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The infinite jet of the analytic function f(¢,)— f(g) is zero at v =0.
implying that f(¢")= f(q).

The input—output behaviors of (Z) initialized at ¢ and ¢’ are char-
acterized by the noncommutative generating power series (cf. [4])

Ied
g=h|,+ 2 2 A,n---Ahlziqx,,,-“.\'_,"
v=0 9. j, =0

and

n
g’ =hl,+ 2 2 Ay Aph px o

»=0 15.0-.4,=0

(the bars |, and | - indicate the evaluations at ¢ and ¢") which arc equal.
|
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Controllability and Observability for Affine
Nonlinear Hamiltonian Systems

A.J. VAN DER SCHAFT

Abstract —1t is shown that an affine nonlinear Hamiltonian system is
“controllable™ if and only if it is “observable,” in the sense that strong
accessibility implies local weak observability and vice versa.

Furthermore, it is shown that a nonminimal Hamiltonian system can be
reduced to a locally weakly observable and strongly accessible system. in
such a way that the reduced system is again Hamiltonian.

I. INTRODUCTION AND NOTATION

1t can be proven (see [6]. [3]) that a linear input—output svstem. given
by an m X m transfer matnx G(s) which satisfies the condition G(s)=
GT(—s5). has a minimal realization of the form

YEX: =R
u€R™, yeR™

X=Ax+ Bu

y=Cx+ Du (1.1)

with 4, B, C., and D satisfying 477 ~J4=0,B7/=C.D=D".and J a
symplectic form on X, in suitable coordinates given by

0 -1,
Lo
We will call (1.1 a linear Hamiltonian system. It is easy to prove that
such a system is controllable if and only if it is observable. In [6] (see also
[2]) a definition was given of a nonlinear Hamiltonian system with inputs

and outputs. It seems natural to conjecture that for such nonlinear
Hamiltonian systems there also exists a relation between controllability
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and observability. Actually. recently in [7] it is proven that for such
svstems “some kind of controliabilitv™ implies **some kind of observabil-
itv.” and vice versa. We now want to specialize these results to the
somewhat restricted class of nonlinear systems of the form

m

= A(x)+ 2 u; B (x). »,=C/(x)

i=1

i=l.---.m

provided with a Hamiltonian structure.

In the sequel we will use the following definition of a nonlinear system
with inputs and outputs (introduced in [10] and elaborated in [7]. [10]).
We denote the space of exrernal variables (think of inputs and outputs) by
a smooth manifold 1 (think of ¥ as " X ¥). The state space is given by
a smooth manifold M. Finaily, there is a bundle B above M (with
projection =: B — M) and a smooth function f such that the diagram

f
B T TMXW

M

commuies

(7 1s the natural projection of 7M on M).

When we denote /: B—>TM X Wby f=(g.h) with ¢: B—~TM and h:

B — W then in local coordinates this definition comes down to
x=g(x.t). w=h(x.v)

with x coordinates for M. v coordinates for the fibers of B (10 be seen as

“dummy™ input variables). and w coordinates for ¥ We will denote the

above svstem by (M. W. B. ).

For the definition of a Hamiltonian svstem we will need some notions
from symplectic geometry. for which we refer to [1].

If (M. w) is a manifold with symplectic form w. we can also construct a
symplectic form on 7M. denoted by @ (see [6]). Given a function H:
M — R we define the Hamiltonian vector field X;; by w( Xy —)=dH.
Let F. H: M — R be smooth functions which induce. as above, Hamilto-
nian vector fields X, resp. Xj;. Then the Poisson bracker of F and H
denoted by (£, H) is again a smooth function given by

(FLHY: = (X4 Xp).

When we denote the vector space of functions on M by C(M) and the
vector space of vector fields en M by F(.M). then C( M) equipped with
the Poisson bracket is a Lie algebra and the map H — X}, given by
w{ X,. —)=dH is a Lie algebra morphism to the Lic algebra of Hamilto-
nian vector fields C V(M) ie. Xir = [ Xp Xpp) (6 [1])

Finally. given a number of vector fields X,.-- -, X,. we will denote by
( X;.---. X,) the linear subspace of I'{ M) spanned by X|.- - -, X,. Analo-
gously, let Fj.--- F; be functions on M: then ( F\.---. F,) is the linear
subspace of C({ M) spanned by F.--- . F.

II. CONTROLLABILITY AND OBSERVABILITY

In [6] the following definition for nonlinear Hamiltonian svstems was
proposed and elaborated.

