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Simple Summary: Gliomas are known to impact on large-scale networks beyond the tumor location,
but it is unknown how the tumor affects controllability and robustness of neural networks. We applied
advanced control theory algorithms on connectivity data of structural and functional networks of
prognostically differing glioma patients and healthy controls. We determined the driver nodes
of the default-mode network (DMN), which are receptive to outside signals, and critical nodes
as the most important elements for network controllability. Patients showed decreased network
controllability and robustness mainly in the isocitratedehydrogenase (IDH) wildtype group, while
additional topological shifts of driver and critical nodes were observed mainly in the prognostically
more favourable IDH mutated patients. We hereby suggest a novel approach for elucidating disease
evolution in brain cancer, which may aid in defining potential treatment targets under the aspects of
network controllability and robustness in glioma patients.

Abstract: Previous studies suggest that the topological properties of structural and functional neural
networks in glioma patients are altered beyond the tumor location. These alterations are due to
the dynamic interactions with large-scale neural circuits. Understanding and describing these
interactions may be an important step towards deciphering glioma disease evolution. In this study,
we analyze structural and functional brain networks in terms of determining the correlation between
network robustness and topological features regarding the default-mode network (DMN), comparing
prognostically differing patient groups to healthy controls. We determine the driver nodes of these
networks, which are receptive to outside signals, and the critical nodes as the most important elements
for controllability since their removal will dramatically affect network controllability. Our results
suggest that network controllability and robustness of the DMN is decreased in glioma patients. We
found losses of driver and critical nodes in patients, especially in the prognostically less favorable
IDH wildtype (IDHwt) patients, which might reflect lesion-induced network disintegration. On
the other hand, topological shifts of driver and critical nodes, and even increases in the number
of critical nodes, were observed mainly in IDH mutated (IDHmut) patients, which might relate
to varying degrees of network plasticity accompanying the chronic disease course in some of the
patients, depending on tumor growth dynamics. We hereby implement a novel approach for further
exploring disease evolution in brain cancer under the aspects of neural network controllability and
robustness in glioma patients.
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1. Introduction

Diffusely infiltrating glioma impacts large scale neural circuits [1–4] and the structural
connectivity of the brain [5–8] beyond the apparent lesion site. Systemic functional con-
nectivity (FC) changes have previously been found in glioma patients using resting-state
functional MRI (rs-fMRI) and have been reported to differ depending on tumor growth
dynamics, with stronger FC alterations found in high-grade compared to low-grade glioma
patients [1,9]. A recent study, furthermore, described the increased efficiency of surround-
ing functional networks in lower grade glioma, while high-grade glioma mainly showed
disruptions in brain functional connectivity in remote areas [2]. Likewise, structural dis-
integration with degradation of white-matter structures and alterations in the systemic
microarchitecture of the brain have been reported as well [7,8,10], using diffusion MRI to
analyze the microstructural integrity or estimate the number of streamlines connecting
specific brain regions with each other [11,12]. The disease has a chronically progressive
nature, with network alterations undergoing constant, dynamic changes, tumor-induced
structural degradation, network disintegration, and diachisis on one hand, but potentially
adaptive alterations and neuroplasticity (more likely to occur in slowly growing tumor
types) on the other hand [2,13–17]. If, however, tumor-induced structural decline and
network disintegration override the capacity for functional compensation, network failure
and functional decline inevitably ensues. The dynamic interaction between the tumor
and the structural and functional connectome and the relation between structural and
functional connectivity alterations are, however, not sufficiently understood.

Modern dynamic graph network theory techniques and control theory applied to
neural networks open a new research avenue which may aid in better understanding the
dynamic properties of the structural and functional connectome in glioma patients. In the
brain, we consider neural ensembles or regions as nodes of a graph. These are connected by
edges which represent anatomical wires in a complex graph architecture, impacting disease
and rehabilitation, besides neural function and development. It has been shown [18,19]
that node-removals are more damaging than edge-removals to the network controllability,
and that heterogeneous networks are more at risk than homogeneous networks. We
apply advanced control theory to show how structural features of the graph network can
inform temporal features of disease dynamics. The trajectory of this system represents the
temporal path that the system undergoes through different states. A state is defined as
the magnitude of neurophysiological and pathological changes across brain regions at a
single point in time. Controllability of the graph network refers to the possibility to move
the system along a desired trajectory. This means the system traverses a number of states
from an initial one to a target state. We postulate that particular brain regions or nodes in
the graph network at critical locations within the anatomical framework play the role of
drivers that direct the system into specific modes of action. In clinical applications, it is
essential to determine whether the brain as dynamic system can be controlled for applying
therapeutic solutions. Consequently, network controllability becomes a focal research topic
in many neurobiological applications. Regarding neurodegenerative diseases [20–22], it
has previously been shown that certain brain regions or nodes in the connectivity graph
can act as drivers for connectomic networks associated with Alzheimer’s disease and Mild
Cognitive Impairment, and that these influence cognitive functions. Data on network
controllability in tumor patients is, however, lacking.

The computational tools derived from control theory may allow us to address funda-
mental gaps in our understanding of disease evolution relevant to glioma. Looking into
brain networks’ graph architectures, we discover highly connected and weakly connected
areas. Two types of nodes are of particular interest in this context: the driver and the critical
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nodes. The driver nodes are the nodes which can send signals to target nodes, and thus
are able to control the disease evolution trajectory. In a reverse engineering framework
for glioma, these target points might be destinations for therapeutic intervention. A node
is considered critical if its removal increases the number of drivers needed to maintain
controllability. The critical nodes thus represent the brain regions that might be essential
for preserving controllability of specific network functions, and which thus should be
preserved in therapeutic intervention.

