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Abstract

The adoption of containment measures to reduce the amplitude of the epidemic peak

is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental

models must be modified and studied to correctly describe the effects of forced external

actions to reduce the impact of the disease. The importance of social structure, such as

the age dependence that proved essential in the recent COVID-19 pandemic, must be

considered, and in addition, the available data are often incomplete and heterogeneous,

so a high degree of uncertainty must be incorporated into the model from the beginning.

In this work we address these aspects, through an optimal control formulation of a

socially structured epidemic model in presence of uncertain data. After the introduction

of the optimal control problem, we formulate an instantaneous approximation of the

control that allows us to derive new feedback controlled compartmental models capable

of describing the epidemic peak reduction. The need for long-term interventions shows

that alternative actions based on the social structure of the system can be as effective as

the more expensive global strategy. The timing and intensity of interventions, however,

is particularly relevant in the case of uncertain parameters on the actual number of

infected people. Simulations related to data from the first wave of the recent COVID-

19 outbreak in Italy are presented and discussed.
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1 Introduction

From the digital tracking systems of the Koreans to UK’s initial choice of not wanting

to do anything to counter the spread of the virus, passing through the militarized

quarantines of the Chinese and those less authoritarian and more involved of the

Italians, the reaction of different countries to the COVID-19 outbreak has shown a

series of very different approaches that can also be explained considering the different

cultural and political attitudes of the countries concerned.

In all cases, after an initial phase, even those governments that were less restrictive

in the face of the pandemic’s inexorable progress had to take strong containment

measures. There’s a graph that has become the symbol of the COVID-19 pandemic

most of all. It shows in a simple and intuitive way the importance of slowing down

the spread of an epidemic as much as possible (“flattening the curve”), so that the

healthcare system can take care of all the sick without collapsing. Its success has helped

to save many lives, raising awareness of good practices to slow down an epidemic:

stay as much as possible at home, reduce social interactions and wash your hands

often and well.

These ”non-pharmaceutical” intervention measures, however, entail significant

social and economic costs and thus policy makers may not be able to maintain them

for more than a short period of time. Therefore, a modeling approach based on a

limited time horizon that takes into account the social structure of the population is

necessary in order to optimize containment strategies. Most current research, however,

has focused on control procedures aimed at optimizing the use of vaccinations and

medical treatments (Barro et al. 2018; Bolzoni et al. 2017; Lee et al. 2010; Colombo

and Garavello 2019) and only recently the problem has been tackled from the per-

spective of non-pharmaceutical interventions (Lin et al. 2010; Morris et al. 2020). In

addition, data collected by governments are often incomplete and heterogeneous, so

a high degree of uncertainty needs to be incorporated into predictive models (Capaldi

et al. 2012; Capistrán et al. 2012; Chowell 2017; Jagodnik et al. 2020; Mizumoto

et al. 2020; Roberts 2013). This is the case of the spreading of COVID-19 worldwide,

which have been often mistakenly underestimated due to a combination of factors,

including deficiencies in surveillance and diagnostic capacity, and the large number of

infectious but asymptomatic individuals (Jagodnik et al. 2020; Mizumoto et al. 2020;

Zhang et al. 2020).

For almost a hundred years, mathematical models have been used to describe the

spread of epidemics (Kermack and McKendrick 1927). The models currently used

largely originate from the model proposed by Kermack and McKendrick at the begin-

ning of last century. Even if the model contains strong simplification assumptions,

the concepts introduced through this model are essential to provide a first intuition

on the dynamics of epidemics, an intuition that remains confirmed in more complex

models, albeit with numerous modifications (see for example Hethcote 2000; Capasso

and Serio 1978). The model provides for the division of the population into compart-

ments, the susceptible, healthy individuals who may be infected, the infectious, who
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have already contracted the disease and can transmit it, and the removed, compartment

that includes those who are healed and immune.

The hypothesis made by Kermack and McKendrick is that of the homogeneous

“mixing”; that is, it is assumed that each individual has the same probability of con-

tacting any other individual in the population. One understands how this hypothesis

is unrealistic: we are often in contact with people from our family, our workplace,

school class, group of friends and very rarely with those who live in a different place,

have different ages and professions. In recent years, therefore, computational models

have been developed that try to take into account additional social characteristics of

individuals in order to arrive at more accurate predictions by keeping, however, the

simplicity of compartmental models (Castillo-Chavez et al. 1989; Glasser et al. 2012;

Lee et al. 2012; Hethcote 1996; Iannelli et al. 1992; Franceschetti and Pugliese 2008).

In this paper starting from a general compartmental model with social structure,

typically the age dependence, we consider the external action of a policy maker that

aims at reducing the spread of the epidemics by applying non pharmaceutical interven-

tion measures, such as social distancing and quarantine. The mathematical problem

is formulated as an optimal control problem characterized by a functional cost whose

objective is to minimize the number of infectious people in a given time horizon.

Through an instantaneous control strategy we compute an explicit feedback control

that allows us to derive new SIR-type compartmental models capable of describing the

epidemic peak reduction. Previously, this type of approach has been used successfully

in the case of social models of consensus (Albi and Pareschi 2018; Albi et al. 2014,

2015a, b; Bongini et al. 2015; Caponigro et al. 2013; Düring et al. 2018).

The feedback controlled models are subsequently extended to take into account the

presence of uncertain infection parameters and data. In fact, to have reliable forecasts

it is of paramount importance to consider the presence of uncertain quantities as a

structural feature of the epidemic dynamics. This aspect is of paramount importance

in the case of pandemic COVID-19, in which undetected infectious individuals play

a key role in the spread of the disease. In this regard, it is worth noting that our

methodology can be easily extended to the case of more complex compartmental

models. The decision to limit ourselves to a simple SIR-type compartmentalization

was related on the one hand to the increased complexity given by the dependence on

the social structure, which proved to be crucial in the case of the COVID-19 pandemic,

and on the other hand to the introduction of a systematic uncertainty in the number of

infected to avoid a complex sub-compartmentalization of the infectious population and

the consequent difficulties due to parameter identification and the inability to follow a

data-driven approach (Giordano et al. 2020; Flaxman et al. 2020). From a mathematical

point of view, we can rely on the methods of uncertainty quantification (UQ) to obtain

efficient and accurate solutions based on stochastic orthogonal polynomials for the

differential model with random inputs (Xiu 2010).

Few results are actually available regarding methods of UQ in epidemic systems,

we mention in this direction (Capistrán et al. 2012; Chowell 2017; Capaldi et al. 2012;

Roberts 2013). The main idea is to increase the dimensionality of the problem adding

the possible sources of uncertainty from the very beginning of the modeling. Hence,

we extrapolate statistics by looking at the so-called quantities of interest, i.e. statistical

quantities that can be obtained from the solution and that give some global information
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with respect to the input parameter like expected solution of the problem or higher order

moments. Several techniques can be adopted for the approximation of the quantities

of interest, in this paper we adopt stochastic Galerkin methods that allow to reduce the

problem to a set of deterministic equations for the numerical evaluation of the solution

in presence of uncertainties. Compared to conventional Monte Carlo methods, based

on stochastic sampling, these methods guarantee an exponential convergence in the

case of smooth uncertainty distributions and allow a much more accurate and efficient

estimation of random parameters. We refer the interested reader to recent surveys and

monographs on the topic (Dimarco et al. 2017; Jin and Pareschi 2017; Pareschi 2021;

Xiu 2010).

In particular, we consider the case in which the policy maker applies his control

based on several possible estimators on the actual number of infected people. The

need for long-term interventions shows that alternative actions based on the social

structure of the system can be as effective as the more expensive optimal strategy. The

importance of the timing and intensity of interventions is particularly relevant in the

case of uncertain parameters on the actual number of infected people.

The rest of the manuscript is organized as follows. In Sect. 2 we introduce the

structured social SIR model and formulate the mathematical approach for containment

measures to reduce the spread of the disease. Next, a feedback controlled model used

in the subsequent analysis is derived within a short time horizon approximation. In

Sect. 3 we generalize the feedback controlled model to take into account the presence

of uncertainties. Section 4 is dedicated to the presentation of some numerical examples

including applications to the first wave of the COVID-19 epidemic in Italy. In separate

Appendices we provide details on the generalizations of the present approach to more

realistic epidemic models for COVID-19 including additional compartmentalizations,

on the stochastic Galerkin method employed to efficiently address the uncertainties,

and on the social interaction matrices characterizing the contact rates.

2 Control of epidemic dynamics

The starting model in our discussion is a SIR-type compartmental model with a social

structure. The presence of a social structure is in fact essential in deriving appropriate

sustainable control techniques from the population for a protracted period, as in the

case of the recent COVID-19 epidemic. We will discuss in Sect. 3 how to modify the

model through the introduction of a stochastic parameter that takes into account the

dependence on uncertain data, and thus implicitly introduce the role of undetected

infectious in the dynamics.

2.1 Compartmental models with social structure

The heterogeneity of the social structure, which impacts the diffusion of the infective

disease, is characterized by the vector a ∈ Λ ⊆ R
da characterizing its social state

and whose components summarize, for example, the age of the individual, its number

of social connections or its economic status (Hethcote 1996, 2000). We denote by
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s(a, t), i(a, t) and r(a, t), the distributions at time t > 0 of susceptible, infectious

and recovered individuals, respectively in relation to specific social characteristics.

We assume that the rapid spread of the disease and the low mortality rate allows to

ignore changes in the social structure, such as the aging process, births and deaths.

