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Controllability and observability in 
complex networks – the effect of 
connection types
Dániel Leitold1, Ágnes Vathy-Fogarassy1 & János Abonyi  2,3

Network theory based controllability and observability analysis have become widely used techniques. 
We realized that most applications are not related to dynamical systems, and mainly the physical 
topologies of the systems are analysed without deeper considerations. Here, we draw attention to the 
importance of dynamics inside and between state variables by adding functional relationship defined 
edges to the original topology. The resulting networks differ from physical topologies of the systems 
and describe more accurately the dynamics of the conservation of mass, momentum and energy. 
We define the typical connection types and highlight how the reinterpreted topologies change the 
number of the necessary sensors and actuators in benchmark networks widely studied in the literature. 
Additionally, we offer a workflow for network science-based dynamical system analysis, and we also 
introduce a method for generating the minimum number of necessary actuator and sensor points in the 
system.

Y. Y. Liu et al. started a new trend in network science when they become the �rst to analyse complex networks 
as dynamical systems with the maximum matching algorithm1. �ey considered nodes as state variables, inter-
preted networks as linear multivariable dynamical systems and studied the controllability and observability of 
these models2. Based on these principles Yan et al. analysed the required energy for controlling a system3, Ruths & 
Ruths determined control pro�les for cluster networks4, Pósfai, Liu, Slotine & Barabási examined how the degree 
correlation in�uences the required inputs5, and the robustness of an input con�guration was also improved by 
X. Liu et al.6. �e application of the proposed method is also widespread, for example, Penn, Knight, Chalkias, 
Velenturf & Lloyd applied this approach on fuzzy cognitive maps as well7. �ese studies impressively show the 
bene�ts of network science-based analysis of dynamical systems.

Despite the groundbreaking successes, some critiques have also been received. Müller & Schuppert deter-
mined that in transcriptional networks the method drastically overestimates the number of necessary inputs8. 
Sun, Cornelius, Kath & Motter also highlighted that the methodology needs further clari�cation because the 
method gives incorrect results for non-linear systems even for small examples9. �is fact has also been evinced by 
Dunne, Williams, & Martinez10. Another problem is that researchers examined the correlation between necessary 
inputs generated by the proposed method, and structural properties, like degree distribution, but they did not 
take into account that the result of the maximum matching algorithm is not unique11.

�e most contestable point of the network-based analysis is that it is based on a static and structural view of 
the system. We wish to o�er a solution to the previously mentioned problems by examining how system dynam-
ics should be represented realistically. �e usage of proper topology is important and a crucial part of network 
analysis, as this is the only way to emphasise dynamics in statical representations. We introduce connection types 
according to the typical relationships of the state variables. To analyse how the determined connection types 
in�uence the controllability and observability of dynamical systems we developed a MATLAB toolbox. We exam-
ined 35 example networks used in articles and found that 27 do not represent dynamical systems. By comparing 
them with 18 independently selected dynamical systems, we revealed signi�cant di�erences. While in dynamical 
systems the number of inputs and outputs does not change when the proper topology of the model is studied, in 
the case of other networks more than 95% of inputs and outputs disappeared because of the determined connec-
tion types.
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In the following section, a�er a brief introduction to the network science-based analysis of dynamical systems, 
we present how the functional relationships of state variables de�ne di�erent types of connections, and propose 
a work�ow to evaluate how these connection types in�uence the number of necessary actuators and sensors that 
ensure controllability and observability. As result, we conclude that in most of the articles dealing with network 
science-based controllability and observability analysis mainly the physical topologies of the systems are stud-
ied, while the analysis of the realistic state-transition matrix-based topologies can lead to signi�cantly di�erent 
conclusions.