We therefore developed and applied a control theory framework revisiting a connec-
tomic data set of a previously published study [23] with prognostically differing glioma
types (IDH mutated and IDH wildtype gliomas) [24], in order to identify nodes of SC
and FC networks that can act as drivers and move the system (brain) into specific states
of action. The driver nodes determined in the glioma graph networks change over time
since the brain network structure and connectivity undergoes alterations in the course of
the disease. Pinning controllability techniques provides us with the set of those driver
nodes. Brain network failures are associated with dysfunction and disease progression.
The controllability of a network decreases as a result of such failures, which is reflected
by an increase in the number of drivers needed to control the network. To resist failures,
strong robustness is preferable, and often required, in the context of biological networks.
Therefore, we consider the correlation between brain network robustness and topological
features extremely important in the context of understanding disease evolution, and hereby
suggest a novel approach for further exploring disease evolution in brain cancer under the
aspects of controllability and robustness of structural and functional neural networks.

2. Materials and Methods
2.1. Participants

In the initial study, 29 glioma patients (mean age: 50 years, 17 males, 28 right-
handed, 19 left-hemispheric tumors) and 27 healthy controls (mean age: 46 years, 17 males,
26 right-handed) were included [25]. Only patients between 18 and 80 years with unilateral
supratentorial tumors and a Karnofsky index of ≥70 were included in the study. Patients
were enrolled preoperatively and all except two of the patients were naïve to prior tumor-
specific treatment. Histopathological diagnoses were determined according to the revised
WHO tumor classification of 2016 [26], integrating histoanatomical and moleculargenetic
criteria under consideration of the IDH-mutation status and codeletion of chromosome
arms 1p and 19q in each patient. Patients’ demographics and tumor characteristics can
be found in Table 1. Patients were split into subgroups according to their IDH-mutation
status, resulting in patient groups of 15 IDHmut and (mean age: 37 years, 11 males, 14 right-
handed, 10 left-hemispheric tumors) and 14 IDHwt patients (mean age: 65 years, 6 males,
14 right-handed, 9 left-hemispheric tumors). Tumor volumes did not significantly differ
(p < 0.062) between IDHmut and IDHwt patients.

Table 1. Clinical description of included patients.

Patients IDH-
Mutation Diagnosis Grade Location Side Volume (in

mm3)
Age

(Years)
Education
(Years) ***

1 Y Oligodendroglioma * II Frontal R 2 36–40 13

2 Y Anaplastic
astrocytoma III Frontal L 21 50–55 13

3 Y Oligodendroglioma * II Frontal L 24 26–30 13

4 Y Anaplastic
astrocytoma III Parietal R 25 56–60 9

5 Y Astrocytoma II Frontal, insular R 30 30–35 13

6 Y Astrocytoma II Frontal, insular L 32 30–35 15

7 Y Anaplastic
oligodendroglioma * III Frontal L 39 50–55 15
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Table 1. Cont.

Patients IDH-
Mutation Diagnosis Grade Location Side Volume (in

mm3)
Age

(Years)
Education
(Years) ***

8 Y Astrocytoma II Frontal L 51 26–30 16

9 Y Astrocytoma II Frontal L 54 26–30 13

10 Y Astrocytoma II Parietal L 73 56–60 18

11 Y Anaplastic
oligodendroglioma * III Frontal R 96 30–35 18

12 Y Anaplastic
astrocytoma III Temporal,

parietal L 114 40–45 13

13 Y Anaplastic
astrocytoma III Parietal L 119 20–25 13

14 Y Anaplastic
astrocytoma III Frontal R 155 30–35 15

15 Y Anaplastic
oligodendroglioma * III Frontal R 175 30–35 13

16 N Glioblastoma
multiforme IV Temporo-

parietal L 2 56–60 10

17 N Glioblastoma
multiforme ** IV Frontal L 11 76–80 13

18 N Glioblastoma
multiforme IV Temporo-

parietal-occipital L 11 60–65 15

19 N Glioblastoma
multiforme ** IV Temporo-

parietal L 13 50–55 13

20 N Glioblastoma
multiforme IV Frontal R 19 66–70 12

21 N Glioblastoma
multiforme IV Frontal, insular L 20 66–70 9

22 N Glioblastoma
multiforme IV Temporal,

parietal, occipital L 25 66–70 12

23 N Glioblastoma
multiforme IV Occipital L 44 50–55 13

24 N Glioblastoma
multiforme IV Parietal, occipital R 47 76–80 9

25 N Anaplastic
astrocytoma III Frontal L 49 40–45 13

26 N Anaplastic
astrocytoma III Temporal,

parietal L 51 70–75 18

27 N Glioblastoma
multiforme IV Parietal L 64 60–65 9

28 N Glioblastoma
multiforme IV Temporal,

parietal L 116 66–70 18

29 N Glioblastoma
multiforme IV Frontal R 121 56–60 16

Note. IDH = isocitrate-dehydrogenase, Y = yes, N = no, L = left, R = right. * Patients with codeletion of
chromosome arms 1p and 19q. ** Recurrent tumor with preceding resection and adjuvant radiochemotherapy.
*** Years of education were computed by the sum of years spent for school career and further training/study.