Consequently, for a given population of total number N , we have that

s(a, t) + i(a, t) + r(a, t) = f (a),

∫

Λ

f (a)da = N ,

where f (a) is the total distribution of the social features defined by the vector a.

Hence, we recover the total fraction of the population which belong to the susceptible,

infected and recovered as follows

S(t) =

∫

Λ

s(a, t) da, I (t) =

∫

Λ

i(a, t) da, R(t) =

∫

Λ

r(a, t) da. (1)

In a situation where changes in the social features act on a slower scale with respect

to the spread of the disease, the socially structured compartmental model follows the

dynamics

d

dt
s(a, t) = −s(a, t)

1

N

∫

Λ

β(a, a∗)i(a∗, t) da∗

d

dt
i(a, t) = s(a, t)

1

N

∫

Λ

β(a, a∗)i(a∗, t) da∗ − γ (a)i(a, t)

d

dt
r(a, t) = γ (a)i(a, t),

(2)

where the function β(a, a∗) ≥ 0 represents the uncertain interaction rate among

individuals with different social features and γ (a) ≥ 0 the recovery rate which may

depend on the social feature.

Often, in socially structured models the interaction rate between people is assumed

to be separable, and proportionate to the activity level of the social feature (Hethcote

1996, 2000), as follows

β(a, a∗) =
b(a)b(a∗)

∫ +∞
0 b(a) f (a) da

(3)

with b(a) the average number of people contacted by a person with social feature a per

unit time. Alternative approaches are based on preferential mixing (Glasser et al. 2012;

Castillo-Chavez et al. 1989). Specific examples of age-dependent social interaction

matrices are reported in Appendix C.

We introduce the usual normalization scaling

s(a, t)

N
→ s(a, t),

i(a, t)

N
→ i(a, t),

r(a, t)

N
→ r(a, t),

∫

Λ

f (a)da = 1,
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and observe that the quantities S(t), I (t) and R(t) satisfy the conventional SIR dynam-

ics

d

dt
S(t) = −

∫

Λ

s(a, t)

∫

Λ

β(a, a∗)i(a∗, t) da∗ da

d

dt
I (t) =

∫

Λ

s(a, t)

∫

Λ

β(a, a∗)i(a∗, t) da∗ da −

∫

Λ

γ (a)i(a, t) da,

(4)

where the fraction of recovered is obtained from R(t) = 1 − S(t) − I (t). We refer

to Hethcote (1996), Hethcote (2000) for analytical results concerning model (2) and

(4). In the following we will adopt the simple compartmental model (2) to derive our

feedback controlled formulation in presence of uncertainty. The extension to more

realistic compartmental models in epidemiology, designed specifically for the COVID-

19 pandemic, can be carried out in a similar way (Gatto et al. 2020).

In order to simplify the description, we will consider the one-dimensional case

da = 1 and set the social dependence as the age a of the individual because of

its importance in epidemic dynamics. It is clear, however, that similar containment

procedures can impact also on other social features, like the wealth of the individuals

(Dimarco et al. 2020). We will first formulate the feedback controlled SIR model in the

deterministic case and subsequently extend our approach to the presence of uncertain

parameters.

2.2 Optimal control of structured compartmental model

In order to define the action of a policy maker introducing a control over the sys-

tem based on social distancing and other containment measures linked to the social

structure we consider an optimal control framework. The choice of an appropriate

functional is problem dependent (Lee et al. 2010).

In our setting, we account the minimization of the total number of the infected

population I (t) through the an age dependent control action depending both on time

and pairwise interactions among individuals with different ages.

Thus, we introduce the optimal control problem

min
u∈U

J (u) :=

∫ T

0

ψ(I (t))dt +
1

2

∫ T

0

∫

Λ×Λ

ν(a, a∗, t)|u(a, a∗, t)|2 dada∗dt, (5)

subject to

d

dt
s(a, t) = −s(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t))i(a∗, t) da∗

d

dt
i(a, t) = s(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t))i(a∗, t) da∗ − γ (a)i(a, t)

d

dt
r(a, t) = γ (a)i(a, t)

(6)

with initial condition i(a, 0) = i0(a), s(a, 0) = s0(a) and r(a, 0) = r0(a).
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The number of infected individual is measured by a monotone increasing function

ψ(·) such that ψ : [0, 1] → R+. This function models the policy maker’s perception

of the impact of the epidemic by the number of people currently infected and in the

sequel will be referred to as perception function. For example ψ(I ) = I q/q, for

q > 1 implies an underestimation of the actual number of infected corresponding to

q = 1. The control aims to minimize this measure of the total infected population by

reducing the rate of interaction between individuals. We consider a quadratic cost for

its actuation.

Such control is restricted to the space of admissible controls

U ≡
{

u | 0 ≤ u(a, a∗, t) ≤ min{M, β(a, a∗)}, ∀ (a, a∗, t) ∈ Λ2 × [0, T ], M > 0
}

,

which ensure the admissibility of the solution for (6). The above restriction on admis-

sible controls can be relaxed if we consider controls that violate the previous condition

locally but preserve the inequality in integral form after integration against i(a∗, t).

The solution to problem (5–6) is computed through the optimality conditions

obtained from the Euler-Lagrangian as follows

L(s, i, r , ps , pi , pr , u) = J (u)

+

∫ T

0

∫

Λ

ps ·

(

d

dt
s + s(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t)) i(a∗, t)da∗

)

da dt

+

∫ T

0

∫

Λ

pi ·

(

d

dt
i − s(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t)) i(a∗, t)da∗ + γ (a)i(a, t)

)

da dt

+

∫ T

0

∫

Λ

pr ·

(

d

dt
r − γ (a)i(a, t)

)

da dt

where ps(a, t), pi (a, t), pr (a, t) are the associated Lagrangian multipliers. By com-

puting the variations with respect to (s, i, r) we retrieve the adjoint system

d

dt
ps = (ps − pi )

∫

Λ

(β(a, a∗) − u(a, a∗, t))i(a∗, t)da∗

d

dt
pi = ψ ′(I (t)) +

∫

Λ

(ps(a∗, t) − pi (a∗, t))(β(a∗, a)

− u(a∗, a, t))s(a∗, t)da∗ + γ (a)pi

(7)

with terminal conditions ps(a, T ) = 0, pi (a, T ) = 0 and pr (a, T ) = 0. Note that the

contribution of pr (a, t) vanishes since the control does not act directly on population

R, and the removed population is not considered in the minimization of the functional.

The optimality condition reads

ν(a, a∗, t)u(a, a∗, t) = (ps − pi ) s(a, t)i(a∗, t). (8)
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The optimality conditions (7–8) are first order necessary conditions for the optimal

control u(a, a∗, t). In order to be admissible then the control reads

u(a, a∗, t) = max

{

0, min

{

ps − pi

ν(a, a∗, t)
s(a, t)i(a∗, t), φM,β(a, a∗)

}}

,

where φM,β(a, a∗) = min{β(a, a∗), M}.

The approach just described, however, is generally quite complicated when there

are uncertainties as it involves solving simultaneously the forward problem (5–6)

and the backward problem (7–8). Moreover, the assumption that the policy maker

follows an optimal strategy over a long time horizon seems rather unrealistic in the

case of a rapidly spreading disease such as the COVID-19 epidemic. Let us emphasize

that extending the above optimal control formulation to more complex compartmental

models designed specifically for COVID-19, like SEPIAR or SIDHARTE (Gatto et al.

2020; Giordano et al. 2020), can be done by generalizing the control functional (5) to

include, for example, the hospitalized compartment, or other specific indicators that

can be measured from the data. For all of these models, the feedback control strategy

described in the next section does not change substantially. We refer the reader to

Appendix A for more details.

2.3 Feedback controlled compartmental models

In this section we consider short time horizon strategies which permits to derive

suitable feedback controlled models. These strategies are suboptimal with respect the

original problem (5–6) but they have proved to be very successful in several social

modeling problems (Albi and Pareschi 2018; Albi et al. 2015a, b, 2014; Düring et al.

2018). To this aim, we consider a short time horizon of length h > 0 and formulate a

time discretize optimal control problem through the functional Jh(u) restricted to the

interval [t, t + h], as follows

min
u∈U

Jh(u) := ψ(I (t + h)) +
1

2

∫

Λ×Λ

ν(a, a∗, t)|u(a, a∗, t)|2dada∗ (9)

subject to

s(a, t + h) = s(a, t) − hs(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t)) i(a∗, t)da∗ (10)

i(a, t + h) = i(a, t) + hs(a, t)

∫

Λ

(β(a, a∗) − u(a, a∗, t)) i(a∗, t)da∗ − hγ (a)i(a, t).

(11)

By recalling that the macroscopic information on the infected is

I (t + h) = I (t) + h

∫

Λ

[

s(a, t)

∫

Λ
(β(a, a∗) − u(a, a∗, t)) i(a∗, t)da∗ − γ (a)i(a, t)

]

da,
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we can derive the minimizer of Jh computing Du Jh(u) ≡ 0. We retrieve the following

nonlinear equation

ν(a, a∗, t)u(a, t) = hs(a, t)i(a∗, t)ψ ′(I (t + h)). (12)

In order to pass to the limit h → 0 we must rescale the penalization term as

ν(a, a∗, t) = hκ(a, a∗, t) so that we can introduce the above instantaneous strategy

directly in the discrete system (10)-(11).

