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CONTROLLABILITY OF PARTIAL DIFFERENTIAL EQUATIONS
AND ITS SEMI-DISCRETE APPROXIMATIONS

ENRIQUE ZUAZUA

Dedicated to the memory of Jacques-Louis Lions.

Abstract. In these notes we analyze some problems related to the control-
lability and observability of partial differential equations and its space semi-

discretizations. First we present the problems under consideration in the clas-
sical examples of the wave and heat equations and recall some well known

results. Then we analyze the 1−d wave equation with rapidly oscillating coef-
ficients, a classical problem in the theory of homogenization. Then we discuss

in detail the null and approximate controllability of the constant coefficient
heat equation using Carleman inequalities. We also show how a fixed point
technique may be employed to obtain approximate controllability results for

heat equations with globally Lipschitz nonlinearities. Finally we analyze the
controllability of the space semi-discretizations of some classical PDE models:
the Navier-Stokes equations and the 1 − d wave and heat equations. We also

present some open problems.

1. Introduction. In these lectures we address some topics related to the control-
lability of partial differential equations and its space semi-discretizations.

The controllability problem may be formulated as follows. Consider an evolution
system (either described in terms of Partial or Ordinary Differential Equations).
We are allowed to act on the trajectories of the system by means of a suitable choice
of the control (the right hand side of the system, the boundary conditions, etc.).
Then, given a time interval t ∈ (0, T ), and initial and final states we have to find a
control such that the solution matches both the initial state at time t = 0 and the
final one at time t = T .

This is a classical problem in Control Theory and there is a large literature
on the topic. We refer for instance to the book of Lee and Marcus [83] for an
introduction to the topic in the context of finite-dimensional systems described
in terms of Ordinary Differential Equations (ODE). We also refer to the survey
paper by Russell [129] and to the book of Lions [88] for an introduction to the case
of systems modelled by means of PDE, also refered to as Distributed Parameter
Systems.

There has been a very intensive research in this area in the last two decades
and it would be impossible in these Notes to report on the main progresses that
have been made. For this reason we have chosen a number of specific topics to
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present some recent results that exhibit the variety of problems arising in this field
and some of the mathematical tools that have been used and developed to deal
with them. Of course, the list of topics we have chosen is rather limited and it is
not intended to represent the whole field. We hope however that, through these
notes, the reader will become familiar with some of the main research topics in this
area. We have also included a long (but still incomplete) list of references for those
readers interested is pursuing the study of these problems.

As we have mentioned above, when dealing with controllability problems, to
begin with, one has to distinguish between finite-dimensional systems modelled
by ODE and infinite-dimensional distributed systems described by means of PDE.
Most of these notes will deal with problems related to PDE.

However, even if we work in the context of PDE, for computational purposes one
is obliged to analyze also the corresponding numerical approximations. In this way
one is driven naturally to analyze discrete or semi-discrete systems. Therefore, in
these notes we shall also address the space semi-discrete approximations of the PDE
under consideration. Therefore, when doing this, we are back to the controllability
problem for finite-dimensional systems of ODE. As we shall see, understanding the
limit behavior of the controllability properties as the size of the finite-dimensional
system tends to infinity to recover the controllability of the PDE model is not a
simple issue.The purely discrete systems will not be addressed here.

Even in the context of PDE, in order to address controllability problems, one
has still to distinguish between linear and non-linear systems, time-reversible and
time-irreversible systems, etc. For this reason in these notes we discuss both the
wave and the heat equation as well as some semilinear variants.

Recently important progresses have been made also in the context of the systems
of thermoelasticity in which the parabolic nature of the heat equation and the time-
reversibility of the wave equation are coupled. We do not address this topic here.
We refer the interested reader to the works of Hansen [52], Zuazua [145] and Lebeau
and Zuazua [82].

The content of this paper is as follows. In section 2 we describe the main issues
related to the controllability of the linear heat and wave equations. In section 3 we
discuss the controllability of the wave equation with rapidly oscillating coefficients
following the works [7, 15, 16] and [18]. In section 4 we discuss in detail the
controllability of the heat equation. In section 5 we present a fixed point method
allowing to prove the approximate controllability of the semilinear heat equation
with globally Lipschitz nonlinearity. In section 6 we analyze the controllability
of some space semi-discretizations. In particular we discuss the controllability of
the Galerkin approximations of the Navier-Stokes equations following [96]-[98], the
finite-difference approximation of the 1-d wave equation as in [62, 63] and the finite-
difference space approximation of the heat equation as in [104]. We end up with a
section devoted to present some open problems.

2. Problem formulation: The linear wave and heat equations.

2.1. The wave equation. Let Ω be a bounded domain of Rn, n ≥ 1, with bound-
ary Γ of class C2. Let ω be an open and non-empty subset of Ω and T > 0.

Consider the linear controlled wave equation in the cylinder Q = Ω× (0, T ): utt −∆u = f1ω in Q
u = 0 on Σ
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

(2.1)
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In (2.1) Σ represents the lateral boundary of the cylinder Q, i.e. Σ = Γ× (0, T ), 1ω

is the characteristic function of the set ω, u = u(x, t) is the state and f = f(x, t) is
the control variable. Since f is multiplied by 1ω the action of the control is localized
in ω.

When (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and f ∈ L2(Q) system (2.1) has an unique

solution u ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
.

The problem of controllability consists roughly on describing the set of reachable
final states

R
(
T ; (u0, u1)

)
=
{
(u(T ), ut(T )) : f ∈ L2(Q)

}
.

One may distinguish the following degrees of controllability:
(a) Approximate controllability: System (2.1) is said to be approximately control-

lable in time T if the set of reachable states is dense in H1
0 (Ω) × L2(Ω) for

every (u0, u1) ∈ H1
0 (Ω)× L2(Ω).

(b) Exact controllability: System (2.1) is said to be exactly controllable at time
T if

R
(
T ; (u0, u1)

)
= H1

0 (Ω)× L2(Ω)

for all (u0, u1) ∈ H1
0 (Ω)× L2(Ω).

(c) Null controllability: System (2.1) is said to be null controllable at time T if
(0, 0) ∈ R

(
T ; (u0, u1)

)
for all (u0, u1) ∈ H1

0 (Ω)× L2(Ω).

Remark 2.1. (a) Since we are dealing with solutions of the wave equation, for any
of these properties to hold the control time T has to be sufficiently large due
to the finite speed of propagation.

(b) Since system (2.1) is linear and reversible in time null and exact controllability
are equivalent notions. As we shall see, the situation is completely different
in the case of the heat equation.

(c) Clearly every exactly controllable system is approximately controllable too.
However, system (2.1) may be approximately but not exactly controllable. In
those cases it is natural to study the cost of approximate controllability, or,
in other words, the size of the control needed to reach to an ε-neighborhood
of a final state which is not exactly reachable. This problem was analyzed by
Lebeau in [77]. We shall address this problem below in the case of the heat
equation.

(e) The controllability problem above may also be formulated in other function
spaces in which the wave equation is well posed.

(f) Null controllability is a physically interesting notion since the state (0, 0) is
an equilibrium for system (2.1).

(g) Most of the literature on the controllability of the wave equation has been
written on the framework of the boundary control problem. The control prob-
lems formulated above for system (2.1) are usually refered to as internal con-
trollability problems since the control acts on the subset ω of Ω.

Let us now briefly discuss the approximate controllability problem.
It is easy to see that approximate controllability is equivalent to an unique con-

tinuation property of the adjoint system: ϕtt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(x, T ) = ϕ0(x), ϕt(x, T ) = ϕ1(x) in Ω.

