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CONTROLLABILITY, OBSERVABILITY AND
OPTIMAL FEEDBACK CONTROL OF

AFFINE HEREDITARY DIFFERENTIAL SYSTEMS*

M. C. DELFOUR]" AND S. K. MITTER:I:

Abstract. This paper is concerned with two aspects of the control of affine hereditary differential
systems. They are (i) the theory of various types of controllability and observability for such systems
and (ii) the problem of optimal feedback control with a quadratic cost. The study is undertaken within
the framework of hereditary differential systems with initial data in the space M (cf. Delfour and
Mitter [6], [7]). The main result of this paper is the existence and characterization of the optimal
feedback operator for the system.

1. Introduction. Perhaps the most useful part of optimal control theory for
ordinary differential equations is the theory of optimal control of linear differential
systems with a quadratic cost criterion. This theory is also the most complete, both
for systems evolving in a finite-time interval as well as over an infinite-time interval.
It is well known that in the finite-time case the optimal control can be expressed in
linear feedback form, where the "feedback gains" satisfy a matrix differential
equation of Riccati type. In the infinite-time case by using the theory of con-
trollability and observability, the asymptotic behavior of the controlled system
can be studied and a rather complete solution to the problem is available.

The present paper is concerned with (i) generalization of the theory of con-
trollability and observability to affine hereditary differential systems and (ii) a
study of the optimal feedback control problem for affine hereditary differential
systems with a quadratic cost. The theory is currently being completed in order
to show the relation of the theory of controllability and observability to the
infinite-time quadratic cost problem.

The optimal control problem studied in this paper was first formulated and
studied by Krasovskii 233, [24] using the space of continuous functions as the
space of initial data and using dynamic programming arguments. This problem
has also been studied by Ross and Fltigge-Lotz [303, Eller, Aggarwal and Banks
13], Kushner and Barnea [25] and Alekal, Brunovsky, Chyung and Lee [1], in
each case using Carath6odory-Hamilton-Jacobi type arguments. The basic
disadvantage of the method used by these authors is that it necessitates a direct
study of a complicated set of coupled ordinary and first order partial differential
equations before the existence of a feedback control can be asserted.

In Delfour and Mitter I6], [7] we have developed a theory of hereditary
differential systems where the initial datum is chosen to lie in the space
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MP(-b, 0; H), 1 __< p < . In particular, M2(-b, 0; H) is a Hilbert space. By
choosing the initial datum to lie in M2(-b, 0; H), the techniques developed by
J. L. Lions [26] for the control of parabolic partial differential equations can be
appropriately modified to solve the optimal feedback control problem for affine
hereditary differential systems. It should be emphasized that in contrast to the
Hamilton-Jacobi method this is a direct method where the existence of the
"feedback operator" is first demonstrated and it is then shown to satisfy an
operational differential equation of Riccati type. Part of the results on the feedback
control problem were announced in Delfour and Mitter [103.

The concepts of controllability and observability for hereditary differential
systems are also studied within the framework developed in Delfour and Mitter
[63, [7]. This is accomplished by using certain results on controllability and
observability of abstract linear control systems (cf. Delfour and Mitter [11]). We
present necessary and sufficient conditions for various types of controllability
and we examine the dual system. We also show how various existing results on
controllability fit into the framework adopted in this paper (cf. A. F. Buckalo [2],
Chyung and Lee [33, D. R. Haley [193, Kirillova and Churakova [223, G. S. Tahim
[32] and L. Weiss [33]-[363).

1.1. Notation and terminology. Given two real linear spaces X and Y and a
linear map T’X Y, the image of T in Y will be denoted by Im (T) and the kernel
of T in X by Ker (T). Let H and K be two Hilbert spaces and T’H K be a
continuous linear map. The adjoint of T will be denoted T* ( 5P(K*,H*)).
When H K we shall say that T is self-adjoint if T* T and we shall write
T __> 0 for a positive self-adjoint operator ((x] Tx) >= 0 for all x) and T > 0 for a
positive definite self-adjoint operator ((x] Tx) > 0 for all x 4: 0). The identity map
in (H) is written I. The restriction of the map x’[0, X to the interval
[0, t] is denoted ntx for all ]0, [. The set of real numbers is denoted by R.

In the sequel we shall abbreviate hereditary differential system as HDS.

2. Basic properties of ailine HDS. Let H and U be Hilbert spaces. Let N >__
be an integer, let a > 0,0 0o > 01 >... > 0N -a be real numbers and
b Ia, ]. Let I(, fl) g I, fl] for any < fl in [-, ]. Let I’ln (resp. I’lu)
and (. I’)n (resp. (. I’)v) denote the norm and inner products on H (resp. U).

2.1. Space of initial data and space of solutions. Our first task consists of
choosing an appropriate space of initial data.

Consider the space 2(-b, 0; H) (not to be confused with L2(-b, 0; H))
of all maps I(-b, 0) l H which are square integrable in I(-b, 0) endowed with
the seminorm

yll--ly(0)l + ly(O)ldO

The quotient space of2(_ b, 0 H) by the linear subspace of all y such that y t2

0 is a Hilbert space which is isometrically isomorphic to the product space
H LZ(-b, 0; H). It will be denoted by MZ(-b, 0; H) and its norm by ]].
The isomorphism between H L2( b, 0;H) and M2( b, 0;H) is denoted by
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In order to discuss the Cauchy problem we must also describe the space in
which solutions will be sought. Let 1 =< p < , o R. For all ]to,[ we denote
by ACP(to, t; H) the vector space of all absolutely continuous maps [to, t] H
with a derivative in LP(to, t;H). When ACP(to, t;H) is endowed with the norm

x c X(to)l,+ Ts(s) s

it is a Banach space isometrically isomorphic to H LP(to, t;H). In particular,
AC2(to, t; H) is a Hilbert space. We shall also need C(to, t;H), the Banach space
of all continuous maps [to, t] - H endowed with the sup norm c.

When we consider the evolution of a system in an infinite-time interval it is
useful and quite natural to introduce the following spaces. Let nt(x be the re-
striction of the map x" [to,[ - H to the interval [to, t], ]to, v[. Denote by
Lioc(to, ;H), ACoc(to, ;H) and Clo(to, ;H) the vector space of all maps
x’[to, - H such that for all ]to,, nt(x) is in LP(to, t; H), ACP(to, t; H)
and C(to, t;H), respectively. They are Fr6chet spaces (cf. Delfour 5]) when their
respective topologies are defined by the saturated family of seminorms qt(x)

n(x) F, 6 ]to,, where F is either Lp, ACp or C.

2.2. System description. Consider the affine hereditary differential system ’defined on [0,"dx n fx(t4- Oi),t 4- OiO0t--(/7)-- Aoo(t).x(t q- i--1 Ai(t)h(t + Oi), + 0 <

(2.1) 4- yo
-b

Aol(t, O)(h(t + 0), + 0 <

+ B(t)v(t) + f(t) a.e. in [0, ),

x(0) h(0), h e M2(-b, 0;H),

where Aoo and A (i 1, 2, ..., N) are in Llc(0, o (H)), Aol Llc(0,
-b, 0; 5(H)), B e Llo(0, oe ;(U, H)), v e L12o(0, oe U) and fe L12o(0, oe ;H).

v is to be thought of as the control to be applied to the system andf is a known
external input to the system. Under the above hypotheses, (2.1) has a unique solu-
tion 4(" ;h, v) in AC2o(O, oe ;H) and the map

(2.2) (h, v) 4)(. ;h, v)’M2( b, 0;H) x Lo(0, o;U) - ACo(O o ;H)

is affine and continuous (cf. Delfour and Mitter [6], [7] and Delfour [5]). We also
have the variation of constants formula

(2.3) b(t; h, v) O(t, O)h + (t, s)B(s)v(s) ds + (t, s)f(s) ds,

where

O

(t, s)h d(t, s)h(O) + (t, s, a)h(a) da,
-b
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and O(t, s) e 5(’(H) is the unique solution in AC(oc(S, (H)) of the system

(2.4)

and

--xN (t + Oi’s)’t + Oi stt(t s)= Aoo(t)((t, s) + Ai(tt i-- (0, otherwise
o a)(t + o ) + o > }+ Aol(t,0) dO a.e. in[s,[
-b (0, otherwise

u (o(t ,s +- Oi)Ai(s +- Oi), + s- < 0 <3
dOx(t, s, a) ,

i= (0, otherwise
(2.5)

(t, s + O)Aol(S + O, O)dO, s + <= b
-b

+
(t,s + O)Ao(S +- O,O) dO, s + > t- b

--t+s

2.3. State equation of the system.
DEFINITION 2.1. Let f 0, v 0 in (2.1). The evolution of the state of the

homogeneous system is given by the map

(2.6) ((t; h)" [0, [ M2( b, 0; H)

defined as

+ 0;h), + 0 0,
(2.7) q(t;h)(0)=

h(t + O), + O < O.

