Controllability of localised quantum states on infinite graphs through bilinear control fields - Source link

Kaïs Ammari, Alessandro Duca
Published on: 03 Jul 2021 - International Journal of Control (Taylor \& Francis)
Topics: Hilbert space, Quantum state and Laplace operator

Related papers:

- Vertex operators for quantum groups and application to integrable systems
- On the Birkhoff factorization problem for the Heisenberg magnet and nonlinear Schrödinger equations
- Group theoretical solutions of Schrodinger equation generated by three-dimensional symmetry algebras
- Nonlinear Schrödinger Model with Boundary, Integrability and Scattering Matrix Based on the Degenerate Affine Hecke Algebra
- Heisenberg operators, invariant domains and heisenberg equations of motion

Controllability of Localized Quantum States on Infinite Graphs through Bilinear Control Fields

Kaïs Ammari, Alessandro Duca

- To cite this version:

Kaïs Ammari, Alessandro Duca. Controllability of Localized Quantum States on Infinite Graphs through Bilinear Control Fields. International Journal of Control, Taylor \& Francis, In press, 10.1080/00207179.2019.1680868 . hal-02164419v2

HAL Id: hal-02164419 https://hal.inria.fr/hal-02164419v2

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONTROLLABILITY OF LOCALIZED QUANTUM STATES ON INFINITE GRAPHS THROUGH BILINEAR CONTROL FIELDS

KAÏS AMMARI AND ALESSANDRO DUCA

Abstract

In this work, we consider the bilinear Schrödinger equation (BSE) $i \partial_{t} \psi=$ $-\Delta \psi+u(t) B \psi$ in the Hilbert space $L^{2}(\mathscr{G}, \mathbb{C})$ with \mathscr{G} an infinite graph. The Laplacian $-\Delta$ is equipped with self-adjoint boundary conditions, B is a bounded symmetric operator and $u \in L^{2}((0, T), \mathbb{R})$ with $T>0$. We study the well-posedness of the (BSE) in suitable subspaces of $D\left(|\Delta|^{3 / 2}\right)$ preserved by the dynamics despite the dispersive behaviour of the equation. In such spaces, we study the global exact controllability and the "energetic controllability". We provide examples involving for instance infinite tadpole graphs.

Online published https://doi.org/10.1080/00207179.2019.1680868
In this version, the references of the preprint articles cited in the original work were updated.

Contents

1. Introduction 2
1.1. Novelties of the work 3
2. Infinite tadpole graph 4
2.1. Well-posedness 6
2.2. Global exact controllability 7
3. Generic graphs 9
3.1. Interpolation properties and well-posedness 10
3.2. Controllability results 14
4. Example 14
Appendix A. Analytic perturbation 17
Appendix B. Global approximate controllability 20
References 23
[^0]
1. Introduction

We study the evolution of a particle confined in an infinite graph structure and subjected to an external field that plays the role of a control.

Figure 1. An infinite graph is an one-dimensional domain composed by vertices (points) connected by edges (segments and half-lines).

Its dynamics is described by the so-called bilinear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} \psi(t)=(A+u(t) B) \psi(t), \quad t \in(0, T) \tag{1}
\end{equation*}
$$

in $L^{2}(\mathscr{G}, \mathbb{C})$, where \mathscr{G} is the graph. The operator A is a self-adjoint Laplacian, while the action of the controlling external field is given by the bounded symmetric operator B and by the function u, which accounts its intensity. We call Γ_{t}^{u} the unitary propagator generated by $A+u(t) B$ (when it is defined).

It is natural to wonder whether, given any couple of states ψ^{1} and ψ^{2}, there exists u steering the bilinear quantum system from ψ^{1} into ψ^{2}. The bilinear Schrödinger equation is said to be exactly controllable when the dynamics reach precisely the target.
We denote it approximately controllable when it is possible to approach the target as close as desired. If it is possible to control (either exactly, or approximately) more initial states at the same time with the same u, then the equation is said to be simultaneously controllable.

The controllability of finite-dimensional quantum systems (i.e. modeled by an ordinary differential equation) is currently well-established. If we consider the bilinear Schrödinger equation (1) in \mathbb{C}^{N} such that A and B are $N \times N$ Hermitian matrices and $t \mapsto u(t) \in \mathbb{R}$ is the control, then the controllability of the problem is linked to the rank of the Lie algebra spanned by A and B (we refer to [Alt02] by Altafini and [Cor07] by Coron). Nevertheless, the Lie algebra rank condition can not be used for infinite-dimensional quantum systems (see [Cor07] for further details). Thus, different techniques were developed in order to deal with this type of problems.

Regarding the linear Schrödinger equation, the controllability and observability properties are reciprocally dual (often referred to the Hilbert Uniqueness Method). One can therefore address the control problem directly or by duality with various techniques: multiplier methods ([Lio83]), microlocal analysis ([BLR92]), Carleman estimates ([MOR08]).

Even though the linear Schrödinger equation is widely studied in the literature, the bilinear Schrödinger equation in a generic Hilbert space \mathscr{H} can not be approached with the same techniques since it is not exactly controllable in \mathscr{H}. We refer to the work on bilinear systems [BMS82] by Ball, Mardsen and Slemrod, where the well-posedness and the non-controllability are provided. Despite they prove the well-posedness of the bilinear Schrödinger equation in \mathscr{H} when $u \in L^{1}((0, T), \mathbb{R})$ and $T>0$, they also show that it is not exactly controllable in \mathscr{H} for $u \in L_{\text {loc }}^{2}((0, \infty), \mathbb{R})$ (see [BMS82, Theorem 3.6]).

Because of the Ball, Mardsen and Slemrod result, many authors have considered weaker notions of controllability when $\mathscr{G}=(0,1)$. Let

$$
\left.D\left(A_{D}\right)=H^{2}((0,1), \mathbb{C}) \cap H_{0}^{1}((0,1), \mathbb{C})\right), \quad A_{D} \psi:=-\Delta \psi, \quad \forall \psi \in D\left(A_{D}\right)
$$

In [BL10], Beauchard and Laurent prove the well-posedness and the local exact controllability of the bilinear Schrödinger equation in $H_{(0)}^{s}:=D\left(A_{D}^{s / 2}\right)$ for $s=3$, when B is a multiplication operator for suitable $\mu \in H^{3}((0,1), \mathbb{R})$.
In [Mor14], Morancey proves the simultaneous local exact controllability of two or three (1) in $H_{(0)}^{3}$ for suitable operators $B=\mu \in H^{3}((0,1), \mathbb{R})$.

In [MN15], Morancey and Nersesyan extend the previous result. They achieve the simultaneous global exact controllability of finitely many (1) in $H_{(0)}^{4}$ for a wide class of multiplication operators $B=\mu$ with $\mu \in H^{4}((0,1), \mathbb{R})$.
In [Duc20], the author ensures the simultaneous global exact controllability in projection of infinite (1) in $H_{(0)}^{3}$ for bounded symmetric operators B.
The author exhibits the global exact controllability of the bilinear Schrödinger equation between eigenstates via explicit controls and explicit times in [Duc19].

The global approximate controllability of the bilinear Schrödinger equation is proved with many different techniques in literature as the following. The outcome is achieved with Lyapunov techniques by Mirrahimi in [Mir09] and by Nersesyan in [Ner10]. Adiabatic arguments are considered by Boscain, Chittaro, Gauthier, Mason, Rossi and Sigalotti in [BCMS12] and [BGRS15]. Lie-Galerking methods are used by Boscain, Boussaïd, Caponigro, Chambrion and Sigalotti in [BdCC13] and [BCS14].

Control problems involving networks have been very popular in the last decades, however the bilinear Schrödinger equation on compact graphs has been only studied in [Duc18b] and [Duc18a]. In the mentioned works, the well-posedness and the global exact controllability of the (1) are provided in some spaces $D\left(|A|^{s / 2}\right)$ with $s \geq 3$. In [Duc18a], another weaker result is introduced, the so-called energetic controllability. In particular, a bilinear quantum system is said to be energetically controllable with respect to some energy levels when there exist corresponding bounded states $\{\varphi\}_{j \in \mathbb{N}^{*}}$ such that

$$
\forall m, n \in \mathbb{N}^{*}, \exists T>0, u \in L^{2}((0, T), \mathbb{R}): \varphi_{n}=\Gamma_{T}^{u} \varphi_{m}
$$

The peculiarity of the bilinear Schrödinger equation on compact graphs is that, even though A admits purely discrete spectrum $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}^{*}}$ (see [Kuc04, Theorem 18]), the uniform gap condition $\inf _{k \in \mathbb{N}^{*}}\left|\lambda_{k+1}-\lambda_{k}\right| \geq 0$ is satisfied if and only if $\mathscr{G}=(0,1)$. This hypothesis is crucial for the classical arguments adopted in the previous works as [BL10], [Duc20], [Duc19] and [Mor14]. To this purpose, new techniques are developed in [Duc18b] and [Duc18a] in order to achieve controllability results.
1.1. Novelties of the work. Up to our knowledge, the controllability of the bilinear Schrödinger equation on infinite graphs is still an open problem. The main reason can be found on the dispersive phenomena characterizing the equation on infinite graphs (not considering the difficulties already appearing on compact graphs; see [Duc18b] and [Duc 18a]). A characteristic feature of the Schrödinger equation is the loss of localization of the wave packets during the evolution, the dispersion. This effect can be measured by L^{∞}-time decay, which implies a spreading out of the solutions, due to the time invariance of the L^{2} norm. In [AAN17], Ali Mehmeti-Ammari-Nicaise prove that the free Schrödinger group on the tadpole graph satisfies the standard $L^{1}-L^{\infty}$ dispersive estimate and that it is independent of the length of the circle (compact part of the graph) (see also [AAN15, Ali Mehmeti-Ammari-Nicaise] for the case of the star-shaped network and with potential). The proof of this result is based on an appropriate decomposition of the kernel of the resolvent. This technique gives a full characterization of the spectrum made of the point spectrum and of the absolutely continuous one, while the singular continuous spectrum is empty.

Our strategy can be resumed as follows.

- When A has discrete spectrum, we construct some eigenfunctions of A in $L^{2}(\mathscr{G}, \mathbb{C})$ denoted $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$. The flow of the Schrödinger equation $i \partial_{t} \psi=A \psi$ preserves

$$
\widetilde{\mathscr{H}}=\overline{\operatorname{span}\left\{\varphi_{k}: k \in \mathbb{N}^{*}\right\}^{L^{2}}} .
$$

- When B stabilizes the space $\widetilde{\mathscr{H}}$, the bilinear Schrödinger equation is well-posed in $\widetilde{\mathscr{H}}$ and in $D\left(|A|^{\frac{s}{2}}\right) \cap \widetilde{\mathscr{H}}$ for suitable $s>0$ when B is sufficiently regular.
- In such space, we study the global exact controllability and the energetic controllability with respect to $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ by adapting the techniques developed for the compact graphs in [Duc18b] and [Duc18a].

In the first part of the work, we consider a specific B localized on the "head" of an infinite tadpole \mathscr{G}. The chosen B is symmetric with respect to the natural symmetry axis r of \mathscr{G} and we denote $\widetilde{\mathscr{H}}$ the space of those $L^{2}(\mathscr{G}, \mathbb{C})$-functions that are antisymmetric with respect to r (see Figure 3). We prove the global exact controllability in $D\left(|A|^{\frac{3}{2}}\right) \cap \widetilde{\mathscr{H}}$.

In the second part, we generalize the results for generic graphs and we apply them for those \mathscr{G} containing a star graph (Section 4).

Figure 2. Graph described in Section 4.

In presence of suitable substructures in an infinite graph \mathscr{G}, it is possible to construct eigenfunctions of A. For instance, when \mathscr{G} contains a self-closing edge e of length 1 , the functions

$$
\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}} \quad:\left.\quad \varphi_{k}\right|_{e}=\sqrt{2} \sin (2 k \pi x),\left.\quad \varphi_{k}\right|_{\mathscr{G} \backslash\{e\}} \equiv 0, \quad \forall k \in \mathbb{N}^{*}
$$

are eigenfunctions of A. If B preserves the span of $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$, then the controllability could be achieved. The same argument is true for graphs containing more self-closing edges or other suitable substructures (see Remark 4.3 for few examples).

2. Infinite tadpole graph

Let \mathcal{T} be an infinite tadpole graph composed by two edges e_{1} and e_{2}. The self-closing edge e_{1}, the "head", is connected to e_{2} in the vertex v and it is parametrized in the clockwise direction with a coordinate going from 0 to 1 (the length of e_{1}). The "tail" e_{2} is a half-line equipped with a coordinate starting from 0 in v and going to $+\infty$.

Figure 3. The parametrization of the infinite tadpole graph and its symmetry axis r.

We consider \mathcal{T} as domain of functions $f:=\left(f^{1}, f^{2}\right): \mathcal{T} \rightarrow \mathbb{C}$, such that $f^{j}: e_{j} \rightarrow \mathbb{C}$ with $j=1,2$. Let $\mathscr{H}=L^{2}(\mathcal{T}, \mathbb{C})$ be the Hilbert space equipped with the norm $\|\cdot\|$ induced by the scalar product

$$
\langle\psi, \varphi\rangle:=\langle\psi, \varphi\rangle_{\mathscr{H}}=\int_{e_{1}} \overline{\psi^{1}}(x) \varphi^{1}(x) d x+\int_{e_{2}} \overline{\psi^{2}}(x) \varphi^{2}(x) d x, \quad \forall \psi, \varphi \in \mathscr{H} .
$$

For $s>0$, we introduce the spaces $H^{s}:=H^{s}(\mathcal{T}, \mathbb{C})=H^{s}\left(e_{1}, \mathbb{C}\right) \otimes H^{s}\left(e_{2}, \mathbb{C}\right)$ and the bilinear Schrödinger equation in \mathscr{H}
(BSE*) $\left\{\begin{array}{lr}i \partial_{t} \psi(t, x)=-\Delta \psi(t, x)+u(t) B \psi(t, x), & t \in(0, T), T>0, \\ \psi(0, x)=\psi_{0}(x), & x \in \mathcal{T} .\end{array}\right.$
The Laplacian $-\Delta$ is equipped with self-adjoint boundary conditions as v is equipped with Neumann-Kirchhoff boundary conditions, i.e.

$$
f \text { is continuous in } v, \quad \frac{\partial f^{1}}{\partial x}(0)-\frac{\partial f^{1}}{\partial x}(1)+\frac{\partial f^{2}}{\partial x}(0)=0
$$

for every $f \in D(-\Delta)$. We assume $B: \psi \rightarrow\left(\mu \psi^{1}, 0\right)$ with $\mu(x)=x(1-x)$ and $u \in L^{2}((0, T), \mathbb{R})$. We call Γ_{t}^{u} the unitary propagator generated by the operator

$$
-\Delta+u(t) B
$$

The (BSE*) corresponds to the following Cauchy systems respectively in $L^{2}\left(e_{1}, \mathbb{C}\right)$ and $L^{2}\left(e_{2}, \mathbb{C}\right)$ with $t \in(0, T)$ and $T>0$

$$
\left\{\begin{array} { l }
{ i \partial _ { t } \psi ^ { 1 } (t) = - \Delta \psi ^ { 1 } (t) + u (t) \mu \psi ^ { 1 } (t) , } \\
{ \psi ^ { 1 } (0) = \psi _ { 0 } ^ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
i \partial_{t} \psi^{2}(t)=-\Delta \psi^{2}(t) \\
\psi^{2}(0)=\psi_{0}^{2}
\end{array}\right.\right.
$$

Let $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be an orthonormal system of \mathscr{H} made by eigenfunctions of $-\Delta$ and corresponding to the eigenvalues $\mu:=\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ such that

$$
\varphi_{k}=(\sqrt{2} \sin (2 k \pi x), 0), \quad \mu_{k}=4 k^{2} \pi^{2}, \quad \forall k \in \mathbb{N}^{*}
$$

We define $\mathscr{H}(\varphi):=\overline{\operatorname{span}\left\{\varphi_{k} \mid k \in \mathbb{N}^{*}\right\}}{ }^{2}$ and, for $s>0$, the spaces

$$
\begin{equation*}
H_{\mathcal{T}}^{s}(\varphi)=\left\{\left.\psi \in \mathscr{H}(\varphi)\left|\sum_{k \in \mathbb{N}^{*}}\right| k^{s}\left\langle\varphi_{k}, \psi\right\rangle\right|^{2}<\infty\right\} \tag{2}
\end{equation*}
$$

equipped with the norms $\|\cdot\|_{(s)}=\left(\sum_{k \in \mathbb{N}^{*}}\left|k^{s}\left\langle\varphi_{k}, \cdot\right\rangle\right|^{2}\right)^{1 / 2}$.