(2.2)
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Indeed, system (2.1) is approximately controllable if and only if the following
holds:

ϕ ≡ 0 in ω × (0, T ) ⇒
(
ϕ0, ϕ1

)
≡ (0, 0). (2.3)

By using Holmgren’s Uniqueness Theorem it can be easily seen that (2.3) holds
if T is large enough. We refer to [88], chapter 1 and [20] for a discussion of this
problem.

There are at least two ways of checking that (2.3) implies the approximate con-
trollability:

(a) The application of Hahn-Banach Theorem.
(b) The variational approach developed in [89].
The second approach will be presented below in the context of the heat equation.

We refer to [88] for the application of the first approach.
When approximate controllability holds, then the following (apparently stronger)

statement also holds:

Theorem 2.2. ([149]) Let E be a finite-dimensional subspace of H1
0 (Ω)×L2(Ω) and

let us denote by πE the corresponding orthogonal projection. Then, if approximate
controllability holds, for any

(
u0, u1

)
,
(
v0, v1

)
∈ H1

0 (Ω) × L2(Ω) and ε > 0 there
exists f ∈ L2(Q) such that the solution of (2.1) satisfies∥∥(u(T )− v0, ut(T )− v1

)∥∥
H1

0 (Ω)×L2(Ω)
≤ ε; πE (u(T ), ut(T )) = πE

(
v0, v1

)
. (2.4)

This result, that will be referred to as the finite-approximate controllability prop-
erty, may be proved at least in two different ways:

(a) By a suitable modification of the variational approach introduced in [89].
(b) As a direct consequence of the approximate controllability and the following

Theorem of functional Analysis (we refer to [94] for a proof):

Theorem 2.3. ([94]) Let V and H be two Hilbert spaces and L a bounded linear
operator from V to H with dense range. Let E be a finite-dimensional subspace of
H and πE the corresponding orthogonal projection.

Then, given any e0 ∈ E, when v runs over the set of elements of v such that
πELv = e0, Lv describes a dense set in e0 + E⊥.

The results above hold for wave equations with analytic coefficients too. Indeed,
the control problem can be reduced to the unique continuation one and the latter
may be solved by means of Holmgren’s Uniqueness Theorem.

However, the problem is not completely solved in the frame of the wave equation
with lower order potentials a ∈ L∞(Q) of the form

utt −∆u+ a(x, t)u = f1ω in Q.

Once again the problem of approximate controllability of this system is equivalent
to the unique continuation property of its adjoint. We refer to Alinhac [1], Tataru
[134] and Robbiano-Zuilly [127] for deep results in this direction.

Let us now discuss the exact controllability problem.
The unique continuation property (2.3) by itself does not allow to address the

exact controllability problem. As it was shown by Lions [88], using the so called
HUM (Hilbert Uniqueness Method), exact controllability is equivalent to the fol-
lowing inequality:

‖(ϕ(0), ϕt(0))‖2L2(Ω)×H−1(Ω) ≤ C

∫ T

0

∫
ω

ϕ2dxdt (2.5)
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for all solutions of (2.2).
This inequality allows to estimate the total energy of the solution of (2.2) by

means of a measurement in the control region ω × (0, T ). Thus, it establishes the
continuous observability of system (2.2). The energy ‖(ϕ(t), ϕt(t))‖2L2(Ω)×H−1(Ω) of
solutions of (2.2) is conserved along trajectories. Thus, (2.5) is equivalent to∥∥(ϕ0, ϕ1

)∥∥2

L2(Ω)×H−1(Ω)
≤ C

∫ T

0

∫
ω

ϕ2dxdt. (2.6)

When (2.5) holds one can minimize the functional

J
(
ϕ0, ϕ1

)
=

1
2

∫ T

0

∫
ω

ϕ2dxdt+
〈
(ϕ(0), ϕt(0)) ,

(
u1,−u0

)〉
(2.7)

in the space L2(Ω)×H−1(Ω). Indeed, the following is easy to prove: When the ob-
servability inequality (2.5) holds, the functional J has an unique minimizer

(
ϕ̂0, ϕ̂1

)
in L2(Ω) × H−1(Ω) for all

(
u0, u1

)
∈ H1

0 (Ω) × L2(Ω). The control f = ϕ̂ with ϕ̂

solution of (2.2) corresponding to
(
ϕ̂0, ϕ̂1

)
is such that the solution of (2.1) satisfies

u(T ) ≡ ut(T ) ≡ 0. (2.8)

Consequently, in this way, the exact controllability problem is reduced to the
analysis of inequality (2.6).

Let us now discuss what is known about the observability inequality (2.6):
(a) Using multiplier techniques in the spirit of C. Morawetz [113], Ho in [58]

proved that if one considers subsets of Γ of the form

Γ(x0) =
{
x ∈ Γ : (x− x0) · n(x) > 0

}
for some x0 ∈ Rn (by n(x) we denote the outward unit normal to Ω in x ∈ Γ
and by · the scalar product in Rn) and if T > 0 is large enough, the following
boundary observability inequality holds:

‖(ϕ(0), ϕt(0))‖2H1
0 (Ω)×L2(Ω) ≤ C

∫ T

0

∫
Γ(x0)

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dΓdt (2.9)

for all
(
ϕ0, ϕ1

)
∈ H1

0 (Ω)× L2(Ω).
This is the observability inequality that is required to solve the boundary

controllability problem mentioned above.
Later on inequality (2.9) was proved in [87, 88], for any T > T (x0) =

2 ‖ x−x0 ‖L∞(Ω). This is the optimal observability time that one may derive
by means of multipliers.

Proceeding as in [88], vol. 1, one can easily prove that (2.9) implies (2.5)
when ω is a neighborhood of Γ(x0) in Ω, i.e. ω = Ω ∩ Θ where Θ is a
neighborhood of Γ(x0) in Rn, with T > 2 ‖ x − x0 ‖L∞(Ω\ω). More recently
Osses in [Os] has introduced a new multiplier which is basically a rotation of
the previous one and he has obtained a larger class of subsets of the boundary
for which observability holds.

(b) C. Bardos, G. Lebeau and J. Rauch [9] proved that, in the class of C∞

domains, the observability inequality (2.5) holds if and only if (ω, T ) satisfy
the following geometric control condition in Ω: Every ray of geometric optics
that propagates in Ω and is reflected on its boundary Γ enters ω in time less
than T .
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This result was proved by means of microlocal Analysis techniques. Recently
the microlocal approach has been greatly simplified by N. Burq [12] by using the
microlocal defect measures introduced by P. Gerard [47] in the context of the ho-
mogenization and the kinetic equations. In [12] the geometric control condition
was shown to be sufficient for exact controllability for domains Ω of class C3 and
equations with C2 coefficients.

We have described here the HUM and some tools to prove observability inequal-
ities. In particular, we have explained how HUM can be combined systematically
with multiplier methods. One can also combine HUM with the theory of nonhar-
monic Fourier series when the coefficients of the system are time independent. We
refer to Avdonin and Ivanov [6] and Komornik [67] for a complete presentation of
this approach.

However, other methods have been developed to address controllability problems:
Moment problems, fundamental solutions, controllability via stabilization, etc. We
will not present them here. We refer to the survey paper by D. L. Russell [129] for
the interested reader.

2.2. The heat equation. With the same notations as above we consider the linear
controlled heat equation:  ut −∆u = f1ω in Q

u = 0 on Σ
u(x, 0) = u0(x) in Ω.

(2.10)

We assume that u0 ∈ L2(Ω) and f ∈ L2(Q) so that (2.10) admits an unique solution
u ∈ C

(
[0, T ] ;L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
.

