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Abstract—This paper studies the problem of controlling com-
plex networks, i.e., the joint problem of selecting a set of control
nodes and of designing a control input to steer a network to a target
state. For this problem, 1) we propose a metric to quantify the
difficulty of the control problem as a function of the required
control energy, 2) we derive bounds based on the system dynamics
(network topology and weights) to characterize the tradeoff
between the control energy and the number of control nodes, and
3) we propose an open-loop control strategy with performance
guarantees. In our strategy, we select control nodes by relying on
network partitioning, and we design the control input by leverag-
ing optimal and distributed control techniques. Our findings show
several control limitations and properties. For instance, for Schur
stable and symmetric networks: 1) if the number of control nodes is
constant, then the control energy increases exponentially with the
number of network nodes; 2) if the number of control nodes is a
fixed fraction of the network nodes, then certain networks can be
controlled with constant energy independently of the network
dimension; and 3) clustered networks may be easier to control
because, for sufficiently many control nodes, the control energy
depends only on the controllability properties of the clusters and
on their coupling strength. We validate our results with examples
from power networks, social networks and epidemics spreading.

Index Terms—Autonomous system, complex networks,
controllability, distributed control, network partitioning.

I. INTRODUCTION

N
ETWORKS accomplish complex behaviors via local

interactions of simple units. Electrical power grids, mass

transportation systems, and cellular networks are instances of

modern technological networks, while metabolic and brain

networks are biological examples. The ability to control and

reconfigure complex networks via external controls is funda-

mental to guarantee reliable and efficient network functionalities.

Despite important advances in the theory of control of dynamical

systems, several questions regarding the control of complex

networks are largely unexplored including, for instance, the

relationship between network topology and its degree of

controllability.

The control problem of complex networks consists of the

selection of a set of control nodes, and the design of a control law

to steer the network to a target state. Inspired by classic control-

lability notions for dynamical systems [1]–[4], we adopt the

worst-case energy to drive a network from the origin to a target

state as controllability metric. By combining this controllability

notion with graph theory, we characterize tradeoffs between the

energy to control a network (with first-order dynamics) and the

number of control nodes, and develop an open-loop distributed

control strategywith guaranteed performance and computational

complexity.

A. Related Work

The notion of controllability of a dynamical system was first

introduced in [2], and it refers to the possibility of driving the

state of a dynamical system to a specific target state bymeans of a

control input. Several structural conditions ensuring controlla-

bility have been proposed; see for instance [1], [3], and [4]. The

concept of controllability has received recent interest in the

context of complex networks, where classic methods are often

inapplicable due to the system dimension, and a graph-inspired

understanding of controllability rather than a matrix-theoretical

one is preferable.

Controllability of complex networks is addressed in [5] by

means of graph-theoretic tools from structured control theory [4].

In [5], the application of standard control results to real networks

reveals that the number of control nodes is mainly related to the

network degree distribution, and that sparse inhomogeneous

networks are most difficult to control, while dense and homoge-

neous networks require only a few control nodes. Analogous

results are derived in [6] for observability of complex networks.

The approach to controllability and observability undertaken in

[5] and [6] has several shortcomings. 1) The presented results are

generic, in the sense that they hold for almost every choice of the

network parameters [7], but they may fail to hold if certain

symmetries or constraints are present [4, Section 15], [8]. 2)Most

results in [5] and [6] rely on particular interconnection properties

of the considered networks, perhaps the absence of self-loops

around the network nodes. In fact, it follows from [4, Theorem

14.2], equivalently from [9, Theorem 1], that every strongly

connected network with self-loops is generically controllable by

any single node, which contradicts the conclusions drawn in [5].

This discrepancy is underlined in [10] for the case of biological

networks, and more generally in [11]. 3) The binary notion of

controllability proposed in [2] and adopted in [5] does not
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characterize the difficulty of the control task. In practice,

although a network may be generically controllable by any

single node, the actual control input may not be implementable

due to actuator constraints and limitations. and 4) The design of

the actual control input to drive a network to a particular state is

not specified in [5], and it remains to date an outstanding problem

for complex networks, due to their dimension and absence of a

central controller.

We depart from [5], [6], [8], and [11], and analogously from

[12]–[14], by adopting a quantitative measure of network con-

trollability, namely the worst-case control energy, by character-

izing tradeoffs between the difficulty of the control task and the

number of control nodes and, finally, by proposing an open-loop

control strategy suitable for complex networks.

A quantitative approach to network controllability has

recently been adopted in [15]–[18]. With respect to [15],

although our measures of network controllability coincide, we

focus on the tradeoffs between control energy and number of

control nodes, and on the design of a distributed control strategy,

as opposed to scaling laws for the control energy as a function of

the control horizon. With respect to [16], we provide a rigorous

framework for network controllability and, in fact, our findings

are aligned and mathematically support the discussions in [16].

