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Abstract. This paper deals with a nonlinear beam model which was published by
D.Y.Gao in 1996. It is considered either pure bending or a unilateral contact with elastic
foundation, where the normal compliance condition is employed. Under additional as-
sumptions on data, higher regularity of solution is proved. It enables us to transform the
problem into a control variational problem. For basic types of boundary conditions, suitable
transformations of the problem are derived. The control variational problem contains a
simple linear state problem and it is solved by the conditioned gradient method. Illustrative
numerical examples are introduced in order to compare the Gao beam with the classical
Euler-Bernoulli beam.
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1. Introduction

Beams are essential components of many engineering constructions, thus knowl-

edge how to solve various beam problems is quite important. The classical Euler-

Bernoulli model is still the most popular but as a linear model has certain limits

of applicability. This paper deals with a mathematical beam model governed by

a fourth-order nonlinear differential equation which was introduced by Gao in [9].

The beam is subjected to an axial constant force and transverse loads, i.e., loads

that act perpendicular to the longitudinal axis of the beam.
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If a tension is prescribed in the axial direction then the energy potential is convex

and the problem has a unique solution. The same holds for a sufficiently small axial

compression. However, the energy potential is nonconvex for larger compression

and has three local extremes. This leads to a physical phenomenon which is known

as buckling. In [6] the nonconvex case with the axial compression was studied by

means of the so-called canonical dual finite element method and Gao’s canonical dual

transformation, see [10].

Further, interaction between the beam and the foundation is often studied. The

foundation can be either rigid or deformable. In the former case, we arrive at Sig-

norini’s conditions leading to variational inequalities (see, e.g., [13] or [14]). We will

consider the deformable foundation based on the normal compliance contact condi-

tion (see, e.g., [22], [24]). This condition can be included into the beam models by

an additional nonlinear term. The Euler-Bernoulli beam model enriched with this

nonlinear term was studied in [15], [17], [26], [27], [23]. The Gao beam model with

the normal compliance contact condition was introduced in a recent paper [11].

For the sake of completeness, we note that the dynamic contact of the Gao beam

with a reactive or rigid foundation was described recently in [3]. Vibration charac-

teristic of contacting one-dimensional structures with a Gao beam were dealt with in

[2], where the model, existence of weak solutions, and computer simulations can be

found. It is interesting to note that dynamic problems with the normal compliance

condition have always a unique solution. Nevertheless, the dynamic models are out

of the scope of this paper.

In this paper, we focus on a transformation of the static Gao beam model into an

optimal control problem. This idea is motivated by the monograph [20]. The optimal

control problems are studied, e.g., in [16], [28]. The transformation of the problem

is called the control variational method (CVM). CVM was introduced in [4] for the

first time. Later, it was applied to solve contact problems with the Euler-Bernoulli

beam [25], [5]. Recently, CVM was used for solution of contact problems with the

Gao beam [18] and [19].

Unlike [18] and [19], we transform the original beam model into the optimal control

problem, which is convex and smooth and the related set of admissible control vari-

ables coincides with a linear space. Numerical solution of such a problem is therefore

much simpler. Moreover, we present an abstract framework how to construct various

transformations of the original problem into the optimal control problem by using

higher regularity of the solution. This enables us to find an efficient transformation

depending on prescribed boundary conditions.

The rest of the paper is organized as follows. In Section 2, the nonlinear Gao

beam problem is introduced and analyzed. In Section 3, the transformations of the

problem into the optimal control one are presented for various boundary conditions.
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In Section 4, the contact problem including the Gao beam and the deformable foun-

dation is formulated and the main results are extended to this case. Section 5 is

devoted to numerical examples where the Gao beam is compared with the classical

Euler-Bernoulli beam. Some concluding remarks are introduced in Section 6.

