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ABSTRACT 

The development of the control volume method for the thermal convection problem in 
a rotating spherical shell is presented. In contrast to the spectral methods, commonly used 
in geodynamo simulations, the control volume method belongs to the class of grid 
methods (the solution is approximated by a set of discrete values in physical space). In the 
present paper we concentrate on some problems of convergence and stability of the 
method. Case 0 of the numerical dynamo benchmark (Christensen et al., 2001, Phys. 
Earth Planet. Inter., 128, 25-34) was used to check the correctness of our computer code. 
The results demonstrate good convergence to the suggested standard solution.  

 
K e yw ord s :  Liquid core, dynamo benchmark, finite volume method, SIMPLE 

algorithm  
 

1. INTRODUCTION  

In recent decades numerical studies of the MHD process in the liquid core of the Earth 
have become an important part of the dynamo theory as well as geophysics in general. 
This problem considers thermal and compositional convection and magnetic field 
generation by the conductive fluid in the core (see overview of the recent results in Jones, 
2000). Since only the simplest spatial cases can be checked by analytical solutions, testing 
of the numerical code in the full non-linear regimes appears to be the issue of the day. For 
this purpose the benchmark for convection (Case 0) as well as for the full MHD problem 
was proposed in Christensen et al. (2001). Six groups contributed numerical solutions 
which showed good agreement. Despite the variety of numerical codes, all are based on 
similar principles. All the unknowns are expanded in spherical harmonics in angular 
coordinates and the non-linear terms are evaluated at grid points using the transformation 
between spectral and grid spaces. Substantial differences are only in the treatment of the 
radial dependence (expansion into Chebyshev polynomials or finite differences).  
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The use of regular grids in spectral coordinates is difficult because the Courant 
condition for the stability is hard to satisfy near the polar axis and the differencing scheme 
is singular there. Gilman and Miller (1981) and Kageyama et al. (1995) overcame this 
problem by imposing regularity conditions and filtering the short wavelengths at the 
poles. (See also special transformations of the variables used in Nakajima and Roberts, 
1995 and Hejda and Reshetnyak, 2000, which helped to overcome numerical instabilities 
near the axis and the center.)  

The other way to overcome the difficulties caused by the singularities of the 
coefficients is the usage of weighted coefficients. The control volume method, otherwise 
known as the finite volume method, belongs to this class. The basic strategy of this 
numerical scheme is to express the differential equations at each point in conservative 
form, to integrate them over the control volume and convert each such integral into the 
sum of integrals over the boundary faces by means of Gauss’ theorem. As the area of the 
faces close to the axis of rotation (or to the center of the sphere) is indirectly proportional 
to the singular coefficients, the resulting grid equations are non-singular. The control 
volume approach displays very stable numerical behavior even in cases of complex spatial 
and time behaviour of the simulated fields. No numerical problems appear near the axis 
and the center.  

The application of the control volume method to the solution of dynamo problem was 
explained in Hejda and Reshetnyak (2003). In the present paper we re-examine the 
hydrodynamic part of the problem (thermal convection) paying more attention to the 
problem of stability and convergence of the solution. The correctness of the computer 
code was checked by Case 0 of the dynamo benchmark (Christensen et al., 2001).  

 
2. BASIC EQUATIONS AND METHOD OF SOLUTION 

The thermal convection of an incompressible fluid (∇ . V = 0) in the Boussinesq 
approximation in a spherical shell (ri < r < r0) rotating with angular velocity Ω is 
described by the Navier-Stokes equation,  

