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Abstract
The process of deriving the equation of the perturbed motion of a roll pair during the processing of leather material is  

discussed in the article, taking into account the influence of dynamic factors. It is shown that one of the reasons for the unstable 
stress state on the contact surfaces in the roller mechanism are dynamic factors arising from inaccuracies in the manufacture of 
its individual parts, assembly defects, and the occurrence of an oscillatory process in the roller mechanism, as well as due to the 
nonuniform thickness of the processed material at its gripping during starting and stopping the machine. Methods for determining 
optimal controls are shown; they provide asymptotic stability of the unperturbed motion of a roll pair and the torque applied to the 
upper roll as a function of generalized coordinates.

It is shown that the width of the contact strip of the clamp, which depends on the radii of the rolls and the hardness of the 
coatings, has a significant effect on the efficiency of the rolls. The larger the shaft radius, the lower the actual pressure per unit 
contact area.

It is shown that the squeezing efficiency increases with the improvement of the conditions for the removal of the squeezable 
liquid from the rolls (with their horizontal arrangement), with an increase in its temperature and a decrease in viscosity. Efficiency 
decreases with increasing material speed and thickness.

It is shown that the width of the contact strip of the clamp, which depends on the radii of the shafts and the stiffness of the 
coatings, has a significant impact on the efficiency of the shafts. The larger the shaft radius, the lower the actual pressure per unit 
contact area.
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1. Introduction
Roller mechanisms are widely used due to the simplicity of design, the possibility of  

a continuous technological operation when processing the material and the combination of several 
functions. The variety of operations performed by roller mechanisms has not made it possible to 
create a unified system for their design, due to the difference in technological tasks and phenomena 
occurring in the contact zone of the rollers.

Most roller mechanisms perform two or more functions at the same time: active and auxil-
iary ones. The latter most often refers to the feeding the leather material; the squeezing mechanism 
can be wringing, pressing and deforming one.

Now consider the dynamic factors affecting the operation of the roll pair. One of the reasons 
for the unstable stress state on the contact surfaces in the roller mechanism is a dynamic factor  
arising from inaccuracies in the manufacture of its individual parts, assembly defects, and the 
occurrence of an oscillatory process in the roller mechanism, as well as due to the non-uniform 
thickness of the processed material, during its capture, machine start and stop operations.

The reason for the occurrence of an oscillatory process in the roller mechanism may be 
inaccuracies in the manufacture of machine parts. Let, for example, the geometric axis of the 
roller do not coincide with its axis of rotation. Then there is a kinematic excitation of harmonic 
nature, which leads to vibrations and resonance in the system. Vibrations in the roller mechanism  
are transmitted to the machine frame and require a definition of the inertial and elastic characte-
ristics of its elements [1, 2].
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With the effective use of a biocatalytic modifier, the stiffness index of the semifinished 
leather product is reduced by two times compared to the semifinished leather product developed 
according to the existing technology, while maintaining its mechanical strength [3]. It should 
be noted that this paper does not consider the removal of excess fluid from the semifinished  
leather product.

The articles [4–6] present the results of studies on the control of technological parame-
ters of the operation to extract excess liquid from multilayer moisturesaturated fibrous materials 
using leather as an example. Mathematical dependences of the amount of moisture removed for 
each layer of wet leather on the feed rate between the rotating working rollers and their pressing  
force were obtained.

However, a critical analysis of the operation of the experimental roller stand used in these 
works shows that when processing a multilayer package of wet leathers, the control of their feed 
rate between the rotating working shafts is of great importance. Consequently, the greater the 
thickness of the leather package, the correspondingly lower the feed rate should be, but the authors 
of these works did not take this into account when conducting experiments. From this it should be 
noted that by controlling the feed rate of processed wet skins between the working shafts, it would 
be possible to achieve a significant increase in the quality of their processing.