It is easy to verify the following theorem.
THEOREM 2.2. Consider (2.1) with f O, v 0 on Is,[ with initial datum

h at time s. Let s(" ;h) denote the solution of this system in ACoc(S, o ;H). The
map (t,s)-- )s(t; h) generates a two-parameter semigroup (t,s) satisfying the
following properties"

(i) (b(t, s) (M2), => s _>_ 0;
(ii) O(t, r) O(t, s)O(s, r), >_ s >= r >= 0;

(iii) t- (t, s)h’[s,[ - M2 is continuous for all h eM2 and s e [0, [;
(iv) (s, s) I, where I is the identity operator in 5(M2);
(v) for s >= b, (t, s)’M2 M2 is compact (i.e., maps bounded sets into

relatively compact sets);
(vi) Let @ AC2(-b, O; H) VIM2(-b,0;H). Then for all beg,

O( t, s)h e .
SinceM2 is isomorphic to H L2(- b, 0; H), ((t, s) can be decomposed into

two operators (t, s) e &a(H,M2) and (t, s) 9(L2(- b, 0; H),M2) such that

where

(2.8)

(t, s)h (t, s)h + (t, s)h

@(t + , s)h,
[(t’s)h](a)

(0,

t+a>s,

t+<s,
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and

(2.9) fo (t + , s, ,)h(,) d,[I1(t, s)hX](z)
h-(t +- s),

t+e>s,

t+cz<s.

Finally corresponding to (2.1) we have the state equation in integral form

(2.10) (t;h, v) (t, O)h + (t, s)B(s)v(s)ds + (t, s)f(s)ds.

We now wish to obtain the state equation in differential form. We first con-
struct an unbounded operator A(t) whose domain is

AC2(-b,O;H) fl M2(-b,O; H).
For this purpose define the linear maps

(t)’6 --, U and ’- L2(-b,O;H)
as follows"

(2.11)

and

(2.12)

N fo(t)h Aoo(t)h(O + A,(t)h(O) + Ao,(t O)h(O)dO
i=1 -b

dh(O)(’h)(O)
dO"

From the operators A(t) and 1 we construct the unbounded operator
A-(t)’ M2(-b, 0; H) as

(t)h, O,
(2.13) [A-(t)h] (x)

([lh] (a), - 0.

Define also the operator/(t)" U M2(- b, 0; H) as

B(t)u, cz=0,
(2.14) [B(t)u](cz)

(0, otherwise,
and f(t)e M2( b, 0;H) as

ff(t), =0,
(2.15) [f(t)](a)

(0, otherwise.

We then have the following theorem.
THEOREM 2.3. (i) For all h and all u Ll2oc(0, o U), the system

dY(t) A~(t)y(t) + (t)u(t) + f(t) a.e. in [0, av[,
dt(2.16)
y(0) h

has a unique solution in AC2o(O, o;M2) which coincides with )(. h, u).
(ii) The map (h, u) -- A(h, u) q(. ;h,u)’ x Loc(0,; U) --. AC21o(O, o ;M2)

can be lifted to a unique continuous affine map 7k M2 x L(o(O, o U) Co(O, ov ;M2)
and .for all pairs (h, u), A(h, u) coincides with 49(" h, u).

Proof Cf. Delfour and Mitter [6], [7]. k
Remark 2.4. In the autonomous case (A-(t)= const.) the semigroup

{(t, s)} becomes a one-parameter semigroup {(t)} and its infinitesimal generator
is precisely Aand the domain ofA is : (cf. Hale 16] for analogous considerations).
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2.4. Adjoint systems. One of the truly fascinating aspects of linear HDS is
the existence of two types of adjoint systems" a hereditary adjoint system and a
topological adjoint system.

2.4.1. Hereditary adjoint system. The hereditary adjoint system is defined in
the interval [0, T] for some T > 0"

t) + Aoo(t)*p(t)+,= {.0, t- 0i> T
(2.17)

fo {Ao(t_O),p(t_O) t_O< TT}+ dO + g(t)= 0
-b O, t--O>

a.e. in [0, T],

(2.18) p(T) k, k H,
for some g L2(0, T; H). Under the hypotheses of 2.2, (2.17)-(2.18) has a unique
solution (. T, k) in AC2(0, T; H) and the map

(2.19) k /(. T, k)’H AC2(0, T; H)
is affine and continuous. We also have the variation of constants formula

(2.20) 0(t; T, k) O(T, t)*k + @(r, t)*g(r) dr,

whereo is defined in (2.4) (cf. Delfour and Mitter [7], [9]).
It will be convenient to construct the following unbounded operator 0w(t)"

@* -- H with appropriate domain *"
N {Ai(t-Oi)*h(Oi)’t-Oi<= TT}(t)h Aoo(t)*h(O) + O, t-- 0 >i=

(2.21)

+ ff {O, t-O>= dO.

Equation (2.19) can now be rewritten in a condensed form"

dp
dt

(t) + gr(t)p, + g(t) 0 a.e. in [0, T,
(2.22)

p(T) k 6H,

where p, M 2 is defined as

p(t--O), t--O<= T,
(2.23) p(0)

0, otherwise.

Remark 2.5. Even when Aoo,A,’", AN and A0 are time invariant, the
hereditary adjoint system depends on both T and the time t.

2.4.2. Topological adjoint system. Owing to some delicate technical considera-
tions, we restrict our attention to the autonomous case (A(t)= A const.).
/* denotes the M2-adjoint of/.

THEOREM 2.6. Given T > O, the densely defined closed operator -A* generates
the one-parameter semigroup {W(T t)* andfor all k e @(.Y.*), z(t) Ue(T t)*k
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is the unique solution in AC2(0, T; M2) of the equation

(2.24)

dz
--(t) + *z(t) 0 in [O, T],
dt

z(T) k (A*).

Proof Cf. Delfour and Mitter [7]. k

For obvious reasons system (2.24) will be referred to as the topological
adjoint system.

3. Controllability and observability. In 3.1 and 3.2 we successively look at
various notions of controllability and observability, discuss their relative merits
and prove various results on controllability and observability. In the last section
we construct a system which is dual to the original system. The relationship
between controllability and observability and the feedback problem will be
considered in a forthcoming paper.

3.1. Controllability. The notions of controllability for hereditary differential
systems have been explored by several authors since 1965 and precise conditions
have been presented for controllability (cf. G. S. Tahim 32], Chyung and Lee 3],
Kirillova and Churakova 22], L. Weiss [333-36], A. F. Buckalo [21 and A.
Halanay [17]) of different types. In this section we look at two types of control-
lability in the framework of the space M2, derive necessary and sufficient con-
ditions and discuss the relationship of earlier results in the literature with ours.

DEFINITION 3.1. (i) The data h M2 is controllable (resp. M2-controllable) at
time T to x H (resp. k M2) if there exists a sequence {u,} in L2(0, T; U) such
that b(T; h, u,) (resp. b(T; h, u,)) converges to x (resp. k). System /is controllable
(resp. MZ-controllable) at time T if all h M 2 are controllable (resp. MZ-con
trollable) at time T to all x H (resp. k M2).

(ii) The data h M2 is controllable to the origin (resp. to the zero function) it
there exists a finite time T > 0 for which h is controllable to 0 H (resp. 0 eM 2)
at time T. If every h in M 2 is controllable to the origin (resp. to the zero function),
system ’ is said to be controllable to the origin (resp. to the zero function).

DEFINITION 3.2. (i) The data h M2 is strictly controllable (resp. MZ-control
lable) at time T to x X (resp. k M2) if there exists u in L a(0, T; U) such that
b(T; h, u)= x (resp. b(T; h, u)= k). System ’ is said to be strictly controllable
(resp. MZ-controllable) at time T if every h m2 is strictly controllable (resp. mz-
controllable) at time T to all x H (resp. k M2).

(ii) The data h m2 is strictly controllable to the origin (resp. to the zero func-
tion) if there exists a finite time T > 0 for which h is strictly controllable to 0 H
(resp. 0 M2) at time T. If all data h in M2 are strictly controllable to the origin
(resp. to the zero function), system is said to be controllable to the origin (resp.
to the zero function).

For completeness we have included this last definition.
DEFINITION 3.3. Let C be a linear subspace of M2. System ’ is strictly

controllable to a function in if for each h M2, there exist a finite time T > 0
and a control map u L2(0, T; U) such that (T; h, u) . System is said to
be strictly controllable to the space if it is strictly controllable to all functions O
oi’o
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PROPOSITION 3.4. WhenH isfinite-dimensional the notion of strict controllability
at time T (resp. strict controllability to the origin) is equivalent to the notion of
controllability at time T (resp. controllability to the origin).

