar multiplication).
Assume now that λ is not observable. Then there exists a nonzero vector v such that
Av = λv, Cv = 0. According to the previous calculations, this means that q(λ) = 0
and, in addition, p(λ) = 0, where

p(s) : = cnsn−1 + · · · + c1. (3.23)

We conclude that the unobservable eigenvalues are the common zeros of p(s) and
q(s). Consequently, (c, A) is observable if and only if p(s) and q(s) are coprime.
The polynomials p and q are fundamental for the system. In fact, when we apply the
Laplace transformation to equation (3.18), and we assume that we have homogeneous
initial values, we get

q(s)ŷ(s) = p(s)û(s).

This implies that T (s) : = p(s)/q(s) is the transfer function of �s , i.e., c(s I− A)−1b

= p(s)/q(s). This equality implies that q(s) is the characteristic polynomial of A.
Indeed, it is known that (s I − A)−1 = N(s)/ψ(s), where the numerator polynomial
N(s) is the adjoint matrix of s I − A and ψ(s) : = det(s I − A) (see section 2.6). It
follows that T (s) = φ(s)/ψ(s) for some polynomial φ. If we take the case of the
system given by (3.17), we have also T (s) = 1/q(s). Hence q(s)φ(s) = ψ(s). Since
both q(s) and ψ(s) are monic polynomials of degree n, this implies that q(s) = ψ(s).
We formulate the results about �s in the following:

Theorem 3.17 Consider the system �s given by (3.20) and define the polynomials p

and q by (3.22) and (3.23). Then

(i) �s is controllable,

(ii) �s is observable if and only if p(s) and q(s) are coprime,

(iii) q(s) is the characteristic polynomial of A,
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(iv) p(s)/q(s) is the transfer function of �s .

Note that �s is observable if and only if p(s)/q(s) is an irreducible representa-
tion of the transfer function, equivalently, if and only if each eigenvalue of A is a
pole of the transfer function with the same multiplicity. In case of unobservability,
we have pole-zero cancellation. The poles that cancel are exactly the unobservable
eigenvalues.

If � = (c, A, b) is a single-variable system isomorphic to �s given by (3.20)
then � is obviously controllable. The following result states the converse of this
observation. (We omit c, because it is not relevant.)

Theorem 3.18 Every controllable single-variable system (A, b) is isomorphic to a

system of the form (3.20).

Proof : Let q(s) : = sn + a1sn−1 + · · · + an be the characteristic polynomial of
A. Because (A, b) is controllable, the vectors b, Ab, . . . , A n−1b are independent.
Therefore, they form a basis of Rn . The matrix of the map A and the column of the
vector b with respect to this basis have the following form:

Â : =



















0 0 0 · · · −an

1
. . .

. . .
...

...

0
. . .

. . .
. . .

...
... · · ·

. . . 0 −a2
0 · · · · · · 1 −a1



















, b̂ : =

















1
0
...
...

0

















. (3.24)

We conclude that the matrix pair (A, b) is transformed into ( Â, b̂) by the transfor-
mation S : = (b Ab · · · An−1b). Note that ( Â, b̂) is uniquely determined by the
characteristic polynomial of A. We denote the matrix pair in (3.20) by ( Ā, b̄) and
note that it is also transformed to (3.24) by the corresponding transformation. Hence
(A, b) and ( Ā, b̄) are isomorphic.

3.7 Poles, eigenvalues and stability

In the present section, the D matrix is assumed to be zero, because it is irrelevant for
the discussion. As noticed in section 2.6, (s I − A)−1 is of the form

B(s)/ det(s I − A),

where B(s) is a matrix of which the entries are polynomials of s. This implies that
every pole of T (s) = C(s I−A)−1 B+D is an eigenvalue of A, but that the converse is
not always true. In the previous section, we saw that for controllable and observable
single-variable systems, every eigenvalue is necessarily a pole. Here we show that
this statement is also valid for multivariable systems. For this purpose we need the
following auxiliary result.
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Lemma 3.19 Given � = (C, A, B), there exist polynomial matrices P(s), Q(s) and

R(s) such that











C

C A
...

C An−1











(s I − A)−1 (

B AB · · · An−1 B
)

= P(s)T (s)Q(s)+ R(s). (3.25)

Proof : For every k, the following holds:

Ak(s I − A)−1 = sk(s I − A)−1 − Pk(s),

for some polynomial matrix Pk(s). In fact,

Pk(s) = sk−1 I + sk−2 A + · · · + Ak−1.

Hence

C Ak(s I − A)−1 B = sk T (s)+ Qk(s),

for some Qk(s). Since the (i, j) block entry of the left-hand side of (3.25) equals
C Ai+ j−2(s I − A)−1 B, the desired result follows.

If � is controllable and observable, there exists a left inverse P + of the matrix










C

C A
...

C An−1











,

and a right inverse Q+ of
(

B AB · · · An−1 B
)

.

Hence,

(s I − A)−1 = U(s)T (s)W (s) + V (s),

for certain polynomial matrices U(s), V (s) and W (s). Since the poles of (s I − A)−1

are exactly the eigenvalues of A, we have

Theorem 3.20 If the system � = (C, A, B) is controllable and observable, every

eigenvalue of A is a pole of the transfer function T (s).
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In chapter 2, we introduced the concept of stability of an autonomous system
ẋ = Ax . It was seen that stability is equivalent to the property that all eigenvalues
of A have a negative real part. Here we will call the control system � = (C, A, B)

internally stable if the corresponding autonomous system is stable, i.e., if σ(A) ⊂

C− : = {s ∈ C | ℜe s < 0}. On the other hand, we are also interested in the external
asymptotic behavior of the system. We will say that � is externally (or BIBO) stable

if for every positive number M , there exists a positive number N such that for every
input u, satisfying ‖u(t)‖ � M for all t � 0, we have for the corresponding output
with zero initial state that ‖y(t)‖ � N for all t � 0 (BIBO stands for Bounded

Input, Bounded Output). The following result gives a condition for external stability
in terms of the impulse response and the transfer function.

Theorem 3.21 Let the system � have impulse response matrix K (t) and transfer

function T (s). Then the following statements are equivalent:

(i) � is externally stable,

(ii)
∫∞

0 ‖K (t)‖ dt <∞,

(iii) all poles of T (s) are in C−.

Proof : (ii)⇒ (i) Let ‖u(t)‖ � M for all t � 0. Then

‖y(t)‖ �

∫ t

0
‖K (t − τ )‖M dτ = M

∫ t

0
‖K (τ )‖ dτ

� N : = M

∫ ∞

0
‖K (t)‖ dt,

for all t � 0.

(i) ⇒ (ii) If � is externally stable there exists N such that ‖u(t)‖ � 1 (t � 0)

implies ‖y(t)‖ � N for t � 0. Fix T > 0 and a pair (i, j) of indices satisfying
1 � i � p, 1 � j � m. If

u j (t) : = sgn Ki j (T − t) (0 � t � T ),

u j (t) : = 0 t > T,

uk(t) : = 0 (k 	= j, t � 0),

then ‖u(t)‖ � 1. Therefore, the corresponding output y(t) with initial state 0 satisfies
‖y(t)‖ � N . For this output we have

yi(T ) =

∫ T

0
Ki j (T − t)u j (t) dt =

∫ T

0
|Ki j (t)| dt .

Hence,
∫ T

0 |Ki j (t)| dt � N for all T � 0 and all pairs of indices (i, j). This implies
(ii).
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(ii)⇒ (iii) Obviously, (ii) implies that the integral
∫∞

0 K (t)e−st dt converges for
all s with ℜe s � 0. Hence, T (s) has all its poles in C−.

(iii)⇒ (ii) One can reconstruct K (t) using partial-fraction decomposition. Since
T (s) is a strictly proper rational matrix and T (s) has only poles in C−, the entries of
K (t) are Bohl functions with exponents in C−. Consequently, (see theorem 2.10) the
integral of the absolute value of each term converges. Hence, we have (ii).

Corollary 3.22 If system � is externally stable and x(0) = 0, we have that u(t)→ 0
(t →∞) implies y(t)→ 0 (t →∞).

Proof : Suppose that u(t) → 0 (t →∞). Define

µ(t) : = sup{‖u(τ )‖ | τ � t}.

Then µ is decreasing and µ(t)→ 0 (t →∞). We have

‖y(t)‖ �

∫ t

0
‖K (t − τ )‖‖u(τ )‖ dτ

� µ(0)

∫ t/2

0
‖K (t − τ )‖ dτ + µ(t/2)

∫ t

t/2
‖K (t − τ )‖ dτ

� µ(0)

∫ ∞

t/2
‖K (τ )‖ dτ + µ(t/2)

∫ ∞

0
‖K (τ )‖ dτ → 0 (t →∞).

Because of the estimate of the matrix exponential ‖e t A‖ � Le−γ t , for some
positive γ and L (see corollary 2.11), and hence ‖K (t)‖ � Me−γ t , it follows from
theorem 3.21 that internal stability implies external stability. If the system is controll-
able and observable, the opposite statement is also true. In fact, in this case, external
stability implies that there are no poles of T (s) outside C

−, and because of theorem
3.20 this implies that all eigenvalues of A are in C−. Hence:

Theorem 3.23 If � is internally stable then � is externally stable. Conversely, if �

is controllable, observable and externally stable then � is internally stable.

These concepts can easily be generalized to the more general stability concept
introduced in definition 2.12. The only restriction is that we only can allow Bohl
functions as input functions. In this case, it follows from theorem 2.8 that the state
and output variable are also Bohl functions. Hence, it is possible to replace internal
stability by internal Cg-stability and external stability by external Cg-stability, the
latter concept meaning: ‘if the input is a Cg-stable Bohl function then, with initial
state x(0) = 0, the output is a Cg-stable Bohl function’. Then the analog of theorem
3.23 can easily be shown.
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3.8 Liapunov functions

The stability of a system can be investigated with the aid of a Liapunov function. For
linear systems, we can restrict ourselves to quadratic Liapunov functions. First we
recall some properties of positive symmetric matrices.

Definition 3.24 A symmetric matrix P is called positive semidefinite if x T Px � 0
for all x ∈ Rn and positive definite if x T Px > 0 for all nonzero x ∈ Rn . We use the

notation P � 0 and P > 0, respectively. The notations P > Q and � Q, where P

and Q are symmetric matrices, stand for P − Q > 0 and P − Q � 0, respectively.

The following results are well known from linear algebra:

Lemma 3.25 Let P be a symmetric matrix. Then

(i) P � 0 ⇔ There exists a matrix D such that P = D T D.

(ii) P > 0 ⇔ There exists a nonsingular matrix D such that P = D T D.

Although we only require the positivity property for real vectors, the quadratic
form is also positive for complex vectors. Specifically,

Lemma 3.26 Let P be a symmetric matrix. Then

(i) P � 0 ⇔ z∗Pz � 0 for all complex vectors z.

(ii) P > 0 ⇔ z∗Pz > 0 for all complex vectors z 	= 0.

This result follows by direct computation, or by using lemma 3.25. Also the
following result is an easy consequence of lemma 3.25:

Lemma 3.27 Let P be a positive semidefinite matrix and z a complex vector satisfy-

ing z∗Pz = 0. Then z = 0.

Now suppose that we are given the differential equation

ẋ = Ax . (3.26)

If P is any symmetric matrix, we consider the function

V (x) : = x T Px . (3.27)

Then, a simple computation yields

d
dt

V (x) = −x T(t)Qx(t), (3.28)

where

Q : = −(AT P + P A). (3.29)
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If P > 0, the function V can serve as a measure for the length of the vector x . If,
in addition, Q > 0, we see that the value of this function is a decreasing function
of t along any trajectory x(t). This suggests that the quantity V (x(t)) and hence the
vector x(t) tends to zero as x →∞, and hence that (3.26) is stable.

This turns out to be a correct suggestion. We can even relax the condition Q > 0
to Q = CTC , where (C, A) is observable. And we can give a converse of this result.

Theorem 3.28 Let the system (3.26) be given, and assume that C is an p×n matrix.

Consider the following statements:

(i) A is a stability matrix.

(ii) (C, A) is observable.

(iii) Equation

AT P + P A = −C TC (3.30)

has a positive definite solution P.

Then any two of these statements imply the third.

Proof :

(i) ∧ (ii)→ (iii): because �(A) < 0, we have ‖e At‖ � Me−γ t for some positive
numbers M and γ (see corollary 2.11). Consequently, the integral

P : =

∫ ∞

0
eATt CTCeAt dt (3.31)

converges. It is a solution of (3.30), because

AT P + P A =

∫ ∞

0

{

ATeATt CTCeAt + eATt CTCeAt A
}

dt =

=

∫ ∞

0

d
dt

{

eATt CTCeAt
}

dt =
[

eATt CTCeAt
]∞

0
= −CTC.

Furthermore, x T Px =
∫∞

0 x TeATt CTCeAt x dt =
∫∞

0 |CeAt x |2 dt � 0 for all
x , so that P � 0. In addition, if x T

0 Px0 = 0 for some x0, then the previous
calculation implies that Ce At x0 = 0 for all t � 0. That is, the output of the
system ẋ = Ax, y = Cx, x(0) = x0 is identically zero. Because the system is
supposed to be observable, it follows that x 0 = 0. Hence, P > 0. Thus we have
shown (iii).

(ii) ∧ (iii)→ (i): Let λ ∈ σ(A), and let v be a corresponding (possibly complex)
eigenvector. Multiplying (3.30) from the right with v and from the left with v ∗,
we obtain

(2ℜeλ)v∗Pv = (λ+ λ̄)v∗Pv = −|Cv|2. (3.32)
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Because P > 0 and (C, A) is observable, and therefore Cv 	= 0, it follows that
ℜe λ < 0. Hence (i).

(iii) ∧ (i)→ (ii): Let λ ∈ σ(A), and let v 	= 0 be a corresponding eigenvector. We
have to show that λ is observable, hence that Cv 	= 0. Again we have (3.32).
Now we know that ℜe λ < 0 and P > 0. This implies Cv 	= 0.

Equation (3.30) is sometimes referred to as the Liapunov equation. Note that the
solution of the equation (3.30) is sometimes called the observability gramian. Dually,
the solution of the equation

AP + P AT = −B BT (3.33)

is often referred to as the controllability gramian.

It can be shown that the solution of equation (3.30) is unique if A is stable. As a
matter of fact, this is a consequence of Sylvester’s theorem (see section 9.3)

In order to investigate stability without computing the eigenvalues of A, we can
proceed as follows: Choose an arbitrary positive definite matrix Q, e.g. Q = I ,
investigate whether the linear equation A T P + P A = −Q has a solution. If no
solution exists, or if the solution is not positive definite, the matrix A is not stable.

3.9 The stabilization problem

A large number of problems studied in control theory arise from our desire to mod-
ify the characteristic properties of a system by means of feedback controllers. The
simplest version of this is the Cg-stabilization problem, which can be described as
follows:
‘given a stability domain Cg , and a system �, described by the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),
(3.34)

determine a system Ŵ which takes the output y of � as input and produces an output
that can be used as input for �, in such a way that the interconnection � c of � and Ŵ

is internally Cg-stable.’

�

Ŵ

u
✻

❄y
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In order to write down the equations of the interconnection � c, we combine the
equations for � with the equations of the feedback controller Ŵ:

ẇ(t) = Kw(t)+ Ly(t),

u(t) = Mw(t) + Ny(t),
(3.35)

Note that we allow a feedthrough term in the output equation. The combination of
these equations with (3.34) yields the equations of � c:

(

ẋ(t)

ẇ(t)

)

=

(

A + B NC B M

LC K

)(

x(t)

w(t)

)

The interconnection �c is called the closed-loop system of � and Ŵ. In this particular
case, �c is a homogeneous linear system with coefficient matrix

Ae : =

(

A + B NC B M

LC K

)

. (3.36)

(The subscript ‘e’ stands for ‘extended’.) So the C g-stabilization problem can be
reformulated as:
‘given the matrix triple (C, A, B), construct a quadruple (K , L, M, N), such that the
matrix Ae defined by (3.36) has all its eigenvalues in Cg .’
If the matrix quadruple (K , L, M, N) meets this requirement then the controller Ŵ

given by (3.35) is called an internally stabilizing controller for �. In the remainder
of this chapter we will study under what conditions an internally stabilizing controller
exists.

3.10 Stabilization by state feedback

A direct solution of the stabilization problem formulated in the previous section is
not so obvious. First we restrict ourselves to the case where the state is available for
measurement, i.e, where C = I . Also, we only allow a static feedback as controller.
This means that our controller will have the form: u = Fx , for some linear map
F : X → U. When we apply this feedback, i.e., substitute it into the state equation
ẋ = Ax + Bu, we obtain ẋ = (A + B F)x . Therefore, the problem of stabilization
by state feedback reads:

‘given a stability domain Cg , and maps A : X→ X, B :U→ X, determine a map
F : X→ U such that σ(A + B F) ⊂ Cg .’

The solution to this problem is provided by the following celebrated result.

Theorem 3.29 (pole-placement theorem) Let A : X→ X, B : U→ X. Then there

exists for every monic polynomial p(s) of degree n a map F : X → U such that

χA+B F (s) = p(s), if and only if (A, B) is controllable.

For the definition of χA and the concept of ‘monic’, we refer to section 2.5. Most
of the remainder of this section will be devoted to a proof of this result. Then we will
apply it to the stabilization problem.
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Proof of the necessity in theorem 3.29: : If (A, B) is not controllable, there is an
uncontrollable eigenvalue λ. For this eigenvalue, there exists a nonzero row vector
η such that ηA = λη, ηB = 0. Then we have η(A + B F) = λη for all F , hence
λ ∈ σ(A + B F) for all F . So, if p(s) is any polynomial such that p(λ) 	= 0, there
does not exist a feedback F such that p(s) = χ A+B F (s).

We formulate the proof of this result separately:

Corollary 3.30 If λ is an uncontrollable eigenvalue of (A, B) then λ is an eigenvalue

of A + B F for all F.

Before we start with the proof of the sufficiency part we note that we may perform
a basis transformation (A, B) �→ ( Ā, B̄), by Ā = S−1 AS, B̄ = S−1 B. If we can find
the desired feedback F̄ for the transformed system, the matrix F : = F̄ S−1 solves the
original problem, since A + B F = S( Ā + B̄ F̄)S−1 and hence χA+B F = χ Ā+B̄ F̄ .

Proof of the sufficiency in theorem 3.29 for the case m = 1: :

According to theorem 3.18, (A, B) is isomorphic to a system of the form

Ā : = A : =

















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−an −an−1 · · · −a2 −a1

















, b̄ : =















0
...

0
0
1















. (3.37)

(Here c̄ is irrelevant.) We try to find a feedback matrix for the pair ( Ā, b̄). The sought
feedback matrix F̄ is a 1× n matrix, i.e., a row vector. We write f̄ instead of F̄ :

f̄ =
(

fn · · · f1
)

.

It follows that

Ā + b̄ f̄ =

















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

fn − an fn−1 − an−1 · · · f2 − a2 f1 − a1

















which is again a companion matrix with characteristic polynomial

χ Ā+b̄ f̄ (s) : = sn + (a1 − f1)s
n−1 + · · · + (an − fn).

If the desired characteristic polynomial is

p(s) = sn + p1sn−1 + · · · + pn,
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we can choose fk : = ak − pk for k = 1, . . . , n.

In order to prove the multi-input case, we need the following auxiliary result:

Lemma 3.31 If (A, B) is controllable there exist vectors u 0, . . . , un−1 such that the

vectors defined by

x0 : = 0, xk+1 : = Axk + Buk (k = 0, . . . , n − 1)

are independent.

Proof : Since (A, B) is controllable, we must have B 	= 0. Hence, u 0 exists such that
Bu0 	= 0. Therefore, x1 is independent (as a single vector). Now suppose we have
that x1, . . . , xk are independent. Let L be the space generated by x 1, . . . , xk . The
next step consists of finding a vector u k such that xk+1 : = Axk + Buk 	∈ L. If this is
not possible, we must have that

Axk + Bu ∈ L (3.38)

for all u ∈ U. This implies in particular that

Axk ∈ L. (3.39)

Combining (3.38) and (3.39), we find Bu ∈ L for all u ∈ U. Hence im B ⊂ L. In
addition, L is A-invariant. This follows from (3.39) and the fact that for i < k, we
have

Axi = xi+1 − Bui ∈ L.

Since L is an A-invariant space containing im B, it follows that the inclusion 〈A |
im B〉 ⊂ L holds. Since (A, B) is controllable, this means L =X and consequently
k = n.

Proof of the sufficiency in theorem 3.29: : We first construct u 0, . . . , un−1 and
x1, . . . , xn according to the above lemma and we choose u n arbitrary. There exists a
(unique) map F0 : X → U such that F0xk = uk for k = 1, . . . , n. Furthermore we
define b : = Bu0. Then

xk+1 = Axk + B F0xk = (A + B F0)xk

and hence xk = (A + B F0)
k−1b for k = 1, . . . , n. Since x1, . . . , xn are independent

this implies that (A + B F0, b) is controllable. The matrix b consists of one column,
so that we may apply the theorem for the case m = 1. This yields a row vector f

such that χA+B F0+bf (s) = p(s). Obviously, F : = F0 + u0 f satisfies the desired
property χA+B F = p.

The pole-placement theorem suggests that the controllability of (A, B) is much
stronger than we actually need for stabilization. The following result expresses a
necessary and sufficient condition for stabilization.
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Theorem 3.32 Given the matrix pair (A, B) and a stability domain C g , there exists

a matrix F such that σ(A + B F) ⊂ Cg if and only if every eigenvalue λ 	∈ Cg is

controllable.

We note that for this result, the condition Cg ∩ R 	= ∅ is needed (see def. 2.12).
For real A, B and F we need some condition that guarantees the existence of real
polynomials of arbitrary degree with zeros in Cg . If one allows complex matrices F ,
this condition can be omitted.

Proof : The ‘only if’ part is an immediate consequence of corollary 3.30. Now sup-
pose that the condition is satisfied. If B = 0, all eigenvalues are uncontrollable and
the condition implies that σ(A) ⊂ Cg , so that we can take F = 0. If (A, B) is con-
trollable we choose any p(s) with zeros in Cg and apply the pole-placement theorem.
Otherwise we can apply theorem 3.11 to transform (A, B) to a system of the form

Ā =

(

A11 A12
0 A22

)

, B̄ =

(

B1
0

)

.

Eigenvalues of A22 are uncontrollable and hence σ(A22) ⊂ Cg . We apply the pole-
placement theorem to the controllable pair (A 11, B1). Thus we can find a matrix F1
such that σ(A11 + B1 F1) ⊂ Cg . Then the matrix F̄ : = (F1 0) satisfies

σ( Ā + B̄ F̄) = σ(A11 + B1 F1) ∪ σ(A22) ⊂ Cg .

The pair (A, B) is called stabilizable (or more explicitly, Cg-stabilizable) if there
exists a map F such that A + B F is Cg-stable, equivalently, if all uncontrollable
eigenvalues are in Cg . If Cg has not been specified, our Cg is understood to be C−.

We have assumed up to now that the stabilizing control has the form of a constant,
linear, static state feedback. Conceivably, if the conditions of theorem 3.32 are not
satisfied, stabilization might be possible using more general types of stabilizing con-
trollers, such as nonconstant (u = F(t)x), nonlinear (u = g(x, t)) or dynamic state
feedback of the type described in section 3.9. However, the following result shows
that if stabilization is possible at all, it can be achieved by means of state feedback as
described in theorem 3.32.

Theorem 3.33 If there exists for every x0 an input u ∈ U such that the resulting state

x is a Cg-stable Bohl function, then (A, B) is Cg-stabilizable.

Proof : Let λ ∈ σ(A) be uncontrollable and let η 	= 0 satisfy ηA = λη, ηB = 0. If we
choose x0 such that µ : = ηx0 	= 0, the equation ẋ = Ax + Bu implies d

dt
ηx = ληx ,

and hence ηx(t) = eλtµ. There exists an input u for which x is a Cg-stable Bohl
function. Then also ηx must be a Cg-stable Bohl function so that λ ∈ Cg .
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3.11 State observers

When the state is not available for measurement, one often tries to reconstruct the
state using a system, called observer, that takes the input and the output of the original
system as inputs and yields an output that is an estimate of the state of the original
system. The following diagram illustrates the situation:

✲ � ✲

�✲
✲

u y

ξ

The quantity ξ is supposed to be an estimate in some sense of the state and w is
the state variable of the observer. The observer, denoted by � has equations of the
following form:

ẇ(t) = Pw(t) + Qu(t) + Ry(t),

ξ(t) = Sw(t).
(3.40)

If into these equations, we substitute the equations (3.34) of the system �, we obtain:

ẋ(t) = Ax(t)+ Bu(t),

ẇ(t) = Pw(t) + Qu(t) + RCx(t),

ξ(t) = Sw(t).

Hence, if we introduce the error of the estimate by e : = ξ−x , we obtain the following
equation for e

ė(t) = SPw(t) + SQu(t) + SRCx(t) − Ax(t)− Bu(t).

We substitute x = Sw−e into the right-hand side of the equation in order to eliminate
x :

ė(t) = (SP + SRC S − AS)w(t)− (SRC − A)e(t)+ (SQ − B)u(t) (3.41)

Definition 3.34 System � given by (3.40) is called a state observer for � if for any

pair of initial values x0, w0 satisfying e(0) = 0, and for arbitrary input function u,

we have e(t) = 0 for all t > 0.

Hence, once the observer produces an exact estimate for the state at a certain time
instant, it will produce an exact estimate for all larger times, irrespective of what the
input is.

Definition 3.35 A state observer � is called stable if for each pair of initial values

x0, w0 of � and � we have e(t)→ 0 (t →∞).
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Now let � be a state observer of the form (3.40). The equation for e, (3.41), can
not contain the input u, since otherwise e cannot remain zero if e(0) = 0. Conse-
quently, B = SQ. Also the coefficient of w has to be zero, because of the same
argument. Hence SP = AS − SRC S. The equation for e then simplifies to

ė(t) = (A − SRC)e(t).

It follows immediately from this equation that e(0) = 0 implies e(t) = 0 for all
t > 0. Hence a necessary and sufficient condition for � to be a state observer is:
B = SQ and SP = AS − SRC S. If this condition is satisfied, we can eliminate w

from our consideration and use ξ as state variable for the observer. In fact

ξ̇ (t) = Sẇ(t)

= SPw(t) + SQu(t) + SRy(t)

= (A − SRC)ξ(t) + Bu(t)+ SRy(t).

Hence, ξ satisfies a linear differential equation. If S is a nonsingular matrix, the
equations for w and ξ are isomorphic, i.e., obtained from each other by a basis trans-
formation in the state space of �. Otherwise, w has a larger dimension than ξ , hence
the dimension of the observer is unnecessarily high. Finally, we note that in the new
formulation of the observer, R only appears in the combination SR. Hence we intro-
duce G = SR. The following theorem formulates our statements about observers:

Theorem 3.36 The general form of a state observer for � is

ξ̇ (t) = (A − GC)ξ(t)+ Bu(t)+ Gy(t). (3.42)

The equation for the error function e : = ξ − x is

ė(t) = (A − GC)e(t). (3.43)

Hence the state observer is stable if and only if A − GC is a stability matrix.

The equation for ξ can be rewritten using an artificial output η = Cξ , viz., ξ̇ =

Aξ + Bu + G(y − η). The interpretation of this is as follows: If ξ is the exact
state then η = y, and hence ξ obeys exactly the same differential equation as x .
Otherwise, the equation for ξ has to be corrected by a term determined by the output

error y − η. Consequently, the state observer consists of an exact replica � dup of
the original system with an extra input channel for incorporating the output error and
an extra output, the state of the observer, which serves as the desired estimate for the
state of the original system. The following diagram depicts the situation.

✲u

�

✲

✲y

−

+
✲ G �dup

✲ξ✻

C
❄η
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Obviously, state observers always exist. They are parameterized by the matrix G. A
stable state observer exists if and only if G can be found such that σ(A − GC)⊂ C−.
More generally, one replaces C

− by Cg . The problem of finding such a G is dual to
the problem of finding a matrix F to a pair (A, B) such that A + B F is C g-stable.
Hence we are led to the introduction of the dual concept of stabilizability:

Definition 3.37 The pair (C, A) is called Cg-detectable if there exists a matrix G

such that σ(A − GC) ⊂ Cg .

Based on the previous considerations and on theorem 3.32 we find the following
result.

Theorem 3.38 Given system � = (C, A, B), the following statements are equiva-

lent:

(i) � has a Cg-stable observer,

(ii) (C, A) is Cg-detectable,

(iii) every (C, A)-unobservable eigenvalue is in Cg .

We have chosen a specific type of C−-stable state observer, viz., a finite-dimensi-
onal, time-invariant, linear system with no feedthrough term. An obvious question is
of course, whether in the case of a nondetectable system, for which such an observer
does not exist, a stable state observer can be constructed of a more general type. Let
us call a generalized state observer any system taking y and u as the only information
about the state of � and yielding as output an estimate ξ of the state with the property
that ξ(t)− x(t) → 0 (t →∞) for all possible u. We claim that the existence of such
an observer implies the detectability of �. In fact, suppose that λ is an unobservable
eigenvalue with p 	= 0 such that Ap = λp and Cp = 0. Assume that x 0 = 0
and u(t) = 0 for all t � 0. Then y(t) = 0 (t > 0). The observer has zero
input and must yield an output ξ(t) which converges to zero, since x(t) = 0 and
x(t) − ξ(t) → 0 (t → ∞). On the other hand if x0 = p and still u(t) = 0 for all
t , we also have y(t) = 0 and consequently, ξ(t) → 0, since nothing has changed for
the observer. It follows from x(t) − ξ(t) → 0 that we must have x(t) → 0. Since
x(t) = eλt p and p 	= 0, we conclude that ℜe λ < 0. Hence every unobservable
eigenvalue is in C−, so that � is detectable.

As a consequence of our results about state observers, we obtain another condition
for C

−-detectability:

Corollary 3.39 � is C−-detectable if and only if for any initial state and any input,

we have: u(t) → 0 and y(t)→ 0 for t →∞ imply x(t)→ 0 for t →∞.

Proof : (⇒) Choose G such that σ(A − GC) ⊂ C−. The state satisfies the equation

ẋ(t) = (A − GC)x(t)+ Bu(t)+ Gy(t),
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which can be viewed as an internally stable equation with inputs u and y. Since u

and y both converge to zero, corollary 3.22 implies that x(t)→ 0 (t →∞).

(⇐) If λ is an eigenvalue with p 	= 0 such that Ap = λp and Cp = 0 and we
choose p as initial state and u(t) = 0 for all t then y(t) = 0 for all t . It then follows
from the given property that x(t)→ 0 (t →∞). But x(t) = eλt p. Hence ℜe λ < 0.

3.12 Stabilization by dynamic measurement feedback

We combine the results of the previous two sections in order to construct a dynamic
feedback controller that stabilizes the system using only the output. That is, we as-
sume that we know how to stabilize by state feedback and how to build a state ob-
server. If we have a plant of which we do not have the state available for measurement,
we use a state observer to obtain an estimate of the state and we apply the state feed-
back to this estimate rather than to the true state. This is illustrated by the following
picture:

✲ � ✲

�✲
✲

u y

ξ

✛F✛

Again, consider the system � given by (3.34) and let the observer � be given by
(3.42). Combining this with u = Fξ , we obtain

ẋ(t) = Ax(t)+ B Fξ,

ξ̇ (t) = (A − GC + B F)ξ(t)+ GCx(t).
(3.44)

Introducing again e : = ξ − x , we obtain, in accordance with the previous section,
ė = (A − GC)e. Hence we have the following system:

ẋ(t) = (A + B F)x(t)+ B Fe(t),

ė(t) = (A − GC)e(t).

That is, the equation ẋe = Aexe with

xe : =

(

x

e

)

, Ae : =

(

A + B F B F

0 A − GC

)

.

Suppose we are given a stability domain Cg and assume that � = (C, A, B) is Cg-
stabilizable and Cg-detectable. Then F and G can be found such that A + B F and
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A − GC are Cg-stable. Since σ(Ae) = σ(A + B F) ∪ σ(A − GC), it follows that
σ(Ae) ⊂ Cg . Consequently, the system ẋe = Aexe is Cg stable, equivalently, every
solution xe = (x, e) is a Cg-stable Bohl function. Of course, if (x, ξ) is a solution
of (3.44) then ξ = x + e, with xe = (x, e) a solution of ẋe = Aexe. Hence (x, ξ)

is also a Cg-stable Bohl function. Thus we have proved the ‘if’ part of the following
theorem:

Theorem 3.40 Let Cg be a stability domain. Then there exists a Cg-stabilizing feed-

back controller for � if and only if � is Cg-stabilizable and Cg-detectable.

Proof (of the ‘only if’ part) : Let Ŵ be a Cg-stabilizing controller. Then, for any
initial state, the output of Ŵ will be such that the state x is a Cg-stable Bohl function.
It follows from theorem 3.33 that � must be Cg-stabilizable. Now let λ be an un-
observable eigenvalue, with corresponding p 	= 0 such that Ap = λp and Cp = 0.
We consider first the situation where the initial state of � is x0 = 0 and the initial
state of the controller arbitrary. The resulting state is x u(t, 0), where u is the input
resulting from the controller. We know that x u(t, 0) is a Cg-stable Bohl function.
The corresponding output is yu(t, 0). Next we assume that x0 = p. We claim that
x̃(t) : = eλt p + xu(t, 0) and the same state trajectory for Ŵ as before satisfy the dif-
ferential equations. In fact, this is a consequence of Cx̃(t) = Cx u(t, 0). Because we
must also have that x̃ is a Cg-stable Bohl function, it follows that λ ∈ Cg . Thus we
have shown that � is Cg-detectable.

The proof in the previous theorem has be formulated in such a way that it remains
valid if the controller is of a more general type than finite-dimensional, linear, time-
invariant.

3.13 Well-posed interconnection

�1

�2
✲

✛

Figure 3.2

Assume we have the interconnection in figure 3.2. Assume �1 and �2 are given
by the following two state space models:

Ŵ̄ :
ẋ1 = A1x1 + B1u1,

y1 = C1x1 + D1u1.
(3.45)
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and

Ŵ̄ :
ẋ2 = A2x2 + B2u2,

y2 = C2x2 + D2u2.
(3.46)

The interconnection implies y1 = u2 and y2 = u1. If we try to solve this set of
equations we get:

u2 = y1 = C1x1 + D1u1 = C1x1 + D1(C2x2 + D2u2). (3.47)

and we can solve u2 from the above equation if I − D1 D2 is an invertible matrix. In
that case the dynamics of the interconnection are given by:

(

ẋ1
ẋ2

)

=

(

A1 + B1(I − D2 D1)
−1 D2C1 B1(I − D2 D1)

−1C2

B2(I − D1 D2)
−1C1 A2 + B2(I − D1 D2)

−1 D1C2

)(

ẋ1
ẋ2

)

.

What happens if I − D1 D2 is not invertible? Then there either exist initial states
for which the equation (3.47) is not solvable for u 2 or there exist multiple solutions
for u2. Therefore either the interconnection in Figure 3.2 on the facing page has no
solution for certain initial states or the solution exists for for certain initial states but
is not unique.

Therefore we call the interconnection well posed if for all possible initial states
the interconnection has a solution which is moreover unique. Otherwise we call the
interconnection ill posed.

We obtain the obvious result that the interconnection in figure 3.2 on the facing
page is well posed if and only if I − D1 D2 is invertible. Note that I − D1 D2 is
invertible if and only if I − D2 D1 is invertible.

In many chapters we will have interconnections where we do not mention the ob-
vious requirement that we want to have a well-posed interconnection. This is due to
the fact that the interconnection of a system and a controller is always well posed if
either the system or the controller is strictly proper. For instance in the previous sec-
tion we stabilized the system with a controller which used an observer in combination
with a state feedback. However, this type of controller is always strictly proper and
therefore the interconnection is always well posed.

3.14 Exercises

3.1 Consider the system � : ẋ = Ax + Bu, y = Cx + Du. If, with x(0) = 0, the
output is bounded for every input function u, show that � has transfer function
zero.

3.2 An n× n matrix A is called cyclic if there exists a column vector (i.e., an n× 1
matrix) b such that (A, b) is controllable. Show that the following statements
are equivalent:

a. A is cyclic,
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b. there exists an invertible matrix S such that S−1 AS has a companion form,

c. for all λ ∈ C, rank(λI − A) � n − 1,

d. χA is the monic polynomial p(z) of minimal degree for which p(A) = 0.
(That is, χA is the minimal polynomial of A.)

e. Any n × n matrix B that commutes with A is a polynomial of A, i.e., if
AB = B A, there exists a polynomial p(z) such that p(A) = B.

3.3 Let A ∈ Rn×n , B ∈ Rn×m . Show that there exists a vector p ∈ Rm such that
(A, Bp) is controllable if and only if

a. (A, B) is controllable,

b. A is cyclic.

For the definition of a cyclic matrix see exercise 3.2.

3.4 Prove that the pair (A, B) is controllable if and only if a i,i+1 	= 0 (i =

1, . . . , n − 1) where

A =

















a11 a12 0 · · · 0

a21 a22 a32
. . .

...
...

...
...

. . . 0
an−1,1 an−1,2 an−1,2 . . . an−1,n

an1 an2 an2 . . . ann

















, B =















0
0
...

0
1















3.5 Let M ∈ R
n×n and N ∈ R

n×m . Show that
[(

0 M

M 0

)

,

(

0
N

)]

is controllable if and only if M is nonsingular and (M 2, N) is controllable.

3.6 Which matrices A have the property that (A, B) is controllable for every non-
zero B?

3.7 Consider the system � given by ẋ(t) = Ax(t), y(t) = Cx(t) with state space
X and output space Y. Denote the unobservable subspace 〈ker C | A〉 by N .
Let X̄ denote the quotient space X/N and let 
 be the canonical projection.

a. Let Ā : X̄ → X̄ and C̄ : X̄ → Y be the quotient maps defined by

A = Ā
 and C̄
 = C . Show that (C̄, Ā) is observable. (This system
is usually called the observable quotient system of �.)

b. Assume that (C, A) is not observable and C is not zero. Show that there
exists an invertible matrix S such that Ā : = S−1 AS and C̄ : = C S have
the form

Ā =

(

A11 A12
0 A22

)

, C̄ =
(

0 C2
)

,

where (C2, A22) is observable.
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c. Explain why it is reasonable to call the system ẋ 1 = A11x1 the unobserv-

able subsystem of �.

3.8 Consider the system � given by ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) with
input space U, state space X and output space Y. Let V ⊂ ker C be an A-
invariant subspace. Denote the quotient space X/V by X̄ and let 
 be the
canonical projection. Let Ā : X̄ → X̄, B̄ : U → X and C̄ : X̄ → Y be the
quotient maps defined by 
A = Ā
, B̄ = 
B and C̄
 = C . The system �̄

given by ˙̄x(t) = Āx̄(t) + B̄u(t), y(t) = C̄ x̄(t) (with state space X̄) is often
called the quotient system � modulo V. Show that the transfer functions of �

and �̄, respectively, coincide

3.9 Show that if (A, B) is controllable then (A + B F, B) is controllable for any
map F : X→ U.

3.10 Consider the system (C, A) and let (C̄, Ā) be isomorphic to (C, A) and of the
form described in exercise 3.7. Show that λ ∈ σ(A) is an observable eigenvalue
of (C, A) if and only if λ 	∈ σ(A11).

3.11 Consider a cascade connection of two systems:

�1 �2
✲ ✲ ✲

where �i = (Ai , Bi , Ci , Di ), and assume that σ(A1) ∩ σ(A2) = ∅.

a. Determine a state space representation of the cascaded system � c.

b. Prove that �c is controllable if and only if (A1, B1) is controllable and

rank
(

A2 − λI B2T1(λ)
)

= n2

for all λ ∈ σ(A2), where n2 is the dimension of the state space of �2 and
where T1(λ) denotes the transfer function of �1.

3.12 Let

A : =





0 1 0
−2 −3 0
0 0 α



 , B : =





0
1
β



 ; α, β ∈ R.

a. Determine all values of α and β for which (A, B) is controllable.

b. For those values of α and β for which (A, B) is not controllable, determine
the uncontrollable eigenvalues.

c. Determine all values of α and β for which (A, B) is C−-stabilizable.

3.13 Let A1 and A2 be n × n matrices with no common eigenvalue, and let b and c

be an 1× n and an n × 1 matrix, respectively. Consider the matrix equation

A1 X − X A2 = bc.
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a. Show that the above equation has exactly one solution X .

b. Show that, if (A1, b) is controllable and (c, A2) is observable, then X is
invertible.

c. Use (b) to give a proof of the pole-placement theorem for the single-input
case, independent of the control-canonical form.

3.14 Show that (A, B) is controllable iff the equations X A− AX = 0, X B = 0 only
have the trivial solution X = 0.

3.15 Given the system � : ẋ = Ax+Bu, y = Cx+Du, what condition is necessary
and sufficient in order that y(t) → 0 (t → ∞) holds whenever the input is
identically zero?

3.16 Let A ∈ Rn×n, b ∈ Rn be such that (A, b) is controllable. Let p(z) = z n +

c1zn−1 + · · · + cn be given. Let f be an n-dimensional row vector such that
χA+b f = p.

a. Show that there exists exactly one n-dimensional row vector η such that
ηAkb = 0 for k = 0, . . . , n − 2 and ηAn−1b = 1.

b. Show that f = −ηp(A).

c. Show that the following algorithm yields the correct f .

η0 : = η

ηk+1 : = ηk A + ck+1η (k = 0, . . . , n − 1)

f : = −ηn.

3.17 Let A ∈ R
n×n , C ∈ R

p×n . Show that there exists for every monic polynomial
p of degree n a matrix G ∈ Rn×p such that χA+GC = p if and only if (C, A)

is observable.

3.18 Let � : ẋ = Ax + Bu and let Cg be a stability domain. Show that (A, B) is
Cg-stabilizable if and only if for every x 0 there exists a Bohl function u such
that the resulting state x is a Cg-stable Bohl function.

3.19 Consider the discrete-time system �d :

x(t + 1) = Ax(t)+ Bu(t),

y(t) = Cx(t).

a. Determine a formula that for any initial state x 0 and any input sequence
(u(t))∞t=0 yields the corresponding state trajectory x(t).

b. Define the concepts of controllability, null-controllability, reachability,
and observability for the given discrete-time system.

c. Prove that the following statements are equivalent:

1. �d is controllable,
2. �d is reachable,
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3. The pair (A, B) is controllable (in other words 〈A | im B〉 = X).

d. Show that �d is observable if and only if the pair (C, A) is observable (in
other words 〈ker C | A〉 = 0).

e. Show that �d is null controllable if and only if every nonzero eigenvalue
of A is (A, B)-controllable.

f. Show that �d is null controllable if and only if

rank
(

B AB · · · An−1 B
)

= rank
(

B AB · · · An−1 B An
)

.

3.20 In the continuous-time system � : ẋ = Ax + Bu, y = Cx , a fixed sampling
interval T is chosen. The control function u is taken constant, say u k , on each
of the intervals [kT, (k + 1)T ], where k ∈ N. Also, the output variable y is
measured only at the time instances kT . The values thus measured are denoted
by yk . In this way, one obtains a discrete-time system �d .

a. Give a state-space representation for �d .

b. Assume that � is controllable and that the following condition is satisfied:

T (λ− µ) 	= 2kπ i (k ∈ Z, k 	= 0) (3.48)

for every pair λ,µ of eigenvalues of A. Prove that � d is controllable.

c. Show that condition (3.48) is necessary in the case that m = 1, i.e., if
there is only one input.

d. Give an example showing that condition (3.48) is not necessary if m > 1.

e. Assume that condition (3.48) is satisfied and that � is observable. Show
that �d is observable.

3.21 Show that (A,B) is controllable if and only if for every nonzero matrix C , there
exists s 	∈ σ(A) such that C(s I − A)−1 B 	= O.

3.22 The system � given by the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t),

with x(t) ∈ Rn and y(t) ∈ Rp , is called output-controllable if for any x 0 ∈ Rn

and y1 ∈ Rp there exists an input function u ∈ U and a T > 0 such that
yu(T, x0) = y1. Show that � is output-controllable if and only if

rank
(

D C B C AB · · · C An−1 B
)

= p.

3.23 Suppose that n persons, P1, . . . , Pn are sitting at a round table each with an
amount of money, say x1, . . . , xn . Let α, β be real mumbers satisfying 0 � α, β

and α+β � 1. Each person Pk gives αxk to his left neighbour Pk−1 , and βxk to
his right neighbour Pk+1, where we make the identifications P0 = Pn, Pn+1 =

P1. Suppose that these actions are repeated n−1 times. Each person Pk knows
the numbers α and β, and he knows the numbers x k at each step. Is he able to
find out what the values of all x i ’s were, when the actions started?
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3.24 Consider the system � : ẋ = Ax + Bu, with A ∈ Rn×n and B ∈ Rn×m . Let
W be the reachable subspace of (A, B), i.e., W = 〈A | im B〉. Define the
C
−-stabilizable subspace of (A, B) by:

Xstab : = {x0 ∈ R
n | ∃u ∈ U : lim

t→∞
x(t, x0, u) = 0}.

a. Show that Xstab is a subspace of Rn

b. Show that W ⊂ Xstab.

c. Find a system � for which the inclusion W ⊂ Xstab is a strict inclusion.

d. Assume that (A, B) is C−-stabilizable. Show that Xstab = Rn .

e. Let λ ∈ C and let η be a nonzero row vector such that

ηA = λη, ηB = 0.

Given x0 ∈ Rn , u ∈ U, define z : R → C by z(t) : = ηx(t, x0, u). Show
that z satisfies the differential equation ż = λz.

f. Show that (A, B) is C−-stabilizable if and only if Xstab = Rn .

3.25 An autonomous discrete-time system �a : x(t + 1) = Ax(t) is called a dead-

beat system if for any initial value x0, the state x(t) equals zero for t � n. What
is a necessary and sufficient condition for the existence of a feedback u = Fx

in the controlled system � : x(t + 1) = Ax(t)+ Bu(t) such that the resulting
(autonomous) system is dead-beat?

3.26 Consider the system

ẋ = Ax + Bu (3.49)

and assume that K , M, N are matrices satisfying M � 0, N T = −N, K >

0, AT K + K A < 0. Show that the feedback u = Fx , where F : = (N −

M)BT K , stabilizes (3.49).

3.27 Let P be a positive semidefinite solution of (3.30) and let (C, A) be observable.
Show that P is positive definite.

3.28 Let n × n matrices A, P, Q satisfy (3.30), and let P > 0, Q � 0. Show that

�(A) �
�(−Q)

2�(P)
.

3.29 Let A be an n × n matrix. If the equation A T P + P A = −I has a positive
definite solution, then the equation A T P + P A = −Q has a positive solution
for every Q > 0.

3.30 (Stabilization algorithm by Bass) Let (A, B) be stabilizable. Show that the
following algorithm leads to a stabilizing feedback.

a. Choose α such that �(−α I − A) < 0, e.g. by taking α > ‖A‖.
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b. Solve P from the equation

(α I + A)P + P(α I + AT) = 2B BT.

c. Compute F from F P = −B T.

What can be said about the location of the controllable eigenvalues? Verify in
particular that equations mentioned have a solution.

3.15 Notes and references

The description of linear systems in terms of a state space representation was par-
ticularly stressed by R.E. Kalman in the early sixties (see Kalman [91, 93, 94] and
Kalman, Narendra and Ho [96]). See also Zadeh and Desoer [229], Gilbert [59]). In
particular, Kalman introduced the concepts of controllability and observability, and
gave the conditions expressed in Corollary 3.4, part (iii) and Theorem 3.6, part (v).
Also, the decomposition of the state space, given in Theorem 3.11 is due to Kalman.

The concept of controllable and observable eigenvalues was introduced in Hautus
[68]. The controllability and observability condition expressed in Theorem 3.13 were
independently found by a number of authors. The first reference is Popov [148] (see
also [149]). Other references are Belevitch [15] and Rosenbrock [155]. In Hautus
[68, 69], the applicability of these conditions are demonstrated. The stabilizability
and detectability condition of Theorem 3.32 and Theorem 3.38, part (iii), was proved
in [69].

The pole-placement was proved in increasing generality by a number of authors:
In 1960, J. Rissanen [153] proved the result for m = 1 (one input). The result was
generalized to the case m > 1 by Popov [147] in 1964. This result was only valid,
however, for complex systems. Hence, even if the matrices A, B are real, the re-
sulting feedback matrix F could not be guaranteed to be real. A proof valid for real
systems was given in 1967 by Wonham [220]. A drastic simplification in the proof
was obtained by Heymann [77] in 1968. The proof in this chapter was given in Hau-
tus [71].

State observers were introduced right with the concept of state-space representa-
tion (Kalman [96], Zadeh and Desoer [229]). They were viewed as a deterministic,
nonoptimal version of the Kalman filter. The construction of the observer given in
this chapter follows the pattern of the Kalman filters. In the literature, much attention
is spent on reduced observers, i.e., observer with a lower dimensional state space (see
Luenberger [115]).

The results of exercises 3.13 and 3.16 were given in Luenberger [116] and Ack-
ermann [1], respectively.
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Chapter 4

Controlled invariant subspaces

In this chapter we introduce controlled invariant subspaces (which are also called
(A, B)-invariant subspaces) and the concepts of controllability subspace and stabiliz-
ability subspace. The notion of controlled invariance is of fundamental importance
in many of the feedback design problems that the reader will encounter in this book.
We will apply these concepts to a number of basic feedback design problems, among
which the problem of disturbance decoupling by state feedback. The design prob-
lems treated in this chapter have in common that the entire state vector of the control
system is assumed to be available for control purposes, and we confine ourselves to
the design of static state feedback control laws. Dynamic feedback will be discussed
in chapter 6.

4.1 Controlled invariance

In this section we will introduce the concept of controlled invariant subspace and
prove the most important properties of these subspaces. Again consider the system

ẋ(t) = Ax(t)+ Bu(t). (4.1)

The input functions u are understood to be elements of the class U of admissible input
functions (see section 3.1). A subspace of the state space will be called controlled
invariant if it has the following property: for every initial condition in the subspace
there exists an input function such that the resulting state trajectory remains in the
subspace for all times. More explicitly:

Definition 4.1 A subspace V ⊂ X is called controlled invariant if for any x 0 ∈ V

there exists an input function u such that x u(t, x0) ∈ V for all t � 0.

It follows immediately from the definition that the sum of any number of con-
trolled invariant subspaces is a controlled invariant subspace. In order to stress the
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dependence on the underlying system, we will often use the terminology (A, B)-
invariant subspace instead of controlled invariant subspace. It is easily seen that if
F : X → U is a linear map and G : U → U is an isomorphism then a given
subspace V is (A, B)-invariant if and only if it is (A + B F, BG)-invariant. Stated
differently: the classes of controlled invariant subspaces associated with the systems
(A, B) and (A + B F, BG), respectively, coincide. Sometimes this is expressed by
saying that the property of controlled invariance is invariant under state feedback
and isomorphism of the input space. The following theorem gives several equivalent
characterizations of controlled invariance:

Theorem 4.2 Consider the system (4.1). Let V be a subspace of X. The following

statements are equivalent:

(i) V is controlled invariant,

(ii) AV ⊂ V + im B,

(iii) there exists a linear map F : X→ U such that (A + B F)V ⊂ V.

Proof : (i)⇒ (ii). Let x0 ∈ V and let u be an input function such that x u(t, x0) ∈ V

for all t � 0. Since V is a linear subspace, for all t > 0 we have 1
t
(xu(t, x0) −

x0) ∈ V. Being a subspace of X, V is closed in the Euclidean topology. Thus
ẋ(0+) : = limt↓0

1
t
(xu(t, x0) − x0) ∈ V. Since Ax0 = ẋ(0+) − Bu(0+) it follows

that Ax0 ∈ V + im B.

(ii)⇒ (iii). Choose a basis q1, . . . , qn of X adapted to V. For all 1 � i � n there
exist vectors q̄i ∈ V and u i ∈ U such that Aqi = q̄i + Bui . Define F : X → U

as follows: for 1 � i � k define Fqi : = −ui and for k + 1 � i � n let Fqi be
arbitrary vectors in X. Then for i = 1, . . . , k we have (A + B F)q i = q̄i ∈ V and
hence (A + B F)V ⊂ V.

(iii)⇒ (i). Let x0 ∈ V. We claim that if the system is controlled by the feedback
control law u = Fx , then the resulting trajectory remains in V. Indeed, using this
control law the trajectory xu(t, x0) is equal to the solution of ẋ = (A+B F)x, x(0) =

x0. The claim then follows immediately from theorem 2.4.

In the above, the characterization (i) is typically an open loop characterization:
the input functions are allowed to depend on the initial condition arbitrarily. In this
vein, the characterization (iii) is called a closed-loop characterization: it turns out
to be possible to remain within a controlled invariant subspace using a state feed-
back control law. As an intermediate between these two we stated (ii), a geometric

characterization of controlled invariance.

If V is controlled invariant, then we will denote by F(V) the set of all linear
maps F such that (A + B F)V ⊂ V. In the sequel we will often use the notation
AF : = A + B F .
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Let V be a controlled invariant subspace and let F ∈ F(V). Consider the equation
(4.1). If we represent the control u as u = Fx + v, we obtain the equation

ẋ(t) = AF x(t)+ Bv(t).

Let x0 ∈ V. We know that if we choose v = 0, then the state trajectory starting in
x0 remains in V. We now ask ourselves the question: what other control inputs v

have the property that the resulting state trajectory remains in V? We claim that the
trajectory x(t) starting in x0 remains in V if and only if Bv(t) ∈ V for all t � 0.
Indeed, if x(t) ∈ V for t � 0, then also A F x(t) ∈ V and ẋ(t) ∈ V for t � 0. Thus
Bv(t) = ẋ(t)− AF x(t) ∈ V for t � 0. Conversely, if Bv(t) ∈ V for t � 0 then

x(t) = eAF t x0 +

∫ t

0
eAF (t−τ )Bv(τ ) dτ ∈ V

for all t � 0, since e AF t x0 ∈ V for t � 0. Consider the linear subspace

B−1V : = {u ∈ U | Bu ∈ V}.

Then Bv(t) ∈ V is equivalent to v(t) ∈ B−1V. Let L be a linear map such that
im L = B−1V. Obviously, v(t) ∈ B−1V for all t � 0 if and only if v(t) =

Lw(t), t � 0, for some function w (compare exercise 2.2). Thus we have proven:

Theorem 4.3 Let V be a controlled invariant subspace. Assume that F ∈ F(V) and

let L be a linear map such that im L = B−1V. Let x0 ∈ V and let u be an input

function. Then the state trajectory resulting from x0 and u remains in V for all t � 0
if and only if u has the form

u(t) = Fx(t)+ Lw(t) (4.2)

for some input function w.

Note that (AF , B L) can be viewed as the restriction of the system � to the sub-
space V. After all if we stay inside V then u must be of the form (4.2). Therefore,
the dynamics must be of the form

ẋ(t) = AF x(t)+ B Lw(t).

If K is a subspace of X which is not controlled invariant, then we are interested
in a controlled invariant subspace contained in K which is as large as possible.

Definition 4.4 Let K be a subspace of X. Then we define

V∗(K) : = {x0 ∈ X | there exists an input function u such that

xu(t, x0) ∈ K for all t � 0}.
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Two things follow immediately from this definition. First, it is easy to see that
V∗(K) is a linear subspace of X. Indeed, if x0, y0 ∈ V∗(K) then there are inputs
u and v such that xu(t, x0) ∈ K and xv(t, y0) ∈ K for all t � 0. Let λ,µ ∈ R.
Define w(t) : = λu(t)+µv(t). Then xw(t, λx0+µy0) ∈ K for all t � 0 (see (3.2)).
Secondly, it is clear that V∗(K) ⊂ K . In fact, we have the following result:

Theorem 4.5 Let K be a subspace of X. Then V ∗(K) is the largest controlled

invariant subspace contained in K , i.e.

(i) V∗(K) is a controlled invariant subspace,

(ii) V∗(K) ⊂ K ,

(iii) if V ⊂ K is a controlled invariant subspace then V ⊂ V ∗(K).

Proof : We first show that V∗(K) is controlled invariant. Assume x0 ∈ V∗(K).
There is an input u such that xu(t, x0) ∈ K for all t � 0. We claim that, in fact,
xu(t, x0) ∈ V∗(K) for all t � 0. To show this, take a fixed but arbitrary t1 � 0.
Let x1 : = xu(t1, x0). It will be shown that x1 ∈ V∗(K). Indeed, if we define
v(t) : = u(t1 + t) (t � 0), then using (3.2) we have x v(t, x1) = xu(t + t1, x0) ∈ K

for all t � 0. This proves that x1 = xu(t1, x0) lies in V∗(K). Since t1 was arbitrary,
xu(t, x0) ∈ V∗(K) for all t � 0 and hence V ∗(K) is controlled invariant.

Next, we show that V∗(K) is the largest controlled invariant subspace in K .
Let V ⊂ K be controlled invariant. Let x0 ∈ V. There is an input u such that
xu(t, x0) ∈ V for all t � 0. Consequently, xu(t, x0) ∈ K for all t � 0 and hence
x0 ∈ V∗(K). This completes the proof.

In order to display the dependence on the underlying system we will sometimes
denote V∗(K) by V∗(K, A, B).

4.2 Disturbance decoupling

Consider the system

ẋ(t) = Ax(t)+ Ed(t),

z(t) = H x(t).
(4.3)

In the differential equation above, d represents an unknown disturbance which is
assumed to be an element of a given function space. For a given initial condition x 0
and disturbance d, the output of the system is given by

z(t) = H eAt x0 +

∫ t

0
T (t − τ )d(τ ) dτ. (4.4)

Here T (t) : = H eAt E is the impulse response between the disturbance and the out-
put. The system (4.3) will be called disturbance decoupled if T = 0 or, equivalently,
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if the transfer function G(s) = H (I s− A)−1E is equal to zero. If this is the case then
for any given initial condition x 0 the output is equal to z(t) = H e At x0 for all distur-
bances d. This means that in a system which is disturbance decoupled, the output
does not depend on the disturbance. The following theorem will play an important
role in the sequel:

Theorem 4.6 The system (4.3) is disturbance decoupled if and only if there exists an

A-invariant subspace V such that im E ⊂ V ⊂ ker H .

Proof : (⇒) If T = 0 then also all its time derivatives T (k) are identically equal to
0. Thus, T (k)(t) = H AkeAt E = 0 for all t . By taking t = 0 this yields H Ak E =

0, k = 0, 1, 2, . . . Define V : = im
(

E AE · · · An−1 E
)

. Then V ⊂ ker H .
By corollary 3.3, V is equal to 〈A | im E〉, the smallest A-invariant subspace that
contains im E .

(⇐) If im E ⊂ V and V is A-invariant, then also im A k E ⊂ V for k = 0, 1, 2, . . ..
Since we know that V ⊂ ker H this yields H Ak E = 0 for all k. Thus T (t) =
∑∞

k=0(t
k/k!)H Ak E = 0 for all t . It follows that the system is disturbance decoupled.

If the system (4.3) is not disturbance decoupled, then one can try to make it dist-
urbance decoupled. In order to do this one needs the possibility to change the sys-
tem’s dynamics by using a control input. This possibility is modelled by adding a
control term to the right hand side of the original differential equation in (4.3). Thus
we consider the system

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

z(t) = H x(t).
(4.5)

In this description, the variable u represents a control input (see also section 2.8). Let
F : X → U be a linear map. If in (4.5) we substitute u(t) = Fx(t), the system’s
equations change into

ẋ(t) = (A + B F)x(t)+ Ed(t),

z(t) = H x(t),
(4.6)

the closed-loop system obtained from the state feedback control law u = Fx . The
impulse response matrix of (4.6) is called the closed-loop impulse response and is
equal to

TF (t) : = H e(A+B F)t E .

The corresponding transfer function G F (s) : = H (I s − A − B F)−1 E is called the
closed-loop transfer function. The problem of disturbance decoupling by state feed-
back is to find a linear map F : X → U such that the closed-loop system (4.6) is
disturbance decoupled:
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Definition 4.7 Consider the system (4.3). The problem of disturbance decoupling by
state feedback, DDP, is to find a linear map F : X → U such that TF = 0 (or,

equivalently, such that G F = 0).

The following result establishes the connection between the concept of controlled
invariance and the problem of disturbance decoupling.

Theorem 4.8 There exists a linear map F : X → U such that TF = 0 if and only if

there exists a controlled invariant subspace V such that im E ⊂ V ⊂ ker H.

Proof : (⇒) If TF = 0 then (4.6) is disturbance decoupled. By theorem 4.6 there is
an (A+ B F)-invariant subspace V such that im E ⊂ V ⊂ ker H . By theorem 4.2, V

is controlled invariant.

(⇐) Let V be a controlled invariant subspace such that im E ⊂ V ⊂ ker H . By
theorem 4.2 there exists a linear map F : X→ U such that V is (A+ B F)-invariant.
It then follows from theorem 4.6 that the system (4.6) is disturbance decoupled.

Corollary 4.9 There exists a linear map F : X→ U such that TF = 0 if and only if

im E ⊂ V∗(ker H ). (4.7)

Formula (4.7) provides a very compact necessary and sufficient condition for the
existence of a state feedback control law that achieves disturbance decoupling. How-
ever, in order to be able to check this condition for an actual system, we would like
to have an algorithm. In the next section we will describe an algorithm that, starting
from a system (4.5), calculates the associated subspace V ∗(ker H ).

4.3 The invariant subspace algorithm

In this section we give an algorithm to compute the subspace V ∗(K). Consider the
system (A, B) and let K be a subspace of the state space X. The algorithm we give
is most easily understood if one thinks in terms of the discrete-time system

xt+1 = Axt + But , t = 0, 1, 2, . . . . (4.8)

Given an input sequence u = (u 0, u1, u2, . . .) and an initial condition x0, the resulting
discrete-time state trajectory is denoted by x = (x 0, x1, x2, . . .). The discrete-time
analogue V∗d (K) of the subspace V∗(K) defined by definition 4.4 is obviously the
subspace of all x0 ∈ X for which there exists an input sequence u such that all terms
of the resulting state trajectory lie in K:

V∗d (K) : = {x0 ∈ X | there is an input sequence u such that

xt ∈ K for t = 0, 1, 2, . . .}.
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Define a sequence of subspaces V0,V1,V2, . . . by

Vt : = {x0 ∈ X | there is an input sequence u such that x 0, x1, x2, . . . , xt ∈K}.

Thus, Vt consists of those points in which a state trajectory starts for which the first
t + 1 terms lie in K . It is easily verified that Vt is indeed a subspace, that V0 = K

and that V0 ⊃ V1 ⊃ V2 ⊃ · · · . It turns out to be possible to derive a recurrence
relation for Vt . Indeed, x0 ∈ Vt+1 if and only if x0 ∈K and there exists u0 ∈ U such
that Ax0+ Bu0 ∈ Vt . Hence, x0 ∈ Vt+1 if and only if x0 ∈K and Ax0 ∈ Vt + im B

or, equivalently, x0 ∈ A−1(Vt + im B). It follows that

V0 = K, Vt+1 = K ∩ A−1(Vt + im B). (4.9)

From this recurrence relation it follows immediately that if Vk = Vk+1 for some k,
then Vk = Vt for all t � k. Now, recall that V0 ⊃ V1 ⊃ V2 ⊃ · · · . If we have strict
inclusion, the dimension must decrease by at least one. Hence the inclusion chain
must have the form

V0 ⊃ V1 ⊃ · · · ⊃ Vk = Vk+1 = Vk+2 = · · ·

for some integer k � dim K (� n − 1). In the above formula, ⊃ stands for strict

inclusion. We claim that V∗d (K) = Vk . Indeed, on the one hand it follows immedi-
ately from the definition that V ∗

d (K) ⊂ Vt for all t . Conversely, assume x0 ∈ Vk .
We want to construct an input sequence (u 0, u1, . . .) such that the corresponding
state trajectory x = (x0, x1, . . .) lies in K . Since x0 ∈ Vk = Vk+1, there is
u0 such that x1 = Ax0 + Bu0 ∈ Vk . Thus, in particular we have x0, x1 ∈ K .
We now proceed inductively. Assume u 0, u1, . . . , us−1 have been found such that
x0, x1, . . . , xs−1 ∈ K , while xs ∈ Vk . Again using Vk = Vk+1 we can find us such
that xs+1 = Axs + Bus ∈ Vk . This proves our claim.

The above is meant to provide some intuitive background for the introduction of
the recurrence relation (4.9). This recurrence relation will henceforth be called the

invariant subspace algorithm, ISA. Of course, we still have to show its relevance in
continuous-time systems. In the following result we will collect the properties of the
sequence {Vt } we established above and prove that it can be used to calculate the
largest controlled invariant subspace contained in K for the continuous-time system
(4.1).

Theorem 4.10 Consider the system (4.1). Let K be a subspace of X. Let V t , t =

0, 1, 2, . . ., be defined by the algorithm (4.9). Then we have

(i) V0 ⊃ V1 ⊃ V2 ⊃ · · · ,

(ii) there exists k � dim K such that Vk = Vk+1,

(iii) if Vk = Vk+1 then Vk = Vt for all t � k,

(iv) if Vk = Vk+1 then V∗(K) = Vk .
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Proof : The statements (i), (ii) and (iii) were proven above. To prove (iv), note that
Vk ⊂ K . Moreover, it follows immediately from (4.9) that

AVk = AVk+1 ⊂ Vk + im B.

Hence Vk is a controlled invariant subspace contained in K and therefore contained
in V∗. To prove the converse inclusion, we show that in fact V ∗ ⊂ Vt for all t .
Obviously this is true for t = 0. Assume V ∗ ⊂ Vt−1. Since V∗ is controlled
invariant we have AV∗ ⊂ V∗ + im B. Thus AV∗ ⊂ Vt−1 + im B and hence V∗ ⊂

A−1(Vt−1 + im B). Finally, V∗ ⊂K so we conclude that V∗ ⊂ Vt .

Of course item (iv) is crucial because it tells us that there exists a finite algorithm
to compute V∗. As a matter of fact it is easily seen that we need at most n steps where
n is the dimension of the state space.

4.4 Controllability subspaces

Consider the system (4.1). If a subspace of the state space has the property that every
point in that subspace can be steered to the origin in finite time without leaving the
subspace, it is called a controllability subspace.

Definition 4.11 A subspace R ⊂ X is called a controllability subspace if for every

x0 ∈ R there exists T > 0 and an input function u such that x u(t, x0) ∈ R for

0 � t � T and xu(T, x0) = 0.

It is immediately clear from this definition that every controllability subspace is
controlled invariant. Indeed, if one chooses the control input to be equal to zero for
t > T , the state trajectory also remains zero and hence does not leave R. As was the
case with controlled invariant subspaces, it can be shown that the sum of any (finite or
infinite) number of controllability subspaces is a controllability subspace. Also, the
class of all controllability subspaces associated with a given system is invariant under
state feedback and isomorphisms of the input space. That is, if R is a controllability
subspace with respect to (A, B), it is a controllability subspace with respect to (A +

B F, BG) for all linear maps F : X→ U and isomorphisms G of U.

We can give the following characterization of controllability subspaces:

Theorem 4.12 A subspace R ⊂ X is a controllability subspace if and only if there

exist linear maps F and L such that

R = 〈A + B F | im B L〉. (4.10)

Proof : (⇒) Let F ∈ F(R) and L be a linear map such that im L = B −1R. We
claim that (4.10) holds. Let x0 ∈ R. There is T > 0 and an input u such that
xu(t, x0) ∈ R for all t � 0 and xu(T, x0) = 0. By theorem 4.3 there exists w such
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that u(t) = Fxu(t, x0) + Lw(t). Hence, xu(t, x0) is a state trajectory of the system
ẋ(t) = AF x(t) + B Lw(t) with state space R. Along this trajectory, x0 is steered to
0 at time t = T . Since this is possible for all x0 ∈ R, it follows that the latter system
is null-controllable. Consequently, it is reachable so R = 〈A F | im B L〉 (see section
3.2).

(⇐) Assume that (4.10) holds. Then we have A FR ⊂ R and im B L ⊂ R. Thus
ẋ(t) = AF x(t) + B Lw(t) defines a system with state space R. By corollary 3.4,
this system is controllable. Hence every point in R can be controlled to the origin in
finite time while remaining in R.

It follows from the proof of the above theorem that if R is a controllability
subspace then for the maps F and L in the representation (4.10) we can take any
F ∈ F(R) and any map L such that im L = B−1R. Since the latter equality implies
im B L = im B ∩R we obtain the following:

Corollary 4.13 Let R be a controllability subspace. Then for any F ∈ F(R) we

have

R = 〈A + B F | im B ∩R〉.

If K is a subspace of the state space X then we are interested in the largest
controllability subspace that is contained in K (see also definition 4.4).

Definition 4.14 Let K be a subspace of X. Then we define

R∗(K) : = {x0 ∈ X | there exists an input function u and T > 0 such that

xu(t, x0) ∈K for all 0 � t � T and xu(T, x0) = 0}.

Clearly, R∗(K) is contained in K . In fact, we have

Theorem 4.15 Let K be a subspace of X. Then R∗(K) is the largest controllability

subspace contained in K , i.e.

(i) R∗(K) is a controllability subspace,

(ii) R∗(K) ⊂ K ,

(iii) if R ⊂ K is a controllability subspace then R ⊂ R∗(K).

Proof : We first show that R∗(K) is a subspace. Let x0, y0 ∈ R∗(K) and λ,µ ∈

R. There exist controls u, v and numbers T1, T2 > 0 such that xu(T1, x0) = 0,
xv(T2, y0) = 0, xu(t, x0) ∈ K for all 0 � t � T1 and xv(t, y0) ∈ K for all
0 � t � T2. Without loss of generality, assume that T1 � T2. Define a new control
function ũ by ũ(t) = u(t) (0 � t � T1) and ũ(t) = 0 (t > T1). Then x ũ(T2, x0) = 0
and xũ(t, x0)(t) ∈ K for all 0 � t � T2. Define now w(t) : = λũ(t) + µv(t). Then
xw(T2, λx0 + µy0) = 0 and xw(t, λx0 + µy0) ∈K for all 0 � t � T2.
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Next, we prove that R∗(K) is a controllability subspace. Let x0 ∈ R∗(K). There
is a control input u and a number T > 0 such that x u(T, x0) = 0 and xu(t, x0) ∈ K

for all 0 � t � T . We contend that, in fact, xu(t, x0) ∈ R∗(K). To prove this,
take a fixed but arbitrary t1 < T . Let x1 : = xu(t1, x0). Define a new input function
v by v(t) : = u(t + t1) (t � 0). Then xv(t, x1) = xu(t1 + t, x0) ∈ K for all
0 � t � T − t1 and xv(T − t1, x1) = xu(T, x0) = 0. Consequently, x1 can be
controlled to the origin in finite time while remaining in K and hence x 1 ∈ R∗(K).
Since t1 was arbitrary we find that xu(t, x0) ∈ R∗(K) for all 0 � t � T . Finally,
the fact that R∗(K) is the largest controllability subspace in K is proven completely
similarly as the corresponding part of theorem 4.5.

Sometimes, we will denote R∗(K) by R∗(K, A, B). Starting with a subspace
K of the state space, we have now defined V ∗(K) (see definition 4.4) and R∗(K).
Since R∗(K) is controlled invariant and contained in K , it must be contained in the
largest controlled invariant subspace in K . Thus

R∗(K) ⊂ V∗(K) ⊂K. (4.11)

More specifically, we have R∗(V∗(K)) = R∗(K). In the following, whenever this
is convenient, we denote R∗(K) and V∗(K) by R∗ and V∗, respectively.

Lemma 4.16 Let K be a subspace of X. Then im B ∩V ∗(K) ⊂ R∗(K).

Proof : Let L be a linear map such that im L = B−1V∗. Then im B L = im B ∩ V∗.
Choose F ∈ F(V∗). Then we have

im B ∩ V∗ ⊂ 〈AF | im B L〉 ⊂ V∗ ⊂ K.

Since 〈AF | im B L〉 is a controllability subspace (see theorem 4.12) it must be con-
tained in R∗(K). This proves the lemma.

The above lemma will be used to prove the following, stronger, result:

Theorem 4.17 Let K be a subspace of X. Then F(V ∗) ⊂ F(R∗) and

R∗ = 〈A + B F | im B ∩ V∗〉 (4.12)

for all F ∈ F(V∗).

In the above, F(R∗) denotes the set of all linear maps F with the property that R ∗

is A+ B F invariant. This is consistent with our earlier notation F(V) with respect to
the controlled invariant subspace V, since every controllability subspace is controlled
invariant.
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Proof : Let F ∈ F(V∗). Since R∗ ⊂ V∗ we have that AFR∗ ⊂ V∗. On the other
hand, since R∗ is controlled invariant, A FR∗ ⊂ R∗ + im B. Thus we have

AFR∗ ⊂ (im B +R∗) ∩ V∗ = (im B ∩ V∗)+R∗ ⊂ R∗.

where we used the modular rule for the equality in the middle. This shows that
F ∈ F(R∗). Next, by corollary 4.13, R∗ = 〈AF | im B ∩R∗〉. Moreover, it follows
from lemma 4.16 that im B ∩ R∗ = im B ∩ V∗. This completes the proof of the
theorem.

The above theorem has the following interpretation. By taking F ∈ F(V ∗) and a
linear map L such that im L = B−1V∗ we obtain a new system

ẋ(t) = (A + B F)x(t)+ B Lw(t)

with state space V∗. This system can be considered as being obtained from the orig-
inal system by restricting the trajectories to the subspace V ∗ and by restricting the
input functions to take their values in B−1V∗. Since im B L = im B ∩ V∗, (4.12)
expresses the fact that R∗ is just the reachable subspace of this restricted system.

If V is a controlled invariant subspace then of course V = V ∗(V). Let R : =

R∗(V), the largest controllability subspace contained in V. Then theorem 4.17 says
that if F ∈ F(V) and L is a linear map such that im L = B−1V then

R = 〈A + B F | im B L〉. (4.13)

Finally we note that it follows from theorem 4.17 that R ∗(X), the largest controlla-
bility subspace of the system (4.1), is equal to the reachable subspace 〈A | im B〉. In-
deed, the state space X itself is of course a controlled invariant subspace so V ∗(X) =

X and F(X) = {F : X→ U | F is linear}. It also follows from this that every con-
trollability subspace V is contained in 〈A | im B〉.

4.5 Pole placement under invariance constraints

In section 3.10 we have discussed to what extent one can assign the spectrum of the
system map using state feedback. In section 4.1 we introduced the class of controlled
invariant subspaces and showed that these are characterized by the property that they
can be made invariant by state feedback. In the present section we will combine
these two issues and ask ourselves the question: how much freedom is left in the
assignment of the spectrum of the system map if it is required that a given controlled
invariant subspace should be made invariant? More concretely: given a controlled
invariant subspace V, what freedom do we have in the assignment of the spectrum of
A+ B F if we restrict ourselves to F ∈ F(V). The following result gives a complete
solution.

Theorem 4.18 Consider the system (4.1). Let V be a controlled invariant subspace.

Let R : = R∗(V) be the largest controllability subspace contained in V. Let S : =

V + 〈A | im B〉. Then we have
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(i) F(V) ⊂ F(R) ∩ F(S).

(ii) Given any pair of real monic polynomials (p1, p2) with deg p1 = dim R and

deg p2 = dim S/V there exists F ∈ F(V) such that the characteristic polyno-

mials of AF | R and AF | S/V equal p1 and p2, respectively.

(iii) The map AF | V/R is independent of F for F ∈ F(V). The map A F | X/S

is equal to A | X/S for all F.

The results concerning the freedom of spectral assignability under the constraint
that a given controlled invariant subspace should be made invariant is depicted in the
lattice diagram in Figure 4.1. Before we establish a proof of this theorem, let us

X

fixed

A + B F , F ∈ F(V)

0

S = V+ < A | im B >

free

V

fixed

R

free

Figure 4.1

make some remarks. The theorem states that if a feedback map F makes V invariant
under A + B F , then it must do the same with R and S (see also theorem 4.17). The
subspaces R, V and S form a chain, that is, they are related by the inclusion relation

R ⊂ V ⊂ S. (4.14)

In order to appreciate the content of theorem 4.18 it is useful to see what it says in
terms of partitioned matrices. Choose a basis of the state space X adapted to the
chain (4.14). Accordingly, we can split

A =









A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
0 0 0 A44









, B =









B1
B2
B3
0









.
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Here, the zero blocks appear due to the facts that the subspace S is A-invariant and
contains the subspace im B. A map F =

(

F1 F2 F3 F4
)

is an element of F(V)

if and only if

A31 + B3 F1 = 0 and A32 + B3 F2 = 0. (4.15)

If we restrict ourselves to maps F satisfying (4.15) then automatically A 21+ B2 F1 =

0 (see theorem 4.17). Theorem 4.18 asserts that, under the restriction that F1 should
satisfy (4.15), the spectrum of A11+ B1 F1 is freely assignable. Also, the eigenvalues
of A33 + B3 F3 can be placed arbitrarily by appropriate choice of F3. Finally, the
theorem states that, under the restriction (4.15) on F2, the map A22 + B2 F2 is fixed.
More specifically, if F 1

2 and F2
2 satisfy A32 + B3 F i

2 = 0 (i = 1, 2) then we have
A22 + B2 F1

2 = A22 + B2 F2
2 and, a fortiori, also σ(A22 + B2 F1

2 ) = σ(A22 + B2 F2
2 ).

The block A44 is not affected by any feedback map F and consequently also σ(A 44)

is fixed.

As a consequence of the above theorem, given a pair of real monic polynomials
(p1, p2) with deg p1 = dim R and deg p2 = dim S/V, we can find a linear map
(F1 F2 F3 F4) = F ∈ F(V) such that the characteristic polynomial of A + B F

becomes equal to the product p1 · q · p2 · r . Here q is equal to the characteristic
polynomial of A22 + B2 F2 which, as noted before, is the same for all maps F2 such
that F ∈ F(V). The polynomial r is equal to the characteristic polynomial of A 44.

In the proof of theorem 4.18 the following lemma will be useful.

Lemma 4.19 Let V be a controlled invariant subspace and let F0 ∈ F(V). Let

F : X→ U be a linear map. Then F ∈ F(V) if and only if (F0 − F)V ⊂ B−1V.

Proof : (⇒) Let x0 ∈ V. Then (A + B F0)x0 ∈ V and (A + B F)x0 ∈ V. Hence
B(F0 − F)x0 ∈ V.

(⇐) Let x0 ∈ V. Then B(F0 − F)x0 ∈ V. Also (A + B F0)x0 ∈ V. It follows
that also (A + B F)x0 = (A + B F0)x0 − B(F0 − F)x0 ∈ V.

We will now give a proof of theorem 4.18.

Proof of theorem 4.18: : (i) The fact that F(V) ⊂ F(R) was already proven
in theorem 4.17. The subspace S is invariant under A + B F for any F (see also
exercise 4.2).

(ii) Let (p1, p2) be a pair of polynomials as in the statement of the theorem. We
choose any F0 ∈ F(V) and L : Rk → U with im L = B−1V, where k : = dim B−1V.
Then, according to (4.13), we have

R = 〈A + B F0 | im B L〉.

Define A0 : = (A + B F0) | R and B0 : = B L. Then the system (A0, B0) is controll-
able (see corollary 3.4) and hence, by theorem 3.29, there exists a map F 1 : R → Rk
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such that A0 + B0 F1 has characteristic polynomial p1. Extend F1 to a linear map
from X → Rk . Define F2 : = F0 + L F1. Since F2 − F0 = L F1 and im L = B−1V,
it follows from lemma 4.19 that V is invariant under A+ B F2. Also S is (A+ B F2)-
invariant. Let 
 : S → S/V be the canonical projection (see section 2.4). Define
A2 : = (A+B F2) | S/V and let B2 :U→ S/V be defined by B2 : = 
B. We claim
that the system (A2, B2) is controllable. We will show that S/V = 〈A2 | im B2〉. Let
x̄ ∈ S/V, say x̄ = 
x with x ∈ S. Then x can be written as x = x1 + x2 with
x1 ∈ 〈A | im B〉 = 〈A + B F2 | im B〉 and x2 ∈ V. Since V = ker 
 we have that in
fact x̄ = 
x1. There are u0, . . . , un−1 ∈ U such that x1 =

∑

i (A+ B F2)
i Bui . Thus

x̄ = 
x1 =
∑

i


(A + B F2)
i Bui

=
∑

i

Ai
2 B2ui ∈ 〈A2 | im B2〉.

Here, we have used the fact that 
(A + B F2) = A2
 and B2 = 
B. This proves
our claim. Now, by theorem 3.29 there exists a map F̄3 : S/V → U such that
the characteristic polynomial of A2 + B2 F̄3 equals p2. Define F3 : S → U by
F3 : = F̄3
 and extend F3 to a map on X. Define F : = F2+F3. Then (A+B F)V =

(A + B F2)V ⊂ V so F ∈ F(V). Also, (A + B F) | S/V = A2 + B2 F̄3 since

(A2 + B2 F̄3)
 = A2
+
B F3 = 
(A + B F2)+
B F3 = 
(A+ B F).

Thus, the characteristic polynomial of (A + B F) | S/V is equal to p 2. It remains
to be shown that the characteristic polynomial of (A + B F) | R equals p 1. This
however follows from the fact that (A + B F) | R = A 0 + B0 F1.

(iii) Let F1, F2 ∈ F(V). According to lemma 4.19 we have (F1−F2)V ⊂ B−1V.
Hence B(F1− F2)V ⊂ V∩ im B ⊂ R (see lemma 4.16). Let 
1 : V → V/R be the
canonical projection. Since R = ker 
1 we have 
1 B(F1 − F2)V = 0. Denote A1 :

= (A+B F1) | V/R and A2 : = (A+B F2) | V/R. Let x̄ ∈ V/R, say x̄ = 
1x with
x ∈ V. Then (A1− A2)x̄ = (A1
1 − A2
1)x = (
1(A+ B F1)−
1(A+ B F2))x

= 
1 B(F1 − F2)x = 0. Thus A1 = A2 and hence the map (A + B F) | V/R is
independent of F for F ∈ F(V).

Finally, let 
2 : X → X/S be the canonical projection. Since im B ⊂ S and
S = ker 
2 we have 
2 B = 0. Let F1, F2 be linear maps X → U. Note that S is
(A + B Fi )-invariant (i = 1, 2) and define A i : = (A + B Fi ) |X/S. Let x̄ ∈ X/S,
say x̄ = 
2x . Then (A1 − A2)x̄ = (A1
2 − A2
2)x = (
2(A + B F1)−
2(A +

B F2))x = 
2 B(F1 − F2)x = 0. Thus A1 = A2 and (A + B F) | X/S = A | X/S

for every F .

We close this section by applying theorem 4.18 to obtain the following character-
ization of controllability subspaces.

Theorem 4.20 Consider the system (4.1). Let V be a subspace of X. The following

statements are equivalent:
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(i) V is a controllability subspace,

(ii) for all for all λ ∈ C we have (λI − A)V + im B = V + im B,

(iii) for each real monic polynomial p with deg p = dim V, there exists F ∈ F(V)

such that the characteristic polynomial of A F | V equals p.

Proof : (i) ⇒ (iii). Follows by applying theorem 4.18 to the subspace V. Note that
R∗(V) = V.

(iii)⇒ (ii). From the fact that F(V) 	= ∅ it follows that V is controlled invariant.
Hence AV ⊂ V + im B (see theorem 4.2) and consequently (λI − A)V + im B ⊂

V + im B for all λ ∈ C. To prove the converse inclusion it suffices to show that
V ⊂ (λI − A)V + im B for all λ. Let λ ∈ C. Pick a real monic polynomial p with
deg p = dim V such that p(λ) 	= 0. There is F ∈ F(V) such that the characteristic
polynomial of A F | V equals p. It follows that λ 	∈ σ(A + B F | V) so the map
(λI − A− B F) | V must be regular. Also, (λI − A− B F)V ⊂ V and consequently
we must in fact have (λI − A− B F)V = V. It follows that V ⊂ (λI − A)V+ im B.