The resulting controlled dynamic, corresponding to the feedback controlled con-

tinuous system (6), reads as follows

d

dt
s(a, t) = −s(a, t)

∫

Λ

(

β(a, a∗) −
s(a, t)i(a∗, t)ψ ′(I (t))

κ(a, a∗, t)

)

i(a∗, t)da∗ (13a)

d

dt
i(a, t) = s(a, t)

∫

Λ

(

β(a, a∗) −
s(a, t)i(a∗, t)ψ ′(I (t))

κ(a, a∗, t)

)

i(a∗, t)da∗ − γ (a)i(a, t)

(13b)

d

dt
r(a, t) = γ (a)i(a, t). (13c)

In what follows we provide a sufficient conditions for the admissibility of the instan-

taneous control in terms of the penalization term κ(a, a∗, t). Indeed we want to assure

that the dynamics preserve the monotonicity of the number of susceptible population

s(a, t).

Proposition 1 Let β(a, a∗) ≥ δ > 0, and ψ ′(·) a monotonically non decreasing

function, then for all (a, a∗) ∈ Λ × Λ and t > 0, solutions to (13) are admissible if

the penalization κ satisfies the following inequality

δκ(a, a∗, t) ≥ s0(a)ī(a∗)ψ
′( Ī ), ∀(a, a∗) ∈ Λ × Λ (14)

where ī(a) and Ī are respectively the peak reached by the infected of age a and by the

total population of infected.

Proof By imposing the non-negativity of the controlled reproduction rate inside the

integral we have

β(a, a∗)κ(a, a∗, t) ≥ s(a, t)i(a∗, t)ψ ′(I (t)).

This inequality has to be satisfied for every time t ≥ 0. Next we observe that the

number of susceptible s(a, t) is decreasing in time, therefore s0(a) ≥ s(a, t) for all

t . Moreover i(a, t) reaches a peak before decreasing to 0 (note that this peak can

also be in t = 0), say Ī for the macroscopic variable and ī(a). Thus, thanks to the

monotonicity of ψ ′(·), we can restrict the previous inequality as follows

δκ(a, a∗, t) ≥ s0(a)ī(a∗)ψ
′( Ī ).

⊓⊔
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Fig. 1 Phase diagram of susceptible-infected trajectories for the controlled SIR-type model with homoge-

nous mixing and ψ(I ) = I q/q. Different choices of the penalization term κ are reported. Left plot the case

q = 1, right plot q = 2. The line markers point out the peaks of the infected population for each choice of

κ

In Fig. 1 we report the phase diagram of susceptible-infected trajectories for the

controlled model with homogeneous mixing

d

dt
S(t) = −

(

β −
1

κ
S(t)I (t)ψ ′(I (t))

)

S(t)I (t)

d

dt
I (t) =

(

β −
1

κ
S(t)I (t)ψ ′(I (t))

)

S(t)I (t) − γ I (t),

(15)

with ψ(I ) = I q/q. The dynamics are similar to the classical SIR model but with a

nonlinear contact rate. In particular, the trajectories are flattened when the value of

the control is such that κβ ≈ S(t)I (t)ψ ′(I (t)). Note, however that this status is not

an equilibrium point of the system.

To understand this, let us observe that an equilibrium state (S∗, I ∗) for (15) satisfies

the equations

(

κβ − S∗ I ∗ψ ′(I ∗)
)

S∗ I ∗ = 0
(

(κβ − S∗ I ∗ψ ′(I ∗))S∗ − κγ
)

I ∗ = 0.

An equilibrium point corresponds to the classical state in which we have the extinction

of the disease I ∗ = 0 and S∗ arbitrary and defined by the asymptotic state of the

dynamics (Hethcote 2000). Now, let’s suppose that I ∗ �= 0, S∗ �= 0, we can look for

solutions where control is able to perfectly balance the spread of the disease

κβ = S∗ I ∗ψ ′(I ∗)

κβS∗ = (S∗)2 I ∗ψ ′(I ∗) + κγ,
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consequently

κβS∗ = (S∗)2 κβ

S∗
+ κγ = 0,

which is satisfied only for γ = 0 when κ �= 0. The stability analysis of this unique

equilibrium point can be performed by standard arguments and we omit the details.

3 Control of epidemic dynamics with uncertainties

Since the beginning of the outbreak of new infectious diseases, the actual number of

infected and recovered people is typically underestimated, causing fatal delays in the

implementation of public health policies facing the propagation of epidemic fronts.

This is the case of the spreading of COVID-19 worldwide, often mistakenly under-

estimated due to deficiencies in surveillance and diagnostic capacity (Jagodnik et al.

2020; Remuzzi and Remuzzi 2020). Health systems are struggling to adopt systematic

testing to monitor actual cases. Moreover, another important epidemiological factor

affecting data reliability is the large proportion of asymptomatic (Jagodnik et al. 2020;

Mizumoto et al. 2020; Zhang et al. 2020).

Among the common sources of uncertainties for dynamical systems modeling epi-

demic outbreaks we may consider the following

– noisy and incomplete available data;

– structural uncertainty due to the possible inadequacy of the mathematical model

used to describe the phenomena under consideration.

In the following we consider the effects on the dynamics of uncertain data, such as the

initial conditions on the number of infected people or the interaction and recovery rates.

On the numerical level we consider techniques based on stochastic Galerkin methods,

for which spectral convergence on random variables is obtained under appropriate

regularity assumptions (Xiu 2010). For simplicity, the details of the numerical method

that allows to reduce the uncertain dynamic system to a set of deterministic equations

are reported in Appendix B.

3.1 Socially structuredmodels with uncertain inputs

We introduce the random vector z = (z1, . . . , zdz ) whose components are assumed to

be independent real valued random variables

zk : (Ω, F) → (R,BR), k = 1, . . . , dz

with BR the Borel set. We assume to know the probability density p(z) : R
dz → R

dz

+

characterizing the distribution of z. Here, z ∈ R
dz is a random vector taking into

account various possible sources of uncertainty in the model.

In presence of uncertainties we generalize the initial modeling by introducing the

quantities s(z, a, t), i(z, a, t) and r(z, a, t) representing the distributions at time t ≥ 0
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of susceptible, infectious and recovered individuals. The total size of the population

is a deterministic conserved quantity in time, i.e.

s(z, a, t) + i(z, a, t) + r(z, a, t) = f (a),

∫

Λ

f (a)da = N .

Hence, the quantities

S(z, t) =

∫

Λ

s(z, a, t) da, I (z, t) =

∫

Λ

i(z, a, t) da, R(z, t) =

∫

Λ

r(z, a, t) da,

(16)

denote the uncertain fractions of the population that are susceptible, infectious and

recovered respectively.

The social structured model with uncertainties reads

d

dt
s(z, a, t) = −s(z, a, t)

∫

Λ

β(z, a, a∗)
i(z, a∗, t)

N
da∗

d

dt
i(z, a, t) = s(z, a, t)

∫

Λ

β(z, a, a∗)
i(z, a∗, t)

N
da∗ − γ (z, a)i(z, a, t)

d

dt
r(z, a, t) = γ (z, a)i(z, a, t)

(17)

To illustrate the impact of uncertainties let us consider the simple following example.

In the case of homogeneous mixing with uncertain contact rate β(z) = β +αz, α > 0,

z ∈ R distributed as p(z) the model reads

d

dt
S(z, t) = − (β + αz) S(z, t)I (z, t)

d

dt
I (z, t) = (β + αz) S(z, t)I (z, t) − γ I (z, t),

(18)

with deterministic initial values I (z, 0) = I0 and S(z, 0) = S0. The solution for the

proportion of infectious during the initial exponential phase is (Roberts 2013)

I (z, t) = I0e(β+αz)S0t−γ t ,

and its expectation

E[I (·, t)] = I0

∫

R

e(β+αz)S0t−γ t p(z) dz = I0eβS0t−γ t W (t), (19)

where the function

W (t) =

∫

R

eαzS0t p(z) dz
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represents the statistical correction factor to the standard deterministic exponential

phase of the disease I0eβS0t−γ t . If z is uniformly distributed in [−1, 1] we can explicitly

compute

W (t) =
sinh (αS0t)

αS0t
> 1, t > 0.

More in general, if z has zero mean then by Jensen’s inequality we have W (t) > 1

for t > 0, so that the expected exponential phase is amplified by the uncertainty (see

Roberts 2013).

In a similar way, keeping β constant, but introducing a source of uncertainty in the

initial data I (z, 0) = I0 + μz, μ > 0 and z ∈ R distributed as p(z) the solution in the

exponential phase reads

I (z, t) = (I0 + μz)eβS0t−γ t ,

and then its expectation

E[I (·, t)] =

∫

R

(I0 + μz)eβS0t−γ t p(z) dz = (I0 + μz̄)eβS0t−γ t , (20)

where z̄ is the mean of the variable z. Therefore, the expected initial exponential growth

behaves as the one with deterministic initial data I0 + μz̄. Of course, if both sources

of uncertainty are present the two effects just described sum up in the dynamics.

