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CONTROLLABILITY OF EVOLUTION EQUATIONS WITH MEMORY

FELIPE WALLISON CHAVES-SILVA, XU ZHANG, AND ENRIQUE ZUAZUA

Abstract. This article is devoted to studying the null controllability of evolution equations
with memory terms. The problem is challenging not only because the state equation contains
memory terms but also because the classical controllability requirement at the final time has
to be reinforced, involving the contribution of the memory term, to ensure that the solution
reaches the equilibrium. Using duality arguments, the problem is reduced to the obtention
of suitable observability estimates for the adjoint system. We first consider finite-dimensional
dynamical systems involving memory terms and derive rank conditions for controllability. Then
the null controllability property is established for some parabolic equations with memory terms,
by means of Carleman estimates.

1. Introduction

The problem of controllability for evolution equations is a classical one. Starting from finite
dimensional linear systems (see [14]), where controllability can be characterized by algebraic rank
equations on the matrices generating the dynamics and taking account of the control action, the
theory has been adapted and extended to more general systems including infinite dimensional
systems, and its nonlinear and stochastic counterparts (see e.g. [1, 7, 9, 18, 25, 30, 32] and the
rich references therein).

However, most of the existing works are concerned with evolution equations involving memory
terms that are relevant from a physical point of view. For instance, in [12] a modified Fourier’s
law was introduced to correct the unphysical property of instantaneous propagation for the heat
equation (e.g. [5]), which results in a heat equation with memory:





yt −
n∑

i,j=1

{
aij(x)

[
ayxi +

∫ t

0
b(t− s, x)yxi(s, x)ds

]}

xj

= uχω(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

(1.1)

Here b(·, ·) is a smooth memory kernel, a ∈ {0, 1} is a parameter, Ω (⊂ Rn, n ∈ N) is a bounded
domain with a C∞-smooth boundary ∂Ω, T > 0 is a given finite time horizon and ω is a non-
empty open subset of Ω where the control is applied. We also use the notation Q = (0, T )× Ω
and Σ = (0, T )×∂Ω, and denote by χω the characteristic function of ω and by ν = ν(x) the unit
outward normal vector of Ω at x ∈ ∂Ω. x = (x1, · · · , xn)⊤ and (aij(x)

)
n×n

is a given uniformly

positive definite matrix with suitable smoothness.
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2 F. W. CHAVES SILVA, X. ZHANG, AND E. ZUAZUA

The well-posedness and the propagation speed of these models was analysed in [28].
In the absence of memory term (i.e., b(·) ≡ 0) and when a = 1, this system becomes the

following classical heat equation




yt −
n∑

i,j=1

[
aij(x)yxi

]
xj

= uχω(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(1.2)

and its null controllability properties are by now well known. For instance, it is well-known
(e.g. [9]) that for any given T > 0 and non-empty open subset ω of Ω, the equation (1.2) is null
controllable in L2(Ω), i.e., for any given y0 ∈ L2(Ω), one can find a control u ∈ L2((0, T ) × ω)
such that the weak solution y(·) ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H1

0 (Ω)) to (1.2) satisfies

y(T ) = 0. (1.3)

In this parabolic setting it is notable that, thanks to the infinite speed of propagation, the
controllability time T and the control region ω can be chosen as small as one likes.

But this property of null controllability of the parabolic model is far from being true and well
understood when the model incorporates memory terms (see, for instance, [11, 13]).

When a = 0 and under certain conditions, in [28] it was shown that the system (1.1) enjoys a
finite speed of propagation property for finite heat pulses, what makes it more realistic for heat
conduction. This has also important consequences from a control theoretical point of view. For
instance, when a = 0, under suitable conditions on aij(·), geometric conditions on ω and provided
T > 0 is large enough, the system enjoys the control property that, given y0, y1 ∈ L2(Ω), there
is a control u ∈ L2((0, T )×ω) such that the corresponding solution y ∈ C([0, T ]; L2(Ω)) satisfies
y(T ) = y1 in Ω ([8]). We refer to [4, 17, 20, 29] for some related works in this respect.

Note however that this result does not guarantee anything about the value of the accumulated
memory that the system reaches at time t = T . Accordingly, it does not guarantee that the
system may be driven to rest since this fact, in addition to the condition y(T ) ≡ 0, would require
also that the memory term reaches the null value:

∫ T

0
b(T − s, x)yxi(s, x)ds ≡ 0.

In this sense, this result has to be viewed as a property of partial controllability, but not of full
controllability, since the later would require to control of the memory term too.

When a = 1, (1.1) is a controlled heat equation with a parabolic memory kernel. In this
case, as it has been shown in recent years (See [11, 13, 23, 31]), the null controllability may fail
whenever the memory kernel b(·, ·) is a non-trivial constant and the control region ω is fixed,
independent of time. Nevertheless, the approximate controllability property is still possible for
the same equation, at least for some special cases (See [2, 31]). The full picture is still unclear
and this papers aims to contribute in this direction.

The main results in this paper consist on, first, formulating the proper notion of controllability
for these memory systems and then proving that, even if this property fails to be true for control
supports that are independent of time, they hold provided the support of the control moves,
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CONTROLLABILITY OF EVOLUTION EQUATIONS WITH MEMORY 3

covering the whole domain where the equation evolves, in the spirit of previous results in [6] for
the system of viscoelasticity.

In order to illustrate this link between viscoelasticity and the memory models under consid-
eration let us first analyze the simplest case:





yt −∆y +

∫ t

0
y(s)ds = uχω(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

(1.4)

Setting z(t) =
∫ t
0 y(s)ds, this system can be rewritten as





yt −∆y + z = uχω(x) in Q,

zt = y in Q,

y = z = 0 on Σ,

y(0) = y0, z(0) = 0 in Ω.

(1.5)

This system is constituted by the coupling of a heat equation with an ordinary differential
equation (ODE), as in the context of viscoelasticity (See [6]). Of course the full null control of

the system requires driving both the state y and the memory term z =
∫ t
0 y(s)ds to the null state

at time t = T . But the presence of the ODE component makes the controllability of the system
to be impossible if the control is confined to a strict subset ω of Ω. This is why the support of
the control needs to move to cover the domain where the equation evolves in the control time
horizon.

As we shall see, the main ideas and techniques developed in [6] can be adapted to this setting.
To present our main results we consider the following abstract setting:





yt = Ay +

∫ t

0
M(t− s)y(s)ds+B(t)u, t ∈ (0, T ],

y(0) = y0.
(1.6)

Here, y = y(t) is the state variable which takes values in a Hilbert space Y , A generates a
C0−semigroup eAt on Y , M(·) ∈ L1(0, T ;L(Y )), u denotes the control variable taking values in
another Hilbert space U , and B(·) ∈ L2(0, T ;L(U ;Y )).

It is easy to check that (e.g., [28]), under some mild assumptions on the coefficients aij(·) and
b(·, ·), (1.1) is a special case of (1.6).