2.1. Well-posedness.

Proposition 2.1. Let $\psi_{0} \in H_{\mathcal{T}}^{3}(\varphi)$ and $u \in L^{2}((0, T), \mathbb{R})$. There exists a unique mild solution of the $\left(B S E^{*}\right)$ in $H_{\mathcal{T}}^{3}(\varphi)$, i.e. a function ψ such that

$$
\begin{equation*}
\psi(t, x)=e^{i \Delta t} \psi_{0}(x)-i \int_{0}^{t} e^{i \Delta(t-s)} u(s) B \psi(s, x) d s \in C_{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right) \tag{3}
\end{equation*}
$$

Moreover, there exists $C=C(T, B, u)>0$ so that $\|\psi\|_{C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)} \leq C\left\|\psi_{0}\right\|_{(3)}$, while $\|\psi(t)\|=\left\|\psi_{0}\right\|$ for every $t \in[0, T]$ and $\psi_{0} \in H_{\mathcal{T}}^{3}(\varphi)$.

Proof. The statement is proved by using the techniques developed in the proof of [Duc18b, Proposition 4.1], which generalize the ones of [BL10, Lemma 1; Proposition 2].

1) Let $\psi \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$. We notice $B \psi(s) \in H^{3} \cap H_{\mathcal{T}}^{2}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$. Let $G(t)=\int_{0}^{t} e^{i \Delta(t-s)} u(s) B \psi(s, x) d s$ so that

$$
\|G(t)\|_{(3)}=\left(\sum_{k \in \mathbb{N}^{*}}\left|k^{3} \int_{0}^{t} e^{i \mu_{k} s}\left\langle\varphi_{k}, u(s) B \psi(s, \cdot)\right\rangle d s\right|^{2}\right)^{\frac{1}{2}}
$$

We prove $G(\cdot) \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$. For $f(s, \cdot):=u(s) B \psi(s, \cdot)$ such that $f=\left(f^{1}, f^{2}\right)$,

$$
\begin{aligned}
& \left\langle\varphi_{k}, f(s, \cdot)\right\rangle=\frac{1}{\mu_{k}} \int_{\mathcal{T}} \varphi_{k}(y) \partial_{x}^{2} f(s, y) d y=\frac{\sqrt{2}}{(2 k)^{2} \pi^{2}} \int_{e_{1}} \sin (2 k \pi y) \partial_{x}^{2} f^{1}(s, y) d y \\
& =-\frac{\sqrt{2}}{(2 k)^{3} \pi^{3}}\left(\partial_{x}^{2} f^{1}(s, 0)-\partial_{x}^{2} f^{1}(s, 1)-\int_{e_{1}} \cos (2 k \pi y) \partial_{x}^{3} f(s, y) d y\right)
\end{aligned}
$$

Now, there exists $C_{1}>0$ so that

$$
\begin{aligned}
& \left|k^{3} \int_{0}^{t} e^{i \mu_{k} s}\left\langle\varphi_{k}, f(s)\right\rangle d s\right| \leq C_{1}\left(\left|\int_{0}^{t} e^{i \mu_{k} s} \partial_{x}^{2} f^{1}(s, 0) d s\right|\right. \\
& \left.+\left|\int_{0}^{t} e^{i \mu_{k} s} \partial_{x}^{2} f^{1}(s, 1) d s\right|+\left|\int_{0}^{t} e^{i \mu_{k} s} \int_{e_{1}} \cos (2 k \pi y) \partial_{x}^{3} f(s, y) d y d s\right|\right)
\end{aligned}
$$

We notice $\partial_{x}^{3} f^{1}(s, \cdot) \in{\left.\overline{\operatorname{span}\{\sqrt{2}} \cos (2 k \pi x): k \in \mathbb{N}^{*}\right\}}^{L^{2}}$ for almost every $s \in(0, t)$ and $t \in(0, T)$. Thus,

$$
\begin{aligned}
& \|G(t)\|_{(3)} \leq C_{1}\left(\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 0) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}+\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 1) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}\right. \\
& \left.+\left\|\int_{0}^{t} e^{i \mu_{(\cdot)} s} \int_{e_{1}} \cos \left(\sqrt{\mu_{(\cdot)}} y\right) \partial_{x}^{3} f(s, y) d y d s\right\|_{\ell^{2}}\right) \\
& \leq C_{1}\left(\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 0) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}+\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 1) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}\right. \\
& \left.+\sqrt{t}\left(\int_{0}^{t}\left\|\int_{e_{1}} \cos \left(\sqrt{\mu_{(\cdot)}} y\right) \partial_{x}^{3} f(s, y) d y\right\|_{\ell^{2}}^{2} d s\right)^{\frac{1}{2}}\right) \\
& \leq C_{1}\left(\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 0) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}+\left\|\int_{0}^{t} \partial_{x}^{2} f^{1}(s, 1) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}+\sqrt{t}\|f\|_{L^{2}\left((0, t), H^{3}\right)}\right)
\end{aligned}
$$

From [Duc18b, Proposition B.6], there exist $C_{2}(t), C_{3}(t)>0$ uniformly bounded for t in bounded intervals such that
$\|G(t)\|_{(3)} \leq C_{2}(t)\left(\left\|\partial_{x}^{2} f^{1}(\cdot, 0)\right\|_{L^{2}((0, t), \mathbb{C})}+\left\|\partial_{x}^{2} f^{1}(\cdot, 1)\right\|_{L^{2}((0, t), \mathbb{C})}\right)+\sqrt{t}\|f\|_{L^{2}\left((0, t), H^{3}\right)}$
and $\|G(t)\|_{(3)} \leq C_{3}(t)\|f(\cdot, \cdot)\|_{L^{2}\left((0, t), H^{3}\right)}$. For every $t \in[0, T]$, the last inequality shows that $G(t) \in H_{\mathcal{T}}^{3}(\varphi)$ and the provided upper bound is uniform. The Dominated Convergence Theorem leads to $G \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$.
2) As $\operatorname{Ran}\left(\left.B\right|_{H_{\mathcal{T}}^{3}(\varphi)}\right) \subseteq H^{3} \cap H_{\mathcal{T}}^{2}(\varphi) \subseteq H^{3}$, we have $B \in L\left(H_{\mathcal{T}}^{3}(\varphi), H^{3}\right)$ thanks to the arguments of [Duc20, Remark 2.1]. Let $\psi^{0} \in H_{\mathcal{T}}^{3}(\varphi)$. We consider the map $F: \psi \in$ $C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right) \mapsto \phi \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$ with

$$
\phi(t)=F(\psi)(t)=e^{i \Delta t} \psi^{0}-\int_{0}^{t} e^{i \Delta(t-s)} u(s) B \psi(s) d s, \quad \forall t \in[0, T] .
$$

For every $\psi_{1}, \psi_{2} \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$, from the first point of the proof, there exists $C(t)>0$ uniformly bounded for t lying on bounded intervals, such that

$$
\begin{aligned}
& \left\|F\left(\psi_{1}\right)(t)-F\left(\psi_{2}\right)(t)\right\|_{(3)} \leq\left\|\int_{0}^{t} e^{i \Delta(t-s)} u(s) B\left(\psi_{1}(s)-\psi_{2}(s)\right) d s\right\|_{(3)} \\
& \leq C(t)\|u\|_{L^{2}((0, t), \mathbb{R})}\|B\|_{L\left(H_{\mathcal{T}}^{3}, H^{3}\right)}\left\|\psi_{1}-\psi_{2}\right\|_{L^{\infty}\left((0, t), H_{\mathcal{T}}^{3}(\varphi)\right)}
\end{aligned}
$$

If $\|u\|_{L^{2}((0, t), \mathbb{R})}$ is small enough, then F is a contraction and Banach Fixed Point Theorem implies that there exists $\psi \in C^{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$ such that $F(\psi)=\psi$. When $\|u\|_{L^{2}((0, t), \mathbb{R})}$ is not sufficiently small, one considers $\left\{t_{j}\right\}_{0 \leq j \leq n}$ a partition of $[0, t]$ with $n \in \mathbb{N}^{*}$. We choose a partition such that each $\|u\|_{L^{2}\left(\left[t_{j-1}, t_{j}\right], \mathbb{R}\right)}$ is so small that the map F, defined on the interval $\left[t_{j-1}, t_{j}\right]$, is a contraction and we apply the Banach Fixed Point Theorem.

In conclusion, if $u \in C^{0}((0, T), \mathbb{R})$, then $\psi \in C^{1}((0, T), \mathscr{H}(\varphi))$. By multiplying (BSE*) with $\psi(t)$, we obtain that $\partial_{t}\|\psi(t)\|^{2}=0$, which leads to $\|\psi(t)\|=\left\|\psi_{0}\right\|$ for every $t \in[0, T]$ and $\psi_{0} \in H_{\mathcal{T}}^{3}(\varphi)$. The generalization for $u \in L^{2}((0, T), \mathbb{R})$ follows from a classical density argument.

2.2. Global exact controllability.

We recall that $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ and $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ respectively are an orthonormal system of \mathscr{H} made by eigenfunctions of $-\Delta$ and the corresponding eigenvalues. They are such that

$$
\varphi_{k}=(\sqrt{2} \sin (2 k \pi x), 0), \quad \mu_{k}=4 k^{2} \pi^{2}, \quad \forall k \in \mathbb{N}^{*}
$$

Let Γ_{t}^{u} be the unitary propagator representing the dynamics of (BSE^{*}) at time $t \in[0, T]$ for $T>0$ and with control $u \in L^{2}((0, T), \mathbb{R})$.

Theorem 2.2. The (BSE*) is globally exactly controllable in $H_{\mathcal{T}}^{3}(\varphi)$, i.e. for every $\psi_{1}, \psi_{2} \in$ $H_{\mathcal{T}}^{3}(\varphi)$ such that $\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that

$$
\Gamma_{T}^{u} \psi_{1}=\psi_{2} .
$$

In addition, the $\left(B S E^{*}\right)$ is energetically controllable in $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$, i.e., for any m and $n \in \mathbb{N}^{*}$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that

$$
\Gamma_{T}^{u} \varphi_{m}=\varphi_{n}
$$

Proof. 1) Local exact controllability in $H_{\mathcal{T}}^{3}(\varphi)$. For $\epsilon, T, s>0$, let

$$
O_{\epsilon, T}^{s}:=\left\{\psi \in H_{\mathcal{T}}^{s}(\varphi) \mid\|\psi\|=1,\left\|\psi-\varphi_{1}(T)\right\|_{(s)}<\epsilon\right\}, \quad \varphi_{1}(T)=e^{-i \mu_{1} T} \varphi_{1}
$$

We prove the existence of $T, \epsilon>0$ so that, for every $\psi \in O_{\epsilon, T}^{3}$, there exists $u \in$ $L^{2}((0, T), \mathbb{R})$ such that $\psi=\Gamma_{T}^{u} \varphi_{1}$. To this purpose, we consider the map α, the sequence with elements $\alpha_{k}(u)=\left\langle\varphi_{k}(T), \Gamma_{T}^{u} \varphi_{1}\right\rangle$ for $k \in \mathbb{N}^{*}$, such that

$$
\alpha: L^{2}((0, T), \mathbb{R}) \longrightarrow Q:=\left\{\mathbf{x}:=\left\{x_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{3}(\mathbb{C}) \mid\|\mathbf{x}\|_{\ell^{2}}=1\right\}
$$

with h^{3} defined in (5). The local exact controllability of the bilinear Schrödinger equation in $O_{\epsilon, T}^{3}$ with $T>0$ is equivalent to the surjectivity of the $\operatorname{map} \Gamma_{T}^{(\cdot)} \varphi_{1}: u \in$ $L^{2}((0, T), \mathbb{R}) \longmapsto \psi \in O_{\epsilon, T}^{s} \subset H_{\mathcal{T}}^{3}(\varphi)$. As

$$
\Gamma_{t}^{u} \varphi_{1}=\sum_{k \in \mathbb{N}^{*}} \varphi_{k}(t)\left\langle\varphi_{k}(t), \Gamma_{t}^{u} \varphi_{1}\right\rangle, \quad T>0, u \in L^{2}((0, T), \mathbb{R})
$$

the controllability is equivalent to the local surjectivity of α. To this end, we use the Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240]) and we study the surjectivity of $\gamma(v):=\left(d_{u} \alpha(0)\right) \cdot v$ the Fréchet derivative of α with $\alpha(0)=\delta=\left\{\delta_{k, 1}\right\}_{k \in \mathbb{N}^{*}}$. Let $B_{j, k}:=\left\langle\varphi_{j}, B \varphi_{k}\right\rangle$ with $j, k \in \mathbb{N}^{*}$. As in the proof of [Duc19, Proposition 2.1], the map γ is the sequence of elements $\gamma_{k}(v):=-i \int_{0}^{T} v(\tau) e^{i\left(\mu_{k}-\mu_{1}\right) s} d \tau B_{k, 1}$ with $k \in \mathbb{N}^{*}$ so that

$$
\gamma: L^{2}((0, T), \mathbb{R}) \longrightarrow T_{\delta} Q=\left\{\mathbf{x}:=\left\{x_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{3}(\mathbb{C}) \mid i x_{1} \in \mathbb{R}\right\}
$$

The surjectivity of γ corresponds to the solvability of the moments problem

$$
\begin{equation*}
x_{k} / B_{k, 1}=-i \int_{0}^{T} u(\tau) e^{i\left(\mu_{k}-\mu_{1}\right) \tau} d \tau, \quad \forall\left\{x_{k}\right\}_{k \in \mathbb{N}^{*}} \in T_{\delta} Q \subset h^{3} \tag{4}
\end{equation*}
$$

By direct computation, we know $\left|\left\langle\varphi_{1}, B \varphi_{1}\right\rangle\right| \neq 0$ and, for $k \in \mathbb{N}^{*} \backslash\{1\}$, there holds

$$
\left\langle\varphi_{k}, B \varphi_{1}\right\rangle=\int_{0}^{1} x(1-x) 2 \sin (2 \pi x) \sin (2 k \pi x) d s=\frac{-2 k}{\left(k^{2}-1\right)^{2} \pi^{2}}
$$

Thus, there exists $C>0$ such that $\left|\left\langle\varphi_{k}, B \varphi_{1}\right\rangle\right| \geq C k^{-3}$ for every $k \in \mathbb{N}^{*}$. Now,

$$
\left\{x_{k}\left(\left\langle\varphi_{k}, B \varphi_{1}\right\rangle\right)^{-1}\right\}_{k \in \mathbb{N}^{*}} \in \ell^{2}, \quad i x_{1} /\left\langle\varphi_{1}, B \varphi_{1}\right\rangle \in \mathbb{R}
$$

In conclusion, the solvability of (4) is guaranteed by [Duc 18b, Proposition B.5] since

$$
\left\{x_{k} B_{k, 1}^{-1}\right\}_{k \in \mathbb{N}^{*}} \in\left\{\left\{c_{k}\right\}_{k \in \mathbb{N}^{*}} \in \ell^{2} \mid c_{1} \in \mathbb{R}\right\}, \quad \inf _{k \in \mathbb{N}^{*}}\left|\mu_{k+1}-\mu_{k}\right|=12 \pi^{2}
$$

2) Global exact controllability. Let $T, \epsilon>0$ be so that $\mathbf{1)}$ is valid. Thanks to Remark B. 3 (Appendix B), for any $\psi_{1}, \psi_{2} \in H_{\mathcal{T}}^{3}(\varphi)$ such that $\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|=p$, there exist $T_{1}, T_{2}>0, u_{1} \in L^{2}\left(\left(0, T_{1}\right), \mathbb{R}\right)$ and $u_{2} \in L^{2}\left(\left(0, T_{2}\right), \mathbb{R}\right)$ such that

$$
\left\|\Gamma_{T_{1}}^{u_{1}} p^{-1} \psi_{1}-\varphi_{1}\right\|_{(3)}<\epsilon, \quad\left\|\Gamma_{T_{2}}^{u_{2}} p^{-1} \psi_{2}-\varphi_{1}\right\|_{(3)}<\epsilon
$$

and $p^{-1} \Gamma_{T_{1}}^{u_{1}} \psi_{1}, p^{-1} \Gamma_{T_{2}}^{u_{2}} \psi_{2} \in O_{\epsilon, T}^{3}$. From 1), there exist $u_{3}, u_{4} \in L^{2}((0, T), \mathbb{R})$ such that

$$
\Gamma_{T}^{u_{3}} \Gamma_{T_{1}}^{u_{1}} \psi_{1}=\Gamma_{T}^{u_{4}} \Gamma_{T_{2}}^{u_{2}} \psi_{2}=p \varphi_{1}
$$

In conclusion, there exist $T>0$ and $\widetilde{u} \in L^{2}((0, \widetilde{T}), \mathbb{R})$ such that

$$
\Gamma_{\widetilde{T}}^{\widetilde{u}} \psi_{1}=\psi_{2} .
$$

3) Energetic controllability. The energetic controllability follows as $\varphi_{k} \in H_{\mathcal{T}}^{s}(\varphi)$ for every $s>0$ and $k \in \mathbb{N}^{*}$.