2.2. MRI Data Acquisition

For the present study, an MRI data set previously obtained and published [23]
was used for the analyses. The detailed scanning protocol is therefore described in de-
tail elsewhere [3,10,23] and comprised the following pulse sequences: a sagittal 3D T1
magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence; a contrast-
enhanced, T1-weighted turbo inversion recovery magnitude (TIRM) dark-fluid sequence; a
T2-weighted TIRM dark-fluid scan; a fluid attenuation inversion recovery (FLAIR); as well
as an echo planar imaging (EPI) sequence, including 300 whole-brain functional volumes.
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Scanning was applied using a 3T Siemens Prisma MRI scanner equipped with a standard
20-channel head coil. (For a more detailed description please see Supplement S1).

2.2.1. Data Preprocessing

Preprocessing steps were applied as described in detail previously [23]. In brief,
tumor masks were semi-automatically created using ITK-SNAP software (version 3.6.0,
Paul A. Yushkevich, University of Pennsylvania, USA and included T1 hypo- and T2-
FLAIR hyperintense lesions for gliomas grade II-III, as well as T1 hypointensities and
contrast-enhancing lesions for glioblastomas. Tumor masks were manually corrected by an
experienced neurosurgeon and used for cost-function masking in the preprocessing. Func-
tional preprocessing included the realignment of functional images and their coregistration
to the strucutral image, the normalization to MNI space, smoothing, and high-pass filtering
of functional images. A whole-brain parcellation was then applied using the Brainnetome
Atlas (https://atlas.brainnetome.org, accessed on 20 February 2020), generating 246 prede-
fined anatomical brain regions that served as ROIs for the following analyses (for further
details please see Supplement S1).

2.2.2. Data Analyses

Within these ROIs, SC and FC were computed by generating 246 × 246 whole-brain
SC and FC connectivity matrices for each subject. Briefly, SC measures were based on
probabilistic diffusion tractography and comprised edge-weight (EW), as determined by
the number of fiber connections between two ROIs divided by the mean number of fibers
originating or ending within these two ROIs. For FC, mean time-series were generated
for corresponding ROIs and correlated (including a Fisher z transformation) with each
other (for further details please see Supplement S1). As a result, a 246 × 246 SC and FC
connectivity matrix was generated for each subject, which were then averaged per group
to obtain one mean SC and one mean FC matrix for each IDHmut, IDHwt, and the healthy
control group.

In this paper, we analyzed structural and functional connectivity matrices obtained in
the previous study [23] under the aspect of network controllability and robustness of the
DMN in IDHmut and IDHwt patients compared to healthy controls. In the current analyses,
only DMN-related ROIs extracted from the Brainnetome Atlas were included, comprising
the anterior cingulate cortex, posterior cingulate cortex, medial temporal gyrus, and inferior
parietal lobule. From the original 188 × 188 correlation matrix set [23], we thus extracted a
total of 26 non-zero rows/columns with 13 ROIs for the right hemisphere (12, 14, 42, 82, 84,
136, 138, 144, 152, 154, 176, 182, 188) and 13 ROIs for the left hemisphere (11, 13, 41, 81, 83,
135, 137, 143, 151, 153, 175, 181, 187), as labelled according to the Brainnetome atlas. The
nodes in the resulting graphs keep the original ROIs’ numbers obtained according to the
Brainnetome atlas, and we are consistent with the numbering throughout our processing
(for a detailed list of included DMN ROIs please see Supplement S2).

2.3. Methods for Generating Structural and Functional DMN Graphs

There are many metrics based on statistical dependencies used in defining brain
connectivity, but the most common is correlation. Thus, we thresholded the sample con-
nectivity matrices. Based on these 26 × 26 matrices the adjacency matrix and graphs were
computed. We determined the driver of the graph by using the standard procedure of
computing the column canonical form (CCF) and eigenvalues mode (i.e., most frequent
value), as has been described in detail previously [27]. The drivers are identified by finding
the linear dependent row vectors in the CCF. According to [27], we obtained a graph
with N = 26 nodes for a chain network with one driver, for a star network we obtained
N − 2 = 24 drivers, and for a fully connected network we obtained N − 1 = 25 drivers.

As there is no optimal threshold for generating structural and functional graphs, in
general, a range of thresholds is considered. In this paper, we adopted from literature

https://atlas.brainnetome.org
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a range of common thresholding schemes [28] and applied them to DMN SC and FC
connectivity values.

First, we implemented the lowest percentage threshold method by removing only
2.5%, 5%, 10%, 20%, and 30% of the edges. Increasing the threshold will decrease the
number of drivers and produce a compressed information representation. For these lowest
threshold methods, we always used the threshold computed from the healthy control group
for the three sets (for each SC and FC).

In addition, we implemented three further pre-processing methods to generate graphs
besides the original zero threshold method. These are the adaptive threshold method, the
partial correlation method, and the Chow-Liu algorithm:

Adaptive Threshold Method (ATH): We implemented an adaptive threshold method
by applying an iterative algorithm to determine the largest threshold value possible (with
an error < 10−4) such that the adjacency matrix still produces a fully connected graph. This
graph has a reduced number of edges compared to the original data but still has essentially
more edges than the CLA method. This will generate six different thresholds for the six
data sets.

Partial Correlation Method (PCM): The partial correlation method assumes that the
data correlation matrix is positive and definite. The inverse of the data matrix is determined
and normalized afterwards. To obtain a sparse matrix, we apply a soft threshold since we
have a finite number of samples and noise.