Remark 1 The presence of a large number of undetected infected is at the basis of the

construction of numerous epidemiological models with an increasingly complex com-

partmental structure in which the original compartment of the infected is subdivided

into further compartments with different roles in the propagation of the disease (Gior-

dano et al. 2020; Gatto et al. 2020; Flaxman et al. 2020). To clarify the relationships to

other deterministic compartmental models, let us consider, for simplicity, model (17)

in absence of a social structure

d

dt
S(z, t) = −β(z)S(z, t)I (z, t)

d

dt
I (z, t) = β(z)S(z, t)I (z, t) − γ (z)I (z, t),

d

dt
R(z, t) = γ (z)I (z, t),

(21)

and with a one-dimensional random input z ∈ R distributed as p(z). Furthermore,

for a function F(z, t) we will denote its expected value as F̄(t) = E[F(·, t)]. Now,

starting from a discrete probability density function

pk = P {Z = zk} ,

n
∑

k=1

pk = 1,
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we have F̄(t) =
∑n

k=1 pk Fk , with Fk = F(zk). Taking the expectation in (21), we

can write

d

dt
S̄(t) = −S̄(t)

n
∑

k=1

β̃k pk Ik(t)

d

dt
Ī (t) = S̄(t)

n
∑

k=1

β̃k pk Ik(t) −

n
∑

k=1

γk pk Ik(t),

d

dt
R̄(t) =

n
∑

k=1

γk pk Ik(t),

(22)

with β̃k = Skβk/S̄, k = 1, . . . , n. For example, in the case n=2, by identifying

Id = p1 I1 and Iu = p2 I2 with the compartments of detected and undetected infectious

individuals, respectively, we can formulate the equivalent partitioning

d

dt
S̄(t) = −S̄(t)

(

β̃1 Id(t) + β̃2 Iu(t)
)

d

dt
Id(t) = S̄(t)β̃1 Id(t) − γ1 Id(t),

d

dt
Iu(t) = S̄(t)β̃2 Iu(t) − γ2 Iu(t),

d

dt
R̄(t) = γ1 Id(t) + γ2 Iu(t),

(23)

which has the same structure of a SIAR compartmental model including the undetected

(or the asymptomatic) class. In the following, we will not rely on discrete probabil-

ity distributions, but on continuous representations that can be associated with the

overall probability of having a certain number of infectious individuals (detected or

undetected). The additional dependence of the epidemiological parameters from the

random variable allows us to take into account changes in the corresponding dynamics

of disease transmission and recovery.

3.2 The feedback controlledmodel with random inputs

In presence of uncertainties the optimal control problem (5–6) is modified as follows

min
u∈U

J (u) :=

∫ T

0

R[ψ(I (·, t))]dt +
1

2

∫ T

0

∫

Λ×Λ

ν(a, a∗, t)|u(a, a∗, t)|2 dada∗dt, (24)

being R[ψ(I (·, t))] a suitable operator taking into account the presence of the uncer-

tainties z. Examples of such operator that are of interest in epidemic modeling are the
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expectation with respect to uncertainties

R[ψ(I (·, t))] =E[ψ(I (·, t))] =

∫

Rdz

ψ(I (z, t)) p(z)dz (25)

or relying on data which underestimate the number of infected

R[ψ(I (·, t))] = ψ(I (z0, t)), (26)

where z0 is a given value such that ψ(I (z0, t)) ≤ ψ(I (z, t)), ∀ z ∈ R
dz and t > 0.

In (24) U the space of admissible controls is defined as

U =
{

u | 0 ≤ u(a, a∗, t) ≤ min{M, min
z

β(z, a, a∗)}, ∀ (a, a∗, t) ∈ Λ2 × [0, T ], M > 0
}

,

or in a more relaxed form if we consider the above inequality after integration against

i(a∗, t).

The minimization problem (24) is subject to the following dynamics

d

dt
s(z, a, t) = −s(z, a, t)

∫

Λ

(β(z, a, a∗) − u(a, a∗, t))i(z, a∗, t) da∗

d

dt
i(z, a, t) = s(z, a, t)

∫

Λ

(β(z, a, a∗) − u(a, a∗, t))i(z, a∗, t) da∗ − γ (z, a)i(z, a, t)

d

dt
r(z, a, t) = γ (z, a)i(z, a, t)

(27)

with initial condition i(z, a, 0) = i0(z, a), s(z, a, 0) = s0(z, a) and r(z, a, 0) =

r0(z, a).

The implementation of instantaneous control for dynamics in presence of uncer-

tainties follows from the derivation presented in Sect. 2.3. We can derive the minimizer

of Jh computing Du Jh(u) ≡ 0 from the restriction of the minimization problem (24)

in the interval [t, t + h] or equivalently

R

[

∂ψ(I (·, t + h))

∂u

]

= ν(a, t)u(a, a∗, t),

where we assumed ∂R [ψ(I (·, t + h))]/∂u = R [∂ψ(I (·, t + h))/∂u], to obtain the

following nonlinear identity

ν(a, t)u(a, a∗, t) = hR[s(·, a, t)i(·, a∗, t)ψ ′(I (·, t))]. (28)

The above assumption on R[·] is clearly satisfied by (25) and (26), where in the case

of (26) we used the notation

R[s(·, a, t)i(·, a∗, t)ψ ′(I (·, t))] = s(z0, a, t)i(z0, a∗, t)ψ ′(I (·, t)).

123



63 Page 16 of 41 G. Albi et al.

By introducing the scaling ν(a, t) = hκ(a, a∗, t) we can pass to the limit for h → 0

to get

u(a, a∗, t) =
1

κ(a, a∗)
R

[

s(·, a, t)i(·, a∗, t)ψ ′(I (·, t))
]

, (29)

which defines the feedback controlled model in presence of uncertainties.

4 Examples from the COVID-19 outbreak in Italy

In this section we present several numerical tests on the constrained compartmen-

tal model with uncertain data. Details of the numerical method used are given in

Appendix B. In an attempt to analyze sufficiently realistic scenarios, in the following

examples we will refer to values taken from Italian data on the COVID-19 epidemic

(del Consiglio dei Ministri 2020). More precisely, in the first test case we illustrate

the behavior of the model in a simplified setting in absence of uncertainty and social

structure and without trying to reproduce scenarios closely related to current data. In

the second test case, following a progressively more realistic approach, we consider

the impact of the presence of uncertain data in the controlled model with homogeneous

social mixing and calibrated on Italian data. The same setting is then considered in

Test 3 taking into account the additional effects given by the social structure of the

system, characterized by suitable social interaction functions and an age-dependent

recovery rate. The final scenario, explored in Test 4, examines the influence on the

spread of infectious disease induced by relaxed confinement measures related to the

social structure of the system.

4.1 Test 1: Containment in homogeneous social mixing dynamics

To illustrate the effects of controls introduced that mimic containment procedures,

let us first consider the case where the social structure is not present. Furthermore,

to simplify further the modeling, in this first example we neglect any dependence on

uncertain data.

We consider as initial small number of infected and recovered i(0) = 3.68 × 10−6,

r(0) = 8.33 × 10−8. These normalized fractions refer specifically to the first reported

values in the case of the Italian outbreak of COVID-19, even if in this simple test case

we will not try to match the data in a quantitative setting but simply to illustrate the

behavior of the feedback controlled model. Based on recent studies (Jagodnik et al.

2020; Zhang et al. 2020; Liu et al. 2020), the initial infection rate of COVID-19 R0 =

β/γ has been estimated between 2 and 6.5. Here, to exemplify the possible evolution

of the pandemic we consider a value close to the lower bound, taking β = 0.25 and

γ = 0.10, namely a recovery rate of 10 days, so that R0 = 2.5.

In Figs. 2 and 3 we report the infected and recovered dynamics based on the activa-

tion of the control in two different time frames. In Fig. 2 the activation for t ∈ [50, 100],

which means that after 100 days we suppose that all containment restrictions are can-

celled. In Fig. 3 we consider a larger activation time frame t ∈ [50, 200].
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Fig. 2 Test 1. Evolution of the fraction of infected (left) and recovered (right) based on the feedback

constrained model (15) for t ∈ [50, 100], a perception function ψ(I ) = I q/q, q = 1, 2 and several

penalizations κ = 10−2, 10−3, 10−4. The choice κ = +∞ corresponds to the unconstrained case. In last

row the normalized case ψ(I ) = C2 I 2/2, with C2 = 12

With the choice of the perception function ψ(I ) = I q/q, q ≥ 1, we can observe

how the control term is able to flatten the curve even if, as expected, the case q = 2

gives rise to a weaker control action. To make the two controls, q = 1 and q = 2,

comparable for the same penalization factor κ we also consider the normalized case,

where ψ(I ) = Cq I q/q, and the constant Cq > 0 is a normalization constant such
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Fig. 3 Test 1. Evolution of the fraction of infected (left) and recovered (right) based on the feedback

constrained model (15) for t ∈ [50, 200], a perception function ψ(I ) = I q/q, q = 1, 2 and several

penalizations κ = 10−2, 10−3, 10−4. The choice κ = +∞ corresponds to the unconstrained case. In last

row the normalized case ψ(I ) = C2 I 2/2, with C2 = 12

that

∫ Imax

0

C1 I d I =

∫ Imax

0

C2
I 2

2
d I ,

with Imax an estimate of the maximum number of infected in absence of control. In

particular, in our test case, from Imax ≈
1

4
, assuming C1 = 1 we obtain C2 = 12.
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Fig. 4 Test 1. Evaluation of the cost functional J (u) for the dynamics in Fig. 3

Note that, if the activation time is too short the control is not able to significantly

change the total number of infected (and therefore recovered). On the other hand, by

enlarging the activation time in combination with a sufficiently small penalty constant,

the peak infection is not only reduced, but the total number of infected people is

decreased. To achieve this, the control should be kept activated for a sufficiently long

time and with the right intensity in a kind of plateau regime where there is a perfect

balance between the containment effect and the spread of the disease. On the contrary,

if the control is too strong, the majority of the population remains susceptible and

consequently the disease will start spreading again forming a second wave after the

containment policy is removed. Similar conclusions (that may appear counterintuitive)

have been shown also by other authors (see for example (Britton et al. 2020; Lunelli

et al. 2009)).

