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The  infinite  jet of the analytic  function /( q T ) - f ( q )  is zero  at r=0 .  
implying that f( q') = f( 4). 

The  input-output  behaviors of ( X )  initialized at q and (7' are char- 
acterized by the  noncommutative p~erarirzg power series (cf.  [4]) 

g = h ( , +  2 A l " . . . . ~ I ~ 7 ; y . ~ , ~ . . . . \ - , , ,  
Y " O J O . - . . . J I . = O  

and 

g'=/71q.+ 2 2 A - . . A  h . x  "'I 
I.20 l o . . . .  .,"=o 

I" I D  4 .  I. !,I 

(the bars ! and I ,. indicate the  evaluations  at q and q ' )  xvhich arc  equal. 
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Controllability and Observability  for  Affine 
Nonlinear  Hamiltonian Systems 

A. J. \'AX DER SCHAFT 

A b.~rruct -It i s   shom that an  affine nonlinear Hamiltonian system is 
"controllable" if and only if it is  "obsenable." in the sense that strong 
accessibilic  implies  local weak observabiliD and vice versa. 

Furthermore. it is  shown that a nonminintal Hamiltonian system  can  be 
reduced to a locally weakly observable and strongl) accessible  system. in 
such a  way that the reduced s)stem is again Hamiltonian. 

I. INTRODUCTION  AND NOTATION 

I t  can  be  proven (see [6]. [3])  that a linear  input-output  system. given 
bv an nz X nz transfer  matrix G(s) which satisfies the condition G(s I = 
G'(  - 3 ) .  has a minimal reahation of the  form 

. i = A . ; + B u  .r*EX:=W'" 
v = C.Y + Du u E Iw "I , )' € R ' ' I  ( 1 . 1 )  

with A. B. C. and D satisfying A'J J A  = 0. BTJ = C .  D = D '. and J a 
symplectic  form on X .  in suitable  coordinates given b! 

(;,z 

We will call ( 1 . 1 )  a linear Handrorziarz system.  It is easy to pm\e that 
such a system is controllable if and  only if it is obsen-able.  In  [6]  (see  also 
[2]) a definition was given of a rzordirzeur Hamiltonian system with inputs 
and  outputs. It  seems natural to conjecture that for  such  nonlinear 
Hamiltonian  systems  there also exists  a  relation  between controllability 
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and  obsenability. Actually.  recently  in  [7]  it is proven that  for  such 
systems "wme kind of controllability"  implies  "some  kind of obsenabil- 
ity." and vice versa. We now  want to specialize these  results to  the 
somewhat  restricted  class of nonlinear systems of the  form 

, I ,  

. C = , ~ ( . Y ) +  2 ~ , B , ( . Y ) .  I , =C , ( .Y )  i = l : . . . n f  
,=I 

provided  with  a  Hamiltonian structure. 
In  the sequel \ve \vi11 use the  following definition of a nonlinear  system 

with inputs  and  outputs  (introduced  in [ I O ]  and  elaborated in [7]. [IO]). 
We denote  the  space of esrerrzal carruldes (think of inputs urd outputs) by 
a smooth manifold kt.' (think of H'as L- X 1.). The  state  space is given by 
a  smooth  manifold J I .  Finally. there is a bundle B above . M  (with 
projection r;: B - M )  and a smooth  function f such  that  the  diagram 

f 
B 4 TM x kt,' .\ dTL, commutes 

.M 

( T,, is the natural projection of TM on M ). 

B - M'. then in local coordinates  this  definition  comes doan  to 
b'hen me denote /: B - TM X kt' by / = (5. h )  ai th  g :  B - TM and It:  

. i  = g ( .\- . c ) . IC = h ( .\- . 1- ) 

with .x coordinates  for ;M. r coordinates  for  the  fibers of B (to be seen as 
"dummy"  input  variables).  and 11' coordinates  for 14,'. We will denote  the 
above system b! I( .If. M'. B .  f ). 

For the definition of a Hamiltonian  system we a i l 1  need  some  notions 
from  symplectic geometrl;. for which a.e refer to [ I ] .  