In this paper we shall not consider the "strict" notions unless we are in the
situation of Proposition 3.4. The following results are obtained directly from the
definitions.

PROPOSITION 3.5. (i) is never strictly MZ-controllable at time T.
(ii) For all T < b, is never MZ-controllable at time T or controllable to

the zero function.
(iii) The controllability of e’ at time T is a necessary condition for the mz-

controllability of at time T. k
Remark. (i) When b- , ’ is never controllable to the zero function or

M2-controllable at any finite T => 0.
(ii) Proposition 3.5 (i) implies that when is MZ-controllable at time T,

the initial states in m2 are only strictly controllable to points in a dense subspace
ofM2 which is different from M2.

PROPOSITION 3.6. is controllable to the origin (to the zero function) if there
exists afinite time T > 0 such that’ is controllable (MZ-controllable) at time T. k

Remark. A similar statement is true for the "strict" notions.
All the above definitions were originally given in the literature for initial

data in C(-b, 0;H) rather than m2(-b, 0;H). As for the space of control maps,
it is safer and technically more advantageous to use the larger L2(0, T; U) rather
than L(0, T; U) or the space of piecewise continuous maps. Whether the control
map can be picked in a smaller subspace of L2(0, T; U) will depend on the nature
of the operators Aoo, Ai (i 1, ..., N) and Aol. If they are "sufficiently nice"
so will the control maps be. Table 1 summarizes some of the details concerning
previous research. In all cases, H R" and the controllability is strict (s.c.).

TABLE

Types of Controllability Control Maps

Chyung and Lee, 1966 [3] Aol 0, continuous matrices Aoo,
Ai (i 1, ..., N) and B.
s.c. at time T.

L(O, T; H)

Kirillova and Churakova,
1967 [22]

N 1, Aol 0, constant matrices Aoo, A
and B.
s.c. to the origin and to the zero function.

piecewise continuous
maps [0,[ U

L. Weiss, 1967 [333 and
1970 [34]

N 1, A0 0, continuous matrices Aoo,A
and B.
s.c. to the origin, to the zero function and to a

function.

L%(0, oe’U)

A. F. Buckalo, 1968 [21 N 1, Ao 0, n differentiable matrices
Aoo, A and B.
s.c. to the zero function.

L(O, ’U)

A. Halanay, 1970 [18] N 1, Aol 0, special constant matrices
Aoo, A and B.
"complete controllability" (= s.c. to the zero
function for all T > a).

piecewise continuous
maps [0, [ U
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Definitions 3.1 (ii), (3.2) (ii) and 3.3 are conceptually interesting but technically
difficult to deal with since thefinal time T is not fixed. Even from the engineering
standpoint it is desirable to have a uniform bound on T independent of the initial
data h in M2. In fact, most conditions for "controllability of Definitions 3.1 (ii),
3.2 (ii) and 3.3" are only sufficient. They make use of Proposition 3.6, the converse
of which is obviously not true. The notion of MZ-controllability is new in the
context of hereditary differential systems, though the idea of density has often
been used in partial differential equations where it naturally arises. It is clear
that at time > 0 the state (t; h, u) will be absolutely continuous in [-t, 0]
(see (2.7)). Thus it will be impossible to synthesize an MZ-map or even a continuous
map defined in I(-b, 0) which is not at least differentiable in the interval [-t, 0].
For all the above reasons we shall limit the scope of our investigation to the
notions of controllability of Definitions 3.1 (i) and 3.2 (i).

THEOREM 3.7. The following statements are equivalent"
(i) 1 is controllable (resp. MZ-controllable) at time T;
(ii) the map u-- S(T)u (T, s)B(s)u(s)ds:L2(O, T; U)- H (resp. u

(T)u r ~ofo (T,s)B(s)u(s)ds:L2(O, T; U)-M2(-b,O;H))hasadense
image in H (resp. M2( b, 0; H));

(iii) the map x-- S(T)*x’H L2(0, T; U) (resp. k-- VS(T)*k’mZ(-b, 0; H)
L2(0, T; U)), where (S(T)*x)(t)= B(t)*(T, t)*x (resp. ((T)*k)(t)
B(t)*(T, t)*k), is injective;

(iv) the symmetric operator

W(T) O(T, s)B(s)B(s)*(T, s)* ds

(resp. I(T) O(T, s)B(s)B(s)* O(T, s)* ds)
is positive definite.

Proof. This is a corollary to Delfour and Mitter [11, Thm. 9 and Cor. 10].
COROLLARY 3.8. Let H R". (i) The condition

(3.1) rank (W(T)) n

is necessary and sufficient for the strict controllability of1 at time T.
(ii) Condition (3.1) is necessary for the MZ-controllability of t’ at time T.
(iii) If there exists a time T, 0 <= T < , for which condition (3.1) holds, then

system d’ is strictly controllable to the origin. []

Remark. Part (i) of the corollary is due to Chyung and Lee [3] and part (iii)
to L. Weiss [33, Lemma 1].

PROPOSITION 3.9. Assume there exists T, 0 < T < , such that Im (D(T, 0)) H.
If all initial states h M2 are controllable to the origin at time T, system 1 is
controllable at time T.

Proof. For all h M2, x H there exists k M2 such that

(3.2) x + ,(T, 0)h ,(T, 0)k.

Since ’ is controllable to the origin at time T there exists {u,} in L2(0, T; U) such
that

(3.3) (T, 0)k + O(T, s)B(s)u,(s) ds + ap(T, s)f(s) ds - O.
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Hence sO’ is controllable at time T by combining (3.2) and (3.3). k

Remark. The condition Im ((T, 0))= H is equivalent to have the "force
free attainable set"

{tI)(T, O)h[h M2

equal to H. When the property is true for all T > 0, then system sO’ is said to be
pointwise complete. This definition is due to L. Weiss [33] who conjectured that
for H R" all systems of the form

dx
--(t) Aox(t)+ Alx(t-a) + Bu(t), >=0,
dt

x(s) h(s), s e [-a, O],

are pointwise complete. This point has been investigated by V. M. Popov [29]
who has shown that the conjecture is false for n > 2. Popov has further found
necessary and sufficient conditions for the system to be pointwise complete.

Finally we restrict our attention to H R" and systems of the form

(3.4)

dx
--(t) Ao(t)x(t + A(t)x(t a) + B(t)u(t) + f(t), >= O,
dt

x(s) h(s), s e [-a, O],

where Ao and A are in Lc(0, o (R")), B e Lc(0, (R", R")) and
fe L2(0, ;R"). Notice that

and that for T >__ a,

t(t, O) Ao(t)(t, 0),

(o, o)

e [0, a],

c
(T,s) + (T,s)Ao(s)=0, s[T- a, T],s

(3.6)
(T, T)= I.

This means that the force free attainable set is equal to R" in the interval [0, a] since

R" Im ((t, 0)) Im ((t, 0)) R".

Also, we have the following proposition.
PROPOSITION 3.10. (i) If there exists To IT- a, T f-) [0, T] for which the

system

dx
--(t) Ao(t)x(t + B(t)u(t), [To, T],
dt

is strictly controllable at time T, then system xal is strictly controllable at time T.
(ii) If in addition Ao and B are respectively n 2 and n 1 times continuously

differentiable in [T0, T], we can construct the controllability matrix of Silverman
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and Meadows [31]

where

Qc(t) [Po(t)iPa(t)i

Pk + (t) Ao(t)Pk(t) + P(t),

Po(t) B(t),

and the condition of part (i) is equivalent to the existence of some [To, T] for
which rank Qc(t) n.

Remark. A. F. Buckalo [2] used the condition of L. Weiss and incorporated
the ideas of Silverman and Meadows 31] to essentially obtain part (ii) of the above
proposition. The classical rank condition is obtained when the matrices Ao and
B are not time dependent.

In addition to the above results one should mention the work of Kirillova
and Churakova [22] and L. Weiss [34]. It is the first attempt to obtain direct
conditions on the various matrices in contrast to the above results where the
(strict) controllability of a nonhereditary system serves as a sufficient condition
for the (strict) controllability of s’.

3.2. Observability. To our knowledge the notion of observability for HDS
has not been studied in the published literature. We have seen that there are
several notions of controllability. Likewise, there are more than one way to
observe system s’ and different things to observe.

Let Y be a Hilbert space which might be thought of as the observation space.
We can observe the map qS(. h, u) with an observer Z L(O, T; ’(H, Y));
the observation at time is defined by

(3.7) z(t; h, u) Z(t)dp(t; h, u).