(ii) ⇒ (i). If (ii) holds then also AV ⊂ V + im B so V is controlled invariant.
For each linear map F we have

(λI − A − B F)V + im B = V + im B (4.16)

for all λ ∈ C. If in (4.16) we take F ∈ F(V) and intersect both sides of the equation
with V we obtain

(λI − A − B F)V + (im B ∩ V) = V (4.17)

for all λ ∈ C. Let L be a linear map such that im L = B−1V, say L : Rk → U. Then
im B ∩ V = im B L and (4.17) becomes

(λI − A − B F)V + B LR
k = V (4.18)

for all λ. By theorem 3.13 (compare (3.12)) this implies that the system (A+B F, B L)

with state space V and input space Rk is controllable. Hence, by corollary 3.4, V =

〈A + B F | im B L〉. Finally, apply theorem 4.12.

4.6 Stabilizability subspaces

In this section we introduce the notion of stabilizability subspace. Consider the sys-
tem (4.1). From section 2.6, recall that if we choose an input function that is Bohl,
then for any initial state also the resulting state trajectory is Bohl. Moreover, for a
Bohl trajectory x we defined its spectrum σ(x) and we called a Bohl trajectory x

stable with respect to a given stability domain Cg if σ(x) ⊂ Cg .

Let Cg be a stability domain. A subspace V of the state space is called a stabi-
lizability subspace if it has the following property: for each initial condition in the
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subspace there is a Bohl input such that the resulting state trajectory remains in the
subspace and is stable.

Definition 4.21 A subspace V ⊂ X is called a stabilizability subspace if for any

x0 ∈ V there exists a Bohl function u such that xu(t, x0) ∈ V for all t � 0 and

xu(·, x0) is stable.

An important special case is obtained by taking the stability set Cg to be equal
to C

−, the open left half complex plane. Since a Bohl function converges to zero as
t tends to infinity if and only if its spectrum is contained in C−, for this particular
case the requirement that xu(·, x0) should be stable is equivalent to the condition
xu(t, x0)→ 0 (t →∞).

Note that every stabilizability subspace is controlled invariant. The sum of any
number of stabilizability subspaces is a stabilizability subspace. It also follows from
the definition that the property of being a stabilizability subspace is invariant under
state feedback and isomorphisms of the input space. In the following, for a given
stability domain Cg , let Cb be its complement in C. Stabilizability subspaces can be
characterized as follows:

Theorem 4.22 Consider the system (4.1) and let Cg be a stability domain. Let V be

a subspace of X. Then the following statements are equivalent:

(i) V is a stabilizability subspace,

(ii) for all λ ∈ Cb we have (λI − A)V + im B = V + im B,

(iii) there exists F ∈ F(V) such that σ(AF | V) ⊂ Cg .

Proof : (i)⇒ (ii). For any F , condition (ii) is equivalent to

(λI − AF )V + im B = V + im B for all λ ∈ Cb. (4.19)

Let F ∈ F(V). We claim that in this case (4.19) is equivalent to

(λI − AF )V + (im B ∩V) = V for all λ ∈ Cb. (4.20)

Indeed, (4.20) follows from (4.19) by taking the intersection with V on both sides of
the equation. The converse can be verified immediately. Now assume that (ii) does
not hold. Then by the previous there must be a λ0 ∈ Cb for which the equality in
(4.20) does not hold. Since F ∈ F(V) we do have

(λ0 I − AF )V + (im B ∩ V) ⊂ V. (4.21)

Consequently, the inclusion in (4.21) must be strict. Hence, there exists a nonzero
row vector η such that η ⊥ (λ0 I − AF )V + (im B ∩ V) but not η ⊥ V. Let x0 ∈ V

such that ηx0 	= 0. Since V is a stabilizability subspace there exists a Bohl function
u such that if x(t) satisfies ẋ = AF x + Bu, x(0) = x0, we have x(t) ∈ V for
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all t � 0 and σ(x) ⊂ Cg . Since x(t) ∈ V for all t � 0, also ẋ(t) ∈ V and
AF x(t) ∈ V for all t � 0. Hence, Bu(t) ∈ V ∩ im B for all t � 0 and therefore
ηBu(t) = 0, t � 0. Also, since η ⊥ (λ0 I − AF )V, we have η(λ0 I − AF )x(t) = 0
for all t and hence ηA F x(t) = λ0ηx(t) for all t . Now define z(t) : = ηx(t). Then
z(0) = ηx0 	= 0 and z satisfies the differential equation ż(t) = λ0z(t). It follows that
η∗x(t) = z(t) = eλ0tη∗x0. Thus λ0 = σ(η∗x). Obviously, σ(η∗x) ⊂ σ(x) ⊂ Cg .
Since λ0 ∈ Cb, this yields a contradiction.

(ii)⇒ (iii). If (ii) holds then AV ⊂ V + im B so V is controlled invariant. Take
F0 ∈ F(V). Then (ii) is equivalent to (4.20) with F replaced by F0. Let L be a
linear map such that im L = B−1V, say L : Rk → U. Then im B ∩ V = im B L so
(4.20) yields (λI − A F0)V + B LRk = V for all λ ∈ Cb . It follows from theorem
3.13 that the system (A F0, B L) with state space V and input space Rk is stabilizable.
Hence there is F1 : V → Rk such that σ((AF0 + B L F1) | V) ⊂ Cg . Extend F1 to
a linear map on X and define F : = F0 + L F1. Then σ(AF | V) ⊂ Cg and since
im(F − F0) ⊂ B−1V also F ∈ F(V) (see lemma 4.19).

(iii) ⇒ (i). Let F ∈ F(V) with σ(AF | V) ⊂ Cg . Denote A0 : = AF | V

and apply state feedback u = Fx . The resulting state trajectory is given by x(t) =

eA0t x0. Obviously for x0 ∈ V we have that x(t) ∈ V for all t . Then it follows from
theorem 2.6 that the spectrum of x must be contained in σ(A 0) which is contained in
Cg . Finally note that x is equal to the state trajectory resulting from the Bohl input
u(t) = FeA0t x0.

As already noted in the proof of the previous theorem, for any F ∈ F(V) and
any map L such that im L = B−1V condition (ii) is equivalent to saying that the
system ẋ = AF x + B Lw with state space V is stabilizable. In this sense, a sta-
bilizability subspace can be considered as a subspace to which the original system
can be restricted by suitable restriction of the input functions, such that the restricted
system is stabilizable. From theorem 4.20 it follows that, in the same sense, a control-
lability subspace is a subspace for which the restricted system is controllable. Note
that, given any stability domain Cg , every controllability subspace is a stabilizability
subspace.

Using the feedback characterization in theorem 4.22 (iii) it is possible to char-
acterize stabilizability subspaces in terms of the spectral assignability properties of
controlled invariant subspaces studied in the previous section. For a given controlled
invariant subspace V, denote R : = R∗(V). It was shown in theorem 4.18 that the
map AF | V/R is independent of F for F ∈ F(V). If V is a stabilizability subspace
then there exists F ∈ F(V) such that σ(A F | V) ⊂ Cg . Since

σ(AF | V) = σ(AF | R) ∪ σ(AF | V/R)

this implies that the fixed spectrum σ(A F | V/R) is contained in Cg . Conversely, if
V is a controlled invariant subspace such that the fixed spectrum σ(A F | V/R) ⊂ Cg

then obviously one can find a F1 ∈ F(V) such that σ(AF1 | V) ⊂ Cg (since the
characteristic polynomial of A F1 | R can be chosen arbitrarily). Thus we have shown:
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Corollary 4.23 Let V be a controlled invariant subspace. Then V is a stabilizability

subspace if and only if σ(A + B F | V/R) ⊂ Cg for any F ∈ F(V).

If K is an arbitrary subspace then we want to consider the largest stabilizability
subspace contained in K .

Definition 4.24 Let Cg be a stability set and let K be a subspace of X. Then we

define

V∗g (K) : = {x0 ∈ X | there is a Bohl function u such that

xu(t, x0) ∈K for all t � 0 and xu(·, x0) is Cg-stable.}

Theorem 4.25 Let K be a subspace of X. Then V ∗
g (K) is the largest stabilizability

subspace contained in K , i.e.,

(i) V∗g (K) is a stabilizability subspace,

(ii) V∗g (K) ⊂ K ,

(iii) if V ⊂ K is a stabilizability subspace then V ⊂ V∗g (K).

The proof is similar to that of theorem 4.5 and is left as an exercise to the reader.

Sometimes we denote V∗g (K) by V∗g (K, A, B). It is easily verified that for a
given subspace K the following relation holds:

R∗(K) ⊂ V∗g (K) ⊂ V∗(K) ⊂ K.

More specifically, we have R∗(V∗g (K)) = R∗(K) and V∗g (V∗(K)) = V∗g (K).
In particular, if we take K = X we obtain the largest stabilizability subspace of
the system (4.1), V∗g (X). This subspace will be called the stabilizable subspace of

(A, B) and will be denoted by Xstab or Xstab(A, B) (see also exercise 3.24). This
subspace consists exactly of those points in which a stable state trajectory starts:

Xstab = {x0 ∈ X | there is a Bohl function u such that xu(·, x0) is stable.} (4.22)

According to the following result, the stabilizable subspace is equal to the sum of the
stable subspace of A (see definition 2.13) and the reachable subspace of (A, B):

Theorem 4.26 Xstab =Xg(A) + 〈A | im B〉.

Proof : (⊃). Obviously, both Xg(A) and 〈A | im B〉 are stabilizability subspaces and
hence also their sum. This sum is contained in the largest stabilizability subspace.

(⊂) In this proof, denote V : = Xg(A) + 〈A | im B〉. It is easily seen that both
Xstab as well as V are A-invariant. Let 
 : Xstab → Xstab/V be the canonical
projection and denote A0 : = A |Xstab/V. We claim that σ(A0) ⊂ Cb. Indeed,

σ(A | Xstab/V) ⊂ σ(A |X/V) ⊂ σ(A | X/Xg(A)).



Stabilizability subspaces 93

The latter spectrum is of course equal to σ(A | Xb(A)), which is contained in Cb.
Now assume that V ⊂ Xstab with strict inclusion. Then there is x0 ∈ Xstab with
x0 	∈ V. By (4.22) there is a Bohl function u such that the resulting trajectory x is
stable. Let x̄(t) : = 
x(t). Then x̄ satisfies

¯̇x = 
ẋ = 
Ax +
Bu = A0
x = A0x̄ .

Here we used the facts that im B ⊂ V = ker 
 and 
A = A0
. Since x̄(0) =


x0 	= 0, x̄ is unstable. This contradicts the assumption that x and hence 
x is
stable.

The above result can also be used to obtain an expression for the largest stabi-
lizability subspace contained in an arbitrary subspace of the state space. Let K be
a subspace of X and let V∗ be the largest controlled invariant subspace in K . Take
an arbitrary F ∈ F(V∗) and let L be a linear map such that im L = B−1V∗, say
L : Rk → U. Consider the restricted system ẋ(t) = A F x(t) + B Lw(t) with state
space V∗ and input space Rk . Temporarily, denote the stabilizable subspace of the
restricted system by X̃stab. By (4.22),

X̃stab = {x0 ∈ V∗ | there is a Bohl function w such that the solution x(t) of

ẋ = AF x + B Lw, x(0) = x0 is stable}.

We claim that the largest stabilizability subspace in K is equal to the stabilizable
subspace of the restricted system, i.e. V ∗

g (K) = X̃stab. To prove this, first recall that
V∗g (K) = V∗g (V∗). Let x0 ∈ V∗g (K). By definition 4.24 there exists a Bohl function
u such that xu(t, x0) ∈ V∗ for all t � 0 and xu(·, x0) is Cg-stable. It follows from
theorem 4.3 that the control u must be of the form

u(t) = Fxu(t, x0)+ Lw(t)

for some Bohl function w. Thus xu(t, x0) satisfies ẋ = AF x+B Lw, x(0) = x0. This
shows that x0 ∈ X̃stab. The converse inclusion, i.e. the inclusion X̃stab ⊂ V∗g (K) is
left as an exercise to the reader. By applying theorem 4.26 we find that

V∗g (K) = Xg(AF | V
∗)+ 〈AF | im B L〉.

In theorem 4.17 it was shown that 〈A F | im B L〉 (the reachable subspace of the
restricted system) is equal to R∗(K). Moreover, since V∗ is invariant under A+ B F ,
we have

Xg(AF | V∗) = Xg(AF ) ∩ V∗.

Thus we obtain the following characterization of the largest stabilizability subspace
contained in a given subspace:

Corollary 4.27 Let K be a subspace of X. Then for all F ∈ F(V ∗(K)) we have

V∗g (K) = Xg(A + B F) ∩ V∗(K)+R∗(K).
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In theorem 4.22 we characterized stabilizability subspaces as controlled invariant
subspaces V for which there exist F ∈ F(V) such that the restriction of A+ B F to V

has all its eigenvalues in Cg . Sometimes it will be important to know something about
the spectrum of the map induced by A + B F on the factor space X/V. A controlled
invariant subspace V will be called outer stabilizable if there exists an F ∈ F(V)

such that σ(A + B F | X/V) ⊂ Cg . Using the terminology of section 2.7 this can
be stated alternatively as: if there exists F ∈ F(V) such that the subspace V is outer
stable with respect to the map A + B F . Correspondingly, stabilizability subspaces
will sometimes be called inner stabilizable controlled invariant subspaces. In order
to illustrate these concepts, let V be a controlled invariant subspace for the system
(4.1). Choose a basis for X adapted to V. Accordingly, split

A =

(

A11 A12
A21 A22

)

, B =

(

B1
B2

)

, x =

(

x1
x2

)

.

Now, first assume that V is inner stabilizable. Then there is a map F = (F1 F2) such
that A21 + B2 F1 = 0 and σ(A11 + B1 F1) ⊂ Cg . By taking F2 = 0 we thus obtain

A + B F =

(

A11 + B1 F1 A12
0 A22

)

.

Let x0 ∈ V. Then with respect to the above choice of basis for X we have x 0 =

(x T
10, 0)T. Apply the state feedback control u = Fx . The trajectory resulting from x 0

and u satisfies the equations

ẋ1(t) = (A11 + B1 F1)x1(t)+ A12x2(t), x1(0) = x10,

ẋ2(t) = A22x2(t), x2(0) = 0.

Thus x2(t) = 0 (t � 0) and x1(t) = e(A11+B1 F1)t x10 (t � 0). The fact that x2(t) = 0
for t � 0 expresses the fact that the trajectory x u(t, x0) remains in V for all t � 0.
The expression for x1(t) displays the fact that the spectrum of xu(·, x0) lies in Cg . In
particular, if Cg = C− then x1(t)→ 0 as t →∞.

Next, instead of inner stabilizable, let us assume that V is outer stabilizable. Then
there is a map F = (F1 F2) such that A21 + B2 F1 = 0 and σ(A22 + B2 F2) ⊂ Cg .
Thus

A + B F =

(

A11 + B1 F1 A12 + B1 F2
0 A22 + B2 F2

)

.

Take any x0 = (x T
10, x T

20)
T ∈ X. Apply the state feedback control u = Fx . Then the

trajectory resulting from x0 and u is given by

ẋ1(t) = (A11 + B1 F1)x1(t)+ (A12 + B1 F2)x2(t), x1(0) = x10,

ẋ2(t) = (A22 + B2 F2)x2(t), x2(0) = x20.

Consequently, x2(t) = e(A22+B2 F2)t x20. Thus, if we assume that Cg = C− then
x2(t) → 0 (t →∞). This expresses the fact that the trajectory xu(t, x0) converges to
the subspace V as t →∞. We see that, assuming that Cg = C−, an outer stabilizable
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controlled invariant subspace has the property that there exists a state feedback such
that all trajectories starting in the subspace remain in it, while all other trajectories
converge to that subspace as t →∞. An inner stabilizable subspace has the property
that there exists a state feedback such that all trajectories starting in the subspace
remain in the subspace and converge to the origin as t →∞.

We will now establish a criterion for a controlled invariant subspace to be outer
stabilizable. In the following, again let Cg be an arbitrary stability domain.

Lemma 4.28 Let V be a controlled invariant subspace. Then V is outer stabilizable

if and only if

σ (A | X/(V + 〈A | im B〉)) ⊂ Cg .

Proof : Denote S : = V + 〈A | im B〉.

(⇒) Let F ∈ F(V) be a map such that σ(A F | X/V) ⊂ Cg . Since both S and V

are invariant under A F and since, by theorem 4.18, A F | X/S is equal to A | X/S

we have

σ(A | X/S) = σ(AF | X/S) ⊂ σ(AF |X/V) ⊂ Cg .

(⇐) Let p be a real monic polynomial with all its zeros in Cg , with deg p = dim S/V.
According to theorem 4.18 there is F ∈ F(V) such that the characteristic polynomial
of AF | S/V equals p. Hence σ(AF | S/V) ⊂ Cg . It follows that

σ(AF | X/V) = σ(AF |X/S) ∪ σ(AF | S/V)

= σ(A | X/S) ∪ σ(AF | S/V) ⊂ Cg .

Theorem 4.29 Let V be a controlled invariant subspace. Then V is outer stabiliz-

able if and only if

V +Xstab = X. (4.23)

Proof : (⇒) Assume that (4.23) does not hold. By theorem 4.26 we then have S +

Xg(A) ⊂ X with strict inclusion. Thus

σ
(

A |X/(S +Xg(A))
)

	= ∅. (4.24)

The spectrum (4.24) is contained in σ(A | X/S). By lemma 4.28, the latter is
contained in Cg . On the other hand, the spectrum (4.24) is contained in σ(A |

X/Xg(A)), which is contained in Cb. This yields a contradiction.
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(⇐) Assume that (4.23) holds. Then we have

σ(A | X/S) = σ(A | (S +Xg(A))/S)

= σ(A |Xg(A)/(S ∩Xg(A)))

⊂ σ(A |Xg(A)) ⊂ Cg .

It follows from (4.28) that V is outer stabilizable.

To conclude this section we will study the connection between the concepts in-
troduced here and stabilizability of the system (4.1). Recall from section 3.10 that
(A, B) is called stabilizable if there exists an F such that A + B F is stable. Ob-
viously, (A, B) is stabilizable if and only if the state space X is inner stabilizable.
According to theorem 4.22 this is equivalent with (λI − A)X + BU = X for all
λ ∈ Cb. Thus we recover theorem 3.32. On the other hand, (A, B) is stabilizable if
and only if the zero-subspace is outer stabilizable. Using this observation we obtain

Theorem 4.30 The following statements are equivalent:

(i) (A, B) is stabilizable,

(ii) σ(A | X/〈A | im B〉) ⊂ Cg ,

(iii) Xg(A)+ 〈A | im B〉 = X,

(iv) Xb(A) ⊂ 〈A | im B〉.

Proof : The equivalence of (i), (ii) and (iii) follows immediately from theorem 4.26
and lemma 4.28. The equivalence of (iii) and (iv) follows from exercise 2.11.

4.7 Disturbance decoupling with internal stability

In this section we again consider the disturbed control system

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

z(t) = H x(t).
(4.25)

In section 4.2 we discussed the problem of disturbance decoupling by state feedback.
The problem was to find a state feedback control law u(t) = Fx(t) such that the
impulse response matrix

TF (t) : = H e(A+B F)t E

of the closed-loop system (4.6) is identically equal to zero (or, equivalently, such that
the closed-loop transfer function: G F (s) is equal to zero). On the other hand, in sec-
tion 3.10 we discussed stabilizability of the system (4.1), that is, the existence of a
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state feedback such that the system controlled by means of this feedback control law
becomes internally stable. In the present section we combine these two requirements
into one single design problem, the problem of disturbance decoupling with internal
stability by state feedback. This problem will consist of finding a state feedback con-
trol law such that the closed-loop system (4.6) is disturbance decoupled and internally
stable:

Definition 4.31 Consider the system (4.25). Let Cg be a stability domain. The pro-
blem of disturbance decoupling with internal stability by state feedback, DDPS, is to

find a linear map F :X→ U such that TF = 0 and σ(A + B F) ⊂ Cg .

Given a feedback map F , consider the closed-loop system (4.6). Using (4.6) we
see that the closed-loop system is disturbance decoupled and internally stable if and
only if there exists an A F -invariant subspace V between im E and ker H and A F is
stable. If a subspace V is AF -invariant and if A F is stable then of course V is a
stabilizability subspace and (A, B) is stabilizable. The following result states that the
converse also holds:

Theorem 4.32 Let V be a subspace of X. There exists an F ∈ F(V) such that σ(A+

B F) ⊂ Cg if and only if V is a stabilizability subspace and (A, B) is stabilizable.

Proof : (⇒) Of course, (A, B) is stabilizable. Also σ(A F | V) ⊂ σ(AF ) ⊂ Cg so V

is a stabilizability subspace.

(⇐) Denote S : = V + 〈A | im B〉 and R : = R∗(V). It follows from theorem
4.18 that there exists an F ∈ F(V) such that σ(A F | R) ⊂ Cg and σ(AF | S/V) ⊂

Cg . Since V is a stabilizability subspace, according to corollary 4.23 we have σ(A F |

V/R) ⊂ Cg . Finally, since (A, B) is stabilizable, using theorem 4.30 we obtain

σ(A | X/S) ⊂ σ(A |X/〈A | im B〉) ⊂ Cg .

Corollary 4.33 There exists a linear map F : X → U such that TF = 0 and

σ(A + B F) ⊂ Cg if and only if there exists a stabilizability subspace V such that

im E ⊂ V ⊂ ker H and (A, B) is stabilizable.

Proof : (⇒) If TF = 0 then (4.6) is disturbance decoupled. Hence there is an A F -
invariant subspace V with im E ⊂ V ⊂ ker H . Since σ(A F ) ⊂ Cg , V is a stabiliz-
ability subspace and (A, B) is stabilizable.

(⇐) According to theorem 4.32 there is an F such that V is A F -invariant and
σ(AF ) ⊂ Cg . Since im E ⊂ V ⊂ ker H , the system (4.6) is disturbance decoupled.
It follows that TF = 0.
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Of course, if im E is contained in a stabilizability subspace that is contained in
ker H , then it is also contained in the largest stabilizability subspace contained in
ker H (see theorem 4.25). Thus we obtain

Corollary 4.34 There exists a linear map F : X → U such that TF = 0 and

σ(A + B F) ⊂ Cg if and only if im E ⊂ V∗g (ker H ) and (A, B) is stabilizable.

We conclude this section by noting that it is, in principle, possible to verify the
subspace inclusion im E ⊂ V∗g (ker H ) computationally. Indeed, recall from corollary
4.27 that for any F ∈ F(V ∗(ker H )) we have

V∗g (ker H ) = Xg(AF ) ∩ V∗(ker H )+R∗(ker H ).

Thus, given the system (4.25) and a stability domain C g , one could first calculate
V∗(ker H ) using the algorithm described in section 4.3. Next, one could calculate
an F ∈ F(V∗(ker H )) and compute the subspace Xg(AF ). Finally, the subspace
R∗(ker H ) could be computed using theorem 4.17. Of course, the above only pro-
vides a very rough, conceptual, algorithm. If one would actually want to verify the
conditions of corollary 4.34 computationally, several questions concerning numerical
stability would have to be taken into account.

4.8 External stabilization

Again consider the system (4.25). In section 4.2 it was shown that the condition

im E ⊂ V∗(ker H ) (4.26)

is necessary and sufficient for the existence of a state feedback control law u(t) =

Fx(t) such that the transfer function of the closed-loop system becomes equal to
zero. The output of the system then becomes independent of the disturbance input
and, in particular, if the initial condition of the closed loop system is zero then the
output will be equal to zero for all disturbances. Suppose now that condition (4.26)
does not hold, so that disturbance decoupling by state feedback is not possible. In this
section we will set ourselves a more modest objective and ask ourselves the question:
when can we find a state feedback control law u(t) = Fx(t) such that the closed-loop
transfer function becomes stable. Equivalently: when can we make the closed-loop
system (4.6) input/output stable by choosing F appropriately? The rationale behind
this objective is of course that if the closed-loop system is stable then at least stable
disturbances will result in stable outputs. If for example we take the stability set to
be equal to C− and if the initial condition of the closed-loop system is equal to zero,
then d(t) → 0 (t → ∞) will imply z(t) → 0 (t → ∞) (see corollary 3.22). Also,
bounded disturbances will at least result in bounded outputs.

Let us first consider the uncontrolled system

ẋ(t) = Ax(t)+ Ed(t),

z(t) = H x(t).
(4.27)
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Let G(s) : = H (I s − A)−1 E be the transfer function from d to z. The following
lemma provides a useful sufficient condition for G(s) to be stable:

Lemma 4.35 Let Cg be a stability domain. Assume that there exist A-invariant sub-

spaces V1 ⊂ V2 of X such that V1 ⊂ ker H , im E ⊂ V2 and σ(A | V2/V1) ⊂ Cg .

Then G(s) is stable.

Proof : Let 
 : V2 → V2/V1 be the canonical projection. Denote Ā : = A | V2/V1.
Let H̄ : V2/V1 → Z be a linear map such that H̄
 = H | V2 (such a map H̄ exists
since V1 ⊂ ker H , see section 2.4). Let Ē : = 
E . Then we have

G(s) = H (I s − A)−1 E = H̄ (I s − Ā)−1 Ē .

(see exercise 3.8). Since σ( Ā) ⊂ Cg , we conclude that G(s) is stable.

In the following, let G F (s) be the transfer function of the closed loop system
(4.6).

Definition 4.36 Consider the system (4.3). Let Cg be a stability domain. The pro-
blem of external stabilization by state feedback, ESP, is to find a linear map F : X→

U such that G F (s) is stable.

Assume that F is a map such that G F (s) is stable. Then for every point x0 ∈ im E ,
H (I s− AF )−1x0 is stable. This says that if in the system ẋ(t) = Ax(t)+ Bu(t) with
initial condition x(0) = x0 we use the control law u(t) = Fx(t) then the resulting
state trajectory xu(·, x0) has the property that H xu(·, x0) is stable. Of course, xu(·, x0)

also results from the open loop control u(t) = Fe AF t x0. Thus we find that if there
exists an F such that G F (s) is stable then im E must be contained in

Wg(ker H ) : = {x0 ∈ X | there is a Bohl function u such that H xu(·, x0) is stable}.

(4.28)

It is easy to verify that Wg(ker H ) is a subspace of X. This subspace will turn out
to play a central role in the problem of external stabilization. Often, we will denote
Wg(ker H ) by Wg . We have the following characterization of Wg(ker H ) in terms of
controlled invariant subspaces introduced before:

Theorem 4.37 Wg(ker H ) = V∗(ker H )+Xstab.

Proof : (⊃) It follows immediately from definition 4.4 and (4.22) that both V ∗(ker H )

and Xstab are contained in Wg . Hence also their sum is contained in Wg .

(⊂) Assume that x0 ∈ Wg . Let u be a Bohl input such that H xu(·, x0) is stable.
Denote x : = xu(·, x0). Obviously, the input u and the state trajectory x can be
decomposed uniquely as

x = x1 + x2 and u = u1 + u2,
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with x1, x2, u1 and u2 Bohl, the spectrum of u1 and x1 contained in Cg and the spec-
trum of u2 and x2 contained in Cb. Denote x10 : = x1(0) and x20 : = x2(0). Then we
have x0 = x10 + x20. Also, since ẋ = Ax + Bu, we have

ẋ1(t)− Ax1(t)− Bu1(t) = −ẋ2(t)+ Ax2(t)+ Bu2(t).

Note that in this equation the left hand side has its spectrum contained in C g , whereas
the right hand side has its spectrum contained in Cb (see (2.7)). It follows that both
sides of the equation must in fact be identically equal to zero. Hence we obtain

ẋ1(t) = Ax1(t)+ Bu1(t), (4.29)

ẋ2(t) = Ax2(t)+ Bu2(t). (4.30)

From (4.29) it follows that x1 = xu1(·, x10). Since x1 is stable, according to (4.22)
we have x10 ∈ Xstab. On the other hand,

H x2 = H x − H x1.

Since σ(x2) ⊂ Cb we have that the spectrum of H x2 is contained in Cb. However,
both H x as well as H x1 are stable so σ(H x2) = σ(H x − H x1) ⊂ Cg . This implies
that H x2(t) = 0 for all t . It follows from (4.30) that x 2 = xu2(·, x20) and hence, by
definition 4.4, that x20 ∈ V∗(ker H ). Thus x0 = x10 + x20 ∈ Xstab +V∗(ker H ).

It follows from the above that Wg is a strongly invariant subspace (see exercise
4.2). Indeed, by combining theorem 4.37 and theorem 4.26 it is easy to see that W g

is A-invariant and that im B ⊂ Wg . Hence, AWg + im B ⊂ Wg . In particular this
implies that (A + B F)Wg + im B ⊂ Wg for any linear map F : X→ U.

As already noted, the subspace inclusion im E ⊂Wg is a necessary condition for
the existence of a map F : X→ U such that G F is stable . Using the representation
for Wg obtained in theorem 4.37 we now prove that this subspace inclusion is also
sufficient.

Lemma 4.38 There exists a linear map F ∈ F(V∗(ker H )) such that

σ(AF | Wg/V
∗(ker H )) ⊂ Cg .

Proof : Recall that Wg is A-invariant and that im B ⊂ Wg . Let A0 : = A | Wg ,
the restriction of A to Wg , and consider the system ẋ = A0x + Bu with state space
Wg . Denote V∗ : = V∗(ker H ). We have V∗ ⊂ Wg , and its is easily seen that V∗ is
controlled invariant with respect to the restricted system (A 0, B). Also, Xstab ⊂ Wg

and it can be verified that the stabilizable subspace of (A 0, B) is equal to Xstab (use
the characterization (4.22)). Consequently, the formula

V∗ +Xstab = Wg,
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together with theorem 4.26 implies that V ∗ is outer-stabilizable with respect to the
system (A0, B). Hence there exists an F : Wg → U such that (A0 + B F)V∗ ⊂ V∗

and

σ(A0 + B F | Wg/V
∗) ⊂ Cg .

Extend this F to a map on X in an arbitrary way. Since A 0 and A coincide on Wg ,
we obtain σ(AF | Wg/V∗) ⊂ Cg .

Theorem 4.39 Consider the system (4.25). There exists a linear map F : X → U

such that G F (s) is stable if and only if im E ⊂ V∗(ker H )+Xstab.

Proof : (⇒) This was already proven. (⇐) This is an application of lemma 4.38:
Let F be such that AFV∗ ⊂ V∗ and σ(AF | Wg/V

∗) ⊂ Cg (Wg is automatically
AF -invariant). Since V∗ ⊂ Wg , V∗ ⊂ ker H and im E ⊂ Wg , we may conclude
from lemma 4.35 that G F (s) is stable.

By using theorem 4.26, we see that the subspace inclusion of theorem 4.39 can
in principle be verified computationally. Indeed, X stab = Xg(A) + 〈A | im B〉 so
Xstab can be calculated from first principles. In section 4.3 we gave an algorithm to
compute V∗(ker H ). Of course, again we do not address numerical issues here.

4.9 Exercises

4.1 (Output null-controllability.) Consider the system

ẋ(t) = Ax(t)+ Bu(t), z(t) = H x(t).

If x0 ∈ X and u is an input function, then the corresponding output is denoted
by zu(t, x0) : = H xu(t, x0). A point x0 is called output null-controllable if
there is a T > 0 and an input u such that z u(t, x0) = 0 for all t � T . The
subspace of all output null-controllable points is denoted by S. Prove that

S = V∗(ker H )+ 〈A | im B〉.

Hint: xu(T, x0) = eAT x0 + xu(T, 0). Use the facts that

xu(T, x0) ∈ V∗(ker H ),

xu(T, 0) ∈ 〈A | im B〉

and that

V∗(ker H )+ 〈A | im B〉

is A-invariant.
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4.2 (Strong invariance.) Consider the system ẋ(t) = Ax(t)+Bu(t). A subspace V

of X is called strongly invariant if for each x 0 ∈ V and for each input function
u we have xu(t, x0) ∈ V for all t � 0. Show that

a. The reachable subspace 〈A | im B〉 is strongly invariant.

b. V is strongly invariant if and only if V is controlled invariant and
〈A | im B〉 ⊂ V.

c. If V is strongly invariant then (A + B F)V ⊂ V for all F .

d. V is strongly invariant if and only if AV + im B ⊂ V.

4.3 Consider the system (A, B). Let F : X→ U be a linear map and let G : U→

U be an isomorphism. Show that the classes of (A, B)-invariant subspaces and
(A + B F, BG)-invariant subspaces coincide.

4.4 Consider the system ẋ(t) = Ax(t) + Bu(t). Let x0 ∈ X, let u be an input
function, and let xu(·, x0) be the resulting state trajectory. Let V denote the
linear span of the vectors {xu(t, x0) | t � 0}. Show that V is a controlled
invariant subspace.

4.5 (The model matching problem) In this exercise we study the connection be-
tween DDP and the solvability of a rational matrix equation. Consider the
system (4.5). Define R1(s) : = H (I s− A)−1 B and R2(s) : = H (I s− A)−1 E .
R1 and R2 are strictly proper real rational matrices of dimensions q × m and
q × r , respectively. We consider the equation

R1 Q = R2

in the unknown Q, which is required to be a (m×r) strictly proper real rational
matrix. A more systemic interpretation of this equation is the following: given
a system �1 with transfer matrix R1(s) and a system �2 with transfer matrix
R2(s), find a system �m such that the cascade (= parallel) connection of �m

and �1 is equal to �2

The above is called the problem of exact model matching: given the system � 1
(plant) and a ‘desired’ system �2, find a ‘precompensator’ �m for �1 such that
the resulting cascade connection has exactly the same input/output behaviour
as the given system �2.

a. Show that the equation R1 Q = R2 has a strictly proper real rational solu-
tion Q if and only if there exists an (m × r) matrix Bohl function U such
that

∫ t

0
H eA(t−τ )BU(τ ) dτ = H eAt for all t � 0.

b. Show that if there exists U such that the equation in (i) holds, then for
each x0 ∈ im E there exists an input function u for the system ẋ(t) =

Ax(t)+ Bu(t) such that H xu(t, x0) = 0 for all t � 0.
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c. Show that if F ∈ F(V∗(ker H )) then for each x0 ∈ V∗(ker H ) we have

−R1(s)F(I s − A − B F)−1x0 = H (I s − A)−1x0.

d. Conclude that the equation R1 Q = R2 has a strictly proper real rational
solution Q if and only if im E ⊂ V ∗(ker H ).

4.6 (Disturbance decoupling with feedforward.) Consider the system (4.5). In the
previous section we studied the problem of disturbance decoupling by state
feedback. Sometimes, instead of restricting ourselves to feedback control laws
of the form u(t) = Fx(t), we want to allow the use of control laws of the form
u(t) = Fx(t)+ Nd(t). If such a control law is connected to our system, then
the closed-loop system is given by the equation

ẋ(t) = (A + B F)x(t)+ (B N + E)d(t), z(t) = H x(t).

Thus we may pose the problem of disturbance decoupling by state feedback
with feedforward: find linear maps F : X → U and N : D → U such that
the given closed-loop system is disturbance decoupled.

a. Show that the closed-loop system is disturbance decoupled if and only if
there exists an (A+ B F)-invariant subspace V such that im(B N + E) ⊂

V ⊂ ker H .

b. Let N : D → U be given. Show that there exists F : X → U such that
the closed-loop system is disturbance decoupled if and only if im(B N +

E) ⊂ V∗(ker H ).

c. Show that there exist F and N such that the closed-loop system is disturb-
ance decoupled if and only if im E ⊂ V ∗(ker H )+ im B.

4.7 Consider the system ẋ(t) = Ax(t) + Bu(t). A subspace V of X is called a
reachability subspace if for every x 1 ∈ V there exists T > 0 and an input
function u such that xu(t, 0) ∈ V for all 0 � t � T and xu(T, 0) = x1, i.e., if
every point in the subspace can be reached from the origin in finite time along
a trajectory that does not leave the subspace. Show that:

a. every reachability subspace is controlled invariant,

b. a subspace V is a reachability subspace if and only if it is a controllability
subspace,

c. a subspace V is a controllability subspace if and only if it has the property
that for any pair of points x0, x1 ∈ V there exists T > 0 and an input
function u such that xu(t, x0) ∈ V for all 0 � t � T and xu(T, x0) = x1.

4.8 Consider the system ẋ(t) = Ax(t) + Bu(t). A subspace V of X is called a
coasting subspace if for each x0 ∈ V there is exactly one input function u such
that xu(t, x0) ∈ V for all t � 0. Show that the following three conditions are
equivalent:
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a. V is a coasting subspace,

b. V is controlled invariant, R∗(V) = 0 and B is injective,

c. F(V) 	= ∅ and if F1, F2 ∈ F(V) then F1 | V = F2 | V.

4.9 Consider the single-input system ẋ(t) = Ax(t)+ bu(t). Assume that (A, b) is
controllable.

a. Find all controllability subspaces associated with the system (A, b).

b. Show that every controlled invariant subspace V with V 	= X is a coasting
subspace.

Let K be a subspace of X with K 	= X. Assume that x0 ∈ K and let u be
such that xu(t, x0) ∈K for all t � 0.

c. Show that u is given by a state feedback control law, i.e., there is a linear
map f : X→ U such that u = f x .

4.10 (Output regulation by state feedback.) Consider the system ẋ(t) = Ax(t) +

Bu(t)+Ed(t), z(t) = H x(t). For a given feedback control law u(t) = Fx(t),
let zF (t, x0, d) denote the output of the closed-loop system corresponding to
the initial condition x0 and disturbance d. In this exercise we study the problem
of output regulation by state feedback. We will say that F achieves output

regulation if z F (t, x0, d) → 0 (t →∞) for all x0 ∈ X and every disturbance
d.

a. Show that F achieves output regulation if and only if H e AF t E = 0 for all
t and H e AF t → 0 (t →∞).

b. Let Xstab denote the stabilizable subspace of the pair (A, B) with respect
to the stability set C− = {s ∈ C | ℜe s < 0}. Show that there exists F

such that H e AF t → 0 (t →∞) if and only if X = V∗(ker H )+Xstab.

c. Show that there exists a map F that achieves output regulation if and only
if V∗(ker H ) is outer-stabilizable and im E ⊂ V ∗(ker H ).

4.11 (Input/output stabilization with feedforward.) Again consider the system (4.5).
Suppose that Cg is a stability domain. The problem of input/output stabilization
by state feedback with feedforward is to find a control law u(t) = Fx(t) +

Nd(t) such that the transfer function of the resulting closed-loop system, i.e.

GF,N (s) : = H (I s − AF )−1(B N + E),

is stable (see also exercise 4.6). Show that there exists a control law u(t) =

Fx(t)+ Nd(t) such that G F,N (s) is stable if and only if im E ⊂ V∗(ker H )+

Xstab. Conclude that allowing feedforward of the disturbance input does not
enlarge the class of systems that can be made input/output stable.

4.12 Give a proof of theorem 4.25.
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4.13 (Disturbance decoupling by state feedback with pole placement.) In addition
to the ordinary disturbance decoupling problem, DDP, and the disturbance de-
coupling problem with stability, DDPS, we can also consider the disturbance
decoupling problem with pole placement, DDPPP. Here, the question is to
find conditions under which for any stability domain C g , there exists a map
F : X → U such that σ(A + B F) ⊂ Cg and TF = 0 (where, as usual, TF

denotes the closed loop impulse response from d to z). In this exercise we de-
rive necessary and sufficient conditions for this to hold. Denote V ∗(K) by V∗,
R∗(K) by R∗, and V∗g (K) by V∗g .

a. Observe that if for any stability domain Cg there exists a map F : X→ U

such that σ(A+ B F) ⊂ Cg and TF = 0, then for any stability domain Cg

we have im E ⊂ V∗g .

b. For F ∈ F(V∗), let τ denote the fixed spectrum σ(A + B F | V ∗/R∗).
Show that if Cg is a stability domain with the property that τ ∩ Cg = ∅,
then V∗g = R∗.

c. Show that if (A, B) is controllable, then for any pair of real monic poly-
nomials (p1, p2) such that deg p1 = dim R∗ and deg p2 = n − dim R∗,
there exist F ∈ F(R∗) such that χAF |R∗ = p1 and χAF |X/R∗ = p2.
(Hint: apply theorem 4.18 to V = R∗).

d. Show that if (A, B) is controllable and im E ⊂ R∗, then for any real
monic polynomial p of degree n such that p = p 1 p2, with p1 and p2
monic polynomials and deg p1 = dim R∗, there exists F : X → U such
that χAF = p and TF = 0.

e. Show that for any stability domain Cg there exists a map F : X→ U such
that σ(A + B F) ⊂ Cg and TF = 0 if and only if (A, B) is controllable
and im E ⊂ R∗.

4.10 Notes and references

Controlled invariant subspaces were introduced independently by Basile and Marro
[10,11] and Wonham and Morse [224]. An extensive treatment, including the disturb-
ance decoupling problem by state feedback, can also be found in Wonham’s classical
textbook [223], and in the textbook [14] by Basile and Marro. A characterization of
controlled invariant subspaces in terms of vectors of rational functions was given by
Hautus in [72]. A study of controlled invariant subspaces in the context of polynomial
models can be found in the work of Fuhrmann and Willems [51].

Alternative conditions for the existence of disturbance decoupling state feedback
control laws, in terms of the open loop control input-to-output, and disturbance input-
to-output transfer matrices, were obtained by Bhattacharyya in [19]. Robustness is-
sues in the context of design of disturbance decoupling state feedback controllers
were studied by Bhattacharyya, Del Nero Gomez and Howze in [22], and by Bhat-
tacharyya in [21]. Extensions to characterize the freedom in placing the closed loop
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poles under the constraint of achieving disturbance decoupling has been studied by
Chen, Saberi, Sannuti and Shamash [29] and later also by Malabre, Martinez-Garcia
and Del-Muro-Cuellar [120].

For additional information on the invariant subspace algorithm we refer to Won-
ham and Morse [224]. In [17], Bhattacharyya derived a simplified algorithm, valid
for a special class of systems, to compute supremal controlled invariant subspaces. A
standard reference for the numerical computation of controlled invariant subspaces is
the work of Moore and Laub [127], see also [128].

Controllability subspaces were introduced by Wonham and Morse in [224]. The
basic properties of these subspaces were also discussed by these authors in [132]
and [131]. A treatment of controlled invariant subspaces and reachability subspaces
in terms of polynomial models can be found in the work of Emre and Hautus [43].
Relations between controllability subspaces and feedback simulation are described by
Heymann in [78]. The spectral assignability properties of controllability subspaces
were already described by Wonham in [223], section 5.2. Our section 4.5 provides an
extension of these results. Most of the material of section 4.5 is based on the work of
Schumacher [167], see also [168].

Stabilizability subspaces were introduced by Wonham in section 5.6 of [223].
There, also the disturbance decoupling problem with internal stability was studied in
full detail. A characterization of stabilizability subspaces in terms of stable rational
vectors was given by Hautus in [72]. The problem of external stabilization by state
feedback, treated in section 4.8, was introduced and resolved by Hautus in [72].

An early reference for the model matching problem, studied in exercise 4.5, is
the work of Wang and Davison [209]. The connection between the model matching
problem and the problem of disturbance decoupling was discussed already in Morse
[130] and in Emre and Hautus [43]. Additional information can be found in the work
of Anderson and Scott [7]. Exercise 4.10 is a generalization of the output stabilization
problem, OSP, which can be found in Wonham’s book [223], section 4.4., see also the
work of Bhattacharyya, Pearson and Wonham [23]. Related material on this problem
can be found in Bhattacharyya [16].

Important extensions of the theory of controlled invariant subspaces and their ap-
plication to disturbance decoupling problems are the notions of almost controlled
invariant subspaces and almost disturbance decoupling. Here, the aim is not to make
the closed loop transfer matrix exactly equal to zero, but to make it approximately
equal to zero. These ideas were introduced by Willems in [214] and [215], and ex-
tended by Trentelman in [196], [194], [195] and by Trentelman and Willems in [199].
A characterization of almost controlled invariant subspaces in terms of rational vec-
tors can be found in the work of Schumacher [170]. Almost stabilizability subspaces
were discussed in Schumacher [173]. Finally, yet another extension of the existing
notion of controlled invariant subspace was given by Basile and Marro in [12], where
the notion of self-bounded controlled invariant subspace was introduced.



Chapter 5

Conditioned invariant

subspaces

In this chapter, we introduce conditioned invariance (also called (C, A)-invariance)
and the notion of detectability subspace. These concepts are closely connected with
maintaining and recovering information on the state vector of an observed linear sys-
tem. It is shown that conditioned invariance and controlled invariance are, in fact,
dual concepts. This fact makes it possible to ‘translate’ many of the results obtained
in the previous chapter on controlled invariant subspaces into results on conditioned
invariant subspaces. In the final section of this chapter we discuss the problem of
estimation in the presence of disturbances.

5.1 Conditioned invariance

In this section we introduce the notion of conditioned invariant subspace. Consider
the controlled and observed system � given by the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t).
(5.1)

As before, in these equations u is the control input, taking its values in U, and y is
the output that we measure, taking its values in Y. The state x takes its values in X.
We take the point of view that, at any time instant t , both the values u(t) as well as
y(t) are known to us. These values are called the observation at time t . The state
trajectory x in (5.1) is unknown. The idea is that we want to use the observations on
u and y to maintain, in some sense, information about the unknown state trajectory
x .

To be more concrete, let us first discuss what we mean by ‘information on the
unknown vector x0 ∈ X’. Assume that S is a subspace of the state space X and
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assume that ξ0 is a (known) vector in X. Consider the statement

x0 lies in the hyperplane ξ0 + S.

Clearly, this statement provides information on the unknown vector x 0. It says that
x0 − ξ0 ∈ S or, equivalently, that the equivalence classes x 0/S and ξ0/S are equal.
Thus, the equivalence class x0/S is known: x0 is known modulo S.

Let us now return to the system (5.1). Recall that the underlying idea was that x is
unknown. However, assume that, by some external mechanism, we do know x(0)/S.
Then we can ask ourselves: is it possible by using the observations u(τ ), y(τ ) (0 �

τ < t) to obtain exact knowledge of x(t)/S? Stated differently: does there exist
a mechanism that, using exact knowledge of x(0)/S together with the observations
u(τ ), y(τ ) on the interval [0, t) provides x(t)/S? Such mechanism in a sense main-

tains information modulo S: we started with exact knowledge of x(t)/S for t = 0
and the information modulo S is maintained in the sense that the mechanism gives
us x(t)/S for all t � 0. A mechanism as described here is called an observer for
x/S. We restrict ourselves to the case that these are given by finite-dimensional lin-

ear time-invariant systems with u and y as input:

Definition 5.1 Consider the system (5.1). Let S be a subspace of X. An observer for
x/S is a system �

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = Sw(t) (5.2)

with finite-dimensional state space W and output space X/S such that for each pair

of initial conditions (x(0),w(0)) and any input function u we have: ζ(0) = x(0)/S

implies ζ(t) = x(t)/S for all t � 0.

We may now ask ourselves: if S is a subspace of X, does there always exist an
observer for x/S? The answer is: no. In fact, if for a given subspace S such an
observer exists we call it conditioned invariant:

Definition 5.2 A subspace S of X is called conditioned invariant if there exists an

observer for x/S.

Example 5.3 Consider the system (5.1) and let S = 0, the zero subspace. Define
a system (5.2) as follows: take the state space to be equal to X, P = A, Q =

B, R = 0 and S = I . Clearly, if ζ(0) = x(0) then for any input function u we have
ζ(t) = x(t) for t � 0. Hence the system ẇ(t) = Aw(t) + Bu(t), ζ(t) = w(t) is an
observer for x and consequently 0 is conditioned invariant. Note that a system (5.2)
is an observer for x(= x/0) if and only if it is a state observer (see definition 3.34).

Example 5.4 Again consider (5.1). Let S be an A-invariant subspace of X. Define a
system (5.2) as follows: let the state space be equal to X/S, take P equal to A |X/S,
R = 0 and S the identity map on X/S. Let 
 : X → X/S be the canonical
projection. Define Q : = 
B. We claim that ẇ(t) = Pw(t) + Qu(t), ζ(t) =

w(t) is an observer for x/S. Indeed, set e(t) : = w(t) − x(t)/V. Then ė(t) =
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Pw(t) −
Ax(t). Since P
 = 
A we obtain ė(t) = Pe(t). If we assume now that
ζ(0) = x(0)/S, then e(0) = 0 and hence e(t) = 0 for all t . We conclude that any
A-invariant subspace is conditioned invariant.

The following result provides several equivalent characterizations of conditioned
invariance:

Theorem 5.5 Consider the system (5.1). Let S be a subspace of X. The following

statements are equivalent:

(i) S is conditioned invariant,

(ii) A(S ∩ ker C) ⊂ S,

(iii) there exists a linear map G : Y → X such that (A + GC)S ⊂ S.

Proof : (i)⇒ (ii) Assume S is conditioned invariant and let � be an observer for x/S.
Let x0 ∈ S ∩ ker C . Take as initial states x(0) = x0 and w(0) = 0 and take u = 0.
We check that ζ(0) = x(0)/S. Indeed, on the one hand ζ(0) = Sw(0) = 0 and on
the other hand x(0)/S = 0 since x0 ∈ S. We may thus conclude that ζ(t) = x(t)/S

for all t � 0. This implies that ζ̇ (0+) = ẋ(0+)/S. Now,

ζ̇ (0+) = Sẇ(0+) = SPw(0) + SRCx0 = 0.

Consequently,

(Ax0)/S = ẋ(0+)/S = 0.

This however implies that Ax0 ∈ S.

(ii)⇒ (iii) Choose a basis x1, . . . , xk for S such that x1, . . . , xl (l � k) is a basis
for S ∩ ker C . It is easily seen that the vectors Cx l+1, . . . , Cxk are independent. Let
G : Y → X be a map such that GCx i = −Axi(i = l + 1, . . . , k). Then we have
(A + GC)xi = Axi ∈ S for i = 1, . . . , l and (A + GC)x i = 0 for i = l + 1, . . . , k.
Hence (A + GC)S ⊂ S.

(iii) ⇒ (i) Let 
 : X → X/S be the canonical projection. Define P : = (A +

GC) | X/S, Q : = 
B, R : = −
G and let S be the identity map on X/S. We
claim that the system thus defined is an observer for x/S. Indeed, take an arbitrary
input function u and assume that ζ(0) = x(0)/S. Then w(0) = 
x(0). Let w(t) be
the solution of ẇ(t) = Pw(t) + Qu(t)+ Ry(t), w(0) = 
x(0). Since

d
dt


x(t) = 
(A + GC)x(t)+
Bu(t)−
GCx(t)

= P
x(t) + Qu(t)+ Ry(t),

we must have 
x(t) = w(t) for all t � 0 (uniqueness of solutions). We conclude
that ζ(t) = x(t)/S for all t � 0.
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In the above, the characterization (ii) is a geometric characterization of condi-
tioned invariance. From this characterization it is seen that the property of con-
ditioned invariance only depends on the maps A and C . In order to display this
dependence, conditioned invariant subspaces are often called (C, A)-invariant sub-
spaces. Also, it is easily seen that the intersection of any (finite or infinite) number
of conditioned invariant subspaces is again a conditioned invariant subspace. A map
G : Y → X (from the output space into the state space) is sometimes called an output

injection. The characterization (iii) is called the output injection characterization of
conditioned invariance. If G : Y → X is a linear map and if T is an isomorphism of
the output space Y then the classes of (C, A)-invariant subspaces and (T C, A+GC)-
invariant subspaces coincide. This can be expressed by saying that the property of
conditioned invariance is invariant under output injection and isomorphisms of the
output space.

In the sequel, we often denote A + GC by A G . The set of all maps G : Y → X

such that S is invariant under AG is denoted by G(S).

It turns out that there is a duality between the concepts of controlled invari-
ance and conditioned invariance. In fact, the subspace S is conditioned invariant
with respect to the system ẋ(t) = Ax(t), y(t) = Cx(t) if and only if its or-
thogonal complement S⊥ is controlled invariant with respect to the dual system
ẋ(t) = ATx(t)+ CTu(t):

Theorem 5.6 Consider the system (C, A). Let S be a subspace of X. Then S is

(C, A)-invariant if and only if S⊥ is (AT, CT)-invariant.

Proof : This follows immediately from the observation that S is invariant under A +

GC if and only if S⊥ is invariant under (A + GC)T = AT + CTGT.

The duality between (A, B)-invariant subspaces and (C, A)-invariant subspaces
can be used to translate properties of (A, B)-invariant subspaces into properties of
(C, A)-invariant subspaces. An example of this is the following:

Theorem 5.7 Consider the system (5.1). Let E be a subspace of X. There exists a

smallest conditioned invariant subspace containing E , i.e. a subspace S ∗(E) such

that

(i) S∗(E) is conditioned invariant,

(ii) E ⊂ S∗(E),

(iii) if S is a conditioned invariant subspace such that E ⊂ S then we have S ∗(E) ⊂

S.

Proof : Denote V∗ : = V∗(E⊥, AT, CT), the largest (AT, CT)-invariant subspace con-
tained in E⊥. Define S∗(E) : = V∗⊥. Then, by the previous theorem, S ∗(E) is
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(C, A)-invariant. Moreover, since V ∗ ⊂ E⊥, we have E ⊂ S∗(E). Finally, assume
that S is a (C, A)-invariant subspace containing E . Then S⊥ is (AT, CT)-invariant and
is contained in E⊥. Consequently, S⊥ ⊂ V∗. It follows that S∗(E) ⊂ S.

If we denote the smallest (C, A)-invariant subspace containing a given subspace
E by S∗(E , C, A) then, by the above, we have the following relation:

S∗(E , C, A) = V∗(E⊥, AT, CT)⊥. (5.3)

In section 4.3, we showed that the largest (A, B)-invariant subspace contained in a
given subspace K can be computed using the invariant subspace algorithm. By using
the duality relation (5.3) it is possible to establish a recurrence relation to compute
the smallest (C, A)-invariant subspace containing a given subspace E . Indeed, if we
define a sequence of subspaces V0,V1,V2, . . . by the recurrence relation

V0 = E⊥, Vt+1 = E⊥ ∩ (A
T
)−1(Vt + im CT), (5.4)

then according to theorem 4.10 the sequence {V t } is monotonically decreasing and

V∗(E⊥, AT, CT) = Vk

for some integer 1 � k � dim E⊥. The subspace S∗(E , C, A) is then equal to
V⊥k . A somewhat more elegant way to compute the subspace S ∗ is obtained from
the observation that it is possible to derive from (5.4) a recurrence relation for the
sequence {V⊥t }. Indeed, V⊥0 = E and

V⊥t+1 = E + ((AT)−1(Vt + im CT))⊥

= E + A(Vt + im CT)⊥

= E + A(V⊥t ∩ ker C).

(see section 2.3). Consequently, if we write down the recurrence relation

S0 = E , St+1 = E + A(St ∩ ker C), (5.5)

then, in fact, St = V⊥t for all t . The recurrence relation (5.5) is called the conditioned

invariant subspace algorithm, CISA. The following result follows immediately from
(4.10) and the above considerations:

Theorem 5.8 Consider the system (5.1). Let E be a subspace of X. Let S t , t =

0, 1, 2, . . ., be defined by the algorithm (5.5). Then we have

(i) S0 ⊂ S1 ⊂ S2 ⊂ · · · ,

(ii) There exists k � n − dim E such that Sk = Sk+1,

(iii) If Sk = Sk+1 then Sk = St for all t � k,

(iv) If Sk = Sk+1 then S∗(E) = Sk .
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5.2 Detectability subspaces

Until now, we have not talked about stability issues in our considerations on observers
and conditioned invariant subspaces. In this section we define what we mean by stable
observers. After we have done this, we give a definition of the notion of detectability
subspace. This will be a subspace of the state space with the property that there exists
a stable observer for the state vector modulo that subspace.

Again consider the system (5.1). Let S be a subspace of X. If S is conditioned
invariant then there is an observer for x/S. That is, there exists a finite-dimensional
linear time-invariant system �:

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = Sw(t)

with the property that for any input function u and for each pair of initial conditions
(x(0),w(0)) we have:

ζ(0) = x(0)/S implies ζ(t) = x(t)/S for all t � 0.

As explained in the previous section this can be interpreted by saying that information
modulo S is maintained: if we assign to the observer output ζ the value x(0)/S at
time t = 0 then on the basis of the observations {(u(τ ), y(τ )) | 0 � τ � t} the
observer output takes the value x(t)/S at time t .

Apart from this information-maintaining property (which it has by definition) an
observer can have the property that it recovers information modulo S. Assume that
the value of x(0)/S is not known. Then a desired property of the observer would be
that for any input function u and for any pair of initial conditions (x(0),w(0)) we
have that ζ(t) − x(t)/S → 0 as t → ∞. This can be interpreted by saying that,
on the basis of the observations u(τ ), y(τ ) up to time t , the observer generates an
estimate ζ(t) of the value x(t)/S. The larger the interval on which these observations
are gathered, the more accurate this estimate becomes: asymptotically the observer
recovers information modulo S.

If an observer for x/S has the latter property, we call it stable. Often, we want
to be able to speak about stability while referring to more general stability domains.
Again, this can be done in terms of the spectrum of Bohl functions. In the following,
let Cg be a stability domain. Consider the system (5.1).

Definition 5.9 Let S be a subspace of X. An observer � for x/S is called stable if

for any input function u and for any pair of initial conditions (x(0),w(0)) we have

that ζ − x/S is a stable Bohl function.

Definition 5.10 A subspace S of X is called a detectability subspace if there exists a

stable observer for x/S.

Note that every detectability subspace is conditioned invariant. We have the fol-
lowing characterizations:
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Theorem 5.11 Consider the system (5.1). Let Cg be a stability domain. Let S be a

subspace of X. Then the following statements are equivalent:

(i) S is a detectability subspace,

(ii) for all λ ∈ Cb we have (A − λI )−1S ∩ ker C = S ∩ ker C,

(iii) there exists G ∈ G(S) such that σ(AG |X/S) ⊂ Cg .

The proof of the above theorem is based on the following lemma. First, recall
from the previous section that if S is a conditioned invariant subspace then it is in
fact possible to find an observer for x/S with state space equal to X/S and output
map S equal to the identity map of X/S (see the proof of theorem 5.5). In the next
lemma we show that if S is a detectability subspace then such an observer can be
found for which, in addition, the system map P is stable. In the following, let 
 be
the canonical projection onto X/S.

Lemma 5.12 Assume that S is a detectability subspace. Then there exists an ob-

server for x/S of the form

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = w(t)

such that σ(P) ⊂ Cg and


A − P
 = RC.

Proof : If S is a detectability subspace there exists a stable observer for x/S given by

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = Sw(t). (5.6)

Take u = 0 and take an initial condition pair (x(0),w(0)) = (x 0, w0) such that
ζ(0) = x(0)/S or, equivalently, Sw0 −
x0 = 0. By definition we then have ζ(t) =

x(t)/S for all t � 0 or, equivalently, Sw(t) −
x(t) = 0 for all t � 0. This implies
Sẇ(0+)−
ẋ(0+) = 0 whence

SPw0 + (SRC −
A)x0 = 0.

Thus, we find that

ker(S,−
) ⊂ ker(SP, SRC −
A).

Consequently, there exists a map L : X/S → X/S such that LS = SP and
−L
 = SRC −
A. Now, consider the system

ẇ1(t) = Lw1(t)+
Bu(t)+ SRy(t), ζ1(t) = w1(t). (5.7)



114 Conditioned invariant subspaces

We claim that this is an observer for x/S. Indeed, let e1(t) : = ζ1(t) − x(t)/S. Then
we have

ė1(t) = Lw1(t)+
Bu(t)+ SRCx(t) −
Ax(t)−
Bu(t)

= Lw1(t)− L
x(t)

= Le1(t).

Thus, e1(t) satisfies a first order linear autonomous differential equation and conse-
quently e1(0) = 0 implies e1(t) = 0 for all t � 0. We conclude that (5.7) defines
an observer for x/S of the required form. We now show that, in fact, L is stable. To
prove this, we use the fact that the observer we started with is stable. Take the input
function u = 0 and let e(t) : = ζ(t) −
x(t). Then we have

ė(t) = ζ̇ (t)−
ẋ(t)

= SPw(t) + SRCx(t) −
Ax(t)

= LSw(t) − L
x(t)

= Le(t).

Now let e(0) be arbitrary. Since 
 is surjective there exists x 0 ∈ X such that e(0) =

−
x0. Let w0 = 0. With the initial condition pair (x(0),w(0)) = (x0, w0) we must
have ζ − x/S stable, or equivalently, e stable. Thus for any e(0), the solution of
ė(t) = Le(t) is stable. It follows that σ(L) ⊂ Cg . This completes the proof of the
lemma.

Proof of theorem 5.11 : (i) ⇒ (ii) Let S be a detectability subspace. According to
the previous lemma we can find an observer for x/S of the form

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = w(t)

with 
A− P
 = RC and σ(P) ⊂ Cg . Now assume that λ ∈ Cb and (A− λI )x0 ∈

S, Cx0 = 0. We want to show that x0 ∈ S or, equivalently, that 
x0 = 0. We have

Ax0 = λ
x0 and hence (RC + P
)x0 = λ
x0. This implies P
x0 = λ
x0.
If 
x0 were unequal to 0 this would imply λ ∈ σ(P), which is a contradiction.
Conversely, if x0 ∈ S ∩ ker C then by the fact that S is conditioned invariant we
have Ax0 ∈ S. Thus, for all λ ∈ C we have (A − λI )x0 ∈ S. We conclude that
x0 ∈ (A − λI )−1S ∩ ker C .

(ii) ⇒ (iii) We first show that S is (C, A)-invariant. Let x0 ∈ S ∩ ker C . Then
(A − λI )x0 ∈ S for all λ ∈ Cb and hence Ax0 ∈ S. Now let G ∈ G(S). It is easily
seen that (ii) is equivalent to:

(A + GC − λI )−1S ∩ ker C = S ∩ ker C for all λ ∈ Cb. (5.8)

In turn, the latter is equivalent to

(A + GC − λI )−1S ∩ (ker C + S) = S for all λ ∈ Cb. (5.9)
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Indeed, (5.9) follows from (5.8) by adding S to both sides of the equation and using
the fact that S ⊂ (AG − λI )−1S for all λ ∈ Cb. The fact that (5.9) implies (5.8) is
verified immediately.

Now, obviously we have ker C ⊂ ker C + S. Let M : Y → Y be a map such that
ker MC = ker C + S. Define a map A0 : X/S → X/S by A0 : = AG | X/S. Let
C0 : X/S → Y be a map such that C0
 = MC (such map exists since S ⊂ ker MC ,
see section 2.4). We contend that (5.9) is equivalent to

ker(A0 − λI ) ∩ ker C0 = 0 for all λ ∈ Cb. (5.10)

Indeed, (A0 − λI )
x = 0 and C0
x = 0 if and only if 
(AG − λI )x = 0 and
MCx = 0. The latter is equivalent to (AG − λI )x ∈ S and x ∈ ker C + S. Thus, for
all λ ∈ C we have


−1(ker(A0 − λI ) ∩ ker C0) = (AG − λI )−1S ∩ (ker C + S),

which proves the equivalence of (5.9) and (5.10). The condition (5.10) states that all
(C0, A0)-unobservable eigenvalues are in Cg and by theorem 3.38 this is equivalent
to detectability of the system (C0, A0). Consequently, there is a linear map G 0 :

Y → X/S such that σ(A0 + G0C0) ⊂ Cg . Choose a map G1 : Y → X such that

G1 = G0 (such map exists since 
 is surjective so im G0 ⊂ im 
). Define then
G2 : = G + G1M . Since S ⊂ ker MC we have that (A + G2C)S ⊂ S. Moreover,


(A+ G2C) = 
(A + GC)+
G1 MC

= A0
+ G0C0


= (A0 + G0C0)


and hence (A + G2C) | X/S = A0 + G0C0 is stable.

(iii) ⇒ (i) Let G ∈ G(S) be such that AG | X/S is stable. Furthermore, define
P : = AG | X/S, Q : = 
B and R : = −
G. We claim that the system

ẇ(t) = Pw(t) + Qu(t)+ Ry(t), ζ(t) = w(t)

(with state space X/S) is a stable observer for x/S. Indeed, if we define e(t) : =

ζ(t)−
x(t) then

ė(t) = Pw(t) + Qu(t)+ RCx(t) −
Ax(t)−
Bu(t)

= Pw(t) −
(A + GC)x(t)

= Pw(t) − P
x(t)

= Pe(t).

Consequently, for any input function u, e(0) = 0 implies e(t) = 0 for all t � 0. Also,
since σ(P) ⊂ Cg , the difference e = ζ − x/S is a stable Bohl function for any initial
condition pair (x(0),w(0)) and any input function u.

As noted in the proof of the above theorem, for any G ∈ G(S) and any map
M : Y → Y such that S + ker C = ker MC , the condition (ii) above is equivalent to
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saying that the factor system (C0, A0) (with A0 : AG | X/S and C0 such that C0
 =

MC) is detectable. Accordingly, a detectability subspace can be considered as a
subspace by which, after suitable output injection and enlargement of the nullspace
of the output map, the system can be factored out such that the resulting system is
detectable (compare this with the remarks following theorem 4.22).

Also note that the result of lemma 5.12 becomes more or less obvious once we
know that (i) and (iii) are equivalent: an observer of the form as described in lemma
5.12 is obtained by defining P : = A G | X/S and R : = −
G for any G ∈ G(S) and
Q : = 
B. However, we stress that lemma 5.12 was used to prove the equivalence
of (i) and (iii) above.

It follows immediately from theorem 5.11 (iii) that the class of detectability sub-
spaces is closed under output injection maps and isomorphisms of the output space:
if G : Y → X is a linear map and T is an isomorphism of Y then the classes of
detectability subspaces of the systems (C, A) and (T C, A + GC), respectively, co-
incide. From theorem 5.11 (ii) it is easily seen that the intersection of any (finite or
infinite) number of detectability subspaces is a detectability subspace.

We now show that the concepts of stabilizability subspace and detectability sub-
space are dual:

Theorem 5.13 Let S be a subspace of X. Then S is a detectability subspace with

respect to the system (C, A) if and only if S⊥ is a stabilizability subspace with respect

to the system (AT, CT).

Proof : The subspace V is (A+ GC)-invariant if and only if the orthogonal comple-
ment V⊥ is (AT + CTGT)-invariant. In addition, using (2.9), we have σ(A + GC |

X/V) = σ(AT + CTGT | V⊥). The claim of the theorem then follows from theorem
4.22.

Again, the duality established above makes it possible to translate most of the
results that were obtained for stabilizability subspaces to results for detectability sub-
spaces. Several examples of this are collected in the exercises following this chapter.

As was the case for conditioned invariant subspaces, for an arbitrary subspace of
the state space there always exists a smallest detectability subspace that contains this
subspace:

Theorem 5.14 Consider the system (5.1). Let E be a subspace of X. There exists a

smallest detectability subspace containing E , i.e., a subspace S ∗g (E) such that

(i) S∗g (E) is a detectability subspace,

(ii) E ⊂ S∗g (E),

(iii) if S is a detectability subspace such that E ⊂ S then S ∗g (E) ⊂ S.



Detectability subspaces 117

Proof : This is proven completely analogously to theorem 5.7. We define S ∗g (E) to be
equal to V∗g (E⊥, AT, CT)⊥, the orthogonal complement of the largest stabilizability
subspace in E⊥ with respect to the dual system. This subspace satisfies the above
requirements.

Sometimes we denote S∗g (E) by S∗g (E , C, A). The following duality relation thus
holds by definition:

S∗g (E , C, A) = V∗g (E⊥, AT, CT)⊥.

For a given subspace E the following inclusions hold:

E ⊂ S∗(E) ⊂ S∗g (E).

We leave it as an exercise to the reader to check that, in fact, S ∗g (S∗(E)) = S∗g (E).
An important role is played by S ∗g (0), the smallest detectability subspace of the sys-
tem (5.1). This subspace will be called the undetectable subspace of (C, A) and
is denoted by Xdet or Xdet(C, A) (note that this subspace still depends on the un-
derlying stability domain Cg). In terms of recovery of information on the system
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),Xdet can be characterized as the small-
est subspace S such that there exists a stable observer for x/S. Indeed, since X det
is a detectability subspace, a stable observer of x/Xdet exists. If S is a subspace
such that a stable observer for x/S exists then by definition it is a detectability sub-
space and hence Xdet ⊂ S. The above can be interpreted by saying that, for each
t , x(t)/Xdet is the ‘maximal amount’ of information that can be recovered on the
state x(t) of the system ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) using observations
{(u(τ ), y(τ )); 0 � τ � t}. (If S is a subspace and x some unknown vector then
knowledge of x/S is the same as knowing that x ∈ ξ + S for some (known) vector ξ .
The smaller S is, the more information this provides).

From section 4.6, recall that Xstab(AT, CT), the stabilizable subspace of (AT, CT),
is defined as the largest stabilizability subspace of the system (A T, CT). Thus, by
definition, we have Xdet(C, A) = Xstab(AT, CT)⊥. Using theorem 4.26 and using the
fact that 〈AT | im CT〉⊥ = 〈ker C | A〉, we thus obtain:

Theorem 5.15 Xdet = Xb(A) ∩ 〈ker C | A〉.

According to theorem 5.11, a detectability subspace is a subspace S for which
there is a map G : Y → X such that (A+GC)S ⊂ S and σ(A+ GC | X/S) ⊂ Cg .
Sometimes we are interested rather in σ(A + GC | S). A conditioned invariant
subspace S will be called inner-detectable if there exists G ∈ G(S) such that σ(A +

GC | S) ⊂ Cg . Correspondingly, detectability subspaces are sometimes called outer-

detectable conditioned invariant subspaces.

From section 2.3, recall that if A : X→ X is a linear map and if S is a subspace
of X then S is A-invariant if and only if S⊥ is AT-invariant. Moreover, in that case
we have σ(A | S) = σ(AT | X/S⊥). Using this, it can be verified immediately that a
subspace S of X is an inner-detectable (C, A)-invariant subspace if and only if S ⊥ is
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an outer-stabilizable (AT, CT)-invariant subspace. It then follows from theorem 4.29
that a conditioned invariant subspace S is inner-detectable if and only if S∩X det = 0.
By definition, the pair (C, A) is detectable if and only if the state space X is inner-
detectable. Consequently, (C, A) is detectable if and only if Xdet = 0. Recalling the
observer interpretation of Xdet we thus find: (C, A) is detectable if and only if there
exists a stable observer for x(= x/0). In case that Cg = C− this means that detectable
systems ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t) are characterized by the property that
the entire state x can be recovered asymptotically by means of an observer (compare
this with theorem 3.38).

To conclude this section we state the following theorem which can be obtained
directly from theorem 4.30 by dualization:

Theorem 5.16 The following statements are equivalent:

(i) (C, A) is detectable,

(ii) σ(A | 〈ker C | A〉) ⊂ Cg ,

(iii) Xb(A) ∩ 〈ker C | A〉 = 0,

(iv) 〈ker C | A〉 ⊂ Xg(A).

5.3 Estimation in the presence of disturbances

Consider the following system �:

ẋ(t) = Ax(t) + Ed(t),

y(t) = Cx(t),

z(t) = H x(t).

(5.11)

Here, d represents an unknown disturbance which is assumed to be any element of
some function space D. The exact specification of the function space D is not im-
portant. One can, for example, take D to be the class of all piecewise continuous
functions, or the class of all locally integrable functions. The variable y represents an
output that can be measured and the variable z is an output that we want to estimate
on the basis of the output y. To this end, we want to construct a finite-dimensional
linear time-invariant system �:

ẇ(t) = Pw(t) + Qy(t),

ζ(t) = Rw(t) + Sy(t),
(5.12)

such that ζ is an estimate of z, in the following sense. Let e : = z − ζ , the error
between z and ζ . Let W be the state space of the system �. The interconnection of
� and � is a system with state space X×W , described by the equations

ẋe(t) = Aexe(t) + Eed(t),

e(t) = Hexe(t),
(5.13)
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where we have introduced the following notation:

Ae : =

(

A 0
QC P

)

, Ee : =

(

E

0

)

, He : =
(

H − SC −R
)

,

xe(t) : =

(

x(t)

w(t)

)

.

We want to find a system � such that for all initial conditions x(0) = x 0 and w(0) =

w0, and for all disturbances d, the error e(t) converges to zero as t → ∞. That
is, we want to construct a system � = (P, Q, R, S) that for all initial conditions,
whatever disturbance d might occur, produces an estimate ζ of z in the sense that the
error e(t) = z(t) − ζ(t) → 0 as t → ∞. This situation is depicted in the following
diagram:

✲ � ✲
✲

✲
e

� ✲
−

+

d
z

y

ζ

Denote Xe : =X×W . For a given xe,0 ∈ Xe, and a given disturbance input function
d, denote the estimation error corresponding to x e(0) = xe,0 and disturbance input d

by e(t, xe,0, d).

Definition 5.17 Consider the system � given by (5.11). The system � given by (5.12)

is called an estimator for � if e(t, xe,0, d) → 0 (t → ∞) for all xe,0 ∈ Xe and all

disturbance functions d. The problem of estimation in the presence of disturbances
is to find an estimator for �.

Let us denote Te(t) = HeeAet Ee and We(t) = HeeAet . It turns out that the
error converges to zero for all initial conditions and all disturbances if and only if the
impulse response matrix Te between the disturbance input and the error is equal to
zero and We is stable with respect to C−, the open left half complex plane:

Lemma 5.18 The system � is an estimator for � if and only if Te = 0 and We is

stable with respect to C−.

Proof : (⇒) By taking d equal to zero and x e(0) = xe,0, we find that We(t)xe,0 →

0 (t → ∞) for all xe,0 ∈ Xe. This implies that We is stable with respect to C−. By
taking xe(0) = 0 we find that e(t, 0, d) → 0 (t → ∞) for all d. Thus, with initial
state zero, the output e is bounded for every input function d. According to exercise
3.1, this implies that Te = 0.

(⇐) The converse implication is immediate.



120 Conditioned invariant subspaces

The problem of estimation in the presence of disturbances can thus be refor-
mulated equivalently as: find a system � = (P, Q, R, S) (that is, find a finite-
dimensional linear space W and maps P : W → W , Q : Y → W , R : W → Z and
S : Y → Z such that Te = 0, and We is stable with respect to C−. Of course, we
might as well pose this problem in terms of an arbitrary stability domain C g . Our first
result gives necessary and sufficient conditions for the existence of suitable maps P,
Q and R in the case that S is already given:

Lemma 5.19 Let Cg be a stability domain and let S : Y → Z be a map. Then there

exist a linear space W and maps P : W → W , Q : Y → W and R : W → Z such

that the system � : = (P, Q, R, S) yields Te = 0 and We stable if and only if there

exists a (C, A)-detectability subspace S such that

im E ⊂ S ⊂ ker(H − SC).

Proof : (⇒) If Te = 0 then the system (5.13) is disturbance decoupled and hence, by
theorem 4.6, there is an Ae-invariant subspace Se such that im Ee ⊂ Se ⊂ ker He.
Let Ne be the unobservable subspace of the pair (He, Ae), i.e., Ne : = 〈ker He |

Ae〉. By section 3.3, Ne is the largest Ae-invariant subspace contained in ker He and
consequently we have im Ee ⊂ Ne ⊂ ker He. Define a subspace S of X by

S : = {x ∈ X |
(

x

0

)

∈ Ne}.

(Here, 0 stands for the zero element of W , the state space of the system �). It is veri-
fied immediately that im E ⊂ S ⊂ ker(H − SC). We contend that S is a detectability
subspace with respect to (C, A). To prove this, let x ∈ S ∩ ker C . Then (x T, 0)T ∈ Ne

and Cx = 0. Since Ne is invariant under Ae we have
(

Ax

0

)

= Ae

(

x

0

)

∈ Ne

and therefore Ax ∈ S. It follows that (A − λI )x ∈ S for all λ ∈ C and hence
x ∈ (A − λI )−1S ∩ ker C . Conversely, if (A − λI )x ∈ S for some λ ∈ Cb and
Cx = 0 then

(Ae − λI )

(

x

0

)

=

(

(A − λI )x

0

)

∈ Ne. (5.14)

Let 
e be the canonical projection onto Xe/Ne. Let Āe and H̄e be the quotient maps
defined by 
e Ae = Āe
e and H̄e
e = He. Then the system (H̄e, Āe) is observable
(see exercise 3.7). Also define W̄e(t) : = H̄ee Āe t . Then we have W̄e
e = We and
hence (since 
e is surjective) W̄e is stable. By theorems 3.21 and 3.23 this implies
σ( Āe) ⊂ Cg . On the other hand, since ker 
e = Ne, it follows from (5.14) that

Āe
e

(

x

0

)

= λ
e

(

x

0

)

.
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Since λ ∈ Cb , the latter immediately implies that (x T, 0)T ∈ Ne. It then follows that
x ∈ S and hence x ∈ S ∩ ker C . By applying theorem 5.11 we may then conclude
that S is a detectability subspace.

(⇐) Assume S is a detectability subspace with im E ⊂ S ⊂ ker(H − SC). Let

 : X → X/S be the canonical projection. Then 
E = 0 and there exists a map
H̄ : X/V → Z such that H̄
 = H − SC (see section 2.4). Let G ∈ G(S) be such
that σ(A+GC |X/S) ⊂ Cg . Define maps P, Q and R as follows. Let W : =X/S.
Define P : = AG | X/S, Q : = −
G and R : = H̄ . We claim that with this choice
Te = 0 and We is stable. Indeed, if ẇ(t) = Pw(t) + Qy(t), ζ(t) = Rw(t) + Sy(t)

then e = z − ζ = H̄(
x −w). Define e1 : = 
x −w. Then

ė1(t) = 
ẋ(t)− ẇ(t)

= 
Ax(t)− Pw(t) − QCx(t)

= 
(A + GC)x(t)− Pw(t)

= Pe1(t).

Consequently, e(t) = H̄e1(t) = H̄ePt e1(0). From this we see that e is independent
of d so Te = 0. Also, since σ(P) ⊂ Cg , e is stable for all initial states x(0) and w(0).
Hence We must be stable. This completes the proof of the lemma.

As an immediate consequence of the previous lemma we have:

Corollary 5.20 Let Cg be a stability domain and let S : Y → Z be a map. There

exist a linear space W and maps P : W → W , Q : Y → W and R : W → Z

such that the system � : = (P, Q, R, S) yields Te = 0 and We stable if and only if

S∗g (im E) ⊂ ker(H − SC).

The following lemma deals with the existence of a suitable map S, representing
the direct feedthrough map of the system � to be designed:

Lemma 5.21 Let X, Y and Z be linear spaces and C : X → Y and H : X → Z

be maps. Suppose that V is a subspace of X. There exists a map S : Y → Z such

that V ⊂ ker(H − SC) if and only if V ∩ ker C ⊂ ker H .

Proof : (⇒) This implication is immediate.

(⇐) Let V be a map such that ker V = V. Then ker(V T, CT)T ⊂ ker H so
there exists a map L such that L(V T, CT)T = H . Partition L = (L1 L2) to obtain
L1V + L2C = H . Define the map S that we are looking for by S : = L 2. Then
L1V = H − SC . This implies that ker V ⊂ ker(H − SC).

By simply combining the above we obtain

Corollary 5.22 Let Cg be a stability domain. There exists a system � = (P, Q.R, S)

such that Te = 0 and We is stable if and only if

S∗g (im E) ∩ ker C ⊂ ker H.
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In order to apply the previous result to our original estimation problem, we set
Cg = C−. Accordingly, denote the smallest detectability subspace containing im E ,
corresponding to the stability domain C

− by S∗−(im E). Then we obtain:

Corollary 5.23 There exists an estimator � for the system � if and only if

S∗−(im E) ∩ ker C ⊂ ker H.

5.4 Exercises

5.1 Using definition 5.1, give a direct proof of the fact that the intersection of two
conditioned invariant subspaces is again conditioned invariant.

5.2 Consider the system (C, A). Let T : Y → Y be an isomorphism and let
G : Y → X be a linear map. Prove immediately from definition 5.2 that the
classes of (C, A)-invariant subspaces and (T C, A + GC)-invariant subspaces
coincide.

5.3 Consider the system (5.1). Let S be a conditioned invariant subspace. Show
that S is a detectability subspace if and only if (A − λI )−1S ∩ ker C ⊂ S for
all λ ∈ Cb.

5.4 Consider the system ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t). Assume that p = m,
i.e. the dimension of the output space Y is equal to the dimension of the input
space U. Let Cg be a stability domain. Assume that C B is non-singular.

a. Show that X = ker C ⊕ im B.

b. Let P : X → X be the projection onto ker C along im B. Assume that
σ(P A | ker C) ⊂ Cg . Show that im B is a detectability subspace.

c. Let V∗ : = V∗(ker C, A, B) and R∗ : = R∗(ker C, A, B). Show that
V∗ = ker C and R∗ = 0

d. Define F : = −(C B)−1C A. Show that F ∈ F(V∗).

e. Show that the fixed spectrum σ(A + B F | V ∗/R∗) is equal to σ(P A |

ker C).

5.5 Consider (5.1). Let Cg be a stability domain and S a subspace of X.

a. Let S be conditioned invariant. Show that S is inner-detectable if and only
if

σ(A | 〈ker C | A〉 ∩ S) ⊂ Cg.

b. Assume that (C, A) is detectable. Show that S is a detectability subspace
if and only if there exists G ∈ G(S) such that σ(A + GC) ⊂ Cg .

5.6 Give a direct proof of theorem 5.8, based on the geometric characterization of
(C, A)-invariance.
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5.7 Let Cg be a stability domain, and let E be a subspace of X. Prove that

S∗g (S∗(E)) = S∗g (E).

5.8 (Observability subspaces.) Again consider the system ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t). A subspace N of X is called an observability subspace if for
each stability domain Cg there exists a (Cg)-stable observer � for x/N .

a. Show that if N is an observability subspace then for each stability domain
Cg there exists an observer � for x/N of the form ẇ(t) = Pw(t) +

Ry(t), ξ(t) = w(t), with σ(P) ⊂ Cg and 
A − P
 = RC (here, 
 is
the canonical projection onto X/N ).

b. Prove that the following statements are equivalent:

1. N is an observability subspace,
2. (A − λI )−1N ∩ ker C = N ∩ ker C for all λ ∈ C,
3. for each real monic polynomial p with deg p = n − dim N there

exists G ∈ G(N ) such that the characteristic polynomial of A G |

X/N is equal to p.

5.9 Let N be a subspace of X. Show that N is an observability subspace with
respect to (C, A) if and only if N ⊥ is a controllability subspace with respect to
(AT, CT).

5.10 Consider the system (C, A). Let E be a subspace of X. Let Cg be a stability
domain.

a. Show that there exists a smallest observability subspace, N ∗(E), contain-
ing E .

b. Show that E ⊂ S∗(E) ⊂ S∗g (E) ⊂ N ∗(E).

c. Denote N ∗ : = N ∗(E) and S∗ : = S∗(E). Show that G(S∗) ⊂ G(N ∗)

and that for all G ∈ G(S∗) we have

N ∗ = 〈S∗ + ker C | A + GC〉.

d. Determine N ∗(0), the smallest observability subspace of (C, A).

5.11 (Computation of the smallest detectability subspace containing a given sub-
space.) Consider the system (C, A). Let E be a subspace of X and let Cg be a
stability domain. Show that for all G ∈ G(S∗(E)) we have

S∗(E) = (Xb(A + GC) ∩ S∗(E)) ∩N ∗(E).

5.12 (Pole placement by output injection under invariance constraints.) Consider the
system (5.1). Let S ⊂ X be a conditioned invariant subspace. In this problem
we investigate the freedom in assigning the eigenvalues of A+GC if G : Y →

X is restricted to satisfy (A + GC)S ⊂ S. Let N : = N ∗(S) be the smallest
observability subspace containing S. Furthermore, let T := S ∩ 〈ker C | A〉,
the intersection of S with the unobservable subspace of (5.1).
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a. Show that G(S) ⊂ G(N ) ∩ G(T ).

b. Show that for any pair of real monic polynomials (p 1, p2), with deg p1 =

dim S − dim T and deg p2 = n − dim N , there exist G ∈ G(S) such that
χA+GC |S/T = p1 and χA+GC |X/N = p2.

c. Show that for G1, G2 ∈ G(S) we have χA+G1C |N /S = χA+G2C |N /S , i.e.,
χA+GC |N /S is fixed for all G ∈ G(S).

d. Show that T is (A + GC)-invariant for all G : Y → X and that for all
G : Y → X we have A + GC | T = A | T .

e. Draw a lattice diagram that illustrates which parts of the spectrum of A+

GC are fixed, and which parts are free, under the restriction G ∈ G(S).

f. Let S be an observability subspace and assume that (C, A) is observable.
Show that for any real monic polynomial p of degree n such that p =

p1 p2, with p1 and p2 real monic polynomials, and deg p1 = dim S, there
exists G ∈ G(S) such that χA+GC = p.