As in the context of systems without memory terms, (1.6) could be said to be null controllable
if for any y0 ∈ Y , there exists a control u(·) ∈ L2(0, T ;U) such that the corresponding solution

y(·) satisfies y(T ) = 0. Nevertheless, because of the inertia effect of the memory term
∫ t
0 M(t−

s)y(s)ds, the null state of (1.6) at T cannot be kept for t ≥ T in the absence of control u(t) = 0
for a.e. t > T . To guarantee this, one needs to impose the extra requirement that

∫ T

0
M(T − s)y(s)ds = 0. (1.7)

Going a bit further, we introduce the following concept of memory-type null controllability.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



4 F. W. CHAVES SILVA, X. ZHANG, AND E. ZUAZUA

Definition 1.1. Given a memory kernel M̃(·) ∈ L1(0, T ;L(Y )), not necessarily the same as
M(·) in (1.6), the equation (1.6) is called memory-type null controllable (with the memory kernel

M̃(·)) if for any y0 ∈ Y , there is a control u(·) ∈ L2(0, T ;U) such that the corresponding solution
y(·) satisfies

y(T ) = 0 and

∫ T

0
M̃(T − s)y(s)ds = 0. (1.8)

The classical notion of (partial) null controllability of (1.6) in the sense of (1.3) is a special

case of memory-type null controllability of (1.6) (by taking the memory kernel M̃(·) ≡ 0). But

the full control of the system, as mentioned above, requires to take M̃ ≡M .
The main goal of this article is to study the memory-type null controllability of (1.6). By

means of classical duality arguments, the problem will be reduced to the obtention of suitable
observability estimates for its adjoint system (see Proposition 2.1). However, the required ob-
servability estimates have not been addressed so far and this is the objective of the present
paper, focusing on finite-dimensional ordinal differential equations and parabolic equations. As
we shall see, in order to achieve the memory-type null controllability of (1.6), except for some
trivial cases, it is necessary to use controls with moving support. This is why we choose the
control operator B(·) to be time-dependent (see Remark 2.2 for further explanations).

Remark 1.2. As in the classical setting of evolution equations without memory terms, one
may introduce the (apparently stronger) condition of memory-type trajectory controllability in
the sense that both the state y and the memory at time T match the values of a given trajectory
of (1.6) and its corresponding memory by means of a suitable control u(·). Due to the linearity
of the system under consideration, the memory-type trajectory controllability follows from its
memory-type null controllability. In the sequel, accordingly, we shall focus on the problem of
memory-type null controllability.

The rest of this paper is organized as follows. In Section 2 we consider abstract evolution
equations with memory terms and prove that the null and memory-type null controllability
properties are equivalent to certain observability inequalities for appropriate adjoint systems.
In Section 3 we consider ordinary differential equations with memory and prove several rank
conditions ensuring memory-type null controllability. In Section 4 we prove the memory-type
null controllability for parabolic equations with memory under suitable conditions on the moving
control. Finally, in Section 5, we list some open problems related to the topic in this paper.

2. Abstract duality and the observability analog

In this section, we consider the problem of memory-type null controllability (with the memory

kernel M̃(·)) of (1.6). For this, we introduce its adjoint system1:




wt = −A∗w −
∫ T

t
M(s− t)∗w(s)ds+ M̃(T − t)∗zT , t ∈ [0, T ),

w(T ) = wT ,
(2.1)

1Throughout this paper, for any operator-valued function R, we denote by R∗ its pointwise dual operator-valued
function. For example, if R ∈ L1(0, T ;L(Y )), then R∗ ∈ L1(0, T ;L(Y )), and |R|L1(0,T ;L(Y )) = |R∗|L1(0,T ;L(Y )).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



CONTROLLABILITY OF EVOLUTION EQUATIONS WITH MEMORY 5

where wT , zT ∈ Y .
We have the following result.

Proposition 2.1. Equation (1.6) is memory-type null controllable (with the memory kernel

M̃(·)) if and only if there is a constant C > 0 such that solutions of (2.1) satisfy

|w(0)|2Y ≤ C

∫ T

0
|B(s)∗w(s)|2Uds, ∀ wT , zT ∈ Y. (2.2)

Proof. The proof is standard. For the readers’ convenience, we give the details below.
We prove first the “if” part. Fix a y0 ∈ Y . We introduce a linear subspace L of L2(0, T ;U)

as follows:

L = {B(·)∗w(·) | w(·) solves (2.1) for some wT , zT ∈ Y }.
For any B(·)∗w(·) ∈ L, we define

F
(
B(·)∗w(·)

)
= −(w(0), y0)Y .

By (2.2), we see that F is a bounded linear functional on the normed vector space L (with the
norm inherited from L2(0, T ;U)). Hence, by the Hahn-Banach Theorem, F can be extended to
a bounded linear functional on L2(0, T ;U)). Now, Riesz Representation Theorem allows us to
find a function η(·) ∈ L2(0, T ;U) such that

∫ T

0
(B(t)∗w(t), η(t))Udt = −(w(0), y0)Y . (2.3)

We claim that

u(·) = η(·) (2.4)

is the desired control. Indeed, for any wT , zT ∈ Y , by (1.6) and (2.1), we obtain that

(wT , y(T ))Y − (w(0), y0)Y =

∫ T

0

d

dt
(w, y)Y =

∫ T

0
[(wt, y)Y + (w, yt)Y ]dt

=

∫ T

0

[(
−A∗w −

∫ T

t
M(s− t)∗w(s)ds+ M̃(T − t)∗zT , y

)

Y

+

(
w,Ay +

∫ t

0
M(t− s)y(s)ds+B(t)u

)

Y

]
dt

=

(
zT ,

∫ T

0
M̃(T − t)y(t)dt

)

Y

+

∫ T

0
(B(t)∗w(t), u(t))Udt.

(2.5)

Combining (2.3), (2.4) and (2.5), we end up with

(wT , y(T ))Y −
(
zT ,

∫ T

0
M̃(T − t)y(t)dt

)

Y

= 0, ∀ wT , zT ∈ Y.

Hence y(T ) =
∫ T
0 M̃(T − t)y(t)dt = 0, as desired.

Next, we prove the “only if” part. For any wT , zT ∈ Y , by the equation (2.1), we may define
a bounded linear operator F : Y × Y → Y as follows:

F(wT , zT ) = w(0). (2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



6 F. W. CHAVES SILVA, X. ZHANG, AND E. ZUAZUA

We now use the contradiction argument to prove (2.2). Assume that (2.2) was not true. Then,
one could find two sequences {zkT }∞k=1, {wkT }∞k=1 ⊂ Y such that the corresponding solutions wk(·)
to (2.1) (with (wT , zT ) replaced by (wkT , z

k
T )) satisfy

0 ≤
∫ T

0
|B(s)∗wk(s)|2Uds <

1

k2
|wk(0)|2Y , ∀ k ∈ N. (2.7)

Write

w̃kT =
√
k

wkT
|wk(0)|Y

, z̃kT =
√
k

zkT
|wk(0)|Y

,

and denote by w̃k(·) the corresponding solution to (2.1) (with (wT , zT ) replaced by (w̃kT , z̃
k
T )).