Chow-Liu Tree Algorithm (CLA): This method implements the maximum weight
spanning tree of the connectivity graph [25,29]. Unlike PCM, it does not require a matrix
inversion and can be directly applied to the original data matrix. The method constructs
the optimal tree but will produce, in case the graph is disconnected, false positives. Figure 1
summarizes the employed processing steps.
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2.4. Network Controllability and Driver Nodes

A network can be described by a graph G = (V, E), where V = {1, 2, . . . , N} is the
set of nodes and E =

{
eij
∣∣i, j ∈ V, i 6= j } is the set of M links. In this paper, we consider

undirected networks. In [4], it was shown that a simple noise-free linear discrete-time and
time-invariant model can be employed to describe the neural dynamics measured by fMRI

x(t + 1) = Ax(t) + BKuK(t) (1)

where x ∈ Rn is the magnitude of the neurophysiological activity (state) of the brain regions
over time, A ∈ Rn×n is the adjacency matrix, BK ∈ Rn×m is the input matrix, and uK ∈ Rm

is the input vector. The input matrix identifies the control nodes, K, in the brain. The
interaction network is presented by its Laplacian matrix, L = [lij] where lij = −1; i 6= j, if
there is a link between nodes i and j, and 0 otherwise [30]. The ith diagonal element is
lii = −∑j lij, which forms the Laplacian as a zero-row-sum matrix.
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2.5. Robustness Measures

The dynamic behavior of a brain network is strongly linked to the topological structure
of the network represented by nodes and edges. Changes in network parameters would
affect both the robustness and stability of the network. Robustness is an important feature
of brain networks because it describes the ability of the network to resist random or
targeted attacks. We view the glioma development as an attack on the connectivity of
the brain networks. We employed two measures here to characterize robustness based
on the eigenvalues of the Laplacian or adjacent matrix: the algebraic connectivity and the
natural connectivity.

Algebraic connectivity: The algebraic connectivity α(G) is defined as the second
smallest eigenvalue of the Laplacian matrix.

α(G) = λ2, λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN , (2)

where λi, i = 1, 2, 3, . . . , N are the eigenvalue of Laplacian matrix of graph G.
Natural connectivity: Natural connectivity is defined as an average eigenvalue that

changes strictly monotonically with the addition or removal of edges.

−
λ = ln(

1
N

N

∑
i=1

eλi ) (3)

where λi is the eigenvalue of the adjacency matrix. An empty graph has the minimum
natural connectivity while the complete graph has maximum connectivity. A larger value
is associated with a more robust graph.

2.6. Network Controllability under Vulnerability: Determination of Critical Nodes

Critical nodes represent a subset of nodes in the network whose removal leads to a
decline in performance metrics such as algebraic and natural connectivity. These attacks
lead to a reduced topological stability and reflect an altered cerebral organization. To
determine the critical nodes, we remove a node of the network and recompute the number
of driver nodes. If the number goes up, we identify the removed node as a critical node
(please see Figure 1).

3. Results
3.1. Implementation of Pre-Processing and Graph-Generating Methods

The lowest percentage threshold method showed, at a threshold of 30%, the most
reliable results and discriminated best between healthy controls and glioma patients.

The adaptive threshold method (ATH) determined the largest threshold, such that
a fully connected graph was produced. The number of edges was reduced compared to
the zero-threshold method but yielded more than the CLA. We thus obtained six different
thresholds for the six data sets. Applying ATH, the drivers had a range of 1–4 (mean = 1.875;
median = 1 across the 6 data sets) out of 26 nodes.

The partial correlation method (PCM) generated the inverse of the correlation matrix
and normalized the output results. In [28], thresholding for medical imaging application
was recommended. The number of drivers was now in the range 1–15 with a mean = 4.375
and median = 2. A DMN/IDMmut/IDHwt classification trend was not observed by
using PCM.

The Chow-Liu tree algorithm (CLA) reduced the number of edges, N – 1, to the
minimum possible, such that the graph was fully connected. For N = 26 nodes, this always
gives a graph with 25 edges. CLA tries to identify the graph with maximum weight by
first sorting all edge weight and then adding only the weights and nodes that are not
corrected. The number of drivers was low (range 0–6; median = 2; mean = 2.78). Regarding
the DMN/IDMmut/IDHwt classification, no clear trend was observed, as the number of
drivers was often too low due to the few edges in the graph. The CLA method generated a
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fully connected graph but, by the definition of the algorithm, many large correlation values
were removed from a graph if the edge already had a connection. Therefore, important
information was lost from the graph, which seemed counterproductive in a medical setting,
so that the CLA method appeared to be not suitable in the present context.

3.2. Driver Nodes of Structural and Functional Graphs

We therefore applied the lowest percentage threshold method for determination of
the driver nodes of structural and functional networks in patients and controls. Very often
the same threshold is used across different groups for comparison [31]. Therefore, the
first five threshold values to eliminate 2.5%, 5%, 10%, 20%, and 30% of the connectivity
values/edges were computed always using the DMN sets. Here, 2.5% would be equivalent
to the µ − 2a-threshold of a Gaussian distribution. The upper limit for edge removal
was 38% to produce still a fully connected graph. The 26 × 26 matrix data were sorted,
percentage values to compute the threshold were determined, and then the threshold
was applied.

Threshold values were first computed for the control group, both for the SC and FC
DMN graph, and these thresholds were then also applied to compute the graphs and
drivers for the patient data (IDMmut and IDHwt). A substantially clearer trend was now
visible in terms of the number of drivers: the number in the control group was, in the
majority of cases, higher than the number in the IDMmut and IDHwt graphs, as can be
seen Figure 2.
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lowest percentage threshold method. (SC refers to the structural DMN graph, FC to the functional
DMN graph. 0 refers to the control group).