With respect to [17], we adopt a different network controllability

measure, whichwe show to bemore appropriate for the control of

most complex networks. Finally, with respect to [18], we con-

sider a more general class of network dynamics, interconnection

graphs, and bounds.

B. Paper Contributions

The main contributions of this paper are threefold.

1) We study network controllability from an energy perspec-

tive, which we quantify with the smallest eigenvalue of the

controllability Gramian (Section II). We show that, if the

number of control nodes is constant, then certain control-

lable networks are practically uncontrollable, as the control

energy depends exponentially on the ratio between the

network cardinality and the number of control nodes.

2) We characterize a tradeoff between the control energy and

the number of control nodes (Section III). In particular, we

derive an upper bound for the smallest eigenvalue of the

controllability Gramian as a function of the number of

control nodes, and a lower bound on the number of control

nodes when the control energy is fixed. Our bounds show

for instance that the control of stable and symmetric net-

works with constant energy requires the number of control

nodes to grow linearly with the network dimension. These

results provide a quantitative measure of the numerical

findings in [16] and are in accordance with existing results

in control theory [19].

3) We propose the decoupled control strategy for the control

of stable complex networks (Section IV). The decoupled

control strategy consists of network partitioning, selection

of the control nodes, and the design of an open-loop

distributed control law to steer the network from the origin

to a target state. We characterize the performance of the

decoupled control strategy and we show that, with suffi-

cientlymany control nodes, the energy to control a network

depends only on the controllability properties of its parts,

and on their coupling strength. Conversely, we prove that

certain networks admit a distributed control strategy where

the control energy is independent of the network dimen-

sion. Our decoupled control strategy constitutes a first

scalable open-loop solution for the distributed control of

complex networks, and it leads to a novel network

centrality notion inspired by systems controllability.

4) We compare the effectiveness of our decoupled control law

with other network control methods through examples

from power networks, social networks, and epidemics

(Section V). Our numerical studies show that our

decoupled control strategy outperforms existing control

techniques while being scalable, and amenable to distrib-

uted implementation.

Our bounds and techniques apply to diagonalizable networks,

and are simpler and tighter for normal networks, i.e., networks

with normal weighted adjacency matrix [20].

This paper contains three additional minor contributions.

1) We show that the problem of selecting control nodes to

maximize the trace of the controllability Gramian admits a

closed-form solution (Appendix). 2) We generalize our results

to the observability problem of complex networks (Remark 2).

3) We describe a heuristic strategy based on modal controlla-

bility [21] to select control nodes (Remark 3).

C. Notation

The following notation is adopted throughout the paper. For

a vector R , we let denote its Euclidean norm, i.e.,

where denotes transposition. For a matrix R , let

denote the set of eigenvalues of and

Let be the set of the singular values of , i.e.,

Let . The spectral norm of

is denoted by , where

For the vector valued signal N R , we use to

denote its norm, i.e.,

Vector norms, matrix norms, and signal norms will be distin-

guished from the context.
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II. NETWORK MODEL AND PRELIMINARY RESULTS

Consider a network represented by the directed graph

G V E , where V and E V V are the

vertices and the edges sets, respectively. Let R be

the weight associated with the edge E, and define the

weighted adjacency matrix of G as , where

whenever E. We assume the matrix to be diagonaliz-

able, i.e., admits a basis of eigenvectors [20]. We associate a

real value (state) with each node, collect the nodes states into a

vector (network state), and define the map N R to

describe the evolution (network dynamics) of the network state

over time. We consider the discrete time, linear, and time-

invariant network dynamics described by

Controllability of the network G refers to the possibility of

steering the network state to an arbitrary configuration by means

of external controls. We assume that a set

K V

of nodes can be independently controlled and we let

K

be the input matrix, where denotes the th canonical vector of

dimension . The network with control nodes K reads as

K K

where K N R is the control signal injected into the

network via the nodes K. A network is controllable in N

steps by the set of control nodes K if and only if for every state

R there exists an input K such that with

[1]. Controllability of dynamical systems is a well-

understood property, and it can be ensured by different structural

conditions [2]–[4]. For instance, let CK , with N , be the

controllability matrix defined as

CK K K K

The network (3) is controllable in steps by the nodes K if and

only if the controllability matrix CK is of full row rank.

The above notion of controllability is qualitative, and it does

not quantify the difficulty of the control task as measured, for

instance, by the control energy needed to reach a desired state.

As a matter of fact, many controllable networks require very

large control energy to reach certain states [16]. To formalize

this discussion, define the -steps controllability Gramian by

WK K K CK CK

It can be verified that the controllability Gramian WK is

positive definite if and only if the network is controllable in

steps by the nodes K [1].

Let the network be controllable in steps, and be the

desiredfinal state at time ,with .Define the energy of

the control input K as

K K K

where is the control horizon. The unique control input that

steers the network state from to with

minimum energy is [1]

K K WK

with . Then, it can be seen that

K K WK WK

where equality is achieved whenever is an eigenvector of

WK associatedwith WK . Because the control energy is

limited in practical applications, controllable networks featuring

small Gramian eigenvalues cannot be steered to certain states.