Results
Controllability and observability analysis of dynamical systems. Linear time-invariant systems are 
mostly represented by state-space models

= +x x ut t tA B( ) ( ) ( ), (1a)

= +y x ut t tC D( ) ( ) ( ), (1b)

where x stands for state variables, u represents the inputs, i.e. the actuators, and y is the vector of outputs, i.e. the 
sensors of the system. A and B matrices de�ne how state variables and inputs in�uence the change in the state 
variables, while matrices C and D de�ne how state variables and inputs in�uence the outputs, respectively. 
Assuming that the number of internal state variables is N, the number of inputs is M and the number of outputs 
is K, then the sizes of the matrices are R∈ ×A N N , R∈ ×B N M, R∈ ×C K N , R∈ ×D K M.

Controllability and observability are certainly the two most important properties of dynamical systems. A 
system is controllable if we can drive the state variables from any initial to any desired values within a �nite period 
of time with properly selected inputs12. A system is observable if we can determine the state of the system based 
on the recorded input and measured output variables12.

To ensure controllability with a minimal number of inputs the brute force approach should generate 2N − 1 
con�gurations of the B matrix. To solve this challenging task, Y. Y. Liu et al. proposed the maximum matching 
algorithm based on the network representation of the A matrix to select the control1 and observer2 nodes that 
ensure controllable and observable systems.

Network based representation and analysis of dynamical systems. Since the goal is to determine 
the inputs and outputs of a given system based on the structure of the state transition matrix, the network is 
de�ned based on matrix A (Fig. 1).

�e maximum matching algorithm is a combinatorial method which creates the largest disjoint edge set in 
a graph. Although the maximum matching is interpreted on undirected graphs, it is interpretable in a directed 
network as well (Fig. 2)1. �e disjoint condition in a directed network means that two edges cannot have a com-
mon starting point or common end point. A directed network can be represented as an undirected network as 
well (Fig. 2). �e result of a matching is the disjoint edge set and its size, furthermore, matched and unmatched 
edges and nodes can be determined. An edge is matched if it is in the disjoint edge set, otherwise, it is unmatched. 
A node is matched, if it is an endpoint of a matched edge, otherwise it is unmatched. �e result of maximum 
matching is a matching with maximum size. If a matching results in all nodes as matched nodes in the network, 
then it is called a perfect matching.

According to Y. Y. Liu et al., if we determine the unmatched nodes of the network, which are associated with 
matrix A, then we obtain the driver nodes1. Driver nodes are the nodes in the network that are in�uenced by the 
inputs. If we transpose the network, i.e. change the direction of edges, then the generated unmatched nodes are 
the sensor nodes of the same system. Similarly, sensor nodes are the nodes that are observed by outputs. With 
these driver and sensor nodes the system will be controllable and observable. �e methodology provides only a 
structural analysis of a system, i.e. it deals with the structural architecture exclusively, and it ignores edge weights. 

Figure 1. Representations of a state-transition matrix. (a) Illustrative state equation with four state variables. 
(b) Network representation of the dynamical system. (c) �e adjacency matrix of the network is the transpose of 
the state-transition matrix.
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�e determined driver and sensor nodes are also just structural positions in the system, the methodology does 
not assign any parameters to matrices B and C or vectors u and y. Since the maximum matching algorithm 
generally does not provide a unique solution, the provided driver and sensor nodes can be di�erent for the same 
topology. �e methodology accepts all of these solutions as a result and does not evaluate them according to other 
aspects.

Nevertheless, an exceptional case is known: with perfect matching the number of unmatched nodes is zero. In 
this case, one driver node grants the controllability independently from its location. To understand the mecha-
nism of controlling, Liu et al. introduced the concept of stem and cycle13. A stem is a directed path in the network 
starting with a driver node. Cycles are controlled by the inputs, which have at least one node that has an incoming 
edge from a controlled node. A node is controlled, if it is a member of the stem or a controlled cycle. Perfect 
matching can occur for parts of the network as well. Namely, inauspicious cases cycles are controlled by stems or 
other cycles. Rarely new driver nodes have to be appointed in these subsystems. �us, in these unique situations, 
controlling the unmatched nodes is not enough to grant controllability. So far, only one approach handle this 
problem, referred as the signal sharing method, handles this issue2. Unfortunately, initial maximum matching 
is not unique. �erefore, signal sharing can provide a di�erent number of driver nodes for a given topology. To 
analyse the e�ects of dynamics in systems, another method, referred to as path �nding method, was used and also 
recommended to provide the minimum number of driver nodes. �e mechanism of both methods is introduced 
in Section II in Supplementary Information.