If ( .\I. w )  is a  manifold with synplectic form w .  HS can also  construct a 
symplectic  form on TM, denoted  by r;, (see [6]). Gi\en a function H :  
. M  - W n-e define  the  Hamiltonian  vector field SI, bq w (  .Y,,. - )  = dH. 
Let F.  fl: M - R be smooth  functions  which  induce.  as  above.  Hamilto- 
nian \t'ctor fields S F .  resp. .Yf,. Then  the Porssorl hmker  of f and H 
denoted  by ( F.  / I )  i l  again a smooth  function given by 

{ F . l I } : = w ( x ; , . x F ) .  

When we denote  the  vector  space of functions on :If by C( M )  and the 
vector  space of \ector fields on . M  by I-( .M) .  then C( . V )  equipped  Hith 
the Poisson bracket i b  a Lie algebra and the map 11 - .A'{, given by 
~1 .Y,,. - 1 = J f l  i >  a Lic algebra  morphism to the Lie algebra of Hamilto- 
nian vector  fields C I.( ,511. i.e.. ,YtF,/ , ;= [ .YF. X/,] (cf. [ I ] ) .  

Finally. given a number of vector  fields X,: .. S A .  we will denote  by 
( .Y,. . . . . X, ) the linear  subspace of L.( :if ) spanned by A', . . - . S A  . Analo- 
gously.  let F , :  . . .FA be functions on M :  then ( f,: . . . Fk ) is the  linear 
subspace of C( .M 1 spanned by f,: . . . FA.  

11. COSTROLLABILITY AND OBSERVABILITY 

In [6]  the  following definition for nonlinear  Hamiltonian  systems was 
proposed  and  elaborated. 

Defrrziriorz 2.1: Let ( A I .  w )  be a symplectic  manifold. denoting  the  state 
space. Let ( W. we)  he a s>mplectic  manifold  denoting the space of 
external variables (inputs arid outputs). A system E( :M. Li'. B. f ) is called 
full  Hamiltonian if f( B )  C T:+f X is a Lagrangian  submanifold of the 
symplectic  manifold (TM x It'. nl*& - .;*we) ( T,. resp. T? denotes  the 
prqection of TM X I,+' on 7.V. resp. H'J .  

h'e now \\ant  to specialize Def. 2.1 somewhat further to what we  will 
call ujfrrw Hamiltonian systems. 

Dc,j;rlrrro,f 2.! (see. c~..q., ['I I :  An aifirze sr.sren~ is given b! a  manifold 
.\I. together a i th  an  affine distribution 1 on ,\I (Le.. A( x )  is in every 
.YE . I I  an affine  subspace of T, . W )  and a map C: . M  - 1.. where Y is the 
output manifold. 

001X-9286/82~0400-039~~00.75 i 1982 IEEE 
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Hence, in local  coordinates  an  affine  system is represented  by 

m 

X = A ( x ) +  2 u , B , ( x )  . Y , = C , ( X )  j = 1  I ... . p (2.1) 
1 = 1  

with x coordinates  for M ,  y = (y,: . ‘ . y p )  coordinates  for Y. and  with A 
and B, vector  fields  on M such  that A ( x )  = A ( x )  + span 

Definition 2.4: An affine  system on  a  symplectic  manifold ( M ,  w )  is 
{ B ~ ( - Y ) : ’ ~ . B ~ ~ ( . X ) } .  

called Hamilronian if in  local  coordinates  it  can  be  represented  by 

In 

. t = ~ ( x ) -  2 u , B , ( ~ > .  ~ , = c , ( x )  i = l ; . . , r n  

with A a  locally  Hamiltonian  vector field. Le.. L,u =0, and w6th B, 
Hamiltonian  vector  fields  such  that w(  B, .  - ) = dC,. 

This  kind of Hamiltonian  system  forms a natural  subclass of the  class 
of systems given by Def. 2.1., as can  be  seen  from the following  theorem 
which we state  without  proof. 