5.5 Notes and references

Conditioned invariant subspaces were introduced by Basile and Marro in [10], and
applied to the problem of estimation in the presence of unknown disturbance inputs
by the same authors in [11], see also the more recent textbook [14]. Conditioned
invariant subspaces were studied in terms of their duality properties with respect to
controlled invariant subspaces by Morse in [129], see also the textbook by Wonham
[223], page 127. The point of view of defining conditioned invariant subspaces in
terms of the existence of observers originates from Willems [218].

Detectability subspaces were introduced at approximately the same time by Schu-
macher in [169] and Willems and Commault in [218]. The ‘hybrid’ characterization
of detectability subspaces of theorem 5.11 is due to Schumacher [169]. The definition
of observability subspace, see exercise 5.8, appeared for the first time in Willems and
Commault [218].

The design of observers for systems with unknown inputs was studied by Bhat-
tacharyya in [18], and by Hautus in [74]. A version of the problem was also studied
in Willems and Commault [218]. More recent material on the design of estimators
in the presence of unknown disturbances can be found in the work of Hou, Pugh and
Müller [83], and in Tsui [201]. The connection between robust observer design and
the problem of observer design with unknown inputs was studied by Bhattacharyya
in [20].

Extensions to almost conditioned invariant subspaces and, related, the design of
approximate observers and estimators, and PID observers, can be found in the work
of Willems [216].



Chapter 6

(C, A, B)-pairs and dynamic

feedback

In chapter 4 we have considered several feedback design problems that require the
design of static state feedback control laws. Often, it is more realistic to assume
that only part of the state vector is available for feedback. This can be modelled by
specifying a linear function of the state vector, called the measurement output. Instead
of the entire state vector, we then only allow the use of this measurement output for
feedback. Instead of static feedback, however, we then allow dynamic feedback.

A central role in this chapter is played by the notion of (C, A, B)-pair of sub-

spaces. We use this concept here to study the dynamic feedback versions of the
disturbance decoupling problem, the disturbance decoupling problem with internal
stability, and, finally, the problem of external stabilization.

6.1 (C, A, B)-pairs

In this section we introduce the notion of (C, A, B)-pair of subspaces. Consider the
controlled and observed system �:

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t).
(6.1)

In section 3.9 it was explained that if we control this system using the finite-dimensi-
onal linear time-invariant controller Ŵ:

ẇ(t) = Kw(t) + Ly(t),

u(t) = Mw(t) + Ny(t),
(6.2)
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then the resulting closed loop system is described by the autonomous linear differen-
tial equation

(

ẋ(t)

ẇ(t)

)

=

(

A + B NC B M

LC K

)(

x(t)

w(t)

)

. (6.3)

The controller (6.2) takes the observations y as its input and generates the control
function u as its output. The state space of the controller is denoted by W and is
assumed to be a finite-dimensional real linear space. K , L, M and N are assumed to
be linear maps from W → W , Y → W , W → U and Y → U, respectively. The
control action of interconnecting the controller Ŵ with the system (6.1) is called dy-

namic feedback. The state space of the closed loop system (6.3) is called the extended

state space and is equal to the Cartesian product X×W . The extended state space is
often denoted by Xe. The system mapping of the closed loop system (6.3) is called
the extended system mapping. Thus, the extended system mapping corresponding to
the controller Ŵ = (K , L, M, N) is equal to

Ae : =

(

A + B NC B M

LC K

)

. (6.4)

It will turn out that the control problems that are formulated and studied in this chapter
essentially amount to finding linear maps K , L, M and N such that the extended
system mapping Ae has certain geometric properties. It is therefore important to study
the relationship between the geometric properties of the maps A, B and C (defining
the system (6.1)) and those of the extended system maps (6.4). For describing this
relationship it is convenient to introduce the notion of (C, A, B)-pair of subspaces.
This notion is defined as follows:

Definition 6.1 Consider the system (6.1). A pair of subspaces (S,V) of X is called

a (C, A, B)-pair if S ⊂ V, S is (C, A)-invariant and V is (A, B)-invariant.

For a given subspace Ve of the extended state space Xe = X ×W we consider
the following two subspaces of the original state space X:

p(Ve) : =
{

x ∈ X

∣

∣

∣
∃ w ∈ W such that

(

x

w

)

∈ Ve

}

(6.5)

and

i(Ve) : =
{

x ∈ X

∣

∣

∣

(

x

0

)

∈ Ve

}

. (6.6)

Note that the first subspace is the projection of Ve onto the X-plane, whereas the
second is the intersection of Ve with this plane. Both spaces are subspaces of the
original state space X. It turns out that, starting with a subspace Ve that is invariant
under some extended system mapping A e, the pair of subspaces obtained by taking
the intersection and projection forms a (C, A, B)-pair.

Theorem 6.2 Let Ve be a subspace of Xe that is invariant under Ae. Then

(i(Ve), p(Ve))

is a (C, A, B)-pair.
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Proof : Obviously, i(Ve) ⊂ p(Ve). Let x ∈ i(Ve) ∩ ker C . Then we have
(

Ax

0

)

= Ae

(

x

0

)

∈ Ve

and hence Ax ∈ i(Ve). It follows that i(Ve) is (C, A)-invariant. Next, let x ∈ p(Ve).
Then there exists a vector w ∈ W such that (x T, wT)T ∈ Ve. Consequently,

(

Ax + B(NCx + Mw)

LCx + Kw

)

= Ae

(

x

w

)

∈ Ve.

Since LCx + Kw ∈ W it follows that Ax + B(NCx +Mw) ∈ p(Ve). We conclude
that Ax ∈ p(Ve)+ im B. This implies that p(Ve) is (A, B)-invariant.

The above shows that Ae-invariant subspaces of an extended state space give rise
to (C, A, B)-pairs. In the sequel we also need to have some sort of converse of theo-
rem 6.2, stating that if we start with a (C, A, B)-pair (S,V), there exists a controller
Ŵ = (K , L, M, N) and a subspace Ve of the corresponding extended state space such
that AeVe ⊂ Ve, p(Ve) = V and i(Ve) = S. This will be investigated now. Our
first step is to construct the mapping N :

Lemma 6.3 Let (S,V) be a (C, A, B)-pair. There exists a linear mapping N : Y →

U such that (A + B NC)S ⊂ V.

Proof : Let q1, . . . , q j be a basis of S ∩ ker C and extend this to a basis q1, . . . , qk of
S. Since S ⊂ V and V is (A, B)-invariant, there exist u i ∈ U and vi ∈ V such that

Aqi = vi + Bui (i = 1, 2, . . . , k).

Furthermore, the vectors Cq j+1, . . . , Cqk are linearly independent: suppose

α j+1Cq j+1 + · · · + αkCqk = 0.

Then

q̃ : = α j+1q j+1 + · · · + αkqk ∈ S ∩ ker C

and hence q̃ is a linear combination of q1, . . . , q j , say q̃ = α1q1 + · · · + α j q j . It
follows that

α1q1 + · · · + α j q j − α j+1q j+1 − · · · − αkqk = 0.

Since q1, . . . , qk are linearly independent it follows that α1 = α2 = · · · = αk = 0.
This proves the assertion on the linear independence. Therefore, there exists a linear
mapping N : Y → U such that NCqi = −ui (i = j + 1, . . . , k). We then have

(A + B NC)qi = vi ∈ V (i = j + 1, . . . , k)
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and

(A + B NC)qi = Aqi ∈ S ⊂ V (i = 1, . . . , j).

The latter follows from the facts that for i = 1, . . . , j the vectors q i are in S ∩ ker C

and that S is (C, A)-invariant. This completes the proof of the lemma.

We now state and prove the converse of theorem 6.2 as announced above.

Theorem 6.4 Let (S,V) be a (C, A, B)-pair. Then there exists a controller (6.2) and

an Ae-invariant subspace Ve of the extended state space Xe such that S = i(Ve) and

V = p(Ve). Specifically, for any N : Y → U such that (A + B NC)S ⊂ V, and for

any F ∈ F(V) and G ∈ G(S), the controller

ẇ(t) = (A + B F + GC − B NC)w(t) + (B N − G)y(t),

u(t) = (F − NC)w(t) + Ny(t),
(6.7)

with state space W = X, and the subspace

Ve : =
{

(

x1
0

)

+
(

x2
x2

)

∈ Xe

∣

∣

∣
x1 ∈ S, x2 ∈ V

}

satisfy the desired properties.

Before we give a proof of this theorem we want to make some remarks. First
note that the state space of the controller (6.7) is equal to X, the state space of our
original system (6.1). In general, the dimension of the state space of a system is
called its dynamic order. Hence, the dynamic order of the controller (6.7) is equal to
the dynamic order of the system.

The controller defined by (6.7) can be interpreted as being the combination of
a state observer �, static state feedback and static output feedback. To be specific,
consider the system � defined by

ẇ(t) = (A + GC)w(t)+ Bu(t)− Gy(t),

ξ(t) = w(t).
(6.8)

We claim that � is a state observer for (6.1) (see definition 3.34). Indeed, if we
define e(t) : = ξ(t) − x(t) then e(t) can be seen to satisfy the differential equation
ė(t) = (A + GC)e(t). Hence ξ(0) = x(0) implies ξ(t) = x(t) for t � 0. If, in
addition to the equations (6.8), we consider the output equation

u(t) = (F − NC)ξ(t) + Ny(t), (6.9)

then the resulting system coincides with the controller (6.7). Thus (6.7) can be given
the interpretation of a state observer together with a static feedback part (6.9). The
static feedback part generates the input value u(t) on the basis of the state estimate
ξ(t) together with the measurement output value y(t). This internal structure of the
controller (6.7) is depicted in the following diagram:
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✲ �

✲

✲

N

F − NC ✲

❄

✲

✛

y ξ u

Proof of theorem 6.4 : The extended system mapping resulting from the controller
(6.7) is equal to

Ae =

(

A + B NC B(F − NC)

(B N − G)C A + B F + GC − B NC

)

. (6.10)

First, we show that the subspace Ve, as defined in theorem 6.4, is invariant under A e.
If x1 ∈ S then

Ae

(

x1
0

)

=

(

(A + GC)x1
0

)

+

(

(A + B NC)x1
(A + B NC)x1

)

−

(

(A + GC)x1
(A + GC)x1

)

.

Since (A + GC)x1 ∈ S, (A + B NC)x1 ∈ V and S ⊂ V the latter sum is an element
of Ve again. Furthermore, if x2 ∈ V then we have

Ae

(

x2
x2

)

=

(

(A + B F)x2
(A + B F)x2

)

∈ Ve,

since (A + B F)x2 ∈ V. This proves that Ve is Ae-invariant. Next, we show that
S = i(Ve). Assume x1 ∈ S. Then by definition (x T

1, 0)T ∈ Ve. Thus x1 ∈ i(Ve).
Conversely, if x1 ∈ i(Ve) then (x T

1, 0)T ∈ Ve. According to the definition of Ve, there
is a ∈ S and b ∈ V such that

(

a

0

)

+

(

b

b

)

=

(

x1
0

)

.

Hence, b = 0 and x1 = a ∈ S. Finally, we show that V = p(Ve). If x2 ∈ V then
(x T

2, x T
2)

T ∈ Ve. Thus x2 ∈ p(Ve). Conversely, if x2 ∈ p(Ve) then there is w such
that (x T

2, w
T)T ∈ Ve. This implies that there are a ∈ S, b ∈ V such that

(

x2
w

)

=

(

a

0

)

+

(

b

b

)

.

Hence, w = b ∈ V and x2 = a + b ∈ S + V = V.
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6.2 Disturbance decoupling by measurement feedback

Consider the control system

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

y(t) = Cx(t),

z(t) = H x(t).

(6.11)

Again, d represents a disturbance input. The functions d that can occur are assumed
to be elements of a given function space. The variable z represents a to-be-controlled
output. We want to control the system such that in the closed loop system the output z

does not depend on the disturbance input d. In section 4.2 we considered this problem
for the case that the control input u(t) is allowed to depend on the current state x(t)

via some static state feedback control law u(t) = Fx(t). Implicitly, this assumes that
the entire state vector x can be used for control purposes, at any time instant t � 0.
Often, it is more realistic to assume that we have access only to part of the state vector
x . This can be formalized by including the additional output equation y(t) = Cx(t)

in the set of equations of the control system (with C a linear mapping from the state
space X into some finite-dimensional linear space Y), and to require the feedback
mechanism that generates u to be driven by the output y (the measurement output).
Here, we will allow these feedback mechanisms to be given by controllers Ŵ of the
form (6.2). If the control system (6.11) and the controller (6.2) are interconnected,
then the resulting closed loop system is described by the equations

(

ẋ(t)

ẇ(t)

)

=

(

A + B NC B M

LC K

)(

x(t)

w(t)

)

+

(

E

0

)

d(t),

z(t) =
(

H 0
)

(

x(t)

w(t)

)

.

(6.12)

In addition to the compact notation (6.4) for the system mapping A e of (6.12), we
introduce

Ee : =

(

E

0

)

and He : =
(

H 0
)

.

For a given controller Ŵ = (K , L, M, N), the corresponding closed loop impulse
response matrix between d and z is denoted by TŴ and is equal to

TŴ(t) : = HeeAet Ee.

The corresponding transfer function H e(I s − Ae)
−1
e Ee is denoted by GŴ(s). The

problem of disturbance decoupling by measurement feedback is to find a controller
Ŵ such that the closed loop system (6.12) is disturbance decoupled (see section 4.2).
We stress that this amounts to identifying a suitable finite-dimensional linear space
W (the state space of the controller), together with four maps K , L, M and N :

Definition 6.5 Consider the system (6.11). The problem of disturbance decoupling
by measurement feedback, DDPM, is to find a controller Ŵ = (K , L, M, N) such

that TŴ = 0 (or, equivalently, such that GŴ = 0).
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Our aim is now to establish necessary and sufficient conditions for the existence
of a controller that makes the closed loop system disturbance decoupled. We want
these conditions to be entirely in terms of the original control system (6.11), that is,
in terms only of the maps A, B, C, E and H . It turns out that the previous section
provides most of the ingredients to establish such conditions:

Theorem 6.6 There exists a controller Ŵ such that TŴ = 0 if and only if there exists

a (C, A, B)-pair (S,V) such that im E ⊂ S ⊂ V ⊂ ker H .

Proof : (⇒) Assume that (6.12) is disturbance decoupled. According to theorem 4.6
there exists an Ae-invariant subspace Ve such that im Ee ⊂ Ve ⊂ ker He. Define
S : = i(Ve) and V : = p(Ve). According to theorem 6.2, (S,V) is a (C, A, B)-pair.
Let x ∈ im E . Then (x T, 0)T ∈ im Ee ⊂ Ve, so x ∈ i(Ve) = S. Let x ∈ V = p(Ve).
Then there exists w ∈ W (the state space of the controller Ŵ) such that (x T, wT)T ∈

Ve ⊂ ker He. Hence H x = He(x T, wT)T = 0, so V ⊂ ker H .

(⇐) Conversely, let (S,V) be a (C, A, B)-pair between im E and ker H . Accord-
ing to theorem 6.4 there exists a controller Ŵ and an A e-invariant subspace Ve of the
extended state space such that S = i(Ve) and V = p(Ve). We claim that

im Ee ⊂ Ve ⊂ ker He.

Indeed, (x T, wT)T ∈ im Ee implies w = 0 and x ∈ im E ⊂ S. Consequently
(

x

w

)

=

(

x

0

)

∈ Ve.

Furthermore, (x T, wT)T ∈ Ve implies that x ∈ V ⊂ ker H . Hence He(x T, wT)T =

H x = 0. This proves the claim. It then follows from theorem 4.6 that the closed loop
system (6.12) is disturbance decoupled.

Let S∗(im E) be the smallest (C, A)-invariant subspace containing im E (see the-
orem 5.7) and let V∗(ker H ) be the largest (A, B)-invariant subspace contained in
ker H (see theorem 4.5). If the condition S ∗(im E) ⊂ V∗(ker H ) holds then ob-
viously (S∗(im E),V∗(ker H )) is a (C, A, B)-pair between im E and ker H . Con-
versely, if (S,V) is a (C, A, B)-pair such that im E ⊂ S and V ⊂ ker H then we
must have S∗(im E) ⊂ S and V ⊂ V∗(ker H ). Thus, we obtain the following
corollary:

Corollary 6.7 There exists a controller Ŵ such that TŴ = 0 if and only if

S∗(im E) ⊂ V∗(ker H ).

The condition of corollary 6.7 can be checked computationally by means of the in-
variant subspace algorithm, ISA, described in section 4.3 (see theorem 4.10) and the
conditioned invariant subspace algorithm, CISA, described in section 5.1 (see theo-
rem 5.8). If the subspace inclusion of corollary 6.7 holds then a procedure to calculate
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an actual controller Ŵ can immediately be obtained from theorem 6.4. First, we cal-
culate a mapping F : X → U such that A FV∗ ⊂ V∗, a mapping G : Y → X such
that AGS∗ ⊂ S∗ and a mapping N : Y → U such that (A + B NC)S∗ ⊂ V∗. Next
we put K : = A+ B F+GC− B NC, L : = B N −G and M : = F− NC . The con-
troller Ŵ defined by ẇ(t) = Kw(t) + Ly(t), u(t) = Mw(t) + Ny(t) then achieves
the desired disturbance decoupling. The state space of Ŵ is equal to W = X, so its
dynamic order is equal to the dynamic order of the underlying control system.

6.3 (C, A, B)-pairs and internal stability

In section 6.1 it was shown how a (C, A, B)-pair leads to an extended system map-
ping and an invariant subspace of the extended state space such that certain properties
hold. In this section we study the connection between the spectrum of the extended
system mapping and the stabilizability and detectability properties of the underlying
(C, A, B)-pair.

Recall from theorem 6.2 that if we have an extended system mapping A e of the
form (6.4) working on some extended state space X e, and if Ve is a subspace of Xe

that is Ae-invariant, then (i(Ve), p(Ve)) constitutes a (C, A, B)-pair. The following
result is more specific:

Theorem 6.8 Let Ve be an Ae-invariant subspace of Xe. Then we have:

(i) if Ve is inner-stable, then i(Ve) is inner-detectable and p(Ve) is inner-stabili-

zable,

(ii) if Ve is outer-stable, then i(Ve) is outer-detectable and p(Ve) is outer-stabili-

zable.

Proof : (i) Since Ve is inner-stable, it follows from theorem 2.17 that

(λI − Ae)Ve = Ve

for all λ ∈ Cb. We first show that p(Ve) satisfies the condition (ii) of theorem 4.22.
By theorem 6.2, p(Ve) is controlled invariant so for all λ ∈ C we have

(λI − A)p(Ve)+ im B ⊂ p(Ve)+ im B.

Let λ ∈ Cb and let x ∈ p(Ve). We have to show that x can be written as (λI −

A)x̃ + Bu, for some x̃ ∈ p(Ve) and u ∈ U. Since x ∈ p(Ve), there exists w ∈ W

such that xe : = (x T, wT)T ∈ Ve. There exists x̃e ∈ Ve, say x̃e = (x̃ T, w̃T)T, such that
(λI − Ae)x̃e = xe. This however implies

(λI − A − B NC)x̃ − B Mw̃ = x .

If we define u : = −(NCx̃ + Mw̃) then this yields the desired representation of x

(note that x̃ ∈ p(Ve)). We conclude that p(Ve) is a stabilizability subspace. Next, we
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show that i(Ve) is inner-detectable. It was already shown that i(Ve) is conditioned
invariant. Thus, we have to show that

σ(A | i(Ve) ∩ 〈ker C | A〉) ⊂ Cg

(see exercise 5.5). Let λ and x be such that Ax = λx and such that x ∈ 〈ker C | A〉

∩ i(Ve), x 	= 0. Since Cx = 0 we obtain

Ae

(

x

0

)

=

(

Ax

0

)

= λ

(

x

0

)

.

Using the fact that x ∈ i(Ve) we have (x T, 0)T ∈ Ve. Hence λ ∈ σ(Ae | Ve) ⊂ Cg .

(ii) If Ve is outer-stable then V⊥e is inner-stable with respect to AT
e . Since

AT
e =

(

AT + CT N T BT CT LT

MT BT K T

)

we can conclude from (i) that i(V⊥
e ) is inner-detectable with respect to (B T, AT) and

that p(V⊥e ) is inner-stabilizable with respect to (AT, CT). By exercise 6.1, we have
i(V⊥e ) = p(Ve)

⊥ and p(V⊥e ) = i(Ve)
⊥. Thus, we conclude that p(Ve) is outer-

stabilizable and that i(Ve) is a detectability subspace (see theorem 5.13).

Our next result is, in a sense, the converse of theorem 6.8. As we already saw
in section 6.1, if (S,V) is a (C, A, B)-pair then we can construct a controller Ŵ

and an Ae-invariant subspace Ve of the associated extended state space Xe such that
i(Ve) = S and p(Ve) = V. The following theorem shows how the spectrum of A e

depends on the spectra of A + B F and A + GC , if the linear maps F and G are
chosen from F(V) and G(S), respectively.

Theorem 6.9 Let (S,V) be a (C, A, B)-pair. Assume that F ∈ F(V) and G ∈

G(S). Then there exists a controller Ŵ and an Ae-invariant subspace Ve of the ex-

tended state space Xe such that i(Ve) = S, p(Ve) = V and

σ(Ae | Ve) = σ(AF | V) ∪ σ(AG | S), (6.13)

σ(Ae | Xe/Ve) = σ(AF | X/V) ∪ σ(AG | X/S). (6.14)

Specifically, if N : Y → U is a linear mapping such that (A + B NC)S ⊂ V then

the controller

ẇ(t) = (A + B F + GC − B NC)w(t) + (B N − G)y(t),

u(t) = (F − NC)w(t) + Ny(t),
(6.15)

with state space W = X, and the subspace

Ve : =
{

(

x1
0

)

+
(

x2
x2

)

∣

∣

∣
x1 ∈ S, x2 ∈ V

}

(6.16)

satisfy the desired properties.
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Proof : The facts that the controller (6.15) and the subspace V e given by (6.16) have
the properties that i(Ve) = S, p(Ve) = V and Ve is Ae-invariant were already
proven in theorem 6.4. It remains to show (6.13) and (6.14). We first prove (6.13).
Let xe ∈ Ve be an eigenvector of Ae with eigenvalue λ. Write

xe =

(

x1 + x2
x2

)

with x1 ∈ S and x2 ∈ V. Using (6.10), the expression Aexe = λxe becomes

(A + B NC)x1 + (A + B F)x2 = λ(x1 + x2), (6.17)

(B NC − GC)x1 + (A + B F)x2 = λx2. (6.18)

Subtracting (6.18) from (6.17) yields

(A + GC)x1 = λx1.

First assume x1 	= 0. Then we may conclude λ ∈ σ(AG | S). If, on the other hand,
x1 = 0 then (6.18) becomes

(A + B F)x2 = λx2.

Since in that case x2 	= 0 (xe 	= 0 !) the latter implies that λ ∈ σ(AG | V). We now
prove the converse inclusion in (6.13). Assume 0 	= x 2 ∈ V such that AF x2 = λx2.
Define xe : = (x T

2, x T
2)

T. Then xe ∈ Ve and Aexe = λxe. Thus λ ∈ σ(Ae | Ve).
Next, assume that 0 	= x1 ∈ S with AG x1 = λx1. Since (x T

1, 0)T ∈ Ve, since Ve is
Ae- invariant and since

Ae

(

x1
0

)

=

(

(A + B NC)x1
(B NC − GC)x1

)

,

the vector x̃1 : = (B NC − GC)x1 lies in V. Now, we may assume that λ 	∈ σ(A F |

V). In that case the mapping (λI − A F ) | V is invertible and the equation

x̃1 + (λI − AF )x2 = 0

has a (unique) solution x2 ∈ V. Define then

xe : =

(

x1 + x2
x2

)

∈ Ve.

It can then be verified that

Aexe =

(

AG x1 + x̃1 + (λI − AF )x2 + λx2
x̃1 + (λI − AF )x2 + λx2

)

= λ

(

x1 + x2
x2

)

= λxe.

Since x1 	= 0, also xe 	= 0. Hence λ ∈ σ(Ae | Ve). Thus we have proven (6.13). We
now prove (6.14). We do this by dualization of the first part of this theorem. Define a
subspace of the extended state space by

Ṽe : =
{

(

x1
0

)

+
(

x2
−x2

)

∣

∣

∣
x1 ∈ V⊥, x2 ∈ S⊥

}

.
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In exercise 6.1 we show that Ṽe = V⊥e and that consequently Ṽe is AT
e-invariant.

Note that (AT + FT BT)V⊥ ⊂ V⊥ and that (AT + GTCT)S⊥ ⊂ S⊥. Now, it can be
proven completely analogously to the proof of (6.13) above that

σ(AT
e | Ṽe) = σ(AT + GTCT | S⊥) ∪ σ(AT + FT BT | V⊥).

The details are left as an exercise to the reader. Using then that Ṽe = V⊥e , the latter
equality immediately implies that (6.14) holds.

The relation between the spectra of A + GC and A + B F , and the spectrum of
Ae is depicted in the lattice diagram in Figure 6.1.

S

a

F ∈ F(V)G ∈ G(S)

Ae

0

a ∪ a′

Ve

b ∪ b′

Xe

A + B F

0

X

b

0

A + GC

X

b′

V

a′

Figure 6.1

Corollary 6.10 Let (S,V) be a (C, A, B)-pair. Assume that F ∈ F(V) and G ∈

G(S). Then there exists a controller Ŵ and an Ae-invariant subspace Ve of the ex-

tended state space Xe such that i(Ve) = S, p(Ve) = V and σ(Ae) = σ(AF ) ∪

σ(AG). Specifically, if N : Y → U is a linear mapping such that (A+B NC)S ⊂ V,

then the controller (6.15) and the subspace (6.16) satisfy these properties.

6.4 Disturbance decoupling with internal stability by

measurement feedback

In section 6.2 we treated the problem of disturbance decoupling by dynamic measu-
rement feedback. In the present section we study this problem under the additional
constraint that the closed loop system should be internally stable. Again consider the
control system (6.11). For a given controller Ŵ given by (6.2), let T Ŵ be the closed
loop impulse response matrix between d and z, let G Ŵ(s) be the closed loop transfer
function and let Ae be the extended system mapping.

Definition 6.11 Let Cg be a stability domain. The problem of disturbance decoupling
with internal stability by measurement feedback, DDPMS, is to find a controller Ŵ =

(K , L, M, N) such that TŴ = 0 (equivalently: GŴ = 0) and σ(Ae) ⊂ Cg .
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In order to establish necessary and sufficient conditions for the existence of a
controller that makes the closed loop system disturbance decoupled and internally
stable, we use the following lemma:

Lemma 6.12 Let (S,V) be a (C, A, B)-pair, where S is a detectability subspace

and V is a stabilizability subspace. Assume that (C, A) is detectable and (A, B)

is stabilizable. Then there exists a controller Ŵ such that σ(Ae) ⊂ Cg and an Ae-

invariant subspace Ve of the extended state space Xe such that i(Ve) = S and

p(Ve) = V.

Proof : According to theorem 4.32 there exists F ∈ F(V) such that σ(A F ) ⊂ Cg . By
dualizing theorem 4.32, we find that there exists G ∈ G(S) such that σ(A G) ⊂ Cg .
Finally, there exists a linear mapping N : Y → U such that (A + B NC)S ⊂ V. By
applying corollary 6.10 we then find a controller Ŵ with the desired properties.

Theorem 6.13 There exists a controller Ŵ such that TŴ = 0 and σ(Ae) ⊂ Cg if and

only if there exist a detectability subspace S and a stabilizability subspace V such

that

im E ⊂ S ⊂ V ⊂ ker H,

(C, A) is detectable, and (A, B) is stabilizable.

Proof : (⇒) If TŴ = 0 then the closed loop system (6.12) is disturbance decoupled.
By theorem 4.6, there is an Ae-invariant subspace Ve of the extended state space Xe

such that im Ee ⊂ Ve ⊂ ker He. Since, furthermore, σ(Ae) ⊂ Cg , the subspace
Ve must be inner-stable and outer-stable. According to theorem 6.8, this implies
that S : = i(Ve) is a detectability subspace and that V : = p(Ve) is a stabilizability
subspace. The claim that im E ⊂ S ⊂ V ⊂ ker H was already proven in theorem
6.6. The facts that (C, A) is detectable and (A, B) is stabilizable follow from theorem
3.40 (note that Ŵ is a stabilizing controller).

(⇐) By lemma 6.12, there is a controller Ŵ such that σ(A e) ⊂ Cg and an Ae-
invariant subspace Ve such that i(Ve) = S and p(Ve) = V. We showed in theorem
6.6 that the latter implies that im Ee ⊂ Ve ⊂ ker He. According to theorem 4.6 we
must therefore have that the closed loop system (6.12) is disturbance decoupled.

The previous result immediately yields the following corollary which provides
conditions that can be checked computationally:

Corollary 6.14 There exists a controller Ŵ such that TŴ = 0 and σ(Ae) ⊂ Cg if and

only if

S∗g (im E) ⊂ V∗g (ker H ),

(C, A) is detectable, and (A, B) is stabilizable.
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Proof : The proof of this is left as an exercise to the reader.

If (C, A) is detectable, (A, B) is stabilizable, and the subspace inclusion of corol-
lary 6.14 holds, then a suitable controller can be calculated as follows. First, take a
mapping F : X → U such that A FV∗g ⊂ V∗g and σ(AF ) ⊂ Cg (see theorem 4.32).
Find a mapping G : Y → X such that AGS∗g ⊂ S∗g and σ(AG) ⊂ Cg (dual of
theorem 4.32). Next, let N : Y → U be such that (A + B NC)S ∗g ⊂ V∗g . Put
K : = A + B F + GC − B NC , L : = B N − G and M : = F − NC . Then the
controller Ŵ = (K , L, M, N) with state space W = X will achieve disturbance
decoupling and internal stability.

6.5 Pairs of (C, A, B)-pairs

In the previous sections we have seen how (C, A, B)-pairs can be used to construct
controllers. We showed that a (C, A, B)-pair between im E and ker H immediately
gives rise to a controller that achieves disturbance decoupling. In the present section
we will rather work with pairs of (C, A, B)-pairs. These will be applied to extend
the results of section 4.8 on the problem of external stabilization from the static state
feedback case to the case of dynamic measurement feedback.

First consider the situation that we have two (A, B)-invariant subspaces V1 and
V2 such that V1 ⊂ V2. We may then ask ourselves the question: does there exists
a single linear mapping F : X → U such that both V1 and V2 are invariant under
A + B F? The answer is yes:

Lemma 6.15 Let V1 ⊂ V2 be (A, B)-invariant subspaces. Then there exists a linear

mapping F : X→ U such that (A + B F)Vi ⊂ Vi (i = 1, 2).

Proof : Let F1 ∈ F(V1) and F2 ∈ F(V2). Choose a basis for X as follows. First
choose a basis q1, . . . , qk for V1. Extend this to a basis q1, . . . , ql for V2 and subse-
quently to a basis q1, . . . , qn for X. Let F be a linear mapping X → U such that
Fqi = F1qi (i = 1, . . . , k) and Fqi = F2qi (i = k + 1, . . . , l). It is easily verified
that F ∈ F(V1) ∩ F(V2).

Of course, this result can immediately be dualized to obtain the corresponding
result for conditioned invariant subspaces:

Lemma 6.16 Let S1 ⊂ S2 be (C, A)-invariant subspaces. There exists a linear map-

ping G : Y → X such that (A + GC)Si ⊂ Si (i = 1, 2).

Proof : The proof of this lemma is left as an exercise to the reader (use theorem 5.6).
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In section 6.1 it was shown that if (S,V) is a (C, A, B)-pair then there exists an
output-feedback mapping N : Y → U such that (A + B NC)S ⊂ V. The following
lemma is a generalization of this result to the case that we have two (C, A, B)-pairs
with, in a suitable sense, the first one contained in the other.

V1

X

S2

0

S1

V2

Lemma 6.17 Let (S1,V1) and (S2,V2) be (C, A, B)-pairs such that S1 ⊂ S2 and

V1 ⊂ V2. There exists a linear mapping N : Y → U such that (A + B NC)Si ⊂

Vi (i = 1, 2).

Proof : Let q1, . . . , ql be a basis for S1 such that q1, . . . , qk is a basis for S1 ∩ ker C

(where k � l). Since S1 ∩ ker C ⊂ S2 ∩ ker C , this basis q1, . . . , qk can be extended
to a basis for S2 ∩ ker C by adding vectors, say, ql+1, . . . , qr . (r � l). We claim that
the vectors q1, . . . , qr are linearly independent. Indeed, assume α1q1+ · · ·+ αr qr =

0. Then x̃ : = αk+1qk+1 + · · · + αlql can be written as a linear combination of
q1, . . . , qk, ql+1, . . . , qr . Since these vectors lie in ker C we find that x̃ ∈ S1 ∩ ker C .
This implies that x̃ = 0 and hence that αk+1 = · · · = αl = 0. We thus find that
α1q1 + · · · + αkqk + αl+1ql+1 + · · · + αr qr = 0. However, q1, . . . , qk, ql+1, . . . , qr

forms a basis for S2 ∩ ker C and hence α1 = · · · = αk = αl+1 = · · · = αr = 0.
Extend q1, . . . , qr to a basis q1, . . . , qs for S2 (s � r). We then claim that the vectors
Cqk+1, . . . , Cql , Cqr+1, . . . , Cqs are linearly independent: suppose that

βk+1Cqk+1 + · · · + βlCql + βr+1Cqr+1 + · · · + βsCqs = 0.

Then the vector βk+1qk+1 + · · · + βlql + βr+1qr+1 + · · · + βsqs lies in ker C . Since
it also lies in S2, it can be written as a linear combination of q1, . . . , qk , ql+1, . . . , qr .
This then yields a linear combination of q1, . . . , qs that is equal to zero. It follows that
βk+1 = · · · = βl = βr+1 = · · · = βs = 0. Since S1 ⊂ V1 and S2 ⊂ V2 and since
V1 and V2 are controlled invariant, there exist vk+1, . . . , vl ∈ V1, vr+1, . . . , vs ∈ V2
and uk+1, . . . , ul , ur+1, . . . , us ∈ U such that

Aqi = vi + Bui (i = k + 1, . . . , l and i = r + 1, . . . , s).
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Since Cqk+1, . . . , Cql , Cqr+1, . . . , Cqs are linearly independent, there exists a linear
mapping N : Y → U such that NCqi = −ui (i = k+1, . . . , l and i = r+1, . . . , s).
We then have

(A + B NC)qi = Aqi ∈ S1 ⊂ V1 (i = 1, . . . , k),

(A + B NC)qi = vi ∈ V1 (i = k + 1, . . . , l),

which implies (A + B NC)S1 ⊂ V1. In the same way we find that

(A + B NC)qi = Aqi ∈ S2 ⊂ V2 (i = 1, . . . , r),

(A + B NC)qi = vi ∈ V2(i = r + 1, . . . , s),

which implies that (A + B NC)S2 ⊂ V2.

By combining the previous three lemmas with theorem 6.4 and corollary 6.10, we
arrive at the following theorem:

Theorem 6.18 Let (S1,V1) and (S2,V2) be (C, A, B)-pairs such that S1 ⊂ S2 and

V1 ⊂ V2. Let F ∈ F(V1) ∩ F(V2), and let G ∈ G(S1) ∩ G(S2). Then there exists a

controller Ŵ and Ae-invariant subspaces Ve,1 ⊂ Ve,2 of the extended state space Xe

such that

i(Ve,1) = S1, p(Ve,1) = V1, (6.19)

i(Ve,2) = S2, p(Ve,2) = V2, (6.20)

σ(Ae) = σ(AF ) ∪ σ(AG), (6.21)

σ(Ae | Ve,2/Ve,1) = σ(AF | V2/V1) ∪ σ(AG | S2/S1). (6.22)

Specifically, for any linear mapping N : Y → U such that (A+ B NC)S i ⊂ Vi (i =

1, 2) the controller Ŵ given by

ẇ(t) = (A + B F + GC − B NC)w(t) + (B N − G)y(t),

u(t) = (F − NC)w(t) + Ny(t)
(6.23)

with state space W = X, and the subspaces

Ve,i : =
{

(

x1
0

)

+
(

x2
x2

)

∈ Xe

∣

∣

∣
x1 ∈ Si , x2 ∈ Vi

}

(i = 1, 2) (6.24)

satisfy these desired properties.

Proof : The claim that the controller Ŵ given by (6.23) yields an extended system
mapping Ae under which the subspaces (6.24) are invariant follows from theorem 6.4.
Also (6.19) and (6.20) follow from theorem 6.4. Property (6.21) is a consequence of
corollary 6.10. The fact that Ve,1 ⊂ Ve,2 follows from the definition. It remains
to prove (6.22). Let 
 : Ve,2 → Ve,2/Ve,1 be the canonical projection. Denote
the mapping Ae | Ve,2/Ve,1 by Ae0. Let λ ∈ σ(Ae0) and let 
xe be an associated
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eigenvector (xe ∈ Ve,2). Since ker 
 = Ve,1 we have xe 	∈ Ve,1. By the fact that
Ae0
 = 
Ae we have 
Aexe = λ
xe. Hence there exists a vector x̃e ∈ Ve,1 such
that Aexe = λxe + x̃e. From the definition of Ve,1 and Ve,2 we find that there are
x̃1 ∈ S1, x̃2 ∈ V1, x1 ∈ S2 and x2 ∈ V2 such that

x̃e =

(

x̃1 + x̃2
x̃2

)

and xe =

(

x1 + x2
x2

)

.

Using the representation (6.10) for A e this yields

(A + B NC)(x1 + x2)+ (B F − B NC)x2 = λ(x1 + x2)+ x̃1 + x̃2, (6.25)

(B NC − GC)(x1 + x2)+ (A + B F + GC − B NC)x2 = λx2 + x̃2. (6.26)

This, in turn, yields

(A + B NC)x1 + (A + B F)x2 = λ(x1 + x2)+ x̃1 + x̃2, (6.27)

(B NC − GC)x1 + (A + B F)x2 = λx2 + x̃2. (6.28)

By subtracting (6.28) from (6.27) we obtain

(A + GC)x1 = λx1 + x̃1. (6.29)

Let 
1 : V2 → V2/V1 and 
2 : S2 → S2/S1 be the canonical projections. Denote
AF | V2/V1 by A1 and AG | S2/S1 by A2. We now distinguish two cases, the case
that x1 	∈ S1 and the case that x1 ∈ S1. First assume that x1 	∈ S1. Then 
2x1 	= 0.
Since x̃1 ∈ S1 it follows from (6.29) that

A2
2x1 = 
2 AG x1 = λ
2x1.

Hence, 
2x1 is an eigenvector of A2 with eigenvalue λ so λ ∈ σ(AG | S2/S1). Next,
assume x1 ∈ S1. Since x̃1, x̃2 ∈ V1 and (A + B NC)x1 ∈ V1 it then follows from
(6.27) that

A1
1x2 = 
1 AF x2 = λ
1x2.

We claim that 
1x2 	= 0. Indeed, x2 ∈ V1 would, together with x1 ∈ S1, imply
that xe ∈ V1,e . This is a contradiction. Hence, 
1x2 is an eigenvector of A1 with
eigenvalue λ so λ ∈ σ(AF | V2/V1). We have now proven that in (6.22) we have
inclusion from the left to the right.

To prove the converse inclusion, let λ ∈ σ(A 1). There is x2 ∈ V2, x2 	∈ V1 such
that

A1
1x2 = λ
1x2.

Consequently, there is a vector x̃2 ∈ V1 such that

AF x2 = λx2 + x̃2.
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Define

xe : =

(

x2
x2

)

and x̃e : =

(

x̃2
x̃2

)

.

Then x2 ∈ Ve,2 and x̃e ∈ Ve,1. It is straightforward to verify that

Aexe = λxe + x̃e

and hence Ae0
xe = 
Aexe = λ
xe. Since x2 	∈ V1 we must have 
xe 	= 0 and
hence 
xe is an eigenvector of Ae0 with eigenvalue λ. We conclude that λ ∈ σ(Ae |

Ve,2/Ve,1). To prove the fact that also the spectrum of A G | S2/S1 is contained in
the spectrum of Ae | Ve,2/Ve,1, assume that λ ∈ σ(A2). There is x1 ∈ S2, x1 	∈ S1
such that

A2
2x1 = λ
2x1.

Consequently, there exists a vector x̃1 ∈ S1 such that

AG x1 = λx1 + x̃1.

The vector
(

x1
0

)

lies in Ve,2 and since this subspace is Ae-invariant we have

Ae

(

x1
0

)

=

(

(A + B NC)x1
(B NC − GC)x1

)

∈ Ve,2.

This immediately implies that (B NC − GC)x1 ∈ V2. Now, assume that λ 	∈ σ(AF |

V2/V1). Then (A1 − λI )−1 exists. Let x2 ∈ V2 be such that

(A1 − λI )−1
1(B NC − GC)x1 = −
1x2.

The latter implies that


1(B NC − GC)x1 = −
1(AF − λI )x2

and therefore

x̃2 : = (B NC − GC)x1 + (AF − λI )x2 ∈ V1.

Define now xe ∈ V2,e and x̃e ∈ V1,e by

xe : =

(

x1 + x2
x2

)

, x̃e : =

(

x̃2
x̃2

)

.

Since x1 	∈ S1 we must have xe 	∈ V1,e . Hence 
xe 	= 0. It is now easily verified that

Aexe =

(

(A + B NC)x1 + AF x1
(B NC − GC)x1 + AF x2

)

=

(

AG x1 + λx2 + x̃2
λx2 + x̃2

)

= λxe + x̃e.

From this we obtain that

Ae0
xe = 
Aexe = λ
xe,

and we conclude that λ ∈ σ(Ae0). This completes the proof of the theorem.

The relation between the spectra of A + GC and A + B F , and the spectrum of
Ae is depicted in the lattice diagram (6.2).
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0

A + GC

G ∈ G(S1) ∩ G(S2) F ∈ F(V1) ∩ F(V2)

Ve,1
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V1

V2S2

S1
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XeXX

Ae

0

b

a
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0
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b ∪ b′

a ∪ a′

Figure 6.2

6.6 External stabilization by measurement feedback

Again consider the control system (6.11). In section 4.8 we discussed the problem
of external stabilization by (static) state feedback. In the present section we consider
the dynamic measurement feedback version of this problem. More concretely, we
consider the problem of finding a controller for the system (6.11) such that the closed
loop system (6.12) is externally stable:

Definition 6.19 Consider the system (6.11). Let Cg be a stability domain. The pro-
blem of external stabilization by measurement feedback, ESPM, is to find a controller

Ŵ such that the closed loop transfer function G Ŵ(s) is stable.

Let us take a look at this. If Ŵ is a controller that makes the transfer function
GŴ(s) stable, then for all x0 ∈ im E the Bohl function

HeeAe t

(

x0
0

)

is stable. Thus, the state trajectory xe(t) = (x(t)T, w(t)T)T of the extended system
(6.3), with initial state xe(0) = (x T

0, 0)T, has the property that H x is stable. Now, x

satisfies the equation

ẋ(t) = Ax(t)+ B(NCx(t) + Mw(t)),

with, simultaneously,

ẇ(t) = LCx(t)+ Kw(t).

Define v(t) : = NCx(t) + Mw(t). Then v is a Bohl function and x satisfies ẋ(t) =

Ax(t)+ Bv(t), x(0) = x0. We conclude that, in fact, x(t) = xv(t, x0), i.e., x is the
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state trajectory of the system (A, B) resulting from the initial state x(0) = x 0 and the
control input v. Since H x is stable, this immediately implies that x 0 is an element
of the subspace Wg(ker H ) defined by (4.28). Since this holds for any x 0 ∈ im E ,
after applying theorem 4.37 we obtain as a necessary condition for the existence of
an externally stabilizing controller Ŵ that

im E ⊂ V∗(ker H )+Xstab. (6.30)

We can say even more. For, if Ŵ is such that G Ŵ(s) is stable then also the transposed
transfer matrix

GT
Ŵ(s) = ET

e(I s − AT
e)
−1 H T

e

is stable. Since

AT
e =

(

AT + CT N T BT CT LT

MT BT K T

)

, H T
e =

(

H T

0

)

,

ET
e =

(

ET 0
)

,

this implies that the controller Ŵ̃ = (K T, MT, LT, N T) achieves external stability for
the dual control system

ẋ(t) = ATx(t)+ CTu(t)+ H Td(t),

y(t) = BTx(t),

z(t) = ETx(t).

(6.31)

This immediately implies that

im H T ⊂ V∗(ET, AT, CT)+Xstab(AT, CT).

By taking orthogonal complements this yields

V∗(ET, AT, CT)⊥ ∩Xstab(AT, CT)⊥ ⊂ ker H,

which, by (5.3) and theorem 5.15, leads to the following necessary condition for the
existence of an externally stabilizing controller Ŵ for the system (6.11):

S∗(im E) ∩Xdet ⊂ ker H. (6.32)

Here, S∗(im E) and Xdet are the smallest conditioned invariant subspace contain-
ing im E , and the smallest detectability subspace, defined with respect to the system
(C, A). We have now shown that the conditions (6.30) and (6.32) are both necessary
for the existence of a controller that achieves external stability.

In the remainder of this section we show that the pair of conditions (6.30) and
(6.32) is also sufficient for the existence of such a controller. The idea is to use the
conditions (6.30) and (6.32) to obtain a pair of (C, A, B)-pairs with certain desired
properties and then to apply theorem 6.18 of the previous section to these (C, A, B)-
pairs to obtain a suitable controller. Denote Wg(ker H ) by Wg , and define

Tg : = S∗(im E) ∩Xdet. (6.33)



144 (C, A, B)-pairs and dynamic feedback

In order to be able to describe the duality between the subspaces W g and Tg , let
us be a bit more precise on the maps in terms of which these subspaces are defined.
Thus, denote Wg = Wg(H, A, B) and Tg = Tg(E, C, A). As already noted above,
we have

Tg(E, C, A) = Wg(ET, AT, CT)⊥. (6.34)

This duality can be used to obtain the following result:

Lemma 6.20 The subspace Tg is invariant under A + GC for any linear mapping

G : Y → X. There exists G ∈ G(S∗(im E)) such that σ(AG | S
∗(im E)/Tg) ⊂ Cg .

Proof : The subspace Tg is (C, A)-invariant since it is the intersection of (C, A)-
invariant subspaces. Since Xdet ⊂ ker C we have Tg ⊂ ker C . Hence, for any
mapping G : Y → X we have

(A + GC)Tg = ATg = A(Tg ∩ ker C) ⊂ Tg .

The second assertion can be obtained by dualizing theorem 4.38 and using (5.3) and
(6.34). The details are left as an exercise to the reader. (Use the fact that if V and
W are A-invariant subspaces and V ⊂ W , then V⊥ and W⊥ are AT-invariant and
σ(A | W/V) = σ(AT | V⊥/W⊥)).

We are now ready to prove the following crucial instrument:

Lemma 6.21 Consider the system (6.11). Assume that im E ⊂ Wg and Tg ⊂ ker H .

Then there exists a controller Ŵ and Ae-invariant subspaces Ve,1 ⊂ Ve,2 of the ex-

tended state space Xe such that

im Ee ⊂ Ve,2 and Ve,1 ⊂ ker He (6.35)

and

σ(Ae | Ve,2/Ve,1) ⊂ Cg . (6.36)

Specifically, if F ∈ F(V∗(ker H )) and G ∈ G(S∗(im E)) are such that

σ(AF | Wg/V
∗(ker H )) ⊂ Cg (6.37)

and

σ(AG | S
∗(im E)/Tg) ⊂ Cg (6.38)

then the controller Ŵ given by

ẇ(t) = (A + B F + GC)w(t)− Gy(t),

u(t) = Fw(t)
(6.39)
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with state space W = X, and the subspaces

Ve,1 : =
{

(

x1
0

)

+
(

x2
x2

)

∈ Xe

∣

∣

∣
x1 ∈ Tg, x2 ∈ V∗(ker H )

}

(6.40)

and

Ve,2 : =
{

(

x1
0

)

+
(

x2
x2

)

∈ Xe

∣

∣

∣
x1 ∈ S∗(im E), x2 ∈ Wg

}

(6.41)

satisfy these properties.

Proof : Since Wg is A-invariant, it is also (C, A)-invariant. Hence, the condition
im E ⊂ Wg is equivalent to S∗(im E) ⊂ Wg . Dually, the subspace Tg is A-invariant
so also (A, B)-invariant. Hence, the condition Tg ⊂ ker H is equivalent to Tg ⊂

V∗(ker H ). Denote S∗ = S∗(im E) and V∗ = V∗(ker H ). Consider now the pair of
(C, A, B)-pairs

(Tg,V
∗), (S∗,Wg).

These pairs are related via Tg ⊂ S∗ and V∗ ⊂ Wg . This brings us in the situation of
theorem 6.18. We claim that (A + B NC)Tg ⊂ V∗ and (A + B NC)S∗ ⊂ Wg if we
take N = 0. Indeed, Tg and Wg are both A-invariant and hence

ATg ⊂ Tg ⊂ V∗

and

AS∗ ⊂ AWg ⊂ Wg.

Let F and G be such that (6.37) and (6.38) hold. Define V e,1 and Ve,2 by (6.40) and
(6.41). Then it follows from theorem 6.18 that V e,1 ⊂ Ve,2 and that (6.36) holds.
Moreover, i(Ve,2) = S∗ and p(Ve,1) = V∗. These two conditions imply (6.35).

Using the previous lemma we can now conclude that the subspace inclusions
(6.30) and (6.32) are necessary and sufficient conditions for the existence of an exter-
nally stabilizing controller.

Corollary 6.22 Consider the system (6.11). There exists a controller Ŵ such that

GŴ(s) is stable if and only if

im E ⊂ V∗(ker H )+Xstab

and

S∗(im E) ∩Xdet ⊂ ker H.

Moreover, if these conditions hold then for any F ∈ F(V ∗(ker H )) such that

σ(AF | (V
∗(ker H )+Xstab)/V

∗(ker H )) ⊂ Cg
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and any G ∈ G(S∗(im E)) such that

σ(AG | S
∗(im E)/(S∗(im E) ∩Xdet)) ⊂ Cg,

the controller Ŵ defined by

ẇ(t) = (A + B F + GC)w(t)− Gy(t),

u(t) = Fw(t)
(6.42)

with state space W = X, achieves external stability.

Proof : (⇒) This was already proven.

(⇐) This is an application of lemma 4.35: by the previous lemma, the controller
defined by (6.42) yields Ae-invariant subspaces Ve,1 ⊂ Ve,2 of the extended state
space Xe such that (6.35) and (6.36) hold. It is then an immediate consequence of
lemma 4.35 that the transfer function G Ŵ(s) is stable.

6.7 Exercises

6.1 Let S ⊂ V be subspaces of the state space X. Define subspaces of the Carte-
sian product Xe : =X×X by

Ve : =
{

(

x1
0

)

+
(

x2
x2

)

∣

∣

∣
x1 ∈ S, x2 ∈ V

}

Ṽe : =
{

(

x1
0

)

+
(

x2
−x2

)

∣

∣

∣
x1 ∈ V⊥, x2 ∈ S⊥

}

.

a. Show that dim Ve = dim S + dim V.

b. V⊥e = Ṽe.

c. If Ae : Xe → Xe is a linear mapping such that Ve is invariant under Ae,
then Ṽe is invariant under AT

e.

d. i(Ve)
⊥ = p(V⊥e ) and p(Ve)

⊥ = i(V⊥e ).

6.2 According to (6.6), there exists a controller Ŵ such that TŴ = 0 if and only if
there exists a (C, A, B)-pair (S,V) with im E ⊂ S ⊂ V ⊂ ker H . In that
case, the controller given by (6.7) does the job. As noted in section 6.1, the
dynamic order of this controller is equal to n, the dynamic order of the system
to-be-controlled. The purpose of this exercise is to show that in general one
can construct a controller with dynamic order less than n. Throughout this
exercise, we assume that there exists a (C, A, B)-pair (S,V) with im E ⊂

S ⊂ V ⊂ ker H . We will construct a controller Ŵ with dynamic order equal
to dim V − dim S.

First, we define W , the state space of Ŵ, to be any real linear space of dimension
dim V − dim S.
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a. Show that there exists a surjective linear mapping R : V → W such that
ker R = S.

b. Let R+ : W → V be a right-inverse of R. Show that im(I − R+R) ⊂ S.

c. Show that there exists a linear mapping N : Y → U such that

(A + B NC)S ⊂ V.

d. Show that there exists a linear mapping F : X→ U such that

(A + B NC + B F)V ⊂ V

and S ⊂ ker F .

e. Show that there exists a linear mapping G : Y → X such that

(A + B NC + GC)S ⊂ S

and im G ⊂ V.

f. Define K :W →W , L : Y → W and M :W → U by

K : = R(A + B NC + B F + GC)R+,

L : = −RG,

M : = F R+.

Check that K , L and M are well-defined and prove that any choice of
right-inverse R+ yields the same K and M .

g. Define a subspace Ve of the extended state space X×W by

Ve : =
{

(

x

Rx

)

∣

∣

∣
x ∈ V

}

.

Let Ae be the extended system mapping of the closed loop system cor-
responding to the controller Ŵ = (K , L, M, N). Show that Ve is Ae-
invariant.

h. Show that TŴ = 0, i.e., the controller Ŵ achieves disturbance decoupling.

6.3 (Disturbance decoupling by measurement feedback with control feedthrough
in the measurement output.) Consider the system � described by

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

y(t) = Cx(t)+ Du(t),

z(t) = H x(t).

where u(t) ∈ R
m is a control input, d(t) ∈ R

r is a disturbance input, y(t) ∈ R
p

a measurement output, and z(t) ∈ Rq an output to be controlled. Recall from
section 3.13 that the controller Ŵ given by the equations

ẇ(t) = Kw(t)+ Ly(t),

u(t) = Mw(t) + Ny(t)

(simply denoted by Ŵ = (K , L, M, N)) makes the closed loop system � × Ŵ

well posed if I − DN is invertible.
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a. Assume that Ŵ = (K , L, M, N) makes the closed loop system well posed.
Determine the equations for � × Ŵ.

We say that � × Ŵ is disturbance decoupled if d has no influence on z. In this
problem we want to find necessary and sufficient conditions for the existence
of a controller Ŵ = (K , L, M, N) such that: (i) � × Ŵ is well posed, and (ii)
� × Ŵ is disturbance decoupled.

For this, it is convenient to consider the system �̃ given by

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

y(t) = Cx(t),

z(t) = H x(t).

b. Prove that if there exists a controller Ŵ = (K , L, M, N) such that � × Ŵ

is well posed and disturbance decoupled, then there exists a controller
Ŵ̃ = (K̃ , L̃, M̃ , Ñ ) such that �̃× Ŵ̃ is disturbance decoupled and I +D Ñ

is invertible.

c. Let Ŵ̃ = (K̃ , L̃, M̃, Ñ ) be such that �̃×Ŵ̃ is disturbance decoupled. Show
that

(A + B ÑC)S∗(im E) ⊂ V∗(ker H )

d. Show that if there exists a controller Ŵ̃ = (K̃ , L̃, M̃, Ñ ) such that �̃ × Ŵ̃

is disturbance decoupled and I +D Ñ is invertible, then there exists a con-
troller Ŵ = (K , L, M, N) such that � × Ŵ is well posed and disturbance
decoupled.

e. Now prove the following: There exists a controller Ŵ = (K , L, M, N)

such that �×Ŵ is well posed and disturbance decoupled if and only if the
following two conditions hold:

1. S∗(im E) ⊂ V∗(ker H ),
2. there exists a linear map Ñ such that I + DÑ is invertible and

(A + B ÑC)S∗(im E) ⊂ V∗(ker H ).

6.4 (Output regulation by measurement feedback.) Consider the system ẋ(t) =

Ax(t)+ Bu(t) + Ed(t), y(t) = Cx(t), z(t) = H x(t). For a given controller
Ŵ : ẇ(t) = Kw(t) + Ly(t), u(t) = Mw(t) + Ny(t), let zŴ(t, x0, w0, d)

denote the output of the closed loop system corresponding to the initial state
(x(0),w(0)) = (x0, w0) and disturbance d. We will say that Ŵ achieves output

regulation if zŴ(t, x0, w0, d)→ 0 (t →∞) for all (x0, w0) ∈ X×W and for
every disturbance function d.

a. Show that Ŵ achieves output regulation if and only if H eeAe t Ee = 0 for
all t , and HeeAe t → 0 (t →∞).

b. Let Ne : = 〈ker He | Ae〉 be the unobservable subspace of (He, Ae). Show
that HeeAe t → 0 (t →∞) if and only if Ne is outer-stable (with respect
to Cg = C− = {s ∈ C | ℜe s < 0}).
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c. Show that HeeAet Ee = 0 for all t and HeeAe t → 0 (t →∞) if and only
if there exists an outer-stable Ae-invariant subspace Ve such that im Ee ⊂

Ve ⊂ ker He (Hint: for the "if" part, use theorem 4.35)

d. Prove the following: there exists a controller Ŵ that achieves output reg-
ulation if and only if there exists a (C, A, B)-pair (S,V) with S outer-
detectable, V outer-stabilizable and im E ⊂ S ⊂ V ⊂ ker H . (Hint: for
the "if"-part apply (6.18) to the pair of (C, A, B)-pairs (S,V); (X,X)).

e. Prove the following: there exists a controller Ŵ that achieves output reg-
ulation if and only if V ∗(ker H ) is outer-stabilizable and S∗g (im E) ⊂

V∗(ker H ).

f. Describe how an actual output regulating controller Ŵ can be computed.

6.5 (Disturbance decoupling by measurement feedback with pole placement.) In
this problem we investigate the disturbance decoupling problem with pole pla-

cement, DDPMPP. The question here is: given the control system (6.11), when
does there exist, for any stability domain Cg , a controller Ŵ such that TŴ = 0
and σ(Ae) ⊂ Cg? In this problem we denote S∗ = S∗(im E) and S∗g =

S∗g (im E). The smallest observability subspace containing im E (see problems
5.8, 5.9, 5.10 and 5.12)) is denoted by N ∗. Also, we denote V∗ = V∗(ker H ),
R∗ = R∗(ker H ), and V∗g = V∗g (ker H ).

a. Observe that if, for any stability domain Cg , there exists Ŵ such that TŴ =

0 and σ(Ae) ⊂ Cg , then we have: (A, B) is Cg-stabilizable, (C, A) is
Cg-detectable, and S∗g ⊂ V∗g for any Cg .

b. For F ∈ F(V∗), let τ1 denote the fixed spectrum σ(A + B F | V ∗/R∗).
Show that if Cg is a stability domain with the property that τ1 ∩ Cg = ∅,
then the corresponding stabilizability subspace V ∗

g is equal to R∗.

c. For G ∈ G(S∗), let τ2 denote the fixed spectrum σ(A + GC | N ∗/S∗)

(see exercise 5.12). Show that if τ2 ∩ Cg = ∅, then the corresponding
detectability subspace S∗g is equal to N ∗.

d. Show that if for any Cg there exist Ŵ such that TŴ = 0 and σ(Ae) ⊂ Cg ,
then (A, B) is controllable, (C, A) is observable, and

N ∗ ⊂ R∗.

Thus we have obtained necessary conditions for DDPMPP. In the remainder of
this problem we prove that these conditions are also sufficient. The idea is to
apply corollary 6.10 to the (C, A, B)-pair (N ∗,R∗).

e. Show that if (A, B) is controllable, then for any real monic polynomial p

of degree n such that p = p1 p2, with p1 and p2 real monic polynomials,
and deg p1 = dim R∗, there exist F ∈ F(R∗) such that χA+B F = p.

f. Show that if (C, A) is observable, then for any real monic polynomial q

of degree n such that q = q1q2, with q1 and q2 real monic polynomials,
and deg q1 = dim N ∗, there exists G ∈ G(N ∗) such that χA+GC = q.
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g. Show that if (A, B) is controllable, (C, A) is observable, and N ∗ ⊂ R∗,
then for any real monic polynomial r such that r = p 1 p2q1q2, with p1,
p2, q1 and q2 real monic polynomials, deg p1 = dim R∗, deg p2 = n −

dim R∗, and deg q1 = dim N ∗, deg q2 = n − dim N ∗, there exists a
controller Ŵ and an Ae-invariant subspace Ve of the extended state space
Xe such that i(Ve) = N ∗, p(Ve) = R∗ and χAe = r .

h. Prove that if (A, B) is controllable, (C, A) is observable, and N ∗ ⊂ R∗,
then for any stability domain Cg there exists a controller Ŵ such that TŴ =

0 and σ(Ae) ⊂ Cg .

i. Indicate how such controller Ŵ can be computed.

6.6 Consider the system ẋ(t) = Ax(t) + Bu(t) + Ed(t), y(t) = Cx(t), z(t) =

H x(t). A static output feedback controller is a controller of the form u = K y,
with K : Y → X. In this problem we consider the problem of disturbance
decoupling by static output feedback. The problem is to find a static output
feedback controller u = K x such that the closed loop system is disturbance
decoupled, equivalently, such that the closed loop transfer matrix G K (s) : =

H (I s− A− B K C)−1 E is equal to zero. Some thought reveals that the crucial
concept here is that of (A, B, C)-invariance: A subspace V of the state space
X is called (A, B, C)-invariant if there exists a map K : Y → X such that

(A + B K C)V ⊂ V.

a. Show that V is (A, B, C)-invariant if and only if it is (A, B)-invariant and
(C, A)-invariant.

b. Show that there exists a static output feedback controller u = K y such
that G K (s) = 0 if and only if there exists a subspace V such that im E ⊂

V ⊂ ker H , V is (A, B)-invariant, and V is (C, A)-invariant.

6.8 Notes and references

(C, A, B)-pairs were introduced by Schumacher in [166]. Also, this article is the
earliest reference in which a complete solution of the disturbance decoupling pro-
blem by measurement feedback can be found. Around the same time, the disturbance
decoupling problem by measurement feedback with internal stability was resolved in-
dependently by Willems and Commault [218], and by Imai and Akashi [85]. In [135],
Ohm, Bhattacharyya and Howze obtained alternative necessary and sufficient condi-
tions, in terms of solvability of rational matrix equations. A discussion of the disturb-
ance decoupling problem by measurement feedback for discrete time systems can be
found in Akashi and Imai [2]. More recently, Stoorvogel and van der Woude [191]
treated the disturbance decoupling problem with measurement feedback for the more
general case that there are nonzero direct feedthrough matrices from the control and
disturbance inputs to the measured and to be controlled outputs (see also exercise
6.3). Extensions to characterize the freedom in placing the closed loop poles under
the constraint of achieving disturbance decoupling has been studied in Saberi, Sannuti
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and Stoorvogel [158]. Related results also follow as a corollary of the work of Basile
and Marro [13, 14]. In Schumacher [169], (C, A, B) -pairs are applied in tracking
and regulation problems.

The problem of external stabilization by measurement feedback, ESPM, treated
in section 6.6, is the measurement feedback version of the external stabilization pro-
blem, ESP, originally introduced by Hautus in [72]. The combination of disturb-
ance decoupling and external stabilization with measurement feedback into one sin-
gle synthesis problem, having ESPM as a special case, was treated by van der Woude
in [203].

As extensions of the ideas treated in this chapter, we mention the work of van
der Woude [204] on disturbance decoupling for structured systems, using graph the-
oretic methods. The natural extension of disturbance decoupling by measurement
feedback to almost disturbance decoupling by measurement feedback was studied
by Willems in [216], using almost controlled invariant and almost conditioned in-
variant subspaces. Almost disturbance decoupling by measurement feedback and
internal stability was studied by Weiland and Willems in [211]. A complete solu-
tion of this problem can be found in the work of Ozcetin, Saberi, and Shamash [141]
and in Saberi, Lin and Stoorvogel [157]. Finally, we mention more recent work by
Otsuka [140] on generalized (C, A, B)-pairs applied to the problem of disturbance
decoupling for uncertain systems.
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Chapter 7

System zeros and the weakly

unobservable subspace

In this chapter we first give a brief review of some elementary material on polynomial
matrices and the Smith form. We then continue our study of the system � given by
the equations

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t),

and introduce an important polynomial matrix associated with this system, the system
matrix of �. Using the system matrix, we introduce the concepts of transmission
polynomials, and zeros of the system �. Next, we discuss the weakly unobservable
subspace, and the controllable weakly unobservable subspace associated with �. The
weakly unobservable subspace is used to give a geometric characterization of the
property of strong observability. We conclude this chapter with a characterization of
the transmission polynomials and the zeros of � in terms of the weakly unobservable
and controllable weakly unobservable subspace.

7.1 Polynomial matrices and Smith form

Polynomial matrices play an important role in system and control theory. Here we
discuss some of their relevant properties. A polynomial matrix is a matrix with poly-
nomial entries, hence of the form

P(s) =







p11(s) · · · p1m(s)
...

...

pn1(s) · · · pnm(s)






,
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where the functions pi j (s) are polynomials with real coefficients. Alternatively, we
may write such a matrix as a polynomial with matrix coefficients:

P(s) = P0sk + P1sk−1 + · · · + Pk .

Either interpretation can be useful. We say that a square polynomial matrix P(s) is
nonsingular if the polynomial det P(s) is not the zero polynomial, equivalently, if
P(λ) is nonsingular for at least one λ ∈ C. A nonsingular polynomial matrix has
an inverse which is a rational matrix. The normal rank of a (not necessarily square)
polynomial matrix P(s) is defined as normrank P : = max{rank P(λ) | λ ∈ C}.
Except for a finite number of points λ ∈ C, one has rank P(λ) = normrank P. For
example, if P(s) is a nonsingular n×n-polynomial matrix, then we have normrank P

= n, and at points λ where det P(λ) = 0, we have rank P(λ) < n. It is obvious that
the normrank does not change when we pre- or postmultiply P(s) with a nonsingular
polynomial matrix.

Definition 7.1 A square polynomial matrix P(s) is called unimodular if it has a poly-

nomial inverse. A not necessarily square polynomial matrix P(s) is called left uni-
modular if it has a left polynomial inverse. Right unimodularity is defined similarly.

Examples of unimodular polynomial matrices are for instance elementary-ope-
ration matrices. These are polynomial matrices that correspond to elementary row
and column operations. The following provides a complete list of the elementary-
operation matrices:

• The constant matrices that are obtained by interchanging two columns in the
identity matrix. If the polynomial matrix Q(s) is multiplied from the right (left)
with the elementary-operation matrix obtained by interchanging in the identity
matrix the i th and the j th column, then the effect will be an interchange of the
corresponding two columns (rows) of Q(s).

• The polynomial matrices that are obtained by replacing in the identity matrix
one of the zero-entries by a polynomial. Multiplying a given polynomial matrix
Q(s) from the right (left) by the elementary-operation matrix obtained from
the identity matrix by replacing the (i, j) zero-entry by the polynomial α(s),
amounts to adding in Q(s) α(s) times the i th column to the j th column (α
times the j th row to the i th row).

• The constant matrices that are obtained by replacing in the identity matrix one
of the one-entries by a non-zero constant. If the polynomial matrix Q(s) is
multiplied from the right (left) by the elementary operation matrix obtained
by replacing the one in the (i, i) position by the constant α 	= 0, then the i th
column (row) of Q(s) is multiplied by α.

These matrices are easily seen to be unimodular. On the other hand, it can be shown
that these elementary operations can be used to bring an arbitrary polynomial ma-
trix to a particular standard form. In order to be able to write the result in a con-
venient way, we introduce the following notation: if α1, . . . , αr are given numbers,
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diagm×n(α1, α2, . . . , αr ) denotes the m× n matrix, the entries a i j of which are given
by aii : = αi if i � r and ai j : = 0 otherwise. Sometimes we omit the subscript m×n

if the dimensions of the matrix are obvious.

Theorem 7.2 For every m × n polynomial matrix P(s) there exists a sequence of

elementary (row and column) operations that brings P(s) to the form

P̄(s) = diagm×n(ψ1(s), ψ2(s), . . . , ψr (s)), (7.1)

where ψ1, ψ2, . . . are monic non-zero polynomials satisfying ψ1 | ψ2 | ψ3 · · ·

(i.e., each ψ divides the next one) and r = normrank P. Consequently, for every

polynomial matrix P(s) there exist unimodular matrices U(s) and V (s) such that

P(s) = U(s)P̄(s)V (s), where P̄(s) has the form (7.1).

We will say that two polynomial matrices P(s) and Q(s) are unimodularly equiv-

alent if there exist unimodular matrices U(s) and V (s) such that

P(s) = U(s)Q(s)V (s).

The polynomials

ψ1, . . . , ψr , 0, . . . , 0

where the zero polynomial appears min(n, m) − r times, are called the invariant

factors of the polynomial matrix P(s). The non-zero polynomials ψ 1, . . . , ψr in this
list are called the non-trivial invariant factors of P(s). The total number of invariant
factors is always equal to the number min(n, m). Invariant factors are counted with
multiplicity, i.e., the same polynomial can appear in the list of invariant factors more
than once. The invariant factors can be shown to be uniquely defined and independent
of the way in which P(s) is transformed to the form (7.1). Also, they do not change
when the matrix is pre- or postmultiplied with a unimodular matrix, or equivalently,
when an elementary row or column operation is applied to P(s). The matrix in (7.1)
is called the Smith form of P(s). The proof of theorem 7.2 will be omitted.

Corollary 7.3 Two m × n polynomial matrices P(s) and Q(s) are unimodularly

equivalent if and only if they have the same invariant factors (or, equivalently, the

same Smith form).

If P(s) is a nonsingular m × m polynomial matrix, it follows that

det P(s) = α

m
∏

i=1

ψi (s), (7.2)

for some constant α, hence the zeros of the invariant factors are the points λ at which
P(λ) is singular. More generally, the zeros of the invariant factors of a polynomial
matrix P(s) are the point λ for which rank P(λ) < normrank P. These values are
commonly referred to as the zeros of the polynomial matrix P(s).



156 System zeros and the weakly unobservable subspace

Corollary 7.4 Let P(s) be an m × m polynomial matrix. Then the following state-

ments are equivalent:

(i) P(s) is unimodular,

(ii) P(s) is the product of elementary-operation matrices,

(iii) the Smith form of P(s) is I ,

(iv) all invariant factors of P(s) are equal to 1,

(v) det P(s) is a nonzero constant,

(vi) P(λ) is invertible for every λ ∈ C.

Proof : (i)⇒ (vi) If P(s) has a polynomial inverse then P(λ) has an inverse for every
λ ∈ C.

(vi)⇒ (v) If P(λ) is invertible for every λ then det P(λ) has no zeros. A polyno-
mial without zeros is a nonzero constant.

(v)⇒ (iv) This follows from (7.2) and the fact that the invariant factors are monic.

(iv)⇒ (iii), (iii)⇒ (ii) and (ii)⇒ (i) are trivial.

For nonsquare polynomial matrices we have the following results:

Corollary 7.5 Let P(s) be a polynomial matrix. The following statements are equiv-

alent:

(i) P(s) is left unimodular,

(ii) there exists a polynomial matrix Q(s) such that
(

P(s) Q(s)
)

is a unimodular

matrix,

(iii) the Smith form of P(s) is of the form

(

I

0

)

,

(iv) the number of columns is not more than the number of rows and the invariant

factors are all equal to 1.

(v) P(λ) has full column rank for every λ ∈ C.

Proof : (i)⇒ (v) P(λ) has a left inverse for every λ ∈ C.

(v)⇒ (iv) A matrix with full column rank cannot have more columns than rows.
If any of the invariant factors would have a zero λ, the Smith form, and hence the
matrix itself, would not have full column rank at λ. Hence the invariant factors must
be constant.

(iv)⇒ (iii) is obvious.
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(iii)⇒ (ii) We have

P(s) = U(s)P̄(s)V (s) = U(s)

(

V (s)

0

)

where P̄(s) is the Smith form of P(s). We can extend P̄(s) (by the addition of
columns) to the unit matrix. We obtain:

Pe(s) : = U(s)

(

V (s) 0
0 I

)

as the desired extension of P(s).

(ii) ⇒ (i) If Q(s) is such that (P(s) Q(s)) is unimodular, this matrix has an
inverse U(s). Decomposing U according to the decomposition of (P Q) into

U =

(

U1
U2

)

,

we find that U1 P = I .

Next we discuss substitution of matrices into polynomial matrices. Suppose we
are given an m × n polynomial matrix

P(s) = P0 + P1s + · · · + Pksk .

If A is an n× n matrix, we may substitute A from the right into P(s). The result will
be:

Pr (A) : = P0 + P1 A + · · · + Pk Ak .

If A is an m ×m matrix, left substitution is possible:

Pℓ(A) : = P0 + AP1 + · · · + Ak Pk .

Even if both expressions are defined (i.e., m = n), they will not be the same, unless
A commutes with all the coefficient matrices Pi . So it is important to distinguish
between the two concepts. Also, familiar formulas for the substitution of a matrix
into a scalar polynomial (see (2.10)) are not valid in this more general setting. Again
this is due to the lack of commutativity of matrix multiplication. So, in general, even
if all expressions are defined, Pr (A)Qr (A) will not be equal to (P Q)r (A). However,
the following result is easily verified:

Theorem 7.6 If Q(s) and A commute, i.e., if A commutes with every coefficient ma-

trix of Q(s), then

Pr (A)Qr (A) = (P Q)r (A).

for every polynomial matrix P
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This simple result has powerful applications. As an example, we mention the
Cayley-Hamilton theorem: starting point is Cramer’s rule: if A is invertible, A−1 =

B/ det A, where B is the adjoint matrix of A. Hence B A = I det A. Replacing A by
s I − A, we obtain B(s)(s I − A) = I p(s), where p is the characteristic polynomial
of A and B(s) a suitable polynomial matrix. Substituting s = A from the right, we
obtain Br (A)(AI − A) = I p(A), where p(A) is the matrix obtained by substituting
A in the scalar polynomial p(s) as defined in section 2.5. Since the left-hand side is
obviously zero, we obtain p(A) = 0.

7.2 System matrix, transmission polynomials, and ze-

ros

In this section we introduce the concepts of transmission polynomials and zeros of a
system. Consider the system � given by the equations

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(7.3)

where, again, u takes its values in U, x takes its values in X, and y takes its values in
Y. As before, instead of writing down these equations explicitly, we will often denote
� by (A, B, C, D). By formally taking the Laplace transforms of the equations (7.3)
and denoting by û(s), x̂(s) and ŷ(s) the Laplace transforms of u(t), x(t) and y(t),
respectively, (7.3) transforms to the system equations in the frequency domain given
by

(s I − A)x̂(s) − Bû(s) = x0,

Cx̂(s) + Dû(s) = ŷ(s),

This can be written equivalently as

P�(s)

(

x̂(s)

û(s)

)

=

(

x0
ŷ(s)

)

,

where P�(s) is defined by

P�(s) : =

(

s I − A −B

C D

)

. (7.4)

P�(s) is called the system matrix of the system �. It is an (n + p) × (n + m)

polynomial matrix, containing the relevant information of the system.

The invariant factors of the polynomial matrix P�(s) are called the transmission

polynomials of �. A transmission polynomial is called non-trivial if it is unequal to
zero. The product of the non-trivial transmission polynomials of � is called the zero

polynomial of the system. Any complex root of the zero polynomial is called a zero

of the system �. We will say that a zero has multiplicity r if it is an r -fold root of the
zero polynomial.
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The systemic relevance of these zeros are most easily given under the assump-
tion that P�(s) is left invertible, i.e., normrank P� = n + m. In this case all
transmission polynomials of � are unequal to zero. Suppose that λ is a zero of �.
Then rank P�(λ) < n + m. Hence there exists a nonzero vector (x T

0, uT
0)

T such that
P�(λ)(x T

0, uT
0)

T = 0. Therefore, if we have the input u(t) = eλt u0, the function
x(t) : = eλt x0 satisfies the differential equation for x . The corresponding output will
be zero. Consequently, if P�(s) has normal rank n + m, a zero of the system is a
frequency λ with the property that there exists an input (viz. u = e λtu0) and an initial
state x0, not both zero, for which the output is identically zero.

The following clarifies the concept of a zero as a systemtheoretic property:

Lemma 7.7 Let λ ∈ C. Suppose that x0 ∈ X and u0 ∈ U are such that

P�(λ)

(

x0
u0

)

= 0. (7.5)

Let u(t) : = eλtu0. Then the output resulting from the initial state x0 and input

function u is zero, i.e. yu(t, x0) = 0 for all t � 0.

Proof : It follows from (7.5) that x(t) : = eλt x0 satisfies ẋ = Ax + Bu, x(0) = x0.
Hence xu(t, x0) = eλt x0. Again by (7.5) this yields yu(t, x0) = 0 for all t � 0.

7.3 The weakly unobservable subspace

In the previous section, we have seen that the zeros of the system � are associated
with initial states that, by choosing an appropriate input, yield zero output. In general
a point in the state space of � for which this property holds, is called a weakly
unobservable point:

Definition 7.8 A point x0 ∈ X is called weakly unobservable if there exists an input

function u such that the corresponding output function satisfies y u(t, x0) = 0 for all

t � 0. The set of all weakly unobservable points of � is denoted by V(�) and is

called the weakly unobservable subspace of �.

It is easily seen that the set of all weakly unobservable points of � is indeed
a linear subspace of X. Thus, the above terminology is justified. Let 〈ker C | A〉

be the unobservable subspace of the pair (C, A). In section 3.3 this subspace was
characterized as the set of points x0 for which the output resulting from the input
u = 0 is equal to zero. Thus we have 〈ker C | A〉 ⊂ V(�). As an immediate
consequence of definition 4.4, we see that if the direct feedthrough map D is equal
to zero, then V(�) = V∗(ker C), the largest controlled invariant subspace contained
in ker C . However, also if D 	= 0 the weakly unobservable subspace is controlled
invariant:
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Lemma 7.9 Let x0 ∈ V(�) and let u be an input function such that the correspond-

ing output function satisfies yu(t, x0) = 0 for all t � 0. Then the associated state

satisfies xu(t, x0) ∈ V(�) for all t � 0.

Proof : The proof of this is analogous to the corresponding part of the proof of theo-
rem 4.5 and is left as an exercise.

Let x0 ∈ V(�) and let u be such that yu(t, x0) = 0 for all t � 0. According to
the previous lemma we have xu(t, x0) ∈ V(�) for all t � 0. Since V(�) is a linear
subspace of X, also

ẋ(0+) : = lim
t↓0

1
t
(xu(t, x0)− x0) ∈ V(�).

Since ẋ(0+) = Ax0 + Bu(0) and Cx0 + Du(0) = 0, we see that for any given x 0 ∈

V(�) there exists a vector u0 ∈ U (take u0 : = u(0)) such that Ax0 + Bu0 ∈ V(�)

and Cx0 + Du0 = 0. Equivalently, the subspace V = V(�) satisfies
(

A

C

)

V ⊂ (V × 0)+ im
(

B

D

)

. (7.6)

Now, let V be any subspace of X with the property (7.6). Choose a basis x 1, . . . , xn

for X such that x1, . . . , xr is a basis for V (r � n). By (7.6) there are vectors u i ∈ U

such that for i = 1, 2, . . . , r we have Ax i + Bui ∈ V and Cxi + Dui = 0. Let
F : X → U be any linear map such that Fx i = ui (i = 1, . . . , r). Then we have
(A+B F)xi ∈ V and (C+DF)xi = 0. Since x1, . . . , xr is a basis for V, we conclude
that there exists a map F : X→ U such that

(A + B F)V ⊂ V and (C + DF)V = 0. (7.7)

In fact, we even have the following:

Theorem 7.10

(i) V(�) is the largest subspace V of X for which (7.6) holds.

(ii) V(�) is the largest subspace V of X for which there exists a linear map F :

X→ U such that (7.7) holds.

Proof : (i) We have already shown that V = V(�) satisfies (7.6). Let V be an
arbitrary subspace that satisfies (7.6). According to the above, there is an F such
that (7.7) holds. Let x0 ∈ V and apply the feedback control u(t) = Fx(t). The
resulting trajectory xu(t, x0) then remains in V for all t � 0. Hence, yu(t, x0) =

(C+DF)xu(t, x0) = 0 for all t � 0. We conclude that x0 ∈ V(�). Thus V ⊂ V(�).



The weakly unobservable subspace 161

(ii) We already showed that there exists an F such that (7.7) holds with V =

V(�). Let V be any subspace such that (7.7) holds for some F . It can then be seen
immediately that V satisfies (7.6). According to part (i) of this theorem this implies
V ⊂ V(�).

In the sequel, we often denote C + DF by C F (and of course as before, A + B F

by AF ). The following result is a generalization of theorem 4.3:

Theorem 7.11 Let F : X → U be a linear map such that A FV(�) ⊂ V(�) and

CFV(�) = 0. Let L be a linear map such that im L = ker D ∩ B−1V(�). Let

x0 ∈ V(�) and u be an input function. Then the output resulting from u and x 0 is

zero if and only if u has the form u(t) = Fx(t)+ Lw(t) for some function w.

Proof : (⇒) Assume that yu(t, x0) = 0 for all t � 0. According to lemma 7.9,
xu(t, x0) ∈ V(�) for all t � 0. Define an input v by v(t) : = u(t) − Fx u(t, x0).
Then

ẋu(t, x0) = AF xu(t, x0)+ Bv(t)

and

CF xu(t, x0)+ Dv(t) = 0.

Since AF xu(t, x0) and ẋu(t, x0) lie in V(�) for all t � 0 we find that Bv(t) ∈ V(�)

and Dv(t) = 0 for all t . Thus, v(t) ∈ ker D ∩ B−1V(�) for all t � 0. It follows that
there exists a function w such that v(t) = Lw(t) for all t .

(⇐) Assume that u(t) = Fx(t)+ Lw(t). Then we have

xu(t, x0) = eAF t x0 +

∫ t

0
eAF (t−τ )B Lw(τ) dτ.

Since V(�) is AF -invariant, x0 ∈ V(�) and

im B L ⊂ V(�),

we must have xu(t, x0) ∈ V(�) for all t � 0. The resulting output is equal to

yu(t, x0) = CF xu(t, x0)+ DLw(t).

Since CFV(�) = 0 and im L ⊂ ker D, the latter is equal to zero for all t � 0.

We conclude this section by giving an algorithm to calculate for a given system �

the weakly unobservable subspace V(�). As in section 4.3, for this it is convenient
to think in terms of the discrete time version of the system (7.3):

xt+1 = Axt + But ,

yt = Cxt + Dut , t = 0, 1, 2, . . . .
(7.8)
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Given an input sequence u = (u 0, u1, u2, . . .) and an initial state x0, let

x = (x0, x1, x2, . . .) and y = (y0, y1, . . .)

be the resulting state trajectory and output. The discrete time analogue of V(�) is
denoted by Vd (�) and is defined by

Vd(�) : = {x0 ∈ X | there is an input sequence u such that y = 0} .

Define a sequence of subspaces V0,V1,V2, . . . by V0 : =X and for t = 1, 2, . . . by

Vt : = {x0 ∈ X | there is an input sequence u such that

yk = 0 for k = 0, 1, . . . , t − 1} .

Clearly, the subspaces Vt form a chain, that is, they satisfy the inclusion relation
V0 ⊃ V1 ⊃ V2 ⊃ · · · . We derive a recurrence relation for V t . It follows from the
definition of Vt that x0 ∈ Vt+1 if and only if there exists a vector u 0 ∈ U such that
Ax0 + Bu0 ∈ Vt and Cx0 + Du0 = 0. Thus, x0 ∈ Vt+1 if and only if there is a
u0 ∈ U such that

(

A

C

)

x0 +

(

B

D

)

u0 ∈ Vt × 0.

We conclude that the sequence (Vt ) is generated by the recurrence relation

V0 = X, Vt+1 =

(

A

C

)−1 [

(Vt × 0)+ im
(

B

D

)]

. (7.9)

From this, it follows that if for some integer k we have Vk = Vk+1 then Vt = Vk for
all t � k. Consequently, the inclusion chain for V t must have the form

V0 ⊃ V1 ⊃ · · · ⊃ Vk = Vk+1 = Vk+2 = · · · ,

for some integer k � n. Here, ⊃ denotes strict inclusion.We contend that V d (�) =

Vk . The proof of this is similar to the proof of the corresponding result in section
4.3. In the following theorem we summarize the properties of the sequence {V t } as
derived above and show that (7.9) leads to the subspace V(�) in a finite number of
recursion steps:

Theorem 7.12 Let Vt , t = 0, 1, 2, . . . be defined by the algorithm (7.9). Then we

have

(i) V0 ⊃ V1 ⊃ V2 ⊃ · · · ,

(ii) there exists k � n such that Vk = Vk+1,

(iii) if Vk = Vk+1 then Vk = Vt for all t � k,

(iv) if Vk = Vk+1 then V(�) = Vk .
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Proof : The properties (i), (ii) and (iii) have already been proven. We now prove (iv).
Assume Vk = Vk+1. Using (7.9) this implies

(

A

C

)

Vk ⊂ (Vk × 0)+ im
(

B

D

)

.