2. Gao beam

In this section we introduce a nonlinear mathematical beam model which was

invented by D.Y.Gao. Next considerations will adhere to the following assumptions:

⊲ the Euler-Bernoulli hypothesis is valid (i.e. straight lines orthogonal to the mid-

surface remain straight and orthogonal to it even after a deformation),

⊲ the material of the beam is isotropic,

⊲ the beam has a uniform cross-section of a rectangular shape,

⊲ in addition to a transverse load, an axial load will also be considered here.

Using the finite deformation theory for Hooke’s material Gao proposed in [9] non-

linear beam model with moderately large elastic deformations. Contrary to the

Euler-Bernoulli beam model, neither the stresses nor the deformations of the cross

sections in the lateral direction are neglected in the Gao model.

Let us denote by E the Young modulus, I the area moment of inertia, q the

distributed transverse load, ν the Poisson ratio, L the length of the beam, 2h its

height and b its width. Further, we set

(2.1) I = 2
3h

3b, α = 3hb(1− ν2), µ = (1 + ν)(1 − ν2), f = (1− ν2)q.

Finally, we introduce the constant axial force P and assume that P > 0 and P < 0

cause a compression and a tension, respectively, see Fig. 1.

x

w f

P
EI

L2h

Figure 1. Nonlinear Gao beam.

The model can be described by the following fourth-order differential equation

with respect to the unknown deflection w of the beam [9]:

(2.2) EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f in (0, L).
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The model can be completed by one of the following sets of stable and unsta-

ble boundary conditions (the eventual unstable conditions are separated by comma

within each set):

(B1) clamped (or fixed) beam

w(0) = w′(0) = w(L) = w′(L) = 0,

(B2) propped cantilever beam

w(0) = w′(0) = w(L) = 0, w′′(L) = 0,

(B3) cantilever beam

w(0) = w′(0) = 0, w′′(L) = EIw′′′(L)− 1
3Eα(w′(L))3 + Pµw′(L) = 0,

(B4) simply supported beam

w(0) = w(L) = 0, w′′(0) = w′′(L) = 0.

R em a r k 2.1. The classical Euler-Bernoulli beam model is known primarily in

the form EIw′′′′ = q in (0, L). Including the axial force, we arrive at the equation

EIw′′′′ + Pw′′ = q in (0, L) (see, e.g., [7]).

From now on, we will assume:

(A1) f belongs to L2((0, L)),

(A2) E, I, α, µ are positive constants.

In order to introduce the variational setting of the problem, we define the space

V of admissible displacements, which satisfies H2
0 ((0, L)) ⊂ V ⊂ H2((0, L)) and

contains the constraints on the stable boundary conditions specified above. For

example, we have V = H2
0 ((0, L)) for the boundary conditions (B1). Further, let

(·, ·)k and ‖·‖k denote the standard scalar product and the corresponding norm in
Hk((0, L)), k = 0, 1, 2, . . ., respectively, where H0((0, L)) = L2((0, L)). We will use

the fact that the space Hk((0, L)), k = 1, 2, . . ., can be continuously embedded into

Ck−1([0, L]) (see [1]). Especially, we have:

(2.3) ∃ cE > 0: max
x∈[0,L]

|v′(x)| 6 cE‖v‖2 ∀ v ∈ H2((0, L)).

We will also use the Friedrichs-type inequality

(2.4) ∃ cI > 0: ‖v′′‖20 > cI‖v‖22 ∀ v ∈ V,

which holds for any V defined by the boundary conditions (B1), (B2), (B3), or (B4).

From the differential equation (2.2) and the related boundary conditions, we arrive

at the nonlinear variational equation

(2.5) find w ∈ V : a(w, v)− d(w, v) + π(w, v) = (f, v)0 ∀ v ∈ V,

664



where the forms a, d, π : V × V → R are defined as follows:

a(w, v) = EI

∫ L

0

w′′v′′ dx, d(w, v) = Pµ

∫ L

0

w′v′ dx, π(w, v) =
1

3
Eα

∫ L

0

(w′)3v′ dx.

We see that the forms a, d are bilinear while π is nonlinear in the first component.