Then, it follows from (2.6) and (2.7) that, for each k ∈ N,
∫ T

0
|B(s)∗w̃k(s)|2Uds <

1

k
, |F(w̃kT , z̃kT )|Y =

√
k. (2.8)

Since (1.6) is assumed to be memory-type null controllable (with the memory kernel M̃(·)),
for any y0 ∈ Y , one can find a control u(·) ∈ L2(0, T ;U) such that the corresponding solution
y(·) satisfies (1.8). For any wT , zT ∈ Y , by (1.6) and (2.1), similar to the proof of (2.5) and
noting (1.8), we have

−(w(0), y0)Y =

∫ T

0
(B(t)∗w(t), u(t))Udt.

In particular, it holds that

− (F(w̃kT , z̃
k
T ), y0)Y =

∫ T

0
(B(t)∗w̃k(t), u(t))Udt. (2.9)

By (2.9) and the first inequality in (2.8), it is easy to see that F(w̃kT , z̃
k
T ) tends to 0 weakly in

Y . Hence, by the Principle of Uniform Boundedness, we see that the sequence {F(w̃kT , z̃kT )}∞k=1
is uniformly bounded in Y , contradicting the second equality in (2.8). This completes the proof
of Proposition 2.1. �

Remark 2.2. Proposition 2.1 characterizes the property of memory-type null controllability in
terms of a non-standard unique continuation property and observability inequality (2.2) which,
as we shall see, it is very hard to achieve when the control operator B is time-independent,
except for the trivial case where B (from U to Y ) is onto. In particular, the results in [11], for
instance, by means of a spectral analysis of the problem, show that this inequality may not hold
for the heat equation with memory terms, if the support of the control is independent of time.

This is why, in practice, our sufficient conditions for memory-type controllability will require
the control operator B to depend on time. This is particularly natural when dealing with concrete
PDEs, and when the control operator B localises the action of the support in a subdomain of
Ω. Accordingly, as in the context of viscoelasticity (see [6]), considering moving controls is a
natural way of getting rid of the lack of the strong observability inequality (2.2) .

Remark 2.3. The observability inequality in (2.2) is relevant not only because it provides a
characterisation of the property of memory-type null controllability but also because it leads to
a constructive algorithm for control as explained in [32] in the PDE setting. Indeed, assuming

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



CONTROLLABILITY OF EVOLUTION EQUATIONS WITH MEMORY 7

that the observability inequality in (2.2) holds, let us consider the following quadratic functional
defined on the solutions to the adjoint system (2.1):

J(wT , zT ) =
1

2

∫ T

0
|B(s)∗w(s)|2Uds+ (w(0), y0)Y . (2.10)

In principle J is defined for (wT , zT ) ∈ Y × Y , and it is a continuous and convex functional
in that space. Let us assume that J achieves its minimum at some (w∗

T , z
∗
T ). It is then easy to

see that the control u = B∗w∗, w∗ being the solution of the adjoint system corresponding to the
minimiser, is the control we are looking for, ensuring the control condition (1.8).

It is however important to observe that the existence of the minimiser is not a trivial issue.
Indeed, the observability inequality (2.2) is very weak since it only leads to an upper bound on
the norm of w(0) in Y but not on wT , neither on zT . Thus, in order to minimize J we need to
introduce the Hilbert space closure of Y × Y with respect to the Hilbertian norm defined by

[∫ T

0
|B(t)∗w(t)|2dt

]1/2
. (2.11)

Note that whether the above semi-norm actually defines a norm is not a trivial fact.
This issue is well understood in the context of PDE (see [32]). For the wave equation without

memory terms, the corresponding adjoint system (2.1) with zT ≡ 0 being time-reversible, the
observation of the norm of w(0) in Y ensures also the observation of wT . The observability
inequality allows then to minimise the functional J (that would be now independent of zT ) with
respect to wT in Y .

In the case of the heat equation the issue is more subtle since an estimate on w(0) in Y does
not imply an estimate of wT in Y . However, by the backward uniqueness property of parabolic
equations, this allows to define the completion of Y with respect to the norm (2.11) and to ensure
the existence of the minimiser of J with respect to wT in that space.

In the present context of memory-type null controllability, despite the characterisation of the
controllability property in terms of the observability of the augmented adjoint system, the actual
implementation of this variational method to build controls needs further clarification.

Note that this kind of characterisation is of use in different contexts, and in particular in order
to build efficient numerical approximation procedures by means of gradient descent methods.

3. The finite dimensional case

In this section, we consider the following controlled ordinary differential equation with a
memory term: 




yt = Ay +

∫ t

0
M(t− s)y(s)ds+Bu, t ∈ (0, T ],

y(0) = y0.
(3.1)

Here, y = y(t) is the state variable which takes values in Rn, A ∈ Rn×n, M(·) ∈ L1(0, T ;Rn×n),
u denotes the control variable taking values in Rm (m ∈ N), and B ∈ Rn×m. In the sequel, we
denote by K⊤ the transpose of a matrix K ∈ Rn×m.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



8 F. W. CHAVES SILVA, X. ZHANG, AND E. ZUAZUA

According to the previous section, fix a memory kernel M̃(·) ∈ L1(0, T ;Rn×n), we then need
to consider the following adjoint system:





wt = −A⊤w −
∫ T

t
M(s− t)⊤w(s)ds+ M̃(T − t)⊤zT , t ∈ [0, T ),

w(T ) = wT ,
(3.2)

where wT , zT ∈ Rn.
We have the following result.

Theorem 3.1. (i) If M(·), M̃(·) ∈ L1(0, T ;Rn×n), and for any solution w to the equation (3.2),

B⊤w ≡ 0 in [0, T ] ⇒ wT = M̃(t)⊤zT = 0, a.e. t ∈ [0, T ], (3.3)

then the equation (3.1) is memory-type null controllable;

(ii) If M(·) = GM̃(·) and M̃ ′(·) = G̃M̃(·) for some (constant matrices) G, G̃ ∈ Rn×n and the
equation (3.1) is memory-type null controllable, then for any solution to the equation (3.2), it
holds that

B⊤w ≡ 0 in [0, T ] ⇒ wT = M̃(t)⊤zT = 0, t ∈ [0, T ]. (3.4)

Proof. To prove (i), by (3.3) and using the classical compactness-uniqueness argument, it follows
that solutions to (3.2) satisfy

|wT |2 +
(∫ T

0
|M̃(t)⊤zT |dt

)2

≤ C

∫ T

0
|B⊤w(t)|2dt, ∀ wT , zT ∈ Rn. (3.5)

Applying the usual energy estimate to (3.2), we have

|w(0)|2 ≤ C

[
|wT |2 +

(∫ T

0
|M̃(t)⊤zT |dt

)2
]
, ∀ wT , zT ∈ Rn. (3.6)

Combining (3.5) and (3.6), we arrive at

|w(0)|2 ≤ C

∫ T

0
|B⊤w(t)|2dt, ∀ wT , zT ∈ Rn. (3.7)

Hence, Proposition 2.1 implies that (3.1) is memory-type null controllable.