Connections between the state variables and their effect on controllability and observabil-
ity. �e connection between two state variables is represented by the sub-matrix that belongs to nodes i and j:
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When there is a connection between the xi and xj state variables, we can generate 23-1 di�erent combinations 
of the non-zero elements (edges) (see Fig. 3). Diagonal elements represent loops that describe a variable that has 
integrating characteristic de�ned as:
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By interpreting the principles of conservation of mass, energy or momentum, it can be realised that several 
connections should contain loops and symmetrical edges. In the case of symmetrical relationship the strength of 
the interaction (change of the state variable) is also a function of both the source and the sink variables:

Figure 2. Maximum matching in directed networks. (a) Simple, unweighted directed graph with four nodes 
and four edges. (b) Result of maximum matching in the directed network. Edge a21 cannot be a member of the 
disjoint set of edges, as it has a common starting point with a31 and a common end point with a23. End points 
of matched edges are matched nodes. (c) Undirected representation of the directed network. For each node in 
the directed network there are two nodes in the undirected representation, one for outgoing edges and one for 
incoming edges. �e representation of edges is obvious. �e result of maximum matching is the same in both 
directed and undirected representations.
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To illustrate connection types in a more tangible way, we illustrate them using a simple example. Let us con-
sider three water tanks connected by two pipes (see Fig. 4).

�e di�erence between physical topology and structure of the state-transition matrix (equation (5)) can be 
seen in Fig. 5. We supposed that the pressure/level is higher in tank 1 than in tank 2 or 3. �us, the water can �ow 
only in one direction, and the topology of the system remains unchanged. We use this supposition to ensure the 
linearity of the system. Although controllability of switching linear systems were examined, it is beyond the scope 
of this paper14.

Figure 3. Dynamics of two state variables. (a) Basic connection without additional edges represents the 
‘logical’ or ‘structural’ relationship between the elements. (b) Source state variable in�uences itself as well, for 
example, it represents a variable that has a capacity which changes due to the connection. (c) �e change of the 
terminating state variable also depend on its value, e.g. accumulation. (d) Combined dynamics of types (b,c). 
(e) �e symmetric edge-pair shows that the in�uence is undirected, or the strength of the in�uence depends on 
the other state variable, as the signal �ows in causal bond graphs16. (f) Combined dynamics of types (b,e). (g) 
Combined dynamics of types (d,e).

Figure 4. Physical representation of water tanks. State variables represent water levels in the tanks. Flow rates F1 
and F2 show how the water �ows through the pipes from the �rst tank into the others.
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To analyse the e�ect of connection types, we de�ned four type of networks based on the four combinations 
of loops and edges. �ese four types are: networks that simply re�ect the physical connections; networks with 
nodes having loops that represent the capacity or self-in�uencing of the state variables (the integrating behaviour 
of the tanks); networks with symmetric edge-pairs that re�ect interactions between the state variables (mass bal-
ance); �nally, networks with self-in�uence and interaction (Fig. 6). Notwithstanding, the e�ect of intrinsic nodal 
dynamics on the number of driver nodes was examined15, our approach di�ers, since it does not consider the 
di�erent order of dynamics but the presence of �rst-order dynamics, therefore, the results also di�er.

�is example con�rms that before generating input and output con�gurations the dynamical behaviour of 
the system must be examined more carefully, and the topology of the network has to be changed according to the 
required connection types. Figure 7 represents the �ow-chart of this suggested work�ow.