The inequality (2.3) implies that π is well-defined in V × V .

The variational problem related to (2.5) consists of the minimization of the energy

potential (see [9]):

(2.6) find w ∈ V : ΠG(w) = min
v∈V

ΠG(v).

Here

(2.7) ΠG(v) = Π0(v) + ΠN (v) + ΠP (v), v ∈ V,

where

Π0(v) =
1

2
a(v, v)− (f, v)0 =

1

2
EI

∫ L

0

(v′′)2 dx−
∫ L

0

fv dx,(2.8)

ΠN (v) =
1

4
π(v, v) =

1

12
Eα

∫ L

0

(v′)4 dx,(2.9)

ΠP (v) = −1

2
d(v, v) = −1

2
Pµ

∫ L

0

(v′)2 dx.(2.10)

Notice that the functional ΠG is continuous in V . In particular, the continuity of

the part ΠN follows from (2.3). In order to show the existence of a solution to (2.6),

we shall investigate the convexity and the coercivity of ΠG in V .

Lemma 2.1. Let the assumptions (A1), (A2) hold and define

(2.11) P = min
v∈V
v 6=0

EI‖v′′‖20
µ‖v′‖20

.

Then the functional ΠG is

(1) coercive in V ,

(2) convex in V if P 6 P ,

(3) strictly convex in V if P < P .
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P r o o f. From the Hölder inequality, we have:

‖v′‖20 6
√
L‖(v′)2‖0 ∀ v ∈ H2((0, L)).

Hence and from the Friedrichs inequality (2.4) we derive the coercivity of ΠG in V :

ΠG(v) =
1

2
EI‖v′′‖20 +

1

12
Eα‖(v′)2‖20 −

1

2
Pµ‖v′‖20 − (f, v)0

>
1

2
EIcI‖v‖22 +

1

12
EαL−1/2‖v′‖40 −

1

2
Pµ‖v′‖20 − ‖f‖0‖v‖2 → ∞

as ‖v‖2 → ∞.

The convexity of ΠG in V can be shown by using the second Gâteaux differential

(2.12) Π′′
G(w; v, v) = EI‖v′′‖20 − Pµ‖v′‖20 + Eα

∫ L

0

(w′)2(v′)2 dx

> 0 ∀ v, w ∈ V, ∀P 6 P .

Analogously, we derive the sufficient condition for the strict convexity of ΠG in V .

�

R em a r k 2.2. From (2.12), we see that the condition P 6 P need not be neces-

sary for the convexity of ΠG in V . So the critical value, P
G
cr , of the compressive axial

force for the Gao beam can be higher, i.e., PG
cr > P . On the other hand, P defines

the critical value of the Euler-Bernoulli beam (see Remark 2.1), i.e. PE
cr = P . Beyond

PE
cr , the Euler-Bernoulli energy potential is nonconvex with two local minima and

one local maximum. This phenomenon is called buckling, see e.g. [7]. Extension of

this result for the Gao beam was done, e.g. in [12].

From now on, we will investigate only the strict convex case and assume

(A3) P is a constant such that P < P .

We arrive at the following existence result.

Theorem 2.1. Let the assumptions (A1)–(A3) be satisfied. Then the problems

(2.6) and (2.5) are equivalent and have a unique solution w ∈ V . Moreover, w ∈
H4((0, L)).

P r o o f. Notice that the convex and continuous functional in a Hilbert space is

also weakly lower semicontinuous. Therefore, the first part of the theorem follows

from the well-known result of variational calculus, see, e.g. [8].

Further, the differential equation

(2.13) EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f
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is meaningful in the sense of distributional derivatives. Clearly, f and w′′ belong to

L2((0, L)). Moreover, from (2.3), it follows that (w′)2w′′ ∈ L2((0, L)). Consequently,

we obtain w′′′′ ∈ L2((0, L)). Hence, w ∈ H4((0, L)). �

R em a r k 2.3. We emphasize that the higher regularity of the solution follows

from the additional assumptions (A1)–(A3) on the given data. Notice that the

differential equation (2.13) holds almost everywhere in (0, L). The boundary condi-

tions (B1)–(B4) are also well-defined due to the continuous embedding of H4((0, L))

into C3([0, L]). So the higher regularity of the solution enables us to work with

the classical setting of the problem. We use this fact for easier explanation of the

transformations presented in the next section.