We now prove (ii). By Proposition 2.1 and the memory-type null controllability of (3.1),
we see that solutions to the equation (3.2) satisfy (3.7). Hence, w(0) = 0 as a consequence of

B⊤w ≡ 0 in [0, T ]. Write ϕ = wt. By the first equation of (3.2), noting M(·) = GM̃(·) and

M̃ ′(·) = G̃M̃(·), we have

ϕt = −A⊤ϕ+M(0)⊤w +

∫ T

t
M ′(s− t)⊤w(s)ds− M̃ ′(T − t)⊤zT

= −A⊤ϕ+M(0)⊤w +M(s− t)⊤w(s)
∣∣∣
s=T

s=t
−
∫ T

t
M(s− t)⊤ϕ(s)ds− M̃ ′(T − t)⊤zT

= −A⊤ϕ−
∫ T

t
M(s− t)⊤ϕ(s)ds+ M̃(T − t)⊤(G⊤wT − G̃⊤zT ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Hence, ϕ solves




ϕt = −A⊤ϕ−
∫ T

t
M(s− t)⊤ϕ(s)ds+ M̃(T − t)⊤(G⊤wT − G̃⊤zT ), t ∈ [0, T ),

ϕ(T ) = −A⊤wT + M̃(0)⊤zT .

(3.8)

Noticing that (3.8) is of the form (3.2), it follows from (3.7) that

|wt(0)|2 = |ϕ(0)|2 ≤ C

∫ T

0
|B⊤ϕ(s)|2ds = C

∫ T

0
|B⊤wt(s)|2ds = 0. (3.9)

Hence, wt(0) = 0. Repeating this argument, we see that dkw(t)/dtk
∣∣
t=0

= 0 for all k =
0, 1, 2, · · · . Since w(t) is analytic in time t, it follows that w(·) ≡ 0 in [0, T ]. Hence wT =

M̃(t)⊤zT = 0 for any t ∈ [0, T ]. �

As an immediate consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Assume that M(·) ≡ M ∈ Rn×n, M̃(·) ≡ M̃ ∈ Rn×n, M = GM̃ for some

G ∈ Rn×n. Then, the equation (3.1) is memory-type null controllable (with the kernel M̃) if and
only if solutions to the equation (3.2) satisfy

B⊤w ≡ 0 in [0, T ] ⇒ wT = M̃⊤zT = 0.

We now present some rank conditions for the memory-type null controllability of (3.1)

Theorem 3.3. (i) Assume that M(·), M̃(·) ∈ L1(0, T ;Rn×n)∩C∞([0, T );Rn×n), and define Ai,

Mi(·) and M̃i(·) (i = 1, 2, · · · ) inductively by
{
Ai+1 = AAi +Mi(0), Mi+1(·) =M(·)Ai +M ′

i(·), M̃i+1(·) = M̃(·)Ai + M̃ ′
i(·)

A1 = A, M1(·) =M(·), M̃1(·) = M̃(·).
(3.10)

If 2

rank

(
B A1B A2B · · · AiB Ai+1B · · ·

0 M̃1(0)B M̃2(0)B · · · M̃i(0)B M̃i+1(0)B · · ·

)
= 2n, (3.11)

then the equation (3.1) is memory-type null controllable;

(ii) Assume that both M(·) and M̃(·) are analytic in [0, T ], and define Ai as that in (3.10)

(i = 1, 2 · · · ). Assume that diM̃(t)/dti
∣∣∣
t=0

= M̃(0)Gi for some Gi ∈ Rn×n, and define

Fi = Ai +G1Ai−1 + · · ·+Gi−1A1 +Gi. (3.12)

If

rank

(
B A1B A2B · · · AiB Ai+1B · · ·
0 B F1B · · · Fi−1B FiB · · ·

)
= 2n, (3.13)

then the equation (3.1) is memory-type null controllable;

2Note that Ai+1 in (3.10) is time-independent even if Mi+1(·) depends on t. Because of this, (3.11) is an
algebraic condition.
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(iii) Assume that M(·) ≡ M ∈ Rn×n and M̃(·) ≡ M̃ ∈ Rn×n, and define Ai (i = 1, 2 · · · )
inductively by {

Ai+1 = AAi +Mi, Mi+1 =MAi

A1 = A, M1 =M.
(3.14)

If

rank

(
B A1B A2B · · · A2n+1B

0 B A1B · · · A2nB

)
= 2n, (3.15)

then the equation (3.1) is memory-type null controllable. If, additionally, det M̃ 6= 0, then the
condition (3.15) is also necessary for (3.1) to be memory-type null controllable.

Proof. (i) Suppose that for some wT , zT ∈ Rn, the corresponding solution w(·) of (3.2) satisfies
B⊤w(·) ≡ 0 in [0, T ].

It is easy to see that B⊤w(·) ≡ 0 in [0, T ] gives

B⊤wT = 0, (3.16)

and

0 = −B⊤wt = B⊤

(
A⊤

1 w +

∫ T

t
M1(s− t)⊤w(s)ds− M̃1(T − t)⊤zT

)
in [0, T ]. (3.17)

By (3.17) and using the equation (3.2), we find that

B⊤A⊤
1 wT −B⊤M̃1(0)

⊤zT = 0, (3.18)

and

wtt = −A⊤
1 wt +M1(0)

⊤w +

∫ T

t
M ′

1(s− t)⊤w(s)ds− M̃ ′
1(T − t)⊤zT

= A⊤
1 A

⊤w +

∫ T

t
A⊤

1 M(s− t)⊤w(s)ds−A⊤
1 M̃(T − t)⊤zT

+M1(0)
⊤w +

∫ T

t
M ′

1(s− t)⊤w(s)ds− M̃ ′
1(T − t)⊤zT

= A⊤
2 w +

∫ T

t
M2(s− t)⊤w(s)ds− M̃2(T − t)⊤zT in [0, T ].

(3.19)

More generally, we have

B⊤A⊤
i wT −B⊤M̃i(0)

⊤zT = 0, (3.20)

and

di+1w

dti+1
= (−1)i+1A⊤

i+1w + (−1)i+1

∫ T

t
Mi+1(s− t)⊤w(s)ds+ (−1)iM̃i+1(T − t)⊤zT in [0, T ].

(3.21)
By (3.16), (3.18) and (3.20), we end up with

(w⊤
T ,−z⊤T )

(
B A1B A2B · · · AiB Ai+1B · · ·

0 M̃1(0)B M̃2(0)B · · · M̃i(0)B M̃i+1(0)B · · ·

)
= 0. (3.22)
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By (3.11) and (3.22), we conclude that wT = zT = 0. Hence, by the first conclusion of Theorem
3.1, we conclude that (3.1) is memory-type null controllable.