Definition 2.1: Let (M. w) be a symplectic manifold. denoting the state
space. Let (W.w%) be a symplectic manifold denoting the space of
external variables (inputs and outputs). A svstem Z(M. W, B, f) is called
full Hamiltonian if f( B) CTM X W is a Lagrangian submanifold of the
svmplectic manifold (TM X W, 7 *& — 7¥w®) (7). Tesp. 7, denotes the
projection of TM X Won TM, resp. H').

We now want to specialize Def. 2.1 somewhat further to what we will
call gffine Hamiltonian systems.

Definition 2.3 (see. e.g.. [$]1): An affine sysien is given by a manifold
M. together with an affine distribution & on M (le., A(x) is in every
XE M an affine subspace of 7, M) and a map C: M — Y, where Y is the
output manifold.

0018-9286 /82 70400-0490500.75 © 1982 IEEE
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Hence, in local coordinates an affine system is represented by

x=A(x)+ 2 uB(x) »=C(x) j=lL---p (21)

i=1
with x coordinates for M, p= (.- --,y,) coordinates for Y, and with 4
and B, vector fields on M such that A(x)= A(x)+ span

{B|(X),' : '!Bm(x)}'
Definition 2.4: An affine system on a symplectic manifold (M, w) is
called Hamiltonian if in local coordinates it can be represented by

m
F=A(x)~ X uBi(x)., »=C(x) i=1,---.m
i=1
with 4 a locally Hamiltonian vector field, ie., L, 0 =0, and with B,
Hamiltonian vector fields such that «w(B,. —)=dC,.

This kind of Hamiltonian system forms a natural subclass of the class
of systems given by Def. 2.1, as can be seen from the following theorem
which we state without proof.

Theorem 2.5: Let Z(M,W, B, {) be a full Hamiltonian system. Denote
fby (g, h) with g: B—TM and h: B— W. Suppose B is a vector bundle.
Suppose also W to be a vector bundle, namely W=T*Y with ¥ the
output manifold. 7%Y has as a cotangent bundle a natural symplectic
form w°. Suppose further that h: B — T*Y is a bundle morphism, and that
h is a linear bijection from the fibers of B onto the fibers of T*Y. Then we
can find vector fields A and B,, i=1,- - -,m (m = dimension fiber of B)
and a map C: M — ¥ such that the system is locally described by

n

x=A(x)+ 2 uBi(x), ¥»=C(x)

i=1

i=1,-.m

with (¥4, - *.¥,,) coordinates for ¥ and C =(C,,--,C,,), and such that
L,w=0 and w(B;,—)=4dC, ie., an affine Hamiltonian system as in
Def. 2.4,

We now want to specialize the duality results obtained in [7] for
controllability and observability of Hamiltonian systems to affine Hamil-
tonian systems as above.

First we define strong accessibility for affine systems (see [8]).

Definition 2.6: Let x = A(x)+ ZZ u, B,(x) be an affine system on the
state space M. Define Ti;: =(B,,---.8,) and I': =A+(B,,---,B,,) [an
affine subspace of V(M)]. Define further I';: =[I, T, _,]=T,_,, k=1
[with + denoting the sum of two subspaces of V(M)]. Finally, let
K:=U;5I;. From the Jacobi identity it follows that K is a Lie
subalgebra of V(M). Then the system is called swrongh accessible if
K(x)=TM for every x€ M, where K(x) is the linear subspace of 7, M
spanned by the vector fields in K.

Remark: Throughout we will assume that dim K(x) is constant.

Local weak observability is defined as follows [4].

Definition 2.7: Let

"

¥=A(x)+ X u;Bi(x), ¥ =G(x)

i=1

j=1,-+.p. 2.2)

Define Fy:=(Cy.--.C,)) and F:=LpF_+ F_; (with T as in Def.
2.6), k=1. Then the system is locally weakly observable if G:=U, .o F;
satisfies dG(x) =T} M for every x& M, where dG(x) is the linear sub-
space of T, *M spanned by dh(x) with A€ G.

Remark: As above we will assume that dim dG(x) is constant.

In the case of Hamiltonian systems the situation becomes particularly
nice. Let there be given an affine Hamiltonian system as in Def. 2.4.
Because L, w =0, there exists (locally) an H: M —R such that A= X,
(see [1]). Then we can derive the following proposition.