According to theorem 7.10, V(�) is the largest subspace of X for which this in-
clusion holds. Consequently, Vk ⊂ V(�). The converse inclusion can be proven
analogously as in theorem 4.10. This proof is left as an exercise to the reader.

7.4 Controllable weakly unobservable points

In this section we consider the subspace of V(�) consisting of all points in the state
space for which there exists an input u such that the resulting output is zero, while, at
the same time, the state trajectory is steered to the zero state in finite time:

Definition 7.13 A point x0 ∈ X is called controllable weakly unobservable if there

exists an input function u, and T > 0 such that yu(t, x0) = 0 for all t ∈ [0, T ]

and xu(T, x0) = 0. The set of all such points is denoted by R(�) and is called the

controllable weakly unobservable subspace of �.

Again, it is straightforward to verify that the set R(�) is indeed a linear subspace
of X. Also, R(�) ⊂ V(�). Clearly, if D = 0 then R(�) = R∗(ker C), the
largest controllability subspace contained in ker C (see theorem 4.15). Analogously
to the definition of F in section 4.1 we denote by F(V(�)) the set of all linear maps
F : X → U such that (A + B F)V(�) ⊂ V(�) and (C + DF)V(�) = 0. The
following result generalizes theorem 4.17:

Theorem 7.14 Let F ∈ F(V(�)). Then we have

R(�) = 〈A + B F | V(�) ∩ B ker D〉.

In particular, for any F ∈ F(V(�)) we have A FR(�) ⊂ R(�) and CFR(�) = 0.

Proof : Let L be such that im L = B−1V(�) ∩ ker D. Assume that x0 ∈ R(�)

and let u and T > 0 be such that yu(t, x0) = 0 for all t � 0 and xu(T, x0) = 0.
By theorem 7.11, u can be written as u(t) = Fx(t) + Lw(t) for some w. Thus,
xu(·, x0) is a state trajectory of the system ẋ(t) = A F x(t) + B Lw(t) with state
space V(�). Along this trajectory, x0 is steered to 0 at time t = T . It follows that
x0 ∈ 〈AF | im B L〉 (see section 3.2). Conversely, let x0 ∈ 〈AF | im B L〉. Consider
the system ẋ(t) = AF x(t) + B Lw(t) with state space V(�). Since 〈AF | im B L〉

is the reachable subspace of this system, there exists w and T > 0 such that the
trajectory x(t) resulting from x0 and w satisfies x(T ) = 0. Of course, x(t) ∈ V(�)

for all t . Define u by u(t) : = Fx(t) + Lw(t). Then x(t) = xu(t, x0) (where the
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latter denotes the trajectory of our original system (A, B)). We have x u(T, x0) = 0
and

yu(t, x0) = CF xu(t, x0)+ DLw(t).

Since CF V(�) = 0 and im L ⊂ ker D the latter is equal to zero for all t � 0. We
conclude that x0 ∈ R(�). The second assertion of the theorem is an immediate
consequence of the foregoing.

Analogously to the case that D = 0, the following interpretation can be given of
the above theorem. By taking F from F(V(�)) and by taking L such that im L =

B−1V(�) ∩ B ker D, we obtain a new system ẋ(t) = A F x(t)+ B Lw(t), with state
space V(�). This system can be considered to be obtained from the original one by
restricting the trajectories to the subspace V(�) and by restricting the input functions
to take their values in B−1V(�) ∩ ker D. Since im B L = V(�) ∩ B ker D, theorem
7.14 says that R(�) is the reachable subspace of the restricted system.

7.5 Strong observability

In section 3.3 we have considered observability of the system �. It was shown that
� is observable if and only if for each initial state x 0 we have that if the output,
with input set to zero, satisfies y0(t, x0) = 0 for all t � 0, then x0 = 0. That is, if
the output of the uncontrolled system is zero, then the initial state must be zero. The
system � is called strongly observable if this property holds when we use an arbitrary
input function:

Definition 7.15 � is called strongly observable if for all x 0 ∈ X and for every input

function u, the following holds: yu(t, x0) = 0 for all t � 0 implies x0 = 0.

It follows immediately from definition 7.8 that � is strongly observable if and
only if V(�) = 0. We claim that � is strongly observable if and only if for every

linear map F : X→ U, the pair (C + DF, A+ B F) is observable. To show this, let
us denote

�F : = (AF , B, CF , D).

It is easily seen that the weakly unobservable subspaces of � and � F coincide, i.e.
V(�F ) = V(�) (see also exercise 7.1). It was noted in section 7.3 that we always
have 〈ker C | A〉 ⊂ V(�). Consequently, for any F we have

〈ker CF | AF 〉 ⊂ V(�F ) = V(�).

This shows that if V(�) = 0 then for any F the pair (C F , AF ) is observable.
Conversely, according to exercise 7.2, for all F ∈ F(V(�)) we have V(�) =

〈ker CF | AF 〉. Consequently, if (CF , AF ) is observable for all F then we must
have V(�) = 0. We have thus proven the following:
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Theorem 7.16 The following statements are equivalent:

(i) � is strongly observable,

(ii) V(�) = 0,

(iii) (C + DF, A + B F) is observable for all F.

It is also possible to connect strong observability of � with properties of its sys-
tem matrix P� . Recall that the system matrix of � is defined as the real polynomial
matrix

P�(s) =

(

I s − A −B

C D

)

.

Theorem 7.17 The following statements are equivalent:

(i) � is strongly observable,

(ii) rank P�(λ) = n + rank
(

B

D

)

for all λ ∈ C,

(iii) the Smith form of P� is equal to the constant matrix

Q : =

(

I 0
0 0

)

.

Here, I denotes the (n + r)× (n + r) identity matrix with r : = rank
(

B

D

)

.

Proof : Assume that rank
(

B

D

)

= r . There exists an isomorphism T : U→ U of the

input space such that
(

B

D

)

T =

(

B1 0
D1 0

)

,

with (BT
1, DT

1)
T injective. The number of columns of (B T

1, DT
1)

T is equal to r . Define
a system �T by �T : = (A, B1, C, D1). It is easily seen from definition 7.8 that
V(�T ) = V(�). The system matrix of �T has n + r columns and is equal to

P�T (s) =

(

I s − A −B1
C D1

)

.

Of course, rank P�T (λ) = rank P�(λ) for all λ ∈ C.

(i)⇒ (ii) Assume (ii) does not hold. Then there exists λ such that

rank P�T (λ) < n + r.

Consequently, P�T (λ) is not injective so we can find x0 and u0, not both equal to
zero, such that

P�T (λ)

(

x0
u0

)

= 0. (7.10)
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We claim that x0 	= 0. Indeed, x0 = 0 would imply B1u0 = 0 and D1u0 = 0,
which contradicts injectivity of

(

B1
D1

)

. Now apply lemma 7.7: the output resulting

from u(t) : = eλt u0 and initial condition x0 is zero. Since x0 	= 0, this contradicts the
assumption that � is strongly observable.

(ii)⇒ (i) Assume that (i) does not hold. According to theorem 7.16 we then have
V(�T ) 	= 0. Let F ∈ F(V(�T )). Let λ be an eigenvalue of A + B1 F | V(�T )

and let x0 ∈ V(�T ) be the corresponding eigenvector. Let u 0 : = Fx0. Then (7.10)
holds. Consequently, rank P�T (λ) < n + r . This contradicts (ii).

(ii) ⇔ (iii) Note that P� is unimodularly equivalent with (P�T 0) (with 0 the
(n + p) × (n + m − r) zero matrix). If (ii) holds then, according to corollary 7.5,
P�T has Smith form (I, 0)T. This implies (iii). Conversely, if (iii) holds then P�T has
Smith form

(

I

0

)

. Again by corollary 7.5, this yields (ii).

7.6 Transmission polynomials and zeros in state space

In this section we show that the non-trivial transmission polynomials and the zeros
of � can be characterized as the non-trivial invariant factors and the eigenvalues,
respectively, of a linear map associated with the weakly unobservable subspace of �.
Recall from theorem 7.14 that if F ∈ F(V(�)) then we automatically have

AFR(�) ⊂ R(�), CF R(�) = 0.

Thus, for any F ∈ F(V(�)) the map A F | V(�)/R(�) is well-defined. We show
that this map is independent of F for F ∈ F(V(�)):

Theorem 7.18 Let F1, F2 ∈ F(V(�)). Then

AF1 | V(�)/R(�) = AF2 | V(�)/R(�).

Proof : According to exercise 7.3 we have

(F1 − F2)V(�) ⊂ B−1V(�) ∩ ker D.

Consequently, by theorem 7.14 we have

B(F1 − F2)V(�) ⊂ R(�).

The remainder of the proof is similar to the proof of theorem 4.18 (iii) and is left as
an exercise.

The map AF | V(�)/R(�) for F ∈ F(V(�)) is denoted by M� . The map
M� is a linear map from V(�)/R(�) into itself. We will show that the transmission
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polynomials and the zeros, with their multiplicities, of the system � are completely
determined by the spectral properties of the quotient map M � .

In the following let µ1, . . . , µk be the non-trivial invariant factors of the map
M� and let χ� be the characteristic polynomial of M� . Furthermore, let τ1, . . . , τℓ

be the non-trivial transmission polynomials of �. Let ζ� be the zero polynomial
of �. It turns out that the non-trivial transmission polynomials of � coincide with
the non-trivial invariant factors of M� . Thus, the zero polynomial of � is equal to
the characteristic polynomial of M� and the set of zeros of � must be equal to the
spectrum of M� :

Theorem 7.19 k = ℓ and for i = 1, 2, . . . , k we have τ i = µi . Also, ζ� = χ� .

Proof : It suffices to show that the polynomial matrix P� is unimodularly equivalent
with a polynomial matrix of the form





I ′ 0 0
0 I s − M� 0
0 0 0



 , (7.11)

where I ′ denotes the identity map of a suitable dimension. Indeed, the non-trivial
invariant factors of (7.11) are equal to µ1, . . . , µk . On the other hand, the non-trivial
invariant factors of P� are τ1, . . . , τℓ. Now, if P� is equivalent to (7.11) then these
non-trivial invariant factors must coincide and we must have k = ℓ and τ i = µi for
i = 1, 2, . . . , k.

We now show that P� is indeed unimodularly equivalent with a polynomial ma-
trix of the form (7.11). To begin with, we apply multiplication with the following
types of transformations:

U1 : =

(

I 0
F I

)

, (7.12)

U2 : =

(

S 0
0 T

)

, U3 : =

(

S−1 0
0 I

)

. (7.13)

Here, F is a linear map from X to U, S is an isomorphism of X and T is an iso-
morphism of U. The identity matrices appearing in these transformations of course
act on distinct spaces, but for convenience we all denote them by I . U 1, U2 and U3
are then invertible real matrices and hence also unimodular polynomial matrices. It
is easy to see that

U3 P�U1U2 =

(

I s − S−1 AF S S−1 BT

CF S DT

)

. (7.14)

We now specify the maps F, S and T appearing in the above. For F we take any
element of F(V(�)). The maps S and T are defined as the transformations in X and
U, respectively, corresponding to the following choice of bases (see exercise 7.7):
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• choose a basis of X adapted to R(�) and V(�),

• choose a basis of U adapted to B−1V(�) ∩ ker D.

By combining exercise 7.7 with (7.14) we then see that P� is unimodularly equivalent
with









I s − A11 0− A12 −A13 −B11 −B12
0 I s − A22 −A23 0 −B22
0 0 I s − A33 0 −B32
0 0 C3 0 D2









. (7.15)

An important observation here is that A22 is a matrix of the map M� . By permutation
of columns (which also represents unimodular transformation) we see that (7.15) is
equivalent with









I s − A11 −B11 −A12 −A13 −B12
0 0 I s − A22 −A23 −B22
0 0 0 I s − A33 −B32
0 0 0 C3 D2









. (7.16)

According to exercise 7.7, the system (A11, B11) is controllable. Consequently (see
corollary 7.5) the polynomial matrix (I s − A 11 B11) has Smith form (I 0). Also,
the system (A33, B32, C3, D2) is strongly observable and (−B T

32 DT
2)

T is injective.
Hence, by theorem 7.17,

(

I s − A33 −B32
C3 D2

)

has Smith form (I 0)T. Here, the dimension of the identity matrix I is equal to the
number of columns of (A33 B32). After applying a number of elementary column
and row operations we then find that (7.16) is equivalent with









I 0 0 0
0 0 I s − A22 0
0 0 0 I

0 0 0 0









. (7.17)

As already noted, A22 is a matrix of the map M� . It is then obvious that (7.17) is
unimodularly equivalent with a matrix of the form (7.11). This completes the proof
of the theorem.
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7.7 Exercises

7.1 Consider the system � = (A, B, C, D). Let F : X → U and G : Y → X be
linear maps. Define

�F,G : = (A + B F + GC + G DF, B + G D, C + DF, D).

a. Show that V(�F,G) = V(�), i.e. the weakly unobservable subspace is
invariant under state feedback and output injection.

b. Show that V(�) is (A + GC, B + G D)-invariant for any linear map G :

Y → X.

7.2 Show that for all F ∈ F(V(�)) the weakly unobservable subspace V(�) is
equal to 〈ker CF | AF 〉, the unobservable subspace of the system (C F , AF ).

7.3 Let F0 ∈ F(V(�)). Show that a linear map F : X → U is an element of
F(V(�)) if and only if (F0 − F)V(�) ⊂ B−1V(�) ∩ ker D.

7.4 (Output stabilizability.) Consider the system ẋ(t) = Ax(t) + Bu(t), y(t) =

Cx(t)+Du(t), with state space X. Let Xstab be the stabilizable subspace with
respect to the stability domain C−. For a given feedback law u(t) = Fx(t),
let yF (t, x0) denote the output of the closed loop system, corresponding to the
initial state x0. The system � is called output stabilizable if there exists F such
that yF (t, x0)→ 0 (t →∞) for all x0. Show that that the following statements
are equivalent:

a. � is output stabilizable,

b. For all x0 there exists a Bohl function u such that yu(·, x0) is C−-stable,

c. X = V(�)+Xstab.

7.5 Consider the system � = (A, B, C, D) and assume that D is injective.

a. Show that for each x0 ∈ V(�) there is exactly one input function u such
that yu(t, x0) = 0 for all t � 0, and this input satisfies

u(t) = −(DT D)−1 DTCxu(t, x0).

b. Show that V(�) is equal to the subspace

〈ker(C − D(DT D)−1 DT C) | A − B(DT D)−1 DTC〉,

the unobservable subspace of the system (C F , AF ) obtained by applying
the feedback

u(t) = −(DT D)−1 DTCx(t).

c. Let F : X→ U be a linear map. Show that F ∈ F(V(�)) if and only if

F | V(�) = −(DT D)−1 DTC | V(�).
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7.6 Show that x1 ∈ R(�) if and only if there exist u ∈ U and T > 0 such that
xu(T, 0) = x1 and yu(t, 0) = 0 for all t � 0.

7.7 Consider the system �. Define U1 : = B−1V(�) ∩ ker D. Choose a basis of
the input space U adapted to U1. Choose a basis of the state space X adapted
to R(�) and V(�). Choose any basis in Y. Now let F ∈ F(V(�)).

a. Show that the matrices of A F , B, CF and D with respect to the given
bases have the form





A11 A12 A13
0 A22 A23
0 0 A33



 ,





B11 B12
0 B22
0 B32



 ,

(

0 0 C3
)

,
(

0 D2
)

,

respectively.

b. Show that
(

B32
D2

)

is injective.

c. Show that the pair (A11, B11) is controllable and that the system (A33,
B32, C3, D2) is strongly observable.

d. Show that
(

s I − A33 −B32
C3 D2

)

has Smith form of the form
(

I

0

)

.

7.8 Show that for each real monic polynomial q(s) of degree dim R(�) there exists
F ∈ F(V(�)) such that the characteristic polynomial of the map (A + B F) |

R(�) is equal to q.

7.9 (Strong detectability.) The system � is called strongly detectable if for all
x0 ∈ X and u ∈ U the following implication holds:

{yu(t, x0) = 0 for all t � 0} ⇒
{

lim
t→∞

xu(t, x0) = 0
}

.

If all zeros of � are contained in C−, then the system � is called a minimum

phase system. This terminology is borrowed from the electrical engineering
literature, where a SISO transfer function g(s) = p(s)

q(s)
is called minimum phase

if all roots of p are contained in C−. Show that the following statements are
equivalent:

a. � is strongly detectable,

b. R(�) = 0 and � is minimum phase,

c. (C + DF, A + B F) is C−-detectable for all F .

7.10 Assume that R(�) = 0. Let F ∈ F(V(�)). Show that the zeros of � are the
unobservable eigenvalues of (C F , AF ).
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7.11 Let F : X → U and G : Y → X be linear maps. Show that the trans-
mission polynomials of the systems � and �F,G (see exercise 7.1) coincide.
Conclude that the zeros of �, including their multiplicities, are invariant under
state feedback and output injection transformations.

7.12 Let �T = (AT, CT, BT, DT) be the dual of � = (A, B, C, D). Show that the
transmission polynomials and the zeros with their respective multiplicities of
� and �T coincide.

7.13 Give a complete proof of theorem 7.12.

7.14 Give a complete proof of theorem 7.18.

7.15 (Disturbance decoupling by state feedback with direct control feedthrough.)
Consider the control system with disturbances, given by ẋ = Ax + Bu + Ed,
z = Cx + Du. Here, u is the control input, and d represents an unknown
disturbance. We want to find a state feedback control law u = Fx such that the
controlled system is disturbance decoupled, i.e., the transfer matrix G F (s) : =

(C + DF)(s I − A − B F)−1 E is equal to zero.

a. Show that the control law u = Fx makes the closed loop system disturb-
ance decoupled if and only if there exists a subspace V of X such that
(A + B F)V ⊂ V, (C + DF)V = 0, and im E ⊂ V.

b. Show that there exists F :X→ U such that u = Fx makes the controlled
system disturbance decoupled if and only if im E ⊂ V(�).

c. Assume that the map D is injective. Show that the feedback law u =

−(DDT)−1 DTCx makes the controlled system disturbance decoupled.

7.16 (The stabilizable weakly unobservable subspace.) Consider the system � =

(A, B, C, D), and let Cg be a stability domain. We define the stabilizable

weakly unobservable subspace as the linear subspace of X given by

Vg(�) : = {x0 ∈ X | there exists a Bohl function u such that

yu(t, x0) = 0 for all t � 0, and xu(·, x0) is Cg − stable},

i.e., the subspace of all initial states for which there exists a Bohl input such
that the output is zero and the state is stable.

a. Show that R(�) ⊂ Vg(�) ⊂ V(�).

b. Show that if x0 ∈ Vg(�) and u is a Bohl function such that yu(t, x0) = 0
for t � 0 and xu(·, x0) is stable, then xu(t, x0) ∈ Vg(�) for all t � 0.

c. Use (b) to show that there exists a map F : X → U such that (A +

B F)Vg(�) ⊂ Vg(�) and (C + DF)Vg(�) = 0.

Let F0 : X → U be such that (A + B F0)Vg(�) ⊂ Vg(�) and (C +

DF0)Vg(�) = 0. Also, let L be a map such that im L = ker D ∩ B−1Vg(�).
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d. Show that if x0 ∈ Vg(�) and u is a Bohl function, then yu(t, x0) = 0 for
all t � 0 if and only if there exists a Bohl function w such that u can be
written as u(t) = Fxu(t, x0)+ Lw(t).

e. Consider now the system restricted to Vg(�):

ẋ(t) = (A + B F0)x(t)+ B Lw(t),

with state space Vg(�). Show that for each x0 ∈ Vg(�) there exists
a Bohl function w such that the resulting state trajectory x is Cg-stable.
(Hint: use (d).)

f. Conclude from (e) that the restricted system is Cg-stabilizable.

g. Prove that there exists a map F : X → U such that (A + B F)Vg(�) ⊂

Vg(�), (C + DF)Vg(�) = 0, and σ(A + B F | Vg(�)) ⊂ Cg .

h. Show that Vg(�) is the largest subspace of X for which there exists a map
F satisfying the three properties under (g).

7.17 Consider again the system � = (A, B, C, D). Let F : X→ U be a map such
that (A + B F)V(�) ⊂ V(�) and (C + DF)V(�) = 0. Let L be a map such
that im L = ker D ∩ B−1V(�).

a. Let x0 ∈ V(�) and let u be a Bohl function. Show that yu(t, x0) = 0 for
all t � 0 if and only if there exists a Bohl function w such that u(t) =

Fxu(t, x0)+ Lw(t).

b. Consider now the restricted system ẋ(t) = (A+ B F)x(t)+ B Lw(t) with
state space V(�). Let Cg be a stability domain. Show that Vg(�) (the
stabilizable weakly unobservable subspace, see problem 7.16) is equal to
the stabilizable subspace of this restricted system. (Hint: use (a).)

c. Conclude that for all F ∈ F(V(�)) we have

Vg(�) = R(�)+Xg(A + B F | V(�))

7.8 Notes and references

General material on polynomial matrices can be found in the textbooks by Wedder-
burn [210] and MacDuffee [122]. For a general treatment of the the Smith form, we
refer to the book by Gantmacher [55]. A more recent textbook containing an excel-
lent overview of most of the relevant material on polynomial matrices is Kailath [90].
Additional material can be found in the book by Vardulakis [206].

The notion of system matrix is due to Rosenbrock [155]. Zeros of linear multivari-
able systems were introduced by Rosenbrock in terms of the Smith McMillan form
of the system transfer matrix in [155]. Additional work on system zeros can be found
in Desoer and Schulman [37], MacFarlane and Karcanias [117], and Pugh [151].

The weakly unobservable subspace was introduced for discrete-time systems by
Silverman in [178]. Additional information can be found in the work of Molinari
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[124] and [126], where the recurrence relation 7.9 was introduced. For continuous-
time systems, an extensive treatment of the weakly unobservable subspace can be
found in Hautus and Silverman [76], see also Willems, Kitapçi and Silverman [219].
Of course, for the case that D = 0, the weakly unobservable subspace coincides with
the largest controlled invariant subspace contained in the kernel of the map C , as
studied extensively in Wonham [223].

The connection between the spectral properties of the weakly unobservable sub-
space and the system zeros was also studied in the book by Wonham [223], section
5.5. More information can be found in Hosoe [82], and in Anderson [4]. Related
material on the connection between the system zeros and the state space geometric
structure of the system, can be found in Morse [129], Aling and Schumacher [3],
Malabre [119] and, more recently, in Chen [27].
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Chapter 8

System invertibility and the

strongly reachable subspace

In this chapter we will extend the class of inputs to include distributions. To do this,
we need to give suitable meaning to the notion of initial state in case the input is a
distribution. We will do this using the distributional set-up discussed in the Appendix
on distributions. We will derive the exact formulas for the state trajectory and output
corresponding to a given initial state and impulsive-smooth distributional input.

Using the distributional set-up, we introduce the notions of left-invertibility, right-
invertibility, and invertibility of systems. It is shown that these properties of the sys-
tem can be characterized in terms of corresponding properties of the transfer matrix
of the system, and in terms of properties of the system matrix.

The distributional set-up also gives rise to a couple of new relevant subspaces
of the state space, the strongly reachable subspace, and the distributionally weakly
unobservable subspace. We study the connection of these new subspaces with the
ordinary weakly unobservable subspace, and the controllable weakly unobservable
subspace introduced in chapter 7. Finally, we give a state space characterization of
the invertibility properties of the system in terms of these new subspaces.

8.1 Distributions as inputs

Up to now we have only considered functions as inputs. In the present section we
extend the class of inputs to include distributions.

Again consider the system � given by

ẋ = Ax + Bu,

y = Cx + Du.
(8.1)

In the differential equation above, if u is an element of the distribution space D
′ m
+

(see appendix A), instead of simply a function taking its values in the input space U
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(to be identified with Rm ), we run into a number of conceptual difficulties as soon as
we try to define the concept of solution of the differential equation starting in a given
point x0 ∈ X (to be identified with Rn). Indeed, this is a non-trivial matter, since
distributions do not have a well-defined value at a particular time instant t 0.

Example 8.1 Consider the (scalar) initial value problem ẋ = 0, x(0) = x 0, with
x0 ∈ R. First let us interpret ẋ as ordinary differentiation. Then the solution on
R+ = [0,∞) is given by x(t) = x0, t � 0. This solution can be identified with
the distribution x0h, the scalar multiple x0 times the Heaviside distribution. Next,
let us interpret ẋ as distributional derivative. Of course, the condition ‘x(0) = x 0’
has no meaning if we are looking for a distribution x as a solution. The question is
now: how should ‘ẋ = 0, x(0) = x0’ be interpreted in order to obtain x = x 0h as
its solution. The answer is that we should incorporate the ‘initial condition’ in the
differential equation and replace ‘ẋ = 0, x(0) = x 0’ by ẋ = x0δ. (Here, δ stands
for the Dirac distribution). Indeed, by example A.4 the solution over the distribution
space D′+

n is unique, and is equal to x = x0h.

Example 8.2 Consider the scalar initial value problem ẋ = ax, x(0) = x 0. Again,
if we interpret this in the ordinary sense, then the solution x on R+ is given by x(t) =

eat x0 (t � 0). This solution can be identified with the distribution corresponding
to the function eat iR+(t)x0 (where iR+ denotes the indicator function of R+), which
is smooth on R+. If we interpret ẋ as distributional derivative then the initial value
problem should be written as ẋ = ax + x0δ. Indeed, by example A.8 the smooth
distribution corresponding to the function e at iR+(t)x0 is the unique solution to this
equation: its derivative is equal to the sum of x 0 (its jump at t = 0) times the Dirac
distribution δ and the distribution corresponding to the function ae at iR+(t)x0.

In general, in order to be able to give a useful meaning to the concept ‘solution of
ẋ = Ax + Bu, x(0) = x0’ if u is a distribution, we restrict u to the subclass D

m
0 of

D
′ m
+ of impulsive-smooth distributions (see definition A.6).

Definition 8.3 Assume that u is an m-vector of impulsive-smooth distributions, i.e.

u ∈ D
m
0 . Then the solution of the initial value problem ẋ = Ax + Bu, x(0) = x 0 is

defined as the solution over the distribution space D ′
+

n
of the differential equation

ẋ = Ax + Bu + x0δ. (8.2)

We stress that ẋ stands for distributional derivative. Of course, the first question that
should be answered is: does the equation (8.2) indeed have a solution and, if so, is
this solution unique? The answer to both questions is: yes. A proof of this is given
as follows. Recall that differentiation of a distribution x is the same as taking the
convolution of x with I δ̇, the product of the identity matrix I and the distribution δ̇

(the derivative of δ, see example A.4). Thus (8.2) is equivalent with

I δ̇ ∗ x = Ax + Bu + x0δ,

which, since δ ∗ x = x , is equivalent with

(I δ̇ − Aδ) ∗ x = Bu + x0δ.
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Since the impulsive distribution I δ̇ − Aδ is invertible, with inverse (I δ̇ − Aδ)−1 =

T (δ̇), where T (s) : = (s I − A)−1 (see example A.15), we see that

xu,x0 : = T (δ̇) ∗ (Bu + x0δ) = T (δ̇) ∗ Bu + T (δ̇)x0 (8.3)

is the unique solution of (8.2).

If, in (8.3), u is smooth on R+, i.e. if u corresponds to a function ũ(t)i R+(t) with
ũ ∈ C∞(R,Rm), then one would of course hope that (8.3) reduces to the variations
of constant formula (3.2). We show that this is indeed the case. Define T̃ (t) : =

eAt iR+(t). By example A.12, (I δ̇ − Aδ)−1 is smooth on R+, and corresponds to the
function T̃ (t). Thus xu,x0 is equal to the smooth distribution corresponding to the
function x̃ given by

x̃(t) = T̃ (t)x0 + (T̃ ∗ BũiR+)(t). (8.4)

(here, ∗ means ordinary convolution of functions). It is easily verified that x̃(t) = 0
for t < 0. For t � 0, (8.4) becomes

x̃(t) = eAt x0 +

∫ t

0
eA(t−τ )Bu(τ ) dτ

(check this!). We conclude that for inputs u that are smooth on R
+, (8.3) indeed

reduces to (3.2).

We will now show that if u ∈ D
m
0 , then for each x0 the solution xu,x0 of (8.2) is

an element of D
n
0 , i.e. is also impulsive-smooth. We have already shown that if u is

smooth on R+ then xu,x0 is smooth on R+. Now assume that u = u1 + u2 with u1
impulsive and u2 smooth on R

+. Then of course

xu,x0 = T (δ̇) ∗ Bu1 + xu2,x0 .

It therefore suffices to show that, if u is impulsive, then x u,0 is impulsive-smooth. Let
u = u0δ + u1δ

(1) + · · · + u pδ
(k), with ui ∈ U. Then

xu,0 = T (δ̇) ∗ Bu

=

k
∑

i=0

T (δ̇) ∗ Buiδ
(i).

Convolution with δ(i) is the same as taking the i -th derivative. Hence, the i th term in
the sum above is equal to the i -th derivative of T ( δ̇)Bui which, by example A.13, is
equal to

i−1
∑

j=0

A j Buiδ
(i−1− j) + T (δ̇)Ai Bui .

We conclude that

xu,0 =

k
∑

i=0

i−1
∑

j=0

A j Buiδ
(i−1− j) + T (δ̇)

k
∑

i=0

Ai Bui .
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This is indeed an impulsive-smooth distribution. Note that the regular part of x u,0

corresponds to the function e At iR+(t)
∑k

i=0 Ai Bui . Thus, if u =
∑k

i=0 uiδ
(i), then

xu,0 consists of an impulsive part followed by a regular ‘free motion’ starting in the
point

∑k
i=0 Ai Bui . We summarize the above in the following theorem:

Theorem 8.4 Let x0 ∈ X and u ∈ D
m
0 . Let u = u1 + u2 with u1 =

∑k
i=0 uiδ

(i)

and where u2 is smooth on R+. Then the differential equation (8.2) has a unique

solution xu,x0 in D′+
n
. This solution is impulsive-smooth, i.e. xu,x0 ∈ D

n
0 . In fact,

xu,x0 = x1 + x2 with

x1 =

k
∑

i=0

i−1
∑

j=0

A j Buiδ
(i−1− j)

the impulsive part, and

x2 = T (δ̇)

(

x0 +

k
∑

i=0

Ai Bui

)

+ T (δ̇)B ∗ u2

the smooth part.

Note that if the smooth part u2 corresponds to the function ũ 2(t)iR+(t), then the
smooth part x2 of xu,x0 corresponds to the function x̃ 2, given for t < 0 by x̃2(t) = 0
and for t � 0 by

x̃2(t) = eAt

(

x0 +

k
∑

i=0

Ai Bui

)

+

∫ t

0
eA(t−τ ) Bũ2(τ ) dτ.

Thus we see that xu,x0 consists of an impulsive part, ‘followed by’ a smooth part
starting in the point x0 +

∑k
i=0 Ai Bui , and driven only by ũ 2. We define

xu,x0(0
+) : = x0 +

k
∑

i=0

Ai Bui . (8.5)

Apparently, application of u ∈ D
m
0 results in an instantaneous jump from x 0 to

xu,x0(0
+). This jump is completely determined by the impulsive part u 1 of u. Note

that for t � 0 we have x̃2(t) = xũ2(t, x0 +
∑k

i=0 Ai Bui), the ‘ordinary’ state trajec-
tory of the system ẋ(t) = Ax(t)+ Bu(t) with initial state x(0) =

∑k
i=0 Ai Bui , and

input function u = ũ2.

The coefficient vectors of the impulsive part of x u,x0 turn out to be generated by
a recurrence relation:

Theorem 8.5 Let u = u1 + u2, where u1 =
∑k

i=0 uiδ
(i), and where u2 is smooth on

R+. Then the impulsive part x1 of xu,x0 is equal to

x1 =

k−1
∑

i=0

ξiδ
(i),
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where the coefficient vectors ξi are generated by the backward recursion

ξk : = 0, ξi−1 = Aξi + Bui (i = k, . . . , 0).

Moreover,

xu,x0(0
+) = x0 + ξ−1.

Proof : This follows immediately from theorem 8.4. The details are left to the reader.

When we compare the distributional set-up for linear system with the conven-
tional interpretation, we observe that a number of new concepts arises, not present
for systems with only regular inputs. In particular, we can introduce the space of in-
stantaneously reachable points. A point x 1 ∈ X is called instantaneously reachable if
there exists an input u ∈ D

m
0 such that xu,0(0+) = x1. That is, if there exists an input

u that causes an instantaneous jump from the zero initial state to the point x 1. By the
previous theorem, x1 is instantaneously reachable if and only if there exist vectors
u0, . . . , uk ∈ U such that x1 =

∑k
i=0 Ai Bui . From this it follows immediately that

the space of instantaneously reachable points is equal to 〈A | im B〉, the ordinary
reachable subspace of the system (A, B) (see section 3.2).

Finally, let us take the output equation y = Cx + Du into account. If x 0 ∈ X and
if u ∈ D

m
0 , then the output will of course be given by to

yu,x0 = Cxu,x0 + Du.

Obviously, also yu,x0 is an impulsive-smooth distribution. In the following, the trans-
fer matrix of � will be denoted by G(s) = C(I s−A)−1 B+D. We have the following
result:

Theorem 8.6 Let u = u1 + u2, where u1 =
∑k

i=0 uiδ
(i), and where u2 is smooth on

R+. Then yu,x0 is the impulsive-smooth distribution given by

yu,x0 = CT (δ̇)x0 + G(δ̇) ∗ u.

The impulsive part of yu,x0 is given by

y1 =

k−1
∑

i=0

yiδ
(i),

where

yi = Cξi + Dui (i = k, . . . , 0), (8.6)

with ξi generated by the backward recursion

ξk = 0, ξi−1 = Aξi + Bui (i = k, . . . , 0). (8.7)

The regular part of yu,x0 is given by

y2 = CT (δ̇)(x0 + ξ−1)+ G(δ̇) ∗ u2.
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Proof : This follows immediately from theorems 8.4 and 8.5 (see also example A.16).

8.2 System invertibility

In this section we discuss the properties of left-invertibility, right-invertibility, and
invertibility of systems. We relate these properties with properties of the system’s
transfer matrix, and of the system matrix.

Consider the system � = (A, B, C, D). In the distributional set-up as introduced
in section 8.1, if we take x(0) = 0 then for an impulsive-smooth distribution u ∈ D

m
0

the corresponding output is given by

yu,0 = G(δ̇) ∗ u, (8.8)

where G(δ̇) is the matrix distribution associated with the transfer matrix G(s) =

C(I s− A)−1 B+ D (see appendix A). According to example A.16 this distribution is
equal to C(I δ̇ − Aδ)−1 B + Dδ. By the assignment u �→ yu,0, the system � defines
an operator that maps D

m
0 to D

p

0 . Of course, this operator is linear. If it is injective,
then we call the system � left-invertible:

Definition 8.7 � is called left-invertible if for all u 1, u2 ∈ D
m
0 the following holds:

yu1,0 = yu2,0 implies u1 = u2.

In other words, � is left-invertible if, with initial state x(0) = 0, no pair of distinct
inputs gives rise to one and the same output. By linearity, � is left-invertible if and
only if for all u ∈ D

m
0 we have that yu,0 = 0 implies u = 0. As expected, left-

invertibility of � can be expressed in terms of properties of the transfer matrix G(s):

Theorem 8.8 � is left-invertible if and only if G(s) is a left-invertible rational ma-

trix.

Proof : (⇒) If G(s) is not left-invertible, then there exists a rational vector q(s) 	= 0
such that G(s)q(s) = 0. Without loss of generality, assume that q(s) is a polynomial
vector. Define u ∈ D

m
0 by u : = q(δ̇). Then u 	= 0 and according to example A.14

we have

yu,0 = G(δ̇) ∗ q(δ̇) = (Gq)(δ̇) = 0. (8.9)

This contradicts the assumption that � is left-invertible.

(⇐) If G(s) is left-invertible, then it has a left-inverse, i.e. there exists a rational
matrix G L(s) such that G L(s)G(s) = I . Let u ∈ D

m
0 be such that G(δ̇) ∗ u = 0.

Then we obtain

u = (G L G)(δ̇) ∗ u = G L(δ̇) ∗ G(δ̇) ∗ u = 0.
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Thus, � is left-invertible.

It is also possible to connect left-invertibility of � with properties of the poly-
nomial matrix P�(s), the system matrix of �. Note that the transfer matrix G(s) is
left-invertible if and only if normrank G = m. It turns out that the normal ranks of
G(s) and P�(s) are related as follows:

Lemma 8.9 normrank P� = n + normrank G.

Proof : Let R(s) : = I s − A. Then R(s) is a rational matrix with normal rank n.
Let I, IU and IY be the identity matrices of dimensions n, m and p, respectively. We
have

P�(s) =

(

I 0
C R(s)−1 IU

)(

R(s) 0
0 G(s)

)(

I −R−1(s)B

0 IY

)

.

The first and third factor in this product are invertible rational matrices. Consequently,

normrank P� = normrank
(

R 0
0 G

)

= n + normrank G.

An immediate consequence of this is the following:

Corollary 8.10 � is left-invertible if and only if rank P�(λ) = n + m for all but

finitely many λ ∈ C.

Note that, if � is left-invertible, then those λ ∈ C for which rank P�(λ) < n +m are
exactly the zeros of the system �.

We now turn to right-invertibility. We will call � right-invertible if the operator
u �→ yu,0 from D

m
0 to D

p
0 is surjective:

Definition 8.11 � is called right-invertible if for every y ∈ D
p

0 there exists u ∈ Dm
0

such that y = yu,0.

In other words, � is right-invertible if for every impulsive-smooth distribution y

there exists an impulsive smooth distribution u such that y is the output corresponding
to initial state zero and input u.

Example 8.12 Consider the system � with transfer function G(s) = s−1. This sys-
tem is right-invertible: if y is impulsive-smooth, then u : = δ̇∗ y is impulsive-smooth.
Moreover, G(δ̇) ∗ u = δ̇−1 ∗ δ̇ ∗ y = y.

The following theorem characterizes right-invertibility in terms of properties of the
transfer matrix G(s) and the system matrix P�(s).
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Theorem 8.13 The following statements are equivalent:

(i) � is right-invertible,

(ii) G(s) is a right-invertible rational matrix,

(iii) rank P�(λ) = n + p for all but finitely many λ ∈ C.

Proof : (i)⇒ (ii) If G(s) is not right-invertible, there exists a polynomial row-vector
q(s) 	= 0 such that q(s)G(s) = 0. Let y0 be any vector in Y and define y : = y0δ.
Then y is impulsive-smooth. There exists an input u such that y = G( δ̇) ∗ u. This
implies that q(δ̇)y0 = 0. Since this holds for any y0, we get q(δ̇) = 0, so q(s) = 0,
which is a contradiction.

(ii)⇐ (i) Let G R(s) be a right-inverse of G(s). Then G R(δ̇) is a right-inverse of
G(δ̇). Let y ∈ D

p

0 . Define u : = G R(δ̇) ∗ y. Then we have u ∈ D
m
0 . Moreover,

y = G(δ̇) ∗ u.

(ii)⇔ (iii) This equivalence follows immediately from lemma 8.9.

If � is right-invertible, then those λ ∈ C for which rank P�(λ) < n + p are the
zeros of the system �.

� is called invertible if it is both right-invertible and left-invertible. Clearly, a
system can only be invertible if p = m, i.e. the number of inputs and outputs are
equal. For completeness, we formulate the following corollary:

Corollary 8.14 The following statements are equivalent:

(i) � is invertible,

(ii) G(s) is an invertible rational matrix.,

(iii) rank P�(λ) = n + m for all but finitely many λ ∈ C.

8.3 The strongly reachable subspace

Consider the system � given by (8.1). Again assume that the inputs u are elements of
the class D

′
0 of impulsive-smooth distributions. In the previous section we have seen

that if x0 ∈ X and if u ∈ D′
0, then the resulting output yu,x0 is impulsive-smooth. In

the sequel, we are interested in those inputs u for which the resulting output is smooth
on R+. For a given initial point x0, let U�(x0) denote the subset of D′

0 consisting of
those inputs u such that yu,x0 is smooth on R+. We claim that this subset is, in fact,
independent of x0. Indeed, if u ∈ D

′
0, then it follows from theorem 8.6 that

yu,x0 = yu,0 + C(I δ̇ − Aδ)−1x0. (8.10)
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Since the second term on the right of (8.10) is smooth on R+, we find that yu,x0 is
smooth on R+ if and only if yu,0 is smooth on R+. Consequently, U�(x0) = U�(0)

for all x0 ∈ X. We will denote this subset of D
′
0 by U� .

A point in the state space is called strongly reachable if it is instantaneously reach-
able by means of an impulsive input u in U� .

Definition 8.15 x1 ∈ X is called a strongly reachable point if there exists an impul-

sive u ∈ U� such that xu,0(0+) = x1. The set of all strongly reachable points of the

system � is denoted by T (�) and is called the strongly reachable subspace of �.

It is easily seen that T (�) is indeed a linear subspace of X. It follows immediately
from the definition that T (�) is contained in 〈A | im B〉, the space of (instanta-
neously) reachable points.

The strongly reachable subspace can be given an interpretation in terms of the re-
currence relation (8.6) and (8.7). The condition that y u,x0 should be regular translates
to yi = 0 (i = k − 1, . . . , 0). Thus we find:

Theorem 8.16 x̃ ∈ T (�) if and only if there exists k ∈ N and vectors

uk, uk−1, . . . , u0 ∈ U

such that the vectors ξk, ξk−1, . . . , ξ−1 generated by the backward recursion

ξk = 0, ξi−1 = Aξi + Bui (i = k, . . . , 0) (8.11)

satisfy Cξi + Dui = 0 (i = k, . . . , 0) and ξ−1 = x̃ .

Let F : X→ U and G : Y → X be linear maps. Define the system �F,G by

�F,G = (A + B F + GC + G DF, B + G D, C + DF, D).

We claim that the strongly reachable subspaces associated with the systems � and
�F,G , respectively, coincide. Stated differently: the strongly reachable subspace is
invariant under state feedback and output injection (compare exercise 7.1).

Theorem 8.17 T (�F,G) = T (�).

Proof : Let x̃ ∈ T (�F,G). According to theorem 8.16 there exists k ∈ N and vectors
vk, vk−1, . . . , v0 ∈ U such that if ξi is generated by the recursion

ξk = 0, ξi−1 = (A + B F + GC + G DF)+ (B + G D)vi

then (C + DF)ξi + Dvi = 0 (i = k, . . . , 0) and ξ−1 = x̃ . Now, define u i : =

vi + Fξi . Then Cξi + Dui = 0 (i = k, . . . , 0) and ξi satisfies the recursion (8.11).
Thus we conclude that x̃ ∈ T (�). The converse inclusion follows by noting that
� = (�F,G )−F,−G .

As another consequence of theorem 8.16 we have the following:
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Lemma 8.18 Let x̃ ∈ T (�) and ũ ∈ U be such that Cx̃+Dũ = 0. Then Ax̃+Bũ ∈

T (�).

Proof : If x̃ ∈ T (�) then there are vectors u i ∈ U (i = k, . . . , 0) such that
the ξi defined by (8.11) satisfy Cξi + Dui = 0 and ξ−1 = x̃ . Define vectors
ūk+1, ūk, . . . , ū0 ∈ U by ū i+1 : = ui and ū0 : = ũ. Define ξ̄k+1, . . . , ξ̄0 by ξ̄i+1 : =

ξi and ξ̄−1 : = Ax̃ + Bũ. Then ξ̄i satisfies the recurrence relation

ξ̄k+1 = 0, ξi−1 = Aξ̄i + Būi (i = k + 1, . . . , 0)

and C ξ̄i + Dūi = 0, ξ̄−1 = Ax̃ + Bũ. We conclude Ax̃ + Bũ ∈ T (�).

The previous result can of course be restated in an alternative way as follows: for
the subspace V = T (�) the following inclusion holds

(

A B
) [

(V ×U) ∩ ker
(

C D
)]

⊂ V. (8.12)

Assume that V is an arbitrary subspace of X that satisfies (8.12). Choose a basis
(

x1
u1

)

,
(

x2
u2

)

, . . . ,
(

xl
ul

)

(8.13)

of V ×U such that the first r (r � l) vectors form a basis of (V ×U) ∩ ker(C D).
Define yi ∈ Y by

yi : = Cxi + Dui (i = 1, 2, . . . , l),

Then yi = 0 for i = 1, . . . , r and yr+1, . . . , yl are linearly independent. Let G :

Y → X be a linear mapping such that

Gyi = −Axi − Bui , (i = r + 1, . . . , l),

Then

wi : =
(

A + GC B + G D
)

(

xi

ui

)

= Axi + Bui + Gyi .

We claim that wi ∈ V for i = 1, . . . , l. Indeed, for i = 1, . . . , r we have w i =

Axi + Bui which, by (8.12), lies in V. For i = r + 1, . . . , l we have w i = 0. It
follows from this that

(A + GC)V ⊂ V, im(B + G D) ⊂ V. (8.14)

Indeed, if x ∈ V then (x T, 0)T ∈ V ×U. By the above, the map (A+GC B +G D)

maps V ×U into V. Consequently, (A + GC)x ∈ V. In the same way, if u ∈ U

then (0, uT)T ∈ V ×U so (B + G D)u ∈ V. This proves (8.14). We conclude that
if a subspace V of X satisfies (8.12) then there exists an output injection mapping G

such that (8.14) holds. In particular, there is an output injection mapping such that
(8.14) holds for V = T (�). In fact, we have:
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Theorem 8.19

(i) T (�) is the smallest subspace V of X for which

(

A B
)

(V ×U) ∩ ker
(

C D
)

⊂ V.

(ii) T (�) is the smallest subspace V of X for which there exists a linear mapping

G : Y → X such that

(A + GC)V ⊂ V, im(B + G D) ⊂ V.

Proof : (i) We have already shown that V = T (�) satisfies (8.12). Let V be an
arbitrary subspace such that (8.12) holds. We are going to show that T (�) ⊂ V. Let
x̃ ∈ T (�). There are vectors u i (i = k, . . . , 0) in U such that if ξi is generated by
the recursion ξk = 0, ξi−1 = Aξi + Bui then we have Cξi + Dui = 0 (i = k, . . . , 0)

and ξ−1 = x̃ . We claim that if for some i , ξi ∈ V then ξi−1 ∈ V. Indeed, if ξi ∈ V

then we have
(

ξi
ui

)

∈ (V ×U) ∩ ker(C D).

Since V satisfies (8.12), this implies ξi−1 = Aξi + Bui ∈ V. From the fact that
ξk = 0 ∈ V we may now conclude that ξi ∈ V for all i . In particular x̃ = ξ−1 ∈ V.

(ii) It was already shown that there exists G such that (8.14) holds for V = T (�).
Let V be an arbitrary subspace such that (8.14) holds for some G. We claim that V

then satisfies (8.12). Let x ∈ V and u ∈ U be such that Cx + Du = 0. We have
(A + GC)x ∈ V and (B + G D)u ∈ V. Consequently

Ax + Bu = (A + GC)x + (B + G D)u ∈ V.

This proves our claim. It then follows from (i) above that T (�) ⊂ V.

Recall from theorem 5.5 that a subspace V of the state space is conditionally
invariant or (C, A)-invariant if and only if there exists a linear mapping G : Y → X

such that (A + GC)V ⊂ V. As a consequence of this, it follows from the previous
theorem that the subspace T (�) is always (C, A)-invariant. As a matter of fact, since
the strongly reachable subspace of � coincides with the strongly reachable subspace
of the system �F : = (A + B F, B, C + DF, D) (see theorem (8.17)), T (�) is
(C + DF, A+ B F)-invariant for any linear mapping F (compare exercise 7.1). This
implies that for all F

AF (T (�) ∩ ker CF ) ⊂ T (�). (8.15)

According to theorem 8.19 (ii), if D = 0 then we even have T (�) = S ∗(im B), the
smallest (C, A)-invariant subspace containing im B.

The set of all output injection mappings G : Y → X such that (A+GC)T (�) ⊂

T (�) and im(B + G D) ⊂ T (�) is denoted by G(T (�)). We recall that A+ GC is
sometimes denoted by AG . and B + G D by BG .
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By combining theorems 7.10 and 8.19 it can be seen that the weakly unobservable
subspace V(�) and the subspace T (�) are dual concepts. Specifically, if we define
the dual of � by �T : = (AT, CT, BT, DT) then we have

Theorem 8.20 V(�T) = T (�)⊥.

Proof : The proof of this is left as an exercise to the reader.

We now establish an algorithm to compute T (�). Define a sequence of subspaces
T0, T1, T2, . . . of T (�) as follows: define T0 : = 0 and for t � 1

Tt : = {x̃ ∈ X | there exist u t−1, . . . , u0 ∈ U such that ξi

generated by ξt−1 : = 0, ξi−1 = Aξi + Bui

satisfies Cξi + Dui = 0 (i = t − 1, . . . , 0) and ξ−1 = x̃}.

It is easily verified that Tt is indeed a subspace of T (�). In fact, Tt consists exactly of
the points in X that are strongly reachable my means of an impulsive input u ∈ U �

in which the highest order derivative of the Dirac distribution δ is less than or equal
to t − 1. Obviously, the sequence {Tt } is a chain in X, i.e. T0 ⊂ T1 ⊂ T2 ⊂ · · · . We
show that the sequence Tt is generated by a recurrence relation. It follows from the
definition that a point x̃ lies in Tt+1 if and only if there exists ū ∈ U and x̄ ∈ Tt such
that x̃ = Ax̄ + Bū and Cx̄ + Dū = 0. Equivalently x̃ ∈ T t+1 if and only if there
exists (x̄ T, ūT)T ∈ (Tt ×U) ∩ ker(C D) such that x̃ = Ax̄ + Bū. Thus we see that
the sequence {Tt } satisfies

T0 = 0, Tt+1 =
(

A B
) [

(Tt ×U) ∩ ker
(

C D
)]

. (8.16)

From this it follows immediately that if for some integer k we have T k = Tk+1 then
Tk = Tt for all t � k. Consequently, the inclusion chain {T i } has the form

T0 ⊂ T1 ⊂ · · · ⊂ Tk = Tk+1 = · · ·

for some k � n. In this formula, ⊂ designates strict inclusion. We claim that T k =

T (�). Indeed, we already know that Tk ⊂ T (�). On the other hand, if Tk = Tk+1
then V = Tk of course satisfies (8.12). Since T (�) is the smallest subspace satisfying
(8.12) we find T (�) ⊂ Tk . We have now proven the following theorem:

Theorem 8.21 Let Tt , t = 0, 1, 2, . . . be defined by the algorithm (8.16). Then we

have

(i) T0 ⊂ T1 ⊂ T2 ⊂ · · · .

(ii) There exists k � n such that Tk = Tk+1.

(iii) If Tk = Tk+1 then Tk = Tt for all t � k.

(iv) If Tk = Tk+1 then Tk = T (�).
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It is left as an exercise to the reader to check that there is a duality between the
algorithm (7.9) to compute V(�) and the algorithm (8.16). Indeed, if we denote V t

in (7.9) by Vt (�) and Tt in (8.16) by Tt (�) then we have Vt (�
T) = Tt (�)⊥.

From definition 7.13, recall that a point x 0 ∈ X is called controllable weakly
unobservable if there exists an input function u and T > 0 such that y u(t, x0) =

0, t ∈ [0, T ], and xu(T, x0) = 0. The controllable weakly unobservable subspace
was denoted by R(�). As already noted, R(�) is a subspace of V(�). We will
show that R(�) is also a subspace of T (�) and that it is, in fact, the intersection of
the weakly unobservable subspace and the strongly reachable subspace:

Theorem 8.22 R(�) = V(�) ∩ T (�).

Proof : (⊂) According to theorem 7.14, for any F ∈ F(�) we have R(�) = 〈A F |

V(�) ∩ B ker D〉. Thus, if x̃ ∈ R(�) then there are vectors u 0, . . . , un−1 ∈ ker D

such that Bu i ∈ V(�) and

x̃ = Bu0 + AF Bu1 + · · · + An−1
F Bun−1.

Let ξi be defined by the recursion

ξn−1 : = 0, ξi−1 = AFξi + Bui (i = n − 1, . . . , 0).

Then we have ξ−1 = x̃ . Moreover, since A FV(�) ⊂ V(�) we have ξi ∈ V(�)

for all i . Since CFV(�) = 0 we therefore obtain C Fξi + Dui = 0 for all i . From
theorem 8.16 we conclude that x̃ ∈ T (�F ), with �F = (AF , B, CF , D). Using
theorem 8.17 we then find that R(�) ⊂ T (�).

(⊃) Let Tt , t = 0, 1, 2, . . . be defined by (8.16). We show that

V(�) ∩ Tt ⊂ R(�). (8.17)

The proof is by induction. Assume t = 1. Since T1 = B ker D, in this case (8.17)
follows from theorem 7.14. Next, assume that (8.17) is true up to t . Let x 1 ∈ V(�)∩

Tt+1. There exists x0 ∈ Tt and u0 ∈ U such that x1 = Ax0+Bu0 and Cx0+Du0 = 0.
This implies that Ax0 ∈ V(�)+ im B and Cx0 ∈ im D, which yields

(

A

C

)

x0 ∈ (V(�)× 0)+ im
(

B

D

)

.

Using theorem 7.10, the latter implies that x 0 ∈ V(�). Since also x0 ∈ Tt , by
induction hypothesis we have x0 ∈ R(�). Let F ∈ F(V(�)). We have

B(u0 − Fx0) = x1 − (A + B F)x0 ∈ V(�),

D(u0 − Fx0) = −(C + DF)x0 = 0,

and therefore

B(u0 − Fx0) ∈ V(�) ∩ B ker D ⊂ R(�).
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Since AFR(�) ⊂ R(�) (see (7.14)), we conclude that

x1 = (A + B F)x0 + B(u0 − Fx0) ∈ R(�).

8.4 The distributionally weakly unobservable subspace

In chapter 7 we have introduced the space of weakly unobservable points. A point
in the state space of the system � was called weakly unobservable if there exists an
input function such that the output resulting from that point and input is equal to zero.
In this section we introduce distributionally weakly unobservable points. These will
be points in the state space for which there exists a distributional input such that the
resulting output is zero.

Example 8.23 Consider the system � : ẋ = u, y = x with state space X = R.
Clearly, V(�) = 0. Let x(0) = a 	= 0. We claim that by choosing a suitable
distribution u as input, the resulting output can be made zero. Indeed, for a given
input u the corresponding state trajectory is obtained by solving ẋ = u+ aδ. Thus, if
we take u = −aδ this yields x = 0 and hence y = 0.

Definition 8.24 x0 ∈ X is called a distributionally weakly unobservable point if

there exists u ∈ U� such that yu,x0 = 0. The set of all distributionally weakly un-

observable points of � is denoted by W(�) and is called the distributionally weakly
unobservable subspace of �.

Again, it is easily seen that the set W(�) is indeed a linear subspace of X. Obviously,
we have

V(�) ⊂ W(�). (8.18)

From exercise 8.5 we have that for each x 0 ∈ T (�) there exists u ∈ U� such that
xu,x0(0

+) = 0 and yu,x0 = 0. Consequently, also

T (�) ⊂ W(�). (8.19)

In fact, it turns out that the sum of the weakly unobservable subspace and the strongly
reachable subspace, is equal to the distributionally weakly unobservable subspace:

Theorem 8.25 W(�) = V(�)+ T (�).

Proof : (⊃) This follows from the above.
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(⊂) Let x0 ∈ W(�). There exists an input u ∈ U� such that yu,x0 = 0. The
input u can be decomposed as u = u 1 + u2 with u1 impulsive and u2 smooth on R+.
Define x1 : = xu,x0(0

+). It follows from theorem 8.5 that, in fact,

x1 = xu1,x0(0
+).

Also, it is easily seen that u1 ∈ U� . Since

xu1,x0(0
+) = x0 + xu1,0(0

+),

we see that x1 − x0 = xu1,0(0
+) ∈ T (�). Since x0 = x1 − (x1 − x0) it therefore

suffices to show that x1 ∈ V(�). Let the distribution u2 correspond to the function
ũ2(t) with ũ2(t) = 0 for t < 0. According to theorem 8.6, the regular part of y u,x0

corresponds to the function ỹ(t) with ỹ(t) = 0 (t < 0) and ỹ(t) = y ũ2,x1(t) (t � 0).
Since yu,x0 = 0, we must have yũ2,x1(t) = 0 (t � 0). This however implies that
x1 ∈ V(�). This completes the proof of the theorem.

8.5 State space conditions for system invertibility

In this section we characterize the properties of left-invertibility, right-invertibility,
and invertibility of the system � in terms of the various subspaces introduced in
this chapter, and in chapter 7. Again consider the system � = (A, B, C, D). We
first characterize left-invertibility in terms of properties of the controllable weakly
unobservable subspace of �.

Theorem 8.26 The following statements are equivalent:

(i) � is left-invertible,

(ii) R(�) = 0 and
(

B

D

)

is injective,

(iii) V(�) ∩ B ker D = 0 and
(

B

D

)

is injective.

Proof : (i) ⇒ (ii) We first show that
(

B

D

)

has full column rank. Let P�(s) be the

system matrix of �. We have

normrank P� � n + rank
(

B

D

)

.

Hence, if � is left-invertible then according to corollary 8.10 the matrix (B T, DT) has
full rank m. Next, assume that 0 	= x1 ∈ R(�). There exists an input function ũ on
R+ and T > 0 such that x ũ(T, 0) = x1 and yũ(t, 0) = 0 for all t � 0 (see exercise
7.6). Let u ∈ D

m
0 be the distribution corresponding to ũ. Then u 	= 0 while y u,0 = 0.

(ii) ⇒ (i) If � is not left-invertible then the transfer matrix G(s) is not left-
invertible. Hence there exists a polynomial vector q(s) 	= 0 such that G(s)q(s) = 0.
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Let q(s) = q0 + q1s + · · · + qksk . Let r(s) : = sk+1. Define the rational vector f (s)

by f (s) : = q(s)/r(s). It is easily seen that the distribution f (δ̇) is smooth on R+

(recall that if ψ(s) = sℓ then ψ(p)−1 is the ℓ-fold convolution product h∗h∗ · · · ∗h).
Define as input u : = f (δ̇). Clearly

yu,0 = G(δ̇) ∗ r(δ̇)−1 ∗ q(δ̇)

= r(δ̇)−1 ∗ G(δ̇) ∗ q(δ̇) = 0.

Let ũ be the smooth function, corresponding to u. Then y ũ(t, 0) = 0 for all t � 0.
By exercise 7.6, x ũ(t, 0) ∈ R(�) for all t � 0. Consequently, x ũ(t, 0) = 0 for all
t and hence ẋ ũ(t, 0) = 0 for all t . Since x ũ(·, x0) satisfies the differential equation
ẋ = Ax + Bũ(t) and Cx ũ(t, x0)+ Dũ(t) = 0 for all t � 0, we find Bũ(t) = 0 and
Dũ(t) = 0 for all t � 0. Since ker B ∩ ker D = 0 we find ũ(t) = 0 for all t � 0.
Hence u = 0. In turn, this implies q(δ̇) = 0. This contradicts q(s) 	= 0.

(ii)⇔ (iii) This equivalence is an immediate consequence of theorem 7.14.

We now turn to right-invertibility. Consider the dual system � T with realization
(AT, CT, BT, DT). Of course, the transfer matrix of � T is equal to GT(s), the transpose
of G(s). Since GT(s) is a left-invertible rational matrix if and only if G(s) is a right-
invertible rational matrix, we find that � is right-invertible if and only if � T is left-
invertible. We use this observation to derive a state space characterization of right-
invertibility. Recall that V(�) and T (�) are dual concepts, in the sense that V(� T) =

T (�)⊥ (see theorem 8.20). Using this, we see that also R(�) and W(�) are dual
concepts, in the sense that R(�T) = W(�)⊥. By applying theorem 8.26 to � T we
obtain:

Theorem 8.27 The following statements are equivalent:

(i) � is right-invertible,

(ii) W(�) =X and (C D) is surjective,

(iii) T (�)+ C−1 im D =X and (C D) is surjective.

To conclude this section we show that the notions of strong observability (see
section 7.5) and strong controllability (see exercise 8.5) are related to the existence
of polynomial left-inverses and right-inverses of G(s), respectively. Recall that � is
strongly observable if and only if V(�) = 0. Thus, if � is strongly observable and if,
in addition, (B T, DT)T is injective then � is left-invertible. Dually, � is strongly con-
trollable if and only if T (�) = 0. Thus, if � is strongly controllable and if (C D) is
surjective, then � is right-invertible. We show that under these conditions the transfer
matrix G(s) has, in fact, a polynomial left-inverse and right-inverse, respectively.

Theorem 8.28

(i) If � is strongly observable and (B T, DT)T is injective, then there exists a poly-

nomial matrix PL (s) such that PL(s)G(s) = I .
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(ii) If � is strongly controllable and
(

C D
)

is surjective, then there exists a poly-

nomial matrix PR(s) such that G(s)PR(s) = I .

Proof : (i) According to theorem 7.17 the system matrix P�(s) has Smith form
(

I

0

)

.

By corollary 7.5 this implies that P�(s) is left-unimodular, i.e. there exists a polyno-
mial matrix L(s) such that L(s)P�(s) = I . Partition

L =

(

L11(s) L12(s)

L21(s) L22(s)

)

,

compatible with the partitioning of P�(s). It then follows that L21(s)(s)(I s − A)+

L22(s)C = 0 and that −L21(s)B + L22(s)D = 0. From this it is easy to verify that
L22(s)G(s) = I .

(ii) The second assertion follows by a duality argument.

8.6 Exercises

8.1 Consider � = (A, B, C, D). Show that R(�) = 0 if and only if

rank P�(λ) = n + rank
(

B

D

)

(8.20)

for all but finitely may λ ∈ C (equivalently: if and only if normrank P� =

n + rank(B T, DT)T.

8.2 From exercise 7.9, recall the definitions of strong detectability and minimum
phase system.

a. Show that � is strongly detectable if and only if (8.20) is satisfied for all
λ ∈ C+.

b. Show that if � is strongly detectable and (B T, DT)T is injective, then all in-
variant factors of P�(s) are non-zero and Hurwitz (a non-zero polynomial
is called Hurwitz if all its roots lie in C−).

c. Use (b) to show that if � is strongly detectable and (B T, DT)T is injective,
then the transfer matrix G(s) has a C−-stable left inverse (in general not
proper).

d. Show that if � is an invertible minimum phase system then it has a C−-
stable inverse (in general not proper).

8.3 � is called a prime system if it is strongly observable and strongly controllable.
Show that if � is prime and if (B T, DT)T is injective and (C D) is surjective
then the transfer matrix G(s) has a polynomial inverse.

8.4 Consider the system �. A point x0 ∈ X is called strongly controllable if there
exists an impulsive input u ∈ U� such that xu,x0(0

+) = 0.
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a. Let x0 ∈ X and u ∈ D
m
0 . Show that xu,x0(0

+) = x0 + xu,0(0+).

b. Show that x0 ∈ X is strongly controllable if and only if it is strongly
reachable.

c. Show that for all x0 ∈ T (�) there exists an impulsive u ∈ U� such that
xu,x0(0

+) = 0 and yu,x0 = 0.

8.5 The system � is called strongly controllable if each x 0 ∈ X can be steered to
the origin instantaneously, by means of an admissible input u. Formally: if for
all x0 ∈ X there exists an impulsive u ∈ U� such that xu,x0(0

+) = 0. Show
that the following statements are equivalent:

a. � is strongly controllable,

b. T (�) = X,

c. the dual system �T is strongly observable,

d. rank P�(λ) = n + rank
(

C D
)

for all λ ∈ C,

e. the Smith form of P� is equal to the constant matrix

Q =

(

I 0
0 0

)

.

Here I denotes the (n + r)× (n + r) identity matrix, r : = rank
(

C D
)

,

f. (A + GC, B + G D) is controllable for all G.

8.6 Consider the system � = (A, B, C, D) and let � T be the dual of �.

a. Show that R(�) and W(�) are dual concepts, in the sense that R(� T) =

W(�)⊥.

b. Show that for all G ∈ G(�) we have

W(�) = 〈T (�)+ C−1 im D | A + GC〉,

(here C−1 im D : = {x ∈ X | Cx ∈ im D}).

8.7 Notes and references

The use of distributions in order to describe various subspaces of the state space of
the system was suggested by Willems in [215], and by Hautus and Silverman in [76].
Additional material can be found in Willems, Kitapçi and Silverman [219].

Invertibility of linear multivariable systems was studied by Silverman in [176]
and [177]. Conditions for invertibility in terms of the Toeplitz matrix associated
with the system were obtained in Sain and Massey [161], see also the work of Wang
and Davison [209]. In [179], Silverman and Payne derived conditions for system
invertibility using the so-called structure algorithm.
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The analogue of the strongly reachable subspace in a discrete-time framework
already appeared in the work of Molinari [126]. In particular, the recursive algorithm
8.16 was introduced there. For continuous time systems, a detailed exposition of
the strongly reachable subspace can be found in Hautus and Silverman [76]. Related
material can be found in Willems, Kitapçi and Silverman [219]. The relation between
system invertibility, and the strongly reachable and weakly unobservable subspace
was already described in Wonham’s textbook [223], ex. 5.17. A detailed treatment
can be found in Hautus and Silverman [76]. In [171], Schumacher discussed strongly
controllable systems and their invertibility properties. Finally, related material on
the connection between invertibility properties of the system, and its geometric state
space properties can be found in the work of Morse [129], and in the work of Aling
and Schumacher [3] and Chen [27].
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Chapter 9

Tracking and regulation

9.1 The regulator problem

An important feedback synthesis problem is to design for a given control system a
dynamic feedback controller such that the output of the resulting closed-loop system
tracks (i.e., converges to), some a priori given reference signal. This problem is
known as the servo problem.

In the case that the reference signal is equal to a Bohl function from a certain time
on (which covers the important special cases that the reference signal is, for exam-
ple, a step function, a ramp function or a sinusoid), one way to approach the servo
problem is to let the reference signal be generated by some dynamical model, more
specifically, to set up some linear, time invariant, autonomous system that, for some
appropriate initial state, has the reference signal as its output. Note that the frequen-
cies of this reference signal are fixed by the dynamics of this autonomous system
(to be called the exosystem) while phase and amplitude of the different frequencies
is determined by the initial condition of this exosystem. One then incorporates the
equations of this exosystem into the equations of the control system, and defines a
new output as the difference between the outputs of the exosystem and the control
system. The servo problem can then be reformulated as: design a dynamic feedback
controller such that the output of the aggregated system converges to zero regardless
of its initial state. In particular, by taking the appropriate initial state for the exosys-
tem, the deviation of the output from the reference signal (called the tracking error)
will then converge to zero as time tends to infinity.

A second important synthesis problem is the problem of output regulation. For
a certain control system that is subjected to external disturbances, the problem is
here to design a dynamic feedback controller such that the output of the closed-loop
system converges to zero as time tends to infinity, regardless of the disturbance and
the initial state. One way to approach this problem is to consider the disturbances to
be completely unknown, but to be elements of some function class D (in fact, this
setup is worked out in exercise 6.4). In this chapter, we will take an alternative point
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of view and assume the disturbances, albeit unknown, to be generated as outputs of
some linear time-invariant autonomous system, again to be called the exosystem. This
basically amounts to the fact that the function class D dictates that there are only a
fixed set of frequencies in the disturbance signal. Each initial state of the exosystem
then corresponds to one disturbance function and this initial state fixes the phase and
amplitude of each frequency. One incorporates the equations of the exosystem into
the equations of the control system, and requires the output of the new, aggregated,
system to converge to zero (to be regulated), regardless of the initial state.

Of course, an even more general problem formulation is obtained by combining
these two synthesis problems into a single one by requiring the design of a dynamic
feedback controller such that the output of the closed loop system tracks a given
reference signal, regardless of the disturbance and the initial state. It should be clear
that this combined problem can be approached by combining the two exosystems into
a single one and to require regulation of the tracking error.

As an illustration, consider a scalar control system whose output is required to
track a sinusoid, in the presence of constant disturbances. Let the control system be
given by

ẋ1(t) = a11x1(t)+ b1u(t)+ a14d(t), z1(t) = x1(t).

Suppose the reference signal is r(t) = sin ωt . This reference signal can be generated
by the system

ẋ2(t) = x3(t),

ẋ3(t) = −ω2x2(t),

r(t) = x2(t),

by taking the initial conditions x2(0) = 0 and x3(0) = ω. The tracking error is equal
to z1(t) − r(t). Suppose that the disturbances d are known to be constant, but with
unknown magnitude. This can be modelled by letting the disturbances be generated
by

ẋ4(t) = 0,

d(t) = x4(t).

Both reference signal and disturbance signals can be thought of as being generated by
a single exosystem, obtained by combining the respective equations. The aggregated
system is then given by









ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)









=









a11 0 0 a14
0 0 1 0
0 −ω2 0 0
0 0 0 0

















x1(t)

x2(t)

x3(t)

x4(t)









+









b1
0
0
0









u(t),

z(t) =
(

1 −1 0 0
)









x1(t)

x2(t)

x3(t)

x4(t)









.
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In addition to the requirements of tracking and regulation, a realistic design requires
the property of internal stability. Obviously, one can not expect to be able to intern-
ally stabilize the aggregated system, since typically part of this system (the exosys-
tem) can not be influenced by controls and will generally be unstable. Thus, in the
present context the requirement of internal stabilization should be interpreted as inter-
nal stabilization of the interconnection of the original control system and the designed
controller.

We will now make things more precise. Suppose that we are given a control
system which is subject to a disturbance of a specified type, and whose output should
track a given reference signal. This situation is modelled as the interconnection of
two systems, �1 and �2, where �2 denotes the control system and �1 an autonomous
system that generates the disturbances and the reference signal, called the exosystem.

�1
✲ �2

Ŵ
✻

✲

❄u y

z

It is assumed that the control system also has a control input u and two outputs
y and z, as in the previous chapters. Also, we assume that a stability domain C g has
been prescribed. The regulator problem then consists of finding a controller Ŵ such
that for the resulting closed loop system the following properties hold:

• the regulation property: z(t) is Cg-stable for any initial state of the total closed
loop system.

• internal stability: for zero initial state of the exosystem and any initial state of
the control system and the controller, the combined state of the control system
and the controller is Cg-stable.

Again, we note that we can not hope to achieve internal stability of the total closed
loop system, since the exosystem is completely uncontrollable and typically unstable.
If it happens to be internally stable, the problem reduces to the classical stabilization
problem, treated in section 3.12. In fact, one usually assumes that the exosystem is
antistable (see definition 2.12).

Let us now specify the system considered. We shall assume that the exosystem
�1 is given by the equation

ẋ1(t) = A1x1(t), (9.1)
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while the plant �2 is assumed to be given by the equations

ẋ2(t) = A3x1(t) + A2x2(t) + B2u(t),
y(t) = C1x1(t) + C2x2(t),
z(t) = D1x1(t) + D2x2(t) + Eu(t).

(9.2)

The state space X2 of �2 is assumed to be n2-dimensional. The output space Z is r -
dimensional. The disturbance enters the plant via the term A 3x1 in the state equation
and via the terms C1x1 and D1x1 in the output equations. We allow for a direct
feedthrough term Eu from the control input to the to-be-controlled variable. Such a
term is omitted in the equation for y, because it would have been inconsequential for
the present problem.

It is convenient to combine �1 and �2 according to equations (9.1) and (9.2) to
one system � with state variable x = (x T

1, x T
2)

T and coefficient matrices

A : =

(

A1 0
A3 A2

)

, B : =

(

0
B2

)

, C : =
(

C1 C2
)

,

D : =
(

D1 D2
)

,

(9.3)

so that we have the following equations for � :

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t),
z(t) = Dx(t) + Eu(t).

(9.4)

Before investigating the existence of a controller with the desired properties, we
describe what systems already satisfy the regulation property and the internal stability
condition. We define these properties for systems without control inputs, equivalently,
for u = 0. We say that � is endostable if �2 is internally stable. This means that for
x1(0) = 0 and arbitrary x2(0), the state x2(t) is Cg-stable. We say that � is (output)
regulated if z(t) is Cg-stable for every initial state of �. These properties can be
expressed in terms of the coefficient matrices. Obviously, � is endostable if and only
if σ(A2) ⊂ Cg . For output regulation, we have the following result.

Lemma 9.1 Assume that σ(A2) ⊂ Cg . Then the system � with input u = 0 is output

regulated if the equations

T A1 − A2T = A3,

D2T + D1 = 0
(9.5)

in T are solvable. If A1 is antistable, this condition is also necessary.

If A1 is not antistable then we can delete the stable part since it does not effect
regulation which is only an asymptotic condition. In this way we can basically reduce
the general problem to the case when A1 is antistable.

Proof : The main idea is that for large t , the state x 2 of the plant is close to T x1, for a
suitable linear map T . So we introduce the variable v : = x 2−T x1, where we specify
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T later on. In a straightforward calculation, one derives from the equations (9.1) and
(9.2) that

v̇(t) = A2v(t) + (A2T − T A1 + A3)x1(t) ,

z(t) = D2v(t)+ (D1 + D2T )x1(t) .
(9.6)

Now assume that T is a solution of the equations (9.5). Then the equations (9.6)
reduce to

v̇(t) = A2v(t),
z(t) = D2v(t).

Since A2 is Cg-stable, theorem 3.23 implies that z(t) is Cg-stable.

Conversely, assume that A1 is antistable and that the system � is regulated and
endostable. Then it follows from Sylvester’s Theorem (see section 9.3) that there
exists a (unique) matrix T satisfying the first equation of (9.5). Substituting this
into (9.6), we find that v(t) is Cg-stable. Since z(t) is also Cg-stable, this implies
that (D2T + D1)x1(t) is Cg-stable. However, because x1 is antistable for any initial
condition, we must have that D2T + D1 = 0.

Now we want to solve the regulator problem by constructing a controller such that
the closed loop system satisfies the conditions of lemma 9.1. As usual, the controller
Ŵ will be of the form

ẇ(t) = Kw(t) + Ly(t),
u(t) = Mw(t) + Ny(t).

(9.7)

The closed loop system will be equal to the cascade connection � cl of �1 and �2,cl ,
where �2,cl is the feedback interconnection of �2 and Ŵ, given by

ẋ2e(t) = A2ex2e(t) + A3ex1(t),
z(t) = D1ex1(t) + D2ex2e(t),

where

A2e : =

(

A2 + B2 NC2 B2M

LC2 K

)

, A3e : =

(

A3 + B2 NC1
LC1

)

,

D2e : =
(

D2 + E NC2 E M
)

, D1e : = D1 + E NC1.

(9.8)

We call Ŵ a regulator if �cl is endostable and output regulated. The problem of
finding a regulator will be called the regulator problem. It follows from lemma 9.1
that the regulator problem can be solved by finding Ŵ = (K , L, M, N) such that A 2e

is stable and the equations

Te A1 − A2eTe = A3e , D2eTe + D1e = 0 (9.9)

have a solution Te. The existence of a solution Te is necessary for the existence of a
regulator if A1 is antistable. In order to be able to solve this problem we shall make
two assumptions:
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• �2 is stabilizable with u as input, i.e., (A2, B2) is stabilizable.

• � is detectable with y as output, i.e., (C, A) is detectable

Obviously, the stabilizability of �2 is necessary for the existence of a regulator. Also
the detectability of �2 is necessary. However, here we impose a more restrictive
condition on the system, viz. the detectability of the total system �. Note that there
exists a standard reduction technique to solve the problem when � 2 is detectable but
� is not detectable. In an appropriate manner, this technique deletes the undetectable
modes and only requires us to design a suitable regulator for the remaining system
which satisfies the stronger condition of detectability we impose in this chapter. For
details we refer to [44, 159]. Then we have the following result:

Theorem 9.2 Assume that (A2, B2) is stabilizable and (C, A) is detectable. Then

there exists a regulator if the equations

T A1 − A2T − B2V = A3,

D1 + D2T + EV = 0
(9.10)

have a solution (T, V ). If A1 is antistable, the solvability of (9.10) is necessary for

the existence of a regulator. Specifically, if G : Y → X is such that σ(A + GC) ⊂

Cg , F2 : X → U is such that σ(A2 + B2 F2) ⊂ Cg and if F1 := −F2T + V ,

F : = (F1 F2), where (T, V ) is a solution of (9.10), then a regulator is given by

ẇ(t) = (A + GC + B F)w(t)− Gy(t),

u(t) = Fw(t).
(9.11)

Proof : Assume that A1 is antistable and that a regulator exists. This regulator sat-
isfies (9.9) for some Te. We decompose Te into Te = (T T, U T)T and substitute (9.8)
into (9.9). The first block row of the first of the resulting equations reads:

T A1 − (A2 + B2 NC2)T − B2MU = A3 + B2 NC1

and the second equation reads:

D1 + (D2 + E NC2)T + E MU + E NC1 = 0.

These relations show that (T, NC2T + MU + NC1) is a solution of (9.10).

Conversely, assume that (T, V ) satisfies (9.10). Define a controller Ŵ by

(K , L, M, N) : = (A + GC + B F,−G, F, 0)

i.e., by (9.11) where F and G satisfy the conditions of theorem 9.2. We claim that Ŵ

is a regulator. To show this, we have to prove that the resulting extended system is
endostable, and that we have the regulation property. In order to prove endostability,
we introduce r : = w − x and notice that x and r satisfy

ẋ(t) = (A + B F)x(t) + B Fr(t) ,

ṙ(t) = (A + GC)r(t) .
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Obviously, r(t) is Cg-stable. If x1(0) = 0 (and hence x1(t) = 0 for all t), the first
equation reduces to

ẋ2(t) = (A2 + B2 F2)x2(t)+ B2 Fr(t).

Then we also have x2(t) is Cg-stable (compare theorem 2.7). Next we verify that
�e is output regulated. To this extent, we define U : = (I, T T)T and we claim that
Te : = (T T, U T)T satisfies (9.9). To show this, we substitute this and (9.8) into (9.9).
Then for the first equation of (9.9) we have to prove that

(

T

U

)

A1 −

(

A2 B2 F

−GC2 A + GC + B F

)(

T

U

)

=

(

A3
−GC1

)

.

We notice that FU = V . Hence the first block equation is exactly the first equation
of (9.10), viz. T A1− A2T − BV = A3. The second equation takes some more effort.
It reads:

G(C1 + C2T − CU)+U A1 − AU − BV = 0.

The expression between parentheses equals zero because of the definition of U . The
remaining terms are decomposed according to (9.3):

(

I

T

)

A1 −

(

A1 0
A3 A2

)(

I

T

)

−

(

0
B2

)

V =

(

A1 − A1
T A1 − A3 − A2T − B2V

)

= 0,

where we have used the first equation of (9.10). This shows that the first equation of
(9.9) is satisfied.

Next we consider the second equation of (9.9). It reads D 1 + D2T + EV = 0,
which is the same as the second equation of (9.10) and hence it is immediately clear
that this is also satisfied.

9.2 Well-posedness of the regulator problem

A mathematical problem is called well posed if it is solvable and it remains solvable
after a small perturbation of the data of the problem. The equation x 2+ y2−ay+b =

0, for example, is solvable (in R2) for a = 2 and b = 1, but it is not well posed for
these values of a and b because the solvability is lost when b is replaced by 1+ ε for
arbitrary ε > 0. The investigation of the well-posedness is easy for linear equations.
As a matter of fact, we have

Lemma 9.3 Let X and Y be finite-dimensional linear spaces and let A : X→ Y be

a linear map and b ∈ Y. Then the equation Ax = b in the variable x is well posed if

and only if A is surjective.
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Proof : If A is surjective, any matrix representation of A will have a nonzero sub-
determinant of dimension equal to the number of rows. Since this determinant is a
continuous function of the entries of the matrix (in fact, a polynomial) it follows that
it will remain nonzero when the entries are perturbed a little bit. Hence, A will remain
surjective, after a small perturbation. Therefore, the equation Ax = b remains solv-
able for small perturbations of A and b. Obviously, b can be perturbed in an arbitrary
way and not just locally.

Conversely, if A is not surjective, im A is a proper subspace of Y. The equation
Ax = b is solvable if and only if b ∈ im A. However, b cannot be an interior point
of im A, since im A contains no interior points. Consequently, an arbitrary small
perturbation of b may take it out of im A and hence destroy the solvability of the
equation.

Remark 9.4 In concrete situations, it is of importance to specify more precisely what
the ‘data’ of the problem is. Sometimes not all of the entries in a matrix are considered
data and subject to perturbations. For example, if A is a companion matrix, only the
last row is considered data. The remaining entries consist of ‘hard’ zeros and ones. It
follows from the above proof that the necessity of the surjectivity of A still holds if
only the vector b is considered data.

Remark 9.5 Usually, and in particular in the case of lemma 9.3, the well-posedness
problem is easier to solve than the original equation. It is easier to verify the surjec-
tivity of a map A than to examine the solvability of the equation Ax = b.

We want to apply the above result to the regulator problem. For the solvability
of the regulator problem, a number of conditions are imposed. In the first place, it
is assumed that �2 is stabilizable and � detectable. It is not difficult to see that
these properties are invariant under small perturbations. For instance, if (A, B) is
stabilizable and F is a stabilizing feedback, then A + B F is a stability matrix. Since
the eigenvalues depend continuously on the matrix, Ā+ B̄ F is also a stability matrix
if Ā and B̄ are close to A and B. The important part to check is the well-posedness
of the matrix linear equation (9.10). For this, we apply the previous theorem. We find
that the equation:

T A1 − A2T − B2V = A3,

D2T + EV = −D1

in the variables T and V is well posed if and only if the map

(T, V ) �→ (T A1 − A2T − B2V, D2T + EV )

is surjective. In order to check this condition, one can give a matrix representation
of this map using tensor products. We will however follow a different procedure,
based on general considerations on the solvability of matrix equations. The advantage
of the condition thus obtained will be that it can be interpreted in systemic terms,
specifically, in terms of the zeros of a system.
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9.3 Linear matrix equations

The subject of this section is the solvability of linear matrix equations of the form

k
∑

i=1

Ai X Bi = C, (9.12)

where Ai , Bi and C are given matrices and X is unknown. We distinguish between
universal and individual solvability of (9.12). We say that (9.12) is universally solv-
able if the equation has a solution for every C . Universal solvability thus is a con-
dition on the matrices A i and Bi . If we want to stress that the equation is solvable
for the particular C given, we say that (9.12) is individually solvable. Conditions for
solvability can be given by viewing the left-hand side of (9.12) as a linear map L

acting on the matrix X . Then (9.12) is individually solvable if and only if C ∈ im L,
and (9.12) is universally solvable if and only if L is surjective. One can give explicit
conditions for these properties using tensor (or Kronecker) products, but this will give
rise to huge matrices and little insight. Rather, we would like to have results in the
spirit of Sylvester’s theorem: the equation AX−X B = C, where A and B are square

matrices, is universally solvable if and only if σ(A) ∩ σ(B) = ∅. It does not seem
possible to obtain a similar result for the general equation (9.12). However, if we
restrict ourselves to the case where the matrices B i are of the form Bi = qi (B) for
given polynomials qi and a fixed matrix B, we can derive the following:

Theorem 9.6 Let Ai ∈ Rn×m , B ∈ Rp×p , and let qi (s) be polynomials for i =

1, . . . , k. Let

A(s) : =

k
∑

i=1

Ai qi (s). (9.13)

Then the equation

k
∑

i=1

Ai Xqi (B) = C, (9.14)

is universally solvable if and only if rank A(λ) = n for all λ ∈ σ(B).

It is straightforward that Sylvester’s theorem is a special case of this result.

Proof : (‘only if’:) Suppose that rank A(λ) < n for some λ ∈ σ(B). Choose nonzero
vectors v and w such that Bv = λv and wT A(λ) = 0. Then we have for any matrix
X :

wT
∑

Ai Xqi (B)v = wT
∑

Ai Xqi (λ)v = wT A(λ)Xv = 0.