The cost functional depends on the value of q and can be evaluated summing up

contributions in (9) with explicit form of the control given by (12). In Fig. 4 the cost

of the two interventions is compared. We can see how a higher cost is associated with

q = 1 that can be obtained with the control q = 2 only for smaller penalizations.

As expected, the normalized case q = 2 essentially realigns the cost of interventions.

Then, in Fig. 5 we compare the performance of the two controls in [50, td ] with a

deactivation time td ∈ [100, 300]. We consider κ = 10−3 for both q = 1 and q = 2

normalized. It can be observed that there is a minimum control horizon for both

strategies, in order to avoid the onset of a second infection peak. A sufficiently long

control horizon is therefore necessary to reduce the impact of the infection.

4.2 Test 2: Impact of uncertain data on the epidemic outbreak

Next we focus on the influence of uncertain quantities on the controlled system with

homogeneous mixing focusing on available data for COVID-19 outbreak in Italy, see

del Consiglio dei Ministri (2020). The estimation of epidemiological parameters is a

very difficult problem that can be addressed with different approaches (Capaldi et al.

2012; Chowell 2017; Roberts 2013). It is worth to mention that, in the case of COVID-

19, the number of infected and recovered has been largely underestimated, especially

in the early phases of the epidemic, see (Jagodnik et al. 2020; Mizumoto et al. 2020).

Here, we restrict ourselves to identifying the deterministic parameters of the model

through a suitable data fitting procedure, considering possible deviations due to such

underestimates as part of the subsequent uncertainty quantification process.
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Fig. 5 Test 1. Evolution of the of the fraction of infected (left) and recovered (right) based on the feedback

constrained model (15) for a perception function ψ(I ) = I q/q, q = 1 and q = 2 normalized, for different

control actions in [50, td ] with a deactivation time td ∈ [100, 300] and a fixed penalization κ = 10−3

The data fitting process

In details, we have adopted a two-level approach in estimating the parameters in

absence of uncertainties. In the phase preceding the lockdown we estimated the

epidemic parameters in an unconstrained regime, where we assumed no social con-

tainment procedure was activated. This estimate was then kept int the subsequent

lockdown phase where we estimated as a function of time the value of the control

penalty parameter. Both these two calibration steps were analyzed under the assump-

tion of homogeneous mixing, therefore model (15) has been used in lockdown phase.

First, we estimated the parameters β, γ > 0 in the time interval t ∈ [t0, tu] solving a

lest square problem based on the minimization of the relative L2 norm of the difference

between the reported number of infected Î (t) and recovered R̂(t), and the theoretical

evolution of the unconstrained model whose solution at time t ≥ 0 is indicated with

I (t) and R(t). More precisely, we considered the following minimization problem

min
β,γ∈R+

[

(1 − θ)‖I (t) − Î (t)‖L2([t0,tu ]) + θ‖R(t) − R̂(t)‖L2([t0,tu ])

]

, (30)
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Fig. 6 Test 2. Estimated control penalization terms over time from reported data on number of infected and

recovered in the case of COVID-19 outbreak in Italy

where θ ∈ [0, 1] and ‖ · ‖L2([t,s]) denotes the relative L2 norm over a time horizon

[t, s].

Problem (30) has been solved with the constraints β ∈ [0, 1] and γ ∈

[

1

24
,

1

10

]

.

Indeed, according to several studies the time to viral clearance during the early phase of

the epidemic, corresponding to the time from the first positive test to the first negative

test, can approximately span in average from 10 to 24 days, see (Chen 2020; Gatto

et al. 2020; Lavezzo 2020).

At the end of the above optimization process we obtained the values βe ≈ 0.31,

γe ≈ 0.049 computed by averaging the optimization results with θ = 10−2 and

θ = 10−6. The choice of a small value for θ is due to the low reliability on the

recovered data at this early stage.

Next, we estimate the penalization κ = κ(t) in time by solving (15), in the lockdown

time interval t ∈ (tu, tc] and for a sequence of time steps ti , the corresponding least

square problems in [ti −kl , ti +kr ] where kℓ, kr ≥ 1 are integers, and where we fix the

values βe, γe estimated in the first optimization step. In details, we solve the following

minimization problem

min
κ(ti )∈R+

[

(1 − θ)‖I (t) − Î (t)‖L2([(ti −kℓ,ti +kr ])
+ θ‖R(t) − R̂(t)‖L2([ti −kℓ,ti +kr ])

]

,

(31)

over a window of seven days corresponding to kℓ = 3 and kr = 4 for regularization

along one week of available data. Both minimization problems (30–31) have been

solved testing various numerical methods in combination with adaptive solves for the

systems of ODEs. The results have been obtained using Matlab functions fmincon

in combination with ode45. The available data start on February 24 2020, when
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moderate social restrictions were enforced by the Italian government, and since the

lockdown started on March 9 2020, thus we considered tu − t0 = 14 (days).

The corresponding time dependent values for the expected penalization for a per-

ception function ψ(I ) = I q/q are reported in Fig. 6. After an initial adjustment phase

the penalty terms converge towards a constant value that we can assume as fixed in

predictive terms for future times in a lockdown scenario. This is consistent with a

situation in which society needs a certain period of time to adapt to the lockdown

policy.

Remark 2 Finally, we remark that the data fitting procedure is easily generalizable to

epidemic models with additional compartments (Gatto et al. 2020; Giordano et al.

2020). Let us denote with Ci (t) the compartments that are related to the reported data

Ĉ j (t), j = 1, . . . , h, as the number of actual cases, hospitalized, deaths, etc. In the

first step one minimizes a weighted L2 norm in the form

min
p∈P

h
∑

j=1

w j‖C j (t) − Ĉ j (t)‖L2[t0,tu ], (32)

where w j ∈ [0, 1] are suitable weights such that
∑h

j=1 w j = 1 and p is the vector of

the model parameters that need to be estimated. Since the problem may admit multiple

minima leading to unrealistic solutions one usually perform the above optimization

process under constraints on the range of values P of some parameters such as recovery

rate, incubation period, etc.

An important difference, compared to a simple SIR compartmentalization, is the

presence of compartments that are not data-driven as exposed, pre-symptomatic,

asymptomatic, etc. that prevent the realization of the data fitting since their values

are unknown. A way to overcome this difficulty is to solve the differential model

starting from an unknown time t∗ < t0 using as initial data the presence of a single

individual in the first compartment promoting the infection (for example the exposed)

and zero individuals in all other compartments. The idea is to simulate the early phase

of the epidemic, by optimizing also the initial time t∗ in problem (32).

After this, in the second step one considers the corresponding feedback controlled

model (see Appendix A) and solves the minimization problem

min
κ(ti )

h
∑

j=1

w j‖C j (t) − Ĉ j (t)‖L2([ti −kℓ,ti +kr ])
, (33)

where κ(ti ) is the vector of penalization terms that need to be estimated. Even in this

case, assumptions on the range of values of the penalization terms may be necessary

to avoid unrealistic solutions. Finally, we underline that most epidemic models are not

data-driven, but one can always assume that the total number of reported cases underes-

timates the actual number of cases and perform the above data fitting to obtain a lower

bound on the evolution of the epidemic. Then including a suitable data uncertainty,

as in the present work, allows the recovery of realistic scenarios for the pandemic

progression.
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Fig. 7 Test 2. Estimated reproduction number R0 from the feedback controlled model with uncertain data

(35) for a perception function ψ(I ) = I q , q = 1 (left) and q = 2 (right) together with the confidence

bands. We mark with dash-dotted green lines the days in which the lower 95% band and the expected R0

fell below one, and with x-markers the estimated reproduction number relative to data fitting

Introducing data uncertainty

To account for the impact of uncertainties in the data and parameters we then consider

a two-dimensional random variable z = (z1, z2) with independent components such

that

i(z, 0) = i0(1 + μz1), r(z, 0) = r0(1 + μz1), μ > 0, (34)

and

γ (z) = γe + αγ z2, β(z) = βe − αβ z2, αγ , αβ > 0, (35)

where z1, z2 are chosen distributed as symmetric Beta functions in [0, 1], i0 and r0 are

the initial number of reported cases and recovered taken from (GitHub: https://github.

com/pcmdpc/COVID-19) on February 24, 2020. The choice of a Beta distribution

for p(z) = p1(z1)p2(z2) is coherent with other authors (Roberts 2013; Xiu 2010).

However, different probability distribution functions may be considered if additional

information on the nature of the uncertainties are available.

It should be noted that the estimated reproduction number, computed in the first

optimization step, corresponds to Re
0 = βe/γe ≈ 6.3, which is at the upper limit of the

values reported in the literature for COVID-19 (Jagodnik et al. 2020; Zhang et al. 2020;

Liu et al. 2020). Being aware of the limitations of the data fitting on reported data, to

consider a more realistic range of values we assumed a stochastic dependence in β

and γ taking into account the faster recovery of asymptomatic individuals (Gatto et al.