3. GENERIC GRAPHS

Let \mathscr{G} be a generic infinite graph composed by $N \in \mathbb{N}^{*} \cup\{+\infty\}$ edges $\left\{e_{j}\right\}_{j \leq N}$ of lengths $\left\{L_{j}\right\}_{j \leq N} \subset \mathbb{R}^{+} \cup\{+\infty\}$ and $M \in \mathbb{N}^{*}$ vertices $\left\{v_{j}\right\}_{j \leq M}$.
Let the bilinear Schrödinger equation in the Hilbert space $\mathscr{H}:=L^{2}(\mathscr{G}, \mathbb{C})$
(BSE)

$$
\left\{\begin{array}{lr}
i \partial_{t} \psi(t, x)=-\Delta \psi(t, x)+u(t) B \psi(t, x), & t \in(0, T), T>0 \\
\psi(0, x)=\psi_{0}(x), & x \in \mathscr{G}
\end{array}\right.
$$

The Laplacian $A=-\Delta$ is equipped with self-adjoint boundary conditions, B is a bounded symmetric operator and $u \in L^{2}((0, T), \mathbb{R})$. When the (BSE) is well-posed, we call Γ_{t}^{u} the unitary propagator generated by $A+u(t) B$. We call V_{e} and V_{i} the external and the internal vertices of \mathscr{G}, i.e.

$$
V_{e}:=\left\{v \in\left\{v_{j}\right\}_{j \leq M} \mid \exists!e \in\left\{e_{j}\right\}_{j \leq N}: v \in e\right\}, \quad V_{i}:=\left\{v_{j}\right\}_{j \leq M} \backslash V_{e}
$$

For every v vertex of \mathscr{G}, we denote $N(v):=\left\{l \in\{1, \ldots, N\} \mid v \in e_{l}\right\}$ and each e_{k} is considered to be parametrized with a coordinate going from 0 to L_{k}. We equip $\mathscr{H}=$ $L^{2}(\mathscr{G}, \mathbb{C})$ with the scalar product

$$
\langle\psi, \varphi\rangle:=\langle\psi, \varphi\rangle_{\mathscr{H}}=\sum_{j \leq N}\left\langle\psi^{j}, \varphi^{j}\right\rangle_{L^{2}\left(e_{j}, \mathbb{C}\right)}=\sum_{j \leq N} \int_{e_{j}} \overline{\psi^{j}}(x) \varphi^{j}(x) d x, \quad \forall \psi, \varphi \in \mathscr{H}
$$

We call $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ the norm in \mathscr{H} and, for $s>0$, we introduce the spaces

$$
H^{s}:=H^{s}(\mathscr{G}, \mathbb{C})=\left\{\psi=\left(\psi^{1}, \ldots, \psi^{N}\right) \in \prod_{j \leq N} H^{s}\left(e_{j}, \mathbb{C}\right) \mid \sum_{j \leq N}\left\|\psi^{j}\right\|_{H^{s}\left(e_{j}, \mathbb{C}\right)}^{2}<\infty\right\}
$$

In the (BSE), the operator A is a self-adjoint Laplacian such that the functions in $D(A)$ satisfy the following boundary conditions. Each $v \in V_{i}$ is equipped with Neumann-Kirchhoff boundary conditions when the function f is continuous in v and

$$
\sum_{e \ni v} \frac{\partial f}{\partial x_{e}}(v)=0, \quad \forall f \in D(A)
$$

The derivatives are assumed to be taken in the directions away from the vertex (outgoing directions). In addition, the external vertices V_{e} are equipped with Dirichlet or Neumann type boundary conditions. As in [Duc18b], we respectively call $(\mathcal{N K}),(\mathcal{D})$ and (\mathcal{N}) the Neumann-Kirchhoff, Dirichlet and Neumann boundary conditions characterizing $D(A)$.

In the current work, we denote a graph \mathscr{G} as quantum graph when a self-adjoint Laplacian A is defined on \mathscr{G}. We say that \mathscr{G} is equipped with one of the previous boundaries in a vertex v, when each $f \in D(A)$ satisfies it in v. By simplifying the notation of [Duc18b], we say that \mathscr{G} is equipped with (\mathcal{D}) (or (\mathcal{N})) when, for every $f \in D(A)$, the function f satisfies (\mathcal{D}) (or (\mathcal{N})) in every $v \in V_{e}$ and verifies $(\mathcal{N K})$ in every $v \in V_{i}$. In addition, the graph \mathscr{G} is equipped with $(\mathcal{D} / \mathcal{N})$ when, for every $f \in D(A)$ and $v \in V_{e}$, the function f satisfies (\mathcal{D}) or (\mathcal{N}) in v and f verifies $(\mathcal{N K})$ in every $v \in V_{i}$.

Let $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be an orthonormal system of \mathscr{H} made by eigenfunctions of A and let $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ be the corresponding eigenvalues. We define

$$
\begin{gathered}
\mathscr{G}(\varphi)=\bigcup_{k \in \mathbb{N}^{*}} \operatorname{supp}\left(\varphi_{k}\right), \quad \mathscr{H}(\varphi):=\overline{\operatorname{span}\left\{\varphi_{k} \mid k \in \mathbb{N}^{*}\right\}}{ }^{L^{2}}, \\
H_{\mathscr{G}}^{s}(\varphi)=\left\{\left.\psi \in \mathscr{H}(\varphi)\left|\sum_{k \in \mathbb{N}^{*}}\right| k^{s}\left\langle\varphi_{k}, \psi\right\rangle\right|^{2}<\infty\right\}, \quad\|\cdot\|_{(s)}^{2}=\sum_{k \in \mathbb{N}^{*}}\left|k^{s}\left\langle\varphi_{k}, \cdot\right\rangle\right|^{2}
\end{gathered}
$$

with $s>0$. Let $V_{e}(\varphi)\left(V_{i}(\varphi)\right)$ be the external (internal) vertices of $\mathscr{G}(\varphi)$.
Remark 3.1. Let $c \in \mathbb{R}^{+}$be such that $0 \notin \sigma(A+c, \mathscr{H}(\varphi))$ (the spectrum of $A+c$ in the Hilbert space $\mathscr{H}(\varphi))$. As $\mathscr{G}(\varphi)$ is a compact graph, thanks to [Duc18b, Lemma 2.3], for every $s>0$, we have $\|\cdot\|_{(s)} \asymp\left\||A+c|^{\frac{s}{2}} \cdot\right\|$ in $H_{\mathscr{G}}^{s}(\varphi)$, i.e. there exists $C_{1}, C_{2}>0$ such that

$$
C_{1}\|\psi\|_{(s)} \leq\left\||A+c|^{s / 2} \psi\right\| \leq C_{2}\|\psi\|_{(s)}, \quad \forall \psi \in H_{\mathscr{G}}^{s}(\varphi)
$$

Now, $\mathscr{G}(\varphi)$ is the quantum graph associated to a Laplacian $-\Delta$ so that

$$
D(-\Delta)=\left\{\psi \in L^{2}(\mathscr{G}(\varphi), \mathbb{C})\left|\exists \psi_{1} \in H_{\mathscr{G}}^{2}(\varphi): \psi_{1}\right|_{\mathscr{G}(\varphi)}=\psi\right\}
$$

Let $[r]$ be the entire part of $r \in \mathbb{R}$. For $s>0$, we define the spaces

$$
\begin{align*}
& H_{\mathcal{N K}}^{s}(\varphi):=\left\{\psi \in \mathscr{H}(\varphi) \cap H^{s} \mid \partial_{x}^{2 n_{2}} \psi \text { continuous in } v, \sum_{e \in N(v)} \partial_{x_{e}}^{2 n_{1}+1} \psi(v)=0,\right. \\
&\left.\forall n_{1}, n_{2} \in \mathbb{N}^{*} \cup\{0\}, n_{1}<[(s+1) / 2], n_{2}<[s / 2], \forall v \in V_{i}\right\}, \tag{5}\\
& h^{s}:=\left\{\left.\left\{a_{k}\right\}_{k \in \mathbb{N}^{*}} \subset \mathbb{C}\left|\sum_{k \in \mathbb{N}^{*}}\right| k^{s} a_{k}\right|^{2}<\infty\right\} .
\end{align*}
$$

We equip the space h^{s} for $s>0$ with the norm $\|\cdot\|_{(s)}$ such that

$$
\forall\left\{a_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{s} \quad\left\|\left\{a_{k}\right\}_{k \in \mathbb{N}^{*}}\right\|_{(s)}:=\left(\sum_{k \in \mathbb{N}^{*}}\left|k^{s} a_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

Let $\eta>0, a \geq 0$ and $I:=\left\{(j, k) \in\left(\mathbb{N}^{*}\right)^{2}: j \neq k\right\}$.
Assumptions I (φ, η). The operator $B: \mathscr{H}(\varphi) \rightarrow \mathscr{H}(\varphi)$ is bounded and symmetric in $\mathscr{H}(\varphi), \operatorname{Ran}\left(\left.B\right|_{H_{\mathscr{G}}^{2}(\varphi)}\right) \subseteq H_{\mathscr{G}}^{2}(\varphi)$.
(1) There exists $C>0$ such that $\left|\left\langle\varphi_{k}, B \varphi_{1}\right\rangle\right| \geq \frac{C}{k^{2+\eta}}$ for every $k \in \mathbb{N}^{*}$.
(2) For every $(j, k),(l, m) \in I$ such that $(j, k) \neq(l, m)$ and $\mu_{j}-\mu_{k}=\mu_{l}-\mu_{m}$, it holds $\left\langle\varphi_{j}, B \varphi_{j}\right\rangle-\left\langle\varphi_{k}, B \varphi_{k}\right\rangle-\left\langle\varphi_{l}, B \varphi_{l}\right\rangle+\left\langle\varphi_{m}, B \varphi_{m}\right\rangle \neq 0$.

Assumptions II ($\varphi, \eta, a)$. Let one of the following points be satisfied.
(1) When $\mathscr{G}(\varphi)$ is equipped with $(\mathcal{D} / \mathcal{N})$ and $a+\eta \in(0,3 / 2)$, there exists $d \in$ $[\max \{a+\eta, 1\}, 3 / 2)$ such that $\operatorname{Ran}\left(\left.B\right|_{H_{\mathscr{G}}^{2+d}(\varphi)}\right) \subseteq H^{2+d} \cap H_{\mathscr{G}}^{2}(\varphi)$.
(2) When $\mathscr{G}(\varphi)$ is equipped with (\mathcal{N}) and $a+\eta \in(0,7 / 2)$, there exist $d \in[\max \{a+$ $\eta, 2\}, 7 / 2)$ and $d_{1} \in(d, 7 / 2)$ such that $\operatorname{Ran}\left(\left.B\right|_{H_{g}^{2+d}(\varphi)}\right) \subseteq H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap$ $H_{\mathscr{G}}^{2}(\varphi)$ and $\operatorname{Ran}\left(\left.B\right|_{H_{\mathcal{N} \mathcal{K}}(\varphi)}\right) \subseteq H_{\mathcal{N} \mathcal{K}}^{d_{1}}(\varphi)$.
(3) When \mathscr{G} is equipped with (\mathcal{D}) and $a+\eta \in(0,5 / 2)$, there exists $d \in[\max \{a+$ $\eta, 1\}, 5 / 2)$ such that $\operatorname{Ran}\left(\left.B\right|_{H_{\mathscr{G}}^{2+d}(\varphi)}\right) \subseteq H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)$. If $d \geq 2$, then there exists $d_{1} \in(d, 5 / 2)$ such that there holds $\operatorname{Ran}\left(\left.B\right|_{H^{d_{1}} \cap \mathscr{H}(\varphi)}\right) \subseteq H^{d_{1}} \cap$ $\mathscr{H}(\varphi)$.

From now on, we omit the terms φ, η and a from the notations of Assumptions I and Assumptions II when their are not relevant.
3.1. Interpolation properties and well-posedness. We present interpolation properties for the spaces $H_{\mathscr{G}}^{s}(\varphi)$ with $s>0$. The result follows from [Duc18b, Proposition 4.2] as $\mathscr{G}(\varphi)$ is a compact graph.

Proposition 3.2 (Proposition 4.2; [Duc 18b]). Let $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be an orthonormal system of \mathscr{H} made by eigenfunctions of A.

1) If the quantum graph $\mathscr{G}(\varphi)$ is equipped with $(\mathcal{D} / \mathcal{N})$, then

$$
H_{\mathscr{G}}^{s_{1}+s_{2}}(\varphi)=H_{\mathscr{G}}^{s_{1}}(\varphi) \cap H^{s_{1}+s_{2}} \quad \text { for } \quad s_{1} \in \mathbb{N}, s_{2} \in[0,1 / 2) .
$$

2) If the quantum $\operatorname{graph} \mathscr{G}(\varphi)$ is equipped with (\mathcal{N}), then

$$
H_{\mathscr{G}}^{s_{1}+s_{2}}(\varphi)=H_{\mathscr{G}}^{s_{1}}(\varphi) \cap H_{\mathcal{N} \mathcal{K}}^{s_{1}+s_{2}}(\varphi) \text { for } s_{1} \in 2 \mathbb{N} s_{2} \in[0,3 / 2)
$$

3) If the quantum graph $\mathscr{G}(\varphi)$ is equipped with (\mathcal{D}), then

$$
H_{\mathscr{G}}^{s_{1}+s_{2}+1}(\varphi)=H_{\mathscr{G}}^{s_{1}+1}(\varphi) \cap H_{\mathcal{N} \mathcal{K}}^{s_{1}+s_{2}+1}(\varphi) \text { for } s_{1} \in 2 \mathbb{N}, s_{2} \in[0,3 / 2)
$$

In the following section, we ensure the well-posedness of the (BSE).
Proposition 3.3. Let the couple (A, B) satisfy Assumptions $I I(\varphi, \eta, \tilde{d})$ with $\eta>0$ and $\tilde{d} \geq 0$. Let d be introduced in Assumptions II.

1) Let $T>0$ and $f \in L^{2}\left((0, T), H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)\right.$. Let $t \mapsto G(t)=$ $\int_{0}^{t} e^{i A \tau} f(\tau) d \tau$. The map $G \in C^{0}\left([0, T], H_{G}^{2+d}(\varphi)\right)$ and there exists $C(T)>0$ uniformly bounded for T lying on intervals so that

$$
\|G\|_{L^{\infty}\left((0, T), H_{\mathscr{G}}^{2+d}(\varphi)\right)} \leq C(T)\|f\|_{L^{2}\left((0, T), H^{2+d}\right)}
$$

2) Let $\psi_{0} \in H_{\mathscr{G}}^{2+d}(\varphi)$ and $u \in L^{2}((0, T), \mathbb{R})$. There exists a unique mild solution $\psi \in$ $C_{0}\left([0, T], H_{\mathcal{T}}^{3}(\varphi)\right)$ of the $(B S E)($ relation (3)). Moreover, there exists $C=C(T, B, u)>0$ so that, for every $t \in[0, T]$ and $\psi_{0} \in H_{\mathscr{G}}^{2+d}(\varphi)$,

$$
\|\psi\|_{C^{0}\left([0, T], H_{g}^{2+d}(\varphi)\right)} \leq C\left\|\psi_{0}\right\|_{(2+d)}, \quad\|\psi(t)\|=\left\|\psi_{0}\right\|
$$

Proof. The result is obtained by generalizing the proof of Proposition 2.1.