 ( ) 2
oR P
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and the heat flux equation, 
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∂
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The equations are scaled with the radius of sphere L as the fundamental length scale, 
which makes the dimensionless radius ro = 1; the inner core radius ri is, similarly to that 
of the Earth, equal to 0.35. Velocity V, pressure P and time t are then measured in units of 
ν / L, ρν2 / L2 and L2 / ν2, respectively, where ν is kinematic viscosity, ρ is density, 
Ro = ν / 2ΩL2 is the Rossby number and E = ν / 2ΩL2 is the Ekman number. Force F 
includes the Coriolis and Archimedean forces: F = −1z × V + qRaTr1r where (r, θ, ϕ) is 
the spherical coordinate system, 1z is the unit vector along the axis of rotation and 
Ra = α goδTL/2Ωκ is the modified Rayleigh number, α is the coefficient of volume 
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expansion, δT is the drop of temperature through the shell, go is the gravity acceleration at 
r = r0 and q = κ /ν is the inverse value of the Prandtl number. Eqs (1 – 2) are closed by the 
non-penetrating and no-slip boundary conditions for the velocity field at the rigid surfaces 
and constant temperature Ti = 1 and T0 = 0 at the inner and outer boundaries of the shell.  

To solve Eqs (1 – 2) we have used the control volume method1. It is assumed that all 
fields are defined at the nodes which are the centers of grid cells (control volumes). In 
contrast to the finite element method the faces of the control volumes are perpendicular to 
the coordinate axes. The basic strategy of the method is to express the differential 
equations in conservative form, integrate them over the control volumes and convert every 
such integral into the sum of fluxes over the boundary faces by means of Gauss’ theorem.  
It is advantageous to employ a different grid for each component of vector fields (and an 
additional grid for the scalar field). Then, if we consider, e.g., the heat flux equation, the 
velocity components are calculated for the points that lie on the corresponding faces of the 
control volumes (vr is calculated at the faces that are normal to the r-direction, etc.). The 
discrete form of the system of linear equations is represented by the band matrix. Note, 
that it is the flux form of equations which allow us to omit the boundary conditions at the 
axis (and the center of the sphere if the magnetic field is taken into account) because the 
flux is zero at the faces with zero area. Nevertheless, extrapolation to the axis is necessary 
in some situations. It is well known that convection-diffusion problems are prone to 
instabilities for larger Reynolds numbers. Whereas the simplest remedy for this difficulty 
is the up-wind scheme, we have used the power-law scheme which is of the second order 
of accuracy (Patankar, 1980). The linear system of equations was solved using tridiagonal 
solver in r-direction and the Gauss-Seidel iterative algorithm with underrelaxation in the 
tangential directions.  

 
3. RESULTS OF THE BENCHMARK SOLUTION 

The solution of the dynamo benchmark is quasi-stationary, drifting slowly with 
frequency ω in longitude. The solution is symmetric about the equator and has fourfold 
symmetry in longitude. In accordance with Christensen et al. (2001) we present the drift 
frequency ω, mean kinetic energy over the shell volume as well as the local temperature T 
and azimuthal velocity Vϕ at point P0 : r = (r0 + ri) /2, ϑ = π /2 for which Vr = 0 and 

0rV
ϕ

∂
>

∂
.  

After renormalization of Eqs (1 – 2) due to the different definition of units the 
benchmark parameters for the “Case 0” regime correspond to E = 2.1125 × 10−4, 
Ra = 76.92, Ro = 2.1125 × 10−4 and q = 1. Starting from the initial condition for the 
velocity field and temperature distribution recommended in Christensen et al. (2001) we 
integrated our equations in time up to the moment, when the growth rate of kinetic energy 
was equal to zero with a relative accuracy of less than 10−5. It was usually reached within 
                                                           
1  The systematic development of the control volume method (otherwise known as the finite 
volume method) for the heat flux equation and the Navier-Stokes equations can be found in 
Patankar (1980). The control volume approach for the full MHD problem in a spherical geometry 
was explained in more detail by Hejda and Reshetnyak (2003). 
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1 time unit. The typical space distribution of the velocity field and temperature are 
presented in Fig. 1. Such figures were obtained for all calculations in which the number of 
longitudional grid points Nϕ was higher than 48. For smaller Nϕ the number of convection 
columns depended on the number of grid points and was approximately equal to Nϕ /2 
thus indicating the non-physical origin of these structures. The number of grid points in 
radial and latitudional variables does not influence the basic structure of the solution but 
only its accuracy.  