Theorem 2.5: Let X( M ,  W ,  B ,  f )  be  a  full  Hamiltonian system. Denote 
f by ( g ,  A) with g: B -, TM and 1 7 :  B - W. Suppose B is a vector bundle. 
Suppose also W to  be  a  vector  bundle,  namely W=T*Y with Y the 
output  manifold. T*Y has  as  a  cotangent  bundle  a  natural  symplectic 
form we. Suppose  further  that h :  B - T*Y is a  bundle  morphism.  and  that 
h is a  linear  bijection  from the fibers of B onto  the  fibers of T*Y, Then we 
can  find  vector fields A and B,. i = 1; . . , rn ( m  = dimension  fiber of B )  
and  a  map C: :M + Y such  that  the  system  is  locally  described by 

r = l  

nz 

. t = ~ ( . x ) +  2 u * B , ( x ) ,  J,=c,(x) i = l ; . . . m  

with (-~~.....);1~) coordinates  for Y and C=(C,:..,C,), and  such  that 
L,w = 0 and w( B, .  -) = dC,, Le., an  affine  Hamiltonian  system as in 
Def. 2.4. 

We now want  to  specialize  the  duality  results  obtained in [7] for 
controllability  and  observability of Hamiltonian  systems to affine  Hamil- 
tonian  systems as above. 

i = l  

First we define  strong  accessibility  for  affine  systems (see [8]). 
Definirio?~ 2.6: Let 1 = A ( x ) +  Z , “ = , u , B , ( x )  be an affine  system on the 

state  space M. Define r , : = ( B , ; . . , B , , )  and r : = A + ( B , ; . . , B , , )  [an 
affine  subspace of V(M)].  Define  further I ‘ k : = [ r , r k - l ] - r k - l ,  k > l  
[with + denoting  the  sum of two subspaces of V( M)].  Finally,  let 
K :  = U k s o r k .  From  the  Jacobi  identity it follows that K is a Lie 
subalgebra of V ( M ) .  Then  the  system  is  called  strong!^ accessihle if 
K (  x)  = T,M for every .x E 3 4 ,  where K( x )  is  the  linear  subspace of T, M 
spanned by the  vector fields in K.  

Remark: Throughout we  will assume  that  dim K ( x )  is constant. 
Local weak observability is defined as follows [4]. 
Defitzitzon 2.7: Let 

nz 

i = A ( . x ) +  2 uiBi ( .x> .  ),=C,(x) j=l: . . ,p .   (2 .2)  
1 = l  

Define FO:=(C,: - . .Cp)  and F k : = L r F k - , + F k - ,  (with r as in  Def. 
2.6). k > I .  Then  the  system  is locallv weak[p ohsemable if G: = UA,, Fk 
satisfies dG( .x) = T I M  for  every . x€  IM. xvhere dG( x )  is  the  linear  sub- 
space of T,”!M spanned  by dh( x )  with h E G. 

Remark: As above we  will assume  that  dim dG( x )  is constant. 
In the case of Hamiltonian  systems  the  situation  becomes  particularly 

nice.  Let  there  be given an affine  Hamiltonian  system as in  Def.  2.4. 
Because L,w = 0, there  exists  (locally)  an H :  !M - R such  that A = X ,  
(see  [I]).  Then we can  derive the following proposition. 

Proposirion 2.8: Define F = H +(C,: . ., C,) [an  affine  subspace of 
C( M)].  Then  the Fk’s defined  above  satisfy Fk = ( F ,  Fkp + Fk- I ,  with 
{ ’. . } the  Poisson  bracket. 

Proof: Elements of F, are  sums of functions of the form 

Ll, L I A .  ‘ . LIAS (2.3) 

with J = A or J = B, for I = 1,. . . . m. The  Poisson  bracket  is  defined  by 
the  equalities 

{ N ,  1 3‘2) = w ( X,\,, . x,, ) = X,,!,( X ? )  

{ h I , { h 2 . { h 3 7  { h k ’ C J } . . . }  

and  therefore,  because A = X ,  and B, = Xc,. the  expressions (2.3) equal 

r v i t h h , = H o r h i = C , f o r l = l  :... m. 
Everything  has now been  set  up  for our final  results. 
irheorem 2.9: Let there  be given an  affine  Hamiltonian system. Let r, 

and Fk be  defined as above;  then  they  are  related as follows.  The  map 
X -X, (defined by w ( X , ~ .  - )  = d!V) is an  isomorphism  between FA 

U 

(modulo 88)  and r,. 
vector field. Therefore. we wsill drop  for  brevity  the  suffix  (modulo R). 