1) (a) Assumptions II.1 . Let $f(s) \in H^{3} \cap H_{\mathscr{G}}^{2}(\varphi)$ for almost every $s \in(0, t), t \in(0, T)$ and $f(s)=\left(f^{1}(s), \ldots, f^{N}(s)\right)$. We prove that $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{3}(\varphi)\right)$. First, $G(t)=$ $\sum_{k=1}^{\infty} \varphi_{k} \int_{0}^{t} e^{i \mu_{k} s}\left\langle\varphi_{k}, f(s)\right\rangle d s$ and

$$
\begin{equation*}
\|G(t)\|_{(3)}=\left(\sum_{k \in \mathbb{N}^{*}}\left|k^{3} \int_{0}^{t} e^{i \mu_{k} s}\left\langle\varphi_{k}, f(s)\right\rangle d s\right|^{2}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

We estimate $\left\langle\varphi_{k}, f(s, \cdot)\right\rangle$ for each $k \in \mathbb{N}^{*}$ and $s \in(0, t)$. We suppose $\mu_{1} \neq 0$. Let $\partial_{x} f(s)=\left(\partial_{x} f^{1}(s), \ldots, \partial_{x} f^{N}(s)\right)$ be the derivative of $f(s)$ and $P\left(\varphi_{k}\right)=\left(P\left(\varphi_{k}^{1}\right), \ldots, P\left(\varphi_{k}^{N}\right)\right)$ be the primitive of φ_{k} so that $P\left(\varphi_{k}\right)=-\frac{1}{\mu_{k}} \partial_{x} \varphi_{k}$. We call ∂e the two points of the boundaries of an edge e. For every $v \in V_{e}(\varphi), \tilde{v} \in V_{i}(\varphi)$ and $j \in N(\tilde{v})$, there exist $a(v), a^{j}(\tilde{v}) \in\{-1,+1\}$ so that

$$
\begin{align*}
& \left\langle\varphi_{k}, f(s)\right\rangle=\frac{1}{\mu_{k}} \int_{\mathscr{G}} \varphi_{k}(y) \partial_{x}^{2} f(s, y) d y=\frac{1}{\mu_{k}^{2}} \int_{\mathscr{G}(\varphi)} \partial_{x} \varphi_{k}(y) \partial_{x}^{3} f(s, y) d y \\
& +\frac{1}{\mu_{k}^{2}} \sum_{v \in V_{i}(\varphi)} \sum_{j \in N(v)} a^{j}(v) \partial_{x} \varphi_{k}^{j}(v) \partial_{x}^{2} f^{j}(s, v)+\frac{1}{\mu_{k}^{2}} \sum_{v \in V_{e}} a(v) \partial_{x} \varphi_{k}(v) \partial_{x}^{2} f(s, v) . \tag{7}
\end{align*}
$$

We consider [Duc18b, Lemma 2.3] since $\mathscr{G}(\varphi)$ is a compact graph. There exist $C_{1}>0$ such that $\mu_{k}^{-2} \leq C_{1} k^{-4}$ for every $k \in \mathbb{N}^{*}$ and

$$
\begin{align*}
& \left|k^{3} \int_{0}^{t} e^{i \mu_{k} s}\left\langle\varphi_{k}, f(s)\right\rangle d s\right| \leq \frac{C_{1}}{k}\left(\sum_{v \in V_{e}(\varphi)}\left|\partial_{x} \varphi_{k}(v) \int_{0}^{t} e^{i \mu_{k} s} \partial_{x}^{2} f(s, v) d s\right|\right. \\
& +\sum_{v \in V_{i}(\varphi)} \sum_{j \in N(v)}\left|\partial_{x} \varphi_{k}^{j}(v) \int_{0}^{t} e^{i \mu_{k} s} \partial_{x}^{2} f^{j}(s, v) d s\right|+ \tag{8}\\
& \left.\left|\int_{0}^{t} e^{i \mu_{k} s} \int_{\mathscr{G}(\varphi)} \partial_{x} \varphi_{k}(y) \partial_{x}^{3} f(s, y) d y d s\right|\right)
\end{align*}
$$

Remark 3.4. We notice $A^{\prime} \mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}=\mu_{k} \mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}$ for every $k \in \mathbb{N}^{*}$, where $A^{\prime}=$ $-\Delta$ is a self-adjoint Laplacian with compact resolvent. Thus,

$$
\left\|\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}\right\|^{2}=\left\langle\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}, \mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}\right\rangle=\left\langle\varphi_{k}, \mu_{k}^{-1} A \varphi_{k}\right\rangle=1
$$

and, for almost every $s \in(0, t)$ and $t \in(0, T), \partial_{x}^{3} f(s, \cdot) \in \overline{\operatorname{span}\left\{\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}: k \in \mathbb{N}^{*}\right\}^{L}}$.
Let $\mathbf{a}^{\mathbf{l}}=\left\{a_{k}^{l}\right\}, \mathbf{b}^{\mathbf{1}}=\left\{b_{k}^{l}\right\} \subset \mathbb{C}$ for $l \leq N$ be so that $\varphi_{k}^{l}(x)=a_{k}^{l} \cos \left(\sqrt{\mu_{k}} x\right)+$ $b_{k}^{l} \sin \left(\sqrt{\mu_{k}} x\right)$ and $-a_{k}^{l} \sin \left(\sqrt{\mu_{k}} x\right)+b_{k}^{l} \cos \left(\sqrt{\mu_{k}} x\right)=\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}^{l}(x)$. Now,

$$
2 \geq\left\|\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}^{l}\right\|_{L^{2}\left(e^{l}\right)}^{2}+\left\|\varphi_{k}^{l}\right\|_{L^{2}\left(e^{l}\right)}^{2}=\left(\left|a_{k}^{l}\right|^{2}+\left|b_{k}^{l}\right|^{2}\right)\left|e_{l}\right|
$$

for every $k \in \mathbb{N}^{*}$ and $l \in\{1, \ldots, N\}$. Thus, $\mathbf{a}^{\mathbf{1}}, \mathbf{b}^{\mathbf{1}} \in \ell^{\infty}(\mathbb{C})$ and there exists $C_{2}>0$ such that, for every $k \in \mathbb{N}^{*}$ and $v \in V_{e} \cup V_{i}$, we have $\left|\mu_{k}^{-1 / 2} \partial_{x} \varphi_{k}(v)\right| \leq C_{2}$. Thanks to the identities (6), (8) and to Remark 3.4, there exists $C_{3}>0$ such that

$$
\begin{align*}
\|G(t)\|_{(3)} & \leq C_{3} \sum_{v \in V_{e}(\varphi) \cup V_{i}(\varphi)} \sum_{j \in N(v)}\left\|\int_{0}^{t} \partial_{x}^{2} f^{j}(s, v) e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}} \tag{9}\\
& +C_{3}\left\|\int_{0}^{t}\left\langle\mu_{(\cdot)}^{-1 / 2} \partial_{x} \varphi_{(\cdot)}(s), \partial_{x}^{3} f(s)\right\rangle e^{i \mu_{(\cdot)} s} d s\right\|_{\ell^{2}}
\end{align*}
$$

Again, as $\mathscr{G}(\varphi)$ is a compact graph, [Duc18b, Lemma 2.4] is valid for the sequence μ and, from [Duc18b, Proposition B.6], there exist $C_{4}(t), C_{5}(t)>0$ uniformly bounded for t in bounded intervals such that

$$
\begin{equation*}
\|G\|_{(3)} \leq C_{4}(t) \sum_{v \in V_{e}(\varphi) \cup V_{i}(\varphi)} \sum_{j \in N(v)}\left\|\partial_{x}^{2} f^{j}(\cdot, v)\right\|_{L^{2}((0, t), \mathbb{C})}+\sqrt{t}\|f\|_{L^{2}\left((0, t), H^{3}\right)} \tag{10}
\end{equation*}
$$

and $\|G\|_{(3)} \leq C_{5}(t)\|f(\cdot, \cdot)\|_{L^{2}\left((0, t), H^{3}\right)}$. We underline that the identity is also valid when $\mu_{1}=0$, which is proved by isolating the term with $k=1$ and by repeating the steps above. For every $t \in[0, T]$, the inequality (10) shows that $G(t) \in H_{\mathscr{G}}^{3}(\varphi)$. The provided upper bounds are uniform and the Dominated Convergence Theorem leads to $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{3}(\varphi)\right)$.
Let $f(s) \in H^{5} \cap H_{\mathscr{G}}^{4}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$. The same techniques adopted above shows that $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{5}(\varphi)\right)$.

We denote $F(f)(t):=\int_{0}^{t} e^{i A \tau} f(\tau) d \tau$ for $f \in \mathscr{H}$ and $t \in(0, T)$. Let $X(B)$ be the space of functions f so that $f(s)$ belongs to a Banach space B for almost every $s \in(0, t)$ and $t \in(0, T)$. The first part of the proof implies

$$
F: X\left(H^{3} \cap H_{\mathscr{G}}^{2}(\varphi)\right) \longrightarrow C^{0}\left([0, T], H_{\mathscr{G}}^{3}(\varphi)\right)
$$

$$
F: X\left(H^{5} \cap H_{\mathscr{G}}^{4}(\varphi)\right) \longrightarrow C^{0}\left([0, T], H_{\mathscr{G}}^{5}(\varphi)\right)
$$

Classical interpolation results (as [BL76, Theorem 4.4.1] with $n=1$) lead to $F: X\left(H^{2+d} \cap\right.$ $\left.H_{\mathscr{G}}^{1+d}(\varphi)\right) \longrightarrow C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}\right)$ with $d \in[1,3]$. Thanks to Proposition 3.2, if $d \in$ $[1,3 / 2)$ and $f(s) \in H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)=H^{2+d} \cap H_{\mathscr{G}}^{1+d}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}(\varphi)\right)$, which achieves the proof.
(b) Assumptions II.3. If $\mathscr{G}(\varphi)$ is equipped with (\mathcal{D}), then $H_{\mathscr{G}}^{2}(\varphi)=H_{\mathcal{N K}}^{2}(\varphi) \cap H_{\mathscr{G}}^{1}(\varphi)$ and $H_{\mathscr{G}}^{4}(\varphi)=H_{\mathcal{N} \mathcal{K}}^{4}(\varphi) \cap H_{\mathscr{G}}^{3}(\varphi)$ from Proposition 3.2. As above, if $f(s) \in H^{3} \cap$ $H_{\mathcal{N K}}^{2}(\varphi) \cap H_{\mathscr{G}}^{1}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{3}(\varphi)\right)$, while if $f(s) \in H^{5} \cap H_{\mathcal{N K}}^{4}(\varphi) \cap H_{\mathscr{G}}^{3}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{5}(\varphi)\right)$. From the interpolation techniques, if $d \in[1,5 / 2)$ and $f(s) \in H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap H_{\mathscr{G}}^{d}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}(\varphi)\right)$.
(c) Assumptions II. 2 . Let $f(s) \in H^{4} \cap H_{\mathcal{N K}}^{3}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$ and $\mathscr{G}(\varphi)$ be equipped with (\mathcal{N}). In this framework, the last line of (7) is zero. Indeed, $\partial_{x}^{2} f(s) \in C^{0}$ as $f(s) \in H_{\mathcal{N K}}^{3}(\varphi)$ and, for $v \in V_{e}(\varphi)$, we have $\partial_{x} \varphi_{k}(v)=0$ thanks to the (\mathcal{N}) boundary conditions (the terms $a^{j}(v)$ assume different signs according to the orientation of the edges connected in v). After, for every $v \in V_{i}(\varphi)$, thanks to the $(\mathcal{N K})$ in $v \in V_{i}(\varphi)$, we have $\sum_{j \in N(v)} a^{j}(v) \partial_{x} \varphi_{k}^{j}(v)=0$. From (7), we obtain

$$
\begin{aligned}
\left\langle\varphi_{k}, f(s)\right\rangle & =-\frac{1}{\mu_{k}^{2}} \int_{\mathscr{G}(\varphi)} \partial_{x} \varphi_{k}(y) \partial_{x}^{3} f(s, y) d y=-\frac{1}{\mu_{k}^{2}} \sum_{v \in V_{e}(\varphi)} a(v) \varphi_{k}(v) \partial_{x}^{3} f(s, v) \\
& -\frac{1}{\mu_{k}^{2}} \sum_{v \in V_{i}(\varphi)} \sum_{j \in N(v)} a^{j}(v) \varphi_{k}^{j}(v) \partial_{x}^{3} f^{j}(s, v)+\frac{1}{\mu_{k}^{2}} \int_{\mathscr{G}(\varphi)} \varphi_{k}(y) \partial_{x}^{4} f(s, y) d y .
\end{aligned}
$$

Now, $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ is a Hilbert basis of $\mathscr{H}(\varphi)$ and we proceed as in (8), (9) and (10). From [Duc18b, Proposition B.6], there exists $C_{6}(t)>0$ uniformly bounded such that

$$
\|G\|_{(4)} \leq C_{1}(t)\|f(\cdot, \cdot)\|_{L^{2}\left((0, t), H^{4}\right)}
$$

If $f(s) \in H^{4} \cap H_{\mathcal{N K}}^{3}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in$ $C^{0}\left([0, T], H_{\mathscr{G}}^{4}(\varphi)\right)$. Equivalently when $f(s) \in H^{6} \cap H_{\mathcal{N} \mathcal{K}}^{5}(\varphi) \cap H_{\mathscr{G}}^{4}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, we have $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{6}(\varphi)\right)$. As above, from Proposition 3.2, if $d \in[2,7 / 2)$ and $f(s) \in H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)$ for almost every $s \in(0, t)$ and $t \in(0, T)$, then $G \in C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}(\varphi)\right)$.
2) As $\operatorname{Ran}\left(\left.B\right|_{H_{\mathscr{G}}^{2+d}(\varphi)}\right) \subseteq H^{2+d} \cap H_{\mathcal{N K}}^{1+d}(\varphi) H_{\mathscr{G}}^{2}(\varphi) \subseteq H^{2+d}$, we have
$B \in L\left(H_{\mathscr{G}}^{2+d}(\varphi), H^{2+d}\right)$ thanks to the arguments of [Duc20, Remark 2.1]. Let $F: \psi \in$ $C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}(\varphi)\right) \mapsto \phi \in C^{0}\left([0, T], H_{\mathscr{G}}^{2+d}(\varphi)\right)$ with

$$
\phi(t)=F(\psi)(t)=e^{-i A t}-\int_{0}^{t} e^{-i A(t-s)} u(s) B \psi(s) d s, \quad \forall t \in[0, T]
$$

For every $\psi_{1}, \psi_{2} \in H_{\mathscr{G}}^{2+d}(\varphi)$, from the first point of the proof, there exists $C(t)>0$ uniformly bounded for t lying on bounded intervals, such that

$$
\begin{aligned}
& \left\|F\left(\psi_{1}\right)(t)-F\left(\psi_{2}\right)(t)\right\|_{(2+d)} \leq\left\|\int_{0}^{t} e^{-i A(t-s)} u(s) B\left(\psi_{1}(s)-\psi_{2}(s)\right) d s\right\|_{(2+d)} \\
& \leq C(t)\|u\|_{L^{2}((0, t), \mathbb{R})}\|B\|_{L\left(H_{\mathscr{G}}^{2+d}, H^{2+d}\right)}\left\|\psi_{1}-\psi_{2}\right\|_{L^{\infty}\left((0, t), H_{\mathscr{G}}^{2+d}(\varphi)\right)}
\end{aligned}
$$

The proof is achieved as in the point 2. of the proof of Proposition 2.1.

3.2. Controllability results.

Definition 3.5. Let $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be an orthonormal system of \mathscr{H} made by eigenfunctions of A and let $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ be the corresponding eigenvalues.
(1) The (BSE) is said to be globally exactly controllable in $H_{\mathscr{G}}^{s}(\varphi)$ with $s \geq 3$ if, for every $\psi_{1}, \psi_{2} \in H_{\mathscr{G}}^{s}(\varphi)$ such that $\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|$, there exist $T>0$ and $u \in$ $L^{2}((0, T), \mathbb{R})$ such that $\Gamma_{T}^{u} \psi_{1}=\psi_{2}$.
(2) The (BSE) is energetically controllable in $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ if, for every $m, n \in \mathbb{N}^{*}$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ so that $\Gamma_{T}^{u} \varphi_{m}=\varphi_{n}$.

Before proceeding with the main result of the work, we notice the following fact. As $\mathscr{G}(\varphi)$ is a compact graph, [Duc18b, Lemma 2.4] implies

$$
\begin{equation*}
\exists \mathcal{M} \in \mathbb{N}^{*}, \delta>0: \inf _{k \in \mathbb{N}^{*}}\left|\mu_{k+\mathcal{M}}-\mu_{k}\right|>\delta \mathcal{M} \tag{11}
\end{equation*}
$$

(the parameter \mathcal{M} is equal to 1 when $\mathscr{G}(\varphi)$ corresponds to an interval).
Theorem 3.6. Let \mathscr{G} be a quantum graph. We assume that

$$
\begin{equation*}
\forall \epsilon>0, \exists C>0, \tilde{d} \geq 1 \quad:\left|\mu_{k+1}-\mu_{k}\right| \geq C k^{-\tilde{d}-1}, \forall k \in \mathbb{N}^{*} \tag{12}
\end{equation*}
$$

If (A, B) satisfies Assumptions $I(\varphi, \eta)$ and Assumptions $I I(\varphi, \eta, \tilde{d}-1)$ for $\eta>0$, then the (BSE) is globally exactly controllable in $H_{\mathscr{G}}^{s}(\varphi)$ for $s=2+d$ with d from Assumptions I and energetically controllable in $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$.