2020) and the fact that asymptomatic individuals might be slightly less infectious than

symptomatic cases (Sayampanathan et al. 2021). In the simulations we take αβ = 0.03,

αγ = 0.04 and z2 ∼ B(2, 2) in (35). Under this assumptions the reproduction number

covers a range of values approximatively in [3.13, 6.27] with an expected value around

4.25.
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Fig. 8 Test 2. Evolution of expected current cases (left) and of the expected total cases (right) and their

95% confidence bands with respect to z1 (shaded color) and z2 (shaded gray) for the feedback controlled

model with perception function ψ(I ) = I , and uncertain initial data (34–35)

The reproduction number in the feedback controlled model is estimated from

R0(z2, t) =
β(z2) − u(t)χ(t > t̄)

γ (z2)
. (36)

In (36) the time t̄ is the lockdown time, in the case under study March 9th, and χ(·)

the indicator function. The feedback control u(t) is defined from (29) in the case of

homogeneous mixing and assuming R[S(·, t)I (·, t)ψ ′(I (·, t))] = S(z0, t)I (z0, t)q

as in (26), where I (z0, t) is the total number of infected reported at time t . This leads

to

u(t) =
1

κ(t)
S(z0, t)I (z0, t)q , (37)

in agreement with the fact that the confinement restrictions have been implemented

accordingly to the reported data. Note that, otherwise the action of the uncertainty

translates into the control and leads to the unrealistic effect that the largest is the

number of unreported infected the largest is the action of the control in the system.

In Fig. 7 we report the expected value of R0 together with the 95% and 50%

confidence levels with respect to the variable z2. The estimated reproduction number

relative to data fitting is reported with x-marked symbols and represents an upper

bound for R0(z2, t). The results show that the R0 reproduction number, thanks to the

containment actions, has been drastically reduced and its expected value fell below

one between March 23rd and March 29th for both q = 1 and q = 2. After March 29th

the observed R0 is stably below unity. Note that, in both controls the results are very

similar, without any need of renormalization for q = 2 due to the data fitting process.

Next we considered the evolution of the uncertain number of infected. In the fol-

lowing we assumed a strongly underestimated initial number of infected (including

asymptomatic), taking μ = 50 so that the reported infected along the time horizon

of the simulation represent approximately a 20% portion of the total infected persons

123



Control with uncertain data of epidemic models Page 25 of 41 63

0 20 40 60 80 90+
0

1

2

3

4

5

6

10
6

Data

Age distribution

0 20 40 60 80 90+
0

10

20

30

40

50 Data

i(a,0)

Fig. 9 Test 3. Distribution of age in Italy (left) and distribution of infected (right) together with the corre-

sponding continuous approximations2

computed by the feedback controlled model. This is in accordance with the WHO find-

ings that around 80% of infected are asymptomatic1 and with the results of preliminary

serological campaigns promoted in Italy2.

In Fig. 8 we represent the evolution of the expected value of the number of infected

obtained by the controlled model with perception function ψ(I ) = I in presence

of uncertain contact and recovery rates (35) and initial uncertain data (34) assuming

z1 ∼ B(40, 40) and z2 ∼ B(2, 2). We represent the expected values of the current

cases (left) and of the total cases (right) along with the 95% confidence level with

respect to the variables z1 and z2. The shaded color band is relative to the variability

in z1 whereas the shaded gray band is relative to the variability in z2. The bars below

the graph are the reported values of the number of infected on which the model has

been calibrated. The results with q = 2 do not highlight significant differences with

respect to the case q = 1 and therefore have been omitted.

4.3 Test 3: The effect of social contacts in the population

Subsequently, we analyze the effects of the inclusion of age dependence and social

interactions in the above scenario. More precisely we consider the social interaction

rate β = β(a, a∗), recovery rate γ = γ (a) and uncertain initial number of infected.

These functions were normalized using the estimated parameters βe and γe in accor-

dance with

βe =

∫

Λ×Λ

β(a, a∗) f (a) f (a∗) da da∗, γe =

∫

Λ

γ (a) f (a) da, (38)

where f (a) is the age distribution with Λ = [0, amax], amax = 100.

The age dependent social interaction rate β(a, a∗) is defined as follows,

β(a, a∗) = (1 − ξ)βe + ξβsocial(a, a∗), (39)

1 Q&A: Similarities and differences COVID-19 and influenza.

https://www.who.int/news-room/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza.

2 Preliminary results on the seroprevalence of SARS-CoV-2 in Italy:

https://www.istat.it/it/files//2020/08/ReportPrimiRisultatiIndagineSiero.pdf
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Fig. 10 Test 3. Expected number of infected in time for the perception function ψ(I ) = I q , q = 1 (left)

and q = 2 (right) and a constant recovery rate together with the confidence bands for homogeneous mixing

(ξ = 0), mild social mixing (ξ = 0.75) and full social mixing (ξ = 1)

where 0 ≤ ξ ≤ 1, thus for ξ = 0 we recover the homogeneuos mixing,

whereas for ξ = 1 we have a full social mixing behavior. The social interac-

tion function, βsocial(a, a∗), accounts for the interactions due to specific activities

A = {Family, Education, Profession} and is defined by (55) in Appendix C. However,

since after the discovery of the first case (February 21), schools, and many places of

aggregation were closed in most regions of Northern Italy, we assume that βE is 0

from February 24 onwards, while βP is reduced by a factor one-half from March 9

onwards.

The choice of age dependent recovery rate γ (a) involves a certain degree of arbi-

trariness, nevertheless it is reasonable to account such heterogeneity as observed in

different studies (Faes et al. 2020; Voinsky et al. 2020; Verity 2020; Wang et al. 2020;

Russell et al. 2020; Paradisi and Rinaldi 2020). In order to account fast recovery rate

of young people, and slow recovery of the eldest we chose γ (a) to be constant up to a

specific age a0 and then a decreasing function of the age. We express mathematically

the recovery rate as

γ (a) = Cγ

(

χ(a ≤ a0) + (1 − χ(a ≤ ao))e
−r(a−ao)

)

, (40)

with r = 4.5, ao = 20 and Cγ ∈ R+ such that (38) holds.

We divided the computation time frame into two zones and used different models in

each zone, in accordance with the policy adopted by the Italian Government. The first

time interval defines the period without any form of containment from 24 February to

9 March, the second the lockdown period from 9 March. In the first zone we adopt the

uncontrolled model with homogeneous mixing. Hence, in the second zone we compute

the evolution of the feedback controlled age dependent model (27–29) with matching

(on average) interaction and recovery rates accordingly to (38) and with the estimated

value of the control penalization κ(t) as reported in Fig. 6 until April 30. After April 30

the computation advances in time using as penalization term the constant asymptotic
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Fig. 11 Test 3. Expected number of infected and total cases of infected and recovered in time for a perception

function ψ(I ) = I q , q = 1 (left) and q = 2 (right) together with the confidence bands for the social mixing

scenario with age-independent or age-dependent recovery rate

value κ̄ reached by κ(t). The initial values for the age distributions of susceptible and

infectious individuals are shown in Fig. 9 in agreement with reported data3.

In Fig. 10 we report the results of the expected number of infected with the related

confidence bands in case of homogeneous mixing and different levels of social mix-

ing (ξ = 0.75, ξ = 1) for the constant recovery rate γe. The homogeneous mixing

hypothesis leads to a lower estimate of the maximum number of infected and shows a

slower decay over time in the case q = 1, whereas for q = 2 the decay is comparable.

In Fig. 11 we compare the case of constant and age-dependent recovery rates for the

social mixing scenario. The expected number of infected are shown in the top row,

bottom row depicts the total number of recovered and infected people. The hetero-

geneity of the recovery rate makes the epidemic more persistent and causes an increase

in the total number of cases with respect to the homogeneous recovery rate. Finally,

in Fig. 12 we report the expected age distribution of infectious individuals in time for

q = 1. It is evident the effect of the age dependent recovery rate in the increase of cases

among the oldest part of the population. Note that, this effect is partially compensated

by the strength of the social mixing which reduces interaction among the elderly.

3 Source ISTAT (https://www.istat.it) and Istituto Superiore di Sanità (https://www.epicentro.iss.it)
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Fig. 12 Test 3. Expected age distribution of infectious individuals for a perception function ψ(I ) = I with

mild (left) and full (right) social mixing. In the top row γ = γe and in the bottom row γ = γ (a) defined

in (40)

4.4 Test 4: Reducing the epidemic through relaxed social containment

One of the major problems in the application of very strong containment strategies,

such as the lockdown applied in Italy, is the difficulty in maintaining them over a long

period, both for the economic impact and for the impact on the population from a

social point of view. In order to analyze sustainable control strategies, therefore, it is

necessary to resort to models with a social structure and control methods based on

specific forms of social distancing that allow the economy to restart and the population

to dedicate itself, albeit in a limited way, to its pre-pandemic activities.

In accordance with the interaction function introduced in the Appendix C, we

considered the following age dependent relaxation function

Ψ (a, a∗, t) =

{

ps a, a∗ ∈ ΛP

pw elsewhere
(41)

where the interval ΛP defines the age group related to a stronger relaxation of the

restrictions (in the sequel we assume ΛP = [25, 65]), and the parameters 0 ≤ pw <

ps ≤ 1 characterize the intensity of the heterogeneity of the relaxation process over the

different age classes. Hence we relax the control parameter defined in (29) according
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Table 1 Reduction of the feedback control (42) over different time periods due to the relaxation of the

lockdown processes by the choice of the parameter ps and pw of the age dependent function Ψ defined in

(41)

Until March 9 March 9–May 3 May 4–June 2 from June 3

ps × 100% – 0% 15% 20%

pw × 100% – 0% 5% 10%

to

urelax(a, a∗, t) = (1 − Ψ (a, a∗, t))u(a, a∗, t). (42)

The evolution of the infection is considered within two different relaxation times,

at May 4 and at June 3, as actuated by the Italian Government during the first wave

of the pandemic. We report in Table 1 the specific choice of the parameter ps and

pw associated to different periods. Note that, these values are directly related with an

increase of the disease transmission rather than to a relaxation of restrictions. In fact,

it is clear that under suitable safety precautions a relaxation of restrictions may not

contribute to the progress of the epidemic.