We can also observe the map (. ;h,u) with an M2-observer eL(O, T;
5(M2, Y)); the M2-observation at time is defined by

(3.8) Y,(t; h, u) (t))(t; h, u).

Since M2(-b,O;H) is isomorphic to H x L2(-b,O;H), there exist ,(t)
2,(’(H, Y) and ,a(t) 5(L2( b, 0; H), Y) such that

(3.9) (t)(t-a(h, 0)) (t)h
and

(3.10) (t)(t-a(0, ha))

Notice that our observer satisfies hypothesis (ii) in Definition 12 (cf. Delfour and
Mitter [11]). Now starting from either of the above two types of observations, we
can either determine the state h M2(-b, 0; H) or simply h H.

DEFINITION 3.11. (i) System1 is observable in [0, T] if for all h M2(- b, 0; H)
and u L2(0, T; U) the point h H can be uniquely determined from a knowledge
of u, h and the observation map z(. ;h, u), where x(h)= (h, h a) and x is the
isometric isomorphism between MZ( b, 0;H) and H LZ(-b, 0;H).
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(ii) System ’ is strongly observable in [0, T] if for all h M2( b, 0;H) and
u L2(0, T; U), the state h can be uniquely determined from a knowledge of u
and the observation map z( h, u).

(iii) System ’ is MZ-observable in 0, T] if for all h MZ(-b, 0; H) and
u L2(0, T; U) the state h can be uniquely determined from u and the observation
map (. h, u).

PROPOSITION 3.12. Let 2(t) Z(t).
(i) strongly observable ’ M2-observable and observable.

(ii) For all T < b, ’ is not strongly observable in [0, T].
Proof. The proof follows from the definitions.
Remarks. (i) When b , system is never strongly observable in [0,

for all finite T.
(ii) When ,a(t) 0, strong observability and M-observability are equivalent.
PROPOSITION 3.13. The following statements are equivalent:
(i) ’ is observable in [0,
(ii) the map F :U L2(0, T; Y), where ((F)h)(t) Z(t)@(t, O)h, is in-

jective
(iii) the mapy- (F)*y (t, O)*Z(t)*y(t) dt "L2(0, T; Y) H has a dense

image in H;
(iv) the symmetric operator

(3.11) W(T) (t, O)*Z(t)*Z(t)O(t, O) dt

is positive definite.
Proof. The proof is similar to the proof of Theorem 3.7.
COROLLARY 3.14. Let H R". (i) The condition

(3.12) rank (W(T)) n

is necessary and sufficient for the observability of in [0, T].
(ii) Condition (3.12) is necessary for strong observability of system
Proof. The proof is similar to the proof of Corollary 3.8.
COROLLARY 3.15. Consider the system of equations (3.4) with observer

Z L(O, T; (R", Y)).
(i) If there exists T [0, T] CI [0, a] for which the system

dx
d--[(t) + Ao(t)*x(t + Z(t)*y(t) 0 in [0, Tf],

x(rf) h

is controllable at time 0, then system s is observable in [0, T].
(ii) If in addition Ao and Z are respectively n 2 and n 1 times continuously

differentiable in [0, Ty], we can construct the observability matrix of
Silverman and Meadows [31],

(3.13) Qo(t) [So(t)iS(t)!. !S,_ (t)],

where

Sk+ x(t) Ao(t)*S(t + (t), So(t)- Z(t)*,(3.14)
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and the condition ofpart (i) is equivalent to the existence of some [0, Tj.]
for which rank (Qo(t)) n. k

Remark. The classical rank condition is obtained when the matrices Ao and
Z are not time dependent.

PROPOSITION 3.16. The following statements are equivalent"
(i) ’ is strongly observable (resp. MZ-observable) in [0, T];

(ii) the map F (resp. )’mz(-b,O;H) L2(0, T; Y) defined by (Fh)(t)
Z(t)(t, O)h (resp. (h)(t) 2(t)4)(t, O)h) is injective;

(iii) the map F* (resp. lff*)’L2(0, T; Y) -- m2( b, 0;H) defined by

F*y (I)(t, O)*Z(t)*y(t)dt (resp. l*y (t, O)*(t)*y(t)at)

has dense image in M( b, O;H);
(iv) the symmetric operator

Wo(T) (t, O)*Z(t)*Z(t)(t, O)dt

(resp. lo(T) (t, 0)*2(t)*2(t)(t, 0)

is positive definite.
Proof. The proof is similar to the proof of Theorem 3.7.

3.3. Duality. In general, it is difficult to find a differential system which
synthesizes the dual system ’* (cf. Delfour and Mitter [11, Def. 12 and Thm. 13]).
However, it is not too difficult to construct the dual system corresponding to the
notions of "controllability at time T" and "observability at time T." The simul-
taneously controlled and observed dual of’ is defined as follows:

dXd__{(t + Aoo(t),x(t)+ N Ai(t Oi),x(t Oi),t Oi <= TT}(o, o >i=

ff {Aol(t-O O)*x(t-O),t-O<-T}do+Z(t),y(t)= 0
O, t-O> T

x(T) xT H (evolution equation),

X(t xT, Y) B(t)*ck*(t xr, y) (observation map),

where b*(. ;XT, Y) is the unique solution of (3.15) in AC2(0, T; H).

a.e. in [0, T],

PROPOSITION 3.17. System s’ is controllable at time T (resp. observable in
[0, T]) if and only if system s/* is observable in [0, T] (resp. controllable at 0). k

It is extremely important to notice that "controllability at time T" is a dual
notion of "observability in [0, T]." It would have been extremely unpleasant to
have "strong observability" in lieu of "observability."

4. The optimal control problem with a quadratic cost.
4.1. Formulation of the problem. Consider the controlled system (2.1).

We fix the final time T ]0,[ and consider the solution of (2.1) in the interval
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[0, T]. We also consider f to be given. The solution in [0, T] corresponding to
h M2( b, 0; H) and v L2(0, T; U) is denoted by x(. h, v). We associate with
v and h the cost function J(v, h) given by

J(v, h) (x(T; h, v)lFx(T; h, v))

+ [(x(s; h, v)lQ(s)x(s;h, v)) + (v(s)lg(s)v(s))] ds

+ 2 (v(s)lm(s)) ds + 2 (x(s; h, v)lg(s)) ds,

where g L2(0, T; H), m L2(0, T; U), F q(H), Q L(0, T; 5(H)), N L(0, T;
2’(U)), F, Q(s) and N(s) are positive symmetric transformations and there exists
a constant c > 0 such that (ylN(s)y) > c y for all s in [0, T].

For each h we shall show that there exists a unique control u which minimizes
the cost function J(v, h) over all v in L2(0, T; O). The minimizing control u will be
completely characterized in terms of the adjoint system. We shall also show that
the control u can be synthesized using a linear feedback law and that the minimum
of the cost function can be expressed in terms of the initial datum h.

4.2. Existence of the optimal control; Necessary and sufficient conditions for
optimality. The existence and uniqueness of the optimal control u minimizing
the cost J(v, h) is a direct consequence of the hypotheses of 2 and 4.1 and two
theorems of Lions (cf. [26, Thm. 1.1, p. 4, and Thm. 1.2, p. 7]). In summary, given
a continuous bilinear form defined in a Hilbert space ’ (with norm I]" I]) satisfy-
ing the properties

(4.2a) (v, w) (w, v) for all w, v ’,

(4.2b) (v,/)) C V 2 for all v e, c > 0,

and a continuous linear form also defined in , we define the cost

(4.3) ,7(v) :(v, v)- 2(v)
which is to be minimized over the closed convex subset ’ad of ’. For such a cost
there exists a unique u in ’ad minimizing J(v) and this element can be uniquely
characterized by

(4.4) (u,v-u)=>(v-u) for allvd.
For fixed f the cost function J(v, h) given by (4.1) is of the form

(4.5) J(v, h)= re(v, v)- 2Lh(v) + c(h),

where rc and Lh satisfy the same hypotheses as and and c(h) is a constant which
solely depends on h. If y(.; w)= x(.;0, u + w)- x(.;0, u) is the solution of
system s’ with f 0, h 0 and control w, a straightforward computation will
show that inequality (4.4) becomes

o
[(Q(s)x(s; h, u) + g(s)ly(s;w)) + (N(s)u(s) + m(s)lw(s))-] ds

(4.6)
+ (Fx(T; h, u)ly(T; w)) >= 0 for all w e L2(0, T; U).
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In order to improve the above characterization, we introduce the adjoint system
corresponding to x(. ;h, v):

s; h, v) + Aoo(S)*p(s; h, v) +
i= 0, s Oi >

(4.7)

f {Aoa(s-O O)*p(s-O’h v) s-O<T}d0
-b O, s-O> T

+ Q(s)x(s;h, v) + g(s) 0 a.e. in [0, T],

p(T; h, v) Fx(T; h, v).