Proof. 1) Local exact controllability. The proof follows as the point 1. of the proof of Theorem 2.2 by considering $s=2+d$ instead of $s=3$. The peculiarity of this case is that α assumes value in $Q:=\left\{\mathbf{x}:=\left\{x_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{s}(\mathbb{C}) \mid\|\mathbf{x}\|_{\ell^{2}}=1\right\}$, while γ in

$$
T_{\delta} Q=\left\{\mathbf{x}:=\left\{x_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{s}(\mathbb{C}) \mid i x_{1} \in \mathbb{R}\right\}
$$

In the current framework, the moments problem (4) is defined for sequences in $T_{\delta} Q \subset h^{s}$ and $\left\{x_{k}\left(\left\langle\varphi_{k}, B \varphi_{1}\right\rangle\right)^{-1}\right\}_{k \in \mathbb{N}^{*}} \in h^{d-\eta} \subseteq h^{\tilde{d}-1}$ thanks to the point 1. of Assumptions I. The solvability of (4) is guaranteed by [Duc18b, Proposition B.5] thanks to (12) since

$$
\left\{x_{k} B_{k, 1}^{-1}\right\}_{k \in \mathbb{N}^{*}} \in\left\{\left\{c_{k}\right\}_{k \in \mathbb{N}^{*}} \in h^{\tilde{d}-1}(\mathbb{C}) \mid c_{1} \in \mathbb{R}\right\}
$$

2) Global exact controllability and energetic controllability. The proof is achieved as in the points 2. and 3. of the proof of Theorem 2.2 by using Proposition $B .2$ (Appendix B).

4. EXAMPLE

Let a star graph be a graph composed by $N \in \mathbb{N}^{*}$ edges $\left\{e_{j}\right\}_{j \leq N}$. Each edge e_{j} is parametrized with a coordinate going from 0 to the length of the edge L_{j}. We set the 0 in the external vertex belonging to e_{j}.

Figure 4. Parametrization of a star graph with $N=4$ edges.

Let \mathscr{G} be a graph containing as sub-graph a star graph equipped with (\mathcal{D}) and composed by the edges $\left\{e_{j}\right\}_{j \leq 4}$. Let the couple of edges $\left\{e_{1}, e_{2}\right\}$ be of length $L_{1}=\sqrt[3]{2}$, while $\left\{e_{3}, e_{4}\right\}$ be long $L_{2}=\sqrt[3]{5}$.

Figure 5. Example of star graph described in Section 4.

Corollary 4.1. Let B be such that $B \psi=\left((B \psi)^{1}, \ldots,(B \psi)^{N}\right)$ for every $\psi \in \mathscr{H}$ and

$$
\begin{aligned}
& (B \psi)^{1}=-(B \psi)^{2}=\sqrt[3]{2} \cos \left(\frac{\pi x}{3 \sqrt[3]{2}}\right) \psi^{1}(x)+\sqrt[3]{2} \cos \left(\frac{\pi x}{3 \sqrt[3]{2}}\right) \psi^{3}\left(\frac{\sqrt[3]{5}}{\sqrt[3]{2}} x\right), \\
& (B \psi)^{3}=-(B \psi)^{4}=\sqrt[3]{5} \cos \left(\frac{\pi x}{3 \sqrt[3]{5}}\right) \psi^{3}(x)+\sqrt[3]{5} \cos \left(\frac{\pi x}{3 \sqrt[3]{5}}\right) \psi^{1}\left(\frac{\sqrt[3]{2}}{\sqrt[3]{5}} x\right),
\end{aligned}
$$

while $(B \psi)^{l} \equiv 0$ for every $5 \leq l \leq N$. There exists $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ an orthonormal system composed by eigenfunctions of A such that the (BSE) is globally exactly controllable in $H_{\mathscr{G}}^{3+\epsilon}(\varphi)$ with $\epsilon>0$ and energetically controllable in $\left\{\frac{k^{2} \pi^{2}}{L_{l}}\right\}_{\substack{k, l \in \mathbb{N}^{*} \\ l \leq 2}}$.

Proof. Let $\varphi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be some eigenfunctions of A and $\mu=\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ the corresponding eigenvalues. We define φ and μ so that, for every $k \in \mathbb{N}^{*}$, there exist $m(k) \in \mathbb{N}^{*}$ and $l(k) \in\{1,2\}$ so that $\varphi_{k}^{n} \equiv 0$ for $n \neq 2 l(k), 2 l(k)-1$ and

$$
\mu_{k}=m(k)^{2} \pi^{2} L_{l(k)}^{-2}, \quad \varphi_{k}^{2 l(k)-1}(x)=-\varphi_{k}^{2 l(k)}(x)=\sqrt{L_{l(k)}^{-1}} \sin \left(\sqrt{\mu_{k}} x\right)
$$

Spectral behaviour. We notice that $\{1, \sqrt[3]{2}, \sqrt[3]{5}\}$ are irrationally independent and $\frac{\sqrt[3]{2^{2}}}{\sqrt[3]{5^{2}}}$ is an algebraic irrational number. As in the proof of [Duc18b, Lemma 2.6], thanks [Duc18b, Proposition A.1], for every $\epsilon>0$, there exist $C>0$ and $\tilde{d} \geq 0$ such that

$$
\left|\mu_{k+1}-\mu_{k}\right| \geq C k^{-\tilde{d}}, \quad \forall k \in \mathbb{N}^{*}
$$

Assumptions I. 1 For $[r]$ the entire part of $r \in \mathbb{R}^{+}$, we have

$$
\begin{aligned}
& \left|\left\langle\varphi_{1}, B \varphi_{k}\right\rangle\right|=\left|\sum_{l=1}^{4} \int_{0}^{L_{[(l+1) / 2]}} \varphi_{k}^{l}(x) \sum_{n=1}^{2} L_{l} \cos \left(\frac{\pi x}{3 L_{[(l+1) / 2]}}\right) \varphi_{1}^{2 n-1}\left(\frac{L_{n}}{L_{[(l+1) / 2]}} x\right) d x\right| \\
& =\left|\int_{0}^{L_{l(k)}} 2 L_{l(k)} \cos \left(\frac{\pi x}{3 L_{l(k)}}\right) \sin \left(\frac{m(1) \pi x}{L_{l(k)}}\right) \sin \left(\frac{m(k) \pi x}{L_{l(k)}}\right) d x\right| \\
& \geq 2^{5 / 3}\left|\int_{0}^{1} \cos \left(\frac{\pi x}{3}\right) \sin (\pi x) \sin (m(k) \pi x) d x\right|=\frac{3^{3} 2^{5 / 3} \sqrt{3} m(k)}{\left(64-180 m(k)^{2}+81 m(k)^{4}\right) \pi} .
\end{aligned}
$$

The last relation implies the existence of $C_{1}>0$ such that $\left\langle\varphi_{1}, B \varphi_{k}\right\rangle \geq C / k^{3}$ for every $k \in \mathbb{N}^{*}$ and the point 1. of Assumptions $\mathrm{I}(\varphi, 1)$ is verified.

Assumptions I. 2 We prove that the point 2. of Assumptions I $\varphi, 1$) is satisfied. By direct computation, it follows

$$
B_{k, k}:=\left\langle\varphi_{k}, B \varphi_{k}\right\rangle=\frac{3^{3} L_{l(k)}^{2} \sqrt{3} m(k)^{2}}{\left(-1+36 m(k)^{2}\right) \pi}, \quad \forall k \in \mathbb{N}^{*}
$$

For $(k, j),(m, n) \in I:=\left\{(k, j) \in\left(\mathbb{N}^{*}\right)^{2}: j \neq k\right\}$ so that $(k, j) \neq(m, n)$ and $\mu_{k}-\mu_{j}-$ $\mu_{m}+\mu_{n}=0$, we have

$$
L_{l(k)}=L_{l(j)}=L_{l(m)}=L_{l(n)} .
$$

Indeed, the identity $L_{l(k)} \neq L_{l(j)}$ is never verified as it would imply

$$
m(k)^{2}=\frac{L_{l(k)}^{2} m(j)^{2}}{L_{l(j)}^{2}}+\frac{L_{l(k)}^{2} m(m)^{2}}{L_{l(m)}^{2}}-\frac{L_{l(k)}^{2} m(n)^{2}}{L_{l(n)}^{2}} \notin \mathbb{N}^{*}
$$

Remark 4.2. We notice that, for every $a, b, c, d \in \mathbb{R}$ different numbers, such that $a+b=$ $c+d$, it holds $1 / a+1 / b \neq 1 / c+1 / d$. Indeed, we have
$1 / a+1 / b=(b+a) /(a b)=(d+c) /(a b) \neq(d+c) /(c d)=1 / c+1 / d, \quad$ if $\quad c d \neq a b$.
Now, if $c d=a b$, then $a^{2}-c^{2}=d^{2}-b^{2}$ and $a+c=d+b$ since $a-c=d-b$, which is impossible as $2 a \neq 2 d$.

In conclusion, $\mu_{k}-\mu_{j}-\mu_{m}+\mu_{n}=0$ implies $k^{2}-j^{2}-m^{2}+n^{2}=0$ and then

$$
k^{-2}-j^{-2}-m^{-2}+n^{-2} \neq 0
$$

Thus, $B_{k, k}-B_{j, j}-B_{m, m}+B_{n, n} \neq 0$ and Assumptions $\mathrm{I}(\varphi, 1)$ is valid.
Assumptions II. 1 and conclusion. Theorem 3.6 leads to the statement since the point 2. of Assumptions $\mathrm{I}(\varphi, 1)$ is satisfied thanks to Proposition 3.2. Indeed, B stabilizes H^{m} for every $m>0$ and $H_{\mathscr{G}}^{2}(\varphi)$ since, for every $\psi \in H_{\mathscr{G}}^{2}(\varphi)$,

$$
\begin{gathered}
(B \psi)^{1}\left(L_{1}\right)=(B \psi)^{2}\left(L_{1}\right)=(B \psi)^{3}\left(L_{2}\right)=(B \psi)^{4}\left(L_{2}\right)=0 \\
\partial_{x}(B \psi)^{1}\left(L_{1}\right)+\partial_{x}(B \psi)^{2}\left(L_{1}\right)+\partial_{x}(B \psi)^{3}\left(L_{2}\right)+\partial_{x}(B \psi)^{4}\left(L_{2}\right)=0
\end{gathered}
$$

Remark 4.3. As in [Duc18a, Section 6], the techniques just developed are valid when \mathscr{G} contains suitable sub-graphs denoted "uniform chains". A uniform chain is a sequence of edges of equal length L connecting $M \in \mathbb{N}^{*}$ vertices $\left\{v_{j}\right\}_{j \leq M}$ such that $v_{2}, \ldots, v_{M-1} \in$ V_{i}. We also assume that either $v_{1}, v_{M} \in V_{e}$ are equipped with $(\mathcal{D}), v_{1}=v_{M} \in V_{i}$, or $M=3$ and $v_{1}, v_{3} \in V_{e}$ are equipped with (\mathcal{N}).

Figure 6. Uniform chains contained in a generic graph.
Let \mathscr{G} contain $\widetilde{N} \in \mathbb{N}^{*}$ uniform chains $\left\{\widetilde{\mathscr{G}}_{j}\right\}_{j \leq \widetilde{N}}$, composed by edges of lengths $\left\{L_{j}\right\}_{j \leq \widetilde{N}} \in$ $\mathcal{A} \mathcal{L}(\widetilde{N})$. Let $I_{1} \subseteq\{1, \ldots, \widetilde{N}\}$ and $I_{2} \subseteq\{1, \ldots, \tilde{N}\} \backslash I_{1}$ be respectively the sets of indices j such that the external vertices of $\widetilde{\mathscr{G}}_{j}$ are equipped with (\mathcal{N}) and (\mathcal{D}), while
$I_{3}:=\{1, \ldots, \tilde{N}\} \backslash\left(I_{1} \cup I_{2}\right)$. If $\left\{L_{j}\right\}_{j \leq \tilde{N}} \in \mathcal{A} \mathcal{L}(\tilde{N})$, then the energetic controllability can be guaranteed in

$$
\left\{\frac{(2 k-1)^{2} \pi^{2}}{4 L_{j}^{2}}\right\}_{\substack{k, j \in \mathbb{N}^{*} \\ j \in I_{1}}} \cup\left\{\frac{k^{2} \pi^{2}}{L_{j}^{2}}\right\}_{\substack{k, j \in \mathbb{N}^{*} \\ j \in I_{2}}} \cup\left\{\frac{(2 k-1)^{2} \pi^{2}}{L_{j}^{2}}\right\}_{\substack{k, j \in \mathbb{N}^{*} \\ j \in I_{3}}}
$$

Acknowledgments. The second author has been financially supported by the ISDEEC project by ANR-16-CE40-0013.

Appendix A. Analytic perturbation

We adapt the perturbation theory from [Duc20, Appendix B] as done in [Duc18b, Appendix C]. Indeed, [Duc20] considers the (BSE) on $\mathscr{G}=(0,1)$ and A is the Dirichlet Laplacian. As in [Duc20, Appendix B], we decompose
$u(t)=u_{0}+u_{1}(t), \quad A+u(t) B=A+u_{0} B+u_{1}(t) B, \quad u_{0} \in \mathbb{R}, u_{1} \in L^{2}((0, T), \mathbb{R})$.
We consider $u_{0} B$ as a perturbative term of A. Let us consider the (BSE) with \mathscr{G} a quantum graph. Let $\varphi:=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$ be an orthonormal system of \mathscr{H} made by eigenfunctions of A and let $\left\{\mu_{k}\right\}_{k \in \mathbb{N}^{*}}$ be the relative eigenvalues. Let $\left\{\varphi_{j}^{u_{0}}\right\}_{j \in \mathbb{N}^{*}}$ be an orthonormal system in $\mathscr{H}(\varphi):=\overline{\operatorname{span}\left\{\varphi_{k} \mid k \in \mathbb{N}^{*}\right\}}{ }^{L^{2}}$ made by eigenfunctions of $A+u_{0} B$ and $\left\{\mu_{k}^{u_{0}}\right\}_{k \in \mathbb{N}^{*}}$ be the relative eigenvalues.

Remark. From (11), we notice that there does not exist \mathcal{M} consecutive $k \in \mathbb{N}^{*}$ such that $\left|\mu_{k+1}-\mu_{k}\right|<\delta$. This fact leads to a partition of \mathbb{N}^{*} in subsets that we call E_{m} with $m \in \mathbb{N}^{*}$. By definition, for every $m \in \mathbb{N}^{*}$, if $k, n \in E_{m}$, then $\left|\mu_{k}-\mu_{n}\right|<\delta(\mathcal{M}-1)$, while if $k \in E_{m}$ and $n \notin E_{m}$, then $\left|\mu_{k}-\mu_{n}\right| \geq \delta$. This also defines an equivalence relation in \mathbb{N}^{*} such that $k, n \in \mathbb{N}^{*}$ are equivalent if and only if there exists $m \in \mathbb{N}^{*}$ such that $k, n \in E_{m}$. The sets $\left\{E_{m}\right\}_{m \in \mathbb{N}^{*}}$ are the corresponding equivalence classes and $i(m):=\left|E_{m}\right| \leq \mathcal{M}-1$.

We denote as $n: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ the application mapping $j \in \mathbb{N}^{*}$ in $n(j) \in \mathbb{N}^{*}$ such that $j \in E_{n(j)}$, while $s: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ is such that $\mu_{s(j)}=\inf \left\{\mu_{k}>\mu_{j} \mid k \notin E_{n(j)}\right\}$. Moreover, $p: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ is so that $\mu_{p(j)}=\sup \left\{k \in E_{n(j)}\right\}$. Let $j \in \mathbb{N}^{*}$ and P_{j}^{\perp} be the projector onto $\overline{\operatorname{span}\left\{\varphi_{m}: m \notin E_{n(j)}\right\}}{ }^{L^{2}}$. We define $\Pi: \mathscr{H} \rightarrow \mathscr{H}(\varphi)$ the orthogonal projector.
Lemma A.1. Let the hypotheses of Theorem 3.6 be satisfied. There exists a neighborhood $U(0)$ of $u=0$ in \mathbb{R} such that there exists $c>0$ so that

$$
\left\|\left\|\left(\left(A+u_{0} B-\nu_{k}\right) \Pi\right)^{-1}\right\|\right\| \leq c, \quad \nu_{k}:=\left(\mu_{s(k)}-\mu_{p(k)}\right) / 2, \quad \forall u_{0} \in U(0), \forall k \in \mathbb{N}^{*}
$$

Moreover, for $u_{0} \in U(0)$, the operator $\left(A+u_{0} P_{k}^{\perp} B-\mu_{k}^{u_{0}}\right) \Pi$ is invertible with bounded inverse from $H_{\mathscr{G}}^{2}(\varphi) \cap \operatorname{Ran}\left(P_{k}^{\perp}\right)$ to $\operatorname{Ran}\left(P_{k}^{\perp}\right)$ for every $k \in \mathbb{N}^{*}$.