In Fig. 13 (top row) we report the evolution of the age-controlled model with

perception function ψ(I ) = I , with mild social mixing and with full social mixing

and homogeneous recovery rate. Each plot compare the evolution with relaxation of

the containment measure and without, respectively indicated with E[Irelax] and E[I ].

It is easily observed how the relaxation process increases the number of infected

persons. Although the expected value remains under control, the wider confidence

bands highlight the risk of a resumption of the epidemic. Of course, a further relaxation

of the values in Table 1 will lead to a higher risk of restarting the epidemic wave. In

Fig. 13 (bottom row) we report also the evolution of the age-dependent expected

number of infected individuals, both for mild social mixing and full social mixing.

We remark that, as expected, the relaxation process focuses the increase of infections

in the interval characterized by ΛP .

As can be seen, a gradual strategy can keep the average number of infections under

control and have an outcome comparable to the fully controlled model at a potentially

lower social cost. The timing and intensity of interventions, however, are crucial to

prevent the restart of the epidemic wave.

5 Conclusions

Quantifying the impact of uncertain data in the context of an epidemic emergency is

essential in order to design appropriate containment measures. Such containment mea-

sures, implemented by several countries in the course of the COVID-19 epidemic, have

proved effective in reducing the R0 reproduction number to below or very close to one.

These large-scale non-pharmaceutical interventions vary from country to country but

include social distancing (banning large mass events, closing public places and advis-
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Fig. 13 Test 4. Expected number of infected with relaxed control (42) characterized by Table 1, perception

function ψ(I ) = I , and homogeneous recovery rate, using mild social mixing (left) and with full social

mixing (right). In the bottom row the corresponding expected age distribution of infectious individuals is

reported

ing people not to socialize outside their families), closing borders, closing schools,

measures to isolate symptomatic individuals and their contacts, and the large-scale

lock-down of populations with all but essential prohibited travel.

One of the main problems is the sustainability of these interventions, which until

the introduction of a vaccine will have to be maintained in the field for long periods.

However, estimating the reproductive numbers of SARS-CoV-2 is a major challenge

due to the high proportion of infections not detected by health care systems and

differences in test application, resulting in diverse proportions of infections detected

over time and between countries. Most countries initially had only the capacity to test

a small proportion of suspected cases and tests were reserved for severely ill patients

or high risk groups. The available data therefore offer a systematic partial overview

of trends.

In this article, starting from a SIR-type compartmental model with social structure,

we developed new stochastic mathematical models describing the actions of a govern-

ment agency to contain infections among the population in presence of an uncertain

number of infectious individuals. More precisely, in the present model, the state of the

infected is defined by a multi-dimensional time-dependent function characterized by

the age, which proved essential in the description of the COVID-19 pandemic, and by

a systematic uncertainty which permits to avoid additional sub-compartmentalization

of the infectious population.
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These assumptions allows to derive a socially structured model that contains the

control action in feedback form based on the perception of the policy maker of the

spread of the disease. Subsequently, the uncertainty in the model has been approx-

imated by expanding the state variables into orthogonal polynomials in the random

space, reducing the problem to a set of deterministic equations for the distribution

of the solution through the course of the epidemic. The resulting controlled stochas-

tic dynamical system is then solved using this deterministic formulation, which in

the case of sufficiently regular uncertainty distributions allows efficient and accurate

estimations of the random parameters.

The numerical simulations, performed using data from the recent COVID-19 out-

break in Italy, show, on the one hand, the model’s ability to characterize the presence

of the asymptomatic population trough the introduction of an uncertainty in the num-

ber of infected and in their epidemic role, and, on the other hand, in presence of

control to well describe the effects of non pharmaceutical interventions aimed at flat-

tening the infection curve. In particular, identifying some scenarios in agreement with

government actions, containment measures by the population based on the resump-

tion of certain occupational activities characterized by specific age groups and social

interaction matrices were studied.

Further studies in this direction will aim to consider more comprehensive epidemic

models, including the effects of other clinical compartments of interest, along with

generalization of the control term to different objective functions or to the case of

multiple control terms for each social activity, in order to design optimal strategies to

mitigate the overall epidemic impact.
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A Feedback controlledmodels with additional
compartmentalizations

In this Appendix, we will detail how to extend the instantaneous control approach

introduced in Sect. 2.3 in the case of a a socially-structured SEPIAR-type compart-

mentalization (Gatto et al. 2020) where the control functional is given by

min
u∈U

J (u) :=

∫ T

0

ψ(IT (t))dt

+
1

2

∑

j∈{P,I ,A}

∫ T

0

∫

Λ×Λ

ν j (a, a∗, t)|u j (a, a∗, t)|2 dada∗dt,

(43)

with u = (u P , u I , u A) and subject to

d

dt
s(a, t) = −s(a, t)

∑

j∈{P,I ,A}

∫

Λ
(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗

d

dt
e(a, t) = s(a, t)

∑

j∈{P,I ,A}

∫

Λ
(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗ − δE (a)e(a, t)

d

dt
iP (a, t) = δE (a)e(a, t) − δP (a)iP (a, t)

d

dt
i I (a, t) = σ(a)δP (a)iP (a, t) − γI (a)i I (a, t)

d

dt
i A(a, t) = (1 − σ(a))δP (a)iP (a, t) − γA(a)i A(a, t)

d

dt
r(a, t) = γI (a)i(a, t) + γA(a)i A(a, t). (44)

In the above compartmentalization e, iP , i I , and i A represent the number of exposed,

pre-asymptomatic, infected with heavy symptoms and asymptomatic/mildly symp-

tomatic individuals, respectively (Gatto et al. 2020). The parameters β j , j ∈ {P, I , A}

are the specific transmission rates of the three infectious classes. Exposed individu-

als, still not contagious, enter the presymptom stage at rate δE and only then become

infectious. Pre-symptomatic individuals progress at rate δP to become symptomatic

who develop severe symptoms with probability σ or asymptomatic individuals with

probability 1 − σ . Symptomatic individuals recover from infection at rate γI whereas

asymptomatic individuals leave their compartment after having recovered from infec-

tion at rate γA.

In (43) we assume that the policy maker aims at minimizing the total number of

infected

IT (t) =

∫

Λ

(iP (a, t) + i I (a, t) + i A(a, t)) da.

We highlight that other control strategies may be considered as well leading to different

feedback control formulations.
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For the socially-structured SEPIAR model the feedback controlled formulation is

then obtained from the discrete approximation

min
u∈U

Jh(u) := ψ(IT (t + h)) +
1

2

∑

j∈{P,I ,A}

∫

Λ×Λ

ν j (a, a∗, t)|u j (a, a∗, t)|2 dada∗,(45)

subject to

s(a, t + h) = s(a, t) − hs(a, t)
∑

j∈{P,I ,A}

∫

Λ

(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗

e(a, t + h) = e(a, t) + hs(a, t)
∑

j∈{P,I ,A}

∫

Λ

(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗

−hδE (a)e(a, t)

iP (a, t + h) = iP (a, t) + hδE (a)e(a, t + h) − hδP (a)iP (a, t)

i I (a, t + h) = i I (a, t) + hσ(a)δP (a)iP (a, t + h) − hγI (a)i I (a, t)

i A(a, t + h) = i A(a, t) + h(1 − σ(a))δP (a)iP (a, t + h) − hγA(a)i A(a, t) (46)

where the discrete equation for r(a, t) can be omitted since the control does not play

any direct role in its evolution. The total number of infected evolved accordingly to

IT (t + h) = IT (t) + h

∫

Λ

(δE (a)e(a, t + h) − γI (a)i I (a, t) − γ (a)i A(a, t)) da.

(47)

We can derive the minimizer of Jh computing ∇u Jh(u) ≡ 0 or equivalently

∂ Jh(ui )

∂u j

= 0, i, j ∈ {P, I , A}.

Using (45) we can compute

ψ ′(IT (t + h))
∂ IT (a, t + h)

∂u j

= −ν j (a, a∗, t)u j (a, a∗, t), j ∈ {P, I , A},

which by virtue of (47) leads to the discrete feedback controls

u j (a, a∗, t) =
h2δE (a)

ν j (a, a∗, t)
s(a, t)i j (a∗, t)ψ ′(IT (t + h)), j ∈ {P, I , A}. (48)

In order to pass to the limit h → 0 in (46) and obtain the feedback controlled model,

we must rescale the penalization parameters with respect to the short time-horizon

h. With the aim of preserving the compartment of exposed, the penalization terms
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should rescale as ν j (a, a∗, t) = h2κ j (a, a∗, t) to get the feedback controlled model

(44) where the control terms are given by

u j (a, a∗, t) =
δE (a)

κ j (a, a∗, t)
s(a, t)i j (a∗, t)ψ ′(IT (t)), j ∈ {P, I , A}. (49)

It is interesting to observe that the control action in (49) is inversely proportional to the

incubation time, namely shorter incubation periods requires a stronger control. On the

contrary, if one assumes the same rescaling adopted for the SIR model in (12), namely

ν j (a, a∗, t) = hκ j (a, a∗, t), and select a short time horizon equal to the incubation

time h = 1/δE , the exposed compartment in (46) reduces to

e(a, t + h) = hs(a, t)
∑

j∈{P,I ,A}

∫

Λ

(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗

which substituted into the equation for iP (a, t + h) in the limit h → 0 leads to a

feedback controlled model in the form (44) without the compartment of exposed and

where the pre-symptomatic satisfy

d

dt
iP (a, t) = s(a, t)

∑

j∈{P,I ,A}

∫

Λ
(β j (a, a∗) − u j (a, a∗, t))i j (a∗, t) da∗ − δP (a)iP (a, t).