The notation p(s;h, v) emphasizes the dependence of the adjoint solution on the
control v and the initial datum h. From Lemma 3.3 in Delfour and Mitter [7] we
know that by letting y(s; w) x(s; h, w) x(s; h, 0),

(T; T, (0 y(. w))r, p(" ;h, u)) vf(0; T, (0 y(. W))o, p(. ;h, u))

p(s;h u)l (s; w) Aoo(S)y(s;w)
= (0, s+O<_

(0, s + 0 <
(4.8)

+ s; h, u) + oo(S)*p(s; h, u)

+ i:{O,n Ai(s_Oi),P(s_Oi h, u),S-s_Oi>
+ dOly(s; w ds._

O, s-O>

Computing Q(s)x(s;h, u) + g(s) in (4.6) by using (4.7) and (4.8), we can rewrite
inequality (4.6) explicitly as

(4.9) (B(s)*p(s; h, u) + N(s)u(s) + m(s)lw(s)) ds >= 0
0

for all w L2(0, T; U).

Hence the optimal control u is uniquely characterized by

u(s) N(s)- a[B(s)*p(s h, u) + m(s)] a.e. in [0, T].

Thus we have established the following result.
THEOREM 4.1 (Necessary and sufficient conditions of optimality). Given h,

there exists a unique control u which minimizes J(v, h) in L2(0, T; U). The optimal
control u is completely characterized by the identity

(4.10) u(s) N(s)- l[B(s)*p(s h) + m(s)] a.e. in [0, T],

where (p(. ;h), x(. ;h)) is the unique pair of maps in AC2(0, T; H) which satisfies
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the following system of equations:

2N x(s nt- Oi; h)’s -k- Oi >=d--X(s; A(s)x(s’h)’ +
i=1 .h(s + Oi) s + 0 <

(4.11) dO+ o(S, O)h(s + 0), s + 0 <

B(s)N(s)-[B(s)*p(s;h) + m(s)] + f(s)

x(0; h) h(0);
a.e. in [0, T],

(4.12)

dp N fAi(S Oi),p(S Oi h), s Oi =< T(s h) + Aoo(S)*p(s h) +
ds = (0, s Oi >

+ dO + Q(s)x(s;h) + g(s) 0
-b O, s--O>

a.e. in [0, T],
p(r; h) Fx( r; h)

Proof. The proof of this theorem is an immediate consequence of the existence
and uniqueness of the pair (x(. :h, v), p(. ;h, v)) as solutions of (2.1) and (4.7)
and the characterization given by (4.10).

COROLLARY 4.2. Let m 0 in (4.11). The two-point boundary value prob-
lem (4.11)-(4.12) has a unique solution (x(. ;h),p(. ;h)) in AC2(0, T;H)

AC2(0, T; H).
Remark. A different type of boundary value problem for HDE can be found

in a paper by A. Halanay [17].
4.3. "Decoupling" of the equations of Theorem 4.1; the operators D and P.

In this section we consider the initial datum h to be fixed. Let f’(r)= f(r)
B(r)N(r)-1re(r) and R(r)= B(r)N(r)-1B(r)*. We shall write x(r), p(r) and J(v)

in place of x(r;h), p(r; h) and J(v, h) as in Theorem 4.1. In order to "decouple"
the system ofequations (4.11)-(4.12) we consider the problem of{} 4.2 in the interval
Is, T], s e [0, T[ instead of [0, T]. In this case the solution of (2.1) in the interval
Is, T] is denoted by qS(. ;s, v) and the cost is defined by

Js(v) ((T; s, v)lFdp(T; s, v))

(4.13)

T

+ E(4(r ;s, v)lQ(r)dp(r ;s, v)) + (v(r)lX(r)v(r))] dr

+ 2 [(4(r; s, v)lg(r)) + (v(r)lm(r))] dr.

Corresponding to b(. ;s, v), the solution of
N d(r + O,; s, v), r + O, >= ;}dC/)dr (r s v)= Aoo(r)c/)(r s v) +

i=

Ai(r)
.h(r + Oi s), r + Oi <

+ Ao(r O)
4)(r + O;s,v),r + 0 >

dO
h(r+O-s), r+ O<

(4.14) + B(r)v(r) + f(r) a.e. in Es, T],

(s; s, v) h(O),
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we introduce the adjoint solution (. ;s, v) as the solution of
N Ai(r_Oi).(r_Oi;s,v),r_Oi<= TT}dOdr (r s v) + Aoo(r)*O(r s v) +

i= (0, r 0 >

; {Ao(r-O O)*(r-O’s v) r-O<TT}(4.5) + dO
O, r-O>

+ Q(r)ck(r;s, v) + g(r) 0 a.e. in Is, T],

k(T; s, v) Fdp(T; s, v).

We now obtain the analogue ofTheorem 4.1 for the optimal control u L2(s, T; U)
which is characterized by

(4.16) u(r) N(r)- ’[B(r)*O(r s) + m(r)] a.e. in [s, T],

where the pair (qS(. ;s), (. ;s)) (qS(. ;s,u), (. ;s,u)) is the solution in
ACZ(s, T; H) x ACe(s, T; H) of the coupled system

ddP (r.s)= Aoo(r)(r.s) + Ai(r)
c(r + Oi,s), r + Oi>_

dr (h(r + Oi- s) r + Oi<

fo Ic/)(r + O;s), r + O >__ s}(4.17) + Ao (r, O) dO
-b [,h(r + O- s),r + O < s

R(r)O(r;s) + f’(r) a.e. in Is, T],

b(s, s) h(O);

(r;s) + Aoo(r)*O(r;s +
i= (0, r Oi > T

fo O(r O s, r--O< TT} dO(4.18) + -bAl(r-- 0,0)*(0, r-- 0 >

+ Q(r)dp(r;s) + g(r) 0 a.e. in Is, T],

O(T; s) VqS(T; s).

LEMMA 4.3. The map

(h, f, g,m) (b(. ;s), 0(" ;s))
(4.19)

:mz(-b, O;H) x L2(s, T;H) x L2(s, T;H) x LZ(s, T; U)- AC2(s T; H) x AC2(s T; H)

is linear and continuous.

Proof. The map (4.19) is clearly linear. To show it is continuous, choose an
arbitrary sequence {(h,,f,, g,,m,)} in M2 L2 L2 L2 which converges to
(h, f, g, m). Let (4,( s, v), .(. s, v)) (resp. (4)(" s, v), (. s, v))) be the solution
of the system (4.14)-(4.15) for some v e L2(s, T; U) and the data (h,,f,, g,, m,)
(resp. (h, f, g, m)). For fixed v,

(4.20) (h,, L, g,, m,) --, (h, j; g, m) b,(. s, v) -+ 05(. s, v) in ACe(s, T; H)
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by [7, Cor. 2.7]. Let u, (resp. u) be the optimal control for the cost J"(v) (resp. Js(v))
defined in terms of (h,, f,, g,, m,) (resp. (h, f, g, m)). We clearly obtain

(4.21) J’(u,) inf J’(v) < J"(u)
vL

and

(4.22) J(u)--, Js(u)

by (4.20) with v u and the very construction of J" and J.
Hence

(4.23) lim sup J(u,) <= lim sup J(u) J(u) inf J(v).
vL

Because of the hypothesis on N(r), there exist c > 0 and c2 > 0 for which

(4.24) d’(u,) > clu,l 2 c21u,l.

From the last inequality and (4.23) it is necessary that

(4.25) u, bounded subset of n2 as (hn, fn, gn, ran) -- (h,j g, m).

By weak compactness there is a subsequence u, such that

(4.26) uu --, w in L2 weakly.

Thus

(4.27) dpu s, uu) -, q5( s, w) in AC2(s, T; H) weakly

and finally (by convexity of J(v) in v),

(4.28) lim inf d(uu) >= ds(w).

If we combine inequalities (4.23) and (4.28), we necessarily have w u. The results
are summarized below:

(4.29)
u, --, u in L2(s, T; H) weakly,

Jn(U,) J(u);

b,(. ;s, u,) --* q)(" ;s, u) in AC2(s, T; H) weakly,
(4.30)

,(. ;s, u,) - p(. ;s, u) in AC2(s, T; H) weakly.