Proof: It is easy to see that a maps  constant  functions  to  the  zero 

By induction:  for k = 0 it  is  immediate  because 

r O = ( B l ; ~ ~ . B n 2 )  and F,=(C,;- . ,C, , )  and w ( B , . - ) = d C , .  

Suppose  it is true  for k - I .  We  will prove  it  for k .  Now Fk = { F. FA - I }  + 
F A P I .  By the induction  assumption F A _  I is mapped  isomorphically  onto 
r, and  hence we only  have to  prove  that { F.  Fk- I ] is  mapped  under a 
onto [ r. r,- , I .  We have 

{ F , F ~ - , } = { H - F o . F ~ - ~ ) = { H . F ~ - ~ } - { F o , F ~ - ~ )  

and 

[ r . r ,~ , ]=[~+r , , r ,~ , ]=[~ , r , ,_ , ]+[ r , . r ,_ , ] .  
Because  the map a satisfies a( {N I ,  X 2 } )  = [X,, , , .  (see  the  Introduc- 
tion)  and,  moreover, A = X),. a( F,) = r,. and by the  induction  assump- 
tion a( F,- ,) = r,- ,, it easily follows that 

a ( { ~ .  F ~ - , } )  = [~ , r , - , l  and & ( { F ~ .  F,-,}) = [ro.r,-,1 
andthereforea({F.Fk-,})=[T.I‘-,]. C 

Corollarr. ?.IO: An affine  Hamiltonian  system is locally  weakly  ob- 
servable if and  only if it is strongly  accessible. 

Proof: From  Theorem 2.9 it  follows  that G (see  Def.  2.7) is mapped 
by a isomorphically  onto K (see  Def. 2.6). Therefore. dG( x )  = T,*M iff 
K ( x )  = T,!M. 

111. MINIMALITY AND REDUCTION OF THE STATE SPACE 

Let us again  consider an affine  Hamiltonian  system  (Def.  2.4): 

i = A ( x ) -  2 u i B , ( x ) .  x €  M .  ( M ,  w )  symplectic  manifold 

. r ; = C , ( x )  i = l ; . . , m .  (3.1) 

We define  the controllabiliz) distrihution D by D( x ): = K( x). with K as in 
Def. 2.6. Further, we define  the obsercability codisrrihutioiz P by P(.x): = 
dG( x ) .  with G as in Def. 2.7. When we define  the  (involutive)  distribution 
ker P: = { X €  T!\!la( X) = 0 for eve? a €  P I ,  then  the leaves of the 
foliation of M induced  by  this  distribution  represent the “nonobservable 
spaces”  (in [4] the  points  on  a  same leaf are  called srronglv indisringuish- 
able ) . 

Now  notice  that by Theorem  2.9 we have w (  D. - ) = P and.  therefore, 
when we define the distribution D L  by 

m 

1 = I  

D I ( . ~ ) : = { X E T , I M I ~ , ( X . Y ) = O . ~ ~ ~ ~ ~ ~ ~ . Y E D ( ~ ) )  

then  it is easy to see that kerP = D I. This  suggests  that  when we first 
restrict  the  system  to  its  “controllable  part.”  intuitively  generated  by D. 
and  then  factor  out by  the  “nonobsewable part,’’ approximately given by 
DnkerP .  the reduced  state  space is generated  by D/Dn  ker P = D / D n  
D L  and  can be given again  a  symplectic  structure! We  \vi11 now make  this 
more precise. 