Proposition 2.8: Define F: = H+(C,,---,C,,) [an affine subspace of
C(M)]. Then the F;’s defined above satisfy F, ={F, F,_;}+ F,_,, with
{-.-} the Poisson bracket.

Proof: Elements of F;. are sums of functions of the form

Lfl szL/:\. o LfA-C:i (23)

with f;=A or f,= B, for /=1,---,m. The Poisson bracket is defined by
the equalities
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(N1, M) = w( Xy, Xa,) = Xy (N2)
and therefore, because A= X and B, = X, the expressions (2.3) equal

{m{hy kg (G} )

withh,=Horh;,=C,forl=1,---.m.

Everything has now been set up for our final results.

Theorem 2.9: Let there be given an affine Hamiltonian system. Let ',
and F; be defined as above; then they are related as follows. The map
Na Xy (defined by w(Xy.—)=4dN) is an isomorphism between F,
(modulo R) and T,.

Proof: It is easy to see that « maps constant functions to the zero
vector field. Therefore, we will drop for brevity the suffix (modulo R).
By induction: for & = 0 it is immediate because

Iy=(B).-"-.B,) and Fy=(C\,---.C,) and «(B,.—)=4dC,.
Suppose it is true for k — 1. We will prove it for k. Now F, ={F, F,_ |} +
F, 1. By the induction assumption Fj _, is mapped isomorphically onto
T, _,. and hence we only have to prove that { F, F,_,} is mapped under «

onto [I".T,_;]. We have
{F.R,\}={H+FR.F_\}={H.F_\}+{F. Fr-\}
and
[T.T 1 =[A+T. T 1= [A. T ]+ [ To . T -

Because the map « satisfies a({N, ¥;}) =[Xy . Xp,] (see the Introduc-
tion) and, moreover, 4 = X}, a{ Fy) =TI}, and by the induction assump-
tion a( F,_ ;) =T, _,, it easily follows that

a({H.F,-\})=[4.T] and a({F.F})=[To.Tx ]

and therefore a({F. F,_,})=[T. T, ] C
Corollary 2.10: An affine Hamiltonian system is locally weakly ob-
servable if and only if it is strongly accessible.
Proof: From Theorem 2.9 it follows that G (see Def. 2.7) is mapped
by a isomorphically onto K (see Def. 2.6). Therefore, dG(x)=T*M iff
K(x)=T.M.

III. MINIMALITY-AND REDUCTION OF THE STATE SPACE

Let us again consider an affine Hamiltonian system (Def. 2.4):

m

¥=A(x)+ 2 u;Bi(x).

i=1

XEM, (M,w) symplectic manifold

¥ =Ci(x) i=1,---.m. 3.
We define the controllability distribution D by D(x): = K(x). with K as in
Def. 2.6. Further, we define the observability codistribution P by P(x): =
dG(x). with G as in Def. 2.7. When we define the (involutive) distribution
kerP: ={XETM|o( X)=0 for every «€ P}, then the leaves of the
foliation of M induced by this distribution represent the “nonobservable
spaces” (in [4] the points on a same leaf are called strongly indistinguish-
able).

Now notice that by Theorem 2.9 we have w(D,—)= P and, therefore,
when we define the distribution D+ by

DH(x):={XET M|w(X.Y)=0, forevery YE D(x)}

then it is easy to see that ker P= D . This suggests that when we first
restrict the system to its “controllable part,” intuitively generated by D,
and then factor out by the *“nonobservable part,” approximately given by
DNker P, the reduced state space is generated by D/DNker P= D/DnN
D" and can be given again a symplectic structure! We will now make this
more precise.

Proposition 3.1: Let there be given an affine system (2.2). Suppose
there exists an x,& M, such that A(xy) € D(x,): then an integral mani-
fold Q of D through x satisfies
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1) A(x)ET.Q. for every x€Q
2) the system restricted to Q is strongly accessible.
Proof: 1t is clear that [4, D] C D. Therefore. when A(xy)&€ D(xy)
and Q is a leaf of D through x4, then A(x)€ D(x) for every x&Q
(otherwise 4 would not leave the leaves invariant). Because TQ = D. the
system restricted to Q is strongly accessible. 0
When we are in the situation of Prop. 3.1, we can speak about a
“controllable part.” By factoring out the “nonobservable part™ of an
affine Hamiltonian system. we obtain the following nice situation.
Theorem 3.2: Given an affine Hamiltonian system (3.1). suppose it is
not strongly accessible. and assume there exists an x,€ M and a Q C M
such that Prop. 3.1. is satisfied. Then there exists a manifold N and a
submersion : Q — N such that kerw, = DND*. Moreover, N has a
symplectic form w such that #*w = w. Furthermore, on N there is defined
an affine Hamiltonian system

) =l

s.m

which is Jocally weakly observable and strongly accessible and which has
the same input—outpuf properties as the original system (3.1) restricted
to Q.