Example 1 (Controllable Networks May Exhibit Practically

Uncontrollable States): Consider the network G with nodes,

weighted adjacency matrix defined as

and control nodeK . Notice that the controllability matrix

CK is diagonal and nonsingular, and its th diagonal entry equals

. Since K for all , we haveWK CK CK
for all , and the smallest eigenvalue of the controllability

Gramian WK equals for all . We conclude that

the network Gwith control nodeK is controllable in steps,

yet the control energy grows exponentially with the network

cardinality. ◽

In this work, wemeasure controllability of a network based on

the smallest eigenvalue of the controllability Gramian. With this

choice we study controllability from a worst-case perspective,

looking at the target states requiring the largest control energy to

be reached; see also [22].We conclude this section by discussing

alternative controllability metrics.

Remark 1 (Controllability Metrics): Different quantitative

measures of controllability of dynamical systems have been

considered in the last years [23]. In addition to the smallest

eigenvalue of the controllability Gramian WK , the trace

of the inverse of the controllability Gramian WK , and

the determinant of the controllability Gramian WK have

been proposed. It can be shown that, while WK

measures the average control energy over random target

states, WK is proportional to the volume of the

ellipsoid containing the states that can be reached with a unit-

energy control input. The selection of the control nodes for the

optimization of these metrics is usually a computationally hard

combinatorial problem [13], for which heuristics without
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performance guarantees and non-scalable optimization proce-

dures have been proposed [21], [24], [25].

Motivated by the relation

WK

WK

the trace of the controllability Gramian WK has also

been used as an overall measure of controllability in [26] and

[27], and recently in [17]. Unlike the controllability metrics

WK , WK , and WK , the selection of the

control nodes to maximize WK admits a closed-form

solution (see Appendix). Unfortunately, the maximization of

WK does not automatically ensure controllability and,

as we show in Sections IV-C and V, it often leads to a poor

selection of the control nodes with respect to the worst-case

control energy to reach a target state. ◽

III. CONTROL NODES AND CONTROL ENERGY

In this section, we characterize a tradeoff between the number

of control nodes and the energy required to drive a network to a

target state. Recall that the condition number of an invertible

matrix is .

Theorem 3.1 (Control Energy and Number of Control Nodes

for Unstable Networks): Consider a network G V E with

V , weighted adjacency matrix , and control set K.

Assume that is diagonalizable by the eigenvector matrix ,

and let < , R , and

For all N> and , it holds

WK

K

Proof: Let be an eigenvector matrix for , and assume that

the columns of are ordered such that

K

where R and are diagonal matrices, and

. Observe that

WK K K

K

where we have used the fact that and are symmetric. Since

WK is symmetric, we have

WK WK WK

WK

WK

Let
K

and notice that the matrix

C C

is singular, where C is the controllability matrix of

at steps. In fact, CK R with

K <
K

K K

An application of the Bauer–Fike theorem [20], [28] for the

location of eigenvalues of perturbed matrices yields

WK

K

where we have used the facts that is diagonal, ,

and K . ◽

In Theorem 3.1, we provide an upper bound on the smallest

eigenvalue of the controllability Gramian or, equivalently, a

lower bound on the worst-case energy needed to control a

network to an arbitrary target state, as a function of the eigen-

values distribution of and the condition number of the set of its

eigenvectors. The bound in Theorem 3.1 needs to be regarded as

a performance limitation: independently of the control strategy

adopted by the control nodes, the least amount of energy needed

to steer the network to an arbitrary unit-norm state is bounded by

the inverse of the expression in Theorem 3.1. Notice that

Theorem 3.1 contains a family of bounds, because (6) holds for

all values . Finally, (6) simplifies when is

normal (in particular when is symmetric) due to the existence
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of an orthonormal eigenvector matrix yielding .

Indeed, in the case of stable and symmetric networks simpler and

sharper bounds can be obtained as a corollary of Theorem 3.1.

Recall that a matrix is Schur stable if < [20].

Corollary 3.2 (Control Energy and Number of Control Nodes

for Stable and Symmetric Networks): Consider a network

G V E with V , weighted adjacency matrix , and

control setK. Assume that is Schur stable and symmetric. For

all N> , it holds

WK

K

Proof: We start by showing the first part of the inequality.

Notice that V K V K and WV WK WV K .

Since both WK and WV K are positive semi-definite, we

conclude that WK WV . Then,

WV

where we have used the assumption . The second part of

the inequality follows fromTheorem 3.1with < , and

the fact that symmetric matrices admit an orthonormal

eigenvector matrix , so that . ◽

Example 2 (Tightness of the Bound in Theorem 3.1):Consider

a network with nodes and adjacency matrix

where R> . In Fig. 1, we select and compare the

upper bound in Corollary 3.2 with the value WK

K K , as a function of the number of

control nodes. ◽

Inwhat followswe consider two asymptotic control scenarios,

where the network cardinality grows, and either the number of

control nodes or the desired control energy remain constant.