We then determined the driver nodes for structural and functional networks for
controls and glioma cases as an average computed over the five thresholds using the lowest
percentage threshold method (Table 2).
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Table 2. Average number of driver nodes for controls (Con) and glioma cases (IDHmut, IDHwt) for
structural and functional graph networks regarding the DMN.

DMN Con IDMmut IDMwt

SC 9 7.8 5.6

FC 11.80 10.20 8.40

We show, as an example, the location of driver nodes at a 30% threshold (TH).
In Figure 3, the nine driver nodes for the structural DMN in healthy controls are

located in the frontal lobe (orbital gyrus), parietal lobe (inferior parietal lobule, precuneus,
postcentral gyrus), and the limbic lobe (cingulate gyrus). For IDHmut, five driver nodes are
located in the parietal lobe (inferior parietal lobule) and the limbic lobe (cingulate gyrus).
For IDHwt, four driver nodes were found in the parietal lobe (inferior parietal lobule,
precuneus) and the limbic lobe (cingulate gyrus).
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Figure 3. Driver nodes of the structural DMN (Edge Weight; EW). (a) Controls, (b) IDHmut, and
(c) IDHwt subjects. In each of the three images we have: on the upper left, the original non-zero
correlation data; on the upper right, the histogram of the correlation values found in the connectivity
matrix; on the lower left, the Boolean data for the threshold at 30%; and on the lower right, the TH
graph with the determined driver nodes. Driver nodes are in red.

In Figure 4, the four driver nodes for the functional DMN in healthy controls are
located in the precuneus and in the cingulate gyrus. In IDHmut patients, three driver nodes
are located in the orbital gyrus, middle temporal gyrus, and in the cingulate gyrus. For
IDHwt patients, only one driver node was found and located in the cingulate gyrus.



Cancers 2023, 15, 2714 10 of 20Cancers 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

  
(a) (b) 

 
(c) 

Figure 4. Driver nodes of the functional DMN, rsfMRI. (a) Controls, (b) IDHmut, and (c) IDHwt 
subjects. In each of the three images we have: on the upper left, the original non-zero correlation 
data; on the upper right, the histogram of the correlation values found in the connectivity ma-
trix; on the lower left, the Boolean data for the threshold at 30%; and on the lower right, the TH 
graph with the determined driver nodes. Driver nodes are in red. 

We analyzed these results for SC and FC and observed the following: 
a. The number of driver nodes (DN) for both SC and FC was decreased in patients com-

pared to controls, with the lowest number in the prognostically less favorable IDHwt 
group (see Figures 3 and 4). 

b. IDHmut patients showed not only losses, but also topological shifts with “alter-
native” DN compared to controls for SC in the cingulate cortex (left dorsal area 
23, left subgenual area 32) and for FC in the right orbital gyrus and left middle 
temporal gyrus (see Figure 5). 

Figure 4. Driver nodes of the functional DMN, rsfMRI. (a) Controls, (b) IDHmut, and (c) IDHwt
subjects. In each of the three images we have: on the upper left, the original non-zero correlation data;
on the upper right, the histogram of the correlation values found in the connectivity matrix; on the
lower left, the Boolean data for the threshold at 30%; and on the lower right, the TH graph with the
determined driver nodes. Driver nodes are in red.

We analyzed these results for SC and FC and observed the following:

a. The number of driver nodes (DN) for both SC and FC was decreased in patients
compared to controls, with the lowest number in the prognostically less favorable
IDHwt group (see Figures 3 and 4).

b. IDHmut patients showed not only losses, but also topological shifts with “alternative”
DN compared to controls for SC in the cingulate cortex (left dorsal area 23, left
subgenual area 32) and for FC in the right orbital gyrus and left middle temporal
gyrus (see Figure 5).

c. Common DN for both patients and controls were found in the inferior parietal lobe
(IPL) and in the cingulate cortex (left ventral area 23, right subgenual area 32) for SC,
and in the left cingulate cortex (subgenual area 32) for FC.

d. Healthy controls showed common DN for SC and FC in the cingulate cortex (right
ventral area 23), IDHmut patients showed common DN for SC and FC in the cingulate
cortex and in left subgenual area 32, while IDHwt showed no common DN across SC
and FC networks.

In summary, patients and controls share common drivers for SC in the cingulate cortex
and the right inferior parietal lobe and, for FC, in the cingulate cortex. While the absolute
number of driver nodes decreased in patients, losses are higher in the prognostically
less favorable IDHwt group, with topological shifts found in the IDHmut but not in the
IDHwt group.
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Figure 5. Connectograms for SC and FC for each group highlighting the driver node (DN) connections
in blue. Given in dark blue are common DN across groups, both for SC and FC, respectively.
DMN nodes are labeled numerically according to the ROIs as given in the Brainnetome Atlas
(https://atlas.brainnetome.org, accessed on 20 February 2020). The total number of DN decreases in
patients, with the lowest number in the IDHwt group. Only in the IDHmut patients, not only losses
but also “alternative” DN are found compared to controls, indicating a topological shift in some of
the DN.

3.3. Robustness of Structural and Functional DMN

The algebraic connectivity is determined by the second smallest eigenvalue of the
Laplacian matrix. It was shown by [32] that the magnitude of this measure reflects how
well connected the graph is.