Proof: First we will show that locally Q can be factored out as above.
Because DND * is an involutive distribution on Q. we can locally factor
out Q by the leaves of this distribution and obtain a manifold ¥ and a
submersion 7: Q¢ — N such that ker =, = DND ™. In. for instance. [9]. it is
proven that A can be given a unique symplectic form w. such that
7% = w. Because [4.D)C D~ and [B,.D*]CD~.i=1.---. m. the

vector fields A and B, project under 7 to vector fields A, resp. B, on N. i.e.

W*A:A_. 7,B,=B,, 1oo.m.

Because D* C kerdC;. i =1.---.m, there exist functions C, on N such
that #*C, = ;. i =1.- - - m. The equalities w( B,, —) = dC, then imply

B(E,.—):d{‘,, i=1,--.m.

F_urthermore, we can see that w(4,—)= ﬁ*(E(;{. —)) and. therefore.
w(A, —)is closed or. equivalently, L ;& = 0. We now refer to [4. Theorem
3.9] to conclude that the locally defined new system (3.2) is focally weakly
observable and strongly accessible and has the same input-output proper-
ties as the original system on Q. Moreover. this last theorem also states
that because (3.1) is strongly accessible on @, we can globally factor out Q
by DND*, and hence the local constructions above hold globally.

—
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Control of a Class of Nonlinear Systems
by Decentralized Control

S. RICHTER. S. LEFEBVRE. axp R. DECARLO

A bstract — This correspondence considers the control of a system com-
posed of several interconnected subsystems. Each subsystem is described
by a canonical nonlinear state model. with the restriction that interaction
between different subsystems is linear. Under very mild additional condi-
tions a decentralized dither feedback control is constructed which will drive
the svstem state to zero. The dither control method is shown to stabilize
this system for all initial conditions.

I. INTRODUCTION

Recently. considerable interest has arisen in the stability of intercon-
nected svstems. in particular, methods of stabilization using decentralized
state or output feedback. One method is by direct eigenvalue placement as
in [1]-[4] and [9]. Such an approach has the advantage of being able to do
more than just stabilize the svstem. and as seen in [9] to accomplish this
with reasonable gains. The main disadvantage of eigenvalue placement is
its applicability only to linear time invariant systems. or to small displace-
ments of a nonlinear system from equilibrium. Somewhat different eigen-
value methods can be found in {3] and [6].

The literature also contains much research on variable structure or
dither controllers [7]-[9]. This approach stabilizes a system through a fast
switching global control which forces the original system to “behave™ as a
second linear time invariant system which can be chosen to be stable.

The method of this correspondence is to combine the ideas of variable
structure systems with the methods of eigenvalue placement in a de-
centralized context. This is done by constructing a decentralized dither
controller which will force the original nenlinear interconnected system to
behave as a second linear interconnected system which has had its
eigenvalues placed in the left half plane by the method of {4].

II. MoDEL FORMULATION

The system 10 be considered is composed of N subsystems, where each

subsvstem is written as an ath-order state model as

X;=A,x,— Bu,+BK,

N
u,= 2 L, x,

J=1

(n

(2

0 1 0 0
0 0 1 0 0
A= . B=|:
0o 0 0 1 ’
gi &2 83 gm..
where for each instant of time x,€ R™. u,€ R'.and L,, ={0, L}~ - L]

€ R, 4,€ R"™". The zero in the first entry of L,, is a technical
condition needed so that each surface as defined in (4) below can be
expressed as a linear combination of system state variables. Moreover,
feasible computation of the local dither controller also necessitates the
condition. This is always possible to do via dvnamic compensation—i.c..
an extension of each subsvstem state space by one. A composite state
model will take the form

Manuscript received April 1, 1981: revised September 3, 1981. This work was supported
by the U.S. Department of Energy under Contract DE-ACO1-79ET29365

The authors are with the School of Electrical Engineering. Purdue University. West
Lafayvette, IN 47907,

0018-9286 /82 /0400-0492$00.75 <1982 IEEE