(ii) As in (i), we suppose that for some wT , zT ∈ Rn, the corresponding solution w(·) of (3.2)
satisfies B⊤w(·) ≡ 0 in [0, T ]. Then, we have (3.16). By (3.10), (3.12) and diM̃(t)/dti

∣∣∣
t=0

=

M̃(0)Gi, it is easy to check that
{
M̃1(0) = M̃(0),

M̃i+1(0) = M̃(0)(Ai +G1Ai−1 + · · ·+Gi−1A1 +Gi) = M̃(0)Fi, i = 1, 2, · · · .
(3.23)

Hence, (3.18) reads

B⊤A⊤
1 wT −B⊤M̃(0)⊤zT = 0, (3.24)

and (3.20) is specialized as

B⊤A⊤
i wT −B⊤F⊤

i−1M̃(0)⊤zT = 0, i = 2, 3, · · · . (3.25)

By (3.16), (3.24) and (3.25), we obtain that

(w⊤
T ,−z⊤T M̃(0))

(
B A1B A2B · · · Ai+1B Ai+2B · · ·
0 B F1B · · · FiB Fi+1B · · ·

)
= 0. (3.26)

By (3.13) and (3.26), we see that

wT = M̃(0)⊤zT = 0. (3.27)

By (3.21), (3.23) and (3.27), it follows that

di+1w

dti+1

∣∣∣∣
t=T

= (−1)i+1A⊤
i+1wT + (−1)iF⊤

i M̃(0)⊤zT = 0. (3.28)

Since both M(·) and M̃(·) are analytic in [0, T ], so is w(·). By (3.28), we conclude that

w(·) ≡ 0 in [0, T ]. Hence, by the first equation in (3.2), M̃(t)⊤zT = 0 in [0, T ]. Now, by the first
conclusion of Theorem 3.1, the equation (3.1) is memory-type null controllable.

(iii) We can use the result in (ii). For the present case, it is easy to check that the Fi defined
by (3.12) is specialized to Fi = Ai. We claim that

rank

(
B A1B A2B · · · AiB Ai+1B · · ·
0 B A1B · · · Ai−1B AiB · · ·

)

= rank

(
B A1B A2B · · · A2n+1B

0 B A1B · · · A2nB

)
.

(3.29)

It is easy to see that (3.14) is a special case of (3.10). From (3.14), we see that
(
Ai+1

Mi+1

)
=

(
A In

M 0

)(
Ai

Mi

)
.
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Hence, (
Ai+1

Mi+1

)
=

(
A In

M 0

)i(
A

M

)
. (3.30)

Denote by λ2n+ a1λ
2n−1 + a2λ

2n−2 + · · ·+ a2n the characteristic polynomial of

(
A In

M 0

)
,

where a1, a2, · · · , a2n ∈ R. By the Hamilton-Cayley theorem, it follows that
(
A In

M 0

)2n

+ a1

(
A In

M 0

)2n−1

+ a2

(
A In

M 0

)2n−2

+ · · ·+ a2nI2n = 0. (3.31)

Combining (3.30) and (3.31), we have
(
A2n+1

M2n+1

)
=

(
A In

M 0

)2n(
A

M

)

= −a1
(
A In

M 0

)2n−1(
A

M

)
− a2

(
A In

M 0

)2n−2(
A

M

)
− · · · − a2n

(
A

M

)

= −a1
(
A2n

M2n

)
− a2

(
A2n−1

M2n−1

)
− · · · − a2n

(
A1

M1

)
.

This gives

A2n+1 = −a1A2n − a2A2n−1 − · · · − a2nA1. (3.32)

Similarly,

A2n+2 = −a1A2n+1 − a2A2n − · · · − a2nA2. (3.33)

Combining (3.32) and (3.33), we find that
(
A2n+2

A2n+1

)
= −a1

(
A2n+1

A2n

)
− a2

(
A2n

A2n−1

)
− · · · − a2n

(
A2

A1

)
. (3.34)

Inductively, from (3.34), one can show that each

(
Ak+1

Ak

)
(k ≥ 2n+ 1) can be expressed as a

linear combination of

(
A2

A1

)
,

(
A3

A2

)
, · · · ,

(
A2n+1

A2n

)
. Consequently, (3.29) is verified.

By the result in (ii) and (3.29), it is easy to see that under the condition (3.15), the equation
(3.1) is memory-type null controllable.

If, additionally, det M̃ 6= 0, then, we use the contradiction argument to show that the condition
(3.15) is necessary for (3.1) to be memory-type null controllable. Assume that the equation (3.1)
is memory-type null controllable but the condition (3.15) does not hold. Then, in view of (3.29),

rank

(
B A1B A2B · · · AiB Ai+1B · · ·
0 B A1B · · · Ai−1B AiB · · ·

)
< 2n.
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This implies that there is a (wT , zT ) ∈ R2n \ {0} satisfying

(w⊤
T ,−z⊤T M̃)

(
B A1B A2B · · · AiB Ai+1B · · ·
0 B A1B · · · Ai−1B AiB · · ·

)
= 0. (3.35)

Clearly, this (wT , zT ) satisfies



B⊤wT = 0,

B⊤A⊤
1 wT −B⊤M̃⊤zT = 0,

B⊤A⊤
i wT −B⊤A⊤

i−1M̃
⊤zT = 0, i = 2, 3, · · · .

Hence, the corresponding solution w(·) of (3.2) satisfies
dkB⊤w(t)

dtk

∣∣∣∣
t=T

= 0, k = 1, 2, · · · . (3.36)

Since B⊤w(·) is an analytic function, (3.36) implies that B⊤w(·) ≡ 0. In view of Theorem
3.1, this leads to wT = zT = 0, a contradiction. �

Remark 3.4. It is possible to consider the memory-type null controllability problem for the
following general system:




yt = A(t)y +

∫ t

0
M(t− s)y(s)ds+B(t)u, t ∈ (0, T ],

y(0) = y0,
(3.37)

where A ∈ L∞(0, T ;Rn×n) and B ∈ L∞(0, T ;Rn×m). In this case, one can work with the
extended system





yt = A(t)y +

∫ t

0
M(t− s)y(s)ds+B(t)u, t ∈ (0, T ],

zt = M̃(0)y +

∫ t

0
M̃ ′(t− s)y(s)ds, t ∈ (0, T ],

y(0) = y0, z(0) = 0,

(3.38)

and the condition (1.8) is equivalent to y(T ) = z(T ) = 0.

When both M(·) and M̃(·) are constant matrices, i.e., M(·) ≡ M ∈ Rn×n and M̃(·) ≡ M̃ ∈
Rn×n, and M = GM̃ for some G ∈ Rn×n, the system (3.38) can be rewritten as





yt = A(t)y +Gz +B(t)u, t ∈ (0, T ],

zt = M̃y, t ∈ (0, T ],

y(0) = y0, z(0) = 0,

(3.39)

and the controllability of the system (3.39) can be analyzed by means of the Silverman-Meadows
condition (See, for instance, [7, Theorem 1.18, p. 11]). However, for general kernels M(·) and

M̃(·), even if A(·) = A is a constant matrix, we do not know how to obtain a Silverman-Meadows
condition for system (3.38). In this sense, Theorem 3.3 can be viewed as a memory-type variant
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of the Silverman-Meadows condition for the case where both A(·) = A and B(·) = B are constant
matrices.