We set R(T ;u0) =
{
u(T ) : f ∈ L2(Q)

}
. The controllability problems can be

formulated as follows:
(a) System (2.10) is said to be approximately controllable if R(T ;u0) is dense in

L2(Ω) for all u0 ∈ L2(Ω).
(b) System (2.10) is exactly controllable if R(T ;u0) = L2(Ω) for all u0 ∈ L2(Ω).
(c) System (2.10) is null controllable if 0 ∈ R(T ;u0) for all u0 ∈ L2(Ω).

Remark 2.4. (a) Approximate controllability holds for every open non-empty sub-
set ω of Ω and for every T > 0.

(b) It is easy to see that exact controllability may not hold except possibly in
the case in which ω = Ω. Indeed, due to the regularizing effect of the heat
equation, solutions of (2.10) at time t = T are smooth in Ω\ω. Therefore
R(T ;u0) is strictly contained in L2(Ω) for all u0 ∈ L2(Ω).

(c) Null controllability implies that all the range of the semigroup generated by
the heat equation is reachable too.

(d) Proving that null controllability implies approximate controllability requires
the use of the density of S(T )[L2(Ω)] in L2(Ω). In the case of the linear
heat equation this can be seen easily developing solutions in Fourier series.
However, if the equation contains time dependent coefficients this is no longer
true. In those cases the density of the range of the semigroup, by duality,
may be reduced to a backward uniqueness property in the spirit of Lions and
Malgrange [92] (see also Ghidaglia [46]).

Let us now discuss the approximate controllability problem.
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System (2.10) is approximately controllable for any open, non-empty subset ω of
Ω and T > 0. To see this one can apply Hahn-Banach’s Theorem or the variational
approach developed in [89]. In both cases the approximate controllability is reduced
to the unique continuation property of the adjoint system −ϕt −∆ϕ = 0 in Q

ϕ = 0 on Σ
ϕ(x, T ) = ϕ0(x) in Ω.

(2.11)

More precisely, approximate controllability holds if and only if the following
uniqueness property is true: If ϕ solves (2.11) and ϕ = 0 in ω × (0, T ) then,
necessarily, ϕ ≡ 0, i.e. ϕ0 ≡ 0.

This uniqueness property holds for every open non-empty subset ω of Ω and
T > 0 by Holmgren’s Uniqueness Theorem.

Following the variational approach of [89] the control can be constructed as
follows. First of all we observe that it is sufficient to consider the particular case
u0 ≡ 0. Then, for any u1 in L2(Ω), ε > 0 and E finite-dimensional subspace of
L2(Ω) we introduce the functional

Jε(ϕ0) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+ ε
∥∥(I − πE)ϕ0

∥∥
L2(Ω)

−
∫

Ω

ϕ0u1dx (2.12)

where πE denotes the orthogonal projection from L2(Ω) over E.
The functional Jε is continuous and convex in L2(Ω). On the other hand, in

view of the unique continuation property above, one can prove that

lim
‖ϕ0‖L2(Ω)→∞

Jε(ϕ0)
‖ ϕ0 ‖L2(Ω)

≥ ε (2.13)

(we refer to [149] for the details of the proof).
Then, Jε admits an unique minimizer ϕ̂0 in L2(Ω). The control f = ϕ̂ where

ϕ̂ solves (2.11) with ϕ̂0 as data is such that the solution u of (2.11) with u0 = 0
satisfies

‖ u(T )− u1 ‖L2(Ω)≤ ε, πE (u(T )) = πE(u1). (2.14)

A slight change on the functional Jε allows to build bang-bang controls. Indeed,
we set

J̃ε(ϕ0) =
1
2

(∫ T

0

∫
ω

| ϕ | dxdt

)2

+ ε ‖ (I − πE)ϕ0 ‖L2(Ω) −
∫

Ω

u1ϕ0dx. (2.15)

The functional J̃ε is continuous and convex in L2(Ω) and satisfies the coercivity
property (2.13) too.

Let ϕ̂0 be the minimizer of J̃ε in L2(Ω) and ϕ̂ the corresponding solution of
(2.11). We set

f =
∫ T

0

∫
ω

| ϕ̂ | dxdt sgn(ϕ̂) (2.16)

where sgn is the multivalued sign function: sgn(s) = 1 if s > 0, sgn(0) = [−1, 1]
and sgn(s) = −1 when s < 0. The control f given in (2.16) is such that the solution
u of (2.10) with null initial data satisfies (2.14).

Due to the regularizing effect of the heat equation, the zero set of non-trivial
solutions of (2.11) is of zero (n + 1)−dimensional Lebesgue measure. Thus, the
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control f in (2.16) is of bang-bang form, i.e. f = ±λ a.e. in Q where

λ =
∫ T

0

∫
ω

| ϕ̂ | dxdt.

We have proved the following result:

Theorem 2.5. ([149]) Let ω be any open non-empty subset of Ω and T > 0 be any
positive control time. Then, for any u0, u1 ∈ L2(Ω), ε > 0 and finite-dimensional
subspace E of L2(Ω) there exists a bang-bang control f ∈ L∞(Q) such that the
solution u of (2.10) satisfies (2.14).

Remark 2.6. The control (2.16) obtained by minimizing J̃ε is the one of minimal
L∞(Q)-norm among the admissible ones (we refer to [35] for the details of the proof
in the particular case where E = {0}).

Let us now analyze the null controllability problem.
The null controllability problem for system (2.10) is equivalent to the following

observability inequality for the adjoint system (2.11):

‖ ϕ(0) ‖2L2(Ω)≤ C

∫ T

0

∫
ω

ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (2.17)

Due to the irreversibility of the system, (2.17) is not easy to prove. For instance,
multiplier methods do not apply.

In [129] the boundary null controllability of the heat equation was proved in
one space dimension using moment problems and classical results on the linear in-
dependence in L2(0, T ) of families of real exponentials. Later on in [130] it was
shown that if the wave equation is exactly controllable for some T > 0 with controls
supported in ω, then the heat equation (2.10) is null controllable for all T > 0 with
controls supported in ω. As a consequence of this result and in view of the control-
lability results above, it follows that the heat equation (2.10) is null controllable
for all T > 0 provided ω satisfies the geometric control condition.

However, the geometric control condition does not seem to be natural at all in
the context of the heat equation.

More recently Lebeau and Robbiano [81] have proved that the heat equation
(2.10) is null controllable for every open, non-empty subset ω of Ω and T > 0. This
result shows, as expected, that the geometric control condition is unnecessary in
the context of the heat equation.

A simplified proof of this result from [81] was given in [82] where the linear system
of thermoelasticity was addressed. Let us describe briefly this proof. The main
ingredient of it is an observability estimate for the eigenfunctions of the Laplace
operator: {

−∆ψj = λjψj in Ω
ψj = 0 on ∂Ω. (2.18)

Recall that the eigenvalues {λj}, repeated according to their multiplicity, form an
increasing sequence of positive numbers such that λj →∞ as j →∞ and that the
eigenfunctions {ψj} may be chosen such that they form an orthonormal basis of
L2(Ω).

The following holds:
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Theorem 2.7. ([81, 82]) Let Ω be a bounded domain of class C∞. For any non-
empty open subset ω of Ω there exist positive constants C1, C2 > 0 such that∫

ω

∣∣∣∣∣∣
∑

λj≤µ

ajψj(x)

∣∣∣∣∣∣
2

dx ≥ C1e
−C2

√
µ
∑

λj≤µ

| aj |2 (2.19)

for all {aj} ∈ `2 and for all µ > 0.

This result was implicitly used in [81] and it was proved in [82] by means of
Carleman’s inequalities.