There are publications devoted to the development and improvement of leather machines. 
In [7], the results of studies on determining the ratio of forces in the process of feeding a semi- 
finished leather product to the working area of a multioperational machine by a conveying device 
are presented, and in [8] a solution to the problems of ensuring the stable motion of the feeding 
mechanism of multi-operation machines is proposed. These studies were carried out for manual 
work, where the issues of process control and the stability of the movement of the roll pair, depend-
ing on the uneven thickness of the processed material, were not considered.

The study in [9] is devoted to the solution of contact interaction in the roll pair. Mathe-
matical models of the contact stresses distribution patterns are developed. Research is under-
way aimed at solving the problems of using toothlever differential gears in technological roller  
machines [10, 11]. However, these works do not take into account the dynamic factors of the pro-
cess of contact interaction in roller pairs with a leather semi-finished product.

2. Materials and methods
The aim of the study is to determine the optimal controls that ensure the asymptotic stabi-

lity of the unperturbed motion of the roll pair and the torque applied to the upper roll as a function  
of generalized coordinates.

Roll pairs are widely used in many industries. When studying the dynamics of a roll pair, 
it is necessary to proceed from the forces acting on the rolls during operation. The magnitude and 
direction of the acting forces during the capture of the processed material and in the steady state 
are different. They also depend on many parameters and factors, i.e. from the diameters of the rolls, 
which may be equal or different, from the kinematic connection between the rolls, which may be 
rigid or one of the rolls is free, which will rotate due to fiction; from the installation of rolls that 
can be installed horizontally or obliquely, one above the other with the location of their axes of 
rotation on a vertical or inclined plane, also vertically; at the same time, to create a clamp between 
the rolls, the upper, lower or both rolls can be movable; swaths can be with hard or elastic coatings, 
which can be moisturepermeable or impervious, depending on the technology, combinations of 
them can be selected. In addition, one of the rolls or both rolls may be composite. In all cases, the 
action of force, movement must be continuous and stable. Therefore, it is important to ensure the  
stability of the process of pressing leather materials.

To determine the value of the basic parameters for controlling the motion of a roll pair, let’s 
first compose a differential equation of motion in the Lagrange form with holonomic servo con-
straints, obtained in [12]:
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are the known functions of time and qj.
In the center of the fixed roll, let’s install a fixed system of coordinates Oxyz, and the x axis 

is directed along the roll axis, and the y axis in the direction of leather motion and the z axis is  
directed vertically upwards. The origin of the moving coordinate system O1x1y1z1 is set to the 
center of mass of the moving roller. Let’s direct the x1 and y1 axes parallel to the x and у axes, 
respectively, and let’s direct the z axis along the z axis.

To determine the positions of the fixed roll, semifinished leather product and the upper 
movable roll, five independent parameters must be set. Let’s take the following values as gene
ralized coordinates: q1 1= ϕ  – angle of rotation of the fixed roll; q2 2= ϕ  – angle of rotation of the 
movable roll around the x1 axis; q y3 =  – ordinates of leather; q zc4 =  – applicate of the center of 
mass of the movable roll; q5 = ψ  – deviation of the movable roll from the x axis.

At the end of the movable roll, let’s install special devices that at each time point provide  
for the following conditions:

 ϑ = ϑM = ϑN, (2)

where ϑM and ϑN are the linear velocities of the point lying on the rim of the movable and fixed 
rolls (Fig. 1).

Fig. 1. Side view of a roll: a – side view of a roll pair; b – deviation of the upper roll  
around the center of mass

In order for condition (2) to be fulfilled, the velocity of a point lying on a movable roll  
relative to the x1 axis must be zero. In addition, to fulfill condition (2) at each time point (if the 
system moves from a state of rest), the following conditions should be fulfilled:

ϕ
ϑ

1
1

=
R

,

a b
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Since angular velocities of the movable and fixed rolls, and the leather feed rate are small, 
the fulfillment of condition (2) could be done using special equipment.