Proof. The claim follows as [Duc20, Lemma B. 2 \& Lemma B.3].
Lemma A.2. Let the hypotheses of Theorem 3.6 be satisfied. There exists a neighborhood $U(0)$ of $u=0$ in \mathbb{R} such that, up to a countable subset Q and for every $(k, j),(m, n) \in$ $I:=\left\{(j, k) \in\left(\mathbb{N}^{*}\right)^{2}: j \neq k\right\},(k, j) \neq(m, n)$,

$$
\mu_{k}^{u_{0}}-\mu_{j}^{u_{0}}-\mu_{m}^{u_{0}}+\mu_{n}^{u_{0}} \neq 0, \quad\left\langle\varphi_{k}^{u_{0}}, B \varphi_{j}^{u_{0}}\right\rangle \neq 0, \quad \forall u_{0} \in U(0) \backslash Q
$$

Proof. For $k \in \mathbb{N}^{*}$, we decompose $\varphi_{k}^{u_{0}}=a_{k} \varphi_{k}+\sum_{j \in E_{n(k)} \backslash\{k\}} \beta_{j}^{k} \varphi_{j}+\eta_{k}$, where $a_{k} \in \mathbb{C},\left\{\beta_{j}^{k}\right\}_{j \in \mathbb{N}^{*}} \subset \mathbb{C}$ and η_{k} is orthogonal to φ_{l} for every $l \in E_{n(k)}$. Moreover, $\lim _{\left|u_{0}\right| \rightarrow 0}\left|a_{k}\right|=1$ and $\lim _{\left|u_{0}\right| \rightarrow 0}\left|\beta_{j}^{k}\right|=0$ for every $j, k \in \mathbb{N}^{*}$ and

$$
\begin{aligned}
& \mu_{k}^{u_{0}} \varphi_{k}^{u_{0}}=\left(A+u_{0} B\right)\left(a_{k} \varphi_{k}+\sum_{j \in E_{n(k)} \backslash\{k\}} \beta_{j}^{k} \varphi_{j}+\eta_{k}\right)=A a_{k} \varphi_{k} \\
& +\sum_{j \in E_{n(k) \backslash\{k\}}} \beta_{j}^{k} A \varphi_{j}+A \eta_{k}+u_{0} B a_{k} \varphi_{k}+u_{0} \sum_{j \in E_{n(k) \backslash\{k\}}} \beta_{j}^{k} B \varphi_{j}+u_{0} B \eta_{k}
\end{aligned}
$$

Now, Lemma $A .1$ leads to the existence of $C_{1}>0$ such that, for every $k \in \mathbb{N}^{*}$,

$$
\begin{equation*}
\eta_{k}=-\left(\left(A+u_{0} P_{k}^{\perp} B-\mu_{k}^{u_{0}}\right) P_{k}^{\perp}\right)^{-1} u_{0}\left(a_{k} P_{k}^{\perp} B \varphi_{k}+\sum_{j \in E_{n(k)} \backslash\{k\}} \beta_{j}^{k} P_{k}^{\perp} B \varphi_{j}\right) \tag{13}
\end{equation*}
$$

and $\left\|\eta_{k}\right\| \leq C_{1}\left|u_{0}\right|$. Let $B_{l, m}=\left\langle\varphi_{l}, B \varphi_{m}\right.$ for every $l, m \in \mathbb{N}^{*}$. We compute $\mu_{k}^{u_{0}}=$ $\left\langle\varphi_{k}^{u_{0}},\left(A+u_{0} B\right) \varphi_{k}^{u_{0}}\right\rangle$ and

$$
\begin{aligned}
& \mu_{k}^{u_{0}}=\left|a_{k}\right|^{2} \mu_{k}+\left\langle\eta_{k},\left(A+u_{0} B\right) \eta_{k}\right\rangle+\sum_{j \in E_{n(k)} \backslash\{k\}} \mu_{j}\left|\beta_{j}^{k}\right|^{2}+u_{0} \sum_{j \in E_{n(k)} \backslash\{k\}}\left|\beta_{j}^{k}\right|^{2} B_{k, k} \\
& +u_{0} \sum_{j, l \in E_{n(k)} \backslash\{k\}} \overline{\beta_{j}^{k}} \beta_{l}^{k} B_{j, l}+u_{0} \sum_{j \in E_{n(k) \backslash\{k\}}}\left|\beta_{j}^{k}\right|^{2}\left(B_{j, j}-B_{k, k}\right)+u_{0}\left|a_{k}\right|^{2} B_{k, k} \\
& +2 u_{0} \Re\left(\sum_{j \in E_{n(k)} \backslash\{k\}} \beta_{j}^{k}\left\langle\eta_{k}, B \varphi_{j}\right\rangle+\overline{a_{k}} \sum_{j \in E_{n(k)} \backslash\{k\}} \beta_{j}^{k} B_{k, j}+\overline{a_{k}}\left\langle\varphi_{k}, B \eta_{k}\right\rangle\right) .
\end{aligned}
$$

Thanks to (13), it follows $\left\langle\eta_{k},\left(A+u_{0} B\right) \eta_{k}\right\rangle=\mu_{k}^{u_{0}}\left\|\eta_{k}\right\|^{2}+O\left(u_{0}^{2}\right)$. Let

$$
\widehat{a}_{k}:=\frac{\left|a_{k}\right|^{2}+\sum_{j \in E_{n(k)} \backslash\{k\}}\left|\beta_{j}^{k}\right|^{2}}{1-\left\|\eta_{k}\right\|^{2}}, \quad \widetilde{a}_{k}:=\frac{\left|a_{k}\right|^{2}+\sum_{j \in E_{n(k)} \backslash\{k\}} \mu_{j} / \mu_{k}\left|\beta_{j}^{k}\right|^{2}}{1-\left\|\eta_{k}\right\|^{2}}
$$

As $\left\|\eta_{k}\right\| \leq C_{1}\left|u_{0}\right|$, it follows $\lim _{\left|u_{0}\right| \rightarrow 0}\left|\widehat{a}_{k}\right|=1$ uniformly in k. Thanks to

$$
\lim _{k \rightarrow+\infty} \inf _{j \in E_{n(k) \backslash\{k\}}} \mu_{j} \mu_{k}^{-1}=\lim _{k \rightarrow+\infty} \sup _{j \in E_{n(k)} \backslash\{k\}} \mu_{j} \mu_{k}^{-1}=1
$$

we have $\lim _{\left|u_{0}\right| \rightarrow 0}\left|\widetilde{a}_{k}\right|=1$ uniformly in k. Now, there exists f_{k} such that

$$
\begin{equation*}
\mu_{k}^{u_{0}}=\widetilde{a}_{k} \mu_{k}+u_{0} \widehat{a}_{k} B_{k, k}+u_{0} f_{k}^{\prime}+O\left(u_{0}^{2}\right) \tag{14}
\end{equation*}
$$

where $\lim _{\left|u_{0}\right| \rightarrow 0} f_{k}=0$ uniformly in k. When $\mu_{k}=0$, the identity (14) is still valid. For each $(k, j),(m, n) \in I$ such that $(k, j) \neq(m, n)$, there exists $f_{k, j, m, n}$ such that $\lim _{\left|u_{0}\right| \rightarrow 0} f_{k, j, m, n}=0$ uniformly in k, j, m, n and

$$
\begin{aligned}
& \mu_{k}^{u_{0}}-\mu_{j}^{u_{0}}-\mu_{m}^{u_{0}}+\mu_{n}^{u_{0}}=\widetilde{a}_{k} \mu_{k}-\widetilde{a}_{j} \mu_{j}-\widetilde{a}_{m} \mu_{m}+\widetilde{a}_{n} \mu_{n}+u_{0} f_{k, j, m, n} \\
& +u_{0}\left(\widehat{a}_{k} B_{k, k}-\widehat{a}_{j} B_{j, j}-\widehat{a}_{m} B_{m, m}+\widehat{a}_{n} B_{n, n}\right)=\widetilde{a}_{k} \mu_{k}-\widetilde{a}_{j} \mu_{j} \\
& -\widetilde{a}_{m} \mu_{m}+\widetilde{a}_{n} \mu_{n}+u_{0}\left(\widehat{a}_{k} B_{k, k}-\widehat{a}_{j} B_{j, j}-\widehat{a}_{m} B_{m, m}+\widehat{a}_{n} B_{n, n}\right)+O\left(u_{0}^{2}\right)
\end{aligned}
$$

Thanks to the third point of Assumptions I, there exists $U(0)$ a neighborhood of $u=0$ in \mathbb{R} small enough such that, for each $u \in U(0)$, we have that every function $\mu_{k}^{u_{0}}-\mu_{j}^{u_{0}}-\mu_{m}^{u_{0}}+$ $\mu_{n}^{u_{0}}$ is not constant and analytic. Now, $V_{(k, j, m, n)}=\left\{u \in D \mid \mu_{k}^{u}-\mu_{j}^{u}-\mu_{m}^{u}+\mu_{n}^{u}=0\right\}$ is a discrete subset of D and

$$
V=\left\{u \in D \mid \exists((k, j),(m, n)) \in I^{2}: \mu_{k}^{u}-\mu_{j}^{u}-\mu_{m}^{u}+\mu_{n}^{u}=0\right\}
$$

is a countable subset of D, which achieves the proof of the first claim. The second relation is proved with the same technique. For $j, k \in \mathbb{N}^{*}$, the analytic function $u_{0} \rightarrow$ $\left\langle\varphi_{j}^{u_{0}}, B \varphi_{k}^{u_{0}}\right\rangle$ is not constantly zero since $\left\langle\varphi_{j}, B \varphi_{k}\right\rangle \neq 0$ and $W=\{u \in D \mid \exists(k, j) \in I$: $\left.\left\langle\varphi_{j}^{u_{0}}, B \varphi_{k}^{u_{0}}\right\rangle=0\right\}$ is a countable subset of D.

Lemma A.3. Let the hypotheses of Theorem 3.6 be satisfied. Let $T>0$ and $s=d+2$ for d introduced in Assumptions II. Let $c \in \mathbb{R}$ such that $0 \notin \sigma\left(A+u_{0} B+c, \mathscr{H}(\varphi)\right)$ (the spectrum of $A+u_{0} B+c$ in the Hilbert space $\left.\mathscr{H}(\varphi)\right)$ and such that $A+u_{0} B+c$ is a positive operator. There exists a neighborhood $U(0)$ of 0 in \mathbb{R} such that,

$$
\begin{equation*}
\forall u_{0} \in U(0), \quad\left\|\left|A+u_{0} B+c\right|^{\frac{s}{2}} \psi\right\| \asymp\|\psi\|_{(s)}, \quad \forall \psi \in H_{\mathscr{G}}^{s}(\varphi) . \tag{15}
\end{equation*}
$$

Proof. Let D be the neighborhood provided by Lemma A.2. The proof follows the one of [Duc20, Lemma B.6]. We suppose that $0 \notin \sigma\left(A+u_{0} B, \mathscr{H}(\varphi)\right)$ and $A+u_{0} B$ is positive such that we can assume $c=0$. If $c \neq 0$, then the proof follows from the same arguments.

Thanks to Remark 3.1, we have $\|\cdot\|_{(s)} \asymp\left\||A|^{\frac{s}{2}} \cdot\right\|$ in $H_{\mathscr{G}}^{s}(\varphi)$. We prove the existence of $C_{1}, C_{2}, C_{3}>0$ such that, for every $\psi \in H_{\mathscr{G}}^{s}(\varphi)$,

$$
\begin{equation*}
\left\|\left(A+u_{0} B\right)^{\frac{s}{2}} \psi\right\| \leq C_{1}\left\|A^{\frac{s}{2}} \psi\right\|+C_{2}\|\psi\| \leq C_{3}\left\|A^{\frac{s}{2}} \psi\right\| \tag{16}
\end{equation*}
$$

Let $s / 2=k \in \mathbb{N}^{*}$. The relation (16) is proved by iterative argument. First, it is true for $k=1$ when $B \in L\left(H_{\mathscr{G}}^{2}(\varphi)\right)$ as there exists $C>0$ such that $\|A B \psi\| \leq$ $C\|B\|_{L\left(H_{\mathscr{G}}^{2}(\varphi)\right)}\|A \psi\|$ for $\psi \in H_{\mathscr{G}}^{2}(\varphi)$. When $k=2$ if $B \in L(\mathscr{H}(\varphi))$ and $B \in$ $L\left(H_{\mathscr{G}}^{2 k_{1}}(\varphi)\right)$ for $1 \leq k_{1} \leq 2$, then there exist $C_{4}, C_{5}>0$ such that, for $\psi \in H_{\mathscr{G}}^{4}(\varphi)$,

$$
\begin{aligned}
& \left\|\left(A+u_{0} B\right)^{2} \psi\right\| \leq\left\|A^{2} \psi\right\|+\left|u_{0}\right|^{2}\left\|B^{2} \psi\right\|+\left|u_{0}\right|\|A B \psi\|+\left|u_{0}\right|\|B A \psi\| \\
& \leq\left\|A^{2} \psi\right\|+\left|u_{0}\right|^{2}\| \| B^{2}\left\|_{L(\mathscr{H}(\varphi))}\right\| \psi\left\|+C_{4}\left|u_{0}\right|\right\| B\left\|_{L\left(H_{\mathscr{G}}^{2 k_{1}}(\varphi)\right)}\right\| \psi \|_{\left(k_{1}\right)}+ \\
& \left|u_{0}\right|\|B\|_{L(\mathscr{H}(\varphi))}\|\psi\|_{(2)}
\end{aligned}
$$

and $\left\|\left(A+u_{0} B\right)^{2} \psi\right\| \leq C_{5}\left\|A^{2} \psi\right\|$. Second, we assume (16) be valid for $k \in \mathbb{N}^{*}$ when $B \in L\left(H_{\mathscr{G}}^{2 k_{j}}(\varphi)\right)$ for $k-j-1 \leq k_{j} \leq k-j$ and for every $j \in\{0, \ldots, k-1\}$. We prove (16) for $k+1$ when $B \in L\left(H_{\mathscr{G}}^{2 k_{j}}(\varphi)\right)$ for $k-j \leq k_{j} \leq k-j+1$ and for every $j \in\{0, \ldots, k\}$. Now, there exists $C>0$ such that $\left\|A^{k} B \psi\right\| \leq C\|B\|\left\|_{\left.L\left(H_{\mathscr{G}} 2^{2}(\varphi)\right)\right)}\right\| A^{k_{0}} \psi \|$ for every $\psi \in H_{\mathscr{G}}^{2(k+1)}(\varphi)$. Thus, as $\left\|\left(A+u_{0} B\right)^{k+1} \psi\right\|=\left\|\left(A+u_{0} B\right)^{k}\left(A+u_{0} B\right) \psi\right\|$, there exist $C_{6}, C_{7}>0$ such that, for every $\psi \in H_{\mathscr{G}}^{2(k+1)}(\varphi)$,
$\left\|\left(A+u_{0} B\right)^{k+1} \psi\right\| \leq C_{6}\left(\left\|A^{k+1} \psi\right\|+\left|u_{0}\right|\left\|A^{k} B \psi\right\|+\|A \psi\|+\left|u_{0}\right|\|B \psi\|\right) \leq C_{7}\left\|A^{k+1} \psi\right\|$.
As in the proof of [Duc20, Lemma B.6], the relation (16) is valid for any $s \leq k$ when $B \in L\left(H_{\mathscr{G}}^{2 k_{0}}(\varphi)\right)$ for $k-1 \leq k_{0} \leq s$ and $B \in L\left(H_{\mathscr{G}}^{2 k_{j}}(\varphi)\right)$ for $k-j-1 \leq k_{j} \leq k-j$ and for every $j \in\{1, \ldots, k-1\}$. The opposite inequality follows by decomposing

$$
A=\left(A+u_{0} B\right)-u_{0} B .
$$

In our framework, Assumptions II ensure that the parameter s is equal to $2+d$. If the second point of Assumptions II is verified for $s \in[4,11 / 2)$, then B preserves $H_{\mathcal{N} \mathcal{K}}^{d_{1}}(\varphi)$ and $H_{\mathscr{G}}^{2}(\varphi)$ for d_{1} introduced in Assumptions II. Proposition 3.2 claims that B : $H_{\mathscr{G}}^{d_{1}}(\varphi) \rightarrow H_{\mathscr{G}}^{d_{1}}(\varphi)$ and the argument of [Duc20, Remark 2.1] implies $B \in L\left(H_{\mathscr{G}}^{d_{1}}(\varphi)\right)$ (also $B \in L(\mathscr{H}(\varphi))$ as $B: \mathscr{H}(\varphi) \longrightarrow \mathscr{H}(\varphi))$. Thus, the identity (15) is valid because $B \in L(\mathscr{H}(\varphi)), B \in L\left(H_{\mathscr{G}}^{2}(\varphi)\right)$ and $B \in L\left(H_{\mathscr{G}}^{d_{1}}(\varphi)\right)$ with $d_{1}>s-2$. If the third point of Assumptions II is verified for $s \in[4,9 / 2)$, then $B \in L(\mathscr{H}(\varphi)), B \in L\left(H_{\mathscr{G}}^{2}(\varphi)\right)$ and
$B \in L\left(H_{\mathscr{G}}^{d_{1}}(\varphi)\right)$ for $d_{1} \in[d, 9,2)$. The claim follows thanks to Proposition 3.2 since B stabilizes $H^{d_{1}}$ and $H_{\mathscr{G}}^{2}(\varphi)$ for d_{1} introduced in Assumptions II. If $s<4$ instead, then the conditions $B \in L(\mathscr{H}(\varphi))$ and $B \in L\left(H_{\mathscr{G}}^{2}(\varphi)\right)$ are sufficient to guarantee (15).