Hence, if wTCv 	= 0 (e.g. if C = wvT), (9.14) does not have a solution.
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(‘if’:) The polynomial matrix A(s) is obviously right invertible as a rational ma-
trix. Hence there exists a polynomial matrix D(s) and a scalar polynomial a(s) such
that A(s)D(s) = a(s)I , where a(s) is the product of the invariant factors of A(s). The
assumption of the theorem implies that a(λ) 	= 0 for λ ∈ σ(B), hence, by the spectral
mapping theorem (see (2.11)), that a(B) is nonsingular. Defining C 1 : = C(a(B))−1

and E(s) : = D(s)C1 we find

k
∑

i=1

Ai E(s)qi (s) = A(s)E(s) = C1a(s).

Next we apply right substitution of s = B into this equation and use theorem 7.6.
This yields

∑k
i=1 Ai Er (B)qi (B) = C1a(B) = C , which shows that X : = Er (B)

(the index r indicates right substitution) is a solution of (9.14).

Next we investigate the individual solvability of equation (9.14). For the equa-
tions AX − X B = C and AX − Y B = C , such conditions were given by Roth in
1952, viz.

Theorem 9.7

(i) Let A, B and C be matrices such that the equation AX − X B = C is defined.

Then this equation has a solution if and only if the matrices

(

A 0
0 B

)

and

(

A C

0 B

)

are similar.

(ii) If A, B and C are polynomial matrices of dimensions such that the equations

AX − Y B = C makes sense, then this equation has a (polynomial matrix)

solution if and only if

(

A 0
0 B

)

and

(

A C

0 B

)

are unimodularly equivalent.

An elegant proof of these theorem can be found in [80, Theorem 4.4.22]. We want
to generalize this result to the equation (9.14). A generalization in terms of similarity
seems difficult. However, it is known that two matrices A and Ā are similar if and
only if the polynomial matrices s I − A and s I − Ā are unimodularly equivalent.
Hence, according to Roth, the equation AX − X B = C is solvable if and only if the
polynomial matrices

(

s I − A 0
0 s I − B

)

and
(

s I − A C

0 s I − B

)

are unimodularly equivalent. This formulation has a direct generalization:
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Theorem 9.8 Let Ai , B, qi(s) and A(s) be as in theorem 9.6. Then equation (9.14)

is (individually) solvable if and only if the matrices

(

A(s) 0
0 s I − B

)

and

(

A(s) C

0 s I − B

)

(9.15)

are unimodularly equivalent.

Proof : First we note that (9.14) has a solution if and only if the equation

A(s)P(s)+ Q(s)(s I − B) = C (9.16)

in the polynomial matrices P(s), Q(s) has a solution. In fact, if (9.16) has a solution,
we apply right substitution of s = B into this equation, yielding (9.14) with X =

Pr (B) (the index r indicates right substitution). Conversely, let X be a solution of
(9.14). Then we write:

C − A(s)X =
∑

i

Ai X (qi (B)− qi (s)I ) =
∑

i

Ai Vi (s)(s I − B)

for certain polynomial matrices Vi (s). Hence (P(s), Q(s)) : = (X,
∑

Ai Vi (s)) is
a solution of (9.16). Next we notice that equation (9.16) is an equation of the type
given in theorem 9.7 (ii). Hence (9.16) is solvable if and only if the two matrices in
(9.15) are unimodularly equivalent.

9.4 The regulator problem revisited

In theorem 9.2, we saw that subject to the assumptions that �2 is stabilizable and �

is detectable, a sufficient condition for the existence of a regulator is the solvability
of the matrix equation (9.10). In the present section, we intend to apply the results of
section 9.3. To this extent, we rewrite (9.10) to

(

−A2 −B2
D2 E

)(

T

V

)

+

(

I 0
0 0

)(

T

V

)

A1 =

(

A3
−D1

)

. (9.17)

This is an equation of the form (9.14). The solvability of this equation is not affected
if the right-hand side is multiplied by -1. After this, the matrices defined in theorem
9.6 reduce to

A(s) =

(

s I − A2 −B2
D2 E

)

, B = A1, C =

(

−A3
D1

)

. (9.18)

Hence according to theorem 9.8, equation (9.17) has a solution if and only if the
matrices

P(s) : =





s I − A1 0 0
−A3 s I − A2 −B2
D1 D2 E
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and

Pdisc(s) : =





s I − A1 0 0
0 s I − A2 −B2
0 D2 E





are unimodularly equivalent. Here we have applied an obvious row and column oper-
ation. Note that P(s) is the system matrix as defined in section 7.2. Also Pdisc(s) can
be interpreted as a system matrix, viz. the system matrix of the disconnected system
�disc obtained from � by disconnecting �1 and �2, i.e., by setting A3 = 0, D1 = 0.
Recall that two polynomial matrices are unimodularly equivalent if and only if they
have the same invariant factors (corollary 7.3). The invariant factors of the system
matrix are defined to be the transmission polynomials of the system. Hence we have
found the following:

Theorem 9.9 Assume that (A2, B2) is stabilizable and that (C, A) is detectable.

Then there exists a regulator for � if � and �disc have the same transmission poly-

nomials. If A1 is antistable then this condition is also necessary.

Now we investigate the well-posedness of the regulator problem. As was shown
in section 9.2, this is guaranteed if the equation (9.10) or, equivalently, (9.17) is well
posed (assuming that �2 is stabilizable and � is detectable. Recall that these condi-
tions are well posed). Hence, applying theorem 9.6, we find the following result:

Theorem 9.10 Assume that (A2, B2) is stabilizable and (C, A) is detectable. Then

the regulator problem is well posed if

rank
(

λI − A2 −B2
D2 E

)

= n2 + r

(i.e., of full row rank) for every λ ∈ σ(A1). If A1 is antistable this condition is also

necessary.

In system-theoretic terms this condition requires that �2 is right-invertible and its

zeros do not coincide with poles of �1 (for the notion of right-invertibility we refer to
chapter 8). The necessary and sufficient conditions of this section are easily extended
to the case where A1 is not antistable. We omit the details. (See also exercise 9.2)

9.5 Exercises

9.1 Consider the system given as the interconnection of the exosystem

ẋ1(t) = −ωx2(t),

ẋ2(t) = ωx1(t),



Exercises 207

and the control system

ẋ3(t) = −x3(t)+ x5(t)+ ax1(t),

ẋ4(t) = x5(t),

ẋ5(t) = x3(t)+ 3x4(t)+ 2x5(t)+ u(t),

y(t) =









x2(t)

x3(t)

x4(t)

x5(t)









,

z(t) = x3(t)− x1(t),

Assume that Cg = C−.

a. For which values of a and ω is the regulator problem well posed?

b. Construct a regulator.

9.2 Consider the regulator problem without the assumption that A 1 is antistable.
Show that if (A2, B2) is stabilizable and (C, A) is detectable, then the regulator
problem is well posed if and only if

rank
(

λI − A2 −B2
D2 E

)

= n2.

for every λ ∈ σ(A1) ∩ Cb .

9.3 Let A ∈ R
n×n and F(s) be an n ×m polynomial matrix. Show that

rank(λI − A F(λ)) = n

for all λ ∈ C if and only if (A, Fℓ(A)) is controllable. Here, Fℓ(A) denotes the
result of substituting s = A into F(s) from the left.

9.4 Show that (A, B) is controllable if and only if for every n × n matrix C there
exist matrices X and U (of suitable dimensions) such that X A−AX+BU = C .

9.5 In this problem we consider the regulator problem. Let the exosystem be given
by the equation

�1 : ẋ1 = α1x1,

with x1(t) ∈ R, α1 � 0. In addition, let the plant be given by

�2 :
ẋ2 = a3x1 + A2x2 + B2u,

y = z = d1x1 + D2x2,

with x2(t) ∈ Rn2 (we write a3, d1 instead of A3, D1 to stress that these matri-
ces consist of one column). Assume that (A2, B2) is C−-stabilizable and that
(D, A) is C

−-detectable where

A : =

(

α1 0
a3 A2

)

; D : = (d1 D2).
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a. Show that if

Ŵ :
ẇ = Kw + Ly,

u = Mw + Ny,

is a regulator, then there exists vectors t0 and u0 such that

(α1 I − A2)t0 − B2Mu0 = a3,

K u0 = α1u0,

D2t0 + d1 = 0.

b. Show that if Ŵ is a regulator then α1 is an eigenvalue of K .

c. Now let the exosystem be given by

�1 : ẋ1 = A1x1,

with x1(t) ∈ Rn1 , A1 anti-stable. In addition, assume that the plant is
given by

�2 :
ẋ2 = A2x2 + A3x1 + B2u,

y = z = D1x1 + D2x2.

Again assume that (A2, B2) is C−-stabilizable and that (D, A) is C−-
detectable, with D and A defined as usual. Use the ideas from a) and
b) to show that if Ŵ is a regulator, then we have σ(A 1) ⊂ σ(K ).

The phenomenon illustrated in this problem is an example of the famous inter-

nal model principle: the set of eigenvalues σ(A1) of the exosystem is contained
in the set of eigenvalues σ(K ) of the regulator: in a sense, the regulator con-
tains an internal model of the exosystem.

9.6 Notes and references

The regulator problem has been studied by many people. See for instance Davi-
son in [35], Davison and Goldenberg in [36], Francis in [44], Francis and Wonham
in [48] and Desoer and Wang in [38]. The theory has also been extended to for in-
stance nonlinear systems by Isidori and Byrnes in [87]. Many results have recently
been collected by Saberi, Stoorvogel and Sannuti in the book [159]. The regulator
equations (9.9) were originally introduced by Francis in [45].

The techniques presented in section 9.3 can be found in the work of Hautus
[73, 75]. The Sylvester equation is actually quite an old subject, and was originally
introduced by Sylvester in [192].

Well-posedness was studied by Wonham in section 8.3 of [223] and by Hautus
in [73]. Note that this basically still requires that if the system is perturbed then
we need a new controller. In structural stability , we are looking for one controller
which stabilizes a neighborhood of the given plant. This problem was studied in
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many variations and has been studied by Francis, Sebakhy and Wonham in [47], by
Davison and Goldenberg in [36], by Desoer and Wang in [38], by Pearson, Shields
and Staats in [142] and by Francis and Wonham in [48]. More recently the known
results were extended by Saberi, Stoorvogel and Sannuti in the book [159].

The internal model principle studied by Wonham in [223] and by Francis and
Wonham in [48] was only for the case that the to be regulated signal is equal to the
measurement signal. Extensions to the general case can be found in the book [159]
by Saberi, Stoorvogel and Sannuti. Note that the internal model principle is unrelated
to well-posedness, structural stability (which is sometimes also referred to as robust
regulation) which is sometimes alluded to in the literature. It is a basic property
resulting directly from the fact that we achieve regulation.
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Chapter 10

Linear quadratic optimal

control

In the previous chapters we have been concerned with control problems that require
the controlled system to satisfy specific, qualitative, properties, such as internal sta-
bility, the property of being disturbance decoupled, external stability, the regulation
property, etc.. In the present chapter we will take into account quantitative aspects.
Given a control system, we will express the performance of the controlled system in
terms of a cost functional. The control problem will then be to find all optimal con-
trollers i.e, all controllers that minimize the cost functional. Such controllers lead to
a controlled system with optimal performance.

10.1 The linear quadratic regulator problem

Consider the control system � given by the equations

ẋ(t) = Ax(t)+ Bu(t),

z(t) = Cx(t)+ Du(t).
(10.1)

Here, u is the control input, and z is the output to be controlled. We assume that u

takes its values in U, which we identify with Rm , and z takes its values in Z, to be
identified with Rp . The state x is assumed to take its values in X, to be identified
with Rn .

We now explain what we mean by a disturbance. By a disturbance we mean
the occurrence of an ‘initial state’ x(0) = x 0. This could alternatively be modelled
by replacing the differential equation of � by ẋ = Ax + Bu + δx 0, where δx0 is
interpreted as a disturbance input.

Suppose that it is desired to keep all components of the output z(t) as small as
possible, for all t . In the ideal situation, the uncontrolled system (u = 0) evolves
along the stationary solution x = 0. Of course, the output z(t) will then also be
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equal to zero for all t . Suppose now that at time t = 0 the state of the system is
perturbed to, say, x(0) = x0. After the occurrence of this impulsive disturbance,
the uncontrolled system will evolve along a state trajectory unequal to the stationary
zero solution, and we will get z(t) = Ce At x0. If, however, from time t = 0 on, we
apply an input function u, then for t � 0 the corresponding output becomes equal to
z(t) = Cx(t) + Du(t). Keeping in mind that we want the output z(t) to be as small
as possible for all t � 0, we measure its size by the quadratic cost functional

J (x0, u) =

∫ ∞

0
‖z(t)‖2 dt, (10.2)

where ‖ ·‖ denotes the Euclidean norm. Our desire to keep the values of the output as
small as possible can be expressed by requiring this integral to be as small as possible
by suitable choice of input function u. In this way we arrive at the linear quadratic

regulator problem:

Problem 10.1 Consider the system � : ẋ(t) = Ax(t)+Bu(t), z(t) = Cx(t)+Du(t).

Determine for every initial state x0 an input u ∈ U (a space of functions [0,∞) →

U) such that

J (x0, u) : =

∫ ∞

0
‖z(t)‖2 dt (10.3)

is minimal. Here z(t) denotes the output trajectory zu(t, x0) of � corresponding to

the initial state x0 and input function u.

Since the system is linear and the integrand in the cost functional is a quadratic
function of z, the problem is called linear quadratic. Of course, ‖z‖ 2 = x TCTCx +

2uT DTCx + uT DT Du, so the integrand can also be considered as a quadratic function
of (x, u).

In the problem formulation, we are not explicit about the exact nature of U. In
fact, like in the previous chapters, it is not very important what U is. One can take
e.g. the space of piecewise continuous functions, the space of piecewise smooth (i.e.
piecewise C∞) functions or the space of locally integrable functions. In the last case,
one has to interpret the various formulas in a measure-theoretic sense (in particular,
formulas containing derivatives have to be understood to hold ‘almost everywhere’).

Of course, the convergence of (10.3) is a point of concern. Therefore, one often
considers the corresponding finite horizon problem in a preliminary investigation. In
this problem, a final time T is given and one wants to minimize the integral

J (x0, u, T ) : =

∫ T

0
‖z(t)‖2 dt . (10.4)

In contrast to this, the first problem above is sometimes called the infinite horizon

problem.

An important issue is the convergence of the state. Obviously, convergence of the
integral does not always imply the convergence to zero of the state. Therefore, dis-
tinction is made between the problem with zero and with free endpoint. Problem 10.1
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as stated is referred to as the problem with free endpoint. If one restricts the inputs
u in the problem to those for which the resulting state trajectory tends to zero, one
speaks about the problem with zero endpoint. Specifically:

Problem 10.2 In the situation of problem 10.1, determine for every initial state x 0
an input u ∈ U such that x(t) → 0 (t → ∞) and such that under this condition,

J (x0, u) is minimized.

Remark 10.3 There is a special situation where the linear quadratic regulator pro-
blem (with free endpoint) is very easily solved. This is the case where x 0 ∈ V(�),
the weakly unobservable subspace (see chapter 7). In fact, in this case, there exists
a control u ∈ U such that the output is identically zero. Such a control is obvi-
ously optimal. This control can be given by the state feedback u = Fx , where
F : = −(DT D)−1 DTC . Likewise, the problem with zero endpoint is very easily
solved if x0 ∈ Vg(�), the stabilizable weakly unobservable subspace, with stability
domain Cg equal to C− (see exercise 7.16). In that case there exists a control such
that the output is zero, and the state converges to zero as t tends to infinity. This
control is optimal.

Various special cases of these problems have been considered in the literature. In
the literature names have been associated to these special cases.

Definition 10.4 Problems 10.1 and 10.2 are called regular if D is injective, equiv-

alently, DT D > 0. The problem is said to be in standard form if C T D = 0 and

DT D = I .

In the standard case, the integrand in the cost functional reduces to ‖z‖ 2 =

x TCTCx + uTu. We often write Q = C TC .

One of the issues to be addressed is the existence of optimal controls. Since for
any initial state and any input function u we have J (x 0, u) � 0, also J ∗(x0) : =

inf{J (x0, u) | u ∈ U} � 0. Thus one is at least assured of the boundedness from
below of the infimum of the integral. This, however, does not immediately imply the
existence of an optimal control, since the infimum might not be attained. In general,
solutions do not exist within the class of ordinary functions unless D T D > 0, i.e. the
problem is regular. In the situation where this condition is not satisfied, one has to
extend the set of admissible input functions to distributions. Henceforth, we restrict
ourselves to the regular case.

The standard case is a special case, which is not essentially simpler than the gen-
eral regular problem, but which gives rise to simpler formulas. The general regular
problem can be reduced to the standard case by means of a feedback transforma-
tion, that is, by the introduction of a new control variable v which is related to u by
u = Fx + Gv, where

F : = −(DT D)−1 DTC and G : = −(DT D)−
1
2 .
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Indeed, after this preliminary feedback transformation and transformation of the input
space, the original system is transformed to

ẋ(t) = (A + B F)x(t)+ BGv(t),

z(t) = (C + DF)x(t)+ DGv(t),

which gives rise to a standard problem since (DG)T(C+DF) = 0 and (DG)T DG =

I .

It is not very difficult to show that the infimum of J is a quadratic function of x 0,
provided it is finite. We will not do this because it will be a result of our calculations
anyway. However, the statement is made here because it will be a heuristic motivation
of some of the steps in the treatment of the problems. It is very easy to see that, if
J ∗(x0) = inf{J (x0, u) | u ∈ U} is finite, then J ∗(λx0) = λ2 J ∗(x0), which makes it
plausible that J ∗(x0) is a quadratic function.

10.2 The finite-horizon problem

We start from the standard problem:

Problem 10.5 Given the system ẋ(t) = Ax(t) + Bu(t), a final time T > 0, and

symmetric matrices N and Q such that N � 0 and Q � 0, determine for every initial

state x0 a piecewise continuous input function u : [0, T ] → U such that the integral

J (x0, u, T ) : =

∫ T

0
x(t)T Qx(t)+ u(t)Tu(t) dt + x(T )T Nx(T ) (10.5)

is minimized.

In this problem, we have introduced a weight on the final state, using the matrix
N . This generalization of the problem can be dealt with without any effort.

As remarked at the end of the previous section, the minimal value of J is expected
to be a quadratic function of x 0, say x T

0 K x0. More generally, we expect that the mini-

mum of the integral
∫ T

t0
x T Qx+uTu dt is of the form x T

0 K (t0)x0. We now assume that
K (t) is any symmetric-matrix-valued continuously differentiable function, defined on
[0, T ] and we have in mind the interpretation of K given in the previous sentence. We
consider the difference J (x0, u, T )− x T

0K (0)x0 for any admissible input u. Then we
have

J (x0, u, T )− x T
0K (0)x0 =

∫ T

0
x(t)T Qx(t)+ u(t)Tu(t) dt

+

∫ T

0

d
dt

x(t)T K (t)x(t) dt + x(T )T(N − K (T ))x(T ).
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We take the two integrals together and compute the second integral using the differ-
ential equation. The integrand will be (we omit the dependence on t):

x T Qx + uTu +
d
dt

x T K x = x T(Q + AT K + K A + K̇ )x + 2uT BT K x + uTu

= x T K B BTK x + 2uT BT K x + uTu + x TSx

= ‖u + BT K x‖2 + x TSx,

where

S : = K̇ + AT K + K A − K B BTK + Q.

In the computations, we have completed the square. As a result, we get

J (x0, u, T ) = x T
0 K (0)x0 +

∫ T

0
[x(t)TS(t)x(t)+ ‖u(t)+ BT K (t)x(t)‖2] dt

+ x(T )T(N − K (T ))x(T ). (10.6)

This formula will play a crucial role in our further treatment. It will be referred to as
the completion of squares formula. A primitive attempt to minimize the integral in
(10.5) is to choose u such that the integrand is minimized for every value of t . This
does not work, because the choice of u is going to affect the values of x for larger
t , and it is difficult to predict what the total effect on J will be. A similar situation
prevails when we try to minimize (10.6) in this way, unless we choose the matrix K

in a particular way. In fact, if we are able to choose K such that S(t) is identically
zero and K (T ) = N , the expression for J reduces to

J (x0, u, T ) = x T
0 K (0)x0 +

∫ T

0
‖u(t)+ BT K (t)x(t)‖2 dt . (10.7)

It is obvious from this expression that J (x 0, u, T ) � x T
0K (0)x0 for all u and that

equality is achieved if and only if u(t) = −B TK (t)x(t) for all t ∈ [0, T ]. Thus we
have obtained the following result:

Theorem 10.6 Let K : [0, T ] → Rn×n be continuously differentiable and such that

K (t) is symmetric for every t ∈ [0, T ]. If K is a solution of the Riccati equation:

K̇ (t) = −AT K (t)− K (t)A + K (t)B BT K (t)− Q (10.8)

with final condition K (T ) = N, then for each initial state x 0 we have

J ∗(x0, T ) : = inf{J (x0, u, T ) | u piecewise continuous on [0, T ]} = x T

0 K (0)x0

(10.9)

Furthermore, for a given initial state x0, an input function u is optimal, i.e., u is

piecewise continuous on [0, T ] and J (x0, u, T ) = J ∗(x0, T ), if and only if

u(t) = −BT K (t)x(t), 0 � t � T . (10.10)
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Assuming for the moment that K satisfying the desired properties can be found,
we obtain an optimal control as a time-varying feedback (see (10.10)). For a given
initial state, we can construct an open-loop control function by substituting (10.10)
into the differential equation. This yields a time varying linear autonomous equation:
ẋ(t) = (A−B BTK (t))x(t) with initial state x(0) = x0. Such an initial value problem
is well known to have a unique solution on any time interval. If the solution is denoted
with ξ(t) then the open-loop formula for u is u(t) = −B T K (t)ξ(t). Thus we see that
for each initial state x0 there is a unique optimal control input.

It follows that the optimization problem is solved when the Riccati equation is
solved. This equation is a nonlinear initial (or rather final) value problem. The exis-
tence of a solution of such a problem is not always guaranteed, as follows from the
example ẋ = x 2 + 1, which has x(t) = tan(t + c) as a general solution. For no c,
a solution exists over an interval larger than π . The general theory of ordinary dif-
ferential equations only guarantees the existence of a local solution, defined over an
interval whose length cannot be prescribed. Specifically:

Theorem 10.7 Let T > 0, x0 ∈ Rn , and let f : Rn × [0, T ] → Rn be continuously

differentiable. Then we have:

(i) There exists T1 satisfying 0 < T1 < T such that the differential equation with

initial condition

ẋ(t) = f (x(t), t), x(0) = x0 (10.11)

has a solution on [0, T1].

(ii) If (10.11) has a solution on some interval [0, T1], it is unique.

(iii) If the solution on each interval [0, T1], on which it exists, is bounded with a

bound independent of T1, then there exists a solution of (10.11) on [0, T ].

We apply this theorem to the Riccati equation and with the time reversed. Note
that this equation can be viewed as an equation of the type considered in theorem
10.7. According to theorem 10.7, there exists a unique solution K of

K̇ (t) = −AT K (t)− K (t)A + K (t)B BTK (t)− Q, K (T ) = N . (10.12)

on some interval [T1, T ]. If we want to emphasize the dependence of this solution
on the final time T we will write this solution as K (t, T ). Note also that, since N

is symmetric, the matrix function K T(t, T ) will satisfy (10.12). By uniqueness, it
follows that K T(t, T ) = K (t, T ) for T1 � t � T . Using the special interpretation of
the solution of the Riccati equation as minimal value of the integral, one can actually
derive global existence of the solution:

Theorem 10.8 The Riccati equation with initial value, (10.12), has a unique solution

on the interval [0, T ] for every symmetric N. This solution is symmetric.



The finite-horizon problem 217

Proof : The only thing we have to prove is that K (t, T ) is uniformly bounded on
each interval of its existence. Let x0 ∈ X be arbitrary and suppose that K (t, T )

exists on [T1, T ]. Choose the input u identically zero on [0, T ]. Take t0 any element
of [T1, T ]. By time invariance, the function L(t) : = K (t + t0, T ) is a solution of the
Riccati equation on [0, T − t0]. Hence by theorem 10.6, x T

0L(0)x0 is the minimum of
J (x0, u, T − t0) over all u. In particular,

x T
0K (t0, T )x0 = x T

0 L(0)x0 � J (x0, 0, T − t0).

Clearly,

J (x0, 0, T − t0) =

∫ T−t0

0
x T

0eATt QeAt x0 dt + x T
0eAT(T−t0)NeA(T−t0)x0

�

∫ T

0
x T

0eATt QeAt x0 dt + x T
0eAT(T−t0)NeA(T−t0)x0.

Now, t �→ x T
0eA(T−t) NeA(T−t)x0 is a continuous function on the compact interval

[0, T ] and is therefore bounded from above by a constant, say M . Thus we conclude
that x T

0K (t0, T )x0 is bounded from above by a constant, independent of t 0 and T1.
This implies that the matrix function K (t, T ) itself is bounded with a bound inde-
pendent of T1 (see also exercise 10.2). Hence according to theorem 10.7, the Riccati
equation has a solution on the total interval.

The dependence of the solution K (t, T ) on both t and T is inconvenient if we
want to use the results of this section for the infinite horizon case. Fortunately, K is
actually a function of one variable, specifically, T − t . In fact, if we define P(t) : =

K (T − t, T ), then P satisfies the initial-value problem:

Ṗ(t) = AT P(t) + P(t)A − P(t)B BT P(t) + Q, P(0) = N . (10.13)

Obviously, the solution of this problem does not depend on T . We reformulate the
results of this section in terms of P(t):

Theorem 10.9 Consider the system ẋ(t) = Ax(t) + Bu(t), together with the cost

functional

J (x0, u, T ) : =

∫ T

0
x(t)T Qx(t)+ u(t)Tu(t) dt + x(T )T Nx(T ), (10.14)

where Q � 0 and N � 0, and furthermore, T > 0. Then we have the following

properties:

(i) The Riccati equation with initial value

Ṗ(t) = AT P(t) + P(t)A − P(t)B B T P(t) + Q, P(0) = N, (10.15)

has a unique solution on [0,∞). This solution is symmetric and positive

semidefinite for all t � 0.
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(ii) For each x0 there is exactly one optimal input function, i.e., a piecewise contin-

uous function u∗ on [0, T ] such that J (x0, u∗, T ) = J ∗(x0, T ). This optimal

input function u∗ is generated by the time-varying feedback control law

u(t) = −BT P(T − t)x(t) (0 � t � T ). (10.16)

(iii) For each x0, the minimal value of the cost functional equals

J ∗(x0, T ) = x T

0 P(T )x0.

(iv) If N = 0, then the function t �→ P(t) is an increasing function in the sense

that P(t) − P(s) is positive semidefinite for t � s.

The monotonicity statement on P is an easy consequence of the interpretation of
P as the matrix representing the minimal cost of the performance criterion (see (iii)).

Remark 10.10 There is a second monotonicity statement we can make. If we con-
sider two optimal control problems with the same system and the same Q matrix, but
with two matrices N1 and N2, satisfying N1 � N2, then for every x0, the function J

associated with N1 will be larger than the function J corresponding to N 2. There will
therefore be a similar relation between the minimal costs. Hence PN1 (t) � PN2 (t)

for all t � 0.

10.3 The infinite-horizon problem, standard case

We consider the situation as described in theorem 10.9 with N = 0. An obvious
conjecture is that x T

0 P(T )x0 converges to the minimal cost of the infinite-horizon
problem as T → ∞. The convergence of x T

0 P(T )x0 for all x0 is equivalent to the
convergence of the matrix P(T ) for T →∞ to some matrix P − (see exercise 10.2).
Such a convergence does not always take place. For instance, if we consider the
system ẋ(t) = 0 with state space X = R, and Q = 1, we have Ṗ(t) = 1, P(0) = 0,
with solution P(t) = t . This is not surprising because in this case, if x(0) = c 	= 0,
the integral to be minimized equals

∫∞
0 x2(t) + u2(t) dt �

∫∞
0 c2 dt = ∞ for all

inputs u. In order to achieve convergence, we make the following assumption: for
every x0, there exists an input u for which the integral

J (x0, u) : =

∫ ∞

0
x(t)T Qx(t)+ u(t)Tu(t) dt (10.17)

converges, i.e., for which the cost J (x 0, u) is finite. Obviously, for the problem to
make sense for all x0, this condition is necessary. It is easily seen that the stabilizabil-
ity of (A, B) is a sufficient condition for the above assumption to hold (not necessary,
take e.g. Q = 0). Take an arbitrary initial state x 0 and assume that ū is a function
such that the integral (10.17) is finite. We have for every T > 0 that

x T
0 P(T )x0 � J (x0, ū, T ) � J (x0, ū),
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which implies that for every x0, the expression x T
0 P(T )x0 is bounded. This implies

that P(T ) is bounded (see exercise 10.2). Since P(T ) is increasing with respect to
T , it follows that P− : = limT→∞ P(T ) exists. Since P satisfies the differential
equation (10.15), it follows that also Ṗ(t) has a limit as t →∞. It is easily seen that
this latter limit must be zero. Hence P = P− satisfies the following equation:

AT P + P A − P B B T P + Q = 0. (10.18)

This is is called the Algebraic Riccati Equation (ARE). Note that the solutions of this
equation are exactly the constant solutions of the Riccati differential equation. The
previous consideration shows that the ARE has a positive semidefinite solution P −.
The solution is not necessarily unique, not even with the extra condition that P � 0.

We would like to use the previous results in order to solve the infinite horizon
problem. For this purpose, an obvious method would be to find a positive semidefinite
solution P of (10.18) and to use the control u = −B T Px , obtained from (10.16) by
taking the limit for T →∞. Here we expect the optimal cost to be x T

0 Px0. There are
two points that have to be clarified, however. In the first place, because of the lack
of uniqueness of P, we do not know which solution of (10.18) to take. In the second
place, even if we have found the correct solution of the ARE, it is not obvious that the
proposed control actually is optimal. Both points are already settled in the following
lemma:

Lemma 10.11 Suppose that for every x0 there exists an input u ∈ U such that

J (x0, u) <∞. Then we have:

(i) P− : = limT→∞ P(T ) exists, where P is the solution of Riccati differential

equation (10.15) with N = 0.

(ii) P− is the smallest real symmetric positive semidefinite solution of the ARE

(10.18). Hence, for every real symmetric P � 0 satisfying ARE, we have

P � P−.

(iii) For every u ∈ U, the following holds

J (x0, u) = x T

0 P−x0 +

∫ ∞

0
‖u(t)+ BT P−x(t)‖2 dt . (10.19)

(iv) For every x0, J ∗(x0) : = inf{J (x0, u) | u ∈ U} = x T

0 P−x0. Furthermore, for

every x0, there is exactly one optimal input function, i.e., a function u ∗ ∈U such

that J (x0, u∗) = J ∗(x0). This optimal input is generated by the time-invariant

feedback law u(t) = −B T P−x(t).

Proof : We have seen already that (i) holds and that P − satisfies ARE. Assume that
P∗ � 0 is any solution of the ARE. Then P ∗ is a constant solution of the Riccati
differential equation. Also P(t) is a solution and P(0) = 0 � P ∗. Hence, P(t) � P∗

for all t � 0 (see remark 10.10), and consequently P − = limt→∞ P(t) � P∗.
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In order to prove (iii), we apply the completion of squares formula (10.6) with
K (t) : = P(T − t), N : = 0 and u arbitrary. Then

J (x0, u, T ) = x T

0 P(T )x0 +

∫ T

0
‖u(t)+ BT P(T − t)x(t)‖2 dt .

Choose a fixed T0 > 0. Then we have for T > T0 that

∫ T

0
‖u(t)+ BT P(T − t)x(t)‖2 dt

�

∫ T0

0
‖u(t)+ BT P(T − t)x(t)‖2 dt →

∫ T0

0
‖u(t) + BT P−x(t)‖2 dt

for T →∞. Hence

lim inf
T→∞

∫ T

0
‖u(t)+ BT P(T − t)x(t)‖2 dt �

∫ T0

0
‖u(t) + BT P−x(t)‖2 dt

for all T0. This implies

lim inf
T→∞

J (x0, u, T ) � x T
0 P−x0 +

∫ ∞

0
‖u(t) + BT P−x(t)‖2 dt .

Conversely, if in the completion of squares formula we take K (t) = P −, N = 0, and
u arbitrary, then

J (x0, u, T ) = x T
0 P−x0 +

∫ T

0
‖u(t)+ BT P−x(t)‖2 dt − x(T )T P−x(T )

� x T
0 P−x0 +

∫ ∞

0
‖u(t) + BT P−x(t)‖2 dt . (10.20)

Combination of these inequalities yields (10.19).

Finally, (iv) is a direct consequence of (iii).

Notice that the minimality condition uniquely determines the matrix P −.

Remark 10.12 It follows from the previous proof that x(T ) T P−x(T )→ 0 whenever
J (x0, u) is finite. In particular, in the case that P− is positive definite, we infer that
x(t)→ 0 for t →∞, whenever J (x0, u) <∞.

Although the lemma provides a solution to the infinite horizon problem, it is un-
satisfactory because it starts from the assumption that for each initial state there is at
least one control input such that the corresponding cost is finite. In the remainder of
this section, we establish necessary and sufficient conditions, in terms of the matrices
A, B and Q, under which the finite cost assumption holds.

Factorize Q = C TC and introduce the output

z(t) =

(

C

0

)

x(t)+

(

0
I

)

u(t). (10.21)
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Our cost can then be written as J (x0, u) =
∫∞

0 ‖z‖2 dt .

Now, from exercise 7.4, recall the concept of output stabilizability. In general, a
system � : ẋ(t) = Ax(t)+Bu(t), z(t) = Cx(t)+Du(t) is called output stabilizable

if there exists a state feedback control law u(t) = Fx(t) such that for each initial
state x0 the corresponding output z F (t, x0) converges to zero as t tends to infinity.
According to exercise 7.4, the system � = (A, B, C, D) is output stabilizable if and
only if

X = V(�)+Xstab, (10.22)

where X is the state space of �, V(�) the weakly unobservable subspace, and X stab
the stabilizable subspace of (A, B) with respect to the stability domain C−.

We will apply this to the system � given by ẋ(t) = Ax(t) + Bu(t), together
with the output equation (10.21). It is easily seen that for this special case we have
V(�) = 〈ker C | A〉 (see exercise 7.5), so the system � is output stabilizable if and
only if

X = 〈ker C | A〉 +Xstab.

It is clear that if � is output stabilizable then for any initial state x 0 there is a
control input u such that J (x0, u) < ∞. It follows from lemma 10.11 that also the
converse holds. Indeed, if for all x 0 there exists an input u such that J (x0, u) < ∞,
then for all u (10.19) holds. This implies that the feedback law u(t) = Fx(t) with
F : = −BT P− yields

∫∞
0 ‖zF (t, x0)‖

2 dt < ∞, for any initial state x0. This in turn
implies that zF (t, x0)→ 0 (t →∞) for all x0, so the system � is output stabilizable.
We conclude that the finite cost assumption of lemma 10.11 is equivalent to output
stabilizability of �.

It also follows from lemma 10.11 that the finite cost assumption implies the exis-
tence of a real symmetric positive semidefinite solution of the ARE (10.18). We will
now show that also the converse holds. Indeed, assume P is a positive semidefinite
solution of the ARE. Then (10.20) with P− replaced by P implies

J (x0, u, T ) � x T
0 Px0 +

∫ ∞

0
‖u(t) + BT Px(t)‖2 dt,

for all T . By taking u(t) = Fx(t) with F : = −B T P we obtain J (x0, u, T ) � x T
0 Px0

for all T and hence J (x0, u) <∞.

Summarizing the above we obtain the following theorem:

Theorem 10.13 Consider the system ẋ(t) = Ax(t) + Bu(t) together with the cost

functional

J (x0, u) : =

∫ ∞

0
x(t)T Qx(t)+ u(t)Tu(t) dt,

with Q � 0. Factorize Q = C TC. Then the following statements are equivalent:
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(i) For every x0 ∈ X there exists u ∈ U such that J (x0, u) <∞.

(ii) The ARE (10.18) has a real symmetric positive semidefinite solution P,

(iii) The system

� =
(

A, B,
(

C

0

)

,
(

0
I

)

)

is output stabilizable,

(iv) 〈ker C | A〉 +Xstab =X.

Assume that one of the above conditions holds. Then there exists a smallest real

symmetric positive semidefinite solution of the ARE, i.e., there exists a real symmetric

solution P− � 0 such that for every real symmetric solution P � 0 we have P− � P.

For every x0 we have

J ∗(x0) : = inf{J (x0, u) | u ∈ U} = x T

0 P−x0.

Furthermore, for every x0, there is exactly one optimal input function, i.e., a function

u∗ ∈ U such that J (x0, u∗) = J ∗(x0). This optimal input is generated by the time-

invariant feedback law

u(t) = −BT P−x(t).

10.4 The infinite horizon problem with zero endpoint

In this section we are going to impose the condition x(t) → 0 (t → ∞), which
we will briefly write as x(∞) = 0. Obviously, for the existence of an input u, for
arbitrary x0, such that x(∞) = 0, the pair (A, B) has to be stabilizable. This is
going to be a standing assumption in this section. It implies in particular any of the
equivalent conditions in the statement of theorem 10.13. We apply the completion of
squares formula with K (t) = P, any real symmetric solution of the ARE and u any
control such that the corresponding state converges to zero. (We assume the initial
state x0 to be fixed). The result is

J (x0, u, T ) = x T
0 Px0 +

∫ T

0
‖u(t)+ BT Px(t)‖2 dt − x(T )T Px(T ).

This implies that

J (x0, u) = x T
0 Px0 +

∫ ∞

0
‖u(t)+ BT Px(t)‖2 dt (10.23)

for every u such that x(∞) = 0. Let

J ∗0 (x0) : = inf{J (x0, u) | u ∈ U, x(∞) = 0}.
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Then (10.23) implies that for every real symmetric solution P of the ARE, we have

x T
0 Px0 � J ∗0 (x0). (10.24)

It also follows from (10.23) that if we choose the feedback control law u(t) =

−BT Px(t) and if the resulting state converges to zero, then for every initial state
x0 this will give the optimal control and the optimal value will be x T

0 Px0. As a con-
sequence, we observe that there exists at most one real symmetric solution P of the
ARE for which A − B B T P is a stability matrix, and that this matrix P, if it exists,
must be the maximal solution of the ARE.

First, we consider the special case Q = 0. Then the integral to be minimized
equals:

J (x0, u) =

∫ ∞

0
‖u‖2 dt .

Also assume that A has no eigenvalues on the imaginary axis. The solution of the
free-endpoint problem is trivially u = 0 for all t . If in the zero-endpoint case, A is a
stability matrix, u = 0 is still optimal, but otherwise we have to abandon this solution
because the state does not tend to zero. Assume first that A has all its eigenvalues in
C+ : = {s ∈ C | ℜe s > 0}, so that −A is a stability matrix. Then the stabilizability
of (A, B) implies that (A, B) is controllable. The Riccati equation in this case is

AT P + P A − P B B T P = 0. (10.25)

We claim that this equation has a real symmetric positive definite solution P. This
we show by giving a positive definite solution L of the (so-called) Liapunov equation

L AT + AL = B BT. (10.26)

Then P : = L−1 is a positive definite solution of (10.25). The following integral is a
solution of (10.26):

L : =

∫ ∞

0
e−t A B BTe−t AT

dt . (10.27)

In fact, because of our assumptions on A, there exist positive numbers M and γ such
that ‖e−t A‖ � Me−γ t for all t � 0. Hence the integral converges. Also it is clear
that L is symmetric and x T Lx =

∫∞
0 ‖x Te−t A B‖2 dt > 0 whenever x 	= 0, because

of controllability. Hence L is positive definite. Finally, L satisfies (10.26):

AL + L AT =

∫ ∞

0
Ae−t A B BTe−t AT

+ e−t A B BTe−t AT
AT dt

= −

∫ ∞

0

d
dt

(e−t A B BTe−t AT
) dt

= B BT − lim
T→∞

e−T A B BTe−T AT

= B BT.
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If we choose the feedback control u(t) = −B T Px(t), the resulting state equation is
ẋ(t) = AP x(t), where A P : = A − B BT P. The ARE can be written in terms of A P

instead of A, viz.

AT
P P + P AP + P B BT P = 0. (10.28)

We claim that AP is a stability matrix. In fact, if λ ∈ σ(A P), say APv = λv and
v 	= 0, then 0 = v∗(AT

P P + P AP + P B BT P)v = 2(ℜe λ)v∗Pv + ‖v∗P B‖2. Here
the asterisk denotes the conjugate transpose, v∗ = v̄T. Hence

ℜe λ = −‖v∗P B‖2/(2v∗Pv).

It follows that ℜe λ < 0 unless v∗P B = 0, in which case ℜe λ = 0. However, in that
case, we have ℜe λ = 0 and Av = Av + B B T Pv = APv = λv. This is impossible
since A has no eigenvalues on the imaginary axis. We have found a solution P of the
ARE such that the corresponding feedback F : = −B T P stabilizes A. According to
the remarks at the beginning of this section this implies that u = Fx is optimal.

We have now solved the special cases Q = 0, A stable (with u = 0) and Q = 0,
−A stable (with u = −B T Px). Now assume that A has eigenvalues on both sides of
the imaginary axis. Then we may perform a state space transformation such that in
the resulting coordinate system, A and B have the form:

A =

(

A1 0
0 A2

)

, B =

(

B1
B2

)

,

where σ(A1) ⊂ C− and σ(A2) ⊂ C+. We search for a solution P of the Riccati
equation such that A− B B T P is a stability matrix. Such a matrix can be found in the
form of

P =

(

0 0
0 P2

)

,

where P2 is the solution of the ARE corresponding to the (A 2, B2) part of the pro-
blem, given in the equations above. It is easily seen that then P satisfies the ARE for
(A, B) and that A − B B T P is a stability matrix. We find that under the assumption
that A has no eigenvalues on the imaginary axis, the problem has a unique solution,
viz. u(t) = −BT Px(t), where P is the unique real symmetric solution of the ARE
such that A − B B T P is stable. The minimal value of the integral is x T

0 Px0. It also
follows that P is the maximal solution of the ARE.

If we drop the assumption Q = 0, we can reduce the problem to the special case
Q = 0 by a preliminary feedback. In fact, we introduce the new control variable
v by u = −B T P−x + v, where P− is the smallest real symmetric solution of the
ARE, found in the previous section. Then the differential equation reads ẋ(t) =

A−x(t) + Bv(t), where A− : = A − B BT P−. Also, using (10.23), we find for the
integral to be minimized:

J (x0, u) = x T
0 P−x0 +

∫ ∞

0
‖v(t)‖2 dt,
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which is exactly the situation Q = 0. If A− has no eigenvalues on the imaginary axis,
we find that there exists a solution � = �+ of the ARE

(A−)T�+�A− −�B BT� = 0,

which is actually the maximal solution, for which A− − B BT�+ is stable, so that
the feedback v(t) = −B T�+x(t) is optimal. Consequently, the feedback control
u(t) = −BT Px(t), where P : = P− + �+, is the optimal control of the original
problem. It is straightforward that P satisfies the original ARE, and is in fact the
maximal and unique stabilizing solution. Hence, we denote P by P +. We still have
to express the condition that A− has no purely imaginary eigenvalues in terms of
the original data A, B, Q. According to the following lemma this corresponds to
the condition that every eigenvalue of A on the imaginary axis is (Q, A)-observable
(equivalently, after factorizing Q = C TC : (C, A)-observable).

Lemma 10.14 Consider the system ẋ(t) = Ax(t) + Bu(t) together with the cost

functional

J (x0, u) : =

∫ ∞

0
x(t)T Qx(t)+ u(t)Tu(t) dt,

with Q � 0. Assume that (A, B) is stabilizable. Assume that every eigenvalue of A

on the imaginary axis is (Q, A)-observable. Then the following holds:

(i) There exists exactly one real symmetric solution P+ of the ARE such that

σ(A − B BT P+) ⊂ C−.

(ii) P+ is the largest real symmetric solution of the ARE, i.e., for every real sym-

metric solution P we have P � P+. P+ is positive semidefinite.

(iii) For every initial state x0 we have

J ∗0 (x0) = x T

0 P+x0.

(iv) For every initial state x0 there is exactly one optimal input function, i.e., a

function u∗ such that x(∞) = 0 and J (x0, u∗) = J ∗0 (x0). This optimal input

function is generated by the time-invariant feedback law

u(t) = −BT P+x(t).

Proof : We only have to show that the observability condition implies that A− : =

A− B BT P− has no eigenvalues on the imaginary axis. Suppose that iα ∈ σ(A−) for
some real α, and that v is the corresponding eigenvector. The ARE in terms of A −

reads:

(A−)T P + P A− + P−B BT P− + Q = 0.
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Multiplying this equation from the left with v∗ and from the right with v, we obtain
v∗Qv + ‖BT P−v‖2 = 0. This implies Qv = 0 and B T P−v = 0. Hence Av = iαv,
Qv = 0, i.e. iα is an unobservable eigenvalue of (Q, A).

The above lemma is not yet completely satisfactory, because it only resolves the
zero-endpoint problem under the assumption that A has no unobservable eigenvalues
on the imaginary axis. However, the result can be used to tackle also the general
situation. First we will show that also without the observability assumption, the ARE
has a largest real symmetric solution. Furthermore, the optimal cost is still determined
by this largest solution.

Lemma 10.15 Assume that (A, B) is stabilizable. Then the ARE has a largest real

symmetric solution P+. P+ is positive semidefinite. For every initial state x0 we

have J ∗0 (x0) = x T

0 P+x0.

Proof : Consider the ’perturbed’ problem of minimizing

Jε(x0, u) =

∫ ∞

0
x(t)T(Q + ε2 I )x(t)+ u(t)Tu(t) dt

for ε > 0. Obviously, J (x0, u) � Jε(x0, u) for every ε. On the other hand, Jε can
be seen as the cost functional corresponding to the standard infinite horizon problem
with Qε = Q+ε2 I . The pair (Qε, A) is obviously observable. Therefore, because of
the previous lemma, there exists a real symmetric solution P+ε of the corresponding
algebraic Riccati equation

AT P + P A − P B B T P + Q + ε2 I = 0. (10.29)

with the property that Aε : = A − B BT P+ε is a stability matrix. Furthermore,

J ∗0,ε(x0) : = inf{Jε(x0, u) | u ∈ U, x(∞) = 0} = x T
0 P+ε x0.

It follows from the definition of Jε that ε �→ Jε(x0, u) is non-decreasing for ε > 0,
for all u and x0. Consequently, P+ε is a non-decreasing function of ε. Since obviously
P+ε � 0, it follows that P0 : = limε→0 P+ε exists. It is clear that P0 � 0. By the
continuity of the ARE, P0 satisfies

AT P0 + P0 A − P0 B BT P0 + Q = 0, (10.30)

We claim that, in fact, P0 is the largest real symmetric solution of the ARE. Indeed,
let P be any real symmetric solution of the ARE. Using (10.23), for all x 0 and all u

such that x(∞) = 0 we have Jε(x0, u) � J (x0, u) � x T
0 Px0. Taking the infimum

over u we obtain x T
0 P+ε x0 = J ∗0,ε

(x0) � x T
0 Px0. Thus, P+ε � P for all ε > 0. By

letting ε → 0 we obtain P0 � P, so P+ : = P0 is the largest real symmetric solution
of the ARE.
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Next, we show that J ∗0 (x0) = x T
0 P+x0. First, it follows by applying (10.23) with

P = P+ that J (x0, u) � x T
0 P+x0, for all x0 and for all u such that x(∞) = 0. By

taking the infimum over all such u we obtain

J ∗0 (x0) � x T
0 P+x0.

On the other hand, for all x0 and u and for all ε > 0 we have J (x0, u) � Jε(x0, u).
Taking the infimum over all u such that x(∞) = 0 on both sides in this inequality
yields

J ∗0 (x0) � J ∗ε (x0) = x T

0 P+ε x0.

By taking the limit ε → 0, we obtain

J ∗0 (x0) � x T
0 P+x0.

This completes the proof of the lemma.

Next we show that the condition that every eigenvalue of A on the imaginary axis
is (Q, A)-observable is in fact necessary for the existence of optimal controls for all
initial states. This is illustrated by the following example:

Example 10.16 Let

A : =

(

0 1
−1 0

)

, B : =

(

1 0
0 1

)

, Q : = 0.

The eigenvalues of A (i and −i ) are both unobservable. Take the input u(t) : =

et(A−ε I ) p, with p still to be determined. The variation of constants formula yields

x(t) = et Ax0 +

∫ t

0
e(t−τ )A Bu(τ ) dτ = et A

[

x0 +

(
∫ t

0
e−ετ dτ

)

p

]

.

Hence e−t Ax(t)→ x0+ p/ε (t →∞). Since et A is an orthogonal matrix, it follows
that x(t) → 0 (t → ∞), if p = −εx0. Also, ‖u(t)‖2 = e−2εtε2‖x0‖

2, so that
∫∞

0 ‖u(t)‖2 dt = (ε/2)‖x0‖
2. It follows that J ∗0 (x0) = 0. On the other hand, it is

obvious that there is no u such that x(∞) = 0 for which this infimum is attained.

Lemma 10.17 Assume that (A, B) is stabilizable. If for every initial state x 0 there

exists an optimal input, then every eigenvalue of A on the imaginary axis is (Q, A)-

observable.

Proof : Let P+ be the largest real symmetric solution of the ARE:

AT P+ + P+A − P+B BT P+ + Q = 0. (10.31)

Assume that there exists a real α and a nonzero v such that Av = iαv, Qv = 0.
Then multiplying (10.31) from the right by v and from the left by v ∗, we obtain
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‖BT P+v‖2 = 0 so BT P+v = 0. By multiplying (10.31) from the right by v we
then obtain AT P+v = −iαP+v. Define η : = v∗P+. Then we find ηA = iαη and
ηB = 0. If η 	= 0, then iα is an uncontrollable eigenvalue of A, which contradicts the
stabilizability of the pair (A, B). Hence η = 0, so P+v = 0. We write v = v1 + v2i ,
where v1 and v2 are real vectors. Then P+v j = 0 ( j = 1, 2). At least one of the
vectors v j is nonzero. Let us call this vector v0. We claim that v0 is an eigenvector
of A with eigenvalue iα. Indeed, A(v1 + v2i) = iα(v1 + v2i) so both Av1 = iαv1
and Av2 = iαv2. Since P+v0 = 0, v0 is also an eigenvector of A − B B T P+ with
eigenvalue iα. By our assumption, there exists an optimal control for this initial state,
say ū. Using (10.23) with P = P+ and the fact that J (x0, ū) = x T

0 P+x0 we find that
ū is generated by the feedback law u(t) = −B T P+x(t). Consequently, the optimal
closed loop system is given by ẋ(t) = (A−B B T P+)x(t). With initial state x(0) = v0
this yields x(t) = eiαtv0, which clearly does not converge to zero. This contradicts
the assumption that ū is optimal.

Collecting the above lemmas we obtain the following:

Theorem 10.18 Consider the system ẋ(t) = Ax(t) + Bu(t) together with the cost

functional

J (x0, u) : =

∫ ∞

0
x(t)T Qx(t)+ u(t)Tu(t) dt,

with Q � 0. Assume that (A, B) is stabilizable. Then

(i) there exists a largest real symmetric solution of the ARE, i.e., there exists a real

symmetric solution P+ such that for every real symmetric solution P we have

P � P+. P+ is positive semidefinite.

(ii) For every initial state x0 we have

J ∗0 (x0) = x T

0 P+x0.

(iii) For every initial state x0 there exists an optimal input function, i.e., a function

u∗ ∈ U with x(∞) = 0 such that J (x0, u∗) = J ∗0 (x0) if and only if every

eigenvalue of A on the imaginary axis is (Q, A) observable.

Under this assumption we have:

(iv) For every initial state x0 there is exactly one optimal input function u ∗. This

optimal input function is generated by the time-invariant feedback law

u(t) = −BT P+x(t).

(v) The optimal closed loop system ẋ(t) = (A−B B T P+)x(t) is stable. In fact, P+

is the unique real symmetric solution of the ARE for which σ(A − B B T P+) ⊂

C−.
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10.5 The nonstandard problems

In this section we will apply the results obtained for the standard case to solve the
general linear quadratic regulator problem. As before, we make a distinction between
the free endpoint problem and the zero endpoint problem.

As explained in section 10.1, the general regular linear quadratic regulator pro-
blem is the problem of minimizing for each initial state x 0 the cost functional

J (x0, u) : =

∫ ∞

0
‖z(t)‖2 dt

for the system � given by the equations

ẋ(t) = Ax(t)+ Bu(t), z(t) = Cx(t)+ Du(t),

where D is injective. It was explained in section 10.1 that, in turn, this problem can
be reduced to a standard problem by introducing a new control variable v and by
applying the feedback transformation u = Fx + Gv with

F : = −(DT D)−1 DTC, G : = (DT D)−
1
2 (10.32)

The Riccati equation associated with the transformed system is obtained by replacing
in (10.18) A by A F , B by BG and Q by C T

F CF . After reorganizing the equation thus
obtained we get:

AT P + P A + CTC − (P B + CT D)(DT D)−1(P B + CT D)T = 0. (10.33)

This equation is called the Algebraic Riccati Equation (ARE) associated with �. It
follows immediately from theorem 10.13 that the ARE (10.33) has a real symmetric
positive semidefinite solution if and only if the system

(AF , BG,
(

CF
0

)

,
(

0
I

)

)

is output stabilizable (with F and G given by (10.32)). It is easy to show that this
system is output stabilizable if and only if the original system � = (A, B, C, D) is
output stabilizable.

In this way we obtain the following generalization of theorem 10.13:

Theorem 10.19 Consider the system � given by ẋ(t) = Ax(t) + Bu(t), z(t) =

Cx(t)+ Du(t), together with the cost functional

J (x0, u) : =

∫ ∞

0
‖z(t)‖2 dt .

Assume that D is injective. Then the following statements are equivalent:

(i) For every x0 ∈ X there exists u ∈ U such that J (x0, u) <∞.
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(ii) The ARE (10.33) has a real symmetric positive semidefinite solution P,

(iii) The system � is output stabilizable,

(iv) V(�)+Xstab =X.

Assume that one of the above conditions hold. Then there exists a smallest real sym-

metric positive semidefinite solution of the ARE, i.e., there exists a real symmetric so-

lution P− � 0 such that for every real symmetric solution P � 0 we have P− � P.

For every x0 we have

J ∗(x0) : = inf{J (x0, u) | u ∈ U} = x T

0 P−x0.

Furthermore, for every x0, there is exactly one optimal input function, i.e., a function

u∗ ∈ U such that J (x0, u∗) = J ∗(x0). This optimal input is generated by the time-

invariant feedback law

u(t) = −(DT D)−1(BT P− + DTC)x(t).

In order to generalize theorem 10.18 to the nonstandard case, we have to translate
the condition that the transformed system has no unobservable eigenvalues on the
imaginary axis into a condition on the original system �. Again let F and G be
given by (10.32). We claim that the condition that A F has no (CF , AF) unobservable
eigenvalues on the imaginary axis is equivalent to the condition that the system � has
no zeros on the imaginary axis. Indeed, the (C F , AF ) unobservable eigenvalues of A F

are exactly the zeros of � (see exercise 10.1). This leads to the following theorem:

Theorem 10.20 Consider the system � given by ẋ(t) = Ax(t) + Bu(t), z(t) =

Cx(t)+ Du(t), together with the cost functional

J (x0, u) : =

∫ ∞

0
‖z(t)‖2 dt .

Assume that D is injective and (A, B) is stabilizable. Then

(i) there exists a largest real symmetric solution of the ARE, i.e., there exists a real

symmetric solution P+ such that for every real symmetric solution P we have

P � P+. P+ is positive semidefinite.

(ii) For every initial state x0 we have

J ∗0 (x0) = x T

0 P+x0.

(iii) for every initial state x0 there exists an optimal input function, i.e., a function

u∗ ∈ U with x(∞) = 0 such that J (x0, u∗) = J ∗0 (x0) if and only if � has no

zeros on the imaginary axis.

Under this condition we have:
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(iv) For every initial state x0 there is exactly one optimal input function u ∗. This

optimal input function is generated by the time-invariant feedback law

u(t) = −(DT D)−1(BT P+ + DTC)x(t).

(v) The optimal closed loop system

ẋ(t) = (A − B(DT D)−1(BT P+ + DTC))x(t)

is stable. In fact, P+ is the unique real symmetric solution of the ARE for which

σ(A − B(DT D)−1(BT P+ + DTC)) ⊂ C
−.

10.6 Exercises

10.1 Consider the system � = (A, B, C, D), with input space U = Rm and state
space X = R

n . Assume that D is injective. Let P�(s) be the system matrix of
�.

a. Show that the normal rank of P� is equal to n + m.

b. Show that if P�(λ)
(

x0
u0

)

=
(

0
0

)

then u0 = −(DDT)−1 DTCx0.

c. Use (a) and (b) to show that λ is a zero of � if and only if λ is an unob-
servable eigenvalue of the system

(C − D(DDT)−1 DTC, A − B(DDT)−1 DTC).

10.2 Let P : [0,∞)→ Rn×n be such that P(t) = P T(t) for all t � 0.

a. Prove that if P(t) is monotonically non-decreasing (i.e., P(t 1) � P(t2)

for t1 � t2) and if x T P(t)x is bounded from above for all x (with upper
bound depending on x), then lim t→∞ x T P(t)x exists for all x .

b. Prove that if limt→∞ x T P(t)x exists for all x , then there exists a real sym-
metric matrix P0 such that limt→∞ P(t) = P0.

c. Prove that if limt→∞ P(t) and limt→∞ Ṗ(t) exist, then limt→∞ Ṗ(t) = 0.

10.3 Consider the system ẋ(t) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t), with
state space X = R

n . Define a cost functional by

H (x0, u) : =

∫ ∞

0
‖ u(t) ‖2 dt +

∫ ∞

1
‖ yu(t, x0) ‖

2 dt

Let P− be the smallest positive semi-definite real symmetric solution of the
algebraic Riccati equation

AT P + P A + CTC − P B BT P = 0.

Define

H ∗(x0) : = inf
u

H (x0, u).
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a. Show that H ∗(x0) = x T
0 P(1)x0, where P(t) is the solution of the Riccati

differential equation

Ṗ(t) = AT P(t) + P(t)A − P(t)B BT P(t), P(0) = P−

b. Show that u is optimal, i.e., u satisfies H (x0, u) = H ∗(x0) if and only if

u(t) =

{

−BT P(1− t)x(t) t ∈ [0, 1]

−BT P−x(t) t ∈ [1,∞).

10.4 Consider the algebraic Riccati equation A T P + P A − P B B T P + Q = 0 with
Q positive semidefinite.

a. Assume P is a real symmetric positive semidefinite solution. Show that if
(Q, A) is C

−-detectable, then σ(A − B B T P) ⊂ C
−.

b. Assume that P is a real symmetric positive semidefinite solution. Show
that ker P is A-invariant and that ker P ⊂ ker Q.

c. Prove that if (Q, A) is observable, then every real symmetric positive
semidefinite solution is positive definite.

d. Prove now that if (A, B) is C−-stabilizable and (Q, A) is C−-detectable,
then the algebraic Riccati equation has exactly one real symmetric positive
semidefinite solution. Also prove that if, in addition, (Q, A) is observable
then this unique real symmetric positive semidefinite solution is positive
definite.

10.5 Consider the algebraic Riccati equation A T P + P A − P B B T P + Q = 0.
Assume that (A, B) is C

−-stabilizable, and let P+ be the largest real symmetric
solution.

a. Show that σ(A − B B T P+) ⊂ C− : = {s ∈ C | ℜe s � 0}, the closed left
half plane.

b. Show that σ(A − B B T P+) ⊂ C−, the open left half plane, if and only if
every eigenvalue of A on the imaginary axis is (Q, A) observable.

10.6 (The linear matrix inequality.) As usual, let � be the system given by ẋ(t) =

Ax(t)+ Bu(t), z(t) = Cx(t)+Du(t), with (A, B) stabilizable and D ∈ Rn×m

injective. Introduce the following inequality in the unknown real symmetric
matrix P ∈ Rn×n :

F(P) : =

(

AT P + P A + CTC P B + CT D

BT P + DTC DT D

)

� 0.

This inequality is called the Linear Matrix Inequality (LMI) associated with �.

a. Show that if P satisfies the ARE (10.33), then it satisfies the LMI.
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b. Show that for every real symmetric matrix P we have

rank(F(P)) = m + rank
[

AT P + P A + CTC

−(P B + CT D)(DT D)−1(BT P + DTC)
]

c. Show that min{rank(F(P)) | P real symmetric} = m and that a real sym-
metric matrix P̄ satisfies the ARE if and only if rank(F( P̄)) = m, i.e. P̄

minimizes the rank of F(P).

d. Show that if x , u and z satisfy the system equations, then we have
(

x(t)

u(t)

)T

F(P)

(

x(t)

u(t)

)

=
d
dt

(x(t)T Px(t))+ ‖z(t)‖2.

10.7 (The singular linear quadratic regulator problem.) In this problem we consider
the singular linear quadratic regulator problem. As before, consider the cost
functional

J (x0, u) =

∫ ∞

0
‖z(t)‖2 dt

for the system � given by the equations ẋ(t) = Ax(t)+Bu(t), z(t) = Cx(t)+

Du(t). We call the problem singular if D is not injective. Note that in this
case DT D does not have an inverse, so the ARE (10.33) is no longer well-
defined. One way to deal with the problem of minimizing J (x 0, u) over all
input functions u such that x(∞) = 0 is to perturb the problem so that it
becomes regular. For ε > 0 consider the system �ε: ẋ(t) = Ax(t) + Bu(t),
zε(t) = C1x(t)+ Dεu(t), where C1 and Dε are defined by

C1 : =

(

C

0

)

, Dε : =

(

D

ε I

)

.

Here, I is the m ×m identity matrix. Let

Jε(x0, u) : =

∫ ∞

0
‖zε(t)‖

2 dt

a. Show that J ∗0,ε(x0) : = inf{Jε(x0, u) | u ∈ U, x(∞) = 0} = x T
0 P+ε x0,

where P+ε is the largest real symmetric solution of the ARE

AT P+ P A+CTC− (P B+CT D)(DT D+ε2 I )−1(BT P+DTC)) = 0.

b. Show that P0 : = limε→0 P+ε exists

c. Show that J ∗0 (x0) : = inf{J (x0, u) | u ∈ U, x(∞) = 0} satisfies J ∗0 (x0) �

x T
0 P0x0 for all x0.

In order to proceed, consider the linear matrix inequality (LMI) associated with
the system �, in the unknown real symmetric matrix P ∈ Rn×n :

(

AT P + P A + CTC P B + CT D

BT P + DTC DT D

)

� 0.
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d. Show that P0 satisfies the LMI.

e. Show that if P satisfies the LMI, then for all x , u and z that satisfy the
equations of the system � we have

d
dt

(x(t)T Px(t))+ ‖z(t)‖2
� 0 for all t .

f. Show that for all u ∈ U such that x(∞) = 0 we have J (x 0, u) � x T
0 P0x0,

and conclude that J ∗0 (x0) = x T
0 P0x0 for all x0.

g. Show that P0 is the largest real symmetric solution P of the LMI, i.e., if
the real symmetric matrix P satisfies the LMI, then we have P � P0.

10.8 Consider the system ẋ(t) = Ax(t) + Bu(t). Let Q � 0. In this exercise we
investigate the existence of a smallest real symmetric solution of the associated
ARE. Assume that (A, B) is C

+- stabilizable.

a. Prove that the ARE −AT P − P A − P B B T P + Q = 0 has a largest real
symmetric solution, say P̂ , with the property that P̂ � 0.

b. Show that the original ARE AT P+ P A− P B B T P+Q = 0 has a smallest
real symmetric solution P− with the property that P− � 0.

c. Show that if A has no (Q, A) unobservable eigenvalues on the imaginary
axis, then σ(A − B B T P−) ⊂ C+.

d. Consider the system on the interval (−∞, 0], with terminal state x(0) =

x0, and define a cost functional J−(x0, u) by

J−(x0, u) : = −

∫ 0

−∞

x(t)T Qx(t)+ u(t)Tu(t) dt .

e. Prove that J ∗−(x0) : = sup{J−(x0, u) | u ∈ U, x(−∞) = 0} = x T

0 P−x0.

f. Show that if (A, B) is controllable, then there exist real symmetric solu-
tions P− and P+ of the ARE AT P + P A − P B B T P + Q = 0 such that
for any real symmetric solution P we have P− � P � P+.

10.7 Notes and references

The linear quadratic regulator problem and the Riccati equation were introduced
by Kalman in [91]. Extensive treatments of the problem can be found in the text-
books [25] by Brockett, [105] by Kwakernaak and Sivan, and [5] by Anderson and
Moore. For a detailed study of the Riccati differential equation and the algebraic
Riccati equation we refer to the work of Wonham [221]. Treatments of the algebraic
Riccati equation, including classifications of all real symmetric solutions in terms of
the invariant subspaces of the Hamiltonian matrix associated with the problem, can
also be found in Potter [150], Mårtensson [121], and Kucera [102]. The connec-
tion between output stabilizability and the existence of a real positive semi-definite
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solution of the algebraic Riccati equation (see theorems 10.13 and 10.19) is due to
Geerts [58], see also Geerts and Hautus [56].

We briefly indicate how to solve Riccati equations in section 13.4. A standard
reference for numerical algorithms for solving the algebraic Riccati equation is the
work of Laub [108]. We also mention more recent work by Kenney, Laub and Wette
[98], and Laub and Gahinet [109].

Extensions of the linear quadratic regulator problem to linear quadratic optimiza-
tion problems where the integrand of the cost functional is a possibly indefinite
quadratic function of the state and input variable, were studied in the classical pa-
per [213] by Willems. This paper also provides a geometric characterization of all real
symmetric solution of the algebraic Riccati equation, and establishes the intuitively
appealing connection between real symmetric solutions of the algebraic Riccati equa-
tion, and storage functions of the underlying control system. For additional material
on this connection, we refer to Molinari [125] and to Trentelman and Willems [200].
A further reference for the geometric classification of all real symmetric solutions is
the work of Coppel [33]. In [198], Trentelman studied the free endpoint indefinite
linear quadratic problem using this geometric classification.

The question what system performance can be obtained if, in the cost functional,
the weighting matrix of the control input is singular or nearly singular, leads to sin-
gular and nearly singular linear quadratic regulator problems, and ‘cheap control’
problems. The asymptotic behavior of the optimal performance in case that the con-
trol weighting matrix tends to zero was studied in Kwakernaak and Sivan [106]. An
early reference for a discussion on the singular problem is the work of Clements and
Anderson [31]. Several approaches have been developed to study the singular linear
quadratic regulator problem. One approach has been to approximate the (singular)
control weighting matrix by a positive definite (regular) one, and subsequently study
the behavior of the optimal cost and optimal control inputs and trajectories as the reg-
ular weighting matrix approaches the singular one. This method was worked out, for
example, in Jameson and O’Malley [89], O’Malley [136], Francis [45], Fujii [52], and
in Trentelman [197]. In this context, we also mention O’Malley and Jameson [138]
and [139], where the singular problem was studied using the method of singular per-
turbations. In the singular problem, the role of the algebraic Riccati equation is taken
over by a linear matrix inequality (see also exercise 10.6 and exercise 10.7). Details
about this can be found in Willems [213], Clements, Anderson and Moylan [32], and
in Schumacher [172]. A second method to approach the singular problem has been
to allow for distributions as inputs. This method makes use of the full geometric ma-
chinery around the weakly unobservable subspace and strongly reachable subspace
as developed in chapters 7 and 8 of this book, and was worked out in detail in Hautus
and Silverman [74] and in Willems, Kitapçi and Silverman [219]. In this context we
also mention the work of Geerts [57].
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Chapter 11

The H2 optimal control

problem

In this chapter we consider the H2 optimal control problem. Given a controlled linear
system with a white noise disturbance input, we show that the size (in an appropriate
sense) of the controlled output is equal to the H2 norm of the closed loop transfer
matrix. Motivated by this, we define the performance of the controlled system to be
the H2 norm of the closed loop transfer matrix. This gives rise to the H 2 optimal
control problem: for a given control system, minimize the square of the H 2 norm
of the closed loop transfer matrix over the class of all internally stabilizing feedback
controllers.

The outline of this chapter is as follows. Section 11.1 contains an informal dis-
cussion on stochastic inputs to linear systems. In this section we also briefly recall
the notion of white noise. It is explained how the H2 norm of the transfer matrix is
related to the size of the output process, if the input is taken to be a standard white
noise process. In section 11.2 we treat the static state feedback version of the H 2 op-
timal control problem. Finally, in section 11.3 we discuss the dynamic measurement
feedback version of the H2 optimal control problem.

11.1 Stochastic inputs to linear systems

Consider the finite-dimensional, linear, time-invariant system � given by

ẋ(t) = Ax(t)+ Ev(t),

z(t) = Cx(t).
(11.1)

Assume that the system is internally stable, i.e. that σ(A) ⊂ C
−. Let T (t) be the

impulse response matrix of the system. In this section we take the point of view that
the input functions v are all samples of one and the same vector stochastic process v
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on R. We assume that every sample v has the property that the integral

x(t) =

∫ t

−∞
eA(t−s)Ev(s) ds (11.2)

converges for every t ∈ R (a sufficient condition is, for example, that v is bounded
on (−∞, c) for some c ∈ R, or that v is square-integrable over (−∞, c) for some
c ∈ R). The function x defined by (11.2) is a solution of the differential equation
ẋ(t) = Ax(t) + Ev(t), and is in fact the unique solution x with the property that
limt→−∞ x(t) = 0. For any sample v, the corresponding output is given by

z(t) =

∫ t

−∞

T (t − s)v(s) ds. (11.3)

In other words, z(t), t ∈ R is the output of the system corresponding to the initial
state x(−∞) = 0. In this way, every sample v gives rise to an output function z.
The set of all output functions obtained in this way can in turn be interpreted as the
set of all samples of a vector stochastic process, that is also denoted by z. In this
way the expression (11.3) can be interpreted as giving the relation between the input
stochastic process v and the output stochastic process z.

We assume that the input process v has zero mean. In other words, the expected
value mv(t) : = E{v(t)} satisfies mv(t) = 0 for all t ∈ R. We also assume that
v is wide-sense stationary, i.e., the covariance E{v(t1)v

T(t2)} depends only on the
difference t1 − t2. The covariance matrix of v is thus given by

Rv(τ ) : = E{v(t + τ )vT(t)} (t, τ ∈ R).

We are interested in the mean and covariance of the output process z. It can be
shown that the output process z is again zero-mean, i.e., the mean m z of z satisfies
mz(t) = 0 for all t ∈ R. Also, z is wide-sense stationary and its covariance matrix is

Rz(τ ) =

∫ ∞

0

∫ ∞

0
T (τ1)Rv(τ + τ2 − τ1)T T(τ2) dτ2 dτ1. (11.4)

In control systems with stochastic disturbance inputs, one frequently encounters
scalar stochastic processes w with the property that, even for values of |t 1− t2| small,
we have Rw(t2 − t1) ≈ 0, that is w(t1) and w(t2) are uncorrelated even for t1 and
t2 close. In order to model this property, the covariance function of such stochastic
process can be put Rv = δ, the Dirac distribution (see the Appendix.) A zero-mean,
wide-sense stationary scalar stochastic process w on R with covariance Rw = δ is
called a standard (scalar) white noise process. We can extend this notion to vector-
valued stochastic processes: any zero-mean, wide-sense stationary vector stochastic
process w on R with covariance matrix Rw = Iδ) is called a standard white noise

process.

In a strict mathematical sense white noise processes do not exist. We ignore this
fact here and proceed in a formal way, considering the following question. Given the
system �, let the input process v be a standard white noise process, so v = w. What
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can we then say about the output process z? According to the discussion above, z

is a zero-mean, wide-sense stationary process. If we insert the expression R w = Iδ

into the formula (11.4) for the covariance matrix of the output process z, then (with a
slight abuse of notation) we find that z has covariance matrix

Rz(τ ) =

∫ ∞

0

∫ ∞

0
T (τ1)Iδ(τ+τ2−τ1)T T(τ2) dτ2 dτ1 =

∫ ∞

0
T (τ1)T T(τ1−τ ) dτ1.

(11.5)

The conclusion we draw from this is the following: given the internally C−-stable
system ẋ(t) = Ax(t)+ Ev(t), z(t) = Cx(t), with input process v equal to a standard
white noise process, the output process z has variance matrix R z(0) given by

Rz(0) =

∫ ∞

0
T (τ )T T(τ ) dτ, (11.6)

where T (t) = CeAt E is the impulse response matrix of the system.

We now use this conclusion in the issue of how to define in a natural way the
concept of performance of the system �. We take the point of view that z is an output
that we would like to have ‘small’ in the presence of a white noise disturbance. In the
present context it is natural to measure the size of the output at time t by the expected
value E{‖z(t)‖2}. It turns out that, in fact, E{‖z(t)‖2} is independent of t . Indeed,
for any t ∈ R we have

E{‖z(t)‖2} = E{zT(t)z(t)} = E{trace z(t)zT(t)} = trace E{z(t)zT(t)} = trace Rz(0).

Thus we see that for the system ẋ(t) = Ax(t) + Ev(t), z(t) = Cx(t), with input
process v standard white noise, the size E{‖z(t)‖2} of the output process is the trace
of the variance matrix Rz(0). By the previous discussion, this is equal to

trace Rz(0) = trace
∫ ∞

0
T (τ )T T(τ ) dτ =

∫ ∞

0
trace T (τ )T T(τ ) dτ

=

∫ ∞

0
‖T (τ )‖2 dτ.

We conclude that for all t ∈ R

E{‖z(t)‖2} =

∫ ∞

0
‖T (τ )‖2 dτ,

the square of the L2-norm of the impulse response matrix of the system �. Here,
for a given matrix M , ‖M‖ denotes the Frobenius-norm of M : ‖M‖ 2 : =

∑

i, j M2
i j .

Thus, we define the performance of the system as the square of the L 2-norm of the
impulse response matrix:

J� : =

∫ ∞

0
‖T (τ )‖2 dτ. (11.7)
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This quantity is often called the H2-performance of the system �. The latter ter-
minology stems from the fact that J� is equal to the square of the H2-norm of the
transfer matrix G(s) = C(I s − A)−1 E of �:

J� = ‖G‖2
2 =

1
2π

∫ ∞

−∞

trace[GT(−iω)G(iω)] dω.

It is important to note that, once we have agreed to take (11.7) as the definition
of performance of the system �, we can completely abandon stochastics from the

discussion. From that moment on, the performance of the system � = (A, E, C)

equals the square of the L 2-norm of the impulse response matrix T (t) = Ce At E ,
and the stochastic interpretation of this remains on the background. Starting with this
definition of performance, we now formulate the corresponding synthesis problems
of minimizing the H2-performance over certain classes of feedback controllers. The
next section discusses the case that this minimization takes place over the class of all
static state feedback laws.

11.2 H2 optimal control by state feedback

Consider the system � given by

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

z(t) = Cx(t)+ Du(t).
(11.8)

The impulse response of the controlled system resulting from the state feedback con-
trol law u(t) = Fx(t) is given by TF (t) = CF eAF t E , while the corresponding closed
loop transfer matrix is equal to G F (s) = CF (s I − AF )−1 E . As explained in the pre-
vious section, we measure the performance of the controlled system by the square of
the L2-norm of its impulse response matrix. Thus, for a state feedback map F such
that σ(A + B F) ⊂ C−, we define the associated cost by

J�(F) : =

∫ ∞

0
trace[T T

F (t)TF (t)] dt . (11.9)

As noted before, this is equal to the square of the H2-norm of the closed loop transfer
matrix:

J�(F) =

∫ ∞

−∞

trace[GT
F (−iω)GF (iω)]dω.

The H2 optimal control problem by state feedback is to minimize the cost functional
(11.9) over the set of all state feedback control laws such that the controlled system
is internally stable:

Problem 11.1 Consider the system (11.8), together with the cost functional (11.9).

The H2 optimal control problem by state feedback is to find

J ∗� : = inf
{

J�(F) | F : X→ U such that σ(AF ) ⊂ C
−

}

, (11.10)
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and to find, if it exists, an optimal state feedback control law, i.e., to find a map

F∗ : X→ U such that σ(AF∗) ⊂ C− and such that

J�(F∗) = J ∗� .

In this book, we restrict ourselves to the case that the direct feedthrough map
D from the control input to the output to be controlled is injective. Under this as-
sumption the H2 optimal control problem is called regular. The H2 problem by state
feedback is said to be in standard form if D TC = 0 and DT D = I . Similar to the
linear quadratic regulator problems studied in chapter 10, the general problem can be
reduced to a problem in standard form by a preliminary state feedback transformation
(see section 10.1). In this section we assume that the problem is in standard form. In
order to assure the existence of a map F such that σ(A F ) ⊂ C−, it is also a standing
assumption that the pair (A, B) is C−-stabilizable.

Like the optimal control problems studied in chapter 10, the solution of the H 2
optimal control problem uses completion of the squares. Let P be a real symmetric
solution of the ARE

AT P + P A − P B B T P + CTC = 0 (11.11)

Furthermore, let F be such that σ(A F ) ⊂ C−. Define

X (t) : = eAF t E, U(t) : = FeAF t E .

Then we have

d
dt

X (t) = AX (t)+ BU(t), X (0) = E .

Now calculate (omitting the dependence on t)

d
dt

X T P X = X T(AT P + P A)X +U T BT P X + X T P BU

= X T P B BT P X − X TCTC X +U T BT P X + X T P BU

= (BT P X +U)T(BT P X +U)− (C X + DU)T(C X + DU).

(11.12)

By integrating this from 0 to T we obtain

X (T )T P X (T )− E T P E =

∫ T

0
(BT P X (t) +U(t))T(BT P X (t) +U(t)) dt

−

∫ T

0
(C X (t) + DU(t))T(C X (t) + DU(t)) dt .

Since σ(AF ) ⊂ C−, we have X (T )T P X (T )→ 0 (T →∞), so we get
∫ ∞

0
(C X (t)+ DU(t))T(C X (t)+ DU(t)) dt

= ET P E +

∫ ∞

0
(BT P X (t) +U(t))T(BT P X (t) +U(t)) dt . (11.13)
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Now, obviously

C X (t)+ DU(t) = CF eAF t E

and

BT P X (t) +U(t) = (BT P + F)eAF t E .

Substituting these expressions in (11.13) and taking the trace on both sides of the
resulting equation, we obtain
∫ ∞

0
trace[T T

F (t)TF (t)] dt = trace(E T P E)+

∫ ∞

0
trace[T T

P,F (t)TP,F (t)] dt, (11.14)

where we define

TP,F (t) : = (BT P + F)eAF t E .

Observe that this is equal to the closed loop impulse response matrix obtained by
applying the state feedback law u = Fx to the auxiliary system � P , represented by
the equations

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

z(t) = BT Px(t)+ u(t).
(11.15)

�P is obtained from � by replacing the output equation z = Cx+Du by z = B T Px+

u. Note that the second integral in (11.14) is equal to J�P (F), the performance of the
controlled system obtained by applying the state feedback control law u(t) = Fx(t)

to the system �P . Thus we obtain the following lemma:

Lemma 11.2 Consider the system (11.8). Assume that D TC = 0, DT D = I and that

(A, B) is stabilizable. Let P be a real symmetric solution of the ARE (11.11). A state

feedback control law u(t) = Fx(t) is internally stabilizing for � if and only if it is

internally stabilizing for �P . For any such F we have

J�(F) = trace(E T P E)+ J�P (F). (11.16)

Since the quantity trace(E T P E) does not depend on F , this lemma shows that
we can replace the minimization of the cost functional associated with the original

system � by the minimization of the cost functional associated with the new system
�P . Of course, this is useful only if the minimization of the new cost functional is
a simpler problem. A first attempt to minimize J�P (F) is to choose F : = −B T P.
This choice yields J�P (F) = 0. Unfortunately, this choice of F does not necessarily
give σ(AF ) ⊂ C−. This can however be repaired by taking for P not just any real
symmetric solution of the ARE, but a real symmetric solution that does lead to a
stable closed loop system. According to lemma 10.14, if every eigenvalue of A on
the imaginary axis is (C, A) observable, then such solution, P +, indeed exists (P+ is
the largest real symmetric solution of the ARE). Thus, by applying lemma 11.2 with
P = P+ we obtain
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Lemma 11.3 Consider the system (11.8). Assume that D TC = 0, DT D = I , that

(A, B) is stabilizable, and that every eigenvalue of A on the imaginary axis is (C, A)

observable. Let P+ be the largest real symmetric solution of the ARE (11.11). Then

we have

(i) J ∗� = trace(E T P+E).

(ii) The feedback law u(t) = −B T P+x(t) is optimal, i.e., J�(−BT P+) = J ∗� and

σ(A − B BT P+) ⊂ C−.

Similar to the linear quadratic regulator problems studied in chapter 10, the as-
sumption on the eigenvalues of A on the imaginary axis can be removed. Again, the
method is to consider a perturbed version of the H 2 optimal control problem. Given
ε > 0, we introduce the perturbed system �ε given by the equations

ẋ(t) = Ax(t) + Bu(t) +Ed(t),

z(t) = Cεx(t) + D0u(t),

with

Cε : =

(

C

ε I

)

, D0 : =

(

D

0

)

.

Clearly, for all F we have J�(F) � J�ε (F). The H2 problem for �ε is still in
standard form. The crucial point however is that (C ε, A) is observable so that we
can apply lemma 11.3 to obtain J ∗�ε

= trace(E T P+ε E), where P+ε is the largest real
symmetric solution of the perturbed algebraic Riccati equation

AT P + P A − P B B T P + CTC + ε2 I = 0 (11.17)

It was shown in the proof of lemma 10.15 that P +ε converges to P+, the largest real
symmetric solution of the ARE (11.11). Since J ∗� � J ∗�ε

= trace(E T P+ε E), this
implies

J ∗� � trace(E T P+E).

It follows from (11.16) with P = P+ that also the converse inequality holds. This
proves that, also without the assumption on the eigenvalues of A on the imaginary
axis, the optimal cost is equal to trace(E T P+E), with P+ the largest real symmetric
solution of the ARE.

If A has (C, A)-unobservable eigenvalues on the imaginary axis, then an optimal
F will not always exist. This is illustrated by the following example:

Example 11.4 Consider the system � given by ẋ(t) = u(t) + d(t), z(t) = u(t).
The optimal cost J ∗� is most easily computed by evaluating the corresponding ARE,
which in this case takes the form p2 = 0. Clearly, p+ = 0, so J ∗� = 0. The closed
loop transfer function resulting from u(t) = f x(t) is equal to f (s − f )−1, so f can
only be optimal if f = 0. However, f = 0 does not internally stabilize the system,
so an optimal f does not exist.
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In order to study the question of existence of optimal control laws, we consider
the system �P defined by (11.15) for P = P+. Apparently, for all F such that A F is
C
−-stable, we have

J�(F) = J ∗� + J�P+
(F),

so F is optimal if and only if A F is C−-stable and J�P+
(F) = 0. Since J�P+

(F) = 0
if and only if the closed loop transfer matrix

G P+,F (s) : = (BT P+ + F)(s I − AF )−1 E = 0,

this can be restated as: F is optimal if and only if it achieves disturbance decoupling
with internal stability for the system �P+ . Thus, we should consider the disturb-
ance decoupling problem with internal stability, DDPS, for the system � P+ given by
(11.15) with P = P+.

To be slightly more general, we shall consider DDPS for the system given by

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t),

z(t) = Cx(t)+ u(t).
(11.18)

Assume there exists a state feedback map F such that σ(A F ) ⊂ C− and (C+F)(s I−

AF )−1 E = 0. It is then immediate that (A, B) is stabilizable. If in the closed loop
system we take d = 0 and x0 ∈ im E , then the corresponding state trajectory x is
C−-stable and the corresponding output z is equal to zero. As a consequence, the
closed loop input u must be given by u(t) = −Cx(t) for all t . But then x satisfies
the differential equation ẋ = (A − BC)x, x(0) = x0. Since x is C−-stable, this
immediately implies x0 ∈ X−(A − BC), the C−-stable subspace of A − BC (see
definition 2.13). Thus we have proven the ‘only if’ part of the following lemma:

Lemma 11.5 Consider the system (11.18). There exists a map F : X → U such

that σ(A + B F) ⊂ C− and (C + F)(s I − AF )−1 E = 0 if and only if (A, B) is

stabilizable and im E ⊂ X−(A − BC).