From Corollary 3.2 we conclude that for stable and symmetric

networks, if K is constant, then the controllability energy

WK grows at least exponentially as the cardinality

grows. This reasoning provides a quantitative measure of the

findings in [16], and it is in accordance with [19]. We next

consider the case of bounded control energy.

Corollary 3.3 (Lower Bound on the Cardinality of the Control

Set): Consider a network G V E with V , weighted

adjacency matrix , and control set K. Let R> and

R> . If WK , then

K

where , , and are as in Theorem 3.1, and

Proof: From Theorem 3.1, it follows that WK

only if

K

or, equivalently, only if K . ◽

The previous result has interesting consequences. For instance

for stable and symmetric networks, Corollary 3.3 with

and implies that, in order to guarantee a certain

bound on the control energy, the number of control nodes must

be a linear function of the total number of nodes. Instead, classic

controllability [2], [5] is (generically) ensured by the presence of

a single control node, independently of the network dimension

[4, Theorem 14.2], [9, Theorem 1]. In fact, Corollary 3.3 can also

be used to show that a similar behavior might appear also for

unstable and/or asymmetric networks.We show this fact through

two examples.

Example 3 (Control Nodes for Circulant Marginally Stable

Network): Consider the circulant network in Example 2 with

and nodes. Let and be a desired lower bound

for the smallest eigenvalue of the controllability Gramian. From

Corollary 3.3, the number of control nodes satisfies

K

where we have used that, for , . ◽

Example 4 (Bound for Asymmetric Line Network): Consider a

network with nodes and weighted adjacency matrix

Fig. 1. For the network inExample 2, thisfigure compares (in a logarithmic scale)
the upper bound (6) (solid red)with the largest of the controllabilityGramian
(dashed-dot blue) over all possible sets K. For each value K from 1 to , a
combinatorial search determines the value K WK . The two
quantities in the right hand side of (6) are also reported in dashed green and dotted
black, respectively. It can be shown that the bound (6) tends to be conservative as
the increases.
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Define the diagonal matrix . It can be

verified that is symmetric. Let be an orthonormal

eigenvector matrix of , and notice that is an

eigenvector matrix of with . Notice, more-

over, that the eigenvalues of are

so that for it holds . Then, Corollary 3.3

implies that the number of control nodes satisfies

K

◽

We remark that the technique used in the previous examples

can be used to determine bounds on the number of control nodes

in more general unstable and marginally stable networks with

known eigenvalues distribution, such as the case of consensus

dynamics over random geometric networks [29].

Remark 2 (Observability of Complex Networks): The observ-

ability problem of complex networks consists of selecting a set of

sensor nodes, and designing an estimation strategy to reconstruct

the network state from measurements collected by the sensor

nodes [6]. Our quantitative analysis of the controllability of

complex networks in Section III, and our decoupled control

strategy in Section IV can be directly applied to the problem of

observability of complex networks. To see this, define the

-steps observability Gramian by

OK K K

where K denotes the set of sensor nodes and K K. The

energy associated with the network state with sensor nodes K

and observation horizon is

K OK OK

where K N R contains the measurements taken by the

observing nodes K [30]. Thus, the smallest eigenvalue of the

observability Gramian is a suitable metric to measure

observability of a network. The results in Section III are

readily applicable to the network observability problem. For

instance, from Corollary 3.2 we conclude that the smallest

eigenvalue of the observability Gramian of a stable and

symmetric network decreases exponentially as the ratio of the

network cardinality and the number of sensor nodes grows. ◽

IV. DECOUPLED CONTROL OF COMPLEX NETWORKS

In this section, we provide a solution to the problem of

controlling a complex network, i.e., the problems of both select-

ing the control nodes, and designing a distributed control law to

drive the network to a target state. Our approach is different from

classic solutions, as it exploits the network structure to jointly

select the control nodes and to design an open-loop control law

amenable to distributed implementation.

The problem of selecting control nodes in a dynamical system

to optimize a controllability metric is a classic control problem

[24]. Most existing solutions either rely on combinatorial or non-

scalable optimization techniques, being therefore not suited for

large networks [25], or are heuristic, in that they exploit the

specific structure of the system at hand, and do not offer

guarantees on the control energy [21], [24], [31], [32]. See

Remark 3 for a heuristic method to select control nodes.

A. Setup and Definition of the Decoupled Control Strategy

Our open-loop decoupled control strategy can be divided into

three parts: 1) network partitioning; 2) selection of the control

nodes; and 3) definition of the decoupled control law.

1) Network Partitioning: Consider an undirected network

G V E with weighted adjacency matrix .

Partition V into disjoint sets P V V , and let

G V E be the th subgraph of G with vertices V and

edges E E V V .1 According to this partition, and

possibly after relabeling states and inputs, the network

matrices read as

K

K

K

where K V , for all , and the networks

dynamics can be written as the interconnection of sub-

systems of the form

N

K K

where and N .