Remark A.4. The techniques developed in the proof of Lemma A.3 imply the following claim. Let the hypotheses of Theorem 3.6 be satisfied and $0<s_{1}<d+2$ for d introduced in Assumptions II. Let $c \in \mathbb{R}$ such that $0 \notin \sigma\left(A+u_{0} B+c, \mathscr{H}(\varphi)\right)$ and such that $A+u_{0} B+c$ is a positive operator. We have There exists a neighborhood $U(0) \subset \mathbb{R}$ of 0 so that, for any $u_{0} \in U(0)$, we have

$$
\left\|\left|A+u_{0} B+c\right|^{\frac{s_{1}}{2}} \psi\right\| \asymp\|\psi\|_{\left(s_{1}\right)}, \quad \forall \psi \in H_{\mathscr{G}}^{s_{1}}(\varphi) .
$$

Appendix B. Global approximate controllability

Let us consider the notation introduced in Section 3.
Definition B.1. The (BSE) is said to be globally approximately controllable in $H_{\mathscr{G}}^{s}(\varphi)$ with $s>0$ when, for every $\psi \in H_{\mathscr{G}}^{s}(\varphi), \widehat{\Gamma} \in U(\mathscr{H}(\varphi))$ such that $\widehat{\Gamma} \psi \in H_{\mathscr{G}}^{s}(\varphi)$ and $\epsilon>0$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that $\left\|\widehat{\Gamma} \psi-\Gamma_{T}^{u} \psi\right\|_{(s)}<\epsilon$.

Proposition B.2. Let (A, B) satisfy Assumptions $I(\varphi, \eta)$ and Assumptions $I I(\varphi, \eta, \tilde{d})$ for $\eta>0$ and $\widetilde{d} \geq 0$. The $(B S E)$ is globally approximately controllable in $H_{\mathscr{G}}^{s}(\varphi)$ for $s=2+d$ with d from Assumptions $\operatorname{II}(\varphi, \eta, \tilde{d})$.

Proof. In the point 1) of the proof, we suppose that (A, B) admits a non-degenerate chain of connectedness (see [BdCC13, Definition 3]). We treat the general case in the point 2).

1) (a) Preliminaries. Let π_{m} be the orthogonal projector $\pi_{m}: \mathscr{H} \rightarrow \mathscr{H}_{m}:=\operatorname{span} \overline{\left\{\varphi_{j}: j \leq m\right\}}{ }^{L^{2}}$ for every $m \in \mathbb{N}^{*}$. Up to reordering of $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}^{*}}$, the couples $\left(\pi_{m} A \pi_{m}, \pi_{m} B \pi_{m}\right)$ for $m \in$ \mathbb{N}^{*} admit non-degenerate chains of connectedness in \mathscr{H}_{m}. Let $\|\cdot\|_{B V(T)}=\|\cdot\|_{B V((0, T), \mathbb{R})}$ and $\|\|\cdot\|\|_{(s)}:=\| \| \cdot\| \|_{L\left(H_{g}^{s}(\varphi), H_{\mathscr{G}}^{s}(\varphi)\right)}$ for $s>0$.

Claim. $\forall \widehat{\Gamma} \in U(\mathscr{H}(\varphi)), \forall \epsilon>0, \exists N_{1} \in \mathbb{N}^{*}, \widetilde{\Gamma}_{N_{1}} \in U(\mathscr{H}(\varphi)): \pi_{N_{1}} \widetilde{\Gamma}_{N_{1}} \pi_{N_{1}} \in$ $S U\left(\mathscr{H}_{N_{1}}\right)$,

$$
\begin{equation*}
\left\|\widetilde{\Gamma}_{N_{1}} \varphi_{1}-\widehat{\Gamma} \varphi_{1}\right\|<\epsilon \tag{17}
\end{equation*}
$$

Let $N_{1} \in \mathbb{N}^{*}$ and $\widetilde{\varphi}_{1}:=\left\|\pi_{N_{1}} \widehat{\Gamma} \varphi_{1}\right\|^{-1} \pi_{N_{1}} \widehat{\Gamma} \varphi_{1}$. We define $\left(\widetilde{\varphi}_{j}\right)_{2 \leq j \leq N_{1}}$ such that $\left(\widetilde{\varphi}_{j}\right)_{j \leq N_{1}}$ is an orthonormal basis of $\mathscr{H}_{N_{1}}$. The operator $\widetilde{\Gamma}_{N_{1}}$ is the unitary map such that $\widetilde{\Gamma}_{N_{1}} \varphi_{j}=$ $\widetilde{\varphi}_{j}$ for every $j \leq N_{1}$. The provided definition implies $\lim _{N_{1} \rightarrow \infty}\left\|\widetilde{\Gamma}_{N_{1}} \varphi_{1}-\widehat{\Gamma} \varphi_{1}\right\|=0$. Thus, for every $\epsilon>0$, there exists $N_{1} \in \mathbb{N}^{*}$ large enough satisfying the claim.

1) (b) Finite dimensional controllability. Let $T_{a d}$ be the set of $(j, k) \in\left\{1, \ldots, N_{1}\right\}^{2}$ such that $B_{j, k}:=\left\langle\varphi_{j}, B \varphi_{k}\right\rangle \neq 0$ and $\left|\lambda_{j}-\lambda_{k}\right|=\left|\lambda_{m}-\lambda_{l}\right|$ with $m, l \in \mathbb{N}^{*}$ implies $\{j, k\}=$ $\{m, l\}$ for $B_{m, l}=0$. For every $(j, k) \in\left\{1, \ldots, N_{1}\right\}^{2}$ and $\theta \in[0,2 \pi)$, we define $E_{j, k}^{\theta}$ the $N_{1} \times N_{1}$ matrix with elements $\left(E_{j, k}^{\theta}\right)_{l, m}=0,\left(E_{j, k}^{\theta}\right)_{j, k}=e^{i \theta}$ and $\left(E_{j, k}^{\theta}\right)_{k, j}=-e^{-i \theta}$ for $(l, m) \in\left\{1, \ldots, N_{1}\right\}^{2} \backslash\{(j, k),(k, j)\}$. Let $E_{a d}=\left\{E_{j, k}^{\theta}:(j, k) \in T_{a d}, \theta \in[0,2 \pi)\right\}$ and $\operatorname{Lie}\left(E_{a d}\right)$. Fixed v a piecewise constant control taking value in $E_{a d}$ and $\tau>0$, we introduce the control system on $S U\left(\mathscr{H}_{N_{1}}\right)$

$$
\left\{\begin{array}{l}
\dot{x}(t)=x(t) v(t), \quad t \in(0, \tau) \tag{18}\\
x(0)=I d_{S U\left(\mathscr{H}_{N_{1}}\right)}
\end{array}\right.
$$

Claim. (18) is controllable, i.e. for $R \in S U\left(\mathscr{H}_{N_{1}}\right)$, there exist $p \in \mathbb{N}^{*}, M_{1}, \ldots, M_{p} \in$ $E_{a d}, \alpha_{1}, \ldots, \alpha_{p} \in \mathbb{R}^{+}$such that $R=e^{\alpha_{1} M_{1}} \circ \ldots \circ e^{\alpha_{p} M_{p}}$.
For every $(j, k) \in\left\{1, \ldots, N_{1}\right\}^{2}$, we define the $N_{1} \times N_{1}$ matrices $R_{j, k}, C_{j, k}$ and D_{j} as follow. For $(l, m) \in\left\{1, \ldots, N_{1}\right\}^{2} \backslash\{(j, k),(k, j)\}$, we have $\left(R_{j, k}\right)_{l, m}=0$ and $\left(R_{j, k}\right)_{j, k}=$ $-\left(R_{j, k}\right)_{k, j}=1$, while $\left(C_{j, k}\right)_{l, m}=0$ and $\left(C_{j, k}\right)_{j, k}=\left(C_{j, k}\right)_{k, j}=i$. Moreover, for $(l, m) \in\left\{1, \ldots, N_{1}\right\}^{2} \backslash\{(1,1),(j, j)\},\left(D_{j}\right)_{l, m}=0$ and $\left(D_{j}\right)_{1,1}=-\left(D_{j}\right)_{j, j}=i$.We consider the basis of $s u\left(\mathscr{H}_{N_{1}}\right)$

$$
\mathbf{e}:=\left\{R_{j, k}\right\}_{j, k \leq N_{1}} \cup\left\{C_{j, k}\right\}_{j, k \leq N_{1}} \cup\left\{D_{j}\right\}_{j \leq N_{1}}
$$

Thanks to [Sac00, Theorem 6.1], the controllability of (18) is equivalent to prove that $\operatorname{Lie}\left(E_{a d}\right) \supseteq \operatorname{su}\left(\mathscr{H}_{N_{1}}\right)$ for $s u\left(\mathscr{H}_{N_{1}}\right)$ the Lie algebra of $S U\left(\mathscr{H}_{N_{1}}\right)$. The claim si valid as it is possible to obtain the matrices $R_{j, k}, C_{j, k}$ and D_{j} for every $j, k \leq N_{1}$ by iterated Lie brackets of elements in $E_{a d}$.

1) (c) Finite dimensional estimates. Let $\widehat{\Gamma} \in U(\mathscr{H}(\varphi))$ and $\widetilde{\Gamma}_{N_{1}} \in U(\mathscr{H}(\varphi))$ be defined in 1) (a). Thanks to the previous claim and to the fact that $\pi_{N_{1}} \widetilde{\Gamma}_{N_{1}} \pi_{N_{1}} \in S U\left(\mathscr{H}_{N_{1}}\right)$, there exist $p \in \mathbb{N}^{*}, M_{1}, \ldots, M_{p} \in E_{a d}$ and $\alpha_{1}, \ldots, \alpha_{p} \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\pi_{N_{1}} \widetilde{\Gamma}_{N_{1}} \pi_{N_{1}}=e^{\alpha_{1} M_{1}} \circ \ldots \circ e^{\alpha_{p} M_{p}} \tag{19}
\end{equation*}
$$

Claim. For every $l \leq p$ and $e^{\alpha_{l} M_{l}}$ from (19), there exist $\left\{T_{n}^{l}\right\}_{l \in \mathbb{N}^{*}} \subset \mathbb{R}^{+}$and $\left\{u_{n}^{l}\right\}_{n \in \mathbb{N}^{*}}$ such that $u_{n}^{l} \in L^{2}\left(\left(0, T_{n}^{l}\right), \mathbb{R}\right)$ for every $n \in \mathbb{N}^{*}$ and

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|\Gamma_{T_{n}^{l}}^{u_{n}^{l}} \varphi_{k}-e^{\alpha_{l} M_{l}} \varphi_{k}\right\|=0, \quad \forall k \leq N_{1} \tag{20}\\
\sup _{n \in \mathbb{N}^{*}}\left\|u_{n}^{l}\right\|_{B V\left(T_{n}^{l}\right)}<\infty, \quad \sup _{n \in \mathbb{N}^{*}}\left\|u_{n}^{l}\right\|_{L^{\infty}\left(\left(0, T_{n}^{l}\right), \mathbb{R}\right)}<\infty \\
\sup _{n \in \mathbb{N}^{*}} T_{n}^{l}\left\|u_{n}^{l}\right\|_{L^{\infty}\left(\left(0, T_{n}^{l}\right), \mathbb{R}\right)}<\infty \tag{21}
\end{gather*}
$$

We consider the results developed in [Cha12, Section 3.1 \& Section 3.2] by Chambrion and leading to [Cha12, Proposition 6] since (A, B) admits a non-degenerate chain of connectedness ([BdCC13, Definition 3]). Each $e^{\alpha_{l} M_{l}}$ is a rotation in a two dimensional space for every $l \in\{1, \ldots, p\}$ and this work allows to explicit $\left\{T_{n}^{l}\right\}_{n \in \mathbb{N}^{*}} \subset \mathbb{R}^{+}$and $\left\{u_{n}^{l}\right\}_{n \in \mathbb{N}^{*}}$ satisfying (21) such that $u_{n}^{l} \in L^{2}\left(\left(0, T_{n}^{l}\right), \mathbb{R}\right)$ for every $n \in \mathbb{N}^{*}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\pi_{N_{1}} \Gamma_{T_{n}^{l}}^{u_{n}^{l}} \varphi_{k}-e^{\alpha_{l} M_{l}} \varphi_{k}\right\|=0, \quad \forall k \leq N_{1} \tag{22}
\end{equation*}
$$

As $e^{\alpha_{l} M_{l}} \in S U\left(\mathscr{H}_{N_{1}}\right)$, we have $\lim _{n \rightarrow \infty}\left\|\Gamma_{T_{n}^{l}}^{u_{n}^{l}} \varphi_{k}-e^{\alpha_{l} M_{l}} \varphi_{k}\right\|=0$ for $k \leq N_{1}$.

1) (d) Infinite dimensional estimates.

Claim. Let $\widehat{\Gamma} \in U(\mathscr{H}(\varphi))$. There exist $K_{1}, K_{2}, K_{3}>0$ such that for every $\epsilon>0$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that $\left\|\Gamma_{T}^{u} \varphi_{1}-\widehat{\Gamma} \varphi_{1}\right\| \leq \epsilon$ and

$$
\begin{equation*}
\|u\|_{B V(T)} \leq K_{1}, \quad\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{2}, \quad T\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{3} \tag{23}
\end{equation*}
$$

Let 1) (c) be valid with $p=2$. Although, the following result is valid for any $p \in \mathbb{N}^{*}$. There exists $2 \leq l \leq N_{1}$ such that $e^{\alpha_{1} M_{1}} \varphi_{1}=\varphi_{l}$. Thanks to (20), there exists $n \in \mathbb{N}^{*}$ large enough such that,
$\left\|\Gamma_{T_{n}^{2}}^{u_{n}^{2}} \Gamma_{T_{n}^{1}}^{u_{n}^{1}} \varphi_{1}-e^{\alpha_{2} M_{2}} e^{\alpha_{1} M_{1}} \varphi_{1}\right\| \leq\left\|\Gamma_{T_{n}^{2}}^{u_{n}^{2}}\right\|\left\|\Gamma_{T_{n}^{1}}^{u_{n}^{1}} \varphi_{1}-e^{\alpha_{1} M_{1}} \varphi_{1}\right\|+\left\|\Gamma_{T_{n}^{2}}^{u_{n}^{2}} \varphi_{l}-e^{\alpha_{2} M_{2}} \varphi_{l}\right\| \leq \epsilon$.
The identity (19) leads to the existence of $K_{1}, K_{2}, K_{3}>0$ such that for every $\epsilon>0$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that $\left\|\Gamma_{T}^{u} \varphi_{1}-\widetilde{\Gamma}_{N_{1}} \varphi_{1}\right\|<\epsilon$ and

$$
\begin{equation*}
\|u\|_{B V(T)} \leq K_{1}, \quad\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{2}, \quad T\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{3} . \tag{24}
\end{equation*}
$$

The relation (17) and the triangular inequality achieve the claim.

1) (e) Global approximate controllability with respect to the L^{2}-norm. Let $\psi \in \mathscr{H}(\varphi)$ and $\widehat{\Gamma} \in U(\mathscr{H}(\varphi))$.