Finally, we emphasize that the generalization to the case with uncertainty contains

no difficulty and follows the same methodology introduced in Sect. 3. In terms of

data-fitting, similar to the SIR model, one considers the feedback controlled model in

absence of age-dependence and proceeds along the lines indicated in Remark 2. We

will omit the details for brevity.

B Stochastic Galerkin approximation

In this Appendix we give the details of the stochastic Galerkin (sG) method used

to solve the feedback controlled system (27–29) with uncertainties. To this aim, we

consider a random vector z = (z1, . . . , zd) with independent components and whose

distribution is p(z) : R
dz → R

dz

+ . The stochastic Galerkin approximation of the

differential model (27–29) is based on stochastic orthogonal polynomials and provides

a spectrally accurate solution under suitable regularity assumptions, see (Xiu 2010).

We consider the linear space PM of polynomials of degree up to M generated by a

family of polynomials {Φh(z)}M
|h|=0 that are orthonormal in the space L2(Ω) such that

E[Φh(·)Φk(·)] = δkh, 0 ≤ |k|, |h| ≤ M

being k = (k1, . . . , kd) a multi-index, |k| = k1 + · · · + kdz with δkh the Kronecker

delta function, and E[·] the expectation with respect to p(z). The construction of the

polynomial basis {Φh(z)}M
|h|=0 depends on the distribution of the uncertainties and
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Table 2 The different

polynomial expansions

connected to the probability

distribution of the random

component zk , k = 1, . . . , dz

Probability law Expansion polynomials Support

Gaussian Hermite (−∞, +∞)

Uniform Legendre [a, b]

Beta Jacobi [a, b]

Gamma Laguerre [0, +∞)

Poisson Charlier N

must be chosen in agreement with the Askey scheme (Xiu 2010). We summarize in

Table 2 several polynomials bases in connection with the law of a random component

of z.

By assuming s(z, a, t), i(z, a, t) and r(z, a, t) in L2(Ω) we may approximate

these terms through a generalized polynomial chaos expansion in the random space

as follows

s(z, a, t) ≈ s M (z, a, t) =

M
∑

|k|=0

ŝk(a, t)Φk(z)

i(z, a, t) ≈ i M (z, a, t) =

M
∑

|k|=0

îk(a, t)Φk(z)

r(z, a, t) ≈ r M (z, a, t) =

M
∑

|k|=0

r̂k(a, t)Φk(z),

(50)

where the quantities ŝk, îk, r̂k are projections in the polynomial space

ŝk = E [s(·, a, t)Φk(·)] , îk = E [i(·, a, t)Φk(·)] , r̂k = E [r(·, a, t)Φk(·)] .

The sG formulation of system (27) is obtained first by replacing the solutions with

their stochastic polynomial expansions

d

dt
s M (z, a, t) = −s M (z, a, t)

∫

Λ

(

β(z, a, a∗) − uM (a, a∗)
)

i M (z, a∗, t)da∗

d

dt
i M (z, a, t) = s M (z, a, t)

∫

Λ

(

β(z, a, a∗) − uM (a, a∗)
)

i M (z, a∗, t)da∗

− γ (z, a)i M (z, a, t)

d

dt
r M (z, a, t) = γ (z, a)i M (z, a, t),

(51)

with

uM (a, a∗) =
1

κ(a, a∗)
R

[

s M (z, a, t)i M (z, a∗, t)ψ ′(I M (z, t))
]

,
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I M (z, t) =

M
∑

|k|=0

Îk(t)Φk(z), Îk(t) =

∫

Λ

i M (z, a, t)da, (52)

and where s M , i M , r M are defined by (50). Then, thanks to the orthonormality of

the polynomial basis of PM , multiplying by Φm, for all |m| ≤ M , and taking the

expectation with respect to p(z) we obtain the following coupled system of M + 1

deterministic equations for the evolution of each projection

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d

dt
ŝk(a, t) = −

M
∑

|m|=0

Bkm(a, t)ŝm(a, t)

d

dt
îk(a, t) =

M
∑

|m|=0

Bkm(a, t)ŝm(a, t) −

M
∑

|m|=0

Gkm îm(a, t)

d

dt
r̂k(a, t) =

M
∑

|m|=0

Gkm îm(a, t)

(53)

where

Bkm =

M
∑

|l|=0

∫

Rdz

(∫

Λ

(

β(z, a, a∗) − uM (a, a∗)
)

îl(a∗, t)da∗

)

Φk(z)Φm(z)Φl(z)p(z)dz

Gkm =

∫

Rdz

γ (z, a)Φk(z)Φm(z)p(z)dz.

(54)

The above system is then integrated in time directly in the space of projections.

We remark that statistical quantities of interest, such as expectation and variance of

infected, can be recovered as

E[i M (·, a, t)] =

∫

Rdz

i M (z, a, t)p(z) dz =

M
∑

|k|=0

îk(a, t)E[Φk(·)] = î0(a, t),

whereas for the variance we get

Var(i M (·, a, t)) = E[i M (·, a, t)2] − E[i M (·, a, t)]2

=

M
∑

|k|=0

M
∑

|h|=0

îk îhE[Φk(·)Φh(·)] − î2
0 (a, t) =

M
∑

|k|=0

î2
k(a, t) − î2

0 (a, t).

In all the simulations reported we used M = 10 and a fourth order Runge-Kutta

method for the time integration.
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C Social mixing functions

This last appendix is devoted to report the details of the social interaction functions that

characterize the dynamics of social mixing. These characteristics are in fact crucial for

a correct prediction of outcomes, especially in diseases transmitted by close contacts.

Several large-scale studies have been designed in the last decade to determine relevant

age-based models in social mixing. Without attempting to review the vast literature

on this topic, we mention (Béraud et al. 2015; Mossong et al. 2008; Prem et al. 2017)

and the references therein.

The number of contacts per person generally shows considerable variability accord-

ing to age, occupation, country and even day of the week, in relation to the social habits

of the population. Nevertheless, some universal behaviors can be extracted which

emerge as a function of specific social activities. Social mixing is highly age-related,

which means that people usually tend to interact with other people of a similar age.

Young people have a high rate of contact with adults aged around 30-39 and older peo-

ple over 65, i.e. their parents and grandparents respectively. Contact rates are indeed

very high at home and at school. On the other hand, professional mixing is weakly

assortative by age and tends to be determined by uniform interactions, approximately

between people from 25 and 65 years old.

For these reasons we consider an interaction function determined by three main

sub-functions that characterize the family, the school and the professional mixing.

Therefore, a stylized function approximating a realistic contact matrix can be written

as follows

βsocial(a, a∗) = Cβ

∑

j∈A

ω jβ j (a, a∗), (55)

where the functions β j (a, a∗) take into account the different contact rates of people

with ages a and a∗ in relation to specific social activities of the type A = {F, E, P},

where we identify family contacts with F , education and school contacts with E

and professional contacts with P , and the associated weights ωF , ωE and ωP . The

particular structure of these social interaction matrices was determined empirically in

Béraud et al. (2015); Prem et al. (2017). Here, according to these observations, we

propose suitable mathematical functions that can be calibrated to reproduce empirical

observations, in what follow we normalize βe = 1 and amax = 1.

In details, familiar contacts tend to concentrate on a three-band matrix with a peak

around younger ages. This can be reproduced considering the function

β̃F (a, a∗) =
λF,1

(1 + (a − a∗)2)λF,2
+

√

(a2 + a2
∗) exp

{

−
1

σ 2
F

a2 + a2
∗

(1 + (a − a∗)2)λF,2

}

.

Hence, we define the family interactions as

βF (a, a∗) = β0 +
∑

ℓ={−μ,0,μ}

Cℓ

2

[

β̃F (a + μ, a∗) + β̃F (a, a∗ + μ)
]

,
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Fig. 14 From left to right, contour plot of the social interaction functions βF , βE and βP taking into account

the different contact rates of people with ages a and a∗ in relation to specific social activities. The function

βF characterizes the family contacts, βE the education and school contacts, and βP the professional contacts

Fig. 15 Social interaction

functions

βsocial = βF + βE + βP

being μ > 0 the age shift at which family contacts occur and C±μ = 1/2 and C0 = 1.

are reported in Table 3

On the other hand, school and professional interactions are more age-specific and

the corresponding matrices can be reproduced as follows

βE (a, a∗) = β0 + exp

{

−
1

σ 2
E

(

(a − λE )2 + (a∗ − λE )2
)

}

βP (a, a∗) = β0 + exp

{

−
1

σ 2
P

(

(a − λP )4 + (a∗ − λP )4
)

}

,

being λE > 0 the average contact age at school, and λP > 0 the average professional

contact age. The coefficient CF , CE , CP > 0 measure the impact of the different

contact function in the dynamics. In Figs. 14 and 15 we represent the three social

interaction functions and the resulting global social interaction function βsocial(a, a∗)

assuming ωF = ωE = ωP = 1. In Table 3 we report the choice of the parameters

used in the simulations.
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Table 3 The parameters defining the details of the interaction functions used in the simulations

Contact function Parameters

βF (a, a∗) β0 σ 2
F

λF,1 λF,2 μ C±μ C0 ωF

0.04 0.125 0.02 100 0.3 0.5 1 1

βE (a, a∗) β0 σ 2
E

λE ωE

0.04 0 0.105 0

βP (a, a∗) β0 σ 2
P

λP ωP

0.04 0.00125 0.4 0.5
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