The results which are summed up in Table 1 display good convergence to the 
suggested standard solution. One can hardly expect that for the benchmark case, where the 
convective cells are very close to some eigen-functions used in the spherical 
decomposition, our method could be more effective than the spectral. The lower accuracy 
of the drift frequency ω is understandable. As the solution is drifting slowly the difference 
between subsequent steps is very small and the computed drift depends strongly on the 
requested accuracy of the iterative process. A few hundred of time steps must be carried 
until the solution pattern moves to the next grid point. It is thus understandable that the 
accuracy of ω is of two orders lower than the accuracy of velocity and temperature. 
Similar results were obtained by Matsui and Okuda (2002) who used the finite element 
method.  

 

Fig. 1. Velocity field components (Vr, Vθ, Vϕ) (upper) and temperature T (below); equatorial 
(left) and axi-symmetrical meridional (right) sections. Minimal and maximal values for velocity 
components: (-25.1, 20.0), (-4.0, 4.0), (-27.9, 19.5) for meridional and (-0.47, 0.39), (-1.75, 1.75),  
(-9.80, 2.19) equatorial sections; for the both temperature field projections T ∈ (0, 1).  
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Table 1. Benchmark Case 0 – non-magnetic convection. Nr, Nθ, Nϕ are numbers of grid points, Eκ 
is the kinetic energy, T is the mean temperature, Vϕ – velocity and ω is the angular velocity at point 
P0. The bottom line corresponds to the suggested standard solution (Christensen et al., 2001). 

Nr Nθ Nϕ Eκ T Vϕ ω 

35 35 64 61.986 0.4386 -9.958 0.2638 
45 45 64 60.825 0.4316 -9.978 0.1123 
55 55 64 60.563 0.4313 -10.029 0.0886 
65 65 64 60.450 0.4312 -10.055 0.0984 
85 85 64 60.282 0.4311 -10.082 0.1338 

105 105 64 60.179 0.4310 -10.095 0.1556 
45 45 96 59.994 0.4294 -10.121 0.0853 
85 85 96 59.414 0.4291 -10.175 0.1187 

   58.348 0.4281 -10.157 0.1824 
 

 

All test calculations showed very good stability. The time step varied between 10−4 
and 10−3. An attempt to increase the time step sometimes led to an inadequate increase of 
the number of iterations and was thus non-productive. The nature of the problem and 
properties of the computer code allowed our simulations to be carried out on a Pentium-IV 
PC using double precision accuracy. Sun UltraSPARC III in single processor mode was 
used for the three largest cases.  

As was mentioned above, insufficient resolution in the longitudinal variable generates 
artificial columnar structures. The boundary between the false and proper solutions for the 
benchmark case was at about 48 longitudinal grid points. We expected the number of grid 
points to depend on the Ekman number and that is why we have carried out test 
calculations for the Ekman number five times higher i.e. E = 0.001. The calculations 
showed that 32 points were sufficient for this case.  
 

4. CONCLUSIONS  
 

The dynamo benchmark is a well-established standard solution for verifying any 
newly developed computer code for (magneto)convection in a rotating spherical shell. Our 
numerical code based on the control volume method went successfully through the first 
part of this test – non-magnetic convection. The results are similar to those obtained by 
finite element method (Matsui and Okuda, 2002).  

Our experience shows that the single processor code would not be sufficient for  
a computation of the full dynamo problem, including the dynamo benchmark. That is why 
we are now developing a parallel version of the computer code. Based on the MPI 
technology, it will be suitable for both, PC-clusters as well as high performance 
computers.  

It was already mentioned that the control volume method is not expected to do as well 
on the simple test solution as previous models that used spherical harmonic expansions. 
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However, control volume method will be more efficient on a parallel computer because 
only “nearest neighbor” communication between the processors would be needed – 
instead of the global communication needed for spherical harmonic codes. Therefore, 
when much higher spatial resolution is desired to simulate strongly turbulent convection, 
this method may be a better choice than a spherical harmonic method.  
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