2) Selection of the Control Nodes: For a network G V E

with partitionP V V , we say that a node V is a

boundary node if for some node V , with

and . Let V be the set of

boundary nodes of the th cluster and be the set

of all the boundary nodes of the partition P. We select the set of

control nodes K K K to satisfy K V , for

all , and so that each pair is controllable

(see Fig. 2 for an example).

1Several methods are available to partition a network [33]. For the implemen-
tation of our decoupled control law it is only required that the network is
partitioned into strongly connected components. The performance of the
decoupled control law depend on the partitioning scheme, and it remains an
outstanding problem to design an optimal partitioning algorithm for the imple-
mentation of the proposed control law. In Section V-A, we employ a spectral
method based on the Fiedler eigenvector to partition a network.
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We remark that the set of boundary nodes may not be

sufficient to guarantee controllability of each pair .

However, if each cluster is connected and every diagonal entry

of the network matrix is nonzero then, due to genericity of the

controllability property [4, Theorem 14.2], [9, Theorem 1],

each cluster and the whole network are generically controllable

by the boundary nodes. For networks where generic controlla-

bility is not sufficient, existing graph-theoretical algorithms can

be used to select extra control nodes to ensure controllability

[4], [5], [12].

3) The Decoupled Control Law: For a network G V E

with partition P V V , let be

the target state, where and R
V for

. Let and notice that .

Define the control input K by

K K W

N

K

where, with a slight abuse of notation, W is the th

controllability Gramian defined by

W K K

and the control horizon is chosen large enough so thatW is

positive definite, for all . We refer to the above

control law as to the decoupled control law.

Before analyzing the performance of our decoupled control

law, we discuss its implementation properties. 1) Notice that

the control input K is the sum of an open-loop control

signal and a feedback control signal N . 2) If each

cluster is equipped with a control center, then our decoupled

control law can be implemented via distributed computation by

the control centers. In fact, the control signal depends on the

dynamics of only the th cluster, and the feedback control

signals can be determined upon communication of the th

control center with its neighboring control centers N . 3) Our

decoupled control law is scalable, in the sense that the com-

plexity of the control law does not depend upon the network

cardinality, but only on its partition. We further discuss this

property in Sections IV-C and V. 4) The decoupled control

strategy relies on an open-loop mechanism. As such, the

application of the decoupled control strategy to real networks

would require the presence of a feedbackmechanism to account

for unmodeled dynamics and noise in the system dynamics

and measurements.

B. Analysis of the Decoupled Control Law

We start our analysis by noticing that the decoupled control

law (9) steers the network to the target state . In fact, from (8)

and the definition of in (9), the network dynamics with

decoupled control law can be written as the collection of

decoupled subsystems

K

Since in (9) equals theminimumenergy input to drive the th

subsystem (10) from to , we conclude that

.

We next study the energy properties of our decoupled control

law. Observe that the state evolution of the th cluster can be

written as

K K W

In this work, we assume that the matrix is Schur stable, for

all , andwe leave the case of unstable networks as

the subject of future investigation. Observe that if is Schur

stable and nonnegative, then each matrix is Schur stable

and . We define the local energy matrix

R and the L gains matrix R by

W W

where , for and , is the L gain of the

input–output system K K or, equivalently, the

gain of the transfer matrix K K [34].

Theorem4.1 (Energy of theDecoupledControl Law):Consider

a network G V E with weighted adjacency matrix , control

setK, and partitionP. Assume thatK contains all boundary nodes

of P, every is stable, and every pair is controllable,

where and are the submatrices associated with the partition

P. The decoupled control law K with control horizon satisfies

K

where and are the local energymatrix and theL gains matrix

defined in (11) and (12), respectively.

Proof: Let be the target state of the th cluster and

. From (5) and (9), and from the definition of L

gain [34] it follows that

W W

Fig. 2. Circulant network with nodes. The network is partitioned into
clusters with nodes each. Controlled nodes are in black.
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Moreover, due to the triangle inequality, we have

N

W N W
�

where is the th row of defined in (12) and � is the vector

of with . By using (12) and the fact that

K , we obtain

K �

from which the statement follows. ◽

In Theorem 4.1, we derive a bound on the energy needed to

control a network via our decoupled control law. Theorem 4.1

has several general consequences, which we now describe.