As a consequence of (2.19) one can prove that the observability inequality (2.17)
holds for solutions of (2.11) with initial data in Eµ = span {ϕj}λj≤µ, the constant
being of the order of exp

(
C
√
µ
)
. This shows that the projection of solutions over Eµ

can be controlled to zero with a control of size exp
(
C
√
µ
)
. Thus, when controlling

the frequencies λj ≤ µ one increases the L2(Ω)-norm of the high frequencies λj > µ
by a multiplicative factor of the order of exp

(
C
√
µ
)
. However, solutions of the heat

equation (2.10) without control (f = 0) and such that the projection of the initial
data over Eµ vanishes, decay in L2(Ω) at a rate of the order of exp(−µt). This can
be easily seen by means of the Fourier series decomposition of the solution. Thus,
if we divide the time interval [0, T ] in two parts [0, T/2] and [T/2, T ], we control to
zero the frequencies λj ≤ µ in the interval [0, T/2] and then allow the equation to
evolve without control in the interval [T/2, T ], it follows that, at time t = T , the
projection of the solution u over Eµ vanishes and the norm of the high frequencies
does not exceed the norm of the initial data u0.

This argument allows to control to zero the projection over Eµ for any µ > 0 but
not the whole solution. To do that an iterative argument is needed in which the
interval [0, T ] has to be decomposed in a suitably chosen sequence of subintervals
[Tk, Tk+1) and the argument above is applied in each subinterval to control an
increasing range of frequencies λj ≤ µk with µk going to infinity at a suitable rate.
We refer to [81] and [82] for the proof.

Remark 2.8. (a) Once (2.17) is known to hold one can obtain the control with
minimal L2(Q)-norm among the admissible ones. To do that it is sufficient
to minimize the functional

J(ϕ0) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+
∫

Ω

ϕ(0)u0dx (2.20)

over the Hilbert space

H = {ϕ0 : the solution ϕ of (2.11) satisfies
∫ T

0

∫
ω

ϕ2dxdt <∞}.

To be more precise, H is the completion of L2(Ω) with respect to the norm
[
∫ T

0

∫
ω
ϕ2dxdt]1/2. In fact, H is much larger than L2(Ω). We refer to Theorem

4.5 for precise estimates on the nature of this space.
Observe that J is convex and, according to (2.17), it is also continuous in

H. On the other hand (2.17) guarantees the coercivity of J and the existence
of its minimizer.

(b) As a consequence of the internal null controllability property of the heat equa-
tion one can deduce easily the null boundary controllability with controls in
an arbitrarily small open subset of the boundary. To see this it is sufficient
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to extend the domain Ω by a little open subset attached to the subset of the
boundary where the control needs to be supported. The arguments above
allow to control the system in the large domain by means of a control sup-
ported in this small added domain. The restriction of the solution to the
original domain satisfies all the requirements and its restriction or trace to
the subset of the boundary where the control had to be supported, provides
the control we were looking for.

(c) The method of proof of the null controllability we have described is based on
the possibility of developing solutions in Fourier series. Thus it can be applied
in a more general class of heat equations with variable but time-independent
coefficients. The same can be said about the methods of [130].

The null controllability of the heat equation with lower order time-dependent
terms of the form  ut −∆u+ a(x, t)u = f1ω in Q

u = 0 on Σ
u(x, 0) = u0(x) in Ω

(2.21)

has been studied by Fursikov and Imanuvilov (see for instance [21, 42, 43, 44,
45, 60] and [61]). Their approach, based on the use of Carleman inequalities, is
different to the one we have presented here. As a consequence of their results on
null controllability it follows that an observability inequality of the form (2.17)
holds for the solutions of the adjoint system −ϕt −∆ϕ+ a(x, t)ϕ = 0 in Q

ϕ = 0 on Σ
ϕ(x, T ) = ϕ0(x) in Ω

(2.22)

when ω is any open subset of Ω.
We shall return to this method in section 4 below.

3. The wave equation with rapidly oscillating coefficients. In practice, the
equation under consideration often depends on some parameter. In those cases it
is natural to analyze whether the controls depend continuously on this parameter
or not. When the parameter enters in the system as a singular perturbation, this
continuous dependence may be lost. This is for instance the case in the wave
equation with rapidly oscillating coefficients, a classical problem in the theory of
homogenization that we address here.

Let us consider the wave equation ρ(x/ε)utt − uxx = 0, 0 < x < 1, 0 < t < T
u(0, t) = u(1, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1.

(3.1)

Here ρ ∈ L∞(R) is a periodic function of period ` > 0 such that

0 < ρm ≤ ρ(x) ≤ ρM <∞ a.e. x ∈ R

where ρm, ρM are two positive constants.
The parameter ε ranges in the interval 0 < ε < 1 and is devoted to tend to zero.
System (3.1) is a simple model for the vibrations of a string with rapidly oscil-

lating density.
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Let us denote ρε(x) = ρ(x/ε). It is easy to check that

ρε ⇀ ρ̄ weakly − ∗ in L∞(0, 1); as ε→ 0, (3.2)

i.e., ∫ 1

0

ρε(x)ϕ(x)dx→ ρ̄

∫ 1

0

ϕ(x)dx as ε→ 0, ∀ϕ ∈ L1(0, 1)

where

ρ̄ =
1
`

∫ `

0

ρ(x)dx (3.3)

is the average density.
The energy of solutions of (3.1) is given by

Eε(t) =
1
2

∫ 1

0

[
ρε(x) | ut(x, t) |2 + | ux(x, t) |2

]
dx (3.4)

and it is constant in time.
The observability problem for (3.1) can be formulated as follows: To find T > 0

and Cε(T ) > 0 such that

Eε(0) ≤ Cε(T )
∫ T

0

| ux(1, t) |2 dt (3.5)

holds for any solution of (3.1).
If ρ is regular enough, say ρ ∈ C1(R), one can show that observability holds for

all T > 2
√
ρM and for all 0 < ε < 1.

We address here the problem of uniform observability: Given T > 2
√
ρM , is the

observability constant Cε(T ) in (3.5) bounded as ε→ 0?
This question arises naturally since the limit of system (3.1) as ε → 0, in view

of (3.2), is given by the wave equation with constant density ρ̄: ρ̄utt − uxx = 0, 0 < x < 1, 0 < t < T
u(0, t) = u(1, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1

(3.6)

and the later is observable for any T ≥
√
ρ̄.

Solutions of (3.1) can be developed in Fourier series. Indeed, for any ε > 0 the
eigenvalue problem {

−∂2wε
k

∂x2 = λε
kw

ε
k, 0 < x < 1

wε
k(0) = wε

k(1) = 0
(3.7)

admits a sequence of eigenvalues

0 < λε
1 < λε

2 < · · · < λε
k < · · · → ∞

with corresponding eigenfunctions {wε
k}k≥1 that may be chosen to constitute and

orthonormal basis of L2(0, 1) with the scalar product

(ϕ,ψ)ε =
∫ 1

0

ϕ(x)ψ(x)ρε(x)dx. (3.8)

Then, solutions of (3.1) may be written in the form

uε =
∑
k≥1

(
aε

k cos
(√

λε
kt
)

+
bεk√
λε

k

sin
(√

λε
kt
))

wε
k(x) (3.9)
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where aε
k and bεk are the Fourier coefficients of the initial data

u0 =
∑
k≥1

aε
kw

ε
k; u1 =

∑
k≥1

bεkw
ε
k. (3.10)

On the other hand, solutions of (3.6) can be written as

u =
∑
k≥1

[
ak cos

(
kπt√
ρ̄

)
+
√
ρ̄bk
kπ

sin
(
kπt√
ρ̄

)]
sin(kπx). (3.11)

Using the mini-max characterization of the eigenvalues of (3.7) one can deduce
that, for each k ≥ 1,

λε
k →

k2π2

ρ̄
as ε→ 0, (3.12)

wε
k →

√
2
ρ̄

sin(kπx) in H1
0 (0, 1), as ε→ 0. (3.13)

However, these convergences are far from being sufficient to address the uniform
observability problem. Indeed, in order to attack the problem of uniform observ-
ability, one has to know how uniform the convergences (3.12)-(3.13) are with respect
to the index k.