Figure 6 shows the values of the robustness measure algebraic connectivity for the
SC and FC networks. The SC networks for the unthresholded connectivity graph show a
decreased robustness for glioma patients compared to controls. The lowest robustness is
achieved for the less favorable IDHwt. This confirms that the reduced topological stability
is due to altered cerebral organization. The other methods showed less pronounced
differences due to the fact that the number of edges varied less within each group of graphs.
The FC networks also showed a less pronounced behavior regarding robustness compared
to the SC networks. Their variations were minimal between control and glioma networks
for almost all methods.

Since the algebraic connectivity is too coarse to describe the structural connectivity,
the natural connectivity was proposed by [33] as an alternative. It represents an average
eigenvalue that changes monotonically when edges are deleted or added. The larger the
value of natural connectivity, the more robust is the graph. The results in Figure 7 show
the same trend as those in Figure 6 for the SC networks. For the FC networks for ATH and
PCM, we observed a decrease in robustness of the IDHwt network compared to controls
and IDHmut.

https://atlas.brainnetome.org
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We analyzed the results from Table 3 for SC and FC and observed the following:  

Figure 7. Natural connectivity for SC and FC networks with examples for different thresholding
methods: ORG TH 0% represents the unthresholded connectivity graph, TH 30% represents the
thresholded graph at 30%, PCM represents the partial correlation graph, and CLA represents the
graph built based on the Chow-Liu-algorithm. (SC refers to the structural DMN graph, FC to the
functional DMN graph. 0 refers to the control group).
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3.4. Topological Vulnerability for Structural and Functional Networks

We investigated the robustness for both healthy controls and glioma patients and
determined the critical nodes, observing differences between groups (Table 3).

Table 3. Critical nodes for structural and functional networks. Abbreviations: SFG (Superior Frontal
Gyrus), OrG (Orbital Gyrus), MTG (Middle Temporal Gyrus), IPL (Inferior Parietal Lobule), Pcun
(Precuneus), and CG (cingulate Gyrus). Highlighted in red are nodes classified as critical nodes in
patients but not in controls. Given in bold are critical nodes common across groups.

Controls IDHmut IDHwt

Critical 13, 14, 81, 83, 84 11, 12, 13, 14, 81, 82, 83, 84 42, 82, 83, 84, 144
Nodes 143, 144, 175, 187 136, 137, 144, 151, 154, 176, 182 152, 154, 176, 182

SC SFG SFG OrG
MTG MTG MTG
IPL IPL Pcun
CG CG CG

Critical 11, 12, 82, 83, 84, 135, 11, 83, 84, 135, 136, 152, 11, 82, 136, 152, 182
Nodes 136, 137, 138, 152, 176, 181, 188 -

FC SFG SFG SFG
MTG MTG MTG
IPL IPL IPL

Pcun Pcun Pcun
CG CG CG

We analyzed the results from Table 3 for SC and FC and observed the following:

(a) The number of critical nodes (CN) for FC but not SC decreased in patients compared
to controls, with the lowest number in the prognostically less favorable IDHwt group
(see Figures 8 and 10).

(b) Patients showed not only losses, but also additional CN compared to controls for SC
and FC, with more “alternative” CN being encountered in IDHmut than in IDHwt
patients (please see Figure 9).

(c) Common CN for patients and controls were found in the inferior parietal lobe (IPL,
rostroventral area 39) and middle temporal gyrus (MTG) regarding SC. Common CN
for patients and controls regarding FC were found in the superior frontal gyrus (SFG),
inferior parietal lobe (IPL, caudal area 39), and the precuneus.

(d) Healthy controls showed common CN for SC and FC in the right and left MTG (rostral
area 21). IDHmut patients had common CN in the right and left MTG (rostral area
21), and in the right IPL. IDHwt patients showed common CN for SC and FC only in
the right MTG (caudal area 22).

In summary, patients and controls shared common critical nodes in the MTG and IPL
for SC, and in the SFG, IPL and precuneus for FC. The number of critical nodes decreased
in patients regarding FC, especially in the IDHwt group. The number of CN regarding
SC remained stable or even increased in the IDHmut group, mainly due to additional
recruitment of “alternative” CN compared to controls, with more topological shifts being
observed in the IDHmut than in the IDHwt patient group.

Notably, driver and critical nodes were differently distributed both within structural
and functional networks.
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(c) Common CN for patients and controls were found in the inferior parietal lobe 
(IPL, rostroventral area 39) and middle temporal gyrus (MTG) regarding SC. 

Figure 9. Connectograms for SC and FC for each group, highlighting in magenta the critical node
(CN) connections. Given in dark magenta are common CN across groups, both for SC and FC,
respectively. DMN nodes are labeled numerically according to the ROIs as given in the Brainnetome
Atlas (https://atlas.brainnetome.org, accessed on 20 February 2020) The total number of CN for FC
decreases in patients, with the lowest number in the IDHwt group. The total number of CN for SC
remains stable in IDHwt and increases in IDHmut patients. Not only losses but also ”alternative” CN
are found mainly in IDHmut patients compared to controls indicating a topological shift of CN in
some of the patients.

https://atlas.brainnetome.org
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4. Discussion

The aim of the present study was to investigate the controllability of neural networks
in glioma patients compared to healthy controls by applying control theory algorithms
on functional and structural connectomic MRI data. To the best of our knowledge, this
is the first study to determine driver as well as critical nodes in a real neural system in
the context of brain cancer. Regarding the DMN, we found a loss in driver (DN) and
critical nodes (CN) in tumor patients, which appeared to be even more pronounced in the
prognostically less favorable IDHwt group. However, not only losses, but also topological
shifts were observed for DN as well as for CN. This applied for structural as well as
functional DMN-connectivity, with a higher number of “alternative” DN and CN being
found in IDHmut compared to the IDHwt patient group. Robustness was decreased in
patients compared to controls, which again appeared to be more pronounced in IDHwt
patients, mainly with regard to the structural DMN. Thus, network controllability was
decreased in glioma patients, and seemed to differ in prognostically differing tumor types.
While the losses of DN and CN may reflect tumor-induced disintegration of structural
and functional neural circuits, the topological shifts and recruitment of alternative nodes
might be related to neuroplasticity accompanying the chronic disease course, which is more
likely to occur in the slower growing lesions, and which applies to the prognostically more
favorable IDHmut patients in our study.