1) Due to (5), if the setK of control nodes includes the boundary

nodes of a network partition P, then

WK

where and are the local energymatrix and theL gainsmatrix

for the partition P. This bound on the smallest eigenvalue of the

controllability Gramian is novel (see [35]), and it highlights that

the controllability of a clustered network depends on the con-

trollability of the isolated clusters via the matrix , and on their

interconnections strength via the L gains matrix . 2) The

control energy for our decoupled control law does not depend on

the cardinality of the whole network. In fact, notice that

and that, independently of the network dimension, and

remain bounded if, for instance, the network weights

and the nodes degrees are bounded. A related example is in

Section IV-C. 3) Our decoupled control strategy is best suited

for inherently clustered networks, consisting of weakly coupled

components. 4) Since the energy to control a network via the

decoupled control law depends on local properties of the

network partitions, an appropriate partitioning method may be

developed to optimize the performance of the decoupled control

law. To this aim,we state the following corollary of Theorem4.1,

where we derive a bound on the control energy for our de-

coupled control law, which is proportional to the intercon-

nection strength among clusters. Let be the interconnection

matrix defined by

Corollary 4.2 (Bound for Network Partitioning): Let be

the L gain of the system K K and

< . Then,

and, being the control horizon,

K

where is the local energy matrix defined in (11) and is the

interconnection matrix defined in (16).

Proof:Recall that equals the gain of the transfer matrix

of the system K K , i.e.,

K K

where denotes the norm [34]. Since the norm

satisfies the submultiplicative property, we have

K K

Notice that the norm of a constant transfer matrix

coincides with its induced 2-norm. Finally we have K

K and

from which the first part of the statement follows. The second

statement follows from (13) and (15) and from the fact that

and . ▪

Analogously to (14), from Corollary 4.2 we conclude that, if

the set K of control nodes includes the boundary nodes of a

network partition P, then

WK

where and are the local energy matrix and the inter-

connection matrix for the partition P, respectively, and is

a bound on the spectral radius of the clusters of P.

We conclude this part by noting that our results lead to a novel

notion of network controllability centrality, a fundamental con-

cept in network analysis [36], where network nodes are ranked

according to the product of their local controllability degree and

their interconnection strength with neighboring nodes. Our

PASQUALETTI et al.: CONTROLLABILITY METRICS, LIMITATIONS AND ALGORITHMS FOR COMPLEX NETWORKS 47



notion of network controllability centrality is motivated by

Corollary 4.2, where the control energy is bounded by the scaled

product of the worst-case control energy of the isolated clusters

(least controllable cluster), and the worst-case clusters

interconnection strength (strongest interconnec-

tion strength). A comparison between controllability centrality

and other centrality notions is left as the subject of future

research.

C. An Example of Network Control via Decoupled Control Law

In this section, we demonstrate our technique to control large

networks with an example. Consider a circulant network G with

nodes, N, and adjacencymatrix as in Example

2 with . We partition G into clusters, so that each

cluster contains nodes. In particular, we label the nodes in

increasing order, and for we define the th cluster

to have vertices V ,

and control nodes K .

See Fig. 2 for an example with and . It can be

numerically verified2 that the setK of control nodes is optimal, in

the sense that it solves the maximization problem

K
WK

K

In Fig. 3, we validate Theorem 4.1 and (14). Notice that,

although conservative, our bound (14) captures the fact that

circulant networks can be driven with constant energy to any

(unit norm) target state independently of the network dimension;

this result is compatible with our analysis in Corollary 3.2

and Section IV-B. Moreover, our decoupled control law is a

distributed control law achieving this performance. Finally, it

can be shown that for circulant networks, and in fact for all

-dimensional torus networks, the diagonal entries of

are all equal to each other. Thus, the selection of the

control nodes for the maximization of the trace of the

controllability Gramian is in this case equivalent to a random

positioning of the control nodes (see Appendix and [18, Lemma

3.1]).

V. EXAMPLES OF CONTROL OF COMPLEX NETWORKS

The main purpose of this section is to illustrate the effective-

ness of our decoupled control law to control complex networks.

To this aim, we first develop a method to select the control nodes

based on network partitioning and then compare the performance

of the decoupled control law with alternative control schemes.

The design of optimal partitioning algorithms to minimize the

energy of the decoupled control law, and a thorough comparison

with existing partitioning methods [33] are beyond the scope of

this work.

A. Selection of the Control Nodes

For a connected networkG V E withweighted adjacency

matrix , let P V V be the two-partition of G deter-

mined by its Fiedler eigenvector [33], [37],3 and be the

boundary nodes of the partitionP . Our method to select control

nodes in a connected network is described in Algorithm 1.