3. Optimal control problems and Gao beam bending

We have shown that the Gao beam problem (2.6) has a unique solution w ∈
V ∩H4((0, L)) satisfying

(3.1) ΠG(w) 6 ΠG(v) ∀ v ∈ V,

under the assumptions (A1)–(A3). Transformation of (3.1) into an optimal control

problem is based on the following auxiliary result.

Theorem 3.1. Let (A1)–(A3) hold and U,W be two Hilbert spaces such that:

(i) W ⊂ V ∩H4((0, L)),

(ii) the solution w to (3.1) belongs to W ,

(iii) there is a bijective mapping T : U → W with the inverse T−1 : W → U .

Then u∗ = T−1w ∈ U is a unique solution to the minimization problem

(3.2) ΠG(Tu
∗) 6 ΠG(Tu) ∀u ∈ U.

P r o o f. From assumptions (i) and (ii) it follows that w ∈ W is also a unique

solution to the problem

(3.3) ΠG(w) 6 ΠG(v) ∀ v ∈ W.

Since T : U → W is bijective, the inequality (3.3) can be transformed to (3.2),

where u∗ = T−1w ∈ U . Clearly, u∗ is a solution to (3.2) if and only if w solves (3.3).

Therefore, the uniqueness of w implies that there is a unique solution to (3.2). �
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As we shall see, the construction of T will require to solve a state problem for

given u ∈ U . Therefore, the problem (3.2) can be interpreted as the optimal control

problem. For the transformation T to be meaningful, the related state problem

should be simpler than the original one. Especially, if the state problem is linear

then the mapping T will be affine, i.e., Tu = T0u+ŵ, where ŵ ∈ W and T0 : U → W

is linear. In such a case, one can easily show the following useful result.

Corollary 3.1. Let all assumptions of Theorem 3.1 be satisfied and T : U → W

be affine, in addition. Then the functional J : U → R, J(u) = ΠG(Tu), is strictly

convex, continuous, coercive and Gâteaux differentiable in U . In particular, the

Gâteaux differential of J at u in the direction z reads

(3.4) J ′(u; z) = a(Tu, T0z) + π(Tu, T0z)− d(Tu, T0z)− (f, T0z)0.

In Sections 3.1–3.4, we derive a suitable transformation T : U → W for the bound-

ary conditions (B1)–(B4), respectively. In order to simplify the derivation, we will

work with the classical setting of the problem which is meaningful due to the higher

regularity of the solution to (3.1), see Remark 2.3.

3.1. Transformation of the Gao problem for boundary conditions (B1).

The Gao beam problem for the boundary conditions (B1) can be written under the

assumptions (A1)–(A3) as follows:

(3.5)





find w ∈ H4((0, L)) such that

EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f a.e. in (0, L),

w(0) = w′(0) = w(L) = w′(L) = 0.

Here, we set V := H2
0 ((0, L)), W := V ∩ H4((0, L)) and U := L2((0, L)). The

idea of the transformation is based on a simplification of the fourth-order nonlinear

differential equation by the substitution:

(3.6) EIw′′′′ = f + u∗, u∗ = Eα(w′)2w′′ − Pµw′′.

The related state problem reads:

(3.7)





given u ∈ U, find wu ∈ W such that

EIwu
′′′′ = f + u a.e. in (0, L),

wu(0) = w′
u(0) = wu(L) = w′

u(L) = 0.

Clearly, the problem (3.7) has a unique solution wu under the assumptions (A1)–

(A3) and defines the bijective mapping T : U → W , T : u 7→ wu, with the inverse

T−1v = EIv′′′′ − f for any v ∈ W . Moreover, T is affine, i.e., Tu = T0u+ ŵ, where

T0 is linear and ŵ = wu ∈ W is a solution to (3.7) for u = 0.