This shows the continuity on M2 L2 L2 L2 (in the strong topology) into
AC2(s, T; H) AC2(s; T; H) (in the weak topology) of the map (4.11). Since all
the spaces in presence are Hilbert this is sufficient to prove the theorem, k

Remark. The above is essentially Lions’ proof [26, Lemma 4.2, pp. 148-150].
COROLLARY 4.4. The map

(4.31) (h,f,g,m)---d/(r;s):M2 L2 L2 x L2--* H

is linear and continuous jbr r [s, T]. Hence it has the representation

(4.32) 6(r; s)= D(r, s)h + F(r, s)f + G(r, s)g + M(r, s)m

fo
D(r, s) e (M2(- b, 0; H), H), F(r, s) e .q(L2(s, T; H), H),

G(r, s) (L2(s, T; U), H) and M(r, s) (L2(s, T; K), U). k
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In the remainder of this section we assume that f, g and m are fixed. In this
case we may write

(4.33) O(r; s) D(r, s)h + d(r, s)

instead of (4.32).
LEMMA 4.5. Let (x, p) (x(. ;h), p(. ;h)) be the solution of the system (4.11)-

(4.12). Then

(4.34) p(t) D(t, s)2(s h) + d(t, s)

for all pairs s <= in [0, T], where D(t, s) and d(t, s) are defined by thefollowing rules"

(i) We solve the system

(r) Aoo(r)fl(r) + Ai(r
i= (h(r + Oi- s),r + Oi < s

(4.35)

fo ffi(r + o), r + O >_ s}+ Aol(r, O) dO R(r)y(r
-b (h(r + O- s),r + O < s

a.e. in Is, T] and fl(s) h(O),

dTdr (r)+ Aoo(r)*7(r) + _,N Ai(r_Oi),7(r_Oi),r_Oi<= ;}
1 (0, r 0 >

(4.36) ;o {Aol(r O,O),7(r O) r O < ;}+ o + 2(r)/(O 0
-b O, r--O>

a.e. in [s, r] and ?( T) F(T)
then

D(t, s)h ?(t),

(ii) We solve the system

(4.37)

(4.38)

then

te[s, T].

(r) Aoo(r)rl(r) + Ai(r
(0, r+Oi>=2}r+Oi<

q-- Aol(r, O) dO R(r)(r) + f ’(r)
-b 0, r + 0 <

a.e. in Is, T] and r/(s) O,

+ Aoo(r)*(r) +
o o, r 0 >

;: o 0, 0
+ dO + Q(r)(r)+ g(r)= 0

0, r-0>

a.e. in [s, r and (T) F(T)

d(t,s) (t), e Is, T].
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Proof. D(t, s) and d(t, s) are clearly obtained from the rules (i) and (ii) of the
lemma" it suffices to decompose the map h O(r) into its linear part and its con-
stant part. We only need to establish identity (4.34). Consider the system (4.14)-
(4.15) with initial datum 2(s; h) (see Definition 2.1) at time s, where x is the solution
of the system (4.11)-(4.12) with initial datum h. The solution is denoted by (4, ).

We also define

q5 (resp. ) restriction of x (resp. p) to Is, T],

where b and are the solutions of the system (4.14)-(4.15) with initial datum
2(s h). By uniqueness, (4), 0) (b, 0) and p(t) O(t) D(t, s)2(s h) + d(t, s).
This proves the lemma. KN

Remark. The above is essentially Lions’ original proof (cf. J. L. Lions [26,
Lemma 4.3]).

COROLLARY 4.6. Given s [0, T[ and h M2(-b, 0;H), the maps D(t, s)h
and d(t, s) are in AC2(s, T; H). kN

DEFINITION 4.7. For all s [0, T[ and r/ I(-b, 0), s r/=< T, let

(D(s rl, s), rl Is T, 0] f"l I(-b, 0),
(4.39) P(s, r/) ’((0, otherwise.

This defines the operator P(s)e (M(-b, 0; H)) in the natural way (P(s)h)(rl)
P(s, rl)h. Similarly, let

d(s q, s), e [s r, o] ["lI(-b,0),
(4.40) r(s,r/)

0, otherwise;

and this defines r(s) e M2(- b, 0; H), where (r(s))(r/) r(s, rl).
Remark. The conclusions of Lemma 4.5 can also be written in state form.

Let 2,/, p and denote the state variables associated with the variables x, p, 7
and , respectively. We can write/(s) P(s)2(s) + r(s), where P(s)h p(s) and
r(s) (s). Here P(s) and r(s) are defined directly.

4.4. The operator H(s) and the optimal cost; relations between H and P.
In this section we introduce the operator H(s) which characterizes the optimal cost.
It is constructed from D(s rl, s), rl e I(-b, 0), s rl <= T, or simply from P(s, r/)
(Definition 4.5). Since there is an isometric isomorphism between M2(-b, 0;H)
and H x L2(-b, 0;H) the operator P(s, rl) can be decomposed in the following
way"

(4.41) P(s, rl)h P(s, rl)h + PX(s, rl)h a,
where h M2(-b, 0; H), to(h)= (h,h) (see [6, Prop. 2.1]), P(s, rl)e 2’(H) and
P(s, ) e (CZ(- b, 0; H), H).

PROPOSITION 4.8. Let f g 0 and m 0 in system (4.17)-(4.18). We denote
by (b(. ;s), (. s))(resp. ((. ;s), (. ;s))) its solutionfor the initial datum h (resp. ).
Then

W(s; r,h,D(.,s)h) (c(r;s)lVp(r;s)) + [((r;s)lR(r)O(r;s))
(4.42)

+ (Q(r)c/)(r;s)[c/)(r;s))] dr.
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The map

(4.43) (h, )- Vf(s; T, h, D(., s))’M2(- b, 0; H) x M2(- b, 0; H) R

is a continuous bilinear form which is symmetric and positive.
Proof. From Lemma 3.3 of [7] and equations (4.17)-(4.18),

’(T; T, (h qb(., s))r, O(" s)) d4’(s T, h, O(" s))
(4.44)

[(O(r; s)lR(r)O(r; s)) + (Q(r)(r s)l(r;s)) dr,

where is given by Definition 3.2 in [7. But

(4.45) (T; r, (h 4(. s)), O( ;s)) ((r; s)lO(r; s)) (4(r; s)lF4(r; s))

and we obtain (4.42) from identity (4.44). The map (4.43) is clearly bilinear and
continuous since the map h ((. s), O(" s)) (resp. h ((. s), O(" s)) is linear
and continuous by Lemma 4.1. The symmetry and positivity of the map (4.43)
follow from the symmetry and positivity of the operators F, R(r) and Q(r). N

COROLLARY 4.9. (i) The map (4.43) can be written in a unique way in terms of
the transformation H(s) e (M2(- b, 0; H))"

(4.46) (s; T, h, D(., s)) (n(s)h).

(ii) (s) is equivalent to the matrix of operators

nOO(s) nol(s)(4.47) n(s) n(s)l’
where (s) e (H), H(s) e(L2, H), (s) e (L2) and H(s) e (H, L2).

(iii) Moreover,

(4.48) n(s)* H(s) 0,

(4.49) n (s) n (s)*,

(4.50) n(s)* n(s) 0.

(iv) Let u be the optimal control obtained under the hypotheses of Proposition
4.6. The optimal cost can be written as

(4.51) J(u) (n(s)hh) + 2(n(s)hlh) + (n(s)hllh).

Moreover, there exists a constant c > 0 such that

(4.52) IIn(s)hllM cllhl M.

Proof. (i)-(iv) are obvious. The inequality in (iv) follows from the positivity
and symmetry of the operator 1-I(s) and

[(II(s)h[h)M2[ dhs(u <_ das(O) <__ c[[h t2. k

The operator FI(s) can now be expressed in terms of P(s, rl), rl e I(-b, 0),
s r/=< T. In doing this we obtain further information on Fl(s).
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COROLLARY 4.10. (i) Fl(s) P(s, 0), I-ll(s) P(s, O) and (II(s)h)(a)
II (s, a)h, where

N Ai(s + z Oi)*P(s, Oi- z), + s- r < Oi <
rl (s, ) Y.

i- I.O, otherwise
(4.53)

Ym+ Ao (s + O, O)*P(s, 0 cz) dO.
ax{ b, + T}

(ii) The kernel gIl(s, cz) of 1-I l(s) is equal to FI (s, )*.
(iii)

{ A’(s + O’)*P’(s’O’ z)hl z + s T < O’ <(1-Il(s)h)(z)
i- 0, otherwise

(4.54)

f2+ Ao(S + o O, O)*P(s, 0 oOh dO.
ax{ b,o + T}

If we now go back to the system (2.1) defined in [0, T], the minimizing control
u(s) at time s is given by

(4.55)
u(s)=-N(s)-I,(s)*[rI(s)x(s)+ f] I-IX (s, e)*2(s h, u)(e) de

+r(s,0)] + m(s)].
5. Operational differential equation of Riccati type for the operators P(t)

and 1-I(t). So far we have established the existence of operators P(t) and FI(t) in
(Me) and studied their properties. We have also shown how P(t) and FifO can
be indirectly computed. In this section we show that P(t) and FI(t) satisfy operational
differential equations of Riccati type. In order to study P(t) and FI(t) we assume
that in (2.1), f 0, and in (4.1) that m 0 and g 0 (Proposition 4.6).