Classical results in the theory of homogenization provide convergence rates for
(3.12)-(3.13) (see for instance Oleinick et al. [117]) and this allows to show that for
any δ > 0 there exists cδ > 0 such that∣∣∣∣√λε

k −
kπ√
ρ̄

∣∣∣∣ ≤ δ, ∀k ≤ cδ/
√
ε. (3.14)

However, this result is far from being sufficient for our purposes. Indeed, the
critical scale for the problem under consideration is k ∼ 1/ε which corresponds to
the case where the wavelength of the solutions is of the order of the microstructure.
Obviously, this critical size is much beyond the range k ≤ C/

√
ε in which (3.14)

applies.
In fact, as we shall see, whatever T > 0 is, the uniform observability fails because

“spurious” oscillations occur when k ∼ C/ε if C is large enough. Using the WKB
method (see [10]) we shall exhibit a complete asymptotic description of the spectrum
in the range k ≤ c/ε with c > 0 small enough. We shall show how uniform
observability results may be obtained provided the high frequencies are filtered in
an appropriate way. The results of this section are proved in detail by Castro and
Zuazua [18, 19]. We refer to [15] for a complete analysis of the limit behavior of
the controllability properties as ε→ 0 and to [16] for the analysis of the spectrum
at the critical frequencies k ∼ C/ε.

In order to analyze the behavior of the eigenvalues of the order of λ ∼ 1/ε2

it is natural to introduce the change of variables y = x/ε, so that equation (3.7)
becomes {

−wyy = µρ(y)w, 0 < y < 1/ε
w(0) = w(1/ε) = 0 (3.15)

with
µ = λε2. (3.16)

Consider the problem in the whole line associated to (3.15):

−wyy = µρ(y)w, y ∈ R. (3.17)
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Taking into account that ρ is periodic, the behavior of solutions of (3.17) de-
pending on the different values of µ may be analyzed by means of Floquet Theorem
(see [32]). This analysis suffices to prove the following result:

Theorem 3.1. ([7, 18]) Assume that ρ ∈ L∞(R) is `-periodic and such that

0 < ρm ≤ ρ(x) ≤ ρM <∞, a.e. x ∈ R. (3.18)

Then, there exists a sequence εj → 0 and a sequence of indexes kj → ∞ of the
order of ε−1

j such that the corresponding eigenfunctions wεj

kj
of (3.7) satisfy∫ 1

0

∣∣∣∂xw
εj

kj
(x)
∣∣∣2 dx/∣∣∣∂xw

εj

kj
(1)
∣∣∣2 ≥ exp(C/εj) as εj → 0 (3.19)

for some C > 0.

As an immediate corollary the following holds:

Corollary 3.2. Under the assumptions of Theorem 3.1, there exists a sequence
εj → 0 such that

sup
u solution of (3.1)

 Eε(0)∫ T

0

|ux(1, t)|2 dt

→∞, as εj →∞ (3.20)

for all T > 0.

Proof of Corollary 3.2. Assuming for the moment that Theorem 3.1 holds we
consider solutions of (3.1) of the form

uεj
(x, t) = cos

(√
λ

εj

kj
t
)
w

εj

kj
(x)

where the sequence εj → 0 and the sequence of eigenvalues λεj

kj
and eigenfunctions

w
εj

kj
are as in Theorem 3.1.

We have

Eε(0) =
1
2

∫ 1

0

∣∣∣∂xw
εj

kj
(x)
∣∣∣2 dx (3.21)

and ∫ T

0

∣∣∣∂xw
εj

kj
(1, t)

∣∣∣2 dt =
∣∣∣∂xw

εj

kj
(1)
∣∣∣2 ∫ T

0

cos2
(√

λ
εj

kj
t
)
dt. (3.22)

Since
λ

εj

kj
→∞ as εj → 0, (3.23)

we have ∫ T

0

cos2
(√

λ
εj

kj
t
)
dt→ T/2. (3.24)

Note that (3.23) holds since, by using the min-max characterization of eigenvalues,
one has

k2π2

ρM
≤ λε

k ≤
k2π2

ρm

for all 0 < ε < 1 and k ≥ 1.
Combining (3.19), (3.21), (3.22) and (3.24) we deduce that (3.20) holds.



482 ENRIQUE ZUAZUA

Let us now give a sketch of the proof of Theorem 3.1.
Since ρ is assumed not to be constant, by Floquet’s Theorem we deduce the

existence of some µ > 0 such that (3.17) has a solution of the form ω1(y) =
e−αyp1(y) with α > 0, p1 being `-periodic. Let us assume for simplicity that
p1(0) = 0. We refer to [19] for the case where p1(0) 6= 0.

The function p1 has an unbounded sequence of zeroes. Let us denote by 0 <
z1 < z2 < · · · < zn < · · · → ∞ the positive zeroes of p1. Given a zero zk of p1 we
set wk(x) = e−αzkxp1(zkx). Note that wk may also be written as

wk(x) = e−αx/εkp1

(
x

εk

)
with εk = 1/zk. Taking into account that p1(0) = p1(zk) = 0 we deduce that
wk(0) = wk(1) = 0. On the other hand, in view of (3.17) we also have

−∂2
xwk = λkρ

(
x

εk

)
wk, 0 < x < 1

with λk = µ/ε2k.
Moreover, in view of the explicit form of wk it is easy to see that (3.19) holds

along the sequence εk → 0.
This completes the proof of Theorem 3.1.

Remark 3.3. Note that the proof of Theorem 3.1 provides necessarily sequences
of eigenvalues λεj

kj
such that λεj

kj
≥ c/ε2j with c > 0. As we shall see below, this

is a sharp estimate since uniform observability estimates hold for eigenfunctions
corresponding to eigenvalues λ such that λ ≤ c/ε2 with c > 0 small enough.

Let us now analyze the asymptotic behavior of the spectrum following [18, 19].

Theorem 3.4. ([18, 19]) For any δ > 0 there exists C(δ) > 0 such that√
λε

k+1 −
√
λε

k ≥
π√
ρ̄
− δ (3.25)

for all k ≤ C(δ)/ε and 0 < ε < 1.
Moreover, there exist C, c > 0 such that

1
C
|∂xw

ε
k(1)|2 ≤

∫ 1

0

|∂xw
ε
k|

2
dx ≤ C |∂xw

ε
k(1)|2 (3.26)

for all k ≤ c/ε and 0 < ε < 1.

Remark 3.5. The first statement of this theorem guarantees that the gap between
consecutive eigenvalues remains uniformly bounded below in the range k ≤ C/ε for
C > 0 small enough (which is equivalent to λ ≤ C ′/ε2 for a suitable C ′). In fact,
the gap corresponding to the limit spectrum λk = k2π2/ρ̄ is precisely π/

√
ρ̄, i.e.√

λk+1 −
√
λk =

(k + 1)π√
ρ̄

− kπ√
ρ̄

=
π√
ρ̄
.

According to (3.25) the gap may be made to be arbitrarily close to π/
√
ρ̄ for all

0 < ε < 1 provided k ≤ C(δ)/ε with C(δ) small enough.
The second statement of Theorem 3.4 guarantees the uniform observability of

the eigenfunctions from the extreme x = 1 provided k ≤ c/ε with c > 0 small
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enough. This result is sharp since, according to Theorem 3.1, there exists εj → 0
and a sequence of eigenvalues of the order of λεj

kj
∼ C/ε2j for a sufficiently large C

such that ∫ 1

0

∣∣∣∂xw
εj

kj
(x)
∣∣∣2 dx/∣∣∣∂xw

εj

kj
(1)
∣∣∣2 → 0, as εj → 0.