668



R em a r k 3.1. From (3.6) it follows that the solution u∗ = T−1w of the optimal

control problem belongs to C1([0, L]), in addition.

3.2. Transformation of the Gao problem for boundary conditions (B2).

The Gao beam problem for the boundary conditions (B2) can be written under the

assumptions (A1)–(A3) as follows:

(3.8)





find w ∈ H4((0, L)) such that

EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f a.e. in (0, L),

w(0) = w′(0) = w(L) = 0, w′′(L) = 0.

Analogously to the previous problem with conditions (B1), we set

V := {v ∈ H2((0, L)) ; v(0) = v′(0) = v(L) = 0},
W := {v ∈ H4((0, L)) ; v(0) = v′(0) = v(L) = v′′(L) = 0},

and define the following state problem based on the substitution (3.6):

(3.9)





given u ∈ U := L2((0, L)), find wu ∈ W such that

EIwu
′′′′ = f + u a.e. in (0, L),

wu(0) = w′
u(0) = wu(L) = wu

′′(L) = 0.

Clearly, the problem (3.9) has a unique solution wu under the assumptions (A1)–

(A3) and defines the bijective affine mapping T : U → W , T : u 7→ wu, with the

inverse T−1v = EIv′′′′ − f for any v ∈ W .

R em a r k 3.2. From (3.6) it follows that the solution u∗ = T−1w of the optimal

control problem belongs to C1([0, L]), in addition.

3.3. Transformation of the Gao problem for boundary conditions (B3).

The Gao beam problem for the boundary conditions (B3) can be written under the

assumptions (A1)–(A3) as follows:

(3.10)





find w ∈ H4((0, L)) such that

EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f a.e. in (0, L),

w(0) = w′(0) = 0, w′′(L) = EIw′′′(L)− 1
3Eα(w′(L))3 + Pµw′(L) = 0.

We set
V := {v ∈ H2((0, L)) ; v(0) = v′(0) = 0},
W := {v ∈ H4((0, L)) ; v(0) = v′(0) = v′′(L) = 0}.
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Unlike the two previous cases, we have one nonlinear boundary condition, here.

Therefore, we suggest the substitution

(3.11)

{
EIw′′′′ = f + ũ∗, ũ∗ = Eα(w′)2w′′ − Pµw′′,

EIw′′′(L) = p∗, p∗ = 1
3Eα(w′(L))3 − Pµw′(L).

Then we arrive at U := L2((0, L))× R and the state problem

(3.12)





given u = (ũ, p) ∈ U, find wu ∈ W such that

EIwu
′′′′ = f + ũ a.e. in (0, L),

wu(0) = w′
u(0) = wu

′′(L), EIwu
′′′(L) = p.

Clearly, the problem (3.12) has a unique solution wu under the assumptions (A1)–

(A3) and defines the bijective mapping T : U → W , T : u 7→ wu, with the inverse

T−1v = (EIv′′′′ − f, EIv′′′(L)) for any v ∈ W . Moreover, T is affine, i.e., Tu =

T0u + ŵ, where T0 is linear and ŵ = wu ∈ W is a solution to (3.12) for u = (ũ, p),

where ũ = 0 and p = 0.

R em a r k 3.3. From (3.6) it follows that the solution u∗ = T−1w of the optimal

control problem belongs to C1([0, L]), in addition.

3.4. Transformation of the Gao problem for boundary conditions (B4).

The Gao beam problem for the boundary conditions (B4) can be written under the

assumptions (A1)–(A3) as follows:

(3.13)





find w ∈ H4((0, L)) such that

EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f a.e. in (0, L),

w(0) = w(L) = 0, w′′(0) = w′′(L) = 0.

We set
V := {v ∈ H2((0, L)) ; v(0) = v(L) = 0},
W := {v ∈ H4((0, L)) ; v(0) = v′′(0) = v(L) = v′′(L) = 0}.