Claim. There exist $K_{1}, K_{2}, K_{3}>0$ such that for every $\epsilon>0$, there exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that $\left\|\Gamma_{T}^{u} \psi-\widehat{\Gamma} \psi_{k}\right\| \leq \epsilon$ and

$$
\begin{equation*}
\|u\|_{B V(T)} \leq K_{1}, \quad\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{2}, \quad T\|u\|_{L^{\infty}((0, T), \mathbb{R})} \leq K_{3} \tag{25}
\end{equation*}
$$

We assume that $\|\psi\|=1$, but the same proof is also valid for the generic case. From the point 1) (d), there exist two controls respectively steering φ_{1} close to ψ and φ_{1} close to $\widehat{\Gamma} \psi$. Vice versa, thanks to the time reversibility, there exists a control steering ψ close to φ_{1}. In other words, there exist $T_{1}, T_{2}>0, u_{1} \in L^{2}\left(\left(0, T_{1}\right), \mathbb{R}\right)$ and $u_{2} \in L^{2}\left(\left(0, T_{2}\right), \mathbb{R}\right)$ such that

$$
\left\|\Gamma_{T_{1}}^{u_{1}} \psi-\varphi_{1}\right\| \leq \epsilon, \quad\left\|\Gamma_{T_{2}}^{u_{2}} \varphi_{1}-\widehat{\Gamma} \psi\right\| \leq \epsilon
$$

The chosen controls u_{1} and u_{2} satisfy (25). The claim is proved as

$$
\left\|\Gamma_{T_{2}}^{u_{2}} \Gamma_{T_{1}}^{u_{1}} \psi-\widehat{\Gamma} \psi\right\| \leq\left\|\Gamma_{T_{2}}^{u_{2}} \Gamma_{T_{1}}^{u_{1}} \psi-\Gamma_{T_{2}}^{u_{2}} \varphi_{1}\right\|+\left\|\Gamma_{T_{2}}^{u_{2}} \varphi_{1}-\widehat{\Gamma} \psi\right\| \leq 2 \epsilon
$$

1) (f) Global approximate controllability in higher regularity norm. Let $\psi \in H_{\mathscr{G}}^{s}(\varphi)$ with $s \in\left[s_{1}, s_{1}+2\right)$ and $s_{1} \in \mathbb{N}^{*}$. Let $\widehat{\Gamma} \in U(\mathscr{H}(\varphi))$ be such that $\widehat{\Gamma} \psi \in H_{\mathscr{G}}^{s}(\varphi)$ and $B: H_{\mathscr{G}}^{s_{1}}(\varphi) \longrightarrow H_{\mathscr{G}}^{s_{1}}(\varphi)$.

Claim. There exist $T>0$ and $u \in L^{2}((0, T), \mathbb{R})$ such that $\left\|\Gamma_{T}^{u} \psi-\widehat{\Gamma} \psi\right\|_{(s)} \leq \epsilon$.
We consider the propagation of regularity developed by Kato in [Kat53]. We notice that $i(A+u(t) B-i c)$ is maximal dissipative in $H_{\mathscr{G}}^{s_{1}}(\varphi)$ for suitable $c:=\|u\|_{L^{\infty}((0, T), \mathbb{R})}\|B\|_{\left(s_{1}\right)}$. Let $\lambda>c$ and $\widehat{H}_{\mathscr{G}}^{s_{1}+2}(\varphi):=D\left(A^{\frac{s_{1}}{2}}(i \lambda-A)\right) \cap \mathscr{H}(\varphi) \equiv H_{\mathscr{G}}^{s_{1}+2}(\varphi)$. We know that $B: \widehat{H}_{\mathscr{G}}^{s_{1}+2}(\varphi) \subset H_{\mathscr{G}}^{s_{1}}(\varphi) \rightarrow H_{\mathscr{G}^{\prime}}^{s_{1}}(\varphi)$ and the arguments of [Duc20, Remark 2.1] imply that $B \in L\left(\widehat{H}_{\mathscr{G}}^{s_{1}+2}(\varphi), H_{\mathscr{G}}^{s_{1}}(\varphi)\right)$. For $T>0$ and $u \in B V((0, T), \mathbb{R})$, we have

$$
M:=\sup _{t \in[0, T]}\| \|(i \lambda-A-u(t) B)^{-1}\| \|_{L\left(H_{G}^{s_{G}}(\varphi), \widehat{H}_{G}^{s_{1}+2}(\varphi)\right)}<+\infty
$$

We know $\|k+f(\cdot)\|_{B V((0, T), \mathbb{R})}=\|f\|_{B V((0, T), \mathbb{R})}$ for $f \in B V((0, T), \mathbb{R})$ and $k \in \mathbb{R}$. Equivalently,
$N:=\|i \lambda-A-u(\cdot) B\|_{B V\left([0, T], L\left(\widehat{H}_{G}^{s_{1}+2}(\varphi), H_{G}^{s_{1}}(\varphi)\right)\right)}=\|u\|_{B V(T)}\| \| \|_{L\left(\widehat{H}_{\mathscr{G}}^{s_{1}+2}(\varphi), H_{\mathscr{G}}^{s_{1}}(\varphi)\right)}<+\infty$.
We call $C_{1}:=\left|| | A(A+u(T) B-i \lambda)^{-1} \|_{\left(s_{1}\right)}<\infty\right.$ and U_{t}^{u} the propagator generated by $A+u B-i c$ such that $U_{t}^{u} \psi=e^{-c t} \Gamma_{t}^{u} \psi$. Thanks to [Kat53, Section 3.10], for every $\psi \in H_{\mathscr{G}}^{s_{1}+2}(\varphi)$, it follows

$$
\begin{gathered}
\left\|(A+u(T) B-i \lambda) U_{t}^{u} \psi\right\|_{\left(s_{1}\right)} \leq M e^{M N}\|(A-i \lambda) \psi\|_{\left(s_{1}\right)} \\
\Longrightarrow\left\|\Gamma_{T}^{u} \psi\right\|_{\left(s_{1}+2\right)} \leq C_{1} M e^{M N+c T}\|\psi\|_{\left(s_{1}+2\right)}
\end{gathered}
$$

For every $T>0, u \in B V((0, T), \mathbb{R})$ and $\psi \in H_{\mathscr{G}}^{s_{1}+2}(\varphi)$, there exists $C=C(K)>0$ depending on $K=\left(\|u\|_{B V(T)},\|u\|_{L^{\infty}((0, T), \mathbb{R})}, T\|u\|_{L^{\infty}((0, T), \mathbb{R})}\right)$ such that

$$
\begin{equation*}
\left\|\Gamma_{T}^{u} \psi\right\|_{\left(s_{1}+2\right)} \leq C\|\psi\|_{\left(s_{1}+2\right)} \tag{26}
\end{equation*}
$$

Now, we notice that, for every $\psi \in H_{\mathscr{G}}^{6}(\varphi)$, from the Cauchy-Schwarz inequality, we have $\|A \psi\|^{2} \leq\|\psi\|\left\|A^{2} \psi\right\|$ and there exists $C_{2}>0$ such that $\left\|A^{2} \psi\right\|^{4} \leq\|A \psi\|^{2}\left\|A^{3} \psi\right\|^{2} \leq$
$C_{2}\|\psi\|\left\|A^{3} \psi\right\|^{3}$. By following the same idea, for every $\psi \in H_{\mathscr{G}}^{s_{1}+2}(\varphi)$, there exist $m_{1}, m_{2} \in$ \mathbb{N}^{*} and $C_{3}, C_{4}>0$ such that

$$
\begin{equation*}
\left\|A^{\frac{s}{2}} \psi\right\|^{m_{1}+m_{2}} \leq C_{3}\|\psi\|^{m_{1}}\left\|A^{\frac{s_{1}+2}{2}} \psi\right\|^{m_{2}} \quad \Longrightarrow \quad\|\psi\|_{(s)}^{m_{1}+m_{2}} \leq C_{4}\|\psi\|^{m_{1}}\|\psi\|_{\left(s_{1}+2\right)}^{m_{2}} \tag{27}
\end{equation*}
$$

In conclusion, the point $\mathbf{1})(\mathbf{e})$, the relation (26) and the relation (27) ensure the claim.

1) (g) Conclusion. Let d be defined in Assumptions II $(\varphi, \eta, \tilde{d})$. If $d<2$, then B : $H_{\mathscr{G}}^{2}(\varphi) \rightarrow H_{\mathscr{G}}^{2}(\varphi)$ and the global approximate controllability is verified in $H_{\mathscr{G}}^{d+2}(\varphi)$ since $d+2<4$. If $d \in[2,5 / 2)$, then $B: H^{d_{1}} \rightarrow H^{d_{1}}$ with $d_{1} \in(d, 5 / 2)$ from Assumptions $\operatorname{II}(\varphi, \eta, \tilde{d})$. Now, $H_{\mathscr{G}}^{d_{1}}(\varphi)=H^{d_{1}} \cap H_{\mathscr{G}}^{2}(\varphi)$, thanks to Proposition 3.2, and $B: H_{\mathscr{G}}^{2}(\varphi) \rightarrow H_{\mathscr{G}}^{2}(\varphi)$ implies $B: H_{\mathscr{G}}^{d_{1}}(\varphi) \rightarrow H_{\mathscr{G}}^{d_{1}}(\varphi)$. The global approximate controllability is verified in $H_{\mathscr{G}}^{d+2}(\varphi)$ since $d+2<d_{1}+2$. If $d \in[5 / 2,7 / 2)$, then $B: H_{\mathcal{N} \mathcal{K}}^{d_{1}}(\varphi) \rightarrow H_{\mathcal{N} \mathcal{K}}^{d_{1}}(\varphi)$ for $d_{1} \in(d, 7 / 2)$ and $H_{\mathscr{G}}^{d_{1}}(\varphi)=H_{\mathcal{N} \mathcal{K}}^{d_{1}}(\varphi) \cap H_{\mathscr{G}}^{2}(\varphi)$ from Proposition 3.2. Now, $B: H_{\mathscr{G}}^{2}(\varphi) \rightarrow H_{\mathscr{G}}^{2}(\varphi)$ that implies $B: H_{\mathscr{G}}^{d_{1}}(\varphi) \rightarrow H_{\mathscr{G}}^{d_{1}}(\varphi)$. The global approximate controllability is verified in $H_{\mathscr{G}}^{d+2}(\varphi)$ since $d+2<d_{1}+2$.
2) Generalization. Let (A, B) do not admit a non-degenerate chain of connectedness and

$$
A+u(\cdot) B=\left(A+u_{0} B\right)+u_{1}(\cdot) B, \quad u_{0} \in \mathbb{R}, \quad u_{1} \in L^{2}((0, T), \mathbb{R})
$$

If (A, B) satisfies Assumptions I and Assumptions II, then Lemma A. 2 and Lemma A. 3 (Appendix A) are valid. We consider u_{0} belonging to the neighborhoods provided by the two lemmas and we denote $\left(\varphi_{k}^{u_{0}}\right)_{k \in \mathbb{N}^{*}}$ a Hilbert basis of \mathscr{H} made by eigenfunctions of $A+u_{0} B$. The steps of the point 1) can be repeated by considering the sequence $\left(\varphi_{k}^{u_{0}}\right)_{k \in \mathbb{N}^{*}}$ instead of $\left(\varphi_{k}\right)_{k \in \mathbb{N}^{*}}$ and the spaces $D\left(\left|A+u_{0} B\right|^{\frac{s_{1}}{2}}\right) \cap \mathscr{H}(\varphi)$ in substitution of $H_{\mathscr{G}}^{s_{1}}(\varphi)$ with $s_{1}>0$. The claim is equivalently proved thanks to Lemma A.3.

Remark B.3. As Proposition B.2, the (BSE*) is globally approximately controllable in $H_{\mathcal{T}}^{3}(\varphi)$ (defined in (2)). In other words, for every $\psi \in H_{\mathcal{T}}^{3}(\varphi), \widehat{\Gamma} \in U(\mathscr{H}(\varphi))$ such that $\widehat{\Gamma} \psi \in H_{\mathcal{T}}^{3}(\varphi)$ and $\epsilon>0$, we have

$$
\exists T>0, u \in L^{2}((0, T), \mathbb{R}) \quad: \quad\left\|\widehat{\Gamma} \psi_{k}-\Gamma_{T}^{u} \psi_{k}\right\|_{(3)}<\epsilon
$$

Indeed, for every $(j, k),(l, m) \in I:=\left\{(j, k) \in\left(\mathbb{N}^{*}\right)^{2}: j \neq k\right\}$ so that $(j, k) \neq(l, m)$ and such that

$$
\mu_{j}-\mu_{k}-\mu_{l}+\mu_{m}=\frac{\pi^{2}}{L^{2}}\left(j^{2}-k^{2}-l^{2}+m^{2}\right)=0
$$

there exists $C>0$ so that, thanks to Remark 4.2, we have
$\left\langle\varphi_{j}, B \varphi_{j}\right\rangle-\left\langle\varphi_{k}, B \varphi_{k}\right\rangle-\left\langle\varphi_{l}, B \varphi_{l}\right\rangle+\left\langle\varphi_{m}, B \varphi_{m}\right\rangle=C\left(j^{-2}-k^{-2}-l^{-2}+m^{-2}\right) \neq 0$.
In conclusion, the statement of Lemma $A .2$ is valid when $\left|u_{0}\right|$ is small enough. Thus, $\left(A+u_{0} B, B\right)$ admits a non-degenerate chain of connectedness. The arguments adopted in the proof of Proposition B. 2 lead to the claim.

REFERENCES

[AAN17] F. Ali Mehmeti, K. Ammari and S. Nicaise, Dispersive effects for the Schrödinger equation on a tadpole graph, Journal of Mathematical Analysis and Applications, 448 (2017), 262-280
[AAN15] F. Ali Mehmeti, K. Ammari and S. Nicaise, Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks, Port. Math., 72 (2015), 309-355.
[Alt02] C. Altafini, Controllability of quantum mechanical systems by root space decomposition, J. Math. Phys., 43 (2002), 2051-2062.
[BCMS12] U. Boscain, F. Chittaro, P. Mason and M. Sigalotti, Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues, IEEE Trans. Automat. Control., 57 (2012), 1970-1983.
[BCS14] U. Boscain, M. Caponigro, and M. Sigalotti, Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum, J. Differential Equations, 256 (2014), 3524-3551.
[BdCC13] N. Boussaïd, M. Caponigro and T. Chambrion. Weakly coupled systems in quantum control, IEEE Trans. Automat. Control., 58 (2013), 2205-2216.
[BGRS15] U. Boscain, J.-P. Gauthier, F. Rossi and M. Sigalotti, Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.
[BL76] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.
[BL10] K. Beauchard and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94 (2010), 520-554.
[BLR92] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
[BMS82] J.-M. Ball, J.-E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), 575-597.
[Cha12] T. Chambrion, Periodic excitations of bilinear quantum systems, Automatica J. IFAC., 48 (2012), 20402046.
[Cor07] J.-M. Coron, Control and nonlinearity, volume 136, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007.
[Duc18a] A. Duca, Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability, submitted: https://arxiv.org/abs/1809.06249, 2018.
[Duc18b] A. Duca, Bilinear quantum systems on compact graphs: well-posedness and global exact controllability, submitted: https://hal.archives-ouvertes.fr/hal-01830297, 2018.
[Duc19] A. Duca. Controllability of bilinear quantum systems in explicit times via explicit control fields. To be published in International Journal of Control, 2019.
[Duc20] A. Duca. Simultaneous global exact controllability in projection of infinite 1D bilinear Schrödinger equations. Dynamics of Partial Differential Equations, 17(3):275-306, 2020.
[Kat53] T. Kato, Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan., 5 (1953), 208-234.
[Kuc04] P. Kuchment, Quantum graphs. I, Some basic structures, Special section on quantum graphs, Waves Random Media, 14 (2004), S107-S128.
[Lio83] J.-L. Lions, Contrôle des systèmes distribués singuliers, volume 13, Méthodes Mathématiques de l'Informatique, Gauthier-Villars, Montrouge, 1983.
[Lue69] D.-G. Luenberger, Optimization by vector space methods, John Wiley \& Sons, Inc., New York-LondonSydney, 1969.
[Mir09] M. Mirrahimi, Lyapunov control of a quantum particle in a decaying potential, Ann. Inst. H. Poincaré Anal. Non Linéaire., 26 (2009), 1743-1765.
[MN15] M. Morancey and V. Nersesyan, Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl.,, 103 (2015), 228-254.
[MOR08] A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18.
[Mor14] M. Morancey, Simultaneous local exact controllability of 1D bilinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31 (2014), 501-529.
[Ner10] V. Nersesyan, Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 901-915.
[Sac00] Yu.-L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces. Dynamical systems, 8. J. Math. Sci. (New York), 100 (2000), 2355-2427.

UR Analysis and Control of PDEs, UR 13ES64, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Tunisia

Email address: kais.ammari@fsm.rnu.tn
Institut Fourier, Université Grenoble Alpes, 100 Rue des Mathématiques, 38610 Gières, France

Email address: alessandro.duca@unito.it

[^0]: 2010 Mathematics Subject Classification. 35Q40, 93B05, 93C05.
 Key words and phrases. Bilinear control, infinite graph.