An increasing number of studies [34,35] describe associations of intrinsic network
features with glioma predilection sites and potential tumor growth trajectories. While
recent studies suggest preexisting network characteristics impact tumor localizations and
tumor growth, there are also indications that premorbid network features do not remain
unaltered by the tumor pathology but undergo constant tumor-induced changes such as
network degradation and plasticity accompanying the disease course [13,15–17]. Therefore,
it has to be assumed that at the time of diagnosis, alterations of intrinsic network fea-
tures may well have preceded disease manifestation, so that not only premorbid network



Cancers 2023, 15, 2714 16 of 20

characteristics will define lesion growth and functional sequelae, but also more complex
and constant interactions with dynamic network alterations along the disease course. In
that regard, our study complements previous findings by adding the new dimension of
deciphering tumor effects on the inner functional network architecture from the perspective
of network controllability, which may differ not only depending on tumor location but also
on tumor growth dynamics. Therefore, observed differences in network controllability of
prognostically differing glioma types may add to a better understanding of the dynamic
interaction of different tumor lesion types with the functional and structural connectome.

4.1. Controllability of the DMN

We investigated controllability specifically of the DMN as the fundamental intrinsic
network, as it is considered essential for human cognition and for the integration of different
neural network functions. With the DMN showing anticorrelations to extrinsic networks
during task performance and rest, the strength of this dichotomy has previously been
linked to the level of task performance, and alterations of DMN controllability therefore
may greatly impact on various other network functions. Considering that early functional
imaging studies have defined the DMN with the ambiguity of being activated mainly in the
resting condition while being deactivated during most active tasks, the DMN seems to be
especially suited for investigating functional network controllability based on resting-state
functional MRI acquisitions. Moreover, the DMN has been shown to be inter- and intrain-
dividually highly robust, allowing for cross-sectional studies across different groups. As
the DMN, the most commonly investigated intrinsic network, has been anatomically well
defined, we chose to investigate DMN connectivity based on a whole-brain parcellation
using the Brainnetome Atlas, selecting empirically defined DMN ROIs, which allow com-
parison between corresponding regions across different subjects. While tumor lesion masks
were carefully used for the preprocessing procedures, tumor regions were not excluded
from the analyses of functional and diffusion MRI data. Considering the infiltrative nature
of glioma tumor cells along white matter bundles, tumor regions may still be functionally
and/or structurally connected depending on tumor growth dynamics, so that the “network
relevance” of a tumor lesion thus may not solely depend on tumor location or size, but
also on the degree of local destruction on the one hand, and perilesional neuroplasticity
accompanying the chronic disease course on the other hand. It was previously shown [1],
that functional connectivity of glioma lesions significantly differed depending on the tumor
grade. As core regions of the DMN encompass, in particular, cortical midline structures,
the overlap with tumor regions was also limited. The differences observed here in network
controllability across patient groups thus might also relate to different tumor growth dy-
namics, as indicated here by IDH mutation status. By restricting the analyses to predefined
atlas-based regions of the DMN, we analyzed network alterations specifically within a
well-defined anatomical framework. While the decrease in DN and CN may simply relate
to tumor-induced network degradation, the here observed topological shifts of driver
and critical nodes (in the case of critical nodes preserved or even increased in number in
IDHmut patients), even within these well-defined anatomical boundaries, may indicate
varying degrees of neuroplasticity in prognostically differing patient groups while not
being able to account for network plasticity beyond this predefined anatomical framework
with the current approach.

4.2. Network Controllability in Brain Tumor Patients

Random failures or attacks stemming from aberrant signals on brain networks are
frequently happening and can have severe consequences. These failures or attacks are
associated with node or edge removals, causing dysfunction or cancer in humans. Therefore,
looking into network controllability robustness is of critical importance and it reflects
how well brain networks can preserve their controllability against random failures or
attacks. Attacks may either be random (e.g., a tumor pathology) or targeted (e.g., a
therapeutic intervention). In [36], it was shown that node removals are more detrimental
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than edge removals to controllability; likewise, heterogeneous networks are more prone to
connectivity destruction. In this sense, we determine the critical nodes [18] whose removal
negatively impacts the network controllability. In general, the network controllability
is supposed to decrease after attacks, which is shown by the increase in the number of
drivers [36]. A node is defined as critical if, and only if, its removal increases the number of
drivers needed to maintain the network controllability. In [18,36], it was shown that these
critical nodes are extremely relevant for network controllability.