Let us now briefly comment the proof of Theorem 3.4.
We perform the change of variables y = x/ε so that the differential equation cor-

responding to the eigenfunctions becomes (3.17). We employ the shooting method.
Thus we solve (3.17) under the “initial conditions”

w(1/ε) = 0; ∂yw(1/ε) = 1. (3.27)

Finding the eigenvalues λε
k is then equivalent to find the values of µε

k such that
the solution of (3.17)-(3.27) satisfies

w(0) = 0. (3.28)

We employ the WKB asymptotic expansion method (see [10]) to analyze the
structure of the solutions of (3.17)-(3.27). This asymptotic expansion turns out to
converge in the interval (0, 1/ε) when µ > 0 is small enough, i.e. when λ ≤ C/ε2

for C > 0 small enough.
This allows us to rewrite equation (3.28) as finding the zeroes of a infinite series.

We conclude that in the range λ ≤ c/ε2, with c > 0 sufficiently small, λε
k is an

eigenvalue if and only if λε
k is the root of√

λε
kρ̄+

∑
n≥1

(
ε2nd2n−1 + ε2n+1c2n

(
ε−1
))

(λε
k)(2n+1)/2 = kπ (3.29)

where {d2j−1}j≥1 are constants and {c2j}j≥1 are `-periodic functions that may be
computed explicitly.

The same method provides and asymptotic expansion of the eigenfunctions wε
k

as well.
In order to illustrate how the gap condition (3.25) arises let us consider the

second order approximation of λε
k. According to (3.29) it follows that√

λε
k ∼

kπ√
ρ̄
− ε2(kπ)3

d1

ρ̄2
. (3.30)

Therefore √
λε

k+1 −
√
λε

k ∼ π√
ρ̄
− ε2π3d1

ρ̄2

(
(k + 1)3 − k3

)
(3.31)

=
π√
ρ̄
− ε2π3d1

ρ̄2

(
εk2 + 3k + 1

)
∼ π√

ρ̄
− 3π3d1

ρ̄2
(εk)2.

Thus, according to the second order approximation, (3.25) holds if

εk ≤ ρ̄
√
δ√

3π3d1

. (3.32)

To summarize, one can say that the WKB expansion method allows to prove that
the uniform gap condition (3.25) is guaranteed up to the critical level k ≤ Cε−1

with C > 0 small enough.
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As we shall see, this uniform gap condition together with the uniform observ-
ability of the eigenfunctions (3.26) is sufficient to prove the uniform observability of
the solutions whose spectrum lies in the range λ ≤ Cε−2 with C > 0 small enough.

To do this we need a classical result due to Ingham in the theory of non-harmonic
Fourier series (see [142]).

Ingham’s Theorem. Let {µk}k∈Z be a sequence of real numbers such that

µk+1 − µk ≥ γ > 0, ∀k ∈ Z. (3.33)

Then, for any T > 2π/γ there exists a positive constant C(T, γ) > 0 such that

1
C(T, γ)

∑
k∈Z

| ak |2≤
∫ T

0

∣∣∣∣∣∑
k∈Z

ake
iµkt

∣∣∣∣∣
2

dt ≤ C(T, γ)
∑
k∈Z

| ak |2 (3.34)

for all sequence of complex numbers ak ∈ `2.

Remark 3.6. Ingham’s inequality may be viewed as a generalization of the orthog-
onality property of trigonometric functions. Indeed, assume that

µk = kγ, k ∈ Z

for some γ > 0. Then (3.34) holds with equality for all k. We set T = 2π/γ. Then∫ 2π/γ

0

∣∣∣∣∣∑
k∈Z

ake
iγkt

∣∣∣∣∣
2

dt =
2π
γ

∑
k∈Z

| ak |2 . (3.35)

Note that under the weaker gap condition (3.33) we obtain upper and lower bounds
instead of identity (3.35). It is also important to note that the Ingham inequality
is in general false in the criticial case T = 2π/γ.

The uniform observability result we have proved is as follows:

Theorem 3.7. [18, 19]) Assume that ρ ∈ L∞(R) is `−periodic and such that

0 < ρm ≤ ρ(x) ≤ ρM <∞, a.e. x ∈ R.

Then, for any T > 2
√
ρ̄ there exist positive constant c(T ), C(T ) > 0 such that

1
C(T )

∫ T

0

|∂xu(1, t)|2 dt ≤ Eε(0) ≤ C(T )
∫ T

0

|∂xu(1, t)|2 dt (3.36)

for all 0 < ε < 1 and all solution u of (3.1) in the class

u ∈ span
{
wε

k : k ≤ c(T )ε−1
}
. (3.37)

Remark 3.8. Observe that the minimal time needed to apply Theorem 3.7 is 2
√
ρ̄

which is the observability time for the limit wave equation{
ρ̄utt − uxx = 0, 0 < x < 1, 0 < t < T
u(0, t) = u(1, t) = 0, 0 < t < T.

(3.38)
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Proof of Theorem 3.7. We set

µε
k =

√
λε

k; µε
−k = −µε

k; wε
−k = wε

k, for k ≥ 1.

Then, according to (3.9) u can also be written as follows

u =
∑

k∈Z\{0}

cεke
iµε

ktwε
k (3.39)

where

cεk =
aε

k − ibεk/µ
ε
k

2
and aε

k = aε
−k, bεk = bε−k.

According to (3.39) we have

∂xu(1, t) =
∑

k∈Z\{0}

cεke
iµε

kt∂xw
ε
k(1). (3.40)

We now consider solutions with frequencies in the range k ≤ cε−1. Then

u =
∑

|k|≤c/ε
k 6=0

cεke
iµε

ktwε
k (3.41)

and
∂xu(1, t) =

∑
|k|≤c/ε

l 6=0

cεke
iµε

kt∂xw
ε
k(1). (3.42)

Given T > 2
√
ρ̄ we have

T > 2π/γ (3.43)
for some γ < π/

√
ρ̄. Let δ > 0 be such that

π√
ρ̄
− δ ≥ γ > 0. (3.44)

According to Theorem 3.4, there exists c(δ) > 0 such that√
λε

k+1 −
√
λε

k ≥
π√
ρ̄
− δ ≥ γ (3.45)

for all 0 < ε < 1 and k ≤ C(δ)ε−1.
In view of (3.45) we can apply Ingham’s Theorem to the series in (3.42) provided

c ≤ c(δ). It then follows that there exists C > 0 such that

1
C

∑
|k|≤c/ε

k 6=0

| cεk |2| ∂xw
ε
k(1) |2 ≤

∫ T

0

∣∣∣∣∣∣∣
∑

|k|≤c/ε
k 6=0

cεke
iµε

ktwε
k

∣∣∣∣∣∣∣
2

dt

≤ C
∑

|k|≤c/ε
k 6=0

| cεk |2| ∂xw
ε
k(1) |2 . (3.46)

On the other hand, taking into account that∫ 1

0

|∂xw
ε
k(x)|2 dx = λε

k

∫ 1

0

| wε
k | ρ(x/ε)dx = λε

k,

according to (3.26) we deduce that, for k ≤ c/ε,

λε
k

C
≤ |∂xw

ε
k(1)|2 ≤ Cλε

k. (3.47)
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Combining (3.45) and (3.47) and choosing c > 0 possibly smaller such that both
(3.46) and (3.47) apply in the range k ≤ cε−1 we deduce that

1
C

∑
|k|≤c/ε

k 6=0

λε
k | cεk |2 ≤

∫ T

0

∣∣∣∣∣∣∣
∑

|k|≤c/ε
k 6=0

cεke
iµε

kt∂xw
ε
k(1)

∣∣∣∣∣∣∣
2

dt (3.48)

≤ C
∑

|k|≤c/ε
k 6=0

λε
k | cεk |2 .