Proposirion 3.1: Let  there  be given an  affine system (2.2).  Suppose 
there  exists  an x,,€ M ,  such  that A ( x o ) E  D ( x , ) ;  then  an  integral  mani- 
fold Q of D through x, satisfies 
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I )  A ( s ) E T , Q .  for every . x E Q  
2) the  system  restricted to Q is strongly accessible. 
Proofi It is clear  that [ A .  Dl C D. Therefore.  when A (  .xn)€ D( .xo) 

and Q is a leaf of D through .xo. then A( x ) €  D( x )  for eve? .YE Q 
(othemlse .4 would  not leave the  leaves invariant). Because TQ = D. the 
system  restricted to Q is strongly accessible. 0 

When we are  in  the  situation of Prop. 3.1.  we can  speak about a 
"controllable  part." By factoring  out  the  "nonobservable  part" of an 
affine  Hamiltonian  system. we obtain  the following  nice situation. 

Theorem 3.2; Given an affine  Hamiltonian  system (3 .1) .  supposc i t  is 
not  strongly  accessible.  and  assume  there exists an .yo€ M and a Q C A! 
such that  Prop. 3.1. is satisfied.  Then  there  exists a manifold .V and a 
submersion T: Q - 3 such that kera,  = DI-IDI. Moreover. V has a 
s!-mplectic form W such  that r*W = w .  Furthermore. on :V there is defined 
an  affine  Hamiltonian system 

"? 

i = .T ( .T )+  x U , B , ( S ) .  .l;=C,(.Y) r = l : " . n I  (3.') 
1 = I  

Ivhich is locally \veakly.observable and  strongly accessible  and which has 
the  same  input-output  properties  as the  original  system (3.1) restricted 
to Q. 

Proof.. First we  will  show that /oca//r Q can  be  factored out as above. 
Because DnD is an  involutive distribution on Q. we can locally factor 
out Q by the leaves of this distribution  and  obtain a  manifold h' and a 
submersion r: Q 4 X such  that ker T *  = D f l D ' .  In. for  instance. [9]. it is 
proven  that 3' can be given a unique  symplectic form 5. such that 
r n * S - w . B e c a u s e [ A . D I ] C D - a n d [ B , . D I ] C D - . r = l  :... nl. the 
vector  fields A and B, project  under T to vector  fields .T. resp. 6 on :Y. i.e. 

T,A = .4. T,B, = B,. I :  . ' . t71.  
- - 

Because D I C ker dCi. i = I .  . ', m. there exist functions < on .V such - 
that r*C, = C,. I = I: . . . ni. The equalities w (  B , .  - ) = (IC, then  imply 

w ( B , . - ) = d < ,  i = l . - ' . . n ~ .  
- 

Furthermore. we can see that w ( A ,  - )  = r*( W( .4. - ) )  and.  therefore. 
5( i, - )  is closed or. equivalently. L.75 = 0. We  now refer to [4. Theorem 
3.91 to conclude  that  the locally defined  new  system (3.2) is locally  weakly 
observable  and  strongly accessible  and  has  the  same  input-output  proper- 
ties as the  original  system on Q. Moreover. this last  theorem also states 
that because ( 3 .  I )  is strongly accessible on Q. we can g/ohn//l. factor  out Q 
by DITD I, and hence  the local constructions  above hold globally. E 

ACKNOWLEDGMENT 

I would like to thank Prof. J. C. Willems and H. Nijmeijer  for  useful 
discussions. 

REFFENCES 

[ I ]  R. Abraham and J.  E. Marsden. Faundurrom of . & k h o u k s .  2nd ed Neu Y-ork: 
BenJamin/Cumminy. 1978 

[2] R. W .  Brockett. "Control theory and andgtical mechanics." In Ceontemr Curzrrol 

Hermann. Eds. Math. Sci. Press. 1977. pp. 1-46. 
Thew? (L ie  Croups: Hlsron.. Fronrrerx m i d  dpplicurmtrs. \ol VI[). C Martrn and R. 

[3] R. W. Brockett and A. Rahimi. "Lie algebras and linear differential equation,." In 

[4[ R. Hermann and A J.  Krcncr. "Konlmear controIlabihr> and ohsenahdlt>." I E E E  
Ordmurr Dtfferemtal EquurtotLc. L Wem. Ed. Ne\\. York: Academic. 1972. 