In the context of brain cancer, attacks on critical nodes result in the need for a higher
number of DN in order to maintain network controllability, rendering the system less
efficient and more vulnerable at the same time. In our study, CNs were not reduced in ab-
solute numbers in patients due to the recruitment of alternative nodes. DN, on the contrary,
were reduced in the patient group compared to controls, which may indicate the failure
of the system to sufficiently compensate for the losses, and which might be paralleled by
functional impairment in patients. Functional decline, e.g., in the cognitive domain, has
frequently been described to be more pronounced in faster growing tumor lesions [37,38],
irrespective of tumor volumes [9], which complies with the notion of network failure, espe-
cially in higher grade gliomas [1,2]. Characterizing network controllability in brain tumor
patients might not only be relevant in terms of understanding functional sequelae but may
also offer new means to investigate network vulnerability, e.g., regarding the propagation
of epileptic seizures; to define treatment targets; and to improve prognostication of disease
evolution. Regarding therapeutic interventions (e.g., surgical resection) as potential attack
on network integrity, control theory algorithms may offer tools to identify those nodes (i.e.,
brain regions) which might be indispensable for maintaining controllability of specific net-
work functions, and which thus should be preserved in therapeutic intervention. Assuming
constant dynamic interactions between disease propagation on the one hand and attempts
of compensation of the neural system on the other hand, using control theory algorithms for
characterizing neural network dynamics may provide new means for adapting therapeutic
strategies along the disease course: Repeated assessments of network controllability with
(re-)evaluation of CN and DN topology may provide a better understanding of the “func-
tional reserve capacity” of the network, and may allow adaptation of therapeutic targets
along the disease’s course, given the topological shifts of DN and CN observed in our study
in some of the patients. As such, applying control theory algorithms to neural networks
might nurture the treatment concept of “prehabilitation”, referring to the possibility of
adapting therapeutic targets along the disease course under special consideration and
promotion of neuroplasticity preceding therapeutic (re-)intervention [39,40].

4.3. Limitations and Perspectives

We are, however, very well aware that the present study has some fundamental limita-
tions. First and foremost, the small sample size constitutes a major limitation, in that other
factors, such as tumor histology and other molecular genetic markers, tumor volume, and
tumor location could not be investigated for their potential influences on network controlla-
bility. While we could not control for tumor location due to the small sample size, IDHmut
and IDHwt at least did not differ significantly in tumor volumes in the present cohort. We
furthermore cannot exclude that age differences across groups may have contributed to the
observed differences in network controllability in our cohort, but the inherently differing
age distributions of different glioma subtypes may generally not be easily overcome when
comparing prognostically differing tumor types. Further methodological limitations are
grounded in the imaging modalities applied, with diffusion MRI only providing gross
estimates of white matter connectivity on a macroscopic scale, with known shortcomings
especially related to fibre curvature and fibre crossings [41]. Considering the infinitely more
complex cerebral structural organization with strong reciprocity and complex vertical as
well as horizontal neural interconnections, as suggested by previous investigations on the
microscale [42], the applied methods here can only aspire to provide a gross estimate and
strongly simplified model of neural network controllability. Despite this, diffusion MRI still
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provides valuable insights into white matter microstructural architecture, which at present
cannot be obtained by any other clinically available method in vivo. Analyzing functional
connectivity based on resting-state functional MRI measures also has limitations, such as
those caused by neurovascular uncoupling [43] or due to limited spatial and temporal
resolution, but still provides valuable information on functional network architecture in a
clinically feasible setting.

We hereby introduced the concept of controllability and driver nodes that are recipients
of outside signals (which are thus able to move the brain system into specific states of
action) in the context of brain cancer. With regard to neurodegenerative diseases, it has
previously been shown [22] that driver nodes are representative for the transitions between
healthy controls, mild cognitive impairment, and Alzheimer’s. Application of control
theory algorithms on neural network functions of brain tumor patients is, however, lacking.
In a novel approach, we determined driver node locations in structural and functional brain
networks and showed that their number and location is distinctive for healthy controls
and glioma patients and point to changes in the brain network structure that may be
attributed to the disease. Biological networks are robust against random failures but are at
risk for targeted attacks on the so-called critical nodes. There is a close relationship between
controllability and network robustness captured by the critical nodes and their significance
in supporting robust brain functions. We believe that this study provides novel impulses
and opens a new research avenue to determine brain network robustness at the nodal level,
which is relevant for many brain diseases.

We claim that the information provided by controllability may be used in combination
with other graph nodal measures for understanding global changes in glioma. An interest-
ing future direction is to estimate the network connectedness robustness based on deep
learning methods. Connectedness is an important and necessary property for ensuring
controllability and is given by a sufficient number of properly connected nodes. Evaluating
the importance of nodes is computationally expensive and AI methods help alleviating
this problem. Connectedness robustness is more difficult to predict than controllability
robustness since it has a higher variability than the latter.

5. Conclusions

In a novel approach, we analyzed SC and FC networks in glioma patients from the
dynamic view of controllability and robustness of a neural system by determining the
driver and critical nodes within the DMN. We observed losses in driver and critical nodes
for both SC and FC in glioma patients compared to controls, indicating impaired network
controllability and network robustness in patients, which was even more pronounced in
the prognostically less favorable IDHwt patient group. While decrease in DN and CN
may reflect tumor-induced disintegration of neural circuits, the topological shifts and
recruitment of alternative nodes observed mainly in IDHmut patients might be related to
neuroplasticity accompanying the chronic disease course, which is more likely to occur
in slower growing tumor lesions. Applying cognitive control theories to structural and
functional connectomic patient data opens new avenues for investigating neural network
dynamics, which may aid in improving prognostication of disease evolution and functional
outcome in therapeutic intervention.
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