Let’s compose the equations of motion (1) taking into account relation (3) obtained in [13]:

 2 1 5 6 1a y a a = + µ ,  (4)

 2 22 3 3
2

7 2a z a a a czc c  + ⋅ - ⋅ = - +ψ ψ ψ ψ µcos sin ,  (5)
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The resulting equations (4)–(6), together with the constraint equations (2), completely de-
scribe the motion of the squeezing machine shown in Fig. 1.

3. Results and discussion
Next, let’s consider the problems of controllability of technological processes during the 

pressing of a semi-finished leather product.
When implementing technological processes, the parameters that characterize these pro-

cesses must change according to certain laws (or be constant).
The purpose of the control is to ensure the necessary velocity between the various nodes  

of the system or to achieve the maximum power acting to a certain part of the squeezing machine. 
The processes that must change according to certain laws are velocity and power under the in
fluence of external sources, realized by signals.

Now let’s compose the equation of the perturbed motion of a roll pair. For the unperturbed 
motion, let’s take the motion defined by equations (4)–(6) and assume that these equations have  
a particular solution [14, 15]:

y y= 0,  ψ = 0, z
a

cc = 7

2
,  µ1

5

6
= -

a

a
, µ2 0= ,  µ3 8= -a .

Under perturbed motion there are:

y y x= +0 1, z
a

c
xc = +7

22
,  ψ = x3, µ1

5

6
1= - +

a

a
u ,  µ2 2= u ,  µ3 8 3= - +a u ,

where x1, x2 and x3 are the deviations of the perturbed motion from the unperturbed motion.
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Then the equations of perturbed motion have the following form:

 2 1 1 6 1a x a u = , (7)

 2 22 2 3 3 3 3 3 3
2

2 2a x a x x a x x cx u  + ⋅ - ⋅ = - +cos( ) sin( ) ,  (8)

 
a x x a x x a x x x a x x3 3 2 4

2
3 3 3 3 2 3 4 3 3

22 2 3cos cos ( ) sin sin    + ⋅ - - =
= aa x a x u8 3 9 3 31 2(cos ) sin .- - +  (9)

It is easy to see that the righthand sides of these equations vanish under conditions.  
x1 = x2 = x3 = u1 = u2 = u3 = 0. Expanding the righthand sides into series in powers of x1, x2, x3  
and restricting ourselves to terms of the first order of smallness, let’s obtain the equations of the 
first approximation:

2 1 1 6 1a x a u = ,

2 22 2 3 3 2 2 2a x a x cx u R + + = + ,

 a x a x a x u R3 2 4 3 9 3 3 32 2 + + = + ,  (10)

where symbols R2 and R3 denote the terms the measurement of which in x x x x, , , 2 3 3 is higher than 
the first making the necessary calculations, let’s write these equations in normal form. To do this, 
introducing notation, x2i–1 = yi, x yi i2 =   (i = 1, 2, 3) and doing the necessary calculations, let’s obtain:
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The system of equations (11) in a matrix formulation takes the following form or in a short form:

 y Ay Bu W= + + ,  (12)

where W denotes that the terms the dimension of which in y1, y2,..., y6 and   y y y1 2 6, ,...,  is higher  
than the first.
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Now consider the matrix [14–18]:

 K B AB A B A B A B A B= { }, , , , , .2 3 4 5  (13)

Based on the system controllability criterion, i.e. in order for the system described by (12)  
to be completely controllable on segment [t1, t2], it is necessary and sufficient that the rank of  
matrix K be equal to 6.

Let’s now compose matrix K:

K
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Let’s take the first 6 columns of matrix K:
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Given that, the determinant does not change if any linear combination of other rows is added 
to one of its rows, then:
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Thus, the rank of matrix K is 6, and, consequently, the system (7)–(9) is completely controllable.
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To solve the stabilization problem, let’s use the following theorem [19]: Controlled sys-
tem (12) can always be stabilized with respect to the manifold defined by constraints (2).