On the other hand,∑
|k|≤c/ε

k 6=0

λε
k | cεk |2=

1
2

∑
1≤k≤c/ε

[
λε

k | aε
k |2 + | bεk |2

]
= Eε(0). (3.49)

Combining (3.48)-(3.49) inequality (3.36) follows.

Let us summarize the content of this section. We have shown that the uniform
observability does not hold when the wavelength of solutions is of the order ε of the
microstructure. We have also shown that uniform observability holds in the class
of solutions whose spectrum is in the range λ ≤ cε−2 for c > 0 small enough.

Analyzing carefully the proof above it can be seen that if

k ≤ cε−1 (3.50)

with
0 < c < c∗ (3.51)

and

c∗ =
(
ρ̄3/2

3π2d1

)1/2

(3.52)

uniform observability holds for T > T (c) where T (c) is such that
• T (c) ↘ 2

√
ρ̄ as c↘ 0;

• T (c) ↗∞ as c↗ c∗.
This result shows that the observability inequality for the limit wave equation

(3.38) may be viewed as the limit when ε and c tend to zero of observability in-
equalities for systems (3.1) in the range (3.50).

All this section has been devoted to the analysis of the low frequencies k ≤ c/ε.
Note however that, under suitable regularity assumptions on the density ρ, the
WKB method allows to obtain an asymptotic expansion for the high frequencies
k >> ε−1 as well. We refer to [19] for a careful analysis of this problem. At this
respect, it is worth mentioning that, in a first approximation, the effective wave
equation for the high frequencies is{

ρ∗utt − uxx = 0, 0 < x < 1, 0 < t < T
u(0, t) = u(1, t) = 0, 0 < t < T

where

ρ∗ =

(
1
`

∫ `

0

√
ρdx

)2

.

Note that ρ∗ < ρ̄. This indicates that the time of observability for the high fre-
quencies k >> ε−1 is smaller than for the low ones.
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We refer to [16] for a detailed discussion of the behavior of eigenvalues and
eigenfunctions corresponding to the critical case λ ∼ cε−2.

4. Approximate and null controllability of the linear heat equation.

4.1. The cost of approximate controllability. In this section we present some
of the results of [41] on the cost of approximate controllability of the system (2.10).
In [41] we address the more general case of the heat equation perturbed by a
potential depending both in space and time. But here, to simplify the presentation,
we shall focus on the constant coefficient heat equation.

We shall use in an essential manner the fact that solutions of (2.10) and of its
adjoint (2.11) may be developed in Fourier series. Therefore the case in which
potentials depending both on x and t arise needs further developments (we refer to
[41]).

As we said above, without loss of generality, we may assume that u0 ≡ 0. Given
u1 ∈ L2(Ω) and ε > 0 we set

C(u1, ε) = min
f∈Uad

‖ f ‖L2(ω×(0,T )) (4.1)

where Uad is the set of admissible controls v ∈ L2(ω × (0, T )) such that u the
solution of (2.10) with u0 ≡ 0 satisfies

‖ u(T )− u1 ‖L2(Ω)≤ ε. (4.2)

Obviously C(u1, ε) represents the cost (the size of the control) needed to drive the
solution of (2.10) from the initial state u0 ≡ 0, to a ball of radius ε around u1.

We have the following result

Theorem 4.1. ([41]) Let T > 0 and ω be a non-empty open subset of Ω. Then
there exists a constant C > 0 such that

C(u1, ε) ≤ exp
(
C ‖ u1 ‖H1

0 (Ω)

/
ε
)
‖ u1 ‖L2(Ω) (4.3)

for all u1 ∈ H1
0 (Ω) and 0 < ε <‖ u1 ‖L2(Ω).

In order to prove this result we first need suitable observability estimates for
the adjoint system (2.11). Using the methods developed in [45] and [42] based on
Carleman inequalities, in [41] the following is proved:

Proposition 4.2. ([41]) There exists a constant C > 0 depending only on Ω and
ω such that

‖ ϕ(x, 0) ‖2L2(Ω)≤ exp
(
C

(
1 +

1
T

))∫ T

0

∫
ω

ϕ2dxdt (4.4)

holds for all solution of (2.11) and for all T > 0.

Note that (4.4) provides the observability inequality (2.17), but that it also
provides the dependence of the observability constant on T .

However to prove Theorem 4.1 we need a more precise result providing global
information about ϕ in all of Q. The following holds:

Proposition 4.3. ([41]) Let T > 0 and ω be an open non-empty subset of Ω. There
exist positive constants c, C > 0 which are independent of T such that∫ T

0

∫
Ω

e−
c(1+T )

T−t ϕ2dxdt ≤ eC(1+ 1
T )

∫ T

0

∫
ω

ϕ2dxdt (4.5)

holds for all solution ϕ of (2.11).
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Estimate (4.5) is a direct consequence of the Carleman estimate proved in [41]
following the method introduced in [45]. Let us recall it briefly.

We introduce a function η0 = η0(x) such that
η0 ∈ C2(Ω̄)
η0 > 0 in Ω, η0 = 0 in ∂Ω
∇η0 6= 0 in Ω\ω.

(4.6)

The existence of this function was proved in [45]. In particular cases, for instance
when Ω is star-shaped with respect to a point in ω, it can be built explicitly without
difficulty.

Let k > 0 such that
k ≥ 5 max

Ω̄
η0 − 6 min

Ω̄
η0

and let
β0 = η0 + k, β̄ =

5
4

maxβ0, ρ1(x) = eλβ̄ − eλβ0

with λ, β̄ sufficiently large. Let be finally

γ = ρ1(x)/(t(T − t)); ρ(x, t) = exp(γ(x, t))

and the space of functions

Z =
{
q : Q→ R : q ∈ C2(Q̄), q = 0 en Σ

}
.

The following Carleman inequality holds:

Proposition 4.4. ([41]) There exist positive constants C∗, s1 > 0 such that
1
s

∫
Q

ρ−2st(T − t)
[
|qt|2 + |∆q|2

]
dxdt

+s
∫

Q

ρ−2st−1(T − t)−1 |∇q|2 dxdt+ s3
∫

Q

ρ−2st−3(T − t)−3q2dxdt

≤ C∗

[∫
Q

ρ−2s |∂tq + ∆q|2 dxdt+ s3
∫ T

0

∫
ω

ρ−2st−3(T − t)−3q2dxdt

]
(4.7)

for all q ∈ Z and s ≥ s∗.
Moreover, C∗ depends only on Ω and ω and s1 is of the form

s1 = s0(Ω, ω)(T + T 2),

where s0(Ω, ω) only depends on Ω and ω.

From (4.7) we deduce (4.5) immediately taking into account that the first term
on the right hand side of (4.7) vanishes when ϕ is the solution of (2.11) and making
use only of the third term on the left hand side of (4.7).

From (4.5) we easily obtain an observability result for ϕ at time t = 0 which im-
proves substantially (4.4). To do this we consider the eigenvalues and eigenfunctions
of the Laplacian: {

−∆wk = λkwk in Ω
wk = 0 on ∂Ω. (4.8)

We normalize the eigenfunctions {wk} such that they constitute an orthonormal
basis of L2(Ω). Then the solution ϕ of (2.11) may be written as

ϕ =
∞∑

k=1

ake
−λk(T−t)wk(x)
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where {ak} are the coefficients of the initial datum

ϕ0 =
∞∑

k=1

akwk.

Let us now analyze the left hand side of (4.5). We have∫ T

0

∫
Ω

e−
c(1+T )

T−t ϕ2dxdt =
∞∑

k=1

a2
k

∫ T

0

e−
c

T−t e−2λk(T−t)dt.