Figure 5. Physical representation and state-transition matrix-based representation of water tanks. �e 
di�erence between the physical structure and the structure of the properly modelled state-transition matrix is 
signi�cant.

Figure 6. �e examined four types of water-tank network models with associated inputs (u) and outputs (y). 
(a) Physical connection between state variables. (b) Self-in�uencing represents integrating node dynamics. (c) 
Interaction represents balanced dynamics (material balance). (d) Detailed model of the system. Already this 
small example clearly shows how connection types change the number and location of the driver and sensor 
nodes. �e driver and sensor nodes were determined by the path-�nding method introduced in section II of the 
Supplementary Information.
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To extend the analysis of networks, a MATLAB toolbox called NOCAD (Network-based Observability and 
Controllability Analysis of Dynamical Systems) was implemented, which can examine the used topologies sophis-
ticatedly. �e toolbox is divided into three modules. �e network mapping module creates a dynamical system 
from a network, i.e. an adjacency matrix is interpreted as a state-transition matrix, and B, C and D matrices of 
equation (1) are generated such that, the created linear system is controllable and observable. �e system char-
acterization is the second and the main module of the toolbox, and its task is to analyse the system and network 
speci�c measures. �e system investigation module creates and analyses the modi�ed topologies according to the 
proposed work�ow.

Used real networks. In the literature more or less the same set of networks is studied. �e majority of them 
do not represent dynamical processes. Considering tools of system theory we established dynamics that are typi-
cal in dynamical systems, and with this knowledge we examined how these dynamics appear, and how they in�u-
ence the properties of networks. To answer these questions we grouped networks into three subgroups according 
to their dynamics. Firstly, Network Set I contains networks which are examined in articles, and can represent 
dynamical processes. Topologies in this set usually originate from the �eld of regulatory, transcriptional, neu-
ronal, power grid or watershed networks. In these networks dynamics are interpretable (in the sense of systems), 
i.e. some kind of capacity, or conservation law is observable between elements, such as Kirchho� ’s circuit laws, 
even if it does not appear in representations. Secondly, Network Set II contains such networks, where dynamics 
do not appear, e.g. in a social network or in an email network the information or the message can be propagated 
without limitations. Furthermore, the Internet, citation networks and food webs belong to this set also. It is 
interesting why dynamical systems and their state-transition matrices are not included in articles. �erefore, in 
Network Set III we included state-transition matrices of real dynamical systems, thus we were sure that results of 
these networks provide the real behaviour of dynamical systems. Sizes and short descriptions of networks can be 
found in Supplementary Table S1.

Firstly, to prove that the established connection types are important parts of dynamical systems, and are not 
of other networks, we analysed how many self-in�uences and interactions are in these topologies (Fig. 8). Results 
clearly show that these connection types are fundamental parts of dynamical systems, but rare in real networks. 
We concluded that this meaningful information about networks can be found in the literature, because only phys-
ical topologies were used to identify inputs and outputs instead of real state-space-based topology. Consequently, 
the determined number of driver and sensor nodes could be highly overestimated as is also shown by Müller & 
Schuppert8.

Effect of connection types on controllability and observability. �e extension of the networks with 
new edges due to self-in�uences and interactions changes the required number of the driver and sensor nodes. 
�e results can be seen in Fig. 9. It is an interesting fact that networks from Network Set I reacted di�erently in 
terms of node dynamics, i.e. exhibited self-in�uence in�uence, compared to networks from Network Set II. In 
more detail, if self-in�uence appears in networks from Network Set I, then they show more willingness to reduce 
sensor nodes, while in the case of Network Set II the reduction is rather signi�cant in driver nodes.