4. Memory-type null controllability of parabolic equations

In this section, we analyze the memory-type null controllability for parabolic equations.
We begin with the following heat equation with a memory term and a fixed controller:




yt −∆y + a

∫ t

0
y(s)ds = uχω(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(4.1)

where a ∈ R. Clearly, when ω = Ω, the control u can absorb the memory term “a
∫ t
0 y(s)ds”, and

therefore, one can easily obtain the null controllability of (4.1) for this special case. However,
when ω is a proper subset of Ω, by [9, 11, 13, 31], the equation (4.1) is null controllable if and only
if a = 0, i. e. in the absence of memory terms. This indicates that (4.1) is not null controllable
(needless to say memory-type null controllable) whenever a 6= 0 and ω ( Ω. Because of this,
and inspired by [6, 15, 22, 24] (and also [19, 20, 29] for the wave equations), in order to obtain
the memory-type null controllability for parabolic equations, we need to make the controller to
move so that its support covers the whole domain Ω during the control time horizon [0, T ].

Now, for a given (space-independent) memory kernel M(·) ∈ L1(0, T ), we consider the fol-
lowing heat equation with memory, and with a moving control region ω(·)(⊂ Ω):





yt −∆y +

∫ t

0
M(t− s)y(s)ds = uχω(t)(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

(4.2)

In the next subsection we make precise the assumptions that are required for the moving control
support and the consequences this leads to, that will be the key to address the control of this
memory heat equation.

4.1. Preliminaries on moving controls. In [6], devoted to the control of the system of vis-
coelasticity, the authors faced the same difficulty according to which the support of the control
needs to move in time and cover the whole domain Ω to ensure the null-contrabillity of the full
system. We recall here the main assumptions on the moving control in [6] and the results it
leads to in terms of Carleman inequalities, that will play an essential role when considering the
parabolic equation with memory.

We shall consider the control region ω(·) determined by the evolution of a given reference
subset through a flow X(x, t, t0), which is generated by some vector field f ∈ C([0, T ];W 2,∞(Rn;
Rn)), i.e. X solves 




∂X(x, t, t0)

∂t
= f(t,X(x, t, t0)), t ∈ [0, T ],

X(x, t0, t0) = x ∈ Rn.

More precisely, we need the following condition (introduced in [6]):
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Assumption 4.1. There exists a flow X(x, t, 0) generated by some f ∈ C([0, T ];W 2,∞(Rn;Rn)),
a bounded, smooth and open set ω0 ⊂ Rn, a curve Γ(·) ∈ C∞([0, T ];Rn), and two numbers t1
and t2 with 0 ≤ t1 < t2 ≤ T such that




Γ(t) ∈ X(ω0, t, 0) ∩ Ω, ∀ t ∈ [0, T ],

Ω ⊂
⋃

t∈[0,T ]

X(ω0, t, 0) ≡ {X(x, t, 0) | x ∈ ω0, t ∈ [0, T ]},

Ω \X(ω0, t, 0) is nonempty and connected for t ∈ [0, t1] ∪ [t2, T ],

Ω \X(ω0, t, 0) has two (nonempty) connected components for t ∈ (t1, t2),

∀ γ(·) ∈ C([0, T ]; Ω), ∃ t̄ ∈ [0, T ] satisfying γ(t̄ ) ∈ X(ω0, t̄, 0).

We will need to use a known weight function, stated in the following result.

Lemma 4.2. ([6]) Let Assumption 4.1 hold, and let ω and ω1 be any two nonempty open sets
in Rn such that ω0 ⊂ ω1 and ω1 ⊂ ω. Then there exist a number δ ∈ (0, T/2) and a function
ψ ∈ C∞(Q) such that




∇ψ(t, x) 6= 0, t ∈ [0, T ], x ∈ Ω \X(ω1, t, 0),

ψt(t, x) 6= 0, t ∈ [0, T ], x ∈ Ω \X(ω1, t, 0),

ψt(t, x) > 0, t ∈ [0, δ], x ∈ Ω \X(ω1, t, 0),

ψt(t, x) < 0, t ∈ [T − δ, T ], x ∈ Ω \X(ω1, t, 0),

∂ψ

∂ν
(t, x) ≤ 0, t ∈ [0, T ], x ∈ ∂Ω,

ψ(t, x) >
3

4
|ψ|L∞(Q), t ∈ [0, T ], x ∈ Ω.

As in [6], we take a function g ∈ C∞(0, T ) such that

g(t) =





1
t for 0 < t < δ/2,

strictly decreasing for 0 < t ≤ δ,

1 for δ ≤ t ≤ T
2 ,

g(T − t) for T
2 ≤ t < T

and define the following two weight functions on Q:

ϕ(t, x) = g(t)
(
e

3
2
λ|ψ|L∞(Q) − eλψ(t,x)

)
, θ(t, x) = g(t)eλψ(t,x),

where λ > 0 is a parameter. For any functions p ∈ H1,2(Q) and q ∈ L2(Q) and parameter s > 0,
we introduce the notation

IH(p) =

∫

Q

[
(sθ)−1(|∆p|2 + |pt|2) + λ2sθ|∇p|2 + λ4(sθ)3|p|2

]
e−2sϕdxdt (4.3)

and

IO(q) = λ2s

∫

Q
θ|q|2e−2sϕdxdt. (4.4)
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In the sequel, we will use C to denote a generic positive constant which may vary from line
to line (unless otherwise stated). The following two results are proved in [6].

Lemma 4.3. Let Assumption 4.1 hold and ω1 be given in Lemma 4.2. Then, there exist two
constants λ0 > 0 and s0 > 0 such that the following estimate

IH(p) ≤ C

(∫

Q
|pt +∆p|2e−2sϕdxdt+ λ4s3

∫ T

0

∫

X(ω1,t,0)
θ3|p|2e−2sϕdxdt

)
, (4.5)

holds for any λ ≥ λ0, s ≥ s0 and p ∈ C([0, T ];L2(Ω)) with pt +∆p ∈ L2(0, T ;L2(Ω)).

Lemma 4.4. Let Assumption 4.1 hold and ω be given in Lemma 4.2. Then, there exist two
numbers λ1 ≥ λ0 and s1 ≥ s0 such that the following inequality

IO(q) ≤ C

(∫

Q
|qt|2e−2sϕdxdt+ λ2s2

∫ T

0

∫

X(ω,t,0)
θ2|q|2e−2sϕdxdt

)
, (4.6)

holds for any λ ≥ λ1, s ≥ s1 and q ∈ H1(0, T ;L2(Ω)).

As a consequence of Lemma 4.4, we have the following result.

Corollary 4.5. Under the assumptions in Lemma 4.4, for any λ ≥ λ1 and s ≥ s1, m ∈ N, and
q ∈ Hm(0, T ;L2(Ω)), the following estimate holds

IO(q) +

m−1∑

k=1

IO(∂
k
t q) ≤ C

(∫

Q
|∂mt q|2e−2sϕdxdt+

∫ T

0

∫

X(ω,t,0)
(λsθ)P (m)|q|2e−2sϕdxdt

)
, (4.7)

where P (m) is polynomial in m.