Let’s choose values of uj for the nonlinear system (12) as control actions:

u yj lj j
0 = ⋅γ ,

or in expanded form:

u y y y y y y1
0

11 1 21 2 31 3 41 4 51 5 61 6= + + + + +γ γ γ γ γ γ ,

u y y y y y y2
0

12 1 22 2 32 3 42 4 52 5 62 6= + + + + +γ γ γ γ γ γ ,

 u y y y y y y3
0

13 1 23 2 33 3 43 4 53 5 63 6= + + + + +γ γ γ γ γ γ ,  (14)

where γij are the constants, (i = 1, 2,..., 6); ( j = 1, 2, 3).
Substituting (14) into equations (12), let’s obtain the nonlinear equations of perturbed motion:

y y1 2= ,  y c y c y c y c y c y c y2 21 1 22 2 23 3 24 4 25 5 26 6= + + + + + ,

y y3 4= ,  y c y c y c y c y R4 41 1 42 2 44 3 46 6 2
1= + + + + ,

 y y5 6= , y c y c y c y c y c y c y R6 61 1 62 2 63 3 64 4 65 5 66 6 3
1= + + + + + + ,  (15)

where
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Without violating the constancy of coefficients γij, let’s assume that:

γ γ13
3

2
122

=
a

a
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a
.
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Then equation (15) takes the following form:

y y1 2= ,  y c y c y c y c y c y c y2 21 1 22 2 23 3 24 4 25 5 26 6= + + + + + ,

y y3 4= ,  y c y c y c y c y4 41 1 42 2 44 3 46 6= + + + ,

 y y5 6= , y c y c y6 63 3 65 5= + .  (16)

Let’s construct a characteristic determinant for system (15):

 

-
-

-
-

-

λ
λ

λ
λ

λ

1 0 0 0 0

0 0 1 0 0

0

0 0 0 0

21 22 23 24 25 26

41 42 43 44 46

c c c c c c

c c c c c

11

0 0 0

0

63 65c c -

=

λ

.  (17)

Expanding the determinant (17) and transforming, let’s obtain the characteristic equation  
in the following form:

λ λ λ6
22 44

5
22 44 24 42 21

4
21 44 43 24 41+ - - ⋅ + - - ⋅ + - -( ) ( ) (c c c c c c c c c c c c ))

( ) (

⋅ +
+ - - + - ⋅ +

λ
λ

3

43 22 63 46 42 23 21 46 63 23 41
2

22 63c c c c c c c c c c c c c c446 42 63 26

41 63 26 42 63 25 41 25 63 0

- -
- ⋅ - - =

c c c

c c c c c c c c c) ,λ
or

 b b b b b b b0
6

1
5

2
4

3
3

4
2

5 6 0λ λ λ λ λ λ+ + + + + + = , (18)

where

b0 1= ,  b c c1 22 44= - - ,  b c c c c c2 22 44 24 42 21= - - ,  b c c c c c3 21 44 43 24 41= - - ,

b c c c c c c c c c c c4 43 22 63 46 42 23 21 46 63 23 41= - - + - ,

b c c c c c c c c c5 22 63 46 42 63 26 41 63 26= - - ,  b c c c c c c6 42 63 25 41 25 63= - - .

Let’s construct the following matrix, the socalled Hurwitz matrix [20] from coefficients  
b0, b1, ..., b6 of equation (18):

 

b b b

b b b b

b b b

b b b b

b b b

b b b b

1 3 5

0 2 4 6

1 3 5

0 2 4 6

1 3 5

0 2 4 6

0 0 0

0 0

0 0 0

0 0

0 0 0

0 0

. (19)