Proof : (⇐) Let V : = X−(A − BC). We claim that there exists a feedback map F

such that σ(AF ) ⊂ C−, AFV ⊂ V and V ⊂ ker(C + F). In order to prove this,
choose a basis of the state space X adapted to V. With respect to this basis we have

A − BC =

(

A11 A12
0 A22

)

, B =

(

B1
B2

)

,

where σ(A11) ⊂ C− and (A22, B2) is stabilizable. Let F2 be such that σ(A22 +

B2 F2) ⊂ C− and define F0 by F0 : = (0 F2). Then we have

A − BC + B F0 =

(

A11 A12
0 A22 + B2 F2

)

.

Finally, define F : = F0 − C . Then it is clear that F satisfies the required properties.
The proof of the lemma is completed by noting that V is an A F -invariant subspace
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such that im E ⊂ V ⊂ ker(C + F). According to theorem 4.6 this yields (C +

F)(s I − AF )−1 E = 0.

By applying this lemma to the system �P+ , we immediately obtain:

Theorem 11.6 Consider the system �. Assume that D TC = 0, DT D = I , and that

(A, B) is stabilizable. Let P+ be the largest real symmetric solution of the ARE

(11.11). Then we have J ∗� = trace(E T P+E). Furthermore, the following conditions

are equivalent:

(i) there exists an optimal feedback law, i.e., a map F such that σ(A+B F) ⊂ C−,

and J�(F) = J ∗� ,

(ii) there exists F such that the feedback law u(t) = Fx(t) achieves disturbance

decoupling with internal stability for the system �P+ , i.e., σ(A + B F) ⊂ C−,

and (B T P+ + F)(s I − A − B F)−1 E = 0,

(iii) im E ⊂ X−(A − B BT P+).

Furthermore, F :X→ U is optimal if and only if σ(A+ B F) ⊂ C− and (B T P+ +

F)(s I − A − B F)−1 E = 0.

It is an easy exercise to extend this theorem to the non-standard case (see exercise
11.1).

11.3 H2 optimal control by measurement feedback

In this section we consider the H2 optimal control problem by dynamic measurement
feedback. Consider the system �

ẋ(t) = Ax(t) + Bu(t) + Ed(t),

y(t) = C1x(t) + D1d(t),

z(t) = C2x(t) + D2u(t).
(11.19)

In these equations, d represents the disturbance, u the control input, z the output to
be controlled, and y the measured output. If we control the system by means of a
dynamic feedback controller Ŵ, given by the equations

ẇ(t) = Kw(t) + Ly(t),

u(t) = Mw(t) + Ny(t),
(11.20)

then the controlled system is given by the equations

ẋe(t) = Aexe(t)+ Eed(t),

z(t) = Cexe(t)+ Ded(t),
(11.21)
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with

Ae : =

(

A + B NC B M

LC1 K

)

, Ee : =

(

E + B N D1
L D1

)

,

Ce : =
(

C2 + D2 NC1 D2 M
)

, De : = D2 N D1.

The corresponding closed loop impulse response matrix between the disturbance in-
put d and the output z is equal to

TŴ(t) = CeeAet Ee + δDe,

while the corresponding transfer matrix is given by

GŴ(s) = Ce(s I − Ae)
−1 Ee + De.

Like in the previous section, as a measure of performance of the controlled system we
take the squared L2-norm of the closed loop impulse response matrix. The L 2-norm
of the impulse response matrix is defined only if it is C−-stable and the distributional
part is not present (equivalently, the closed loop transfer matrix is strictly proper). For
any feedback controller Ŵ such that the controlled system satisfies these properties,
i.e., TŴ is C−-stable and De = 0, we define the associated cost by

J�(Ŵ) : =

∫ ∞

0
trace[T T

Ŵ(t)TŴ(t)] dt . (11.22)

This is equal to the squared H2-norm of the closed loop transfer matrix:

J�(Ŵ) =
1

2π

∫ ∞

−∞

trace[GT
Ŵ(−iω)GŴ(iω)]dω.

In the H2 problem by dynamic measurement feedback we want to minimize the cost
functional J�(Ŵ) over the set of all feedback controllers Ŵ such that the resulting
closed loop transfer matrix is strictly proper and the resulting closed loop system is
internally stable:

Definition 11.7 Consider the system given by (11.19) together with the cost func-

tional given by (11.22). The H2 optimal control problem by dynamic measurement
feedback is to find

J ∗� : = inf
{

J�(Ŵ) | Ŵ = (K , L, M, N) such that De = 0 and σ(Ae) ⊂ C−
}

,

and to find, if it exists, an optimal feedback controller, i.e., to find

Ŵ∗ = (K ∗, L∗, M∗, N∗)

such that D2 N∗D1 = 0, the closed loop system is internally stable, i.e.,

σ

(

A + B N∗C1 B M∗

L∗C1 K ∗

)

⊂ C
−,

and

J�(Ŵ∗) = J ∗� .



H2 optimal control by measurement feedback 247

A necessary and sufficient condition for the existence of a dynamic compensator
such that the closed loop system is internally stable is that (A, B) is stabilizable and
that (C1, A) is detectable (both with respect to the stability domain C

−). This will be
a standing assumption is this section.

The closed loop transfer function G Ŵ(s) is strictly proper if and only if De =

D2 N D1 = 0. We will call a controller admissible if it yields De = 0 and σ(Ae) ⊂

C−.

In this book, we restrict ourselves to the case that the direct feedthrough map
D1 from the disturbance input to the measured output is surjective, and the direct
feedthrough map D2 from the control input to the output to be controlled is injective.
Under these two assumptions, the H2 optimal control problem is called regular. In
the regular case we have D2 N D1 = 0 if and only if N = 0. Hence, a controller
Ŵ = (K , L, M, N) is admissible if and only if N = 0 and σ(Ae) ⊂ C

−. Note that if
N = 0 then the closed loop system map Ae is equal to

Ae =

(

A B M

LC1 K

)

.

The H2 optimal control problem by measurement feedback is said to be in standard

form if DT
2C2 = 0 and DT

2 D2 = I , and D1 ET = 0 and D1 DT
1 = I . In this section we

assume that the problem is in standard form.

Let P be any real symmetric solution of the algebraic Riccati equation ARE as-
sociated with the system (A, B, C2, D2) (the part of the system � that represents the
open loop transfer from u to z):

AT P + P A − P B B T P + CT

2C2 = 0. (11.23)

For any admissible controller Ŵ = (K , L, M, 0), define X (t), W (t) and U(t) by
(

X (t)

W (t)

)

: = eAet
(

E

L D1

)

, U(t) : = MW (t).

It is easily verified that

d
dt

X (t) = AX (t)+ BU(t), X (0) = E,

and hence, according to (11.12), we have

d
dt

X T P X = (BT P X +U)T(BT P X +U)− (C2 X + D2U)T(C2 X + D2U).

Again by integrating the above from 0 to T and letting T →∞, we find

∫ ∞

0
(C2 X (t)+ D2U(t))T(C2 X (t)+ D2U(t)) dt

= ET P E +

∫ ∞

0
(BT P X (t) +U(t))T(BT P X (t) +U(t)) dt . (11.24)
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It is also easily verified that

C2 X (t)+ D2U(t) = CeeAe t Ee = TŴ(t)

and

BT P X (t) +U(t) = CP,eeAe t Ee,

with CP,e : =
(

BT P M
)

. Substituting these expressions in (11.24) and taking the
trace on both sides, we obtain

∫ ∞

0
trace[T T

Ŵ(t)TŴ(t)] dt = trace[E T P E]+

∫ ∞

0
trace[T T

P,Ŵ(t)TP,Ŵ(t)] dt, (11.25)

where we have defined

TP,Ŵ(t) : = CP,eeAe t Ee.

Observe that TP,Ŵ is equal to the closed loop impulse response obtained by applying
the controller Ŵ to the auxiliary system � P , defined by

ẋ(t) = Ax(t) + Bu(t) + Ed(t),

y(t) = C1x(t) + D1d(t),

z(t) = BT Px(t) + u(t).

(11.26)

Note that �P is obtained from � by replacing the output equation z = C 2x + D2u

by the new output equation z = B T Px + u. Also observe that the second integral in
(11.25) is equal to J�P (Ŵ), i.e., the performance of the closed loop system obtained
by applying the controller Ŵ to the system � P . Thus we have obtained the following
lemma:

Lemma 11.8 Consider the system �. Assume that DT

2C2 = 0 and DT

2 D2 = I , and

that (A, B) is stabilizable. Let P be a real symmetric solution of the ARE (11.23).

A controller Ŵ = (K , L, M, 0) internally stabilizes � if and only if it internally

stabilizes �P . For any such controller we have

J�(Ŵ) = trace(E T P E)+ J�P (Ŵ). (11.27)

Like in the state feedback case, the quantity trace(E T P E) does no depend on
Ŵ, so the lemma shows that we can replace the minimization of the cost functional
J� associated with the original system � by the minimization of the cost functional
J�P associated with the transformed system �P . However, in contrast with the state
feedback case, it is not immediately clear which controller minimizes the functional
J�P . It turns out that we need a second transformation step in order to arrive at a
transformed system for which the H2 optimal control problem does have an obvious
solution.

Again consider the system � given by (11.19). Let the dual system � T be given
by

ẋ(t) = ATx(t) + CT
1u(t) + CT

2d(t),

y(t) = BTx(t) + DT
2d(t),

z(t) = ETx(t) + DT
1u(t).
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For a given controller Ŵ = (K , L, M, 0), let ŴT : = (K T, MT, LT, 0) be its dual.
Clearly, Ŵ internally stabilizes � if and only if Ŵ T internally stabilizes �T. Further-
more, the closed loop impulse response matrix of the interconnection of � T and ŴT

is equal to the transpose TŴ
T of TŴ . Since the L2-norm of a matrix function does not

change under transposition, we find

J�(Ŵ) = J�T(ŴT).

Note that if D1 ET = 0, D1 DT
1 = I , and (C1, A) is detectable, then the system

�T satisfies the assumptions of lemma 11.8. Thus, we can apply lemma 11.8 to � T.
For this, we write down the algebraic Riccati equation associated with the system
(AT, CT

1, ET, DT
1):

AQ + Q AT − QCT
1C1 Q + E E T = 0. (11.28)

This Riccati equation will be called the dual ARE. For any real symmetric solution
Q, we consider the auxiliary system (� T)Q given by

ẋ(t) = ATx(t) + CT
1u(t) + CT

2d(t),

y(t) = BTx(t) + DT
2d(t),

z(t) = C1 Qx(t) + u(t),

By applying lemma 11.8 we find that for any controller Ŵ = (K , L, M, 0) that in-
ternally stabilizes � we have

J�T(ŴT) = trace(C2 QCT
2)+ J(�T)Q

(ŴT).

We would like to reformulate this in terms of the original system �. For this, define
the system �Q to be the dual of (�T)Q , i.e., the system given by the equations

ẋ(t) = Ax(t) + Bu(t) + QC T
1d(t),

y(t) = C1x(t) + d(t),

z(t) = C2x(t) + D2u(t).
(11.29)

�Q is obtained from � by replacing the differential equation ẋ = Ax + Bu+ Ed by
ẋ = Ax + Bu + QC Td, and the output equation y = C1x + D1d by y = C1x + d.
We then immediately obtain:

Lemma 11.9 Consider the system �. Assume that D1 E T = 0 and D1 DT

1 = I ,

and that (C1, A) is detectable. Let Q be a real symmetric solution of the dual ARE

(11.28). A controller Ŵ = (K , L, M, 0) internally stabilizes � if and only if it intern-

ally stabilizes �Q . For any such controller we have

J�(Ŵ) = trace(C2 QCT

2)+ J�Q (Ŵ). (11.30)

The idea is now to apply lemma 11.9 to the system � P . As before, let P be a
real symmetric solution of the algebraic Riccati equation (11.23) and let � P be given
by (11.26). Observe that the dual ARE associated with � P coincides with the dual



250 The H2 optimal control problem

ARE associated with � and is given by (11.28). Let Q be a real symmetric solution
of the dual ARE and define �P Q : = (�P )Q . In other words, �P Q is obtained
from the original system � in two steps: first transform � to � P , and subsequently
transform the systems �P to (�P )Q . The transformed system �P Q is then given by
the equations

ẋ(t) = Ax(t) + Bu(t) + QC T
1d(t),

y(t) = C1x(t) + d(t),

z(t) = BT Px(t) + u(t).
(11.31)

By applying lemma 11.8 to � and subsequently lemma 11.9 to � P we then obtain:

Lemma 11.10 Consider the system �. Assume that D T

2C2 = 0, DT

2 D2 = I , D1 E T =

0, D1 DT

1 = I , (A, B) is stabilizable, and (C1, A) is detectable. Let P be a real

symmetric solution of the ARE (11.23) and let Q be a real symmetric solution of the

dual ARE (11.28). A controller Ŵ = (K , L, M, 0) internally stabilizes � if and only

if it internally stabilizes �P Q . For any such controller we have

J�(Ŵ) = trace(E T P E)+ trace(B T P Q P B) + J�P Q (Ŵ). (11.32)

This lemma shows that the H2 optimal control problem for the original system �

can be replaced by the H2 problem for the transformed system � P Q . Let us investi-
gate �P Q . If we were allowed to use state feedback, then a first attempt to minimize
J�P Q would be to take the state feedback control law u(t) = −B T Px(t). However,
we are only allowed to use the measured output y(t) for feedback. Note however that
the measured output of �P Q equals y(t) = C1x(t) + d(t). Thus, we know that the
(unknown!) disturbance d(t) is actually equal to d(t) = y(t) − C 1x(t). In turn, this
implies that the state trajectory of �P Q satisfies

ẋ(t) = Ax(t)+ Bu(t)+ QC T
1d(t)

= Ax(t)+ Bu(t)+ QC T
1(y(t)− C1x(t))

= (A − QCT
1C1)x(t)+ Bu(t)+ QCT

1 y(t) (11.33)

Since we are only dealing with closed loop transfer matrices, we have x(0) = 0.
Together with the fact that x(t) satisfies the differential equation (11.33), this implies
that we can actually reconstruct x(t) exactly, using the measurements y(τ ), τ � t .
After having reconstructed x(t), we can then apply the control u(t) = −B T Px(t),
which will yield zero output z(t). To be more concrete, introduce the system � given
by the equation

ẇ(t) = (A − QCT
1C1)w(t)+ Bu(t)+ QCT

1 y(t).

This system is a state observer for �P Q (see section 3.11). Indeed, if we define the
error by e := w − x , then e can be seen to satisfy ė(t) = (A− QC T

1C1)e(t). Thus, if
w(0) = x(0) then for any input function u we have w(t) = x(t) for all t . Since we
actually have x(0) = w(0) = 0, w(t) is equal to x(t) for all t � 0. Thus, if we apply
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u(t) = −BT Pw(t) to �P Q , then we have z(t) = 0 for all t � 0. This control input
u(t) is exactly generated by the the controller Ŵ given by

ẇ(t) = (A − B BT P − QCT
1C1)w(t)+ QCT

1 y(t),

u(t) = −BT Pw(t).
(11.34)

Thus, if we interconnect the system � P Q with the controller Ŵ, then the output z

will be identically equal to zero for all disturbance inputs. Stated alternatively: the
controller Ŵ achieves disturbance decoupling for the system � P Q . Consequently, the
closed loop transfer function between d and z will be equal to zero. We have now
proven the following lemma:

Lemma 11.11 Let P and Q be real symmetric solutions of the ARE (11.23) and the

dual ARE (11.28), respectively. Let Ŵ be defined by (11.34). Then J �P Q (Ŵ) = 0.

Up to now, we have not taken into account the requirement that an optimal con-
troller should be internally stabilizing. Again, let P and Q be arbitrary real sym-
metric solutions of the ARE (11.23) and the dual ARE (11.28), respectively. Let
�P Q : = (�P )Q be the auxiliary system given by (11.31), obtained from � by the
transformation � �→ �P �→ (�P )Q . If we interconnect �P Q and Ŵ, then the result-
ing closed loop system map is equal to

Ae =

(

A −B BT P

QCT
1C1 A − B BT P − QCT

1C1

)

It is easily seen that

σ(Ae) = σ(A − B BT P) ∪ σ(A − QCT
1C1).

Consequently, Ŵ is an internally stabilizing controller if and only if A − B B T P and
A − QCT

1C1 are C−-stable. By lemma 10.14 we know that if A has no (C 2, A)-
unobservable eigenvalues on the imaginary axis, then there is exactly one real sym-
metric solution of the ARE (11.23), P+, such that σ(A− B B T P+) ⊂ C− (P+ is the
largest real symmetric solution of the ARE). Also, if A T has no (E T, AT)-unobservable
eigenvalues on the imaginary axis, then the dual ARE (11.28) has exactly one real
symmetric solution, Q+, such that σ(AT − CT

1C1 Q) ⊂ C−. Equivalently: if A has
no (A, E)-uncontrollable eigenvalues on the imaginary axis then there is exactly one
real symmetric solution, Q+, of the dual ARE such that σ(A−Q+CT

1C1) ⊂ C
− (Q+

is the largest real symmetric solution of the dual ARE).

We conclude that if all eigenvalues of A on the imaginary axis are (C 2, A)-
observable and (A, E)-controllable, then the controller Ŵ given by (11.34), with the
particular choices P = P+ and Q = Q+, achieves disturbance decoupling with in-
ternal stability for the system �P+Q+ . Thus, by applying lemma 11.10 with P = P +

and Q = Q+, we arrive at the following:

Theorem 11.12 Consider the system �. Assume that (A, B) is stabilizable, that

(C1, A) is detectable, and that all eigenvalues of A on the imaginary axis are (C 2, A)-

observable and (A, E)-controllable. Furthermore, assume that D T

2C2 = 0, DT

2 D2 =
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I , and D1 E T = 0, D1 DT

1 = I . Let P+ be the largest real symmetric solution of

the ARE (11.23) and let Q+ be the largest real symmetric solution of the dual ARE

(11.28). Then we have:

(i) J ∗� = trace(E T P+E + trace(B T P+Q+P+B),

(ii) the controller Ŵ given by

ẇ(t) = (A − B BT P+ − Q+CT

1C1)w(t)+ Q+CT

1 y(t),

u(t) = −BT P+w(t)
(11.35)

is optimal, i.e., J�(Ŵ) = J ∗� and Ŵ is internally stabilizing.

The above theorem gives a complete solution to the H 2 optimal control problem
with measurement feedback for the case that the system does not have unobservable
and uncontrollable eigenvalues on the imaginary axis.

Like in the state feedback version of the H2 optimal control problem, we can
remove the observability and controllability assumption on the eigenvalues of A on
the imaginary axis by considering the problem for a perturbed system. Given �,
define a perturbed system �ε by

ẋ(t) = Ax(t) + Bu(t) + Eεd̃(t),

y(t) = C1x(t) + D1,0d̃(t),

z(t) = C2,εx(t) + D2,0u(t),
(11.36)

with ε > 0 and

Eε : =
(

E ε I
)

, D1,0 : =
(

D1 0
)

, C2,ε : =

(

C2
ε I

)

, D2,0 : =

(

D2
0

)

.

Note that the H2 optimal control problem associated with �ε is in standard form.
Also note that (C2,ε, A) is observable and that (A, Eε) is controllable. The ARE and
dual ARE associated with �ε are given by

AT P + P A − P B B T P + CT
2C2 + ε2 I = 0,

AQ + Q AT − QCT
1C1 Q + E ET + ε2 I = 0,

respectively. Denote the largest real symmetric solutions of these equations by P +
ε

and Q+ε , respectively. It was shown in the proof of lemma 10.15 that P +
ε → P+ (ε →

0), where P+ is the largest real symmetric solution of the ARE (11.23). Likewise,
Q+ε converges to Q+, the largest real symmetric solution of the dual ARE (11.28).

It is easily seen that for any admissible controller Ŵ we have

J�ε (Ŵ) � J�(Ŵ),

which immediately implies that

J ∗�ε
� J ∗� .
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By theorem 11.12, J ∗�ε
= trace(E T

ε P+ε Eε + trace(BT P+ε Q+ε P+ε B). Thus, by letting
ε → 0, we find

trace(E T P+E + BT P+Q+P+B) � J ∗� .

On the other hand, it follows from lemma 11.10 that also the converse inequality
holds, so we may conclude that also without the observability and controllability
assumption on the eigenvalues of A we have

J ∗� = trace(E T P+E + trace(BT P+Q+P+B).

By applying lemma 11.10 with P = P+ and Q = Q+ we then find: for any Ŵ =

(K , L, M, 0) that internally stabilizes � (equivalently �P+Q+) we have

J�(Ŵ) = J ∗� + J�P+Q+
(Ŵ).

It follows immediately from this that a controller Ŵ = (K , L, M, 0) is optimal if and

only if it achieves disturbance decoupling with internal stability for � P+Q+ . Recall
that if all eigenvalues of A on the imaginary axis are (C 2, A) observable and (A, E)

controllable, then the controller Ŵ given by (11.35) achieves disturbance decoupling
with internal stability for �P+Q+ . However, this observability and controllability
condition is sufficient, but not necessary for the existence of such a compensator.

In order to obtain conditions that are both necessary and sufficient, we will now
study the disturbance decoupling problem by measurement feedback and internal sta-
bility, DDPMS, for the system that is slightly more general than (11.31)

ẋ(t) = Ax(t) + Bu(t) + Ed(t),

y(t) = C1x(t) + d(t),

z(t) = C2x(t) + u(t),
(11.37)

For a given feedback controller Ŵ = (K , L, M, 0), denote the closed loop transfer
matrix by GŴ and the closed loop system map by A e. For a given map M , let X−(M)

and X+(M) denote the C−-stable and C−-unstable subspace of M , respectively (see
definition 2.13).

Lemma 11.13 Consider the system (11.37). There exists a controller Ŵ with real-

ization (K , L, M, 0) such that GŴ(s) = 0 and σ(Ae) ⊂ C− if and only if (A, B) is

stabilizable, (C1, A) is detectable,

im E ⊂ X−(A − BC2), (11.38)

X+(A − EC1) ⊂ ker C2, (11.39)

X+(A − EC1) ⊂ X−(A − BC2), (11.40)

and

AX+(A − EC1) ⊂X−(A − BC2). (11.41)
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Proof : (⇒) Assume a strictly proper controller Ŵ such that G Ŵ(s) = 0 and σ(Ae) ⊂

C− exists. The properties of stabilizability and detectability are immediate. The
closed loop system is given by ẋe = Aexe + Eed, z = Cexe, with

Ae : =

(

A B M

LC1 K

)

, Ee : =

(

E

L

)

, Ce : =
(

C2 M
)

.

By theorem 4.6 there exists an Ae-invariant subspace Ve of the extended state space
Xe such that im Ee ⊂ Ve ⊂ ker Ce. Using the notation of section 6.1, let S : = i(Ve)

be the intersection of Ve with the original state space X and let V : = p(Ve) be the
projection of Ve onto X. Clearly we have

S ⊂ V. (11.42)

Furthermore, it is easily verified that

AS ⊂ V, (11.43)

im E ⊂ V, (11.44)

and

S ⊂ ker C2. (11.45)

Thus, in order to prove (11.38) to (11.41) it suffices to show that

V ⊂ X−(A − BC2) (11.46)

and

X+(A − EC1) ⊂ S. (11.47)

To show (11.46), let x0 ∈ V. Being the projection of Ve onto X, there exists w0
such that (x T

0, w
T
0)

T ∈ Ve. As initial state of the closed loop system, take (x T
0, w

T
0).

As disturbance input take d = 0. Then the corresponding state trajectory
(

x

w

)

is C−-

stable, while for the closed loop output we have z = 0. Since z = C 2x + u, we find
that the closed loop input signal u is equal to −C2x . This implies that x satisfies the
differential equation

ẋ = (A − BC2)x, x(0) = x0.

Since x is C−-stable this immediately implies that x0 ∈ X−(A − BC2). In order
to prove (11.47), note that the dual controller Ŵ T achieves disturbance decoupling
with internal stability for the dual of (11.37). Using the same argument as before, it
follows that p(V⊥e ) ⊂ X−(AT − CT

1 ET). Since p(V⊥e ) = i(Ve) = S⊥ (see exercise
6.1), and since X−(AT − CT

1 ET) = X+(A − EC1)
⊥, this yields (11.47).

(⇐) Assume (A, B) is stabilizable, that (C1, A) is detectable and that (11.38) to
(11.41) hold. Define V : = X−(A + BC2) and S : = X+(A − EC1). It was shown
in the proof of lemma 11.5 that there exists a feedback map F such that

(A + B F)V ⊂ V, (11.48)

V ⊂ ker(C2 + F), (11.49)
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and

σ(A + B F) ⊂ C
−. (11.50)

By dualization, the previous result can be applied to obtain the existence of an output
injection map G such that the following properties hold:

(A + GC1)S ⊂ S, (11.51)

im(E + G) ⊂ S, (11.52)

and

σ(A + GC1) ⊂ C
−. (11.53)

Now define a strictly proper controller Ŵ as follows. For the state space of Ŵ take X,
the state space of the original system. Define K : = A + B F + GC1, L : = −G and
M : = F . We claim that this controller achieves disturbance decoupling with internal
stability. Indeed, with this compensator we have

Ae : =

(

A B F

−GC1 A + B F + GC1

)

, Ee : =

(

E

−G

)

, Ce : =
(

C2 F
)

.

Obviously, σ(Ae) = σ(A+ B F)∪σ(A+GC1) ⊂ C−, so Ŵ yields internal stability.
In order to show that it achieves decoupling, define a subspace of the extended state
space by

Ve : =
{

(

x1
0

)

+
(

x2
x2

)

∣

∣

∣
x1 ∈ S, x2 ∈ V

}

.

It is straightforward to verify that Ve is Ae-invariant and that im Ee ⊂ Ve ⊂ ker Ce.
The result then follows from theorem 4.6.

By applying the previous lemma to the system � P+Q+ , we arrive at:

Theorem 11.14 Consider the system �. Assume that (A, B) is stabilizable and that

(C1, A) is detectable. Furthermore, assume that D T

2C2 = 0, DT

2 D2 = I , and D1 E T =

0, D1 DT

1 = I . Let P+ be the largest real symmetric solution of the ARE (11.23) and

let Q+ be the largest real symmetric solution of the dual ARE (11.28). Then we have

J ∗� = trace(E T P+E + trace(B T P+Q+P+B).

Furthermore, the following conditions are equivalent:

(i) There exists an optimal controller, i.e., a controller Ŵ = (K , L, M, 0) such that

J�(Ŵ) = J ∗� and Ŵ is internally stabilizing,

(ii) there exists a controller Ŵ = (K , L, M, 0) that achieves disturbance decoup-

ling with internal stability for the system �P+Q+ .
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(iii) The following four conditions are satisfied:

im Q+CT

1 ⊂ X−(A − B BT P+),

X+(A − Q+CT

1C1) ⊂ ker B T P+,

X+(A − Q+CT

1C1) ⊂ X−(A − B BT P+)

and

AX+(A − Q+CT

1C1) ⊂ X−(A − B BT P+).

If any of the conditions (i), (ii) or (iii) hold, then any controller Ŵ = (K , L, M, 0)

that achieves disturbance decoupling with internal stability for the system � P+Q+ is

optimal.

11.4 Exercises

11.1 Formulate and prove the analogue of theorem 11.6 for a system � given by
(11.8) for which the H2 problem is not necessarily in standard form. Do assume
that D is injective and (A, B) is stabilizable.

11.2 (The H2-problem without internal stability.) In addition to the H 2 problem by
state feedback treated in this chapter, we can also consider the version of this
problem in which it is not required that the state feedback map F internally sta-
bilizes the system. We will call this problem the H2 problem without stability:
given the system ẋ(t) = Ax(t)+ Bu(t)+ Ed(t), z(t) = Cx(t)+ Du(t), find

J ∗� = inf { J�(F) | F : X→ U } ,

and find an optimal F , i.e. an F such that J�(F) = J ∗� . Assuming that the
problem is regular and in standard form, formulate and prove the analogue of
theorem 11.6 for this problem. Try to be as general as possible, do not assume
that (A, B) is stabilizable.

11.3 (The H2-filtering problem.) In this exercise we study the filtering problem.
Consider the following system �:

ẋ(t) = Ax(t) + Ed(t),

y(t) = C1x(t) + D1d(t),

z(t) = C2x(t),

where it is assumed that σ(A) ⊂ C−. In these equations d represents a disturb-
ance, the variable y represents an output that can be measured and the variable
z is an output that we want to estimate on the basis of the output y. To this
end, we want to construct a finite-dimensional linear time-invariant system �

(a filter):

ẇ(t) = Kw(t) + Ly(t),

ζ(t) = Mw(t) + Ny(t),
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such that ζ is an estimate of z, in the following sense. Let e : = z− ζ , the error
between z and ζ . Let W be the state space of the system �. The interconnection
of � and � is a system with state space X×W , described by the equations

ẋe(t) = Aexe(t) + Eed(t),

e(t) = Cexe(t) + Ded(t),
(11.54)

where we have introduced the following notation:

Ae : =

(

A 0
LC1 K

)

, Ee : =

(

E

L D1

)

, Ce : =
(

C2 − NC1 −M
)

,

De : = −N D1, xe(t) : =

(

x(t)

w(t)

)

.

Assume that σ(Ae) ⊂ C−, and that d is a standard white noise process. The
size of the estimation error e is measured by the expected value E{‖e(t)‖ 2}.
It was explained in section 11.1 that this quantity is independent of t , and is
equal to the square of the L 2 norm of the impulse response matrix Te(t) =

CeeAe t Ee + Deδ from d to e. In the filtering problem we want to minimize the
cost functional

J�(�) : =

∫ ∞

0
‖Te(t)‖

2 dt

over all filters � such that σ(Ae) ⊂ C−. We assume that (C1, A) is C−-
detectable. We assume in this exercise that the filtering problem is regular,
i.e., that D1 is surjective. Also, to simplify the problem, we assume that the
problem is in standard form, i.e. that D1 ET = 0 and that D1 DT

1 = I .

a. A filter is called admissible if σ(Ae) ⊂ C− and De = 0. Show that a filter
is admissible if and only if σ(Ae) ⊂ C− and N = 0.

b. Consider the dual algebraic Riccati equation AQ + Q A T − QCT
1C1 Q +

E ET = 0. For any real symmetric solution Q, define the system � Q by

ẋ(t) = Ax(t) + QCT
1d(t),

y(t) = C1x(t) + d(t),

z(t) = C2x(t).

Show that � is an admissible filter for � if and only if it is an admissible
filter for �Q , and prove that for every admissible filter � we have

J�(�) = trace(C2 QCT

2)+ J�Q (�).

c. Assume that every eigenvalue of A on the imaginary axis is (A, E)-con-
trollable. Let Q+ be the largest real symmetric solution of the dual ARE.
Prove that the filter �∗:

ẇ(t) = (A − Q+CT
1C1)w(t) + Q+CT

1 y(t),

ζ(t) = C2w(t),

is admissible, and that J�Q+
(�∗) = 0.
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d. Prove that �∗ is an optimal filter and that

J�(�∗) = J ∗� = trace(C2 Q+CT
2).

11.4 (The singular H2-problem.) In this exercise we study the singular H2-problem.
Consider the system �: ẋ(t) = Ax(t) + Bu(t) + Ed(t), z(t) = Cx(t) +

Du(t). Let (A, B) be C−-stabilizable. The H2-optimal control problem is
called singular if D is not injective. One way to deal with the singular H2-
problem is via the perturbed system �ε: ẋ(t) = Ax(t) + Bu(t) + Ed(t),
zε(t) = C1x(t)+ Dεu(t), with

C1 : =

(

C1
0

)

, Dε : =

(

D

ε I

)

,

where ε > 0.

a. Show that for any F such that σ(A F ) ⊂ C− we have J�ε (F) � J�(F).

b. Show that J ∗�ε
= trace(E T P+ε E), where P+ε is the largest real symmetric

solution of the ARE

AT P + P A+CTC − (P B+CT D)(DT D+ ε2)−1(BT P + DTC) = 0.

In exercise 10.7 it was shown that P+ε → P+ (ε → 0), where P+ is the largest
real symmetric solution of the linear matrix inequality

F(P) : =

(

AT P + P A + CTC P B + CT D

BT P + DTC DT D

)

� 0.

c. Factorize F(P+) = (C+ D+)T(C+ D+), and introduce the system �P+

by ẋ(t) = Ax(t)+ Bu(t)+ Ed(t), z(t) = C+x(t)+ D+u(t). Show that
for all F such that σ(AF ) ⊂ C− we have

J�(F) = trace(E T P+E)+ J�P+
(F).

d. Prove that J ∗� = trace(E T P+E).

e. Prove that there exists an optimal F ∗, i.e., F∗ such that σ(A+B F∗) ⊂ C−

and J�(F∗) = J ∗� , if and only if DDPS is solvable for the system � P+ ,
and that in that case F∗ is optimal if and only if σ(A + B F ∗) ⊂ C− and

(C+ + D+F∗)(I s − A − B F∗)−1 E = 0.

We consider the special case that D = 0, i.e., � is given by ẋ(t) = Ax(t) +

Bu(t) + Ed(t), z(t) = Cx(t). The H2 problem is then called totally singu-

lar. For a given subspace K of X, let V ∗
g (K) be the largest C−-stabilizability

subspace contained in K .



Exercises 259

f. Show that there exists an optimal F ∗ if and only if

im E ⊂ V∗g (ker(AT P+ + P+A + CTC)),

and that F∗ is optimal if and only if σ(A + B F ∗) ⊂ C− and

(AT P+ + P+A + CTC)(I s − A − B F∗)−1 E = 0.

11.5 (The H2-problem in the non-standard case.) In section 11.3, the H 2-problem
was treated only for the standard case, i.e., under the assumptions that D T

2C2 =

0, DT
2 D2 = I , D1 ET = 0, and D1 DT

1 = I . The regular, non-standard case can
be treated analogously, yielding only more complicated formulas.

a. By redoing the analysis of section 11.3, prove the following theorem:
Theorem 1: Consider the system � given by (11.19). Assume that D 1 is
surjective, D2 is injective, (A, B) is stabilizable, and (C1, A) is detectable.
Also assume that (A, B, C2, D2) and (A, E, C1, D1) have no zeros on the
imaginary axis. Let P+ and Q+ be the largest real symmetric solutions
of the ARE

AT P + P A+CT

2C2 − (P B +CT

2 D2)(DT

2 D2)
−1(P B +CT

2 D2)
T = 0,

and dual ARE

AQ+ Q AT + E ET − (QCT
1 + E DT

1)(D1 DT
1)
−1(QCT

1 + E DT
1)

T = 0,

respectively. Then we have:

1. J ∗� = trace(E T P+E)+ trace(BT P+Q+P+B),
2. the controller Ŵ given by

ẇ = (A − (Q+CT
1 + E DT

1)C1)w + Bu

+(Q+CT
1 + E DT

1)(D1 DT
1)
−1y,

u = (D2 DT
2)
−1(BT P+ + DT

2C2)w

is optimal, i.e., J�(Ŵ) = J ∗� and Ŵ is internally stabilizing.

b. Also prove the following theorem:
Theorem 2: Consider the system � given by (11.19). Assume that D 1 is
surjective, D2 is injective, (A, B) is stabilizable, and (C1, A) is detectable.
Let P+ and Q+ be the largest real symmetric solutions of the ARE and
dual ARE, respectively. Then we have

J ∗� = trace(E T P+E)+ trace(BT P+Q+P+B).

Furthermore, the following conditions are equivalent:

1. There exists an optimal controller, i.e., a controller Ŵ = (K , L, M, 0)

such that J�(Ŵ) = J ∗� and Ŵ is internally stabilizing,
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2. there exists a controller Ŵ = (K , L, M, 0) that achieves disturbance
decoupling with internal stability for the auxiliary system � P+Q+

given by

ẋ = Ax + Bu + (Q+CT
1 + E DT

1)(D1 DT
1)
−1d,

y = C1x + d,

z = (DT
2 D2)

−1(BT P+ + DT
2C2)x + u.

3. The following four conditions hold:

im(Q+CT
1 + E DT

1) ⊂ X−,

X+ ⊂ ker(BT P+ + DT
2C2),

X+ ⊂X−,

and

AX+ ⊂ X−,

where we have denoted

X− =X−(A − B(DT
2 D2)

−1(BT P+ + DT
2C2)),

and

X+ =X+(A − (Q+CT
1 + E DT

1)(D1 DT
1)
−1C1).

If any of the conditions 1, 2 or 3 holds, then a controller Ŵ = (K , L, M, 0)

that achieves disturbance decoupling with internal stability for the system
�P+Q+ is optimal.

11.5 Notes and references

The H2 optimal control problem is the modern version of what is commonly known
as the linear quadratic Gaussian (LQG) problem. As indicated in section 11.1, mini-
mization of the H2-norm of the closed loop transfer matrix can be given the stochastic
interpretation of minimizing the expected value of the squared norm of the output, in
case that the disturbance input is a standard white noise process. It is exactly the min-
imization of this expected value that the classical formulation of the LQG-problem
deals with. Although, in the sixties, it was already generally known that the H 2-norm
of the transfer matrix was the thing to be minimized, a direct approach to perform
this minimization was not yet known. Hence, the general approach to find optimal
LQG-controllers was to compute the optimal state feedback law from the determinis-
tic linear quadratic regulator problem, and to apply this feedback law to the optimal
estimate of the state, obtained from the Kalman-Bucy filter as developed by Kalman
and Bucy [95] and Kalman [92]. The fact that this two-stage method indeed leads to
an optimal LQG-controller is called the separation principle, that was proven rigor-
ously for the first time by Wonham in [222]. The period 1960-1970 showed intensive
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research efforts on the LQG-problem. This led to a special issue of the IEEE Trans-
actions on Automatic Control on the LQG-problem in 1971 [9], edited by M. Athans.
Many classical references on the LQG problem can be found there. Since then, sev-
eral textbooks have appeared dealing with the subject of LQG-control, among which
we mention the work of Kwakernaak and Sivan [105], and Anderson and Moore [6].

The ‘modern’ way to treat the LQG-problem is to get rid of the stochastics in
the problem formulation, and to perform a direct minimization of the H 2-norm of
the closed loop transfer matrix. This approach, earlier studied in papers by Youla,
Bongiorno and Jabr [226,227], was brought back to attention more recently in Doyle,
Glover, Khargonekar and Francis [41]. For a treatment of the singular version, i.e.,
the H2 problem without assumptions on the direct feedthrough matrices from disturb-
ance input to measurement output, and from control input to output to-be-controlled,
we refer to Stoorvogel [185]. In connection with exercise 11.3 on the H 2-filtering
problem, we also refer to Schumacher [174].
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Chapter 12

H∞ control and robustness

In the following chapters, we will study the H∞ control problem and the related pro-
blem of robust stability. A main motivation for this problem was robust stability.
We would like to guarantee the stability of a plant even if the model on the basis
of which the controller was designed is not a perfect representation of the behavior
of the plant. On the other hand it also yields a clear link between several classi-
cal frequency-domain methods and more recent state space methods. This book has
focused completely on state space methods. This is in contrast with some of the clas-
sical control books which focus almost entirely on frequency domain methods. H∞

control is actually very useful as a link between these two approaches. In this chapter,
we introduce the H∞ control problem and show its connection with robust stability
and some of its links to classical frequency domain methods.

12.1 Robustness analysis

Control theory is concerned with the control of processes with inputs and outputs.
We would like to achieve desired specifications on the controlled system by choosing
our inputs appropriately.

Example 12.1 Assume that we have a paper-making machine. This machine has
certain inputs: wood-pulp, water, pressure and steam. The wood-pulp is diluted with
water. Then the fibers are separated from the water and a web is formed. Water
is pressed out of the mixture and the paper is then dried on steam-heated cylinders
(this is of course a very simplified view of the process). The product of the plant is
the paper. More precisely we have two outputs: the thickness of the paper and the
mass of fibers per unit area (expressing the quality of the paper). We would like both
outputs to be equal to some desired value. Thus, we have a process with a number of
inputs and two goals: we would like to make the deviation from the desired values of
the thickness and of the mass of fibers per unit area of the paper produced as small as
possible.
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The first step is to find a mathematical model describing the behavior of our plant.
The second step is to use mathematical tools to find suitable input signals for our plant
based on measurements we make of all, or of a subset, of our outputs; in other words
to design a feedback controller. However, ultimately we apply this controller to our
physical plant and not to our model. Since our model should be sufficiently simple
for the mathematical tools of the second step (for instance, in this book we require
the model to be linear) and since we never have complete information regarding our
physical plant, the model will not describe the plant exactly. Because we do not
know how sensitive our objectives are with respect to the differences between model
and plant, the behavior obtained might differ significantly from the mathematically
predicted behavior. Hence our controller will in general not be suitable for our plant
and the behavior we actually obtain can be differ from the desired behavior in a
critical way.

Therefore, it is extremely important that, when we search for a control law for
our model, we keep in mind that our model is far from perfect. This leads to the
so-called robustness analysis of our plant and suggested controllers. Robustness of
a system says nothing more than that the stability of the system (or another design
specification we want to achieve for the system) is preserved if the model is replaced
by a more complex system (such as the real plant), as long as this new system is close
to our model.

An approach used for multivariable controller design which stems from the 1960s
is the Linear Quadratic Gaussian (LQG) or H2 theory discussed in chapter 11. In that
approach the uncertainty is modeled as a white noise Gaussian process added as an
extra (vector) input to the system. The major problem of this approach is that our un-
certainty cannot always be modeled as white noise. While measurement noise can be
quite well described by a random process, this is not the case with parameter uncer-
tainty. If we model a = 0.9 instead of a = 1, then the error is not random but deter-
ministic. In particular, the noise is biased. The only problem is that the deterministic
error is unknown. Another problem of main importance with parameter uncertainty
is that uncertainty in the transfer from inputs to outputs cannot be modeled as state
or output disturbances, i.e. as extra inputs. This is due to the fact that the size of the
errors is relative to the size of the inputs and can hence only be modeled as an extra
input in a non-linear framework. We will show in exercise 12.5 that state feedback
H2 optimal controllers still exhibit a certain robustness. However dynamic measure-
ment feedback H2 optimal controllers can have arbitrarily bad robustness margins.

In the last few years several approaches to robustness have been studied, mainly
with one goal: to obtain internal stability, where instead of trying to obtain this for
one system, we seek one single controller that stabilizes any element from a certain
class of systems. It is then hoped that the controller that stabilizes all elements of this
class of systems also stabilizes the plant itself. Either because the plant is in this class
of systems or because the controller has become insensitive to plant variations.

In this chapter, several approaches to this problem will be briefly discussed. Each
of these approaches will result in an H∞ control problem. In the next two chapters
the solution of the H∞ control problem will be discussed.
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12.2 The H∞ control problem

We now state the H∞ control problem. Assume that we have a system �: As usual,

�✛y

✛

✛u

✛z d

we assume � to be a finite-dimensional linear time-invariant system. We note that
� is a system with two kinds of inputs and two kinds of outputs. The input d is an
exogenous input representing the disturbance acting on the system. The output z is
an output of the system, whose dependence on the exogenous input d we want to
minimize. The output y is a measurement we make on the system, which we shall
use to choose our input u, which in turn is the tool we have to minimize the effect
of d on z. A constraint we impose is that this mapping from y to u should be such
that the closed-loop system is internally stable. This is quite natural since we do not
want the states to become too large while we try to regulate our performance. The
effect of w on z after closing the loop is measured in terms of the energy and the
worst disturbance d. Our performance measure, which will turn out to be equal to
the closed-loop H∞ norm, is the supremum over all disturbances unequal to zero of
the quotient of the energy flowing out of the system and the energy flowing into the
system.

In the previous chapter the H2 norm of a transfer matrix was introduced by:

‖G‖2
2 : =

1
2π

∫ +∞

−∞

trace G(iω)G∗(iω) dω. (12.1)

The H∞ norm of a transfer matrix is defined by:

‖G‖∞ : = sup
ω∈R

‖G(iω)‖ <∞. (12.2)

where ‖M‖ denotes the largest singular value of the complex matrix M . The H 2 and
H∞ norms are only defined for stable transfer matrices. However, for the H 2 norm
to be finite we need in addition that the transfer matrix is strictly proper. We denote
by H2 and H∞ the space of all stable transfer matrices for which, respectively, (12.1)
and (12.2) are well-defined and finite. Of course (12.1) and (12.2) are also defined for
unstable transfer matrices as long as the transfer matrix has no poles on the imaginary
axis (and in the case of (12.1), is strictly proper). In that case we refer to (12.2) as
the L∞ norm. By L∞ , we denote the space of all transfer matrices for which (12.2)
is well-defined and finite.

Both H2 and H∞ are special cases of so-called Hardy spaces named after G.H.
Hardy (1877–1947). They are formally defined as spaces of functions defined on the
open right half plane. On the other hand L 2 and L∞ are spaces of functions defined on
the imaginary axis. The above definitions are therefore not very precise but sufficient
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for us since we only consider rational transfer matrices in this book. However it is
useful to realize that for stable transfer matrices we have:

‖G‖∞ : = sup
s∈C+

‖G(s)‖ <∞. (12.3)

where C+ denotes the open right half complex plane.

Define Ln
2 as the set of functions f from [0,∞) to Rn for which

‖ f ‖2 : =

(
∫ ∞

0
‖ f (t)‖2 dt

)1/2

(12.4)

is well-defined and finite, where ‖g‖2 : = gTg denotes the Euclidian norm. This
norm is induced by the following inner product

〈 f, g〉2 : =

∫ ∞

0
g(t)T f (t) dt,

In other words ‖ f ‖2
2 = 〈 f, f 〉2. By L2 we denote the set of all f for which an n

exists such that f ∈ Ln
2 .

Note that, since we call the extension of the H∞ norm to unstable transfer matri-
ces the L∞ norm, it would be natural to call the extension of the H 2 norm to unstable
transfer matrices the L2 norm. We do not do this and, instead, we use the name
L2 norm for the expression (12.4). This is slightly inconsistent. However, the ex-
pressions (12.1) and (12.4) are closely related. If we have a function in L 2 then its
Laplace transform will be in H2 and (12.4) for the function will be equal to (12.1)
for its Laplace-transform (a consequence of the so-called Parseval’s theorem). It is
good to note that the H2 norm will only be applied to transfer matrices (in the fre-
quency domain) while the L 2 norm will only be used for input-output signals (in the
time-domain).

In this book, instead of the above definition, we shall frequently use a time-
domain characterization of the H∞ norm. Let � × Ŵ be the closed-loop system
obtained by applying a linear controller Ŵ to a given system �. If the closed-loop
system is stable, then the closed-loop transfer matrix G cl is in H∞ . Given the closed
loop system, there exists a map which associates to every input d an output z, given
zero initial state. We will denote this map, sometimes called the input-output opera-

tor by Gcl . It is easy to check that Gcl is a well-defined linear mapping. The H∞ norm
of Gcl is equal to the L2 -induced operator norm of Gcl , i.e.

‖Gcl‖∞ = ‖Gcl‖∞ : = sup
d

{

‖Gcl d‖2

‖d‖2
d ∈ Lℓ

2, d 	= 0

}

. (12.5)

Note that we will sometimes use the terminology H∞ norm for an input-output op-
erator G even though it is formally better to call this the L 2 -induced operator norm.
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In order to see this equality let the closed loop system have impulse response g.
Then we have:

z(t) = (Gcld)(t) =

∫ t

0
g(t − τ )d(τ ) dτ

If we apply the Laplace transform to z we obtain:

ẑ(s) = Gcl(s)d̂(s)

where we used the fact that the transfer matrix is equal to the Laplace transform of the
impulse response. On the other hand, Parseval’s theorem, that we already mentioned
before, tells us:

‖z‖2
2 =

1
2π

∫ ∞

0
z∗(iω)z(iω) dω.

Combining these properties yields:

‖Gcld‖
2
2 =

∫ ∞

0
‖Gcl (iω)d̂(iω)‖2 dω �

(

sup
ω
‖Gcl(iω)‖2

)

‖d̂‖2
2

= ‖Gcl‖
2
∞‖d‖

2
2.

Finally, it is not very hard to see that this inequality becomes an equality for those
d̂ that contain only sharp peaks in the direction and at the frequency where G cl is
maximal. Since we take the supremum over all possible d in (12.5), it is then not
difficult to see that we do get the equality (12.5).

Because of this equality we often refer to the L 2 -induced operator norm of the
closed-loop operator Gcl as the H∞ norm of Gcl . The H∞ norm of a stable system is
defined as the H∞ norm of the corresponding transfer matrix of that system.

We note that the above alternative interpretation also has the advantage that it
gives a natural way to extend the H∞ norm to nonlinear or time-varying systems. We
will use a finite-horizon version in the next chapter, which is defined as:

‖Gcl‖∞,T : = sup
d

{

‖Gcl d‖2,T

‖d‖2,T

d ∈ Lℓ
2[0, T ], d 	= 0

}

. (12.6)

where

‖ f ‖2,T : =

(∫ T

0
‖ f (t)‖2 dt

)1/2

<∞,

This is clearly connected to the time-domain interpretation of the H∞ norm given
above. It is not possible to connect this finite-horizon version to the frequency domain
interpretation (12.2) or (12.1).

The H∞ norm is motivated as a tool to achieve robustness, i.e. a method to design
controllers that are insensitive to variations in the model. However, it is very impor-
tant to realize that minimizing the closed loop H∞ norm in itself does not have any
connection with robustness. One can only guarantee robustness in connection with
the small-gain theorem, which will be discussed in the next section.
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Example 12.2 Assume that we have the following system:

� :

ẋ = − u + d,

y = x ,
z = u.

It can be checked that a feedback controller that minimizes the closed loop H∞ norm
from d to z is given by:

u = εx

for any ε > 0. Compared to the H2 control problem (where in most cases the opti-
mal controller is unique), it is interesting to see that any stabilizing state feedback is
optimal. On the other hand it is easily seen that a small perturbation of the system
parameters might yield an unstable closed-loop system when we have a small ε. For
robust stability it is better to choose ε large. This is however not predicted by the
H∞ norm from d to z which gives no preference for one ε over another.

Hence for the controller with small ε, internal stability of the closed-loop system
is certainly not robust with respect to perturbations of the state matrix, even though
the controller is optimal in the sense of the H∞ control problem.

12.3 The small-gain theorem

The connection between the H∞ norm and the problem of robust stabilization is made
via the small-gain theorem. In this section we present and prove this theorem. Con-
sider the following interconnection:

�2

�1
✲

✛

z1z2

Figure 12.1

Before we can discuss the stability of the interconnection in Figure 12.1 we need
a precise definition of stability of such an interconnection. The definition consistent
with chapter 3 is to consider the state space model of the interconnection based on
state space models for the two systems �1 and �2 and require the state space model
of the interconnection to be internally stable. However, in the context of the small
gain theorem this definition is not very easy to work with. We first give an alternative
but equivalent characterization of internal stability of such an interconnection. We
consider the following figure:

Lemma 12.3 The interconnection of �1 and �2 as in Figure 12.1 is internally stable

if and only if:
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✲ �1

✻
✛

✲❄

�2
✛z2 d2

d1 z1

Figure 12.2

(i) �1 and �2 are stabilizable and detectable.

(ii) Given the interconnection in Figure 12.2, we have z 1, z2 ∈ L2 for all signals

d1, d2 ∈ L2 and zero initial conditions.

We could have combined the two parts by allowing arbitrary initial conditions in
part (ii). In that case, part (i) is not needed. However, the current formulation will be
easier to work with. We can now present the small gain theorem:

Theorem 12.4 Let �1 be a given, stable system. The interconnection (12.1) is in-

ternally stable for all internally stable systems �2 with H∞ norm less than or equal

to 1 if and only if the H∞ norm of �1 is strictly less than 1.

Proof : Clearly part (i) of lemma 12.3 is always automatically satisfied since both
systems are internally stable.

Suppose �1 has H∞ norm strictly less than 1. Let �2 be any internally stable
system with H∞ norm less than or equal to 1. Denote the transfer matrices of � 1
and �2 by G1 and G2, respectively. The transfer matrix from d1, d2 to z1, z2 in the
interconnection (12.2) is equal to:

(

G1(I − G2G1)
−1 G1(I − G2G1)

−1G2

G2G1(I − G2G1)
−1 (I − G2G1)

−1G2

)

To prove internal stability of the closed loop system it is therefore sufficient to guaran-
tee that I−G2G1 has a stable inverse (remember that G 1 and G2 are stable). We know
that ‖G2G1‖∞ < 1. But then for any point s in the closed right half plane (using the
alternative characterization of the H∞ norm in (12.3)) we have ‖G 1(s)G2(s)‖ < 1,
which guarantees that I − G1(s)G2(s) is invertible. This implies that I − G1G2 has
the required stable inverse.

Conversely, suppose that �1 has H∞ norm larger than or equal to 1. We will
construct a stable �2 with H∞ norm less than or equal to 1 which yields an unstable
interconnection (12.1). Since �1 has H∞ norm larger than or equal to 1, there exists
a point s in the closed right half plane (possibly s = ∞) for which the transfer matrix
G1 of �1 satisfies ‖G1(s)‖ � 1. In other words there exist u, v 	= 0 such that
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G1(s)u = v and ‖u‖ � ‖v‖. In that case we could choose �2 equal to the constant
gain D, where

D =
uv∗

‖v‖2

Then �2 will have H∞ norm less than or equal to 1 and it will destabilize the inter-
connection (12.1) since the closed loop system has a pole at s. However, � 2 would
in general be a constant, complex gain. We can also find a real-valued, destabilizing
system �2 but in that case �2 must in general be dynamic. Since it is rather technical,
an explicit construction will not be given.

Remark 12.5 The small gain theorem as defined above yields as an easy corollary
that the interconnection of two stable systems with transfer matrices G 1 and G2 is
stable if ‖G1G2‖∞ < 1. This implies that the interconnection is stable if

sup
ω
‖G1(iω)‖‖G2(iω)‖ < 1 (12.7)

This basically implies that if for certain values of ω, i.e. for certain frequencies
G1(iω) is quite large then for these frequencies G 2(ω) must be very small.

Note that the above theorem in fact holds for any induced operator norm. The
H∞ norm, which is equal to the L 2 -induced operator norm (as we saw in the previous
section), is just a particular example. Note that the H2 norm is not an induced operator
norm (see exercise 12.7) and we can therefore not find a comparable result for the
H2 norm.

12.4 Stabilization of uncertain systems

As already mentioned, a method for handling the problem of robustness is to treat the
uncertainty as additional input(s) to the system. The LQG design method treats these
inputs as white noise, and we noted in the beginning of this chapter that parameter
and dynamic uncertainty are not suited for treatment as white noise. Also the idea of
treating the error as extra inputs is not suitable because the size of the error depends
in general on the size of the state. For instance, if we have a system ẋ = ax + bu

then variations in a have an effect which depends on the size of the state x .

This motivates an approach where parameter or dynamic uncertainty is modeled
as a disturbance system taking values in some range and modeled in a feedback setting
(which allows us to incorporate the “relative" character of the error). We would like
to know the effect with respect to stability of the “worst" disturbance in the prescribed
range (we want guaranteed performance so, even if the worst happens, it should still
be acceptable). If this disturbance does not destabilize the system, then we are certain
(under the assumption that the physical plant is exactly described by a system asso-
ciated with a particular choice of parameter values within the prescribed range) that
the plant is stabilized by our control law.
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In a linear setting, parameter uncertainty can very often be modeled as in Figure
12.3. Here the system � represents the uncertainty and if the transfer matrix of

�

�
✻

✛

❄

✛

z

y u

d

Figure 12.3

� is zero, then we obtain our nominal model from u to y. The system � might
contain uncertain parameters, ignored dynamics after model reduction or discarded
non-linearities. The goal is to find a feedback controller that stabilizes the model for
a large range of systems �. In this chapter we shall give some examples of different
kinds of uncertainties that can be modeled in the above sense. We shall also show
what the results of this book, applied to these problems, look like. At this point, we
only show by means of an example that a large class of parameter uncertainties can
be considered as an interconnection of the form depicted in Figure 12.3.

Example 12.6 Assume that we have a single-input, single-output system with two
unknown parameters:

�n :
ẋ = −ax + bu,

y = x .

where a and b are parameters with values in the ranges [a 0 − ε, a0 + ε] and [b0 −

δ, b0+ δ] respectively. We can consider this system as an interconnection of the form
(12.3) by choosing the system � to be equal to:

� :

ẋ = −a0x + b0u + d,

y = x ,

z =

(

−1
0

)

x +

(

0
1

)

u.

and the system � to be the following static system:

d =
(

a − a0 b− b0
)

z.

It is easily seen that by scaling we may assume that ε = δ = 1.

On the other hand, if we want to find a controller from y to u such that the closed-
loop system is internally stable for all internally stable systems � with H∞ norm less
than or equal to γ , then the problem is equivalent to the following problem: find a
controller which is such that the closed-loop system (if the transfer matrix of � is
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zero) is internally stable and the H∞ norm from d to z is strictly less than γ −1. The
latter result is a direct consequence of the small gain theorem treated in the previous
section. Suppose Ŵ is some arbitrary controller from y to u. After interconnection,
Figure 12.3 then has the additional structure depicted in Figure 12.4.

�

Ŵ

z d

y u

�

✻
❄

✻
❄

Figure 12.4

Denote the interconnection of Ŵ and � in the dotted box by � 1. The intercon-
nection should be stable for all � with norm less than 1. Clearly this implies that the
interconnection must be stable for � = 0 which yields the requirement that � 1 must
be stable. The rest then follows from the small gain theorem. The interconnection of
� and �1 is stable for all stable systems � with H∞ norm less than or equal to 1 if
and only if �1 has H∞ norm less than 1. To scale 1 to γ is an easy exercise.

In this section we will apply the results of this book to three specific types of
uncertainty:

• Additive perturbations

• Multiplicative perturbations

• Coprime-factor perturbations.

Each time we find a problem which can be reduced to an H∞ control problem. The
first two problems can be found in [123,207]. The last problem is discussed in [123].

12.4.1 Additive perturbations

Assume that we have a system �

� :
ẋ = Ax + Bu,

y = Cx + Du.
(12.8)
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being an imperfect model of a certain plant. We assume that the error is additive,
i.e. we assume that the actual plant can be exactly described by the interconnection
in Figure 12.5. Here � is some arbitrary system such that the transfer matrices of �

�

�

✲ ✲ ✲ ✲

✻

✲ ✲

❄

u y
◦

+

Figure 12.5

and � + � have the same number of unstable poles. Thus we assume that the plant
is described by the system � interconnected as in Figure 12.5 with another system
�. The system � represents the uncertainty and is hence, by definition, unknown. In
this subsection we derive conditions under which a controller Ŵ of the form

�F :
ẇ = Kw + Ly,

u = Mw + Ny.
(12.9)

exists such that the interconnection (12.5) is stabilized by this controller for all sys-
tems � which do not change the number of unstable poles and which have L ∞ norm
less than or equal to some, a priori given, positive number γ . Note that since the error
system is assumed to have a finite L∞ norm, it can not have poles on the imaginary
axis. It should be noted that an assumption like fixing the number of unstable poles is
needed since otherwise there are always arbitrary small perturbations that destabilize
the closed-loop system. We have the following result:

Lemma 12.7 Assume that � given by (12.8) is stabilizable and detectable. Let Ŵ be

a controller of the form (12.9). Let γ > 0. The following conditions are equivalent:

(i) The controller Ŵ from y to u applied to the interconnection in Figure 12.5,

yields a well-posed and internally stable closed-loop system for every system

� with L∞ norm less than or equal to γ and such that � and � +� have the

same number of unstable poles.

(ii) The controller Ŵ from y to u internally stabilizes the following system

�na :

ẋ = Ax + Bu,

y = Cx + d,

z = u.

(12.10)

and is such that the H∞ norm of the closed-loop transfer matrix from d to z is

strictly less than γ−1.



274 H∞ control and robustness

Proof : A proof for the case that � is not internally stable is a bit technical. We will
only give a proof for the case when � is internally stable.

We want to use the technique described in the beginning of this section. We can
get an interconnection of the form (12.4) quite easily since applying the controller Ŵ

from y to u in Figure 12.5 then this corresponds to the interconnection in Figure 12.6.
The small gain theorem then gives the equivalence between (i) and (ii).

�na

Ŵ

z d

y u

�

✻
❄

✻
❄

Figure 12.6

Remark 12.8 It is quite easy to find a counterexample for the above theorem if we
do not impose the condition that � and � + � have the same number of unstable
poles. Actually, without that condition for any any given controller, we can always
find perturbations � with arbitrarily small L∞ norm which yield an unstable closed
loop system.

Remark 12.9 We can actually also use the arguments presented in (12.5) instead of
the small gain theorem. This will enable us to get a stronger result which looks more
at the model uncertainty at each frequency, i.e. at each value of ω. It tells us, for
instance, that if for high frequencies we have more model uncertainty i.e. if for large
values of ω we have that �(iω) will be large, then we have to make sure that the
closed-loop transfer matrix from d to z is extra small for these large frequencies.

12.4.2 Multiplicative perturbations

We assume that again we have system � of the form (12.8) being an imperfect model
of a certain plant. In addition to the additive error used in the previous subsection, it
is often useful to describe uncertainty via a relative instead of an absolute error. This
implies that this time we assume that the error is multiplicative, i.e. we assume that
the plant is exactly described by the interconnection in Figure 12.7. Here � is some
arbitrary system such that the interconnection in Figure 12.7 has the same number



Stabilization of uncertain systems 275

�

�

✲ ✲ ✲ ✲

✻

✲ ✲

❄

u y
◦

+

Figure 12.7

of unstable poles as �. In other words, we assume that the plant is described by
the system � interconnected as in Figure 12.7 with another system �. The system
� represents the uncertainty. As in the case of additive perturbations, our goal is
to find conditions under which a controller Ŵ of the form (12.9) from y to u exists
such that the interconnection in Figure 12.7 is stabilized by this controller for all
systems � which do not change the number of unstable poles of the interconnection
in Figure 12.7 and which have L∞ norm less than or equal to some, a priori given,
positive number γ . It is easy to adapt the proof of lemma 12.7 to obtain a result for
multiplicative perturbations:

Lemma 12.10 Assume that � given by (12.8) is stabilizable and detectable. Let Ŵ be

a controller of the form (12.9). Let γ > 0. The following conditions are equivalent:

(i) The controller Ŵ from y to u in the interconnection of Figure 12.7, yields a

well-posed and internally stable closed-loop system for every system � with

L∞ norm less than or equal to γ and such that � and the interconnection in

Figure 12.7 have the same number of unstable poles.

(ii) The controller Ŵ from y to u stabilizes the following system

�nm :

ẋ = Ax + Bu + Bd,

y = Cx + Du + Dd,

z = u.

(12.11)

and is such that the closed-loop H∞ norm from d to z is strictly less than γ−1.

Remark 12.11 One can again find counterexamples for the above lemma if we do
not impose the condition that � and the interconnection in Figure 12.7 have the same
number of unstable poles. Actually, without that condition for any given controller,
we can always find perturbations � with arbitrarily small L∞ norm which yield an
unstable closed loop system.

Remark 12.12 Note that in the interconnection of Figure 12.7 we have the uncer-
tainty at the input of the system. We can also formulate multiplicative uncertainty
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with the uncertainty at the output of the system. These two descriptions are obvi-
ously identical in case y and u are scalar signals but are identical in general. We
can trivially formulate a similar result as lemma 12.10 for the case of multiplicative
uncertainty at the output of the plant. See exercise 12.2.

Remark 12.13 As already stated in remark 12.9 we can use the arguments presented
in (12.5) instead of the small gain theorem. This will enable us to get a stronger result
which looks more at the model uncertainty at each frequency, i.e. at each value of ω.

12.4.3 Coprime factor perturbations

In the previous two subsections we treated the two most common versions of unstruc-
tured uncertainty: the absolute or the relative error.

However, we have only considered perturbations of the system which do not
change the number of unstable poles and as noted in remarks 12.8 and 12.11 the
results are no longer true without this condition. Hence we need a different method
for the case that we do not have sufficient information on the unstable poles.

Moreover, when using an additive or multiplicative model uncertainty structure,
systems with poles close to the imaginary axis are very sensitive to variations in these
poles in the sense that very small variations in the pole location still lead to very large
�-blocks. Therefore, it is hard to guarantee stability of the closed loop system.

In this section we will present an alternative approach which tries to handle these
problems. Suppose we have a (possibly unstable) system with transfer matrix G. We
can always factorize G = M−1 N where N and M are both stable, proper transfer
matrices. Moreover we can guarantee that M is biproper (i.e. it has a proper but
not necessarily stable inverse). We can now perturb the factors N and M , i.e. we
assume our real system P can be described by (M − � M )−1(N + �N ). We get
the interconnection in Figure 12.8. Although the structure of the picture looks quite

N

�N

M−1

�M

✲

✲

❄✲ ❄✲✲ ✲

Figure 12.8

different from the additive and multiplicative uncertainty case since there are two
uncertainty blocks, this is only a visual difference. By defining � : = (�N �M ),
we have one matrix-valued uncertainty block.

A more intricate question in this approach is the factorization of G into N and
M . This factorization is not unique and the results can strongly depend on the precise
choice of N and M . A first obvious requirement is that N and M are left-coprime,
i.e. there exist stable matrices X, Y ∈ H∞ such that N X + MY = I . This is natural
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because it is a direct extension to the matrix-valued case of the requirement of no
unstable pole-zero cancellations between N and M . After all if M(s0) = 0 and
N(s0) = 0 with s0 ∈ C

+ then the stability of X and H implies that N(s0)X (s0) +

M(s0)Y (s0) which is in contradiction with N X + MY = I .

We can choose N and M such that we obtain a normalized coprime factorization,
i.e. N N∗ + M M∗ = I , where N∗(s) = NT(−s). It is obvious that multiplying N

and M by a factor α will result in an error � which is also multiplied by the factor α.
Therefore some kind of normalization is quite natural. The following lemma tells us
how to obtain such a normalized coprime factorization:

Lemma 12.14 Assume a system � given by (12.8) is stabilizable and detectable and

has transfer matrix G. There exists a solution of the following algebraic Riccati

equation:

0 = AX + X AT − (B DT + XCT)(I + DDT)−1(DBT + C X) + B BT

such that

A − (B DT + XCT)(I + DDT)−1C

is a stability matrix. Then G = N M−1 is a normalized left-coprime factorization

were N and M are the transfer matrices of systems �N and �M respectively which

are given by:

�N =
(

A + H C, B + H D, (I + DDT)−1/2C, (I + DDT)−1/2 D
)

, (12.12a)

�M =
(

A + H C, H, (I + DDT)−1/2C, (I + DDT)−1/2
)

. (12.12b)

where H = −(B DT + XCT)(I + DDT)−1.

Proof : The existence of a stabilizing solution to the algebraic Riccati equation is a
direct consequence of theorem 10.20 with (A, B, C, D) replaced by

(AT, CT, (B 0)T, (D I )T)

To prove that N and M are left-coprime it suffices to check that N X+MY = I where
X and Y are the transfer matrices of the systems �X and �Y respectively which are
given by

�X =
(

A + B F,−H (I + DDT)1/2,−F, 0
)

,

�Y =
(

A + B F,−H (I + DDT)1/2, C + DF, (I + DDT)1/2
)

.

and F is an arbitrary matrix such that A+ B F is stable. Moreover, we have to check
that N N∗ + M M∗ = I which shows that it is a normalized factorization. Both of
these tasks require only straightforward algebraic manipulations.
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Finally, we conclude this section by showing that the problem of stabilizing (12.8)
for all possible � with ‖�‖∞ < γ reduces once again to a standard H∞ control
problem. The proof of this result is again a simple adaptation of the proof of lemma
12.7.

Lemma 12.15 Assume that � given by (12.8) is stabilizable and detectable. Let

G be the transfer matrix of � and let G = M−1 N be a coprime factorization as

constructed in lemma 12.14. Also let a controller Ŵ of the form (12.9) be given. The

following conditions are equivalent:

(i) The controller Ŵ from y to u applied to the interconnection in Figure 12.8,

yields a closed-loop system which is well posed and internally stable for every

stable system � : = (�N �M ) such that ‖�‖∞ < γ .

(ii) The controller Ŵ from y to u stabilizes the following system and is such that the

closed-loop H∞ norm from d to z is strictly less than γ−1:

�c f :

ẋ = Ax + Bu − H (I + DDT)1/2d,

y = Cx + Du + (I + DDT)1/2d,

z =

(

C

0

)

x +

(

D

I

)

u +

(

(I + DDT)1/2

0

)

d.

(12.13)

Remark 12.16 As already stated in remark 12.9 we can use the arguments presented
in (12.5) instead of the small gain theorem. This will enable us to get a stronger result
which looks more at the model uncertainty at each frequency, i.e. at each value of ω.

To conclude this section, we should note the following. In the case of additive and
multiplicative perturbations we had to impose a restriction that � should not change
the number of unstable poles of the open loop system. This restriction need not be
made for perturbations of coprime factors as described in this subsection. Assume the
real system has transfer matrix G r with coprime factorization Nr , Mr . One possible
choice is �N = Nr − N and �M = Mr − M . Since a coprime factorization is not
unique, this might not yield the smallest possible �. But this particular choice does
yield stable perturbations of N and M .

The unstable poles of the model are the zeros of M . On the other hand the unstable
poles of the original system are the zeros of M+� M . Clearly by appropriate choices
of �M the number of unstable poles of the system can vary. Of course, the freedom
in the number of unstable poles is still implicitly limited by the size of the allowable
perturbations. But this time it enters much more naturally. On the other hand, co-
prime factorizations appear to have a rather weak system theoretic interpreation and
therefore the whole structure presented in this subsection seems to be less natural
compared to the other two cases.

12.5 The mixed-sensitivity problem

The mixed-sensitivity problem is a special kind of H∞ control problem. In the mixed-
sensitivity problem it is assumed that the system under consideration can be written
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as the following interconnection where Ŵ is the controller which has to satisfy certain
prerequisites.

Ŵ

�W1

�

�V

�W2
✲ ✲

✻
✲

✻

✻

✲

❄

❄ ✲ ✲

z1 d̃

d
yur z2+

− +

+
◦ ◦

Figure 12.9

Many H∞ control problems can be formulated in terms of an interconnection
depicted in Figure 12.9. As an example, we show how the tracking problem can be
formulated in the setting described by the diagram in Figure 12.9. First look at the
following interconnection:

Ŵ �✲ ✲
✻

✲ ✲
yur +

−

◦

Figure 12.10

The problem is to regulate the output y of the system � to look like some given
reference signal r by designing a precompensator Ŵ which has as its input the error
signal, i.e. the input of the controller is the difference between the output y of � and
the reference signal r . To prevent undesirable surprises we require internal stability.
We could formulate the problem as “minimizing" the transfer function from r to
r − y. As one might expect we shall minimize the H∞ norm of this transfer function
under the constraint of internal stability. The transfer matrix from r to u should also
be under consideration. In practice, the process inputs will often be restricted by
physical constraints. This yields a bound on the transfer matrix from r to u. These



280 H∞ control and robustness

transfer matrices from r to r − y and from r to u are given by:

S : = (I + G H )−1 ,

T : = H (I + G H )−1 ,

respectively, where G and H denote the transfer matrices of � and Ŵ. Here S is
called the sensitivity function and T is called the control sensitivity function. A small
function S expresses good tracking properties while a small function T expresses
small inputs u. Note that S + GT = I and therefore there is a trade-off: making
S smaller will in general make T larger. We add a signal d to the output y as in
Figure 12.9 on the preceding page. Then the transfer matrix from d to y is equal to
the sensitivity matrix S and the transfer matrix from d to u is equal to the control
sensitivity matrix T .

Although we assume the tracking signal to be, a priori, unknown, in most cases
we know that our tracking signal will have a limited frequency spectrum, i.e. the
Fourier transform of the reference signal r̂ will be small for many frequencies, i.e.
‖r̂(iω)‖ is small for many values of ω. In most cases, we only track slowly varying
signals which implies that ‖r̂ (iω)‖ is small for large frequencies ω. By minimizing
‖W2 S‖∞, where W2 is large for small values of ω and small for large values of ω,
we actually put more effort in achieving good tracking for small values of ω. In other
words, we put most effort in tracking slowly time-varying signals r .

On the other hand it is in general very difficult to implement an input u which
varies very quickly. Therefore we want to ensure in particular that T is small for
large frequencies. By minimizing ‖W1T ‖∞, where W1 is small for small values of
ω and large for large values of ω, we actually put more emphasis on avoiding fast
changes over time in the input u.

The transfer matrices W1 and W2 are referred to as weighting functions to express
the above information. It helps us to incorporate our requirements that we want S

to be small at low frequencies and T to be small at high frequencies. Note that it
is general impossible to make S and T both small for the same frequency because
S + GT = I . It is obvious that if we want track signals up to higher frequencies, i.e
with faster time-variations, yet have severe bandwidth limitations on the controller,
i.e. the controller can not vary very fast over time then we will not be able to obtain
satisfactory results.

Therefore, in Figure 12.9 on the preceding page, the systems � W1 , �W2 and �V

are weights which are chosen in such a way that we put more effort in regulating
frequencies of interest instead of one uniform bound. To handle the above conflicting
requirements the choice of these weights is the crucial component in the design.

In the above, we have given a sketch of the ideas resulting in the structure of the
interconnection depicted in the interconnection (12.9). Note that the transfer matrix
from the disturbance d̃ to z1 and z2 is

(

W1T V

W2SV

)

(12.14)

where W1, W2 and V are the transfer matrices of �W1 , �W2 and �V , respectively.
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Note that we can also use these weights to stress the relative importance of minimiz-
ing the sensitivity matrix S with respect to the importance of minimizing the control
sensitivity matrix T by multiplying W1 by a scalar.

We want to find a controller which minimizes the H∞ norm of the transfer matrix
(12.14) and which yields internal stability. This problem can be solved using the
techniques we present in this book.

12.6 The bounded real lemma

As we have shown in the previous sections, the H∞ norm can be used as a tool in
the study of multivariable control systems. In the next two chapters we will study the
minimization of the H∞ norm using stabilizing controllers. In the present section, we
will establish methods to determine the H∞ norm of a system �:

ẋ = Ax + Ed,

z = Cx + Dd.
(12.15)

We note that the time-domain interpretation of the H∞ norm as the L2 -induced op-
erator norm suggests to study the following problem:

sup
d∈L2

{

‖z‖2
2 − γ 2‖d‖2

2 | x(0) = ξ
}

. (12.16)

If the system has initial state 0, i.e. ξ = 0 then this expression is finite only if the
H∞ norm of the system is less than or equal to γ . After all if we use the expression
(12.5) for the H∞ norm then we see that if the H∞ norm is larger than γ then there
exists a signal d ∈ L2 such that

‖z‖2

‖d‖2

> γ

but taking the square and then multiplying with ‖d‖2
2 we obtain:

‖z‖2
2 − γ 2‖d‖2

2 =: r > 0. (12.17)

If we replace d by αd then the resulting output is equal to αz because the initial
state is zero. But then the resulting cost is equal to α2r . Since r > 0 we see that
by choosing large enough α we can make the cost function arbitrary large and the
supremum will hence not be finite.

This problem is closely related to the linear quadratic regulator problem and we
will solve this problem using similar techniques. As a matter of fact, it is an example
of a so-called indefinite linear quadratic regulator problem. If we rewrite our objective
as maximizing:

∫ ∞

0
x(t)TCTCx(t)+x(t)TCT Dd(t)+d(t)T DTCx(t)+d(t)T

(

DT D − γ 2 I
)

d(t) dt



282 H∞ control and robustness

or equivalently of minimizing:
∫ ∞

0
−x(t)TCTCx(t)−x(t)TCT Dd(t)−d(t)T DTCx(t)+d(t)T

(

γ 2 I − DT D
)

d(t) dt

then the connection to the theory of chapter 10 should be obvious. However, the
quadratic term in x(t) is negative semi-definite and hence the resulting cost could
actually be negative and this does yield some crucial differences compared to the
results presented in chapter 10.

We first study the finite horizon version and then take the limit as time tends to
infinity. This will be done in the following two subsections.

12.6.1 A finite horizon

Consider the system (12.15). We first note that if the L 2 [0, T ]-induced operator norm
of this system is smaller than some bound γ > 0 then we must have ‖D‖ < γ .

Lemma 12.17 Consider the system (12.15). If the L 2 [0, T ]-induced operator norm

is smaller than some bound γ > 0 then ‖D‖ < γ .

Proof : We prove this by contradiction. Assume ‖D‖ � γ . Then there exists a vector
d0 such that ‖Dd0‖ � γ ‖d0‖. We then apply a disturbance dof the form:

d(t) =

{

ε−1/2d0 0 < t < ε,

0 elsewhere,

to the system (12.15), and it can be easily seen that:

lim
ε→0

‖zε‖2,T = ‖Dd0‖ � γ ‖d0‖ = γ ‖dε‖2,T

(the last equality holds for all ε). Using (12.5) we then immediately find that the
H∞ norm of the system (12.15) is larger than γ . This yields the required contradic-
tion.

If the L2 [0, T ]-induced operator norm is smaller than some bound γ > 0 then

sup
d

{

‖z‖2
2,T
− γ 2‖d‖2

2,T

}

� 0 (12.18)

for initial condition x(0) = 0. Assume there exists a d ∈ L 2 [0, T ] such that (12.18)
is positive. Then there exists de ∈ L2 defined by:

de(t) =

{

d(t) t � T

0 t > T
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such that

‖z‖2
2 − γ 2‖d‖2

2 � ‖z‖2
2,T
− γ 2‖d‖2

2 = ‖z‖
2
2,T
− γ 2‖d‖2

2,T
> 0.

But this input d and the resulting output z then yield a contradiction that the H∞ norm
is less than γ by using the characterization (12.5) for the H∞ norm.

It will turn later that the use of non-zero initial state will help us in the proof of
our main result. We have the following lemma:

Lemma 12.18 Let system (12.15) be given. Then

sup
d∈L2

{

‖z‖2
2,T
− γ 2‖d‖2

2,T
x(0) = ξ

}

(12.19)

is finite for all ξ ∈ Rn if the L2 [0, T ]-induced operator norm is strictly less than γ .

Proof : Suppose the L 2 [0, T ]-induced operator norm is strictly less than γ , say δ.
Then we find:

‖z‖2
2,T − γ 2‖d‖2

2,T = ‖z0,d + zξ,0‖
2
2,T − γ 2‖d‖2

2,T

� ‖z0,d‖
2
2,T + ‖zξ,0‖

2
2,T + 2‖z0,d‖2,T · ‖zξ,0‖2,T − γ 2‖d‖2

2,T

� (δ2 − γ 2)‖d‖2
2,T + 2δ‖zξ,0‖2,T · ‖d‖2,T + ‖zξ,0‖

2
2,T

� sup
α∈[0,∞)

(δ2 − γ 2)α2 + 2δ‖zξ,0‖2,T · α + ‖zξ,0‖
2
2,T,

<∞

where z0,d denotes the output of the system with disturbance d and zero initial state
while zξ,0 denotes the output of the system with disturbance 0 and initial state x(0) =

ξ . The last inequality is a consequence of the fact that δ < γ . This proves that (12.19)
is finite for all ξ ∈ Rn .

We define

C(d, ξ, τ ) : =

∫ T

τ

zT(t)z(t) − γ 2dT(t)d(t) dt

where z is the output of the system with input d and initial state x(τ ) = ξ . We will
investigate in detail the following criterion:

C∗(ξ, τ ) : = sup
d

C(d, ξ, τ ) (12.20)

for arbitrary initial state x(τ ) = ξ , and where we maximize over d ∈ L 2 [τ, T ].
Lemma 12.18 guarantees that C ∗(ξ, 0) is bounded from above. Moreover, for d = 0,
we have C(0, ξ, 0) � 0 and hence C ∗(ξ, 0) is also bounded from below. We get that
if the L2 [0, T ]-induced operator norm is less than γ then C ∗(ξ, 0) is bounded.
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Next we claim that C∗(ξ, τ ) is an non-increasing function of τ . This is a conse-
quence of the following arguments, where τ1 � τ2.

C∗(ξ, τ1) : = sup
d

C(d, ξ, τ1)

= sup
d

∫ T

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

� sup
d

{
∫ τ

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

+

∫ T

τ

‖z(t)‖2 dt

∣

∣

∣

∣

d(t) = 0, t > T

}

� sup
d

inf
u

∫ τ

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

= C∗(ξ, τ2)

where τ = T − τ2 + τ1 and where, in the last step, we use that the system is time-
invariant.

Hence we note that, if C∗(ξ, 0) is bounded, then C ∗(ξ, τ ) is bounded for all τ ∈

[0, T ]. We will use theorem 10.7. We apply this theorem, with time reversed, to the
following Riccati differential equation:

−Ṗ = AT P+P A+CTC+
(

P E + CT D
)

(

γ 2 I − DT D
)−1

(

ET P + DTC
)

(12.21)

Note that we already concluded that ‖D‖ must be less than γ , and therefore the
inverse is well-defined. We know there exists T1 � 0 such that this Riccati equation
has a solution P on the interval [T1, T ] with P(T ) = 0. If we show that this solution
is uniformly bounded on the interval [T1, T ] with a bound independent of T1 then
theorem 10.7 guarantees that a solution P exists on the whole interval [0, T ]. The
bound on P is a consequence of the following lemma.

Lemma 12.19 Assume the Riccati equation (12.21) has a solution P with P(T ) = 0
on the interval [T1, T ]. Then we have:

C∗(ξ, τ ) = ξ T P(τ )ξ

for all ξ ∈ Rn and all τ ∈ [T1, T ].

Proof : We will use a completion of the squares argument similar to the one used in
chapter 10. We get

C∗(ξ, τ ) : = sup
d

C(d, ξ, τ )

: = ξ T P(τ )ξ + sup
d

∫ T

τ

‖z(t)‖2 − γ 2‖d(t)‖2

+

(

d
dt

x T(t)P(t)x(t)

)

dt
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= ξ T P(τ )ξ + sup
d

−‖(γ 2 I − DT D)1/2(d − Fx)‖2
2,T

where F(t) = (γ 2 I − DT D)−1(ET P(t) + DTC). It is obvious that the maximizing
d is given by d = Fx .

We have shown that, if the L 2 [0, T ]-induced operator norm is less than γ , then
‖D‖ < γ and C∗(ξ, 0) is bounded for all ξ ∈ Rn and, moreover, we have shown that
C∗(ξ, 0) � C∗(ξ, τ ) for all τ ∈ [0, T ]. Therefore, the above lemma shows that P is
uniformly bounded. But we already discussed before lemma 12.19 that this implies
that a solution P of the Riccati equation (12.21) exists on the complete interval [0, T ].

We will prove the converse. Assume that ‖D‖ < γ and there exists a solution
P of the Riccati equation (12.21) with P(T ) = 0. We show that this implies that
the L2 [0, T ]-induced operator norm is strictly less than γ . If we use the comple-
tion of the squares argument from the proof of lemma (12.19) then, for zero initial
conditions, we obtain:

‖z‖2
2,T − γ 2‖d‖2

2,T = −‖(γ
2 I − DT D)1/2(d − Fx)‖2

2,T � 0

for all d ∈ L2 [0, T ]. This immediately implies that the L 2 [0, T ]-induced operator
norm is less than or equal to γ . We still have to prove that the norm is strictly less
than γ . Introduce a new variable v = (γ 2 I − DT D)1/2(d − Fx) and consider the
following system

�vd :
ẋ = (A + E F)x + E(γ 2 I − DT D)−1/2v,

d = Fx + (γ 2 I − DT D)−1/2v.

This system defines an operator Gvd mapping v to d, which has a finite L 2 [0, T ]-
induced operator norm. Then we get

‖z‖2
2,T
− γ 2‖d‖2

2,T
= −γ 2‖v‖2

2,T
� −γ 2‖Gvd‖

−2
∞,T‖d‖

2
2,T

which guarantees that the L 2 [0, T ]-induced operator norm is less than or equal to

γ

√

1− ‖Gvd‖
−2
∞,T < γ.

Thus, we have proven the following lemma:

Lemma 12.20 Let the system � be given by (12.15). Then the L 2 [0, T ]-induced

operator norm of � is less than γ if and only if ‖D‖ < γ and there exists a solution

P of (12.21) with P(T ) = 0.