As in the case (B1) or (B2), one can choose U := L2((0, L)) and the substitution

(3.6) to transform the problem (3.13). Nevertheless, we will present another possible

transformation of the problem with a simpler state problem.

To this end, we introduce the auxiliary functions g, u∗ ∈ H2((0, L)) ∩H1
0 ((0, L)),

which are uniquely defined by the differential equations

(3.14) g′′ = f, (u∗)′′ = Eα(w′)2w′′ − Pµw′′ a.e. in (0, L).
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If we substitute (3.14) into (3.13) and use the conditions w′′(0) = w′′(L) = 0, we

arrive at the equation

EIw′′ = g + u∗ a.e. in (0, L).

This substitution enables us to set U = H2((0, L)) ∩ H1
0 ((0, L)) and define the fol-

lowing state problem:

(3.15)

{
given u ∈ U, find wu ∈ W such that

EIwu
′′ = g + u.

It is easy to verify that the solution wu is uniquely defined and in addition, it belongs

to W . Therefore, one can introduce the bijective mapping T : U → W , T : u 7→ wu,

with the inverse T−1v = EIv′′ − g for any v ∈ W . Moreover, T is affine, i.e.,

Tu = T0u+ ŵ, where T0 is linear and ŵ = wu ∈ W is a solution to (3.15) for u = 0.

R em a r k 3.4. From (3.14) it follows that the solution u∗ = T−1w of the optimal

control problem belongs to C1([0, L]), in addition.

4. Contact problems for Gao beam and deformable foundation

The aim of this section is to extend the results from Sections 2 and 3 to the contact

problem including the Gao beam and the deformable foundation. We assume that

the beam is situated above the foundation, which is represented by a smooth function

g 6 0, see Figure 2.

x

w f

P

g LcF

Figure 2. Gao beam and deformable foundation.

We consider the interaction between the beam and the foundation based on the

normal compliance contact conditions (see e.g. [22], [24]). Then we arrive at the

following nonlinear differential equation for the deflection of the beam:

(4.1) EIw′′′′ − Eα(w′)2w′′ + Pµw′′ = f + cF (g − w)+ in (0, L).

Here, v+(x) = max{0, v(x)} and cF = (1 − ν2)kF with the foundation modulus

kF > 0. To be in accordance with (A1), we assume that cF > 0 is constant. The
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additional last term represents the contact forces on the foundation. We see that

the foundation is active only at x ∈ (0, L), where w(x) < g(x). Notice that such

penetration is not possible for the rigid foundation.

Further, the presence of the foundation does not influence boundary conditions.

Therefore, one can consider, e.g., the conditions (B1), (B2), (B3), or (B4) introduced

in Section 2.

The weak formulation of the problem consisting of (4.1) and the boundary condi-

tions reads

(4.2) find w ∈ V : a(w, v) − d(w, v) + π(w, v) − κ(w, v) = (f, v)0 ∀ v ∈ V,

where

(4.3) κ(w, v) =

∫ L

0

cF (g − w)+v dx, w, v ∈ V.

This additional term is associated with the potential

(4.4) ΠF (v) =
1

2

∫ L

0

cF ((g − v)+)
2
dx.

Hence, the total potential energy is given by the sum of (2.7) and (4.4):

(4.5) Π(v) = ΠG(v) + ΠF (v) = Π0(v) + ΠN (v) + ΠP (v) + ΠF (v), v ∈ V.

The corresponding minimization problem reads

(4.6) find w ∈ V : Π(w) = min
v∈V

Π(v).

Since the additional functional ΠF is nonnegative, convex, continuous and Gâteaux

differentiable in V , one can straightforwardly extend Theorem 2.1.

Theorem 4.1. Let the assumptions (A1)–(A3) be satisfied. Then the problems

(4.6) and (4.2) are equivalent and have a unique solution w ∈ V . Moreover, w ∈
H4((0, L)).