[5] H. Nljmeijer. "Controlled Inxariant diatributlons for affine .c\>temz on mantfold>." 
TruJu. Aurnmur C m l r . .  vol AC-22. pp 728-740. Out 1Y?7 

161 A. J van der  Schaft.  "Hamlltonian dbnamios \xlth external force?. and ohrr\.arlenn." 
Math Centre. Amsterdam. The Kerherlands. prcpnnt. Aug IUS0 

.Maad. S l s r  7heon.  10 he publlshed. 
171 -. "Obsenabllit?  and controllahllity for rmoolh nonlinear s\atemq." S I 4 . L I  J 

Conrrol Oprittu:.. to he publlshed 
[ X ]  H. J .  Sussmann and V JurdJevic. "Controllnbdity of nonlinear h\stems." J D~Jikrew 

rra/ Eq , vol. 12. pp. 95- 116, 1972. 
191 A. \%'emstein. Lecture 3 of "Lectures on s!mplectlc manifolds." prexnted at  the 

[ I O ]  J C. Willems. "System theoretic models for the anal111s of ph\ical >y+%nc." 
CBMS Regional Conl.. 1976 

Ricerrhr dl .4uwnzurrcu. Speclal Issue on Svztems Theon and Phyalcc. w 1 .  IO. Dez 
1979 

Control of a  Class of Nonlinear Systems 
by Decentralized  Control 

S. RICHTER. S. LEFEBVRE. A N D  R.  DECARLO 

A bsrruct -This  correspondence  considers  the  control of a s!stem com- 
posed of =\era1  interconnected suhs?-stems. Each  sub5)stem is described 
by a  canonical  nonlinear state model.  with the  restriction that  interaction 
behreen  different  subsystems is linear.  Under r e n  mild additional  condi- 
tions a decentralized dither feedback  control is constructed which  will drive 
the s!stem state  to zero. The  dither control method is shorrn to stabilize 
this system for all initial  conditions. 

1. INTRODUCTION 

Recently.  considerable  interest  has  arisen  in  the  stability of intercon- 
nected  systems. in particular.  methods of stabilization  using  decentralized 
>tats or output feedback.  One  method is by direct  eigenvalue  placement as 
in [ I]-[4] and [Y]. Such an approach  has  the  advantage of being  able to do 
more  than  just stabilize  the  system.  and as seen in [9] to accomplish  this 
with  reasonable  gains.  The  main  disadvantage of eigenvalue  placement is 
its applicability  only to linear time invariant systems. or to small  displace- 
ments of a nonlinear syatem from equilibrium. SomeLvhat different eigen- 
value  methods  can  be  found  in [5] and [h]. 

The  literature also contains much research on variable structure or 
dither  controllers [7]-[9]. This  approach  stabilizes a slstem through a fast 
switching  global control which  forces the original system to "behave" as a 
second  linear  time invariant system which can  be  chosen to be  stable. 

The method of this correspondence is to combine  the  ideas of variable 
structure systems lvith the  methods of eigenvalue  placement in a de- 
centralized context.  This is done by constructing  a  decentralized  dither 
controller which  will force the original  nonlinear  interconnected  system to 
behave as a second linear  interconnected  system which has  had its 
eigenvalues  placed in the left  half plane  by  the  method of 14). 

11. MODEL FORhiULATION 

The a!>tem to be  considered is composed of A: subsystems. \vhere each 
subsystem i \  written ac an I I  th-order  state model as 

A ,  = : B, = 

where  for  each instant of time .x, E R " : .  1 1 ,  E R ' .  and L, ,  = [O.I.;: . .. L:] 
E R'"'.. A,€ R".'" . The zero in the first entry of I . , ,  is a technical 
condition  needed so that each  surface as defined  in (4)  below can  be 
exprehhed as a linear  combination of system state variables.  Moreover. 
feasible  computation of the local dither  controller also necessitates the 
condition.  Thi> is ahvays possible  to do  via dynamic  compensation-i.e.. 
an extenhion of each  subsyatem state  space by one. h composite  state 
model will take  the  form 
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