Proof. Assume m ≥ 2. We consider the equation

∂mt q = f,

which can be rewritten as 



∂tq
m−1 = f,

∂tq
m−2 = qm−1,

∂tq
m−3 = qm−2,

...

∂tq
2 = q3,

∂tq
1 = q2,

∂tq = q1.

(4.8)

Fix a sequence {ωk}m−1
k=1 of nonempty open sets in Rn such that ω0 ⊂ ω1, ω1 ⊂ ω2, · · · , ωm−2 ⊂

ωm−1, ωm−1 ⊂ ω. Then, applying Lemma 4.4 to each equation of (4.8), we obtain, after
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absorbing the lower order terms, that

IO(q) +
m−1∑

k=1

IO(q
k) ≤ C

(∫

Q
|f |2e−2sϕdxdt+ λ2s2

∫ T

0

∫

X(ω,t,0)
θ2|q|2e−2sϕdxdt

+ λ2s2
m−1∑

k=1

∫ T

0

∫

X(ωm−k,t,0)
θ2|qk|2e−2sϕdxdt

)
. (4.9)

Since ω1 ⊂ ω2, we introduce a cut-off function ξ ∈ C∞
0 (ω2; [0, 1]) such that ξ = 1 in ω1 and

consider ζ(t, x) = ξ(X(x, 0, t)). Then, by (4.8), it follows

∫ T

0

∫

X(ω1,t,0)
θ2|qm−1|2e−2sϕdxdt

≤
∫

Q
θ2ζ|qm−1|2e−2sϕdxdt =

∫

Q
θ2ζqm−1∂tq

m−2e−2sϕdxdt.

(4.10)

Moreover, for any ε > 0, we have
∫

Q
θ2ζqm−1∂tq

m−2e−2sϕdxdt = −
∫

Q
qm−2∂t[θ

2ζqm−1e−2sϕ]dxdt

= −
∫

Q
qm−2∂tq

m−1θ2ζe−2sϕdxdt−
∫

Q
qm−2qm−1∂t[θ

2ζe−2sϕ]dxdt

≤ ε

[
1

λ2s2

∫

Q
|∂tqm−1|2e−2sϕdxdt+

1

s

∫

Q
θ|qm−1|2e−2sϕdxdt

]

+
Cλ2s3

ε

∫ T

0

∫

X(ω2,t,0)
θ7|qm−2|2e−2sϕdxdt,

(4.11)

where we have used the fact that |∂t(θ2ζe−2sϕ)| ≤ Csζθ4e−2sϕ.
Hence, by (4.10)–(4.11), (4.8) and (4.4), we find that

λ2s2
∫ T

0

∫

X(ω1,t,0)
θ2|qm−1|2e−2sϕdxdt

≤ ε

[∫

Q
|f |2e−2sϕdxdt+ IO(q

m−1)

]
+
Cλ4s5

ε

∫ T

0

∫

X(ω2,t,0)
θ7|qm−2|2e−2sϕdxdt.

(4.12)

Combining (4.9) and (4.12), we end up with

IO(q) +
m−1∑

k=1

IO(q
k) ≤ C

(∫

Q
|f |2e−2sϕdxdt+ λ2s2

∫ T

0

∫

X(ω,t,0)
θ2|q|2e−2sϕdxdt

+ λ4s5
m−2∑

k=1

∫ T

0

∫

X(ωm−k,t,0)
θ7|qk|2e−2sϕdxdt

)
. (4.13)
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Similar to (4.12), we have

λ4s5
∫ T

0

∫

X(ω2,t,0)
θ7|qm−2|2e−2sϕdxdt

≤ ε
[
IO(q

m−1) + IO(q
m−2)

]
+
Cλ8s11

ε

∫ T

0

∫

X(ω3,t,0)
θ17|qm−3|2e−2sϕdxdt.

(4.14)

Combining (4.13) and (4.14), we conclude that

IO(q) +
m−1∑

k=1

IO(q
k) ≤ C

(∫

Q
|f |2e−2sϕdxdt+ λ2s2

∫ T

0

∫

X(ω,t,0)
θ2|q|2e−2sϕdxdt

+ λ8s11
m−3∑

k=1

∫ T

0

∫

X(ωm−k,t,0)
θ17|qk|2e−2sϕdxdt

)
. (4.15)

Repeating the above argument, we prove (4.7). �

4.2. Observability. In order to consider the memory-type null controllability (with the mem-

ory kernel M̃(·)) of (4.2), by (2.1), we introduce the following adjoint system of (4.2)




wt = −∆w −
∫ T

t
M(s− t)w(s)ds+ M̃(T − t)zT in Q,

w = 0 on Σ,

w(T ) = wT in Ω,

(4.16)

where wT , zT ∈ L2(Ω).
In what follows, we choose

M(t) = eat
K∑

k=0

akt
k, M̃(t) = eat

K∑

k=0

bkt
k, (4.17)

where K ∈ N, and a, a0, · · · , aK , b0, · · · , bK are real constants.
We have the following observability result for (4.16).

Theorem 4.6. Let Assumption 4.1 hold, ω be any open set in Ω such that ω0 ⊂ ω, and M and

M̃ be given by (4.17). Then, solutions to (4.16) satisfy

|w(0)|2L2(Ω) ≤ C

∫ T

0

∫

ω(t)
|w|2dxdt, ∀ wT , zT ∈ L2(Ω), (4.18)

where ω(t) := X(ω, t, 0).

Proof. Without loss of generality, we assume that a = 0 in (4.17) (Otherwise we introduce a
function transform w(·) → e−a·w(·) in (4.16)). Let us write

Z = −
∫ T

t
M(s− t)w(s)ds+ M̃(T − t)zT . (4.19)
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By (4.17), we have

∂K+1
t Z =

K∑

k=0

(−1)kk!ak∂
K−k
t w. (4.20)

Hence, from (4.16), we see that




wt +∆w = Z in Q,

∂K+1
t Z =

K∑

k=0

k!ak∂
K−k
t w in Q,

w = 0 on Σ.

(4.21)

Now, we take the K + 1 time derivatives in the first and third equations in (4.21). Write

ŵ = ∂K+1
t w. This leads to the system





ŵt +∆ŵ =
K∑

k=0

k!ak∂
K−k
t w in Q,

ŵ = 0 on Σ,

∂K+1
t w = ŵ in Q.