Note that from the proof it can be seen that the above lemma is also valid for
time-varying systems (where we need to require that ‖D(t)‖ < γ for all t ∈ [0, T ]).
However, in the next subsection we study the infinite horizon case where our approach
will depend on the fact that the system is time-invariant.
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12.6.2 Infinite horizon

We again consider the system (12.15). We will basically apply the limit as T → ∞

to lemma 12.20. Assume the system is internally stable, and has H∞ norm less than
γ . Then, similarly as in lemma 12.18, we can show that:

C∗(ξ) : = sup
d

∫ ∞

0
zT(t)z(t)− γ 2dT(t)d(t) dt (12.22)

is bounded for all initial conditions x(0) = ξ . We find:

C∗(0) : = sup
d∈L2 [0,∞)

∫ ∞

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt

� sup
d∈L2 [0,∞)

{ ∫ ∞

0
‖z(t)‖2 dt

−γ 2
∫ T

0
‖d(t)‖2 dt

∣

∣

∣

∣

d(t) = 0, t > T

}

� sup
d∈L2 [0,T ]

∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt . (12.23)

This shows that the L2 [0, T ]-induced operator norm is less than or equal to the
H∞ norm for all T . Consider the following Riccati differential equation:

Q̇ = AT Q + Q A + CTC +
(

QE + CT D
)

(

γ 2 I − DT D
)−1

(

ET Q + DTC
)

,

with Q(0) = 0. We have Q(t) = P(T − t) when P satisfies (12.21) with P(T ) = 0.
We also know that the L2 [0, T ]-induced operator norm is less than the H∞ norm
and hence less than γ for all T . Therefore, the results of the previous subsection
imply that a solution Q exists for all t . Moreover Q is increasing and bounded.
This obviously implies that a limit Q̄ exists, which must satisfy the algebraic Riccati
equation:

0 = AT Q̄+ Q̄ A+CTC+
(

Q̄E + CT D
)

(

γ 2 I − DT D
)−1

(

ET Q̄ + DTC
)

. (12.24)

We need an additional condition on Q̄ for which we need to do some work. We know
that the H∞ norm from d to z is less than γ , say δ. But then, for all T > 0, the
L2 [0, T ]-induced operator norm is less than or equal to δ. We obtain:

‖z‖2
2,T
− γ 2‖d‖2

2,T
= ‖z0,d + zξ,0‖

2
2,T
− γ 2‖d‖2

2,T

� ‖z0,d‖
2
2,T
+ ‖zξ,0‖

2
2,T
+ 2‖z0,d‖2,T · ‖zξ,0‖2,T − γ 2‖d‖2

2,T

� ‖z0,d‖
2
2,T
+ ‖zξ,0‖

2
2 + 2‖z0,d‖2,T · ‖zξ,0‖2 − γ 2‖d‖2

2,T

� (δ2 − γ 2)‖d‖2
2,T
+ ‖zξ,0‖

2
2 + 2δ‖d‖2

2,T
· ‖zξ,0‖2

� (γ 2 − δ2)
(

c2 − (‖d‖2,T − c1)
2
)
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for certain constants c1 and c2, independent of T . Choose an arbitrary T . We note
that for dT = FTx with FT(t) = (γ 2 I − DT D)−1(ET Q(T − t)+ DTC) we have

‖z‖2
2,T
− γ 2‖dT‖

2
2,T
= ξ T Q(T − t)ξ � 0

for all initial conditions x(0) = ξ and hence

(‖dT‖2,T − c1)
2

� c2.

This implies that ‖dT‖2,T < α, with α independent of T . It is trivial to see that
‖dT‖2,T1 < ‖dT‖2,T < α for all T � T1. Finally, FT(t) → F (T → ∞) for all t ,
where F = (γ 2 I − DT D)−1(ET Q̄ + DTC), and therefore dT(t) → d(t) as T →∞

for all t , where d = Fx . But then

‖d‖2,T1 = lim
T→∞

‖dT‖2,T1 < α

for all T1, which guarantees that d ∈ L 2 . On the other hand, d is determined by

ẋ = Ax + Ed = (A + E F)x .

Since A is a stability matrix and Ed ∈ L 2 we have x ∈ L2 for all initial states (see
exercise 13.1). This implies that

A + E F = A + E(γ 2 I − DT D)−1(ET Q̄ + DTC) (12.25)

is asymptotically stable. Finally, it is obvious that Q̄ � 0.

We will now show the converse. Assume there exists a matrix Q̄ � 0 which
satisfies (12.24) and is such that (12.25) is stable. First, we will check whether the
system is stable. Assume x 	= 0 is an eigenvector of A with eigenvalue λ. From
(12.24) we obtain:

2(ℜe λ)x∗ Q̄x = −‖(γ 2 I − DT D)−1/2(ET Q̄ + DTC)x‖2 − ‖Cx‖2.

Suppose ℜe λ � 0. Then the above equation implies that we must have (E T Q̄ +

DTC)x = 0. This implies (A + E F)x = λx which yields a contradiction since
A + E F is a stability matrix. Therefore, A must be a stability matrix.

It is also easy to check that we have:

‖z‖2
2,T − γ 2‖d‖2

2,T = −‖(γ
2 I − DT D)1/2(d − Fx)‖2

2,T − x T(T )Q̄x(T ).

Since the system is stable, and d ∈ L2 , we have z ∈ L2 and x(T ) → 0 as T →∞.
Thus we get:

‖z‖2
2 − γ 2‖d‖2

2 = −

∫ ∞

0
[d(t)− Fx(t)]T

(

γ 2 I − DT D
)

[d(t)− Fx(t)] dt

for initial state x(0) = 0. Define a new variable v by putting v = (γ 2 I−DT D)1/2(d−

Fx) and consider the system:

�vd :
ẋ = (A + E F)x − E(γ 2 I − DT D)−1/2v

d = Fx − (γ 2 I − DT D)−1/2v
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Since A + E F is a stability matrix, this system has a finite H∞ norm, say δ. We
obtain:

‖z‖2
2 − γ 2‖d‖2

2 = −‖v‖
2
2 � −δ−1‖d‖2

2

for all d ∈ L2 . This implies that the H∞ norm of � is strictly less than γ . In the
above, we have proven the bounded real lemma:

Lemma 12.21 Consider the system � given by (12.15). Assume (C, A) is detectable.

Then A is stable and the H∞ norm of � is less than γ if and only if ‖D‖ < γ and

there exists a solution P of the algebraic Riccati equation (12.24) such that the matrix

(12.25) is asymptotically stable.

12.7 Exercises

12.1 Give a proof of lemma 12.3.

12.2 As noted in remark 12.12, we can also have multiplicative uncertainty at the
output of the system. Derive the equivalent of lemma 12.10 for the case of
multiplicative uncertainty at the output of the system. Impose the additional
assumption that the system � is internally stable and prove this result with the
help of the small gain theorem.

12.3 Consider lemma 12.14. Verify that the systems described by (12.12) indeed
yield a normalized coprime factorization of the transfer matrix G.

12.4 Consider a system � and an internally stabilizing controller Ŵ. Look at the
following setup:

�

� Ŵ

❄

✲ ✲

✻

✛

(12.26)

The gain margin [m, M] and phase margin � of the interconnection of � and
Ŵ are defined as:

m = max {20 log10 δ | (12.26) is unstable for � = δ I where δ ∈ [0, 1] },

M = min {20 log10 δ | (12.26) is unstable for � = δ I where δ ∈ [1,∞) },

� = min {
180◦|θ |



| (12.26) is unstable for � = e iθ I where θ ∈ [−π, π) },

where m = −∞ (M = ∞, � = 180◦) if there does not exists a m (M , �)
which destabilizes the system.
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Let G and H denote the transfer matrices of � and Ŵ respectively. Assume
that ‖(I − G H )−1‖∞ = γ .

a. Derive bounds on the gain and phase margin in terms of γ .

b. Is it possible to derive bounds on the H∞ norm γ in terms of the gain and
phase margin?

12.5 Consider the infinite horizon linear quadratic regulator problem which we stud-
ied in chapter 10. We have the system � : ẋ(t) = Ax(t) + Bu(t), x(0) = x 0
where we try to find an input u which minimizes the following criterion:

J (x0, u) : =

∫ ∞

0
x(t)T Qx(t)+ u(t)Tu(t)dt

subject to x(t) → 0 as t → ∞. Assume that Q � 0 is such that (Q, A) is
detectable. We know that the solution of this problem is related to the largest
real symmetric solution P of the Riccati equation:

AT P + P A − P B B T P + Q = 0,

The optimal feedback for the above minimization problem is given by u =

−BT Px . We will derive some properties of the resulting closed loop system.

a. Using the Riccati equation, show that:

I + BT(−iωI − AT)−1 Q(iωI − A)−1 B

=
[

I + BT(−iωI − AT)−1 P B
] [

I + BT P(iωI − A)−1 B
]

.

b. Show that
∥

∥

∥

∥

(

I + BT P(iωI − A)−1 B
)−1

∥

∥

∥

∥

∞

= 1.

c. In order to investigate the gain and phase margin of the closed loop system,
we study the following interconnection:

❄
✻

−BT P

(s I − A)−1 B

Show that the gain margin of this interconnection is at least equal to
[−20log102,∞) and the phase margin at least equal to 60◦.
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12.6 Consider the following system:

� :

(

ẋ1
ẋ2

)

=

(

1 1
0 1

)(

x1
x2

)

+

(

0
1

)

u +

(

1 0
1 0

)

d

y =
(

1 0
)

(

x1
x2

)

+
(

0 α
)

d

z =

(

β β

0 0

)(

x1
x2

)

+

(

0
1

)

u

a. Derive the H2 optimal dynamic measurement controller Ŵ for � as a func-
tion of α and β using the theory of chapter 11.

b. Determine analytically or numerically (by trying several values for α and
β) that the gain margin of the interconnection of � ci and Ŵ becomes ar-
bitrarily small, i.e. m, M → 0dB, as α and β increase. Here �ci is the
subsystem of � from u to y.

12.7 Let � be the single-input, single output linear system given by

ẋ = Ax + bu

y = cx

Let G be its transfer matrix.

a. Show that for zero initial condition:

|y(t)| �

(
∫ t

0
ceAτ bbTeATτ cTdτ

)1/2 (
∫ t

0
u2(τ )dτ

)1/2

.

b. Define |y|∞ : = supt |y(t)|. Show that the H2 norm of � is equal to the
L2 to L∞ induced operator norm, i.e.

‖G‖2 = sup
u 	=0

|y|∞

‖u‖2
(12.27)

for zero initial conditions.

c. For a vector valued function y : [0,∞)→ Rn we define

|y|∞ : = sup
i,t

|yi (t)|

where yi (t) denotes the i th component of y(t). Show, e.g. via an example,
that for a multi-input, multi-output system � the H2 norm is not necessar-
ily equal to the L2 to L∞ induced operator norm defined by (12.27).

12.8 Notes and references

The H∞ control problem was originally formulated in the work of Zames, [230].
Early solutions, based on frequency domain techniques, are described in Zames, [231]
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and Francis, [46]. The first more or less complete solution in a state space setting was
given in the work by Doyle, Glover Khargonekar and Francis, [41]. For a more pre-
cise and detailed exposition of the spaces H∞ , H2 , L∞ , L2 we refer to Rudin, [156]
and Young, [228]. The small gain theorem described in section 12.4 is described in
detail in the book [212] by Willems. Our proof of theorem 12.4 worked for simplic-
ity with a static and complex uncertainty system. The effect of allowing for dynamic,
time-varying or nonlinear and the difference between real and complex uncertainty
systems are described in [79] by Hinrichsen and Pritchard.

If we want to use some special structure of the system � (e.g. that � is static
and not dynamic), then we have to resort to the so-called µ-synthesis. µ-synthesis
has the disadvantage that this method is so general that no reasonably efficient algo-
rithms are available to improve robustness via µ-synthesis. The available technique
for µ-synthesis is to use an H∞ upper bound (depending on scales) for µ which is
consequently minimized by choosing an appropriate controller. The result is then
minimized over all possible choices for the scales. One of the first papers on µ-
analysis and -synthesis is by Doyle, [39]. A book which describes this technique in
quite some detail and contains a lot of references is the book [232] by Zhou, Doyle
and Glover.

Additive and multiplicative model uncertainty has been studied by McFarlane
and Glover in [123], and by Vidyasagar in [207]. The use of coprime factorizations in
control is studied extensively by Vidyasagar in the book [207]. More details regarding
coprime-factor uncertainty can be found in the work of McFarlane and Glover, [123].
Note that the two coprime factors actually yield a kernel representation within the
framework of behavioral systems. See for instance the book [146] by Polderman and
Willems and the paper [217] by Willems. Therefore this might yield a very natural
motivation for the use of coprime factorizations.

For single-input, single-output systems expressing performance criteria into re-
quirements on the desired shape of the magnitude Bode diagram is well established.
This can be translated into appropriate choices for the weights in the mixed-sensitivity
problem. See any book on classical control such as Van de Vegte [202], Phillips and
Harbor [145], Franklin, Power and Emami-Naeini [49], and Kuo [101]. On the other
hand, for multi-input, multi-output systems it is in general very hard to translate prac-
tical performance criteria into an appropriate choice for the weights. For more details
we refer to the books by Freudenberg and Looze [50] and by Horowitz, [81].



292 H∞ control and robustness



Chapter 13

The state feedback H∞ control

problem

13.1 Introduction

In the next two chapters we will present a solution to the H∞ control problem as for-
mulated in the previous chapter. In this book we will present a time-domain oriented
solution of the H∞ control problem. A main advantage is the great similarity with the
techniques used for the solution of the H2 control problem.

We will first study the state feedback H∞ control problem. There is a quite a bit
of similarity with the linear quadratic regulator problem studied in chapter 10 and
the H2 control problem of chapter 11. However, there is a fundamental difference
between H2 and H∞ . In the H2 control problem we have found an expression for
the optimal state feedback controller. The latter was expressed in terms of the largest
solution of a certain Riccati equation. In the H∞ control problem we will ask our-
selves whether a controller exists that makes the H∞ norm smaller than an, a priori
given, bound γ . It will turn out that if a certain Riccati equation has a solution, then
such controller exists. An expression for one suitable controller is then obtained in
terms of a particular solution of this Riccati equation. In other words, while in the
H2 context a solution of the Riccati equation always exists, in the H∞ context a solu-
tion of the Riccati equation only exists if we have chosen the parameter γ sufficiently
large. Moreover, we will not find an optimal controller, but a suboptimal controller,
i.e. a controller that makes the H∞ norm less than γ . We therefore need to search for
the smallest γ for which the Riccati equation has a solution. Except for some special
cases, there is no analytic expression for this smallest value of γ and therefore, in
general, we have to do a numerical search.

A Riccati equation is a quadratic equation for the unknown matrix P of the form
FT P + P F + P RP + Q. In linear quadratic and H2 optimal control we always
have R � 0 and Q � 0 as we have seen in the previous chapters. The Riccati
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equation appearing in H∞ has an indefinite quadratic term R. Riccati equations of this
type first appeared in the theory of differential games, and have different properties
compared to the Riccati equation used in linear quadratic and H 2 optimal control.
In section 13.4 we will discuss a method to find solutions of the algebraic Riccati
equation.

As in chapter 10, we will first study a finite horizon version of the state feedback
H∞ control problem, and then use these results to obtain a solution of the standard in-
finite horizon H∞ control problem. The finite horizon version of the H∞ control pro-
blem is based on the time-domain interpretation of the H∞ norm as the L2-induced
operator norm. The latter has been discussed in section 12.2.

13.2 The finite horizon H∞ control

Consider the linear, time-invariant, finite-dimensional system:

� :
ẋ = Ax + Bu + Ed,

z = Cx + Du,
(13.1)

where, as before, x ∈ Rn is the state, u ∈ Rm the control input, d ∈ Rℓ the disturbance
and z ∈ Rq the output to be controlled. A, B, E, C and D are matrices of appropriate
dimensions. Note that we could have added a direct feedthrough matrix from d to z.
This would not make the problem more difficult to solve, but it makes the formulas a
lot more messy. Hence, for ease of exposition, we have set this matrix equal to 0.

We want to minimize the effect of the disturbance d on the output z by finding
an appropriate control input u. More precisely, we seek a controller Ŵ described by
a time-varying state feedback law u(t) = F(t)x(t) such that after applying this feed-
back law to the system (13.1), the resulting closed-loop system � × Ŵ has minimal
L2 [0, T ]-induced operator norm defined by:

‖Gcl‖∞,T : = sup
d

{

‖Gcl d‖2,T

‖d‖2,T

d ∈ Lℓ
2[0, T ], d 	= 0

}

. (13.2)

where Gcl is the closed loop operator mapping d to z for zero initial state in (13.1)
and

‖ f ‖2,T : =

(
∫ T

0
‖ f (t)‖2 dt

)1/2

<∞.

Although minimizing the L 2 [0, T ]-induced operator norm is our ultimate goal, we
shall only derive necessary and sufficient conditions under which we can find a con-
troller that makes the resulting L 2 [0, T ]-induced operator norm of the closed-loop
system strictly less than some a priori given bound γ . We are now in the position to
formulate our result.

Theorem 13.1 Consider the system (13.1). Let T > 0 and let γ > 0. Assume that

the matrix D is injective. Then the following statements are equivalent:
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(i) There exists a time-varying state feedback law u(t) = F(t)x(t) such that after

applying this controller to the system (13.1) the resulting closed-loop operator

Gcl has L2 [0, T ]-induced operator norm less than γ , i.e. ‖Gcl‖∞,T < γ .

(ii) There exists a differentiable function P : [0, T ] → R
n×n such that P(t) � 0

for all t and P satisfies the following Riccati differential equation

− Ṗ = AT P + P A + C TC + γ−2 P E E T P

−
(

P B + C T D
) (

DT D
)−1 (

BT P + DTC
)

(13.3)

with P(T)=0.

If P satisfies the conditions in part (ii), then a controller satisfying the conditions in

part (i) is given by:

F(t) : = −
(

DT D
)−1 [

DTC + BT P(t)
]

. (13.4)

We will now start with our proof of theorem 13.1. Let 0 � τ � T and define

C(u, d, ξ, τ ) : =

∫ T

τ

zT(t)z(t)− γ 2dT(t)d(t) dt

where z is the output of the system with inputs u, d and initial condition x(τ ) = ξ .
We will investigate in detail the following criterion:

C∗(ξ, τ ) : = sup
d

inf
u

{ C(u, d, ξ, τ ) } (13.5)

for arbitrary initial state x(τ ) = ξ . Here d ∈ L 2 [0, T ] and u ∈ L2 [0, T ]. Since we
optimize over u first, i.e. for a fixed d, it does not matter whether we choose u in open
or closed loop. Here open loop refers to the fact that we choose u to be an element of
L2 [0, T ] while closed loop refers to the fact that u is chosen as a function of x and,
possibly, d. So a state feedback is a typical example of a u chosen in closed loop.
However, especially in the next section, it is essential that d is chosen in open loop,
i.e. we optimize over d ∈ L 2 [0, T ] and not over some feedback strategy.

We will first show the implication (i) ⇒ (ii) of theorem (13.1). We can apply
lemma 12.18 to the closed loop system obtained after applying a feedback u =

F(t)x(t) which yields an L2 [0, T ]-induced operator norm strictly less than γ . Thus
we obtain that:

sup
d

{

‖z‖2
2,T
− γ 2‖d‖2

2,T
u(t) = F(t)d(t), x(0) = ξ

}

(13.6)

is finite for all ξ ∈ Rn .

It is easy to see that (13.6) is larger than C ∗(ξ, 0). Therefore C∗(ξ, 0) is bounded
from above. Moreover, by making the suboptimal choice d = 0 in the optimization
(13.5) we see that C∗(ξ, 0) � 0. Hence C∗(ξ, 0) is bounded for all ξ ∈ R

n .
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Next we claim that C∗(ξ, τ ) is a decreasing function of τ . This is a consequence
of the following implications,

C∗(ξ, τ1) : = sup
d

inf
u

C(u, d, ξ, τ1)

= sup
d

inf
u

∫ T

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

� sup
d

inf
u

{∫ T

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

∣

∣

∣

∣

d(t) = 0, ∀t > τ

}

� sup
d

inf
u

∫ τ

τ1

‖z(t)‖2 − γ 2‖d(t)‖2 dt

= C∗(ξ, τ2)

where τ1 � τ2 and τ = T − τ2 + τ1. Moreover, in the last step, we use that the
(open-loop) system is time-invariant.

Since C∗(ξ, 0) is bounded, we note that the above implies that the cost function
C∗(ξ, τ ) is bounded for all τ ∈ [0, T ]. We will now use theorem 10.7. This will all
be very similar to subsection 12.6.1. We apply this theorem, with the time reversed,
to the Riccati equation (13.3). We therefore note there exists T1 � 0 such that the
Riccati equation (13.3) has a solution P on the interval [T1, T ] with P(T ) = 0. If
we show that this solution is uniformly bounded on the interval [T1, T ] with a bound
independent of T1 then theorem 10.7 guarantees that a solution P exists on the whole
interval [0, T ] and we have proven part (ii) of theorem 13.1. The bound on P is a
consequence of the following lemma.

Lemma 13.2 Assume the Riccati equation (13.3) has a solution P on the interval

[T1, T ] with P(T ) = 0. Then we have:

C∗(ξ, τ ) = ξ T P(τ )ξ (13.7)

for all ξ ∈ Rn and all τ ∈ [T1, T ].

Proof : We will use a completion of the squares argument similar to the one used in
subsection 12.6.1. We get

C∗(ξ, τ ) : = sup
d

inf
u

C(u, d, ξ, τ )

: = ξ T P(τ )ξ + sup
d

inf
u

∫ T

τ

‖z(t)‖2 − γ 2‖d(t)‖2

+

(

d
dt

x T(t)P(t)x(t)

)

dt

= ξ T P(τ )ξ + sup
d

inf
u

∫ T

τ

‖D[u(t)− F(t)x(t)]‖2

− γ 2‖d(t)− F2(t)x(t)‖2 dt
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where F = −(DT D)−1(BT P+DTC) and F2 = γ−2 ET P. It is obvious that if u = Fx

then, no matter what d is, C(u, d, ξ, τ ) � ξ T P(τ )ξ .

The problem is the converse. It seems obvious to choose d = F2x . However,
we cannot choose d in feedback; we must choose d only depending on the initial
condition ξ . It is natural for d to expect that u will be chosen equal to Fx . Hence, we
choose d equal to d̄ = F2 p where ṗ = (A + B F + E F2)p and p(0) = ξ (this is the
unique open-loop policy such that d = F2x whenever u = Fx). Moreover, define v

by v = D(u − Fx), i.e. u = Fx + (DT D)−1 DTv. If we can prove that the optimal
choice for v equals 0 then we have d = F2x and the cost equal to ξ T P(τ )ξ . This
would complete the proof.

We rewrite the cost criterion for the specific disturbance d̄ and in terms of v. We
get:

inf
u

C(u, d̄, ξ, τ ) = ξ T P(τ )ξ + inf
v

∫ T

τ

‖v(t)‖2 − γ 2‖z̄(t)‖2 dt (13.8)

where z̄ is generated by the following system:

�̄ :
˙̄x = (A + B F)x̄ + B(DT D)−1 DTv, x̄(0) = 0
z̄ = F2 x̄ .

Equation (13.8) can be checked by using the variations of constant formula to deter-
mine d̄(t)− F2(t)x(t) in terms of v and ξ . Note the surprising fact that the integral in
(13.8) is independent of the initial condition ξ . The input v = 0 is clearly optimal as
soon as we have shown that the L 2 [0, T ]-induced operator norm from v to z̄ is less
than γ−1. Because the equations become easier, we prove instead that the following
system has L2 [0, T ]-induced operator norm less than 1:

�̄e :

˙̄x = (A + B F)x̄ + B(DT D)−1 DTv, x̄(0) = 0

z̄e =

(

γ F2
[

I − D(DT D)−1 DT
]1/2

C

)

x̄ .

It is easy to see that if �̄e has norm less than 1 then clearly �̄ has norm less than
γ−1. We now apply lemma 12.20, and we see that we must check the existence of a
solution to the following Riccati differential equation:

− Ẋ = (A + B F)T X + X (A + B F)+ γ 2 FT
2 F2 + X B(DT D)−1 BT X

+ CT[I − D(DT D)−1 DT]C

where X (T ) = 0. We see that X (t) = Q(T − t) satisfies the above Riccati equation
and therefore we have shown that v = 0 is optimal. This guarantees that the L 2 [0, T ]-
induced operator norm of �̄ is less than γ−1. As mentioned above, this guarantees
that the optimal choice for u equals Fx when d = d̄. This proves (13.7).

We have shown that if part (i) of theorem 13.1 is satisfied then C ∗(ξ, 0) is bounded
for all ξ ∈ Rn and, moreover, we have shown that C ∗(ξ, 0) � C∗(ξ, τ ) for all τ ∈
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[0, T ]. Therefore, the above lemma shows that P is uniformly bounded. But we
already discussed before lemma 13.2 that this implies that a solution P of the Riccati
equation (13.3) exists on the complete interval [0, T ], i.e. part (ii) of theorem 13.1 is
satisfied.

It remains to show that part (ii) of theorem 13.1 implies part (i). We will prove
that the feedback u = Fx defined by (13.4) satisfies part (i). If we use the completion
of the squares argument from the proof of lemma (13.2) then, for zero initial state and
u = Fx , we obtain:

∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt = −

∫ T

0
γ 2‖d(t)− F2(t)x(t)‖2 dt � 0

for all d ∈ L2 [0, T ]. This immediately implies that the L 2 [0, T ]-induced operator
norm is less than or equal to γ . We still have to prove that the norm is strictly less
than γ . We use the same technique as in subsection 12.6.1. Introduce the variable v

by v = d − F2x , and consider the system

�vd :
ẋ = (A + B F + E F2)x + Ev x(0) = 0
d = −F2x + v.

This system defines an operator Gvd mapping v to d, with a finite L 2 [0, T ]-induced
operator norm. Thus we get

‖z‖2
2,T
− γ 2‖d‖2

2,T
= −γ 2‖v‖2

2,T
� −γ 2‖Gvd‖

−2
∞,T‖d‖

2
2,T

,

which guarantees that the L 2 [0, T ]-induced operator norm is strictly less than γ . This
implies that u = Fx satisfies part (i) of theorem 13.1 and hence we have completed
the proof of theorem 13.1.

13.3 Infinite horizon H∞ control problem

We will show in this section that the results for the finite horizon case can be used
to derive a similar result for the infinite horizon H∞ control problem. The approach
used is very similar to the techniques used in section 10.3 for the linear quadratic
regulator problem.

Theorem 13.3 Consider the system (13.1) and let γ > 0. Assume that the system

(A, B, C, D) has no zeros on the imaginary axis and assume that the matrix D is

injective. Then the following statements are equivalent:

(i) There exists a static state feedback law u(t) = Fx(t) such that, after applying

this controller to the system (13.1), the resulting closed loop transfer matrix

GF has H∞ norm less than γ , i.e. ‖G F‖∞ < γ .
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(ii) There exists a matrix P ∈ Rn×n such that P � 0 and such that P satisfies the

following algebraic Riccati equation

0 = AT P + P A + C TC + γ−2 P E E T P

−
(

P B + C T D
) (

DT D
)−1 (

BT P + DTC
)

(13.9)

with Acl a stability matrix where

Acl : = A + γ−2 E E T P − B
(

DT D
)−1 (

BT P + DTC
)

. (13.10)

If P satisfies the conditions in part (ii), then a controller satisfying the conditions in

part (i) is given by:

F : = −
(

DT D
)−1 (

DTC + BT P
)

. (13.11)

Remark 13.4 Note that we require explicitly that the solution P must be positive
semi-definite. This is a very crucial requirement. In the linear quadratic regulator
problem, the stabilizing solution of the algebraic Riccati equation is automatically
positive semi-definite. On the other hand, in H∞ the stabilizing solution might be
indefinite or even negative definite. It can be shown that this would imply that the
feedback u = Fx is no longer stabilizing. In the linear quadratic regulator problem
the stability requirement for the algebraic Riccati equation is imposed on a matrix
which is equal to the resulting closed loop state matrix A + B F after applying the
optimal feedback. Hence the stability of the closed loop system is automatically
guaranteed. In the H∞ control problem, the stability requirement for the algebraic
Riccati equation is imposed on a matrix which is different from the closed loop state
matrix A + B F resulting from the suggested feedback. Therefore we still have to
prove stability of the closed loop system and for this we need the requirement that
P � 0.

We will first show the implication (i) ⇒ (ii) of theorem (13.3). As we did in
subsection 12.6, we would like to obtain these results from the finite horizon results.
In general, however, the solution P does not converge to the correct limit as T →∞.
We saw the same kind of problem occurring in section 10.4. There we could use
an argument which, unfortunately, does not work for the H∞ control problem. This
time we will derive the results from a finite horizon problem with a very specific
endpoint penalty. Unfortunately, we have to repeat parts of the previous section to
obtain similar results for a non-zero endpoint penalty.

In section 10.5, we have shown that there exists a solution L to the algebraic
Riccati equation

AT L + L A + CTC − (L B + CT D)(DT D)−1(L B + CT D)T = 0 (13.12)

such that

A − B(DT D)−1(BTL + DTC) (13.13)
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is a stability matrix. Define

CL(u, d, ξ, T ) : =

∫ T

0
zT(t)z(t)− γ 2dT(t)d(t) dt + x T(T )Lx(T ),

where z is the output of the system with inputs u, d and initial condition x(0) = ξ .
We will investigate in detail the following criterion:

C∗L(ξ, T ) : = sup
d

inf
u

{ CL(u, d, ξ, T ) } (13.14)

for arbitrary initial state x(0) = ξ . Here d ∈ L 2 [0, T ] and u ∈ L2 [0, T ]. This is
the same criterion we studied in the previous section but we have included a specific
endpoint penalty. Note that we now vary the final time of the optimization problem
while we varied the initial time in the previous section. Clearly one wonders why we
have chosen this particular end point penalty. For the infinite-horizon problem we
have to optimize over d ∈ L 2 [0,∞). Since d is square integrable, it is not a bad
approximation to assume d(t) = 0 for all t > T where T is chosen very large. Then,
after time T , we basically have a linear quadratic control problem since we do not
impose that u(t) = 0 after time T and hence we still have to minimize over u. This
is a linear quadratic regulator problem with initial condition x(T ) and, because of
stability, we impose a zero endpoint. From chapter 10, we know that the cost of this
zero-endpoint linear quadratic regulator problem is x T(T )Lx(T ). But we still have to
optimize over d and u on the interval [0, T ]. However, we know the cost after time
T will be x T(T )Lx(T ) and hence we include this as an endpoint penalty. In this way
we obtain the criterion (13.14). When we let T → ∞, the above showes intuitively
why this will converge to the solution of the infinite horizon problem. Of course, we
will give a precise proof.

We first show that, if there exists a state feedback u = Fx which makes the
H∞ norm less than γ , then (13.14) is bounded for all T > 0 and for all initial states
x(0) = ξ . The argument is a direct consequence of the above intuitive reasoning. We
have:

C∗L(ξ, T ) =

= sup
d∈L2 [0,T ]

inf
u∈L2 [0,T ]

{
∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt + x T(T )Lx(T )

}

= sup
d∈L2 [0,T ]

inf
u∈L2 [0,T ]

( ∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt + inf

u∈L2 [T ,∞)
{∫ ∞

T

‖z(t)‖2 dt

∣

∣

∣

∣

d(t) = 0 and x(t)→ 0 as t →∞

})

= sup
d∈L2 [0,∞)

inf
u∈L2 [0,∞)

{
∫ ∞

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt

∣

∣

∣

∣

d(t) = 0,∀ t > T and x(t)→ 0 as t →∞

}
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� sup
d∈L2 [0,∞)

inf
u∈L2 [0,∞)

{
∫ ∞

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt

∣

∣

∣

∣

x(t)→ 0 as t →∞} (13.15)

It is easy to see that C∗L(ξ, T ) is bounded from below by 0 by choosing d = 0. The
above sequence of inequalities proves that it is bounded from above as soon as we
show that the last expression is bounded from above. It was already mentioned in
subsection 12.6.2 that:

sup
d

{

‖z‖2
2 − γ 2‖d‖2

2 u(t) = Fd(t), x(0) = ξ, x(t)→ 0 as t →∞
}

(13.16)

is finite for all ξ ∈ Rn , if the closed loop H∞ norm after applying the stabilizing
feedback u(t) = Fx(t) to the system (13.1) is strictly less than γ . Clearly (13.16)
is larger than (13.15) and hence we find that C ∗L(ξ, T ) is bounded, uniformly with
respect to T .

We will study the following Riccati differential equation with P(0) = L:

Ṗ = AT P+ P A+CTC+γ−2 P E E T P−
(

P B + CT D
) (

DT D
)−1 (

BT P + DTC
)

(13.17)

Once again, we will use theorem 10.7. We apply this theorem to the above Riccati
equation. We note there exists T1 � 0 such that the Riccati equation (13.3) has a
solution P on the interval [0, T1] with P(T ) = 0. If we show that this solution
is uniformly bounded on the interval [0, T1] with a bound independent of T1 then
theorem 10.7 guarantees that a solution P exists on the whole interval [0,∞). The
bound on P is a consequence of the following lemma.

Lemma 13.5 Assume that the Riccati equation (13.17) has a solution P on the inter-

val [0, T1] with P(0) = L. Then we have C∗L(ξ, T ) = ξ T P(T )ξ for all ξ ∈ Rn and

all T ∈ [0, T1].

Proof : We will use a completion of the squares argument identical to the one used in
the proof of lemma 13.2. We get

C∗L(ξ, T ) : = sup
d

inf
u

CL(u, d, ξ, T )

= ξ T P(T )ξ + sup
d

inf
u

∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2

+

(

d
dt

x T(t)P(T − t)x(t)

)

dt

= ξ T P(T )ξ + sup
d

inf
u

∫ T

0
‖D[u(t) − F(t)x(t)]‖2

− γ 2‖d(t)− F2(t)x(t)‖2 dt,
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where F(t) = (DT D)−1(BT P(T − t)+DTC) and F2(t) = ET P(T − t). It is obvious
that if u = Fx then, no matter what d is, CL(u, d, ξ, T ) � ξ T P(T )ξ .

The converse is again the most difficult part. We would like to choose d = F2x ,
but we are constrained to choose d in open loop, i.e. independent of u. We follow the
same course of action as in the proof of lemma 13.2. We choose d equal to d̄ = F2 p

where ṗ = (A+ B F− E F2)p and p(0) = ξ . Moreover, define v = D(u− Fx). We
get:

inf
u

CL(u, d̄, ξ, T ) = ξ T P(T )ξ + inf
v

∫ T

0
‖v(t)‖2 − γ 2‖z̄(t)‖2 dt, (13.18)

where z̄ is generated by the following system:

�̄ :
˙̄x = (A + B F)x̄ + B(DT D)−1 DTv, x̄(0) = 0
z̄ = F2 x̄ .

The input v = 0 is clearly optimal as soon as we have shown that the L 2 [0, T ]-
induced operator norm from v to z̄ is less than γ −1. Because the equations become
easier, we prove instead that the following system has L 2 [0, T ]-induced operator
norm less than 1:

�̄e :

˙̄x = (A + B F)x̄ + B(DT D)−1 DTv, x̄(0) = 0

z̄e =

(

γ F2
[

I − D(DT D)−1 DT
]1/2

C

)

x̄ .

It is easy to see that if �̄e has norm less than 1 then clearly �̄ has norm less than γ −1.
Clearly, X (t) : = Q(T − t) satisfies the following Riccati differential equation:

− Ẋ = (A + B F)T X + X (A + B F)+ γ 2 FT
2 F2 + X B(DT D)−1 BT X

+ CT[I − D(DT D)−1 DT]C

where X (T ) = L. To apply lemma 12.20 we need a solution of this equation for
zero endpoint penalty. However the existence of a solution to the above Riccati
equation with a positive semi-definite endpoint (see exercise 13.2) also guarantees
that the L2 [0, T ]-induced operator norm from v to z̄ e is less than 1. Hence we get
CL(u, d, ξ, T ) � ξ T P(T )ξ .

We have shown that if part (i) of theorem 13.3 is satisfied then C ∗
L(ξ, T ) is

bounded by (13.16) for all T . Therefore, the above lemma shows that P is uni-
formly bounded. But we already discussed before lemma 13.5 that this implies that
a solution P with P(0) = L of the Riccati equation (13.17) exists on the complete
interval [0,∞). Moreover, using the argument from (13.15) it is not hard to see that
P is an increasing, bounded function. Therefore P(t) → P̄ as t → ∞. Moreover
P̄ � L. It is not difficult to see that P̄ satisfies the algebraic Riccati equation (13.9)
for P = P̄ .
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However, we still have to prove that P̄ is such that the matrix in (13.10) for
P = P̄ is stable. First we show that A + B F is a stability matrix where F is defined
by (13.11) for P = P̄ . We can rewrite the algebraic Riccati equation as:

(A + B F)T P̄ + P̄(A + B F)+ (C + DF)T(C + DF) + γ−2 P̄ E E T P̄ = 0

Therefore, if x is an eigenvector of A + B F , with eigenvalue λ we get:

2(ℜe λ)x∗ P̄x = −γ−2‖ET P̄x‖2 − ‖(C + DF)x‖2.

We see that ℜe λ � 0 or P̄x = 0. If P̄x = 0 then we also have Lx = 0 (remember
that P̄ � L � 0) so x is also an eigenvector with eigenvalue λ of (13.13). The latter
matrix is stable and hence ℜe λ < 0. On the other hand, assume ℜe λ = 0. Then we
have (A + B F)x = λx and (C + DF)x = 0, which implies that (A, B, C, D) has a
zero λ on the imaginary axis (see exercise 13.3), which contradicts a basic assumption
of theorem 13.3. In conclusion, we find that A + B F is asymptotically stable.

Next, we apply a similar technique as in subsection 12.6.2. We know there exists
a feedback u = F1x such that the closed loop H∞ norm from d to z is less than γ ,
say δ. But then, for all T > 0, the L 2 [0, T ]-induced operator norm is less than or
equal to δ. We obtain:

CL(F1x, d, ξ, T ) : =

∫ T

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt + x T(T )Lx(T )

�

∫ ∞

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt (d(t) = 0,∀t > T )

� (δ2 − γ 2)‖d‖2
2,T
+ 2δ‖zξ,0‖2 · ‖d‖2,T + ‖zξ,0‖

2
2

� (δ2 − γ 2)(‖d‖2,T − c1)
2 + c2,

for certain constants c1 and c2, independent of T . Choose an arbitrary T . We note
that for dT = F2,Tx with F2,T(t) = γ−2 ET P(T − t) and for all initial state x(0) = ξ

we have CL(u, d, ξ, T ) � ξ T P(T − t)ξ � 0 and hence

(δ2 − γ 2)(‖dT‖2,T − c1)
2 + c2 � 0.

This implies (since δ < γ ) that ‖dT‖2,T < α with α independent of T . Moreover,
‖dT‖2,T1 < ‖dT‖2,T < α for all T � T1. Finally, since F2,T(t)→ F2 (T →∞) for all
t where F2 = γ−2 ET P̄ , we have dT(t) → d(t) as T → ∞ for all t with d = F2x .
But then

‖d‖2,T1 = lim
T→∞

‖dT‖2,T1 < α

for all T1, which guarantees that d ∈ L 2 . On the other hand, d is determined by

ẋ = (A + B F)x + Ed = (A + B F + E F2)x .

Since A + B F is stable and Ed ∈ L2 , we have x ∈ L2 for all initial states (see
exercise 13.1). This implies that Acl defined by (13.10) with P = P̄ is a stability
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matrix. Finally, it is obvious that P̄ � 0. This completes the proof of the implication
(ii)⇒ (i) of theorem 13.1

It remains to show that part (ii) of theorem 13.1 implies part (i). We will prove
that the feedback u = Fx defined by (13.4) satisfies part (i). We first have to show
that this feedback is stabilizing. We have

(A + B F)T P + P(A + B F)+ (C + DF)T(C + DF) + γ−2 P E E T P = 0.

Therefore if x 	= 0 is an eigenvector of A + B F with eigenvalue λ we get:

2(ℜe λ)x∗Px = −γ−1‖ET Px‖2 − ‖(C + DF)x‖2.

We see that ifℜe λ � 0 then E T Px = 0. But then (A+B F+γ −2 E ET P)x = λx . The
latter matrix is a stability matrix and henceℜe λ < 0 which yields a contradiction. In
conclusion we find that A + B F is a stability matrix.

If we use a completion of the squares argument similar to the one used in the
proof of lemma 13.5, then for zero initial state and u = Fx we obtain:

∫ ∞

0
‖z(t)‖2 − γ 2‖d(t)‖2 dt = −

∫ ∞

0
γ 2‖d(t)− F2(t)x(t)‖2 dt � 0 (13.19)

for all d ∈ L2 [0, T ]. Here we used that, since A + B F is stable and d ∈ L 2 , we
have that x(t) → 0 as t → ∞ (see exercise 13.1). (13.19) immediately implies that
the H∞ norm is less than or equal to γ . We still have to prove that the norm is strictly
less than γ . Define v = d − F2x and consider the system

�vd :
ẋ = (A + B F + E F2)x + Ev,
d = F2x + v.

Since the state matrix of �vd is equal to the matrix in (13.10), and therefore stable
we find that this system with transfer matrix G vd has a finite H∞ norm. Thus we get

‖z‖2
2 − γ 2‖d‖2

2 = −γ 2‖v‖2
2 � −γ 2‖Gvd‖

−2
∞ ‖d‖

2
2,

which guarantees that the H∞ norm is less than γ . Therefore u = Fx satisfies part
(i) of theorem 13.1 and we have completed the proof of theorem 13.1.

13.4 Solving the algebraic Riccati equation

We have expressed conditions for our finite horizon problems in terms of the Riccati
differential equation. To find a solution we can use standard numerical tools to solve
the differential equation.

For the infinite horizon problems however, we obtain an algebraic Riccati equa-
tion. Solving such a nonlinear equation is not easy. Moreover, it might have several
or even an infinite number of solutions. How do we solve this equation and obtain
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the specific solution which satisfies the required stability requirement? The algebraic
Riccati equation in this chapter, the algebraic Riccati equation from the bounded real
lemma in section 12.6 as well as the algebraic Riccati equation in the zero-endpoint,
linear quadratic regulator problem from section 10.4 have a similar structure. We
seek a matrix X such that:

0 = F T X + X F + X RX + Q (13.20)

and such that A + RP is a stability matrix, where Q and R are symmetric. Such a
matrix is then called the stabilizing solution of the algebraic Riccati equation. For
instance the Riccati equation (13.9) we get by choosing:

F : = A − B(DT D)−1 DTC,

R : = γ−2 E ET − B(DT D)−1 BT,

Q : = CT
[

I − D(DT D)−1 DT
]

C.

To solve this equation we note that we can rewrite (13.20) as:

(

X −I
)

(

F R

−Q −FT

)(

I

X

)

.

This in turn implies that

X = im
(

I

X

)

is an invariant subspace of the matrix:

H =

(

F R

−Q −FT

)

.

H is called a Hamiltonian matrix because it has a special structure:
(

0 −I

I 0

)

H

(

0 I

−I 0

)

= −H T (13.21)

This implies that H and −H T are similar, which guarantees, for instance, that if λ

is an eigenvalue of H then −λ is also an eigenvalue of H . Let X−(H ),X0(H )

and X+(H ) denote the C−, C0 and C+ stable subspaces of H respectively (these
spaces were defined in definition 2.13). Then (13.21) guarantees that dim X−(H ) =

dim X+(H ).

We have:

H

(

I

X

)

=

(

I

X

)

(F + RX)

We see that X satisfies the Riccati equation and the connected stability condition if
and only if X ⊂ X−(H ). The condition (13.21) guarantees that dim X−(H ) =
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dim X+(H ). Let X ∈ Rn×n . Then X is an n-dimensional subspace. On the other
hand the dimension of the modal subspaces X−(H ) and X+(H ) must both be at least
n. Since H has in total 2n eigenvalues this guarantees that if a stabilizing solution of
the Riccati equation exists then H can not have eigenvalues on the imaginary axis.
Moreover:

X−(H ) = im
(

I

X

)

Since there are efficient ways to determine the C−-stable subspace this yields a me-
thod to determine the stabilizing solution of the algebraic Riccati equation. It also
shows the stabilizing solution of the algebraic Riccati equation must be unique.

Note that if (Q, F) has an unobservable eigenvalue on the imaginary axis, i.e.
there exists a vector x 	= 0 such that Fx = λx and Qx = 0 with λ ∈ C0 then:

H

(

x

0

)

= λ

(

x

0

)

Hence dim X0(H ) > 0 and this guarantees that dim X−(H ) < n. The latter implies
that the algebraic Riccati equation can not have a stabilizing solution. The assump-
tions made about zeros on the imaginary axis made in several of our main theorems
(such as theorem 13.3) are equivalent to the requirement that (Q, F) has no unob-
servable eigenvalues on the imaginary axis and are hence necessary conditions for
the existence of a stabilizing solution of the algebraic Riccati equation.

13.5 Exercises

13.1 Consider the following system:

� :
ẋ = Ax + Ed,

z = Cx + Dd.
(13.22)

a. Show that d ∈ L2 and A a stability matrix imply that x ∈ L 2 for any
initial state.

b. Show that if d ∈ L2 and A a stability matrix then x(t) → 0 as t → 0 for
arbitrary initial statres.

c. Prove that � is C− stable if and only if

• (C, A) is detectable,
• (A, B) stabilizable, and
• for all d ∈ L2 , and zero initial state, we have z ∈ L 2 .

13.2 Consider the following two Riccati differential equation:

Ṗ = AT P + P A + P RP + Q, P(0) = P0,

Ẋ = AT X + X A + X RX + Q, X (0) = X0,

where Q � 0 and R � 0. We know that there exist an interval [0, T ] with
T > 0 on which both equations have a solution.
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a. Show that both P(τ ) and X (τ ), for any τ ∈ [0, T ], represent the optimal
cost of an optimization problem, where the two optimization problems
differ only in their endpoint penalty.

b. Prove that P0 � X0 implies P(τ ) � X (τ ) for all τ ∈ [0, T ].

c. Show that P0 � X0 � 0 implies that the solution P to the first Ric-
cati equation exists on a time-interval which is not longer than the time-
interval on which a solution X exists to the second Riccati equation.

d. Consider the system � = (A, B, C, D). Prove that the L 2 [0, T ]-induced
operator norm of � is less than γ if and only if there exists a solution P

on [0, T ] of

−Ṗ = AT P+P A+CTC+
(

P E + CT D
)

(

γ 2 I − DT D
)−1

(

BT P + DTC
)

with P(T ) � 0.

13.3 Consider the system � = (A, B, C, D), with D injective. Show that λ is a zero
of � if and only if there exists a matrix F ∈ Rn×m and an eigenvector x 	= 0
with eigenvalue λ of A+ B F such that (C + DF)x = 0. Does the same result
hold if D is not injective?

13.6 Notes and references

The first solutions of the H∞ control problem (see e.g. Francis [46]) were all in the
frequency domain and based on different types of factorizations of rational matrices
(inner-outer factorization, spectral factorization, etc.). These methods had difficulty
with the order of the controller which could be much higher than the order of the
plant. In the last few years this frequency domain approach has been refined via
the introduction of the so-called J -spectral factorization (see e.g. Green, Glover,
Limebeer and Doyle [65]). At the moment this is quite an elegant theory. On the other
hand, in this book we will present a time-domain oriented solution of the H∞ control
problem (see e.g. Doyle, Glover, Khargonekar and Francis [41], Petersen and Hollot
[144] and Stoorvogel [184]). The state feedback problem studied in this chapter plays
a crucial role in this time-domain approach.

Note that in theorem 13.1 our assumption that D is injective is clearly needed
since otherwise the inverse in the Riccati differential equation (13.3) will never exist.
Conditions for the general case where D is not injective can be found in Stoorvogel
and Trentelman [190]. Similarly, in theorem 13.3 our assumption that D is injective
is clearly needed since otherwise the inverse in the algebraic Riccati equation (13.9)
will never exist. Conditions for the general case where D is not injective can be
found in Stoorvogel and Trentelman [189] or in Stoorvogel [184]. If the subsystem
(A, B, C, D) has zeros on the imaginary axis then it can be shown that the Riccati
equation (13.9) can never have a solution such that A cl in (13.10) is a stability matrix.
The extension to the general case is studied by Scherer [164].
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To find the minimal achievable norm γ ∗, we have to try several values of γ . If,
for a certain γ the conditions of theorem 13.1 or, equivalently, theorem 13.3, then
we have γ > γ ∗. Otherwise γ � γ ∗. In this way, we can find γ ∗ via a binary
search. Note that for γ = γ ∗ there does not exist a solution P. Therefore the above
theorem can not be used to find an optimal controller achieving a closed loop norm
γ ∗. There still is no good method to check for the existence of an optimal controller
directly. Under some strong assumptions, direct characterization of γ ∗ is studied in
Chen [28]. Optimal controllers are studied in Scherer [165] and in Glover, Limebeer,
Doyle, Kasenally and Safonov [63]. Improving the numerical search has been studied
by Scherer [162].

Note that for γ = ∞ we get the same Riccati equation as in the linear quadratic
control theory from chapter 10. Hence for γ large, the controller presented in theo-
rem 13.1 and, equivalently theorem 13.3 is very close to the controller of the related
linear quadratic control problem. To understand this connection more deeply it is
worthwhile to study the minimum entropy interpretation of H∞ controllers (see sec-
tion 15.4).

We noted after theorem (13.3), the importance of guaranteeing that the solution
of the algebraic Riccati equation is positive semi-definite. To see the consequence of
dropping this requirement one should have a look at the work of Stoorvogel [187]

In solving the Riccati equation, a crucial step was the determination of the C−-
stable subspace. It should be noted that for this we do not need to compute the
eigenvectors or more general the Jordan form of the Hamiltonian matrix as done in
Potter [150]. We get much better numerical properties if we use the ordered Schur
decomposition (see Stewart [182]). For details we refer to Laub [108]. An alternative,
more recent, approach to solve the Riccati equation is the so-called sign method. This
method is especially better suited for parallel algorithms. We refer to Roberts [154]
and Byers [26]. For solving Riccati equations we also mention more recent work by
Kenney, Laub and Wette [98] and Laub and Gahinet [109].



Chapter 14

The H∞ control problem with

measurement feedback

14.1 Introduction

In the previous chapter we have studied the H∞ control problem under the assump-
tion that the entire state vector is available for feedback. In this chapter we will
study the H∞ control problem with measurement feedback. Instead of the entire state
vector we assume that only a (noisy) measurement is available. The technique we
will use is very similar to that of section 11.3. That is, we will apply two system
transformations to obtain a system for which the disturbance decoupling problem is
solvable. Moreover, a controller internally stabilizes this new system and yields an
H∞ norm less than γ if and only if this controller is internally stabilizing and yields
an H∞ norm less than γ when applied to the original system. Note that the transfor-
mation does not preserve the H∞ norm but does preserve the property that the norm
is smaller than γ . One specific suitable controller is then determined by solving this
disturbance decoupling problem. Subsequently, we will parameterize all suboptimal
solutions.

Under some assumptions, the necessary and sufficient conditions for the existence
of internally stabilizing controllers which make the H∞ norm of the closed-loop sys-
tem less than some, a priori given, bound γ are the following: two Riccati equations
should have certain positive semi-definite solutions and the product of these two ma-
trices should have spectral radius less than γ 2. One of these equations is equal to the
Riccati equation from chapter 13. Hence this Riccati equation is related to the state
feedback H∞ control problem. The second Riccati equation is dual to the first and is
related to the problem of state estimation. The final condition that the product of the
solutions of these Riccati equations should have spectral radius less than γ 2 is at this
moment hard to explain intuitively. It is a kind of coupling condition which expresses
whether state estimation and state feedback combined in some suitable manner yield
the desired result: an internally stabilizing feedback which makes the H∞ norm less
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than γ . The appearance of the coupling condition is related to an intrinsic difference
with the H2 optimal control problem. The optimal state feedback and the optimal
estimator are coupled: if we use a different cost function, then we will obtain a dif-
ferent estimator. In the H2 optimal control problem the estimator does not depend on
the cost functional.

14.2 Problem formulation and main results

We consider the linear, time-invariant, finite-dimensional system:

� :

ẋ = Ax + Bu + Ed,

y = C1x + D1d,

z = C2x + D2u,
(14.1)

where x ∈ R
n is the state, u ∈ R

m is the control input, d ∈ R
ℓ is the unknown

disturbance, y ∈ R p is the measured output and z ∈ Rq is the output to be controlled.
A, B, E, C1, C2, D1, and D2 are matrices of appropriate dimensions. We assume
that two direct-feedthrough matrices are zero. The direct feedthrough matrix from d

to z is no problem and can be handled using the techniques presented in this chapter.
It does, however, yield rather messy formulas. Including a direct feedthrough matrix
from u to y does not change much. After all u is known and by adding something
known to the measurement, the information supplied by the measurement does not
change. However, a subtle problem of well-posedness can occur (see section 3.13).

As in the previous chapter we would like to minimize the effect of the disturb-
ance d on the output z by finding an appropriate control input u. This time, however,
the measured output y is not necessarily x but a more general linear function of the
state and the disturbance. The controller has less information and hence the neces-
sary conditions for the existence of internally stabilizing controllers which make the
H∞ norm of the closed-loop system less than some given bound will be stronger. It
turns out that we need an extra algebraic Riccati equation which tests how well we
can observe the state.

More precisely, we seek a dynamic controller Ŵ described by:

Ŵ :
ẇ = Kw + Ly,

u = Mw + Ny.
(14.2)

such that, after applying the feedback Ŵ to the system (14.1), the resulting closed-
loop system is internally stable and has H∞ norm strictly less than some a priori
given bound γ . We shall derive necessary and sufficient conditions under which such
a controller exists.

Recall that ρ(M) denote the spectral radius of a matrix M (see section 2.5). We
willl now formulate the main result of this chapter.

Theorem 14.1 Consider the system (14.1). Assume that (A, B, C 2, D2) and (A, E,

C1, D1) have no zeros on the imaginary axis. Moreover, assume that D1 is surjective

and D2 is injective. Then the following two statements are equivalent:
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(i) For the system (14.1) a time-invariant, dynamic controller Ŵ of the form (14.2)

exists such that the resulting closed-loop system, with transfer matrix G F , is

internally stable and has H∞ norm less than γ , i.e. ‖G F‖∞ < γ .

(ii) There exist positive semi-definite real symmetric solutions P and Q of the al-

gebraic Riccati equations

AT P + P A + C T

2C2 + γ−2 P E E T P

−
(

P B + C T

2 D2
) (

DT

2 D2
)−1 (

BT P + DT

2C2
)

= 0, (14.3)

and

AQ + Q AT + E E T + γ−2 QCT

2C2 Q

−
(

QCT

1 + E DT

1

) (

D1 DT

1

)−1 (

C1 Q + D1 E T
)

= 0, (14.4)

respectively, such that ρ(P Q) < γ 2 amd such that the following two matrices

are stability matrices:

A + γ−2 E E T P − B
(

DT

2 D2
)−1 (

BT P + DT

2C2
)

, (14.5)

A + γ−2 QCT

2C2 −
(

QCT

1 + E DT

1

) (

D1 DT

1

)−1
C1. (14.6)

If P and Q satisfying the conditions in part (ii) exist, then a controller satisfying

part (i) is given by:

Ŵ :
˙̂x = Ax̂ + Bu + Ed̂worst + L(y − C1 x̂ − D1d̂worst),

u = Fx̂,

where d̂worst = γ−2 E T Px̂ and

F : = −
(

DT

2 D2
)−1 (

DT

2C2 + BT P
)

,

L : = (I − γ−2 Q P)−1(E DT

1 + QCT

1)(D1 DT

1)
−1.

Remarks :

• Note that the conditions on P in part (ii) of theorem 13.3 are exactly the same
as the conditions on P in part (ii) of the above theorem. Hence the conditions
on P are related to the state feedback H∞ control problem. The conditions on
Q are exactly dual to the conditions on P. It can be shown that the existence
of Q is related to the question how well we are able to estimate the state x on
the basis of our observations y. The test whether we are able to estimate and
control simultaneously with the desired effect, is expressed by the coupling
condition ρ(P Q) < γ 2.
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• We will prove this theorem only for the case γ = 1. The general result can then
be easily obtained by scaling. This scaling implies that we define a modified
system by replacing E and D1 by E/γ and D1/γ respectively.

Suppose that we have a controller which make the H∞ norm less than γ for
the original system, then it is easy to check that the same controller makes the
H∞ norm for this modified system less than 1 and conversely. If for this mod-
ified system there exists solutions P and Q of the algebraic Riccati equations
defined in theorem 14.1 for γ = 1 then we see that for the original system the
conditions of theorem 14.1 are satisfied by P and γ 2 Q.

• In the state feedback problem we can consider the following optimization pro-
blem:

sup
w∈L2

inf
u∈L2

{ ‖z‖2
2 − γ 2‖w‖2

2 | x ∈ L2 , x(0) = ξ } (14.7)

and we would find that the solution of this optimization problem is given by
u = Fx and d = γ −2 ET Px . This d makes the above criterion as large as
possible while we, as controller, want to minimize this criterion. Therefore
this d can be considered the worst possible disturbance and hence sometimes
denotes by dworst.

Note that in the last chapter we did not really look at the optimization problem
(14.7) but finite horizon versions. But the above interpretation of d worst is useful
in understanding the structure of the controller we describe in theorem 14.1.

• Note the special structure for the controller as a state observer (see section
3.11) interconnected with a state feedback. The state feedback is equal to the
one given in theorem 13.3 for the state feedback case. The differences with a
standard state observer interconnected with a state feedback are the terms with
d̂worst. In an observer, if we have known inputs, then we would add them in the
way we have added d̂worst above. But we do not know whether d equals d̂worst.
The measurements do not give us information what d is actually going to be.
But, from the above comment, we know that in a certain sense the worst d that
can occur is d = γ −2 ET Px . H∞ control is a kind of worst case analysis and
hence we expect d to be equal to γ −2 ET Px . However, since we do not know
x we replace x by our estimate x̂ . We will of course prove formally that this
controller has the required properties.

• Note that the controller converges to the H2 optimal controller derived in sec-
tion 11.3 as γ → ∞. However, there is a major difference between H 2 and
H∞ . In H∞ control, the observer depends explicitly on the control problem.
For instance, the observer depends on the matrices C 2 and D2 which determine
the cost criterion. In H2 control the observer, often called the Kalman filter
(see exercise 11.3), is completely independent of the control problem so, in
particular, independent of the matrices C2 and D2. A classical way to solve
the H2 control problem is to use the separation principle, which states that we
can design a controller and an observer independently. This no longer holds
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for the H∞ control problem. The technique we used in this book to solve the
H2 control problem with measurement feedback was not based on the separa-
tion principle, and can be adapted to yield a solution of the H∞ control problem
with measurement feedback.

14.3 Inner systems and Redheffer’s lemma

In this section we present some preliminary results and definitions needed in the proof
of theorem 14.1.

Consider a system � = (A, B, C, D) with input–output operator G (i.e. the map
which associates to every input d an output z, given zero initial state). � is called
inner if the system is internally stable and the input-output operator G is unitary, i.e.
G maps Lm

2 into itself and G has the property that for all f ∈ L m
2 we have

‖G f ‖2 = ‖ f ‖2.

Often, inner is defined as a property of the transfer matrix, but in our setting the above
is a more natural definition. It can be shown that G is unitary if and only if the transfer
matrix of the system, denoted by G, satisfies:

GT(−s)G(s) = I. (14.8)

A transfer matrix G satisfying (14.8) is called unitary. Note that if G is unitary then
G need not be C− stable. If the transfer matrix is unitary and stable we call it inner
(if the transfer matrix is unitary but not necessarily stable then we call it all-pass). In
general, for an operator from L m

2 to L
p

2 , in the literature two concepts, inner and co-
inner are defined. A system � = (A, B, C, D) is called co-inner if the dual system
�T = (AT, CT, BT, DT) is inner. In other words, the system is co-inner if it is stable
and its transfer matrix satisfies

G(s)GT(−s) = I.

Note that for square systems the concepts of inner and co-inner coincide. We now
formulate a lemma which yields a test to check whether a system is inner:

Lemma 14.2 Consider the system � described by:

� :
ẋ = Ax + Bu,

z = Cx + Du,
(14.9)

with A a stability matrix. The system � is inner if there exists a matrix X satisfying:

(i) AT X + X A + C TC = 0,

(ii) DTC + BT X = 0,
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(iii) DT D = I .

Remarks :

• If (A, B) is controllable the reverse of the above implication is also true. How-
ever, in general, the reverse does not hold. A simple counter example is given
by � : = (−1, 0, 1, 1), which is inner but for which (ii) does not hold for any
choice of X .

• Note that since A is a stability matrix, the (unique) matrix X satisfying part (i)
of lemma 14.2 is equal to the observability gramian of (C, A) (see section 3.8).
We know that X > 0 if and only if (C, A) is observable. In general we only
have X � 0.

Inner systems are very important in H∞ control. We will present a lemma which
is a main ingredient in our proof of theorem 14.1, and which makes use of inner
systems. However, we first need the following preliminary lemma.

Lemma 14.3 Let G be the input-output operator of a linear time-invariant system �.

We define:

M =
{

r ∈ L2 | Gr ∈ L2
}

(14.10)

If for all r ∈M we have ‖Qr‖2 � ‖r‖2, then M is a closed subset of L2 .

Proof : Assume we have r i ∈M such that ri → r̄ ∈ L2 as i →∞. We have to prove
that r̄ ∈ M. First note that since {ri } is a convergent sequence it must be bounded
in norm, i.e. ‖ri‖2 < α for some α > 0. Moreover, note that G can also be viewed
as a system from L2 [0, T ] to L2 [0, T ] with a finite norm ‖G‖∞,T (if the system is
unstable we will have ‖G‖∞,T →∞ as T →∞). We obtain:

∫ T

0
‖(Gr̄ )(t)‖2 dt =

∫ T

0
‖(Gri )(t)+ (G[r̄ − ri ])(t)‖

2 dt

�

∫ T

0
2‖(Gri )(t)‖

2 + 2‖(G[r̄ − ri ])(t)‖
2 dt

� 2‖Gri‖
2
2 + 2‖G‖2

∞,T

∫ T

0
‖[r̄ − ri ](t)‖

2 dt

� 2α2 + 2‖G‖2
∞,T‖r̄ − ri‖

2
2

→ 2α2

as i → ∞. Since α does not depend on T , this clearly implies that Gr̄ ∈ L 2 and
hence r̄ ∈ M.

We now give a result which shows the importance of inner systems in H∞ control.
It is often referred to as “Redheffer’s lemma”.
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Lemma 14.4 Consider the linear time-invariant systems � and � . Suppose � has

inputs w and u and outputs z and y, while � has input y and output u. Consider the

interconnection depicted in the diagram in Figure 14.1. Assume that � is inner and

�

�
❄

✛

✻

✛

y

z d

u

Figure 14.1

its input-output operator G has the following decomposition:

G

(

d

u

)

=:

(

G11 G12
G21 G22

)(

d

u

)

=

(

z

y

)

, (14.11)

which is compatible with the sizes of d, u, z and y, such that the G21 is invertible and

G−1
21 has a finite L2 -induced operator norm.

Under the above assumptions the following two statements are equivalent:

(i) The interconnection in Figure 14.1 is internally stable and its closed-loop tran-

sfer matrix has H∞ norm less than 1.

(ii) The system � is internally stable and its transfer matrix has H∞ norm less than

1.

Proof : Suppose part (ii) is satisfied. As ‖�‖∞ < 1 and ‖G22‖∞ � ‖G‖∞ = 1
an application of the small gain theorem implies that (I − G22�)−1 exists and has a
finite L2 induced operator norm. This implies internal stability of the interconnection
(14.1) since both G and � are stable (see section 12.3). Since G is inner, we have

‖d‖2
2 + ‖u‖

2
2 = ‖z‖

2
2 + ‖y‖2

2

Combined with ‖�‖∞ < 1, this yields:

‖z‖2
2 − ‖d‖

2
2 = ‖u‖

2
2 − ‖y‖2

2 � −ε‖y‖2
2 � −

ε

β
‖d‖2

2 (14.12)

for some ε > 0, where β is the L 2 -induced operator norm of G−1
21 (I − G22�) which

is finite since by assumption G−1
21 has a finite L2 -induced operator norm. Formula

(14.12) guarantees that the closed loop system has H∞ norm strictly less than 1.

Conversely, assume part (i) is satisfied. Define the set M by (14.10). For any
y ∈M we have u = �y ∈ L2 and:

d = G−1
21 y − G−1

21 G22u ∈ L2
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since G−1
21 has a finite L2 -induced operator norm. But then:

‖u‖2
2 − ‖y‖2

2 = ‖z‖
2
2 − ‖d‖

2
� −ε‖d‖2

2 � −
ε

β
‖y‖2

2

for some ε > 0, where β is the L 2 -induced operator norm of the closed loop system
mapping d to y which must be finite since the interconnected system is internally
stable. Hence we get that

sup
y∈M,y 	=0

‖�y‖2

‖y‖2
< 1. (14.13)

Then, by lemma 14.3, we know that M is a closed subspace of L 2 . Suppose M is not
equal to the whole of L 2 . Then there must be a signal 0 	= w ∈M⊥ ⊂ L2 . Since the
closed loop system is stable we know that �(I − G22�)−1 and (I − G22�)−1 must
both be stable. But then r = (I − G22�)−1w ∈ M. We get:

‖G22�r‖2
2 = ‖r −w‖2

2 = ‖r‖
2
2 + ‖w‖

2
2 � ‖r‖2

2 (14.14)

The second equality follows from the fact that r ∈ M and w ∈ M⊥. But we know
that r ∈ M guarantees that ‖�r‖2 < ‖r‖ and we also know that ‖G22‖∞ � 1 which
together contradict (14.14). Hence M = L 2 , which guarantees that � is stable, while
(14.13) guarantees that ‖�‖∞ < 1.

14.4 Proof of theorem 14.1

In this section theorem 14.1 will be proven. We will show that the problem of finding
a suitable controller Ŵ for the system (14.1) is equivalent to finding a suitable con-
troller Ŵ for a new system which has some very nice structural properties. We can
show that for this new system the disturbance decoupling problem with measurement
feedback and stability is solvable (see lemma 11.13). Clearly, this implies that we can
find for this new system, and hence also for our original system, a suitable controller.
We recall that in the remainder of this chapter it is assumed that γ = 1.

Lemma 14.5 Assume that the systems (A, B, C2, D2) and (A, E, C1, D1) have no

zeros on the imaginary axis and assume that D1 and D2 are surjective and injective,

respectively. If a controller Ŵ exists such that the resulting closed-loop system is

internally stable and has H∞ norm less than 1, then the following two conditions are

satisfied:

(i) There exists a real symmetric solution P � 0 of the algebraic Riccati equation

(14.3) such that (14.5) is a stability matrix (with γ = 1).

(ii) There exists a symmetric solution Q � 0 of the algebraic Riccati equation

(14.4) such that (14.6) is a stability matrix (with γ = 1).
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Proof : Since there exists an internally stabilizing feedback controller that makes the
H∞ norm of the closed-loop system less than 1 for the problem with measurement
feedback, it is easy to check that part (i) of theorem 13.3 is satisfied. Note that we
need to do some work because part (i) requires the existence of a static state feedback
and we have a dynamic function of both the state and the disturbance. But checking
the proof of theorem 13.3, the existence of a matrix P satisfying the conditions in
part (i) of the above lemma is guaranteed when the expression (13.15) is bounded
and if we make the suboptimal choice of determining u on the basis of our dynamic
measurement feedback it is not hard to see that (13.15) is indeed bounded.

For a system Ŵ = (F, G, H, J ), as before we define the dual system Ŵ T as the
system with realization (F T, H T, GT, J T). It is not hard to see (using the frequency
domain interpretation of the H∞ norm) that the H∞ norm of a system is equal to the
H∞ norm of its dual system. Define the dual system of �:

�T :

ẋd = ATxd + CT
1ud + CT

2dd ,

yd = BTxd + DT
2dd ,

zd = ETxd + DT
1ud ,

and the dual of our controller Ŵ:

�T
F :

ẇd = K Twd + MT yd ,

ud = LTwd + N T yd .

It is easy to see that the dual system of � × Ŵ is equal to � T × ŴT. Therefore,
since Ŵ stabilizes � and yields a closed loop H∞ norm less than 1, we have that ŴT

stabilizes �T and yields the same closed loop H∞ norm, less than 1. But then the
state feedback H∞ control problem for � T is also solvable and by applying theorem
13.3 (the required assumptions are satisfied since (A T, CT

1, ET, DT
1) has no zeros on

the imaginary axis and DT
1 is injective) we find that the Riccati equation related to � T

has a stabilizing real symmetric solution, say Q, with Q � 0. This solution turns out
to satisfy the conditions in part (ii) of our lemma.

Note that exercise 14.1 yields an alternative proof of part (ii) without resorting to
the concept of duality.

Assume that there exist matrices P and Q satisfying conditions (i) and (ii) in
lemma 14.5. In the previous chapter we have seen that:

‖z‖2
2 − ‖d‖

2
2 = ‖D2(u − Fx)‖2

2 − ‖d − E T Px‖2
2

where F = −(DT
2 D2)

−1(BT P + DT
2C2). We define z P = D2(u − Fx) and dP =

d− E T Px . Then from the above it is intuitively clear that if we find a controller from
y to u which makes the H∞ norm from d to z less than 1 then the same controller will
also make the H∞ norm from d P to z P equal to 1. This new system with disturbance
dP , input u, measurement y and to be controlled output z P has the following form:

�P :

ẋP = AP x P + Bu + EdP ,

y = C1,P x P + D1dP ,

z P = C2,P x P + D2u,
(14.15)
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where A P : = A + E E T P, C1,P : = C1 + D1 ET P and C2,P : = −D2 F .

We will prove that a controller Ŵ stabilizes � and yields a closed loop system
� × Ŵ with H∞ norm less than 1 if and only if the same controller stabilizes � P and
also yields a closed loop system �P×Ŵ with H∞ norm less than 1. Note that �P has
the property that the stabilizing state feedback u = Fx yields a closed loop system
with H∞ norm equal to 0, i.e. for � P the disturbance decoupling problem with state
feedback and internal stability is solvable. We first derive the following lemma:

Lemma 14.6 Assume that there exists a solution of the Riccati equation (14.3) such

that the matrix in (14.5) is a stability matrix. Moreover, assume that the system (A, B,

C2, D2) has no zeros on the imaginary axis. In that case, the systems (A P ,B ,C2,P ,

D2) and (A P , E, C1,P , D1) have no zeros on the imaginary axis either.

Proof : The system (A P , E , C1,P , D1) can be obtained from the system (A, E , C 1,
D1) by applying the preliminary feedback u = E T Px + v. Therefore, the zeros of
the two systems coincide. Hence the system (A P , E , C1,P , D1) has no zeros on the
imaginary axis.

Similarly, (A P , B, C2,P , D2) and (A P + B F, B, 0, D2) have the same zeros
since the second system can be obtained from the first via the preliminary feedback
u = Fx+v. Since A P+B F is equal to the matrix in (14.5) and hence asymptotically
stable, these systems are both minimum-phase and in particular have no zeros on the
imaginary axis.

We will now formally prove that a controller is suitable for � if and only if it is
suitable for �P . This result will be a consequence of “Redheffer’s lemma” (lemma
14.4).

Lemma 14.7 Let P satisfy the conditions (i) of lemma 14.5. Moreover, let an arbi-

trary dynamic controller Ŵ be given, described by (14.2). Consider the two systems

in Figure 14.2, where the system on the left is the interconnection of (14.1) and (14.2)

and the system on the right is the interconnection of (14.15) and (14.2). Then the

�

�F

❄

✛

✻

✛

y

z d

u

�P

�F

❄

✛

✻

✛

y

z P dP

u

Figure 14.2

following statements are equivalent:
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(i) The system on the left is internally stable and its transfer matrix from d to z

has H∞ norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix from d P to

z P has H∞ norm less than 1.

Proof : Define the system �U by

�U :

ẋU = ÃxU + B(DT
2 D2)

−1 DT
2z P + Ed,

dP = −ET PxU + d,

zU = C̃2xU + z P ,
(14.16)

where

Ã : = A − B(DT
2 D2)

−1(BT P + DT
2C2),

C̃2 : = C2 − D2(DT
2 D2)

−1(BT P + DT
2C2).

The system �U is inner. This is seen by noting that P satisfies the conditions of
lemma 14.2 for the system �U .

The input-output operator U of the system �U has the following decomposition:

U

(

d

z P

)

=:

(

U11 U12
U21 U22

)(

d

z P

)

=

(

zU

dP

)

, (14.17)

which is compatible with the sizes of d, z P , zU and dP . The input-output operator
U21 is associated to the system �U,21 = ( Ã, E,−E T P, I ) and, since Ã + E E T P is
equal to (14.5) and hence a stability matrix, the input-output operator U 21 is invertible
and U−1

21 has a finite L2 -induced operator norm.

Now compare the two systems in Figure 14.3 . The system on the left is the

�

�P
�F

�F

�U

❄

✛

✻

✛

❄

✛

✻

✛

❄
✻

y

z d

u

z = zU

y u

d

dP z P

Figure 14.3

same as the system on the left in Figure 14.2 on the facing page and the system on
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the right is described by the system (14.16) interconnected with the system on the
right in Figure 14.2. The system on the right in Figure 14.3 on the preceding page is
described by:





ẋU − ẋ P

ẋ P

ẇ



 =





Ã + E E T P 0 0
−(E + B N D1)ET P A + B NC1 B M

−L D1 ET P LC1 K









xU − x P

x P

w





+





0
E + B N D1

L D1



 d,

zU =
(

C̃2 − D2 N D1 ET P C2 + D2 NC1 D2 M
)





xU − x P

x P

w





+D2 N D1d.

If we also derive the system equations for the system on the left in Figure 14.3 on the
preceding page we get:

(

ẋP

ẇ

)

=

(

A + B NC1 B M

LC1 K

)(

x P

w

)

+

(

E + B N D1
L D1

)

d,

z =
(

C2 + D2 NC1 D2 M
)

(

x P

w

)

+ D2 N D1d.

We immediately see that, since Ã+E E T P is asymptotically stable, the two systems in
Figure 14.3 on the preceding page have the same transfer matrix and one is internally
stable if and only if the other one is internally stable. Hence the system on the left is
stable and has H∞ norm less than 1 if, and only if, the system on the right is stable
and has H∞ norm less than 1.

We can now apply lemma 14.4 to the system on the right in Figure 14.3 and hence
we find that the closed-loop system is internally stable and has H∞ norm less than 1
if, and only if, the dashed system is internally stable and has H∞ norm less than 1.

Since the dashed system is exactly the system on the right in Figure 14.2 and the
system on the left in Figure 14.3 is exactly equal to the system on the left in Figure
14.2 we have completed the proof.

We assumed that for the original system (14.1) there exists an internally stabi-
lizing controller such that the resulting closed-loop matrix has H∞ norm less than
1. Hence, by applying lemma 14.7, we know that the same controller is internally
stabilizing for the new system (14.15) and yields a closed-loop transfer matrix with
H∞ norm less than 1. Moreover we know by lemma 14.6 that Ŵ satisfies the assump-
tions on the invariant zeros needed to apply lemma 14.5. Therefore, if we consider
for this new system the two Riccati equations we know that there are positive semi-
definite, stabilizing solutions. We shall now formalize this in the following lemma.
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Consider the following Riccati equations:

AT
P X + X AP + CT

2,PC2,P + X E E T X

−
(

X B + CT

2,P D2
) (

DT

2 D2
)−1 (

BT X + DT

2C2,P

)

= 0, (14.18)

APY + Y AT
P + E ET + Y CT

2,PC2,PY

−
(

Y CT
1,P + E DT

1

) (

D1 DT
1

)−1 (

C1,PY + D1 ET
)

= 0, (14.19)

in the unknowns X and Y in Rn×n . In addition, for given X, Y consider the following
two matrices:

AP + E ET X − B(DT
2 D2)

−1(BT X + DT
2C2,P), (14.20)

AP + Y CT
2,PC2,P −

(

Y CT
1,P + E DT

1

) (

D1 DT
1

)−1
C1,P . (14.21)

Then we have:

Lemma 14.8 Let P and Q satisfy conditions (i) and (ii) in lemma 14.5. Then we

have the following two results:

(i) X = 0 is a solution of the algebraic Riccati equation (14.18) such that (14.20)

is stable.

(ii) The algebraic Riccati equation (14.19) has a real symmetric matrix Y such that

(14.21) is a stability matrix if and only if I−Q P is invertible. Moreover, in this

case there is a unique solution Y : = (I − Q P)−1 Q. This matrix Y is positive

semi-definite if and only if

ρ (P Q) < 1. (14.22)

Proof : Part (i) can be checked straightforwardly.

We know that Q is the stabilizing solution of the algebraic Riccati equation (14.4).
Using the results from section 13.4 we know therefore

Xold = im
(

I

Q

)

is the C−-stable subspace of the Hamiltonian matrix:

Hold =

(

AT − CT
1(D1 DT

1)
−1 D1 ET CT

2C2 − CT
1(D1 DT

1)
−1C1

−E
[

I − DT
1(D1 DT

1)
−1 D1

]

ET −A + E DT
1(D1 DT

1)
−1C1

)

.

Define a new Hamiltonian matrix by

Hnew =

(

I −P

0 I

)

Hold

(

I P

0 I

)

. (14.23)
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It is then easy to check that for Y to be a stabilizing solution of the algebraic Riccati
equation (14.19) requires that

Xnew = im
(

I

Y

)

is the C
−-stable subspace of the Hamiltonian matrix Hnew. However, (14.23) implies

that the C−-stable subspace of Hnew is equal to:

im
(

I −P

0 I

)(

I

Q

)

= im
(

I − P Q

Q

)

.

Therefore we know that a stabilizing solution to the algebraic Riccati equation (14.21)
exists if and only if I − P Q is invertible and in this case the solution is given by
Y = Q (I − P Q)−1. The requirement Y � 0 is satisfied if and only if ρ(P Q) < 1,
which can be checked by noting that:

Y = Q1/2
(

I − Q1/2 P Q1/2
)−1

Q1/2

and ρ(P Q) = ρ(Q1/2 P Q1/2). This completes the proof.

This completes the proof of the implication (i) ⇒ (ii) in theorem 14.1. The
existence of P � 0 and Q � 0 satisfying the algebraic Riccati equations (14.3)
and (14.4) such that the matrices (14.5) and (14.6) are stability matrices can be ob-
tained directly from lemma 14.5. We know by lemma 14.6 that the two subsystems
(AP , B, C2,P , D2) and (A P , E, C1,P , D1) have no zeros on the imaginary axis. We
also know by lemma 14.7 that a controller exists for the transformed system � P

which internally stabilizes the system and makes the H∞ norm of the closed-loop
system less than 1. By applying lemma 14.5 to this new system we find that a matrix
Y � 0 exists that satisfies the algebraic Riccati equation (14.19), such that (14.21)
is a stability matrix. Hence by lemma 14.8 we have (14.22) and therefore all the
conditions in theorem 14.1, part (ii) are satisfied.

We will now prove the reverse implication (ii) ⇒ (i) in theorem 14.1. Hence,
assume that matrices P and Q exist satisfying the conditions of part (ii) of theorem
14.1.

In order to prove the implication (ii)⇒ (i) we transform the system (14.15) once
again, this time however using the dualized version of the original transformation. In
other words, we define the dual system � T

P , apply the same transformation from �

to �P , but this time we transform � T
P into a new system which we call �T

P Q and
when we dualize �T

P Q we obtain our new system �P Q . The transformation from
� to �P depended on the solution of a Riccati equation which is determined by the
realization of �. This time we have to solve a similar Riccati equation for � T

P It
turns out this Riccati equation is equal to (14.19) and has, by lemma 14.8, a solution
Y = (I − Q P)−1 Q � 0.
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In the way described above, we obtain the following system:

�P Q :

ẋ P Q = AP Q x P Q + BP Qu + E P QdP Q,

y = C1,P x P Q + D1dP Q,

z P Q = C2,P x P Q + D2u,

(14.24)

where

AP Q : = AP + Y CT
2,PC2,P ,

BP Q : = B + Y CT
2,P D2,

E P Q : = (Y CT
1,P + E DT

1)(D1 DT
1)
−1 D1.

By applying lemma 14.7 and its dualized version, the following corollary can be
derived:

Corollary 14.9 Let Ŵ be a controller of the form (14.2). The following two state-

ments are equivalent:

(i) The controller Ŵ applied to the system � described by (14.1) is internally sta-

bilizing, and the resulting closed-loop transfer matrix has H∞ norm less than

1.

(ii) The controller Ŵ applied to the system �P Q described by (14.24) is internally

stabilizing, and the resulting closed-loop transfer matrix has H∞ norm less

than 1.

Remark : We note that, even if for this new system we can make the H∞ norm
arbitrarily small, for the original system we are only sure that the H∞ norm will be
less than 1. It is possible that a controller for the new system yields an H∞ norm of
say 0.0001 while the same controller makes the H∞ norm of the original plant only
0.9999.

We can apply the following controller to � P Q :

Ŵ :
˙̂x P Q = AP Q x̂ P Q + BP Qu + K (y − C1,P x̂ P Q),

u = Fx̂ P Q ,
(14.25)

where

K = (Y CT
1,P + E DT

1)(D1 DT
1)
−1,

F = −(DT
2 D2)

−1(DT
2C2 + BT P).

Note that

AP Q + BP Q F = (AP + B F)+ Y CT
2,P(C2,P + D2 F) = A + E E T P + B F,

AP Q − K C1,P = AP + Y CT
2,PC2,P − K C1,P ,
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which are equal to the matrices in (14.5) and (14.21) respectively and hence stability
matrices. It is then easy to check that the resulting closed loop system � P Q × Ŵ is
stable and achieves disturbance decoupling with measurement feedback and internal
stability (see section 11.3). Hence by applying corollary 14.9 we see that this con-
troller satisfies part (i) of theorem 14.1. This completes the implication (ii) ⇒ (i)
in theorem 14.1. Note that the controller (14.25) is equal to the controller given in
theorem 14.1.

14.5 Characterization of all suitable controllers

In this section we will parameterize all stabilizing controllers which achieve the re-
quired H∞ norm bound. We assume throughout this section that there exist matrices
P and Q satisfying the conditions of part (ii) of theorem 14.1.

Let � and �P Q be defined by (14.1) and (14.24) respectively. We define the
following system:

�̄P Q :

ẋ P Q = AP Q x P Q + BP Qu + Ē P Q d̄P Q ,

y = C1,P x P Q + (D1 DT
1)

1/2d̄P Q ,

z̄ P Q = C̄2,P x P Q + (DT
2 D2)

1/2u,
(14.26)

where

C̄2,P : = (DT
2 D2)

−1/2(BT P + DT
2C2),

Ē P Q : = (Y CT
1,P + E DT

1)(D1 DT
1)
−1/2.

We have �P Q = 
2�̄P Q
1 where


1 = (D1 DT
1)
−1/2 D1 and 
2 = D2(DT

2 D2)
−1/2.

Hence, it is straightforward that the class of stabilizing controllers for � P Q is equal
to the class of stabilizing controllers for �̄P Q . Moreover, for any interconnection
�P Q × Ŵ where Ŵ stabilizes �, we get a closed loop transfer matrix Q = 
2 X
1
where X is the stable closed loop transfer matrix of �̄P Q×Ŵ. The system �̄P Q turns
out to have a very special property:

Lemma 14.10 Let �̄P Q be given. For any internally stable system �x with transfer

matrix X there exists a controller which stabilizes �̄P Q and which yields a closed

loop transfer matrix equal to X.

Proof : Consider the following system.

�e :

ẋc = AP Q xc + BP Qu + K (y − C1,P xc),

dx = (D1 DT
1)
−1/2[y − C1,P xc],

u = (DT
2 D2)

−1/2[zx − C̄2,P xc].
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�e

�x

❄

✛

✻

✛

dx

u y

zx

Figure 14.4

We choose a controller Ŵ defined by the interconnection in Figure 14.4.