It is known that if for b0 > 0 all principal diagonal Hurwitz minors Δ1, Δ2, …, Δ6 are positive, 
then the unperturbed motion is asymptotically stable, regardless of the terms higher than the first 
order of smallness. Therefore, let’s determine the coefficients of equation (14) in such a way that 
the Hurwitz conditions are satisfied [20]:
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since a2 > 0, a9 > 0 and a10 > 0.
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since a10 > a2a9.
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where the values of the coefficients of the control action (14) are determined by the following formulas:
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Let’s substitute the values of the coefficients (20) into equation (14):
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If the masses of hydraulic servomotors 8 and 9 are considered equal, i.e. m4 = m5 then the 
optimal control actions (14) take the form:
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When designing a squeezing machine, all parameters of the machine must satisfy condition (20).
Equations (21) are the sought-for laws of guidance of control parameters u1, u2, u3.
Let’s substitute relation (21) into equation (10) and obtain:
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From (Fig. 2) let’s determine:
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From this equation, let’s obtain:

l zc⋅ = ψ 2  or  x x2 3
1

2
= ,

integrating, let’s obtain:

x x c2 3 1
1

2
= + *,

where c1
* is the integration constant.

From equation (22), let’s obtain:
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where
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2 10
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The general solution to equation (23) has the following form:
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 x c kt c kt c3 2 3 1= + -* * *cos sin , (24)

where c1
*, c2

*  and c3
*  are the constants of integration, determined from the initial conditions: t = 0;

 x3 0 0= =ψ , x3 0= ,  x
a

c2
7

2
= ,  x2 0= ,  x y1 0= ,   x y1 0= .  (25)

Using equations (25), let’s determine:
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The law of changing the angle of rotation of the roll from the x axis is:
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Fig. 2. Design scheme of the definition of independent coordinates of spreading roll pair

From the second equation of (22), let’s obtain:
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Considering that the squeezing process y has constant values, let’s obtain:
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Integrating the last equation, let’s obtain:
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From this equation, let’s determine x2 :
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With initial conditions (25), let’s determine c4
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Thus, the law of change of the center of mass of the roll has the following form:
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Further, setting y = const and y = 0, from equation (4), let’s determine:
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or given the values of a5, let’s determine the torque M a
1 :
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When determining M a
1 , it is assumed that one roll of the pair (a drive roll), the material  

being processed and the second roll (a nondrive roll) receive motion due to the force of friction on 
the contact surfaces.

If both rolls are driven, i. e. are connected with a rigid kinematic constraint and a drive, the 
material being processed is set in motion due to the friction force on the contact surfaces with the 
rolls, then it is recommended that the radii of both rolls and the monchons (fabric tires, that absorb 
and remove moisture well) should be the same. In this case, M a

1  and M a
2  will be equal.

Therefore, for the dynamic stability of the movement of a roll pair, the coefficients of equa-
tion (14) must satisfy equalities (20).

Without compiling the equation of perturbed motion and the requirement that the condi-
tion of asymptotic stability of the process under consideration be satisfied, this method loses its  
meaning. In order to apply the results obtained in practice, using the initial data (satisfying the con-
ditions of the control function), let’s substitute equalities (20) into the equations of motion and, with 
the exact implementation of the servo constraint, determine the reaction forces of the constraints 
and the kinematic characteristics of motion.

To develop this method in the future, it is necessary to select servomotors, sensors and 
create programs that describe all technological processes of machining; to develop a wringing 
machine operating in automatic mode.

4. Conclusions
It is substantiated that the primary task that needs to be solved when designing automatic 

control systems is the construction of a kinematic diagram and mathematical model of the control 
object. It is shown that the basic aspect in the theory of automatic control is precisely the formula-
tion of a mathematical description of the control object functioning, its properties and relationships, 
which makes it possible to evaluate (predict) information about the change in the state of the object 
when external impacts are applied to it.

It is shown that one of the reasons for the unstable stress state on the contact surfaces in  
the roller mechanism is dynamic factors arising from inaccuracies in the manufacture of its indi-
vidual parts, assembly defects, the occurrence of an oscillatory process in the roller mechanism, 
and the nonuniform thickness of the processed material during its capture, starting and stop-
ping the machine.

Optimal controls are determined that ensure the asymptotic stability of the unperturbed mo-
tion of the roll pair and the torque applied to the upper roll as a function of generalized coordinates.
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