5.1. Formal derivation of an operational differential equation for II(t). We use
the fact that there is an isometric isomorphism x between Me(-b, 0; H) and
H x Le(-b, 0; H), where x(h) (h,h). Since II(s)e 2’(Me(-b, 0; H)), we use
the above isomorphism and write

[n(s)h] 1-I(s)h,

[n(s)h3 Hl(s)h,

Fl(s) e &(M2, H),

I-I l(s) &a(M2, L2).

We denote by (p, x) (resp. (,2)) the solution of system (4.11)-(4.12) with initial
datum h (resp. h). We use the notation (see Definition 2.1)

(5.2) Xs 2(s;h) (resp. ffs (s;h)).

From (4.34), Definition 4.7, Corollary 4.10 and (5.1),

p(s) 1-I(S)Xs (resp./s lq(s)ffs)
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Define operators/(t), O(t) and/ in (M2) as

R(t)h(O),(5.4) [/(t)h](z)
(0,

Q(t)h(O),(5.5) [O(t)h]()
(0,

Fh(O),(5.6) [h](a)
(0,

It is easy to verify the following:

(5.7)

and

(5.8)

(5.9)

(5.0)

Then from (2.16) in Theorem 2.3, (4.34) and (5.4),

dxt= (t)xt- (t)H(t)x,
dt

(5.11)
Xo h.

a--0,

otherwise;

otherwise;

5 O,
otherwise.

[-(t)H(t)xt](O R(t)H(t)xt R(t)p(t),

(p(t)lR(t)(t))H (H(t)x,IR(t)H(t)t),

(x(T)IF(T))n (XTIT)M,

(x(t)lQ(t)(t))n (XtlO(t)t)M"

[0, T],

Formal differentiation of both sides of (5.12) and use of (5.11) yields

([l(s) + r(s)(s) + (s)*n(s) n(s)(s)n(s) + O.(s)]xl) o.
Since this has to be true for all x and , we get

1() + n()() + ()*n()- n(s)()rI() + 0()= 0,
(.)

H(T) ,
where (s)* is the M2-adjoint of (s).

5.2. Interpretation of equation (5.14). The first question is to determine in
what sense equation (5.14) has a solution. There are two ways to proceed" either to
study (5.14) directly or to study an equivalent integral equation. In the first situa-
tion we can apply certain results of Da Prato 4], but we need further assumptions.

(XTIrI(T)gT) (XTIFgT).

and

Equations (5.4) through (5.11) can also be written with h and in place of h and x.
From (4.42), (4.46) and (5.8),

(5.12) (x,lrI(s)xs) (XTIT) + [(X10(r)) + (H(r)x,l(r)H(r))] dr
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In the second situation we study an equivalent integral equation rather than the
differential equation directly.

5.3. Direct study of equation (5.14). In order to apply Da Prato’s results to
equation (5.14) we need further hypotheses"

(i) Aoo, Ai, Aol and B in (2.1) and Q and R in (4.1) do not depend on t;
(ii) there exist co => 0 and K > 0 such that

O(t) (M2)_--<Ke ,t for allt>O;

(iii) F 0.

5.3.1. Results ofDa Prato. We now state the results ofDa Prato (cf. [4, Thms.
7.5 and 7.6]) which are of interest to us.

Let X be a Banach space. Let (X, X) denote the algebra of bounded linear
operators on X, 2s(X, X) the space (X, X) endowed with the topology of simple
convergence in X. Let M and N be two unbounded operators in X which are
infinitesimal generators of strongly continuous semigroups - eTM and --, etN

respectively. Moreover, we assume that there exist positive constants KM, Ku and
cou R+ such that

e*Mll KMIIe K e-’"’ for all tR+.

We consider the equation

dU
dt

MU(t)- U(t)N- f(U(t))= V(t),

U(O) =0, te[O,T], TeR+.

In the above, f is holomorphic in an open set f of the complex plane con-
taining the origin and V C(O, T; s(X, X)).

DEFINITION 5.1. U C(O, T; s(X, X)) is said to be a weak solution of (5.15)
if there exists a sequence U,} in C1(0, T; LZs(X, X)) such that

(i) U,(0) 0 for all n e N;
(ii) U,(t)x (M) (domain of M) for all x X, R+ and t-- MU,(t)

e C(0, T; s(X, X));
(iii) U,(t)N can be extended to a bounded operator U,(t)N, teR+ and

t- U.(t)N e C(O, T; c.qs(X, X));
(iv) U, - U and du./dt MU. U.N f(U.) v in c(o, T; 5s(X, X)).
THEOREM 5.2 (Da Prato). Let TO e R +, Ve C(0, To; 5Ps(X, X)). Then there

exists a T <= To such that (5.15) has a unique weak solution in [0, T]. KN
Suppose further that there exists a constant C e R+ such that if T e [0, To]

and U is a solution of (5.15) in [0, T], we have

u(t)ll <-_ C for allte[O,T].

THEOREM 5.3 (Da Prato). Equation (5.15) has a unique global weak solution.

C1(0, T" Ls(X, X)) space of functions with values in 5s(X, X) which are strongly differentiable.
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5.3.2. Existence of a global solution for (5.14). In view of the fact that A and
A* are infinitesimal generators of strongly continuous semigroups which are
adjoint to each other and f(I-l) I-I/l-l,/ being a bounded positive operator, all
the assumptions of Theorem 5.2 are satisfied and we can conclude that when
F 0 there exists a unique weak solution of (5.15) locally. Finally, in view of the
a priori bound (4.52) we can conclude that the local solution is also global.

5.4. Study of equation (5.14) via an equivalent integral equation. We now
derive an integral equation equivalent to (5.14).

PROPOSITION 5.4. The operator I-I defined in Corollary 4.9 is the unique minimale

solution of the following system"

r(r, s) IA"(r) (r)H(r)](r, s) a.e. in Is, T],

(5.16)
(s, s) I,

T

(5.17) 1-I(s) (T, s)*(T, s) + (r, s)*[0(r) + lq(r)(r)I-I(r)](r, s) dr.

Proof. (i) We start with Proposition 4.8. We know that for f g 0 and
m 0 system (4.17)-(4.18) has a unique solution and that

if(r, s) P(r)@r, s) II(r)@r, s)

(cf. Lemma 4.5 and Definition 4.7).
Equation (4.17) can now be written in state form"

c q(r, s) [(r) (r)I-I(r)](r, s) in Is, T],

q(s, s) h.

This clearly generates the semigroup (r, s). Now using (4.42) in Proposition 4.8
and (4.46) in Corollary 4.9, we obtain

(hlIq(s)fi) ((T, s)hlPp(T, s)f)
T

+ [(II(r)(r, s)h[(r)Fl(r)(r, s))

+ ((r, s)hlO(r)(r, s)fi)] dr.

This is sufficient to show that H is a solution of system (5.16)-(5.17).
(ii) Consider another solution H of (5.16)-(5.17). Fix a time s e [0, T[. This

corresponds to the feedback control

a(t) -N-1B*l(t), e Is, T],

in the time interval Is, T]. However, by definition,

(rI(s)hlh) min Js(v) <= Js(a) (II(s)hlh).
veL2(s,T;U)

This proves the minimality property.

That is, the corresponding control gives us the minimal cost.
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COROLLARY 5.5. For all h and h in the operator H defined in Corollary 4.9
is a positive self-adjoint solution of the following system"

d(lH(t)h + ((t)hll-I(t)h) + (hl[H(t)/(t)- H(t).(t)H(t)
dt

+ Q(t)]h) 0 a.e. in [0, T],

n(T) F.
Proof. Let (t, s) (t, s_)h and (t, s) (t, s)h. Using the fact that (r, s)

(r, t)p(t, s), we compute (t(t, s)ll-I(t)p(t, s)) from (5.17)"

((a(t, s)lFI(t)(t, s)) ((T, s)l(T, s)) + (@r, s)l[0(r)

+ I-I(r)R(r)H(r)]dp(r, s)) dr.