Nevertheless, the more important result is that networks from Network Set III did not show any changes with 
the newly added edges, i.e. we can assume that the determined node and edge dynamics are parts of dynamical 
systems. In contrast, other examples exhibit more than 95% of driver and sensor reduction if both dynamics were 
taken into account. �is drastic di�erence shows the importance of the presence of node and edge dynamics in 
topologies. In addition, we note that networks from Network Sets I and II could provide wrong results in this 
�eld if the researched area was sensitive to the lack of dynamics. Detailed results can be found in section IV of the 
Supplementary Information.

�e reduction of driver and sensor nodes can be addressed in terms of the newly created strongly connected 
components (SCC). A self-in�uencing edge creates an SCC that contains one node, while an interaction creates 
an SCC that contains two nodes, respectively. It is equal to one-length and two-length cycles, that can be con-
trolled by a stem easily (for details, see section 2 in Supplementary Information). �is phenomenon clearly shows, 
that the interpretation of self-in�uence on each node and the interpretation of interaction on each connected 
node-pair is not exaggerated: the number of driver or sensor nodes is progressively decreased by increasing the 

Figure 7. Determined �owchart for system design and analysis. Since connection types can be determined 
according to the topology of the systems, we strongly recommend following the proposed work�ow and taking 
into account deeper dynamics to obtain more accurate and reliable results.

http://S1
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number of modi�ed nodes and edges. To con�rm our statement, we generated the heat map of network celegans 
from Network Set I and dolphins from Network Set II, that can be seen in Fig. 10. Furthermore, if both connection 
types appear in the network, then each connected component of a network can be controlled by one driver node 
and observed by one sensor node. �us, with the help of Fig. 9 we can also conclude that networks from Network 
Set III contain more components than the others. As mentioned previously, the path-�nding method was used 
to generate driver and sensor nodes. If we apply the signal sharing method, then the results are the same, only 
three cases di�er slightly. In terms of in�uence, i.e. the original network, for Network Set I the method assigned 
0.17605% more sensor nodes, while for Network Set II 0.00356% more driver and 0.010455% more sensor nodes 
were determined compared to the path �nding method.

Discussion
Although the network science-based examination of the system controllability and observability is a very popu-
lar and fruitful methodology, it is still in its infancy. Besides positive results, some negative comments were also 
published. Here, we provide answers to criticisms using the determined connection types. With a novel work�ow, 
we illustrated how network-based analysis could generate more realistic results if the connections among the state 
variables would be de�ned based on more detailed analysis. We also realised that the majority of the networks 
studied in the literature do not exhibit dynamical behaviour that could be interpreted as a (linear) state space 

Figure 8. Initial percentage of self-in�uence and interactions in network sets. By examining real networks and 
dynamical systems, we get unequivocal results of structural di�erences. (a) Network Set I does not exhibit self-
in�uence, and Network Set II does not exhibit them except in four cases, and only two of them exhibit more 
than 8% of self-in�uencing edges in their topologies. In contrast, more than 50% of self-in�uencing interactions 
in Network Set III are observed, i.e. more than half of the state variables in�uence themselves in dynamical 
systems. �e median is almost 100%, so these dynamics are usual in dynamical systems. (b) In Network Set I 
usually less than 35% of interaction type edges are observed. In the case of Network Set II, results are a little 
higher. In Network Set III only four systems contain less than 100% of interactions, so in dynamical systems 
these dynamics is always present.

Figure 9. Proportion of driver and sensor nodes in networks with di�erent connection types. Bar diagrams 
containing the mean of the proportion of driver (a) or sensor (b) nodes grouped according to network types. 
Apart from in�uence the numbers on the top of the bars show the reduction of driver and sensor nodes 
compared to the original.
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model. In the case of dynamical systems when the integrating behaviour and balance equation related relations 
among the state variables were also taken into account the number of necessary drivers and sensors decreased 
drastically compared to the analysis of oversimpli�ed structural networks. For determining driver and sensor 
nodes a new approach was also recommended.
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