Loosely speaking, our method consists of recursively computing

Fielder partitions of subnetworks of G, and selecting the bound-

ary nodes of each partition as control nodes. Notice that 1) the

algorithm repetitively selects control nodes in the least control-

lable cluster to improve local controllability (line 3), 2) the set

of control nodes contains the boundary nodes of a network

partition (lines 4, 5, 7), so that our decoupled control law can

be implemented, and 3) the set of control nodes K is increasing

throughout the execution of the algorithm. Consequently, the

smallest eigenvalue of the controllabilityGramian is nondecreas-

ing throughout the execution of the algorithm. In the last part of

the algorithm (line 9), remaining control nodes are assigned

according to a heuristic procedure. Notice that Algorithm 1 may

Fig. 3. In this figure, we study circulant networks partitioned as in Section IV-C, andwe compare (in a logarithmic scale) the performance of our decoupled control law
against the minimum energy control law. In (a), we maintain constant the number of nodes in each cluster, and we report as a function of the number clusters (see
Section IV-C): 1) the smallest eigenvalue of the controllability Gramian with and boundary nodes as control nodes (solid red); 2) the bound (14) for the energy
performance (see Theorem 4.1) achieved by our decoupled control law (dashed blue); and 3) the smallest eigenvalue of the controllability Gramian with and
control nodes selected randomly (dashed-dotted green). Notice that the energy needed by our decoupled control law remains constant when the network cardinality
grows (the number of control nodes grows as and that the number of nodes in each cluster remains constant). This property is not maintained if the control nodes are
chosen randomly. In (b), we report the same quantities as in the left figure, while maintaining constant the number of clusters and letting the number of nodes in each
cluster grow. Note that the smallest eigenvalue of the controllability Gramian and our bound (14) degrade with the same rate, while randomly selected control nodes
require more energy.

2Due to computational complexity, we have solved the maximization problem
(17) for the cases and .

3Let be the Fiedler eigenvector of the network Laplacian matrix. The two-
partition determined by is uniquely determined by the sign of the entries
of [33].
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return a set of control nodes from which the network is not

controllable. See Section IV-A for a discussion of this issue.

Algorithm 1: Selection of the control nodes

Input: Network G V E , Number of control nodes ;

Output: Control nodes K;

1 Define an empty set of control nodes K ;

2 Initialize trivial partition P V with no boundary nodes

;

While K < do

3 Select least controllable cluster

W P ;

4 Compute Fiedler two-partition P of th cluster;

5 Compute boundary nodes of P ;

6 Update partition P with P ;

7 Update control nodes with boundary nodesK K ;

8 if K > then Remove boundary nodes of last partition

K K ;

9 if K < thenAdd K control nodes toK as in Remark 3;

10 return K;

Remark 3 (Heuristic Selection of Control Nodes): Different

methods can be used to select control nodes in a network.

Combinatorial methods, heuristic procedures, or random

selection methods should be employed depending on the

network dimension and the available computational power.

We propose the following heuristic method inspired by the

notion of modal controllability [21] to select control nodes

within each cluster.

Let be the matrix of normalized eigenvectors of

the network adjacency matrix . The entry is a measure of

the controllability of the mode from the control node .

In fact, an application of the classic Popov-Belevitch-Hautus

(PBH) test to symmetric matrices shows that implies that

themode is not controllable from node [1]. By extension,

if is small, then the th mode is poorly controllable from node

. Let , and notice that is a scaled

measure of the controllability of all modes

from the control node . We heuristically select the set K of

control nodes to maximize the smallest controllability parameter

, i.e., the set K of control nodes is the solution to the

maximization problem

K

K

for a given cardinality N. We remark that our heuristic is

computationally as hard as computing the eigenvectors of each

cluster, as the maximization problem (18) can be solved by

simply ordering the controllability parameters . ◽

B. Illustrative Examples

In this section, we validate our method to control complex

networks with three examples from power networks, social

networks, and epidemics spreading.

1) Power Network: We consider a network of generators

and we describe the dynamics of the th generator by the

linearized swing equation [38]

N

where, for the th generator, > and > are the inertia

and damping coefficients, respectively, R R is the

phase angle, and is the susceptance of the power line . As

in [39], we assume that and we approximate the

generator dynamics with a first-order equation. Finally, we

discretize the network by using the Euler method with

discretization accuracy , so that the dynamics of the th

generator read as

N

For our numerical study, we consider the standard IEEE 118

bus system with numerical parameters taken from [40]. We

assume that every bus is connected to a generator, and we let

the discretization accuracy be . The results of this

numerical study are in Fig. 5(a).

Fig. 4. In thisfigure,we report a representation of the example networks in SectionV-B: (a) represents the standard IEEE118 bus system (118 nodes); (b) represents the
Klavzar bibliography network (86 nodes); and (c) represents the GD99c Pajek network (105 nodes). Networks parameters are available at http://www.cise.ufl.edu/
research/sparse/matrices/, and their layout is obtained via the graph drawing algorithm described in [41].
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2) Social Network: Inspired by the seminal work [42], the

opinion dynamics of a group of individuals forming a network

G V E can be modeled by the consensus system

where N R is the vector of the individual opinions, and the

matrix is row stochastic and satisfies whenever

the edge is not in the edge set E. Besides the description of

opinion dynamics, consensus models have found broad

applicability in several domains [43].

For our numerical study, we consider the social network

describing the Klavzar bibliography [see Fig. 4(b)] and we

construct a consensus system by assigning a random nonzero

weight to each edge in the network. The results of this numerical

study are in Fig. 5(b).