Theorem 3.1 can be also easily modified so that the optimal control problem is in

the form

(4.7) Π(Tu∗) 6 Π(Tu) ∀u ∈ U,

instead of (3.2). The state problems (3.7), (3.9), (3.12), (3.15), which define the

operator T depending on the boundary conditions, remain the same even in the
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case of the contact problem. The substitutions (3.6), (3.11), (3.14) are modified as

follows:

EIw′′′′ = f + u∗, u∗ = Eα(w′)2w′′ − Pµw′′ + cF (g − w)+,(4.8) {
EIw′′′′ = f + ũ∗, ũ∗ = Eα(w′)2w′′ − Pµw′′ + cF (g − w)+,

EIw′′′(L) = p∗, p∗ = 1
3Eα(w′(L))3 − Pµw′(L),

(4.9)

{
u∗ ∈ H2((0, L)) ∩H1

0 ((0, L)),

(u∗)′′ = Eα(w′)2w′′ − Pµw′′ + cF (g − w)+,
(4.10)

respectively.

5. Numerical realization and examples

Details on numerical solution of the Gao beam problem based on the control vari-

ational method including sensitivity analysis can be found in [18]. We recapitulate

briefly its main principles. The optimal control problem is discretized by the stan-

dard finite element method (see, e.g., [21]) and solved by the conditioned gradient

method (see [28]). The sensitivity analysis is based on formula (3.4). In particular,

the cubic Hermite elements (see [21]) are used for solution of the state problem while

conforming linear elements are considered for the control variable.

Below we present Examples 1–4 with the boundary conditions (B1), (B2), (B3),

and (B4), respectively. We always set: E = 21 · 104MPa, ν = 0.3, h = 0.1m,

I = 2
3h

3 = 0.666,667 · 10−3m4, L = 1m. The lateral load q is assumed to be

uniformly distributed, i.e., the function f is constant. In each example, we compare

the results for the pure bending problem (2.6) and the contact problem (4.6) with the

deformable foundation given by the constant gap g = 0.001m and kF = 5·108Nm−2.

We choose the equidistant partition [0, L] with 32 elements.

In Examples 1–4, we set the following transverse and axial forces:

q = −1 · 108 Nm−1, P = −108N,

q = −5 · 107 Nm−1, P = +108N,

q = −2 · 106 Nm−1, P = +108N,

q = −5 · 107 Nm−1, P = −108N,

respectively. The results of Examples 1–4 are depicted in Figures 3–6, respectively.

The beam deflection is visualized there. For comparison, we also depict the corre-

sponding deflection of the classical Euler-Bernoulli beam (dashed line). The dotted
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Figure 3. Example 1 for (B1): left—pure bending; right—contact with foundation.
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Figure 4. Example 2 for (B2): left—pure bending; right—contact with foundation.

lines represent the foundation. We see that the Gao beam is tougher than the classi-

cal Euler-Bernoulli beam. Further, we observed that the results remain visually the

same even for much finer partitions of [0, L].

6. Conclusion

We have presented a suitable transformation of the Gao beam problem to the opti-

mal control problem depending on prescribed boundary conditions. The transforma-

tion has been derived under higher regularity of a solution to the beam problem. The

optimal control problem remains convex and smooth, and the corresponding state

problem is linear. Therefore, this transformation is convenient even for numerical

solution.

In this work, we have assumed that the axial force is such that the energy potential

is convex. This need not be true for larger compressive axial forces. Nevertheless, it
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Figure 5. Example 3 for (B3): left—pure bending; right—contact with foundation.
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Figure 6. Example 4 for (B4): left—pure bending; right—contact with foundation.

seems that the presented transformation of the problem remains meaningful even for

the nonconvex case and thus this technique could be promising for numerical solution.

The extension of the results to the nonconvex case is the aim of our ongoing research.

A c k n ow l e d gm e n t s. The authors are very grateful to the referees whose

valuable comments contributed to improve this work.
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