We differentiate the above expression with respect to and set s equal to in the
resulting expression to obtain (5.18). k

5.5. Integral and differential equations for operator P(t). In this section we
derive equations for operator P(t). We shall use the operators D(t, s), P(t, ) and
P(t) of Definition 4.7. Given G 9(M2) we denote by GO 6(M 2, H) the operator
defined by Gh (Gh)(O) and by

G G1GO G

the corresponding matrix of operators defined on H x L2( b, 0;H).
PROPOSITION 5.6. The operator P of Definition 4.7 is the unique solution of the

following system of equations"

T

P(t) tP(T, t)ff(T, t) + tP(r, t)[Q(r) + P(r)R(r)P(r)](r, t)dr,

(5.19)
fP(t a)(t a, t)h, <= T,

[P(t)h] (a) "{(0, otherwise.

(t, s) is the semigroup generated by the solutions of
dz
--(t) [A-(t) (t)P(t)]z(t) a.e. in Is, T],
dt

(5.20) z(s) h 9, s [0, T[,

(t, s)h z(s),

and tP(t, s)e (H) is generated by the solutions of

__dY (s) + [/(s) P(s)_(s)]y 0 a.e. in [0, t],
ds

(5.21)
’e(t, s)k y(s),

where ys(O) is equal to y(s O) when s 0 and 0 when s 0 > t.

y(t) k,
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(5.22)

Proof. (i) Notice that (5.20) and (5.21) are only functions of P(t). Assume that
P(t) of Definition 4.7 is the unique solution of the first equation of (5.19). We have
shown that

O(r, s) D(r, s)h D(r, r)dp(r, s), r >= s

(Corollary 4.4 and Lemma 4.5). The above equation can be rewritten

D(r, s)h D(r, r)(r, s)h.
We let r e and s in the above equation and use Definition 4.7 to obtain
the second equation of (5.19).

(ii) Uniqueness. Let P(t) be a solution of systems (5.19)-(5.21). Let (.,s)
be the solution in Is, T] of the following equation"

s) s) Is,.(t)P(t)](t, in

6(s, s) h.

By definition,

(5.23)
We define

(5.24)

6(t, s) (t, s)h.

O(t, s) P(t)p(t, s).

We use (5.21) to obtain

(5.25) 0(,)= W(T,t)F4)(T,s)+ tP(r,t)[(r) + P(r)R(r)P(r)])(r,s)dr.

We differentiate with respect to both sides of (5.25)"

ct O(t, s) + gr(t)(t, s) + Q(t)c/)(t, s) 0 in [s, T],
(5.26)

0(T, s) Fb(T, s),
where (t, s)(O) is equal to 0(t 0, s) when 0 < T and 0 when 0 > T.

We can also rewrite (5.22) using (5.24)"

--qb(t, s) A-(t)(t, s) .(t)(t, s) in Is, T],

(5.27)
6(s, s) h.

System (5.26)-(5.27) is the optimality system (4.17)-(4.18) and we know (Lemma
4.5 and Definition 4.7) that

(5.28) 0(s, s) P(s)h.
Let s in (5.24) and (5.28)"

(5.29) P(s)h /(s, s)= P(s)h.
Since this is true for all s e [0, T[, we have established that a solution (if it exists) of
system (5.19)-(5.21) is necessarily unique and equal to p0.

(iii) Existence. Let P be as in Definition 4.7. The optimality system (4.17)-
(4.18) can be put in the form (5.26)-(5.27) and (5.28) is true by Lemma 4.5 and
Definition 4.7. As a result, (I)(t, s) and tP(t, s) are well-defined and equation (5.26)
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can be rewritten as follows"

+ [O(t) + P(t)(t)P(t)](t, s)= 0 a.e. in Is, T],

(5.31) O(T, s) Fdp(T, s).

Using (2.22) we can rewrite system (5.30)-(5.31) in integral form"

(5.32) O(t, s) (T, t)Fd(T, s) + (r, t)(0(r) + P(r)/(r)P(r))q(r, s) dr.

By using the relations

(t, s) (t, s)h and P(t)(t, s) 0(t, s),(5.33)

(5.32) becomes

(5.34)
[ 5,

T

P(t)(t, s) tP(T, t)FO(t, s) + tP(r, t)(O(r)

+ P(r).(r)P(r))(r, s) dr] h.

Let s in (5.34) and use the fact that (s, s) h to obtain (5.21). This shows that
pO is a solution of system (5.19)-(5.21). []

COROLLARY 5.7. The operators pO and D of Definition 4.7 are solutions of the
following coupled system"

D(r, s) P(r)(r, s),(5.35)
and for all h,

r>s

d
--[P(t)h] + [P(t)(t) + Aoo(t)*P(t)
dt

.N A,(t Oi)*D(t 0, t), t- Oi <= T+
i=l (0, otherwise J

(5.36) ;o {Ao,(t 00)*D(t-O t)t-O< T/ dO- P(t)R(t)n(t)
O, otherwise )

+ Q(t)]h 0 a.e. in 0, T],

po(T fro.

Proof. Consider equation (5.30). Using (5.28) and (5.20) we can compute

(5.37) (t, s) -u[P(u)(t, s)],=t + P(t)[(t) (t)P(t)](t, s).

Let s-- in (5.30) and (5.37). Using the definition of/r and (t, t) we obtain
(5.36). k

Remark. P(t) can be obtained from D(r, s) (Definition 4.7)"

[P(t)h](oO= P(t,a)h= D(t- a,t)h, t-o <= T.
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To complete the picture we need an equation for D. This equation can be formally
obtained provided that the semigroup O(r, s) of system (5.20) is a solution of the
following equation"

s)* + a.e. [0, r],(s) (s)P(s)]*7(r, S)* 0 in

(I)(r, r)* I.

This is equivalent to postulating the existence of a topological adjoint system for
system (5.20). Under this hypothesis we formally differentiate (5.35) with respect to
s to obtain the desired differential equation for D"

8 D(r, s) + D(r, s)[(s) ,(s)P(s)] 0 a.e. in [0 r]S

m(r, r) P(r).
Let (r,s)= (t- , t) in the above equation. Since P(t, )= D(t- , t) we can
obtain the following differential equation for P(t, )"- + P(t, ) + P(t, o0[A(t R(t)P(t)] 0

in the region {(t, ) [0, T] x I(- b, O)]t __< T} with boundary conditions

P(s, O) P(s), s e [O, T].

For completeness we also include the following result which is obtained by
decomposition of (5.17) and the first equation of (5.19).

CoeoLaeY 5.8. Tke operator FI defined in Corollary 4.9 is tke unique solution
of the following system of equations"

H(t) (T, t)F(T, t) + tP(r, t)Q(r)(r, t) dr

(5.38)

+ (r, t)II(r)R(r)[H(r)(r, t) + Hl(r)(r, t)] dr,

1-I(t) (T, t)Fl(T, t) + (r, t)Q(r)(r, t) dr

(5.39)

+ tI(r, t)l-[(r)R(r)[rI(r), (r, t) + n (r) l(r, t)] dr,

(5.40) H l(t) H l(t)#,
T

1-Ill(t) ()l(T t)*Fl(T, t) + (l(r, t)*Q(r)l(r, t)dr

T

(5.41) + j [II(r)(r, t) + rio l(r))l l(r, t)]*R(r)[H(r)g) (r, t)

q- l-[1(r)11(r, t)] dr,
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where (t, s), defined by (5.16), and W(t, s), defined by (5.21), only depend on I-I
and 1-I 1.

Proof. To derive (5.38) and (5.39) we decompose (5.19) and use the fact that
Fl(t) P(t), and to derive (5.41) we decompose (5.17).

Remark. Equation (5.38) relates 1-I to H and 1-11, equation (5.39) relates
1-I1 to I-I and 1-I1 and equation (5.41) explicitly relates H 11 to 1-I and H1.
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Notes added in proof
1. It can be shown that in Proposition 5.4 and Corollary 5.5 the map

s I-I(s) [0, T] - a(m2) is continuous and for all h, h in @ the map s (hlI-I(s))
is in ACI(O, T; R). Somewhat similar remarks can be made for the map t-- P(t)
in Proposition 5.6 and Corollary 5.7.

2. The relationship between controllability, stabilizability and the infinite
time quadratic cost problem has been clarified. See:
(a) M. C. DELFOUR AND S. K. SITTER, LZ-stability, stabilizability and the infinite

time quadratic cost problem for linear autonomous hereditary differential
systems, Rep. C.R.M.-132, Centre de Recherches Math6matiques,
Universit6 de Montr6al, 1971 submitted to this Journal.

(b) H. F. VANDEVENNE, Qualitative properties of a class of infinite dimensional
systems, Doctoral thesis, Electrical Engineering Dept., M.I.T., Cam-
bridge, Mass., 1972.

3. The following reference which appears to be relevant to the present work
was pointed out to us by the referee:
A. MANITIUS, Optimum control of linear time-lag processes with quadratic per-

formance indices, Proc. 4th IFAC Congress, Warsaw, Poland, 1969.
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