The interconnection of �e and �P Q is given by:

ẋc − ẋ P Q = (AP Q − K C1,P)(xc − x P Q)

ẋP Q = (AP + B F)x P Q + BP Q(DT
2 D2)

−1/2[zx − C̄2,P(xc − x P Q)]

+E P Q d̄P Q

dx = −(DT
1 D1)

−1/2C1,P (xc − x P Q)+ d̄P Q

z̄ P Q = C̄2,P (x P Q − xc)+ zx

Since AP Q−K C1,P and A P+B F are stability matrices, it is obvious that Ŵ stabilizes
�̄P Q and, for zero initial conditions, we have x c = X P Q , dx = d̄P Q and z̄ P Q = zx

and hence the closed loop transfer matrix is equal to X .

This yields the following parameterization of all stabilizing controllers which
yield an H∞ norm less than 1:

Lemma 14.11 A controller Ŵ stabilizes � and yields a closed loop system Ŵ × �

with H∞ norm strictly less than 1 if and only if Ŵ is equal to the interconnection in

Figure 14.4 for some stable system �x with H∞ norm strictly less than 1.

Proof : Let a controller Ŵ be given which stabilizes � such that the closed loop sys-
tem has H∞ norm strictly less than 1. Then according to corollary 14.9, Ŵ stabilizes
�P Q and yields a closed loop system with transfer matrix Q where ‖Q‖∞ < 1. We
then define a stable transfer matrix X by 
T

2 Q
T
1 which will have ‖X‖∞ < 1 and we

have Q = 
2 X
1 since im Q ⊂ im D2 and ker Q ⊃ ker D1. We then know from
the proof of lemma 14.10 that the interconnection (14.4), where � x is any internally
stable system with transfer matrix X , yields a controller Ŵ̄ which stabilizes �̄P Q and
yields a closed loop system X . But then it will also stabilize � P Q and attain a closed
loop system Q = 
2 X
1 with norm less than 1. Then corollary 14.9 guarantees that
Ŵ̄ stabilizes �.

Since we have seen that the two interconnections in Figure 14.3 on page 319
achieve the same closed loop transfer matrix, it should be noted that if two con-
trollers achieve the same closed loop transfer matrix when applied to � P then they
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also achieve the same closed loop transfer matrix when applied to �. Since the con-
nection between �P and �P Q is dual to the connection between � and � P , we
obtain that two controllers achieve the same closed loop transfer matrix when applied
to �P Q then they also achieve the same closed loop transfer matrix when applied to
�P . In conclusion, since we know that Ŵ and Ŵ̄ yield the same closed loop transfer
matrix when applied to �P Q , we have that Ŵ̄ yields the same closed loop transfer
matrix as Ŵ when applied to �. Partition the transfer matrix G of � into �:

G =

(

G11 G12
G21 G22

)

(14.27)

compatible with the partitioning of (d, u) and )(z, y). Let C and C̄ be the transfer
matrices associated to Ŵ and Ŵ̄ respectively. We have:

G11 + G12C(I − G22C)−1G21 = G11 + G12C̄(I − G22C̄)−1G21.

Since G21(∞) is surjective and G12(∞) is injective we get that the associated transfer
matrices are surjective and injective respectively. Hence:

C(I − G22C)−1 = C̄(I − G22C̄)−1,

which yields

(I − C̄G22)C = C̄(I − G22C).

Hence C = C̄ , which proves that Ŵ and Ŵ̄ are the same or, in other words, our con-
troller Ŵ is equal to the interconnection (14.4) for a stable system � x with H∞ norm
strictly less than 1.

Conversely, suppose a stable �x is given whose transfer matrix X has H∞ norm
less than 1. Define by Ŵ the controller given by the interconnection (14.4). Then
lemma 14.10 guarantees that Ŵ stabilizes �̄P Q and hence also stabilizes �P Q . More-
over the closed loop transfer matrix of the interconnection of � P Q and Ŵ is equal to

2 X
1 and has H∞ norm strictly less then 1. Corollary 14.9 then guarantees that Ŵ

stabilizes � and yields a closed loop system with H∞ norm strictly less than 1.

Note that the above theorem parameterizes the class of all suitable controllers Ŵ

by all stable systems with H∞ norm strictly less than 1. The controller we obtain for
�x equal to 0 is in a certain sense the center of the parameterization and is hence
often called the central controller. The controller given in theorem 14.1, turns out to
be equal to this central controller.

14.6 Exercises

14.1 The dualization argument used in the proof of lemma 14.5 is of course valid
but it is sometimes hard to get a good feeling for it. There is another derivation
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without using a dualization argument. We know d will be a worst-case dist-
urbance. From the point of view of observing the state, intuitively the worst d

could do is to guarantee that:

0 = C1x + D1d.

In other words:

d = −DT
1(D1 DT

1)
−1C1x + [I − DT

1(D1 DT
1)
−1 D1]

1/2v.

For that particular class of disturbances the closed loop system looks like:

ẋ =
(

A − E DT
1(D1 DT

1)
−1C1

)

x + E[I − DT
1(D1 DT

1)
−1 D1]

1/2v,

z = C2x ,

and is independent of the particular controller since y = 0. Since we assume
there exists a controller which makes the H∞ norm less than 1, there exists
δ < 1 such that:

∫ ∞

0
‖z(t)‖2 dt � δ

∫ ∞

0
‖d(t)‖2 dt

for all d ∈ L2 and zero initial state.

a. Show that the zeros of (A, E, C1, D1) are the eigenvalues of the matrix
A − E DT

1(D1 DT
1)
−1C1.

b. Show that we have:

‖d‖2
2 = ‖DT

1(D1 DT
1)
−1C1x‖2

2 + ‖[I − DT
1(D1 DT

1)
−1 D1]

1/2v‖2
2

c. Solve the following optimization problem (using techniques from section
12.6)

sup
v

∫ 0

−T

‖z(t)‖2 − ‖DT
1(D1 DT

1)
−1C1x(t)‖2

− ‖[I − DT
1(D1 DT

1)
−1 D1]

1/2v(t)‖2 dt .

where x(0) = ξ . In other words show that the Riccati differential equa-
tion:

Ẏ = Y A + ATY + Y E ETY + CT
2C2

−
(

CT
1 + Y E DT

1

) (

D1 DT
1

)−1 (

C1 + D1 ETY
)

,

with Y (0) = 0 has a solution Y on the interval [0, T ]. Show that the
optimal cost is equal to ξ TY (T )ξ and show that an optimal v is given by:

v(t) = [I − DT
1(D1 DT

1)
−1 D1]

1/2 ETY (t + T )x(t).
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d. Assume (A, E, C1, D1) has no zeros in the closed left half plane. Show
that

sup
v∈L2 (−∞,0]

∫ 0

−∞

‖z(t)‖2 − ‖DT
1(D1 DT

1)
−1C1x(t)‖2

− ‖[I − DT
1(D1 DT

1)
−1 D1]

1/2v(t)‖2 dt

is bounded for all initial conditions x(0) = ξ with optimal cost ξ TȲ ξ and
optimal controller

v = [I − DT
1(D1 DT

1)
−1 D1]

1/2ETȲ x

where Ȳ = limt→∞ Y (t).

e. Assume (A, E, C1, D1) has no zeros in the closed left half plane. Show
that Ȳ satisfies the algebraic Riccati equation

0 = Ȳ A + ATȲ + Ȳ E ETȲ + CT
2C2

−
(

CT
1 + Ȳ E DT

1

) (

D1 DT
1

)−1 (

C1 + D1 ETȲ
)

,

and is such that the matrix:

A − E DT
1(D1 DT

1)
−1C1 + E[I − DT

1(D1 DT
1)
−1 D1]

1/2 ETȲ

is antistable, i.e. all its eigenvalues are in the open right half plane C+.

f. Assume the antistabilizing solution of the algebraic Riccati equation in
part (e) is invertible. Show that the inverse satisfies the algebraic Riccati
equation (14.4) and is such that the matrix (14.6) is stable. Show that
if (A, E, C1, D1) has no zeros in the closed right half plane then this
invertibility assumption is satisfied. Note: to really get the existence of
a stabilizing solution of the algebraic Riccati equation (14.4) we need to
remove the assumption that (A, E, C1, D1) has no zeros in the close left
half plane from part (d). But then the finite horizon problem does not
converge to the infinite horizon problem unless we use endpoint penalties
as we did in chapter 13.

14.7 Notes and references

The first solution to the measurement feedback H∞ control problem was based on
frequency domain techniques. see e.g. Francis [46]. These methods are based on
different types of factorizations of rational matrices (inner-outer factorization, spec-
tral factorization, etc.). These methods had difficulty with the order of the controller
which could be much higher than the order of the plant.

The state space theory first presented in Doyle, Glover, Khargonekar and Fran-
cis [41] and independently in Tadmor [193] was the first solution that yielded solu-
tions of the same dynamic order as the plant. Our presentation was strongly influ-
enced by the results from Stoorvogel [184]. We made some basic assumptions in this
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chapter: no invariant zeros on the imaginary axis and direct feedthough matrices that
should have full rank. The case when these assumptions are not satisfied is referred
to as the singular case and will be discussed in the next chapter. The addition of di-
rect feedthrough matrices from u to y or from w to z, can be approached using the
techniques presented in Safonov, Limebeer and Chiang [160]. The general results in
this case (regular but all direct feedthrough matrices present) can be found in Glover
and Doyle [62].

In the last few years this frequency domain approach has been refined via the in-
troduction of the so-called J -spectral factorization (see e.g. Green, Glover, Limebeer
and Doyle [65]). At the moment this is quite an elegant theory and does not suffer any
longer from the drawbacks of high-order controllers that were present in the original
frequency domain methods. Another recent development is to solve the H∞ control
problem via linear matrix inequalities (LMI). See, for instance, Gahinet [53] and
Iwasaki and Skelton [88]. Other techniques to solve H∞ are based on interpolation
methods, Limebeer and Anderson [110] and Zames and Francis [231] and polynomial
methods, see Kwakernaak [103, 104].

In this chapter we prove the existence of solutions of the second Riccati equation
and the existence of a suitable observer via duality. A beautiful interpretation of this
second (observer) Riccati equation is presented in Khargonekar [100] by connecting
it to the behavior of the zero dynamics, i.e. the behavior of the system under the
constraint y = 0.

The theory of H∞ has been extended to infinite dimensional systems. See, for
instance, van Keulen [205] and the special issue [34]. Extensions to time-varying
systems also exist. See for instance Limebeer, Anderson, Khargonekar, and Green
[111] and Ravi, Nagpal and Khargonekar [152].

The discrete-time version of H∞ has also been studied in detail. See for instance
Iglesias and Glover [84], Stoorvogel [184] and Stoorvogel, Saberi and Chen [188].
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Chapter 15

Some applications of the

H∞ control problem

15.1 Introduction

In chapter 12, we formulated a number of problems related to robust stabilization
with additive, multiplicative or coprime factor model uncertainty. In this chapter,
we would like to revisit these problems and see how the theory of the previous two
chapter can give us additional insight.

We also like to consider in some detail what to do if some of the basic assump-
tions in H∞ are not satisfied. These so-called singular problems are quite difficult
but by presenting some ad-hoc techniques we hope to provide the reader with some
additional insight for the difficulty of these problems.

Minimum entropy is an interpretation of the so-called central controller. It is
useful to study this interpretation because it yields additional insight in the relation
between H∞ and H2 .

Finally, for those people who are familiar with classical control, we present a
design example that might help to clarify the relations between classical control and
H∞ .

15.2 Robustness problems and the H∞ control problem

In section 12.4 we discussed stabilization of uncertain systems. In the present section
we will apply the results of the previous two chapters to the three different types of
uncertainty described in that section:

• Additive perturbations

• Multiplicative perturbations
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• Coprime factor perturbations.

From section 12.4 we know how to reduce each of these problems to an H∞ control
problem. In this section we will apply the results from the previous chapters and
show the additional insight that can be obtained from these results.

15.2.1 Additive perturbations

In this section we study the problem as posed in subsection 12.4.1. Assume that we
have a system �, being an imperfect model of a certain plant. We assume that the
error is additive, i.e. we assume that the plant is exactly described by the interconnec-
tion in Figure 15.1. Here, � is some arbitrary system such that � and � + � have

�

�

✲ ✲ ✲ ✲

✻

✲ ✲

❄

u y
◦

+

Figure 15.1

the same number of unstable poles. Thus we assume that the plant is described by
the system � interconnected as in Figure 12.5 with another system �. The system
� represents the uncertainty and is hence, by definition, unknown. In this subsection
we derive conditions under which a controller Ŵ of the form

Ŵ :
ẇ = Kw + Ly,

u = Mw + Ny.
(15.1)

exists such that the interconnection in figure 15.1 is stabilized by this controller for all
systems � that do not change the number of unstable poles and that have L ∞ norm
less than or equal to some, a priori given, positive number γ . We quote the following
result from subsection 12.4.1:

Lemma 15.1 Consider the system � = (A, B, C, D). Assume � is stabilizable and

detectable. Let γ > 0. Define a new system

�na :

ẋ = Ax + Bu,

y = Cx + Du + d,

z = u.

(15.2)

Let a controller Ŵ of the form (15.1) be given. The following conditions are equiva-

lent:
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(i) The controller Ŵ from y to u applied to the interconnection in figure 12.5, yields

a well-posed and internally stable closed loop system for every system � such

that

(a) � has L∞ norm less than or equal to γ .

(b) � and � + � have the same number of unstable poles, counting multi-

plicities.

(ii) Ŵ internally stabilizes �na , and the closed loop system has H∞ norm less than

γ−1.

We would like to apply the results from the previous chapter but the system � na

is not of the form (14.1). It has an additional direct feedthrough matrix from d to
y. That matrix however, does not play an essential role in the design of a suitable
controller. Define the following system:

�̄na :

ẋ = Ax + Bu,

y = Cx + d,

z = u.

(15.3)

Suppose a controller

Ŵ̄ :
ẇ = K̄w + L̄ y,

u = M̄w + N̄ y,
(15.4)

is given which internally stabilizes �̄na . Let Gcl be the closed loop transfer matrix
Gcl of �̄na × Ŵ̄. Then the controller

Ŵ :
ẇ = K̄w + L̄(y − Du),

u = M̄w + N̄(y − Du).
(15.5)

internally stabilizes �na and yields the same closed loop transfer matrix G cl under
the condition that I + N̄ D is nonsingular since otherwise we cannot solve the sec-
ond equation of (15.5) to find u. Conversely, suppose Ŵ given by (15.1) internally
stabilizes �na , and achieves a closed loop transfer matrix G cl . Then the controller

Ŵ̄ :
ẇ = Kw + L(y + Du),

u = Mw + N(y + Du).
(15.6)

stabilizes �̄na and yields the same closed loop transfer matrix G cl again assuming
that I − N D is nonsingular, since otherwise we can not solve the second equation of
(15.6) to find u.

The problem arising in the above is the problem of well-posedness of a feedback
interconnection as discussed in section 3.13. In our case, we have a strictly proper
controller such as the one presented in theorem 14.1 and therefore the interconnection
is always is always well posed.

Given the above arguments, we can apply the results from the previous chapter to
the system �̄na . In order to satisfy the assumptions of theorem 14.1 we impose that
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A no eigenvalues on the imaginary axis. Then theorem 14.1 states that an internally
stabilizing controller for the system �na exists which yields an H∞ norm less than γ

if and only if there exist positive semi-definite real symmetric solutions of the Riccati
equations

AT P + P A − P B B T P = 0, (15.7)

AQ + Q AT − QCTC Q = 0, (15.8)

such that ρ(P Q) < γ 2 and such that the matrices A − B B T P and A + QC TC are
stability matrices. Note that P and Q do not depend on γ . Moreover, the results
from chapter 10 guarantee the existence real symmetric solutions P and Q of (15.7)
and (15.8) such that A − B B T P and A + QC TC are stability matrices. We see that
a stabilizing controller for �na exists with a closed loop norm strictly less than γ if
and only if γ is larger than ρ(P Q)1/2.

We thus find the following theorem:

Theorem 15.2 Assume that � = (A, B, C, D) is stabilizable and detectable. As-

sume that A has no eigenvalues on the imaginary axis. We define the related system

�na by (15.2) and let γ > 0. The following conditions are equivalent:

(i) There exists a controller Ŵ from y to u of the form (15.1) such that, when

applied to the interconnection (15.1), the closed-loop system is well posed and

internally stable for all systems � for which

(a) � has L∞ norm less than or equal to γ ,

(b) � and � +� have the same number of unstable poles.

(ii) We have ρ(P Q) < γ −2, where P and Q are the solutions of the algebraic

Riccati equations (15.7) and (15.8) for which A − B B T P and A + QC TC are

stability matrices..

Moreover, if P and Q satisfy part (ii), a controller satisfying part (i) is described by:

˙̂x = Ax̂ + Bu + L(y − Cx̂ − Du),

u = −BT Px̂,

where L : = (I − γ 2 Q P)−1 QCT.

Remarks:

• Naturally the class of perturbations we have chosen is rather artificial. How-
ever, it is easy to show that, if we allow for perturbations which additional
unstable poles, then there are arbitrarily small perturbations which destabilize
the closed-loop system. On the other hand, our class of perturbations does
include all stable systems � with H∞ norm less than or equal to γ .
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• We want to find a controller satisfying part (i) for a γ which is as large as
possible. Note that part (ii) shows that, in fact, for every γ smaller than the
bound [ρ(P Q)]−1/2 we can find a controller satisfying part (i). Actually there
exists a controller which makes the H∞ norm equal to [ρ(P Q)]−1/2 which is
clearly the best we can do.

• It can be shown that the bound [ρ(P Q)]−1/2 depends only on the unstable
dynamics of �. Hence we could assume a priori that A has only eigenvalues in
the open right half complex plane (we still have to exclude eigenvalues on the
imaginary axis). In that case it can be shown that P and Q are the inverses of
X and Y , respectively, where X and Y are the unique positive definite solutions
of the following two Liapunov equations:

AX + X AT = B BT,

ATY + Y A = CTC.

Recall that X and Y are referred to as the controllability and observability
gramian respectively (see section 3.8).

15.2.2 Multiplicative perturbations

In this subsection we study the problem as posed in subsection 12.4.2.

We assume that, once again, we have a system � being an imperfect model of a
certain plant. This time, we study multiplicative uncertainty, i.e. we assume that the
plant is exactly described by the interconnection in Figure 15.2.
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Here, � is some arbitrary system describing the uncertainty such that the intercon-
nection in figure 15.2 has the same number of unstable poles (counting multiplicities)
as �. In subsection 12.4.2, we have derived the following result

Lemma 15.3 Assume that � = (A, B, C, D) is stabilizable and detectable. Define

a new system:

�nm :

ẋ = Ax + Bu + Bd,

y = Cx + Du + Dd,

z = u.

(15.9)
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Let a controller Ŵ of the form (15.1) be given. The following conditions are

equivalent:

(i) The controller Ŵ from y to u applied to the interconnection in figure 15.2, yields

a well-posed and internally stable closed loop system for every system � such

that

(a) � has L∞ norm less than or equal to γ ,

(b) The interconnection (15.2) has the same number of unstable poles as �.

(ii) Ŵ internally stabilizes �nm and the closed loop system has H∞ norm less than

γ−1.

Thus, we find that our original problem formulation is equivalent to the problem
of finding an internally stabilizing controller for �nm which makes the H∞ norm
of the closed-loop system less than γ −1. We would like to apply the results of the
previous chapter to this problem. Note that, as in the previous subsection, we have a
direct feedthrough matrix from u to y. The latter was not treated in chapter 14 but we
have seen in the previous subsection that we can design a controller for the auxiliary
system:

�̄nm :

ẋ = Ax + Bu + Bd,

y = Cx + Dd,

z = u,
(15.10)

and via a simple transformation, find a controller for the original system � nm . In
order to satisfy the assumptions of theorem 14.1 we require that (A, B, C, D) has no
zeros on the imaginary axis, that A has no poles on the imaginary axis and that D is
surjective.

The results of chapter 10 tell us that algebraic Riccati equations

AT Pm + Pm A − Pm B BT Pm = 0, (15.11)

and

AQm + Qm AT + B BT − (QmCT + B DT)(DDT)−1(C Qm + DBT) = 0, (15.12)

have a real symmetric solution Pm and Qm for which the matrices A − B B T Pm and
A − (QmCT + B DT)(DDT)−1C are stability matrices. By applying theorem 14.1 to
the system �̄nm , we find the following theorem:

Theorem 15.4 Let � = (A, B, C, D) be stabilizable and detectable. Let γ > 0.

Assume that A has no eigenvalues on the imaginary axis, D is surjective, and (A, B,

C, D) has no zeros on the imaginary axis. Under these assumptions the following

conditions are equivalent:

(i) A controller Ŵ from y to u of the form (15.1) exists which, when applied to

the interconnection (15.2), yields a closed-loop system that is well posed and

internally stable for all systems � such that:
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(a) � has L∞ norm less than or equal to γ .

(b) The interconnection (15.2) and � have the same number of unstable

poles.

(ii) Either A is a stability matrix or 1+ ρ(Pm Qm) < γ−2.

If part (ii) is satisfied then a controller satisfying the conditions of part (i) is given by

u = 0 if A is stable, and otherwise by:

˙̂x = (A − B B T Pm)x̂ + L(y − Cx̂ + DBT Pm x̂)

u = (γ 2 − 1)−1 BT Pm x̂

where

L : =

(

I −
γ 2 Qm Pm

1− γ 2

)−1

(B DT + QmCT)(DDT)−1.

Proof : We apply theorem 14.1 to the system �̄nm and we have to investigate four
cases:

• A is stable: the matrices P : = 0 and Q : = Qm satisfy condition (ii) of theorem
14.1.

• A is not stable and γ < 1: we define

P : =
Pm

1− γ 2
, Q : = Qm (15.13)

Then it is straightforward to check that P and Q are the unique matrices sat-
isfying all requirements of condition (ii) of theorem 14.1 for � nm except for
possibly the condition on the spectral radius of P Q. Moreover, Pm and Qm

satisfy 1 + ρ(Pm Qm) < γ−2 if, and only if, P and Q satisfy the requirement
ρ(P Q) < γ−2 (note that we have to replace γ by γ −1).

• A is not stable and γ = 1: the stability requirement for P reduces to the
requirement that A is stable which, by assumption, is not true.

• A is not stable and γ > 1: the matrices P and Q given by (15.13) are the
stabilizing solutions of the two Riccati equations of part (iii) of theorem 14.1.
We have seen in section 13.4 that the stabilizing solution is unique. However,
the matrix P is not positive semi-definite. Therefore the conditions of part (ii)
of theorem 14.1 are not satisfied.

Therefore theorem 14.1 guarantees that a suitable controller exists for �̄nm if and
only if the conditions of part (ii) of theorem 15.4 are satisfied. But the existence of a
suitable controller for �nm is equivalent to the existence of a suitable controller for
�̄nm as argued in the previous subsection.
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Finally we need to show that the given controller has the required properties. This
is done by showing that the controller given by theorem 14.1 for �̄nm yields the same
closed loop system as the controller of theorem 15.4 when applied to � nm .

Remarks:

• Our class of perturbations is rather artificial but it includes all stable systems �

with H∞ norm less than or equal to γ .

• As for additive perturbations, we have an explicit bound for the allowable size
of perturbations: part (ii) shows that for every γ smaller than the bound [1 +
ρ(Pm Qm)]−1/2 we can find a controller satisfying part (i).

• For additive perturbations it was shown that the upper bound given by

[ρ(Pa Qa)]
−1/2

depends only on the antistable part of �. It should be noted that this is not

true for the bound [1 + ρ(Pm Qm)]−1/2 which we obtained for multiplicative
perturbations.

15.2.3 Coprime factor perturbations

In this subsection we study the problem as posed in subsection 12.4.3.

N

�N

M−1

�M

✲

✲

❄✲ ❄✲✲ ✲

Figure 15.3

We assume that we have a system � being an imperfect model of a certain plant.
This time we first construct a normalized coprime factorization for � using lemma
12.14. We then assume that the plant is exactly described by the interconnection
in figure 15.3. Here � : = (cc�N �M ) is some arbitrary system describing the
uncertainty. Since the essential feature of coprime factors is that they are chosen
stable it is natural to require � to be stable. In this subsection we will require that
the system � has a strictly proper transfer matrix. This is only to avoid complicated
formulas. In subsection 12.4.3, we derived the following result:

Lemma 15.5 Assume that � = (A, B, C, 0) is stabilizable and detectable. We define
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a new system:

�c f :

ẋ = Ax + Bu + XC Td,

y = Cx + d,

z =

(

C

0

)

x +

(

0
I

)

u +

(

I

0

)

d,

(15.14)

where X is the unique real symmetric solution of

0 = AX + X AT − XCTC X + B BT

such that A − XC TC is a stability matrix. Let a controller Ŵ of the form (15.1) be

given. The following conditions are equivalent:

(i) The controller Ŵ from y to u applied to the interconnection in Figure 15.3,

yields a well-posed and internally stable closed-loop system for every stable

system � with H∞ norm less than or equal to γ ,

(ii) Ŵ internally stabilizes �c f , and the closed loop system has H∞ norm less than

γ−1.

We want to apply the results of the previous chapter to this problem. Note that we
do not have a direct feedthrough matrix from u to y. However, the system � c f does
have a direct feedthrough matrix from d to z, which was not covered by the results of
the previous chapter, and which we have not seen before. First we look at the closed
loop transfer matrix for s = ∞. The closed loop transfer matrix G cl satisfies

Gcl(∞) =

(

I

0

)

+

(

0
I

)

N (15.15)

where N is the direct feedthrough matrix of the controller. We minimize ‖G cl(∞)‖

over N . We obtain that N = 0 is optimal and yields ‖G cl(∞)‖ = 1.

This first stage basically minimizes the direct feedthrough matrix from d to z.
If the optimal N is not 0 then we would have applied a preliminary feedback u =

Ny + ū. This first step did not make the direct feedthrough matrix equal to 0 but it is
easy to check that the existence of a stabilizing controller which yields an H∞ norm
strictly less than γ−1 must imply that γ −1 > ‖Gcl(∞)‖ � 1.

The second step makes use of a special case of Redheffer’s lemma (lemma 14.4).
Define the static system �U by:

�U :

(

zU

d

)

=





(

γ I

0

) (

(1− γ 2)1/2 I 0
0 I

)

−(1− γ 2)1/2 I
(

γ I 0
)





(

dU

z̄

)

We can now apply Redheffer’s lemma on the interconnection in figure 15.4 on the
next page. It is easy to check that �U satisfies the requirements of lemma 14.4. Hence
a controller stabilizes �c f and yields an H∞ norm strictly less than γ −1 if and only
if the same controller stabilizes the dashed system in the above interconnection and
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yields an H∞ norm strictly less than 1. We denote the dashed system by �̄c f . This
new system has the following representation

�̄c f :

ẋ = (A + γ 2(1− γ 2)−1 XCTC)x + Bu − (1− γ 2)−1/2 XCTdU ,

y = (1− γ 2)−1Cx − (1− γ 2)−1/2dU ,

zU =

(

γ (1− γ 2)−1/2C

0

)

x +

(

0
γ I

)

u,

and we note that this new system has a direct feedthrough matrix from d U to zU

equal to 0. In this way, we reduced the H∞ control problem for a system with a
direct feedthrough matrix from d to z to a system without such a direct feedthrough
matrix. Basically, it amounts to minimizing the norm of this feedthrough matrix via
a preliminary static feedback and then applying Redheffer’s theorem with a static
transformation. This method will always work. Note that we can now apply theorem
14.1 to the system �̄c f to find the following theorem:

Theorem 15.6 Let the system � = (A, B, C, 0) be stabilizable and detectable. Let

γ > 0 be given. There exist real symmetric matrices X � 0 and Y � 0 such that

0 = AX + X AT − XCTC X + B BT,

0 = Y A + ATY − Y B BTY + CTC,

and such that A + XC TC and A − B B TY are stability matrices. Then the following

conditions are equivalent:

(i) A controller Ŵ from y to u of the form (15.1) exists which when applied to the

interconnection in figure 15.3, yields a closed-loop system which is internally

stable for every stable system � with H∞ norm less than or equal to γ .
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(ii) 1+ ρ(XY ) < γ−2.

Proof : The existence of X and Y follows from the results of chapter 10.

Next, we apply theorem 14.1 to the system �̄c f . The second algebraic Riccati
equation gets a very simple form. In fact, the question becomes whether there exists
a real symmetric solution Q � 0 to

(A − XCTC)Q + Q(A − XCTC)T − QCTC QQ = 0

such that A − XC TC − QCTC is a stability matrix. Since A − XC TC is stability
matrix, it is easy to check that Q = 0 solves this equation. The first Riccati equation
gets the following special form:

0 = P A+ AT P−γ−2 P B BT P+γ 2CTC+(1−γ 2)−1(γ 2 I+P X)CTC(γ 2 I+X P)

Via some calculations we obtain that P = [(γ −2 − 1)I − Y X]−1Y is a stabilizing
solution of this Riccati equation. Thus, theorem 14.1 guarantees that a suitable con-
troller exists for �̄c f if and only if P � 0, i.e. if and only if 1+ ρ(Y X) < γ −2.

Remarks:

• The existence of a suitable controller for �c f is equivalent to the existence
of a suitable controller for �̄c f . Hence a preliminary static output feedback
combined with theorem 14.1 yields a suitable controller satisfying part (i)

• Our class of perturbations is rather artificial but it does not suffer from the
drawback regarding the fixed number of unstable zeros of the plant that we
needed to require for additive and multiplicative perturbations.

However, for any λ ∈ C+, we can find a perturbation �M with ‖�M‖∞ < γ

such that M + �M has an unstable zero λ ∈ C+ if and only if the smallest
singular value of M(λ) is less than γ . Note that unstable zeros of M +� M are
equal to unstable poles of the perturbed system. The number and the location
of the unstable zeros is hence implicitly restricted by the allowed size for the
perturbation �M .

• Again, we have an explicit bound for the allowable size of perturbations: part
(ii) shows that for every γ smaller than the bound [1+ρ(XY )]−1/2 we can find
a suitable controller satisfying part (i).

15.3 Singular problems

In this section we shall discuss two methods which can be used to solve the H∞ pro-
blem when the assumptions of theorem 14.1 are not satisfied.
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15.3.1 Frequency-domain loop shifting

The basic method described in this section is based on applying a transformations
acting on transfer matrices. Consider the following transformation:

z =
ε + s

1+ εs

with ε > 0 then the set of all s ∈ C located outside the circle, which we denote by
C⊗ε in figure 15.5 is mapped to the set of all z ∈ C in the open right half complex
plane C+. We denote the inside of the circle in figure 15.5 by C⊕.

ℜe

ℑm

−1/ε −ε

Figure 15.5

Let G be a given transfer matrix and define a new transfer matrix:

Hε(λ) = G
(

ε+λ
1+ελ

)

(15.16)

Then G has all its poles in C⊕ε if and only if H has all its poles in the open left half
complex plane. Assume G has all its poles in C⊕ε . Then

‖Hε‖∞ = sup
λ∈C+

‖Hε(λ)‖ = sup
λ∈C⊕ε

‖G(λ)‖

� sup
λ∈C+

‖G(λ)‖ = ‖G‖∞.

Moreover, it can be shown that:

lim
ε↓0
‖Hε‖∞ = ‖G‖∞

Moreover if G has all its poles in the open left half complex plane then there exists
ε∗ such that Hε has all its poles in the left half complex plane for all 0 < ε < ε ∗.



Singular problems 343

What makes the transformation from G to Hε interesting? It actually helps us
relax some of the assumptions made in our solution of the H∞ control problem:

• We needed to make assumptions that two subsystems did not have zeros on the
imaginary axis. But this transformation effectively replaces the imaginary axis
by the circle in figure 15.5 and by suitable choosing ε we can always guarantee
that we have no zeros on the circle and therefore we can avoid this assumption.

• We needed to make assumptions that two subsystems have a direct feedthrough
matrix which is injective or surjective respectively. The point s = ∞ is by our
transformation replaces by the point s = −1/ε. Now note that if a system
� = (A, B, C, D) has a direct feedthrough matrix which is not injective this
might be caused by two issues:

– The system � has a transfer matrix G which is not injective as a rational
matrix, i.e. rank G(s) is less than the number of columns of G for all
s ∈ C.

– The system � has an infinite zero.

Our transformation can avoid the assumption that � has no infinite zeros be-
cause it replaces s = ∞ by the point s = −1/ε. However if the transfer matrix
is not injective as a rational matrix then this transformation does not help us in
removing this assumption.

There are many other similar transformations based on transfer matrices that we
can use. For instance z = s + ε which moves the imaginary axis to the line ℜe s =

−ε. The reason why the transformation described by (15.16) is popular is that it
avoids that the closed loop system has poles close to the imaginary axis with a large
imaginary part. These yield very fast oscillations in the closed loop system which are
very badly damped and are highly undesirable in applications.

Let us next describe how we will use this transformation. Suppose we have a
system of the form:

� :

ẋ = Ax + Bu + Ed,

y = C1x + D11u + D12d,

z = C2x + D21u + D22d,

(15.17)

with transfer matrix G from (u, d) to (y, z). If I − εA is invertible we can define the
following transformed system:

�̃ε :

ẋ = Ãx + B̃u + Ẽd,

y = C̃1x + D̃11u + D̃12d,

z = C̃2x + D̃21u + D̃22d,

(15.18)
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where

Ã : = (A − ε I )(I − εA)−1,

B̃ : = (1− ε2)(I − εA)−1 B,

Ẽ : = (1− ε2)(I − εA)−1 E,

C̃1 : = C1(I − εA)−1,

C̃2 : = C2(I − εA)−1,

D̃11 : = D11 + εC1(I − εA)−1 B,

D̃12 : = D12 + εC1(I − εA)−1 E,

D̃21 : = D21 + εC2(I − εA)−1 B,

D̃22 : = D22 + εC2(I − εA)−1 E .

Note that the transfer matrix of this transformed system is given by:

G̃ε(λ) = G
(

ε+λ
1+ελ

)

In other words, we basically applied exactly the transformation as described before.

Assume that a controller Ŵ̃ described by the transfer matrix Ŵ̃ exists for �̃ε such
that the closed-loop system is internally stable and the closed-loop transfer matrix
G̃cl has H∞ norm less than 1. Then if we apply the feedback Ŵ described by the
transfer matrix H where

H (λ) = H̃

(

ε − λ

ελ− 1

)

to our original system, then the closed-loop system Ŵ ×�, with transfer matrix G cl ,
is related to the closed-loop system �̃ε × Ŵ̃, with transfer matrix G̃cl , via the above
transformation, i.e.

G̃cl(λ) = Gcl

(

ε + λ

1+ ελ

)

.

Moreover, it can be shown that the state matrix of the closed-loop system � × Ŵ has
all its eigenvalues inside C

⊕
ε . Hence the closed-loop system is certainly internally

stable. Using the same arguments as before, we have

‖G̃cl‖∞ � ‖Gcl‖∞.

Hence if Ŵ̃ applied to �̃ε makes the H∞ norm less than some bound γ , then Ŵ makes
the H∞ norm of the closed-loop transfer matrix G cl also less than γ .

On the other hand, if, for the system �, there is a stabilizing static controller Ŵ

which makes the H∞ norm of the closed-loop system strictly less than γ then it can
be shown that there exists ε1 > 0 such that for all 0 < ε � ε1 the transformed
system �̃ε with the transformed controller Ŵ̃ is internally stable and the H∞ norm of
the closed-loop system is strictly less than γ .
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Now for all but finitely many ε > 0 the system �̃ε , described by (15.18) is such
that the systems ( Ã, B̃, C̃2, D̃21) and ( Ã, Ẽ, C̃1, D̃12) have no zeros on the imaginary
axis. However, D̃21 and D̃12 will not always be injective and surjective respectively.
Either they are injective and surjective for all but finitely many ε, or they are not
for any value of ε. This is in line with what we noted before as the advantages of
this transformation. The matrices D̃11 and D̃22 will be there and therefore we can
not directly apply theorem 14.1. But we have described methods to get rid of these
matrices in the previous section.

Therefore, to check if for �̃ there is an internally stabilizing feedback controller
which makes the H∞ norm of the closed-loop system less than γ we can, in most
cases, use theorem 14.1. Note that we have to check the conditions of theorem 14.1
for some ε > 0. The problem is that we do not know how small we must make ε. If
for some ε > 0 the conditions of theorem 14.1 are satisfied, then we find a suitable
controller. However, if the conditions of theorem 14.1 are not satisfied then either no
suitable controller exists, or one does exist in which case the conditions of theorem
14.1 are satisfied for some smaller ε. Therefore we are never sure. Moreover, for
small ε we very easily run into numerical difficulties.

15.3.2 Cheap control

In the previous section we described an approach to solve the H∞ control problem
if we have zeros on the imaginary axis or assumptions on the direct feedthrough
matrices are not satisfied. This extends theorem 14.1 which can only be used if these
assumptions are satisfied. In this subsection we shall briefly describe an alternative
approach.

Assume that we have a system � of the form

� :

ẋ = Ax + Bu + Ed,

y = C1x + D1d,

z = C2x + D2u.
(15.19)

For each ε > 0 we define the following perturbed system:

�̃ε :

ẋ = Ax + Bu + Ẽd,

y = C1x + D̃1d,

z = C̃2x + D̃2u,
(15.20)

where

C̃2 =





C2
ε I

0



 , D̃2 =





D2
0
ε I



 , Ẽ =
(

E ε I 0
)

, D̃1 =
(

D1 0 ε I
)

.

The structure of the perturbations on the matrices is such that it is easy to show that
any controller Ŵ of the form (15.1) has the property that Ŵ is internally stabilizing
when applied to � if and only if the same controller Ŵ is internally stabilizing when
applied to �̃ε. Actually the closed loop poles of these two systems coincide.
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Let Ŵ be internally stabilizing when applied to �. Denote the closed-loop oper-
ator mapping w to z with zero initial state by Gcl . Moreover, denote the closed-loop
operator mapping w to z with zero initial state when the controller is applied to �̃ε

by G̃cl,ε . Then we have

‖Gcl‖∞ � ‖G̃cl,ε1‖∞ � ‖G̃cl,ε2‖∞

for all 0 � ε1 � ε2. Hence, if we have an internally stabilizing controller which
makes the H∞ norm of the closed-loop system less than γ when applied to the system
�̃ε , then the same controller is internally stabilizing and makes the H∞ norm of the
closed-loop system less than γ when applied to the original system. Thus we obtain
the following result:

Theorem 15.7 Let a system � be given by (15.19). For all ε > 0 define �̃ε by

(15.20). The following two statements are equivalent:

(i) For the system � there is a feedback Ŵ of the form (15.1) which is internally

stabilizing and which makes the H∞ norm of the closed-loop system less than

1.

(ii) There exists ε1 > 0 such that for all 0 < ε < ε1 there is a feedback Ŵ of

the form (15.1) for �̃ε which is internally stabilizing and which makes the

H∞ norm of the closed-loop system less than 1.

Any controller satisfying part (ii) for some ε > 0 also satisfies part (i).

On the other hand, for the system �̃ε the subsystems (A, B, C̃2, D̃2) and (A, Ẽ ,
C1, D̃1) do not have zeros and hence certainly no zeros on the imaginary axis. More-
over, D̃1 and D̃2 are surjective and injective, respectively. Hence, we may apply the
results of theorem 14.1 to the system �̃(ε) to obtain necessary and sufficient condi-
tions for the existence of internally stabilizing controllers which make the H∞ norm
of the closed-loop system less than 1.

If we compare the method of the previous subsection with the method of the
current subsection, then we see that the method of this subsection is much easier.
First of all, we do not have to apply transformations on the controller. Secondly,
for all ε > 0 the system (15.20) is proper and satisfies the assumptions of chapter
13. In contrast, for some values of ε > 0, the system (15.18) is either not proper or
the conditions of theorem 14.1 are not satisfied. Finally, the method of the previous
subsection might yield systems which do not satisfy the assumptions of theorem 14.1
for any value of ε.

Both methods have the disadvantage that the conditions cannot actually be check-
ed since the conditions in the previous subsection as well as the conditions in this
subsection have to be checked for an infinite number of ε > 0.

One of the main reasons for using the method of the previous subsection is be-
cause all closed-loop poles will be placed inside a circle in the open left half complex
plane and therefore the closed-loop system will not have ill-damped high-frequency
poles.
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15.4 The minimum entropy H∞ control problem

We have been studying the H∞ control problem. In H∞ control we design controllers
to minimize the peak value of the largest singular value of the transfer matrix on the
imaginary axis. It can be shown that (near)optimal controllers have a flat magnitude
Bode diagram. On the other hand for the classical H2 or Linear Quadratic Gaussian
(LQG) control problem (see chapter 11) the average value of the transfer matrix over
the imaginary axis is minimized. The latter problem is not concerned with peaks as
long as they have small width.

The above reasoning implies that H∞ control is well-suited for robustness syn-
thesis via the small-gain theorem. On the other hand, robust controllers might lead
to a large closed loop H2 norm. This motivates a new synthesis problem: minimize
the H2 norm under an H∞ norm bound. It is hoped that the H∞ norm bound yields
the desired level of robustness while performance is optimized simultaneously via the
minimization of the H2 norm.

The minimum entropy H∞ control problem is defined as the problem of minimiz-
ing an entropy function under the constraint of internal stability of the closed-loop
system and under the constraint of an upper bound on the H∞ norm of the closed-loop
transfer matrix. It is a mixture between optimizing the H∞ norm and the H2 norm. It
is also yields a better understanding of why the controllers we obtained in theorems
13.3 and 14.1 converge to the H2 controllers from chapter 10. Therefore, it is hoped
that by minimizing this entropy function, one can obtain a good trade-off between the
H∞ norm for robustness and the H2 norm for performance.

15.4.1 Problem formulation and results

Consider the linear time-invariant system:

� :

ẋ = Ax + Bu + Ed,

y = C1x + D1d,

z = C2x + D1u.
(15.21)

Here, A, B, E, C1, C2, D1 and D2 are real matrices of suitable dimension. Let G be
a strictly proper real rational matrix which has no poles on the imaginary axis and
which is such that ‖G‖∞ < γ . For such a transfer matrix G, we define the following
entropy function:

Jγ (G) : = −
γ 2

2π

∫ ∞

−∞

ln det
(

I − γ−2G∼(iω)G(iω)
)

dω (15.22)

where G∼(s) : = GT(−s). The minimum entropy H∞ control problem is then defined
as:

Minimize Jγ (Gcl) over all controllers which yield a strictly proper, in-
ternally stable closed-loop transfer matrix G cl with H∞ norm strictly less
than γ .
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We shall investigate controllers of the form (15.1). We can now formulate the
main result of this chapter:

Theorem 15.8 Consider the system (15.21). Assume that the systems (A, B, C2, D2)

and (A, E, C1, D1) have no zeros on the imaginary axis, with D1 and D2 surjective

and injective, respectively. Assume that a controller exists which is such that the

closed-loop system is internally stable and has H∞ norm strictly less than γ . The

infimum of J(Gcl), over all internally stabilizing controllers of the form (15.1) which

are such that the closed system has H∞ norm strictly less than γ , is equal to:

trace
[

E T P E
]

+ trace
[

(AT P + P A + C T

2C2 + γ−2 P E E T P)(I − γ−2 Q P)−1 Q
]

where P and Q are such that part (ii) of theorem 14.1 is satisfied, and G cl denotes

the closed loop transfer matrix. The infimum is attained by the controller given in

theorem 14.1.

15.4.2 Properties of the entropy function

In this section we recall some basic properties of the entropy function as defined in
(15.22). Note that in order to prove some of the results in this section some a priori
knowledge of function theory is required. Those students not familiar with this area
can skip the proofs in this section.

Lemma 15.9 Let G be a strictly proper, stable rational matrix such that ‖G‖∞ � γ .

Then we have

• Jγ (G) � 0 and Jγ (G) = 0 implies G = 0,

• Jγ (G) = Jγ (GT).

Next, we relate our entropy function to the H2 norm studied in chapter 10. We
find:

Lemma 15.10 Let a system � = (A, B, C, 0) be such that A is stable. Let G be

the transfer matrix of �. We have Jγ (G) � ‖G‖2
2. Moreover, Jγ (G) → ‖G‖2

2 as

γ →∞.

Proof : For an arbitrary symmetric matrix A we have

− ln det(I − A) = − ln 
(1− λi ) = −� ln(1− λi ) � � − λi = − trace[A]

where λi denote the eigenvalues of A. This immediately yields the first inequality:

−
γ 2

2π

∫ ∞

−∞

ln det
(

I − γ−2G∼(iω)G(iω)
)

dω �
1

2π

∫ ∞

−∞

trace G∼(iω)G(iω) dω
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To prove the convergence as γ →∞ we will use | ln(1− λ) − 1+ λ| < ελ2 for all
λ such that |λ| < δ. Note that for all γ > ‖G‖∞δ−1 we obtain that all eigenvalues of
γ−2G∼(iω)G(iω) will be less than δ in magnitude. We find:

Jγ (G)− ‖G‖2 <
γ−2

2π

∫ ∞

−∞

trace[G∼(iω)G(iω)]2 dω

which yields the desired convergence.

Next, we give two key lemmas. Of the first lemma, the first part is equal to
lemma 14.4 while the second part originates from [133]. We give a separate proof of
the second part.

Lemma 15.11 Consider the linear time-invariant systems � and � . Suppose � has

inputs w and u and outputs z and y, while � has input y and output u. Consider the

interconnection depicted in the diagram in Figure 15.6. Assume that � is inner and

�

�
❄

✛

✻

✛

y

z d

u

Figure 15.6

its input-output operator G has the following decomposition:

G

(

d

u

)

=:

(

G11 G12
G21 G22

)(

d

u

)

=

(

z

y

)

, (15.23)

which is compatible with the sizes of d, u, z and y. Let G 11, G12, G21 and G22 be the

transfer matrices associated with the operators G11, G12, G21 and G22 respectively.

Assume G21 is invertible and G−1
21 has a finite H∞ norm. Moreover the transfer

matrices G11 and G22 are strictly proper.

Under the above assumptions the following two statements are equivalent:

(i) The interconnection in Figure 15.6 is internally stable and its closed-loop tran-

sfer matrix Gcl has H∞ norm less than 1.

(ii) The system � is internally stable and its transfer matrix has H∞ norm less than

1.

Moreover, Gcl is strictly proper if, and only if, the transfer matrix of the system �

is strictly proper. Finally, if (i) holds and the transfer matrix of the system � is
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strictly proper then the following relation between the entropy functions for the dif-

ferent transfer matrices is satisfied:

J1(Gcl) = J1(G11)+ J1(Q). (15.24)

Proof : The first claim that the statements (i) and (ii) are equivalent, has been shown
in lemma 14.4. We know that G 11 and G22 are strictly proper. Combined with the
fact that � is inner, this implies that G12 and G21 are bicausal, i.e. they are invertible
and both the transfer matrices and their inverses are proper. Using this, it is easy to
check that the transfer matrix H of � is strictly proper if and only if G cl is strictly
proper.

We still have to prove equation (15.24). The following equality is easily de-
rived using the property that � is inner (in particular that its transfer matrix satisfies
GT(s)G(s) = I ).

I − G∼cl Gcl = G∼21

(

I − H∼G∼22

)−1
(

I − H∼H
)

(I − G22 H )−1 G21.

Therefore, we find that

ln det
(

I − G∼cl Gcl

)

= ln det
(

I − G∼11G11
)

+ ln det
(

I − H∼H
)

− 2 ln det (I − G22 H ) .

Moreover, if statement (i) is satisfied and if H is strictly proper then we have

J1(H ) = −
1

2π

∫ ∞

−∞
ln det

(

I − H∼(iω)H (iω)
)

dω, (15.25)

J1(G11) = −
1

2π

∫ ∞

−∞

ln det
(

I − G∼11(iω)G11(iω)
)

dω. (15.26)

Using the fact that H is strictly proper, stable and has H∞ norm strictly less than 1
and the fact that G22 is also stable, strictly proper and has H∞ norm less than or equal
to 1, we know that ln det (I − G22(λ)H (λ)) is an analytic function in the open right
half plane and that a constant M exists such that

| ln det (I − G22(λ)Q(λ)) | <
M

|λ|2
, ∀λ ∈ C

0 ∪ C
+

This implies, using Cauchy’s theorem, that
∫ ∞

−∞
ln det (I − G22(iω)Q(iω)) dω = 0 (15.27)

Combining the above, we find (15.24).

The following lemma is an essential tool for actually calculating the entropy func-
tion for some specific system:
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Lemma 15.12 Let � = (A, B, C, D) be stabilizable and detectable with transfer

matrix G ans with det D = 1. Also, assume that G, G−1 ∈ H∞ and G has H∞ norm

equal to 1. Then we have:
∫ ∞

−∞

ln | det G(iω)| dω = −π trace[B D−1C]. (15.28)

Proof : Denote the integral in (15.28) by K and define

a : = − trace B D−1C.

We have (remember that ln |z| = ℜe ln z):

K = ℜe
(∫ ∞

−∞

ln det G(iω)−
a

1+ iω
dω

)

+ a

∫ ∞

−∞

dω

1+ ω2
(15.29)

Next, it is easily checked that p(s) : = ln det G(s)− a
1+s

is a bounded analytic func-
tion in C+ such that p(s) = O(1/s2) (|s| → ∞, Re s � 0). Hence, using Cauchy’s
theorem we find

∫ ∞

−∞
p(iω) dω = 0. (15.30)

Combining (15.29) and (15.30) yields (15.28).

Corollary 15.13 Let � = (A, B, C, 0) be internally stable with strictly proper trans-

fer matrix G. Assume G has H∞ norm strictly less than γ . Then we have:

Jγ (G) = trace B T X B, (15.31)

where X is the unique reak symmetric solution of the algebraic Riccati equation:

X A + AT X + γ−2 X B BT X + CTC = 0,

such that A + γ −2 B BT X is asymptotically stable.

Proof : The existence and uniqueness of X is a consequence of the bounded real
lemma (see section 12.6). It is easy to check that the transfer matrix M with realiza-
tion (A, B,−γ−2 BT X, I ) satisfies:

I − γ−2G∼G = M∼M.

Moreover, M, M−1 ∈ H∞, i.e. M is a spectral factor of I − γ −2G∼G. We have

Jγ (G) =
−γ 2

π

∫ ∞

−∞

ln | det M(iω)| dω,

and therefore (15.31) is a direct consequence of applying lemma 15.12 to the above
equation.
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15.4.3 A system transformation

We will only proof theorem 15.8 for γ = 1. The general result can then be obtained
by scaling (as we also did in proving theorem 14.1). Throughout this section we
assume that there are matrices P and Q satisfying the conditions in theorem 14.1.
Note that this is no restriction when proving theorem 15.8. The existence of such
P and Q is implied by our assumption that an internally stabilizing controller exists
which makes the H∞ norm strictly less than 1. We use the technique from chapter
14 of transforming the system twice such that the problem of minimizing the entropy
function for the original system is equivalent to minimizing the entropy function for
the new system we thus obtain. In the next section we shall show that this new system
satisfies some desirable properties which enables us to solve the minimum entropy
H∞ control problem for this new system and hence also for the original system.

We define the following system:

�P :

ẋP = AP x P + Bu + EdP ,

y = C1,P x P + D1dP ,

z P = C2,P x P + D2u,
(15.32)

where A P : = A+E E T P, C1,P : = C1+D1 ET P and C2,P : = D2(DT
2 D2)

−1(BT P+

DT
2C2).

�P

�U

✛yP

✛

✛u P

✛

❄
✻

zU dU

yU = dP z P = uU

Figure 15.7

From chapter 14 we know that when we define �U by 14.16 then � has the same
transfer matrix as the interconnection in figure 15.7 . Moreover, � is stabilizable
and detectable if and only if the interconnection in figure 15.7 is stabilizable and
detectable. We know from chapter 14 that �U is inner. Moreover, the input-output
operator U of the system �U has the following decomposition:

U

(

dU

z P

)

=:

(

U11 U12
U21 U22

)(

dU

z P

)

=

(

zU

dP

)

, (15.33)

which is compatible with the sizes of dU , z P , zU and dP . The input-output operator
U21 is associated to the system �U,21 = ( Ã, E,−E T P, I ) and, since Ã + E E T P is
equal to (14.5) and hence a stability matrix, the input-output operator U 21 is invertible
and U−1

21 has a finite L2 -induced operator norm.
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Moreover, by corollary 15.13, we have J 1(U11) = trace E T P E . Combining the
above with lemma 15.11, we find the following theorem:

Theorem 15.14 Let the systems (15.21) and (15.32) be given. Moreover, let a con-

troller Ŵ of the form (15.1) be given. The following two conditions are equivalent:

• Ŵ is internally stabilizing for � such that the closed-loop transfer matrix G cl

is strictly proper and has H∞ norm strictly less than 1.

• Ŵ is internally stabilizing for �P such that the closed-loop transfer matrix

Gcl,P is strictly proper and has H∞ norm strictly less than 1.

Moreover, if Ŵ satisfies the above conditions then we have

J1(Gcl) = J1(Gcl,P )+ trace E T P E .

Next, we make another transformation from � P to �P,Q . This transformation is
exactly dual to the transformation from � to � P . We know there exists a controller
which is internally stabilizing for �P which makes the H∞ norm of the closed-loop
system strictly less than 1. Therefore if we apply lemma 14.8 together with theorem
14.1 to �P we find that the matrix Y = (I − Q P)−1 Q is a real symmetric solution
of (14.19) such that (14.21) is a stability matrix. We define the following system:

�P,Q :

ẋ P,Q = AP,Q x P,Q + BP,Qu + E P,Qd,

y = C1,P x P,Q + D1dP,Q,

z P,Q = C2,P x P,Q + D2u,
(15.34)

where

AP,Q : = AP + Y CT
2,PC2,P ,

BP,Q : = B + Y CT
2,P D2,

E P,Q : = (Y CT
1,P + E DT

1)(D1 DT
1)
−1 D1.

Using theorem 15.14 and a dualized version for the transformation from � P to
�P,Q we can derive the following corollary:

Corollary 15.15 Let the systems (15.21) and (15.34) be given. Moreover, let a con-

troller Ŵ of the form (15.1) be given. The following two conditions are equivalent:

• Ŵ is internally stabilizing for � such that the closed-loop transfer matrix G cl

is strictly proper and has H∞ norm strictly less than 1.

• Ŵ is internally stabilizing for �P,Q such that the closed-loop transfer matrix

Gcl,P,Q is strictly proper and has H∞ norm strictly less than 1.

Moreover, if Ŵ satisfies the above conditions then we have

J1(Gcl) = J1(Gcl,P,Q )+ trace E T P E + trace C1,PY C1,P .
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From this corollary it is immediate that it is sufficient to investigate � P,Q to prove
the results in our main theorem 15.8. On the other hand, we know that the central
controller from theorem 14.1 is such that, when applied to � P,Q , it yields a closed
loop transfer matrix equal to 0 and hence an entropy equal to 0. Since the entropy
function is nonnegative, this implies that the central controller is optimal for � P,Q

and therefore also for �. This completes the proof of theorem 15.8.

15.5 A design example: an inverted pendulum on a

cart

In order to connect the theory presented in this book for the H∞ control problem to
classical control theory, we present in this section a small design example. Note that
for those people who have not had a course on classical control theory some of the
terminology in this chapter might be unknown and in that case it might be better to
skip this section.

We shall consider the following physical example of an inverted pendulum on a
cart depicted in figure 15.8.

M ✲

✲

ϕ

m

l

u

d

Figure 15.8

We assume the mass of the pendulum to be concentrated in the top with mass
m. l is the length of the pendulum and M is the mass of the cart. To describe the
position, d and ϕ express the distance of the cart from some reference point and the
angle of the pendulum with respect to the vertical axis. The input u is the horizontal
force applied to the cart. All motions are assumed to be in the plane. We assume that
the system is completely stiff and the friction between the cart and the ground has
friction coefficient F . Finally let g denote the acceleration of gravity. We then have
the following non-linear model for this system:

(M + m)d̈ + mlϕ̈ cos ϕ − ml(ϕ̇)2 sin ϕ + Fḋ = u,

lϕ̈ − g sin ϕ + d̈cosϕ = 0.
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If l 	= 0 and M 	= 0, then linearization around ϕ = 0 yields the following linear
model:
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d̈
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ϕ̈









=









0 1 0 0
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−mg
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0 0 0 1
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lM
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0
1
M
0
− 1

lM









u.

Denote these matrices by A and B respectively. Since g 	= 0 our linearized system
is always controllable. Assuming our measurements are d and ḋ then the system
is observable if m 	= 0. If m = 0 the system is not even detectable (which has
a clear physical interpretation). However, it turned out that although the system is
observable, for many choices of the parameters an unstable pole and zero almost
cancel out. This makes the system impossible to control. Therefore we have to add
the angle ϕ as a measurement, i.e. our measurement vector equals y = (d, ḋ, ϕ).

We would like to track a reference signal for the position. Moreover, we require
our controller to yield a robustly stable system with respect to the several uncertainties
that affect our system:

(i) Discarded non-linear dynamics

(ii) Uncertainties in the parameters F, m, M, l

(iii) Flexibility in the pendulum.

Finally we have to take into account the limit on the bandwidth and gain of our con-
troller. This is essential due to limitations on the sampling rate for the digital imple-
mentation as well as limitation in the speed of the actuators. We look at the following
setup in figure 15.9.

W1 K

�
1/s W2

✛ ✛

✲
✲

✻

✲

✛
✛
✛

❄ ✲ ✲✲

uw

d

z

d

dc

e

u y

ew
◦

−

+

Figure 15.9

• dc is the command signal for the position d. We minimize the weighted inte-
grated tracking error where W2 is a first order weight of the form

W2(s) : = ε
1+ αs

1+ βs
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By choosing α << β we obtain a low pass filter. This expresses that we are
only interested in tracking low-frequency signals. The integrator also expresses
our interest in low frequencies: it is one way to guarantee zero steady state
tracking error. Finally ε in the weight is used to express the relative importance
of tracking over the other goals we have for the system.

• We also minimize uw which is the weighted control input. W1 has the same
structure as W2. However, this time we choose α >> β to obtain a high pass
filter. We would like to constrain the open-loop bandwidth and gain of the con-
troller. This facilitates digital implementation and it also prevents us pushing
our actuators beyond their capabilities. Finally, it prevents the controller stim-
ulating high-frequency uncertainty in the system dynamics, such as bending
modes of the pendulum. Since we cannot incorporate open-loop limitations
directly in an H∞ design, we push the bandwidth and gain down indirectly via
this weight on u. However, it turned out to be very hard to make the bandwidth
small.

• z and d are new inputs and outputs we add to the system � to express robust-
ness requirements, i.e. the system � is of the form:

� :

ẋ = Ax + Bu + Ed,

y =





1 0 0 0
0 1 0 0
0 0 1 0



x ,

z = C2x .

(15.35)

The matrices A and B are as defined before. On the other hand, E and C 2 still
have to be chosen. For instance if we want to guard against fluctuations in the
parameters F and m, the friction and the mass of the pendulum, then we choose
E and C2 as:

E : =









0
−1/M

0
1/ l M









, C2 : =

(

0 1 0 0
0 0 g 0

)

. (15.36)

This amounts to a �-block such as depicted in (12.3) where � = (Fr−F mr−

m). An H∞ norm less than γ from d to z then guarantees that if the true
parameter values Fr , mr differ from the nominal values m, r less than γ −1 (to
be precise such that ‖�‖ � γ −1), the system will still be stable. A similar
definition can be made to guard against fluctuations in all parameters of the 2
differential equations due to discarded non-linearities or flexibility of the beam.
In that case we choose, instead of (15.36), E and C 2 as:

E : =









0 0
1 0
0 0
0 1









, C2 : =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (15.37)
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On the basis of the above we start designing a controller K for the interconnection
in figure 15.9 to minimize the H∞ norm from (d, dc) to (z, uw, ew) where we manipu-
lated, by hand, the parameters of the weights W1 and W2 on the basis of the properties
of the controllers. It turned out that the system � is in general much more sensitive to
perturbations in all parameters of the differential equation then to perturbations in the
parameters F and m. Therefore we incorporate in our design robustness against all
parameters of the differential equation. In other words � is given by (15.35) where
E and C2 are given by (15.37).

We would like to stress that optimal controllers have a tendency of ruining every
nice property of the system which is not explicitly taken into account. Our design
incorporated a γ iteration. However, we implemented the central controller for a
γ approximately 10% larger than the infimum over all stabilizing controllers of the
closed-loop H∞ norm. It is our experience that this reduces the bandwidth of the
resulting controllers.

We shall give some facts illustrated by frequency and time-responses of our con-
troller and the resulting closed-loop system. We choose M = 1, m = .1, l = 1 and
F = 0.1.

(i) The open-loop transfer matrix from u to x and from u to ϕ are given by

Gxu(s) : =
(s + 3.13)(s − 3.13)

(s + 3.29)(s − 3.28)(s + 0.09)
,

Gϕu(s) : =
−s2

(s + 3.29)(s − 3.28)(s + 0.09)
.

Hence, it is immediate that because of the near pole-zero cancellation in the
right half plane that we really need a measurement of the angle ϕ.

(ii) Although not for every choice of the parameters, our final controller, whose
Bode magnitude diagram is depicted in figure 15.10, is stable. At this moment
this desirable property cannot, however, be incorporated in our design criteria.
We obtained a stable controller by playing around with the parameters. The
eigenvalues of the controller are −45.7,−22.8,−4.04,−2.37,−1.3± 0.51i

and −0.667. The fact that the controller has both very fast and relatively slow
modes suggests that via singular perturbation theory (see, e.g. [137]) we can
reduce the order of the controller. There is, however, no theory available for
such an approach.

(iii) Our final controller can, according to the theory developed in subsection 15.2.3,
stand fluctuations in the parameters F and m of 400%. Moreover, fluctuations
in the parameters of the differential equations of size less than 0.025 are al-
lowed. The latter is not very much but since most parameters are 0 they are in
general quite sensitive to fluctuations. Without taking robustness into account
the final controller could only stand fluctuations of size less than 0.000025.
Some simulations suggested good robustness properties.
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(iv) The time-responses as given in figures 15.14, 15.15 and 15.16 show little over-
shoot and therefore the controller is expected to work well on the non-linear
model.

(v) The final controller still has quite a large gain and bandwidth as can be seen
from figure 15.10. The gain is for a large part due to the fact that the controller
is translating angles in radians into forces in Newtons. In general the angles
are much smaller than the forces, which is to be expected. The large bandwidth
is needed to be able to stand sudden fluctuations in the angles. The bandwidth
and gain of the transfer matrix from dc to u is much smaller as shown in figure
15.12. This transfer matrix is weighted more strongly in our cost criterion
than the effect of fluctuations in ϕ (since the angle is not steered directly via a
command signal).

(vi) Figure 15.11 shows that we have good tracking properties of low-frequency
command signals as required. Tracking can be improved to 1 rad/sec. However,
this results in a controller of much larger bandwidth and gain.

(vii) The loop gain if we break the loop at the control input is given in figure 15.13.
The surprising part here is the cross-over angle which is very small. The angle
of the Bode diagram at the cross-over frequency is related to the phase margin.
The fact that this angle is very small suggests a good phase margin.
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Figure 15.10: open loop magnitude Bode diagram of the controller
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Figure 15.11: magnitude Bode diagram from d c to d
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Figure 15.12: magnitude Bode diagram from d c to u
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Figure 15.13: magnitude Bode diagram of the loop gain from u c to u
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Figure 15.14: step response from dc to d and ϕ
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Figure 15.15: impulse response from dc to d and ϕ
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Figure 15.16: impulse response from ϕ to d and ϕ

To conclude, we would like to note that we can design controllers via H∞ control
similar as one used to do it via LQG control. However, it is our belief that the
H∞ norm makes it easier and more transparent to incorporate several performance
requirements in our cost criterion, especially those performance requirements which
are directly related to robustness and magnitude Bode diagrams. However a lot of
work still needs to be done. In particular we have to gain experience similar to that
we have gained for LQG to translate our criteria into a well-formulated H∞ problem.

15.6 Exercises

15.1 In section 15.5 we have designed a controller for an inverted pendulum on a cart
with parameter values M = 1, m = 0.1, l = 1 and F = 0.1. The specifications
which we posed were:

• Tracking of a reference signal for the position up to 0.5 rad/sec.

• Open loop bandwidth of the controller less than 100 rad/sec with magni-
tude less than 50 dB.

• Robust stability with respect to fluctuations up to 200 % in the parameters
F and m.

• Robust stability with respect to variations in the differential equation due
to the nonlinearities of magnitude less than 0.02.

Design a controller using the techniques of H∞ presented in the last chapters
by choosing suitable weighting functions. The controller with measurements
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d, ḋ, ϕ should satisfy the above specifications as well as possible. Any addi-
tional freedom should be used to reduce the bandwidth of the controller. One
is allowed all freedom and engineering tricks to do so.

15.2 Look at the setup of exercise 15.1. Design a controller without the robustness
specifications. That is, try to achieve better tracking up to or above 1 rad/sec
with a controller which has a similar bandwidth and magnitude compared to
the controller designed in exercise 15.1. Check the robustness properties of the
resulting closed loop system.

15.7 Notes and references

Additive model uncertainty has been discussed in Glover [61]. It shown there that our
bound is equal to the smallest Hankel singular value for systems which have no stable
poles. Hankel singular values are closely related to efficient techniques and finding
approximate models of lower McMillan degree, see Glover [60]. This yields a nice
connection since differences between models and the plant are often introduced by
looking for a simple model, i.e. a model of low McMillan degree. Coprime factor
model uncertainty is studied in detail in MacFarlane and Glover [123].

A more thorough understanding of singular H∞ optimal control methods is im-
portant because the techniques presented in this chapter suffer from serious numerical
difficulties if our choice of γ gets near the minimal achievable H∞ norm. Especially,
if we have infinite zeros or zeros on the imaginary axis of higher degree. Techniques
presented in Gahinet, Apkarian [54] are very elegant but have the same numerical
difficulties. Methods presented in Stoorvogel [184, 186] and Scherer [163] are much
better suited to overcome these numerical difficulties. For recent results we refer to
Chen [28] Xin, Anderson and Mita [225].

Minimum entropy as treated in this chapter was originate by Mustafa and Glover
in [133]. Our approach follows Stoorvogel, [183]. The concepts of function theory
used in some of the proofs can be found in Rudin [156] or Churchill and Brown [30].

In order to understand the concepts related to frequency-domain analysis as used
in part of section we refer to the textbooks by Kuo [101], Franklin, Powell and
Emami-Naeini [49], and van de Vegte [202]. Several recent textbooks discuss de-
sign of H∞ controllers in much more detail as we have done in this book. Espe-
cially connections to classical control is presented in this book only in a very limited
fashion. For more details, we refer to some of the recent textbooks such as Ma-
ciejowski [118], Zhou, Doyle and Glover [232], Green, Limebeer [66], Skogestad
and Postlethwaite [180]
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Appendix A

Distributions

In this appendix, we have collected the most important facts on distributions that we
need in this book.

We will start by introducing some notation. If f : R → R is a function then its
support is defined as the closure of the set of all t such that f (t) 	= 0:

supp( f ) : = {t ∈ R | f (t) 	= 0}.

If f 	= 0 then we define

λ( f ) : = inf supp( f ),

ρ( f ) : = sup supp( f ).

It is understood that λ( f ) and ρ( f ) can take the values −∞ and∞, respectively. If
f = 0 then we define λ( f ) : = ∞ and ρ( f ) : = −∞.

For a given f we define f̌ by

f̌ (t) : = f (−t).

If, in addition, τ ∈ R then στ f is defined by

(στ f )(t) : = f (t + τ ).

We denote by C∞(R,R) the space of all infinitely often differentiable functions f :

R→ R. The following subspaces of C∞(R,R) are important to us:

D− : = {φ ∈ C
∞(R,R) | ρ(φ) <∞},

D+ : = {ψ ∈ C
∞(R,R) | λ(ψ) > −∞}.

Elements of D− are called test functions. There is a natural way to define a topology
on the linear space D−. The exact definition of this topology is not important to
us and is therefore omitted. In any case, once we have put a topology on D−, we
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can speak about continuity of functionals defined on D−. A distribution is simply
a continuous linear functional on the space of testfunctions D−. The value of the
distribution x at φ ∈ D− is denoted by 〈x, φ〉. The space of all distributions is
denoted by D′

+. Although this is the dual space of D− the + is used to indicate that
these distributions have a support which is bounded on the right.

Example A.1 Every function ψ ∈ D+ can be identified with a distribution by defin-
ing the value of ψ at φ ∈ D− by

〈ψ,φ〉 : =

∫ ∞

−∞

ψ(t)φ(t) dt .

The crucial point here is of course that the product function ψφ is zero outside some
compact interval. Since ψφ is continuous on the interval, the integral must be finite.
Thus, D+ can be considered as a linear subspace of D ′

+. Elements of D+ are called
smooth distributions.

Example A.2 An important example of a distribution that is not smooth is the Dirac

distribution. The Dirac distribution, which is denoted by δ, is defined by

〈δ, φ〉 : = φ(0).

Intuitively, this distribution represents the (fictitious) real function δ(t) with the prop-
erties that δ(t) = 0 for t 	= 0 while

∫∞
−∞ δ(t)φ(t) dt = φ(0) for all φ ∈ D−. The

other common intuitive interpretation of the function δ(t) as a function with the prop-
erties that δ(0) = ∞ while δ(t) = 0 for t 	= 0 is easy to understand but not powerful
enough to work with.

Example A.3 Another example of a distribution that is not smooth is the Heaviside

distribution. It is denoted by h and its value at φ ∈ D− is defined by

〈h, φ〉 : =

∫ ∞

0
φ(t) dt .

We now define what we mean by differentiation of distributions. If x is a distri-
bution then its derivative ẋ is defined as the distribution given by

〈ẋ, φ〉 : = −〈x, φ̇〉.

Here, φ̇ denotes the ordinary derivative of the function φ. Note that, since φ ∈ D−,
〈x, φ̇〉 is well-defined. We claim that if x is the smooth distribution corresponding to
the function ψ ∈ D−, i.e. if

〈x, φ〉 =

∫ ∞

−∞
ψ(t)φ(t) dt,

then ẋ is the smooth distribution corresponding to the function ψ̇ . Stated differently:
for functions ψ ∈ D+ differentiation in distributional sense coincides with ordinary
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differentiation. Indeed, if φ ∈ D− then by partial integration we have

〈ẋ, φ〉 = −〈x, φ̇〉

= −

∫ ∞

−∞

ψ(t)φ̇(t) dt

=

∫ ∞

−∞

ψ̇(t)φ(t) dt .

Example A.4 The derivative of the Heaviside distribution is equal to the Dirac dis-
tribution. Indeed, for φ ∈ D− we have

〈ḣ, φ〉 = −〈h, φ̇〉 = −

∫ ∞

0
φ̇(t) dt = φ(0).

The derivative δ̇ of the Dirac distribution δ is given by 〈 δ̇, φ〉 = −φ̇(0). The derivative
δ̇ is often denoted by δ (1). The i -th derivative of the Dirac distribution is denoted
by δ(i) and is defined inductively by δ (i) : = (δ(i−1))·. Keeping in line with this
notation, the Dirac distribution δ is sometimes denoted by δ (0). It is easily seen that
〈δ(i), φ〉 = (−1)iφ(i)(0).

An important role is played by convolution of distributions. Recall that if f and
g are functions, then their convolution is defined by

( f ∗ g)(t) : =

∫ ∞

−∞

f (t − τ )g(τ )dτ

(provided that, of course, the integral exists). The concept of convolution can be gen-
eralized to distributions. We first define convolution of a distribution with a smooth
distribution. Let x ∈ D′

+ and ψ ∈ D+. Then their convolution x ∗ ψ is defined as

(x ∗ ψ)(t) : = 〈x, σ−t ψ̌〉 (t ∈ R).

It can be shown that x ∗ ψ ∈ D+. Next, we define the convolution of arbitrary
distributions. Let x, y ∈ D′

+. Then x ∗ y is defined as

〈x ∗ y, φ〉 : = 〈x, (y ∗ φ̌)ˇ〉 (φ ∈ D−).

Note that if φ ∈ D− then φ̌ ∈ D+. If x and y are smooth distributions, corre-
sponding to the functions ψ and χ respectively, then x ∗ y is the smooth distribution
corresponding to the ordinary convolution of ψ and χ , i.e., for all φ ∈ D − we have

〈x ∗ y, φ〉 =

∫ ∞

−∞

(ψ ∗ χ)(t)φ(t) dt .

It can be proven immediately from the definition that convolution of distributions
is a commutative operation. In fact, with the pointwise addition and scalar multipli-
cation (x, y) �→ x + y, (λ, x) �→ λx , and with convolution as multiplication, D ′

+ is
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a commutative algebra over R. The unit element is the Dirac distribution δ. Indeed,
if x ∈ D′+ then we have

〈δ ∗ x, φ〉 = 〈δ, (x ∗ φ̌)ˇ〉

= (x ∗ φ̌)(0) = 〈x, φ〉.

A distribution x ∈ D′
+ is called invertible if there exists y ∈ D′

+ such that x ∗ y =

y ∗ x = δ. If x is invertible then there is exactly one such y. This distribution y is
called the inverse of x and is denoted by x−1.

It is straightforward to verify that the following rule for differentiation of a con-
volution product is valid:

(x ∗ y)˙ = ẋ ∗ y = x ∗ ẏ.

As a consequence, differentiation of a distribution x is the same as taking the convo-
lution of x with δ̇, the derivative of the Dirac distribution:

δ̇ ∗ x = ẋ

Example A.5 The distribution δ̇ is invertible. Its inverse is h, the Heaviside distribu-
tion. Indeed,

δ̇ ∗ h = ḣ = δ

An important role in chapter 8 of this book is played by the subclass of D ′
+

consisting of impulsive-smooth distributions. These are defined as follows:

Definition A.6 A distribution x ∈ D′
+ is called impulsive if it has the form

x = α0δ + α1δ
(1) + α2δ

(2) + · · · + αkδ
(k),

with αi ∈ R. Keeping in line with the notation introduced above, we can write x =
∑k

i=0 αiδ
(i).

A distribution x is called smooth on R+ if there exists a function ψ ∈ C∞(R,R)

such that

〈x, φ〉 =

∫ ∞

0
ψ(t)φ(t) dt, φ ∈ D−

Thus, if x is smooth on R
+, it can be identified with a function of the form ψ(t)i R+(t),

where ψ ∈ C∞(R,R) and where iR+(t) denotes the indicator function of R+ (defined

by iR+(t) = 0 for t < 0 and iR+(t) = 1 for t � 0).

Finally x ∈ D′
+ is called impulsive-smooth if it has the form x = x1 + x2, where

x1 is impulsive and x2 is smooth on R+. In this case, x1 is called the impulsive
part of x and x2 is called the smooth part of x. The subclass of impulsive-smooth

distributions is a sub-algebra of D′
+ and will be denoted by D0
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Example A.7 The Heaviside distribution h is smooth on R+. It can be identified
with the function iR+(t) which is often also called the Heaviside step function.

Example A.8 Let x be smooth on R+, so that x corresponds to the function

ψ(t)iR+(t)

for some ψ ∈ C∞(R,R)). Then

〈x, φ〉 =

∫ ∞

0
ψ(t)φ(t) dt .

Then we have:

ẋ = ψ(0)δ + z,

where z is smooth on R+ and corresponds to the function ψ̇(t)iR+(t), i.e.

〈z, φ〉 =

∫ ∞

0
ψ̇(t)φ(t) dt .

Stated loosely: the distributional derivative of the function ψ(t)i R+(t) is equal to the
height of its jump at t = 0 times the Dirac distribution plus the function ψ̇(t)iR+(t).
Indeed, for φ ∈ D− we have

〈ẋ, φ〉 = −〈x, φ̇〉

= −

∫ ∞

0
ψ(t)φ̇(t) dt

= ψ(0)φ(0)+

∫ ∞

0
ψ̇(t)φ(t) dt

= 〈ψ(0)δ, φ〉 + 〈z, φ〉

= 〈ψ(0)δ + z, φ〉.

Example A.9 Let a ∈ R. The impulsive distribution δ̇−aδ is invertible. Its inverse is
smooth on R+: it is equal to the distribution x corresponding to the function e at iR+(t).
Indeed, the height of the jump of this function at t = 0 equals 1 so ẋ = δ + z, where
z corresponds to the function aeat iR+(t). Obviously, z = ax . Thus

(δ̇ − aδ) ∗ x = ẋ − ax = δ,

from which we obtain: (δ̇ − aδ)−1 = x .

If g(s) is a real rational function, i.e., if g(s) = n(s)
d(s)

, with n(s) and d(s) poly-

nomials with real coefficients, then we can associate with g(s) a distribution g( δ̇),
formally obtained by replacing the variable s by the distribution δ̇. If g(s) is a poly-
nomial, say g(s) = g0 + g1s + · · · + gls

l , then it is obvious how we should interpret
g(δ̇): in this case we simple define g(δ̇) to be the impulsive distribution

g(δ̇) : = g0δ + g1δ
(1) + g2δ

(2) + · · · + glδ
(l) =

l
∑

i=0

giδ
(i).
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In general, if g(s) = n(s)/d(s) then we define

g(δ̇) : = n(δ̇) ∗ d(δ̇)−1,

the convolution of the impulsive distribution n( δ̇) with the inverse of the impulsive
distribution d(δ̇). Of course, we should verify that the distribution d( δ̇) is indeed
invertible. To show this, note that we can always factor

d(s) = c(s − a1)(s − a2) · · · (s − al),

with c ∈ R, ai ∈ C. It is verified immediately that

d(δ̇) = c(δ̇ − a1δ) ∗ (δ̇ − a2δ) ∗ · · · ∗ (δ̇ − alδ).

In example A.9 we proved that δ̇− aiδ is invertible (the extension to complex valued
distributions being left to the reader). The proof is then completed by noting that if x

and y are invertible, then x ∗ y is invertible, and (x ∗ y)−1 = x−1 ∗ y−1. Note that,
since D0 is a sub-algebra of D′

+, g(δ̇) is an impulsive-smooth distribution.

Example A.10 Consider the rational function g(s) = s
s+1 . Then g(δ̇) = δ̇∗(δ̇+δ)−1.

Now, (δ̇ + δ)−1 is smooth on R+, and corresponds to the function e−t iR+(t). Thus
g(δ̇) is equal to δ + z, where the distribution z is smooth on R+, and corresponds to
the function−e−t iR+(t).

All concepts that have been introduced in this appendix up to now can be extended
to vectors and matrices with distributions as components. We denote by D

′ p×n
+ the

space of all p× n matrices with components in D
′
+. Likewise we define D

′n
+, D

′ p×n

0
and D

n
0 .

If K ∈ D
′ p×n
+ then for φ ∈ D− we define 〈K , φ〉 ∈ R

p×n by 〈K , φ〉i j : =

〈Ki j , φ〉. Similarly, if x ∈ D′n
+ then 〈x, φ〉 ∈ Rn is defined by 〈x, φ〉i : = 〈xi , φ〉.

Differentiation of elements in D′ p×n
+ and D′n

+ is defined componentwise. For K ∈

D′
p×n
+ and L ∈ D′

n×r
+ the convolution K ∗ L is the matrix in D′ p×r

+ defined by

(K ∗ L)i j : =

n
∑

k=1

Kik ∗ Lkj .

In the same way, if x ∈ D′n
+ then the convolution of K and x is the vector distribution

in D′
p
+ defined by

(K ∗ x)i : =

n
∑

j=1

Ki j ∗ x j .

The space D′n×n
+ of all (square) n × n matrices with components in D ′

+ is a (non-
commutative) algebra over R (with pointwise addition and scalar multiplication). The
unit element in this algebra is Iδ, where I ∈ Rn×n denotes the identity matrix, and δ
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is the Dirac distribution: if A ∈ Rn×n and x ∈ D′
+ then Ax ∈ D′

+
n×n is defined by

(Ax)i j : = Ai j x .

An element of D′n×n
+ is called invertible if there exists L ∈ D′n×n

+ such that
K ∗ L = L ∗ K = Iδ. If such L exists then it is unique. We denote L by K −1. Let
K ∈ D′

p×n
+ . If L ∈ D′

n×p
+ is such that K ∗ L = I then L is called a right-inverse of

K . Likewise, K is called a left-inverse of L.

Example A.11 If x ∈ D′n
+ then ẋ = I δ̇ ∗ x .

Example A.12 Let A ∈ Rn×n . The impulsive matrix distribution I δ̇ − Aδ is in-
vertible. Its inverse is smooth on R+ : (I δ̇ − Aδ)−1 is equal to the distribution
corresponding to e At iR+(t).

Example A.13 The derivative of (I δ̇−Aδ)−1 is equal to Iδ+(I δ̇−Aδ)−1 A. Indeed,
(I δ̇ − Aδ)−1 corresponds to the function e At iR+(t). This function makes a jump I

at t = 0, while the derivative of e At iR+(t) on R+ is given by e At AiR+(t). The latter
corresponds to the distribution (I δ̇− Aδ)−1 A. It is an easy exercise to verify that the
i th derivative of (I δ̇ − Aδ)−1 equals

Iδ(i−1) + Aδ(i−2) + · · · + Ai−1δ + (I δ̇ − A)−1 Ai .

If G(s) is a real rational matrix then we can associate with G(s) a matrix distri-
bution G(δ̇). If G i j (s) is the (i, j)-component of G(s) then we define G(δ̇) compo-
nentwise by

(G(δ̇))i j : = Gi j (δ̇).

The following observations are then important to us:

Theorem A.14

(i) Let G1(s) and G2(s) be real rational matrices of the same dimensions. Then

(G1 + G2)(δ̇) = G1(δ̇)+ G2(δ̇).

(ii) Let G1(s) and G2(s) be real rational matrices such that G1G2 exists. Then

(G1G2)(δ̇) = G1(δ̇) ∗ G1(δ̇).

(iii) Let G(s) be a right-invertible real rational matrix and let H (s) be a right-

inverse of G(s) (i.e. G H = I ). Then G(δ̇) is right-invertible and has a right-

inverse H (δ̇).

(iv) Let G(s) be an invertible real rational matrix with inverse G−1(s). Then G(δ̇)

is invertible and we have G(δ̇)−1 = G−1(δ̇).

Proof : Of course (iii) and (iv) are immediate consequences of (ii). For the proofs of
(i) and (ii) we only need to consider the scalar case. The extension to the matrix case
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is then straightforward . First assume that g1(s) and g2(s) are real polynomials. It is
easily verified that (g1 · g2)(δ̇) = g1(δ̇) ∗ g2(δ̇). Next, if g1 	= 0 and g2 	= 0 then we
obviously have

(g1 · g2)(δ̇)
−1 = g1(δ̇)

−1 ∗ g2(δ̇)
−1.

Now, let g1(s) and g2(s) be real rational functions. Let g i (s) = ni (s)/di (s). We have

(g1 · g2)(δ̇) = (n1 · n2)(δ̇) ∗ (d1 · d2)(δ̇)
−1

= n1(δ̇) ∗ n2(δ̇) ∗ d1(δ̇)
−1 ∗ d2(δ̇)

−1

= g1(δ̇) ∗ g2(δ̇).

A proof of (i) can be given similarly. This details are left to the reader.

Example A.15 Let T (s) : = (I s − A)−1. We claim that T (δ̇) = (I δ̇ − Aδ)−1 (see
A.12). Indeed, let R(s) = I s − A. Then R(δ̇) = I δ̇− Aδ. Also, T (s) = R−1(s). By
theorem A.14 we therefore have

T (δ̇) = R−1(δ̇) = R(δ̇)−1 = (I δ̇ − Aδ)−1.

Example A.16 Let G(s) : = C(I s− A)−1 B+D be the transfer matrix of the system
� = (A, B, C, D). We claim that G(δ̇) = C(I δ̇ − Aδ)−1 B + Dδ. The proof of this
uses theorem A.14 and example A.15 and is left to the reader.

A.1 Notes and references

The delta distribution was introduced by Heaviside as an artifice for dealing with
various mathematical and physical problems, in particular for systems with impulsive
inputs. In the original treatment it was considered a function, and called the delta
function. However, it was clear from the outset that no function can exist that satisfies
the conditions imposed on the delta function.

The general theory of distributions due to Laurent Schwartz (see [175]) gives
a mathematically satisfactory description of the impulse. The theory leans heavily
on functional analytic methods, in particular locally convex spaces. Especially the
definition of convolution was rather involved. A more accessible treatment is given
in Schwartz [114]. In Hautus [70], the convolution was defined in an rather ad hoc,
but quick way. The reader interested in more advanced properties of distributions is
advised the get acquainted with the ‘official’ definition.
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