Remark 4 (Controllability of Consensus Networks):Connected

consensus networks feature a simple unit eigenvalue [43], so that

the controllability Gramian is not defined for the infinite control

horizon, as the series K K is not convergent.On

the other hand, it can be shown that the unit eigenvalue is

controllable at with zero energy by any nonempty set

of control nodes. Then, without loss of generality, the infinite

horizon controllability Gramian of consensus networks can be

defined by restricting the dynamics to the subspace orthogonal to

the consensus space, where the matrix is Schur stable. ◽

4) Epidemics Spreading: The N-intertwined Susceptible-

Infected-Susceptible (SIS) model for the dynamics of a viral

infection over a network with nodes and adjacency matrix

reads as [44]

N

where R R is the map describing the infection

probability of node , and R , R are the curing

and infection rates of the th node. It is known that, for certain

values of the ratios , an initial infection may spread to

all the nodes in the network or converge to zero. We consider the

simplified model

N

which is a good approximation of the N-intertwined SIS model

at the initial phase of the epidemics spreading when is small.

We discretize the system (19) as

N

where R> is a sufficiently small discretization parameter

and we study the problem of controlling the spreading of the

infection throughout the network. Notice that an infection can be

controlled for instance by distributing vaccines.

For our numerical study, we consider the Pajek social network

GD99c [see Fig. 4(c)], we let , and we select the

parameters and randomly so that the network (20) is

unstable. Due to the instability of the network, we select a finite

control horizon of control steps. The results of this numerical

study are in Fig. 5(c).

From our numerical analysis, we draw the following conclu-

sions. 1) The smallest eigenvalue of the controllability Gramian

increases abruptly when the number of control nodes overcomes

a certain threshold, or, equivalently, the control energy decreases

abruptly when the number of control nodes overcomes a certain

threshold. This phenomena is aligned with the numerical con-

trollability transition identified in [16] via numerical simulation.

2) Our decoupled control law outperforms the control strategies

dictated by the optimization of the trace of the controllability

Gramian and by random positioning of the control nodes, while

allowing for a distributed and local implementation of the control

law. The difference between the three compared strategies

becomes more evident when the number of control nodes is

large. 3) Since our decoupled control law relies on network

partitioning, and computations are performed only on the ob-

tained subnetworks, it is scalable with the network cardinality

and thus suitable for application to large networks.

We conclude this section with the following consideration. In

Algorithm 1, we partition each subnetwork by computing its

Fiedler eigenvector. For large networks, this partitioning scheme

may be inefficient, and it may be replaced by a partitioning

schemewith linear complexity, such as the Louvainmethod [45],

[46]. In this case, our method to control complex networks has

linear complexity, since the decoupled control law requires only

the inversion of local controllability Gramians whose dimension

is independent of the network cardinality. On the other hand,

assuming that the Gauss–Jordan elimination algorithm is used

Fig. 5. In this figure, we compare (in a logarithmic scale) the smallest eigenvalue of the controllability Gramian for different choices of the set of control nodes. The set
of control nodesK is selected according to Algorithm 1 (solid red), trace optimization as in Appendix (dashed green), and randomly (dashed-dot blue). The cardinality
of the control set varies from 1 to . Our decoupled control law algorithm outperforms the two counterparts, while being amenable to distributed implementation as
discussed in Section IV-A. (a) IEEE 118 bus system. (b) Klavzar bibliography. (c) Pajek network GD99c.
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for the inversion of the controllability Gramian [47], the compu-

tational complexity of theminimumenergy control law (4) grows

at least cubically with the network cardinality.

VI. CONCLUSION

In this work, we study the problem of controlling complex

networks to a target state. We adopt the smallest eigenvalue

of the controllability Gramian as measure of network controlla-

bility, which quantifies the worst-case control energy. We char-

acterize tradeoffs between the number of control nodes and

the control energy as a function of the network dynamics. We

develop a control strategy with performance guarantees, con-

sisting of a method to select control nodes based on network

partitioning, and a distributed control law to reach the target state.

Finally, we validate our findings with power systems, social

networks, and epidemics spreading examples.

Important aspects requiring further investigation include:

1) the derivation of tighter bounds for the tradeoff between the

number of control nodes and the control energy, as a function of

network properties; 2) the study of different controllability

measures, possibly capturing the distributed nature of the prob-

lem; 3) the design of an efficient partitioning method to optimize

the performance of our decoupled control law; and 4) the

extension of our bounds to the design of optimal H feedback

controllers.

APPENDIX

In this section, we derive a closed-form solution to the problem

of selecting control nodes to maximize the trace of the control-

lability Gramian, as considered for instance in [17]. To simplify

notation we focus on symmetric networks, although analogous

results hold for asymmetric networks. Specifically, we consider

the maximization problem

K
WK

K

where and N . Notice that

WK K K K K

K K

K

where we have used that trace is a linear map and is invariant

under cyclic permutations [20], andwhere denotes

the th diagonal entry of the matrix . We conclude

that a solution to the maximization problem (A1) is the set

K containing the indices of the largest diagonal entries

of . Notice that, if is Schur stable, then

.
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