(4.22)

We apply Lemma 4.3 and Corollary 4.5 to equations in (4.22). After absorbing the lower
order terms, we get

IH(ŵ) + IO(w) +

K∑

i=1

IO(∂
i
tw) (4.23)

≤ C

(∫ T

0

∫

X(ω′,t,0)
λ4(sθ)3|ŵ|2e−2sϕdxdt+

∫ T

0

∫

X(ω,t,0)
(λsθ)P (K+1)|w|2e−2sϕdxdt

)
,

where ω′ is a nonempty open subset in Rn such that ω′ ⊂ ω, and P (K + 1) is polynomial in K.
Using the last equation in (4.22), similar to the proof of Corollary 4.5, one can show that, for

any ε > 0, ∫ T

0

∫

X(ω′,t,0)
λ4(sθ)3|ŵ|2e−2sϕdxdt

≤ ε

[∫

Q
(sθ)−1|∂tŵ|2e−2sϕdxdt+ IO(w) +

K∑

i=1

IO(∂
i
tw)

]

+
C

ε

∫ T

0

∫

X(ω,t,0)
(λsθ)P (K+1)|w|2e−2sϕdxdt.

(4.24)

Combining (4.23) and (4.24), we conclude that

IH(ŵ) + IO(w) +

K∑

i=1

IO(∂
i
tw) ≤ C

∫ T

0

∫

ω(t)
(λsθ)P (K)|w|2e−2sϕdxdt. (4.25)

From the inequality (4.25), and applying the usual energy estimate to the equation (4.22), we
obtain easily the desired estimate (4.18). This completes the proof of Theorem 4.6. �
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By Proposition 2.1, as a direct consequence of Theorem 4.6, we have the following memory-
type null controllability result for the equation (4.2):

Theorem 4.7. Under the assumptions in Theorem 4.6, for any y0 ∈ L2(Ω), there is a control
u ∈ L2(Q) such that the corresponding solution y(·) to (4.2), with the control support ω(t) =
X(ω, t, 0) for t ∈ (0, T ), satisfies

y(T ) =

∫ T

0
M̃(T − s)y(s)ds = 0 in Ω.

Remark 4.8. To prove Theorem 4.7, we need Assumption 4.1, which seems not to be optimal.
For instance, the fourth condition in this assumption, namely, the complement of the control
region has two connected components for t ∈ (t1, t2), is necessary for the construction of the
basic weight function in Lemma 4.2, and consequently, for the obtainment of the null controlla-
bility through the use of Carleman inequalities with moving controls. However, as the result in
[22] indicates, in the 1-d case this condition is not necessary for the null controllability of the
structurally damped wave equation with moving control. For a more general discussion on the
optimality of Assumption 4.1, see [6].

Remark 4.9. The method developed in this section can also be used to treat the memory-type
null controllability problem for the following parabolic equation with memory:





yt −∆y +

∫ t

0
M(t− s)∆y(s)ds = uχω(t)(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(4.26)

where the kernels M(·) and M̃(·) are of the form (4.17). Indeed, in this case, the corresponding
adjoint system is given by





wt = −∆w −
∫ T

t
M(s− t)∆w(s)ds+ M̃(T − t)∆zT in Q,

w = 0 on Σ,

w(T ) = wT in Ω,

(4.27)

where wT ∈ L2(Ω) and zT ∈ H2(Ω) ∩H1
0 (Ω). Under the assumptions of Theorem 4.6, we can

show that the observability inequality (4.18) still holds for the equation (4.27).

Let us show this in the simple case where M(·) ≡ M̃(·) ≡ 1. First, we set

z(t) = −
∫ T

t
∆w(s)ds+∆zT ,

which leads to the system 



wt +∆w = z in Q,

zt = ∆w in Q,

w = 0 on Σ.

(4.28)
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From (4.28), we see that w satisfies

wtt +∆wt −∆w = 0.

Setting θ = wt − w, we obtain the system




θt +∆θ + θ + w = 0 in Q,

wt − w = θ in Q,

θ = 0 on Σ.

(4.29)

Arguing as before, we can easily prove a Carleman inequality for the system (4.29), with an
observation in w. From such a Carleman inequality, we immediately obtain the observability
inequality (4.18).

5. Further comments.

The techniques developed in this paper open up the possibility of addressing many other
related issues. We mention here some of them that could be of interest for future research:

• In this work, we have addressed the problem of memory-type controllability for finite-
dimensional ordinal differential and parabolic equations. But, even in these cases, we
have limited our attention to some very special situations. A systematic analysis of these
issues in a broader context is still to be done. In particular, our results for parabolic
equations concern mainly the memory kernels of polynomial type. Indeed, from the

proof of Theorem 4.6, it is easy to see that the special form of both M̃(·) and M(·) in
(4.17) plays a crucial role. It would be of interest to extend these results to the more
general cases, in the context of analytic memory kernels.

• Similar problems could be considered for hyperbolic like equations, for instance, for the
wave equation with memory terms. This is an open problem for the general case (See
[21] for some results in the respect).

• This work addresses only the memory-type null controllability problem for linear equa-
tions. The same problem would be of interest for nonlinear equations but the methods
of proof used in this paper, that allow dealing with special memory kernels, and that
require to compute successive time derivates of the system under consideration, do not
apply in the nonlinear context.

For instance, it would be quite interesting to consider the memory-type null control-
lability of the following nonlinear version of (4.2):





yt −∆y + f(y) +

∫ t

0
M(t− s)y(s)ds = uχω(t)(x) in Q,

y = 0 on Σ,

y(0) = y0 in Ω.

(5.1)

Most often, the controllability of semilinear systems is achieved by a fixed point method,
out of the controllability of the linearized one, replacing the nonlinear term with a
linear one, involving a (t, x)-dependent potential. The approach developed to derive
the observability estimate for (4.16) does not apply to this case and, consequently, the
memory-type null controllability problem for (5.1) is completely open.
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• It is also quite interesting to address the memory-type null controllability for other PDE
models. On the other hand, it is also interesting to consider the controllability problems
for PDEs involving other types of nonlocal terms. This issue seems to be widely open.
We refer to [3] for the analysis of nonlocal fractional Schrödinger and wave equations
from the controllability viewpoint.

• One can also introduce the concept of memory-type null controllability for stochastic
evolutions. However, generally speaking, one needs to consider memory terms both in
drift and diffusion components. Because of this, besides (1.8), one also requires that

∫ T

0
M̂(T − s)y(s)dW (s) = 0,

where M̂(·) is another memory kernel, and {W (t)}t∈[0,T ] is a standard Brownian motion.
Clearly, in general, the corresponding problem is quite challenging even for the stochastic
evolutions in finite dimensions.

• The memory-type controllability property considered along the paper is a particular
instance of more general controllability concepts. For instance, let Z be a metric space,
and Γ be a nonempty subset of Z. Suppose F : C([0, T ];Y )×L2(0, T ;U) → Z is a given
map. Motivated by [27, p. 14], the equation (1.6) is said to be (F,Γ)-controllable if for
any y0 ∈ Y , there is a control u(·) ∈ L2(0, T ;U) such that the corresponding solution
y(·) satisfies

F (y(·), u(·)) ∈ Γ. (5.2)

Obviously, the memory-type null controllability property of (1.6) is a special case of
(F,Γ)-controllability of the same system with

Z = Y × Y, Γ = {0} × {0} (5.3)

and

F (y(·), u(·)) =




y(T )
∫ T

0
M̃(T − s)y(s)ds


 .

Nevertheless, so far the (F,Γ)-controllability concept is too general to obtain meaningful
results.
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