It is easy to check that∫ T

0

e−
c(1+T )

T−t e−2λk(T−t)dt ≥ e−c∗
√

λk when λk →∞

for a suitable c∗ depending on T .
In this way we obtain the following result:

Theorem 4.5. ([41]) Let T > 0 and ω an open non-empty subset of Ω. There exist
C, c > 0 such that

∞∑
k=1

|ak|2 e−c
√

λk ≤ C

∫ T

0

∫
ω

ϕ2dxdt (4.9)

for all solution of (2.11).

Note that the left hand side of (4.9) defines a norm of ϕ0 that corresponds to
the one in the domain of the operator exp

(
−c
√
−∆

)
.

It is also worth to note that (4.9) is much stronger than (2.17) since the later
provides an upper bound on the quadratic the quantity

∞∑
k=1

a2
ke
−Tλk .

Let us now proceed to the proof of Theorem 4.1 from Theorem 4.5.
Given u1 ∈ H1

0 (Ω) we introduce its Fourier series expansion:

u1 =
∞∑

k=1

bkwk. (4.10)

We have

‖ u1 ‖2H1
0 (Ω)=

∞∑
k=1

b2kλk; ‖ u1 ‖2L2(Ω)=
∞∑

k=1

b2k. (4.11)

Given N we fix the following projection of u1:

u1
N =

N∑
k=1

bkwk. (4.12)

We look for a control fN such that the solution of (2.10) satisfies exactly

u(T ) = u1
N . (4.13)

This is possible since u1
N ∈ S(T )L2(Ω).

In view of (4.12)-(4.13) we have:

‖ u(T )− u1 ‖2L2(Ω)=
∞∑

k=N+1

b2k ≤
1

λN+1

∞∑
k=1

b2kλk = ‖ u1 ‖2H1
0 (Ω)

/
λN+1. (4.14)
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Then we choose N = N(ε) such that

‖ u1 ‖2H1
0 (Ω)

/
λN+1 ≤ ε2 . (4.15)

In this way, we will have

‖ u(T )− u1 ‖L2(Ω)≤ ε (4.16)

and

C
(
u1, ε

)
≤‖ fN(ε) ‖L2(ω×(0,T )) . (4.17)

Let us finally see how we may get upper bounds on fN(ε). It is easy to prove
that the control fN(ε) satisfying (4.13) can be chosen in the form

fN(ε) = ϕ in ω × (0, T )

where ϕ is the solution of (2.11) with initial datum ϕ0, the minimizer of the func-
tional

J(ϕ0) =
1
2

∫ T

0

∫
ω

ϕ2 −
∫

Ω

u1
Nϕ

0dx

in the Hilbert space

H =

{
ϕ0 : the solution ϕ of (2.11) is such that

∫ T

0

∫
ω

ϕ2dxdt <∞

}
.

In view of inequality (4.9) it is easy to see that the minimizer ϕ0 of J exists.
Moreover, the minimum satisfies

‖ ϕ ‖2L2(ω×(0,T )) ≤ C

N∑
k=1

b2ke
2c
√

λk (4.18)

≤ Ce2c
√

λN ‖ u1 ‖2L2(Ω)≤ Ce2c
√

λN+1 ‖ u1 ‖2L2(Ω) .

In view of (4.15), (4.17) and (4.18) we immediately deduce the result in Theorem
4.1.

Let us now see that the estimates above on the cost of approximate controllability
in Theorem 4.1 are optimal.

The following holds:

Theorem 4.6. ([41]) Let T > 0 and ω be an open non-empty subset of Ω such that
ω 6= Ω. Then, there exists a sequence

{
u1
ε
}

of data in H1
0 (Ω) such that

‖ u1
ε ‖H1

0 (Ω)= 1, ∀ ε > 0 (4.19)

and

C
(
u1
ε, ε
)
≥ exp(c/ ε) when ε→ 0 (4.20)

for a suitable positive constant c > 0.
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Proof. It is sufficient to build a sequence of solutions {ϕε} of the adjoint problem
(2.11) such that

‖ ϕ0
ε ‖L2(Ω)

[
‖ ϕ0

ε ‖L2(Ω)

‖ ϕ0
ε ‖H1

0 (Ω)

− ε

]
≥ exp(c/ ε) (4.21)

and ∫ T

0

∫
ω

ϕ2
εdxdt = 1, ∀ ε > 0. (4.22)

Indeed, once this sequence is built, it is sufficient to take

u1
ε = ϕ0

ε
/
‖ ϕ0

ε ‖H1
0 (Ω) . (4.23)

Then, if fε is the control of (2.10) such that

‖ uε(T )− u1
ε ‖L2(Ω)≤ ε,

we have∫ T

0

∫
ω

fεϕεdxdt =
∫

Ω

uε(T )ϕ0
εdx =

∫
Ω

(
uε(T )− u1

ε
)
ϕ0
εdx+

∫
Ω

u1
εϕ

0
εdx

and therefore, in view of (4.21) and (4.23):

‖ fε ‖L2(ω×(0,T )) ≥
∫

Ω

u1
εϕ

0
εdx− ε ‖ ϕ0

ε ‖L2(Ω)

= ‖ ϕ0
ε ‖L2(Ω)

[
‖ ϕ0

ε ‖L2(Ω)

‖ ϕ0
ε ‖H1

0 (Ω)

− ε

]
+ exp(c/ ε).

In order to build the sequence of solutions of (2.11) satisfying (4.21) and (4.22)
we assume, without loss of generality, that 0 /∈ Ω\ω̄. Then, for a suitable A > 0 we
have | x |> A in ω̄ ∪ (Rn\Ω). We then introduce the function

ψ(x, t) = cos
(
Ax1

2t

)
eA2/4tG(x, t)

where G is the fundamental solution of the heat equation

G(x, t) = (4πt)−N/2 exp
(
− | x |2

/
4t
)
.

It is then easy to see that ψ is a solution of the heat equation in the whole space.
We then define ψε(x, t) = ψ(x, t + δ(ε)) with 0 < δ(ε) < 1 that will be chosen

later on. It is easy to check that

0 < C1 ≤
∫ T

0

∫
ω

| ψε |2 dxdt < C2, ∀ ε > 0.

On the other hand
| ψε |≤ C, on Σ, ∀ ε > 0.

Let then hε be the solution of ∂thε −∆hε = 0 in Q
hε = −ψε on Σ
hε(0) = 0 in Ω.

From the maximum principle we have

| hε |≤ C in Q, ∀ ε > 0.
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Finally we set χε = ψε − hε that satisfies ∂tχε −∆χε = 0 in Q
χε = 0 on Σ
χε(0) = ψ(δ(ε)) in Ω.

We normalize the solution χε such that∫ T

0

∫
ω

χ2
εdxdt = 1

and we make the change of variables t → T − t. We then obtain a sequence of
solutions ϕε of (2.11) satisfying (4.22). On the other hand, an explicit computation
shows that

‖ ϕ0
ε ‖L2(Ω)

/
‖ ϕ0

ε ‖H1
0 (Ω)∼ ‖ ψ(δ(ε)) ‖L2(Ω)

/
‖ ψ(δ(ε)) ‖H1

0 (Ω)∼ cδ(ε)

with c > 0, while

‖ ϕ0
ε ‖L2(Ω)∼‖ ψ(δ(ε)) ‖L2(Ω)∼ Cδ(ε)n/2eA2/2δ(ε).

In this way we obtain (4.21).

4.2. Convergence rates in the penalization procedure. It is rather natural to
build approximate controls by penalizing a suitable optimal control problem. This
has been done systematically for instance for numerical simulations in the works
by Glowinski [49] and Glowinski et al. [50]. This method has also been used to
prove the approximate controllability for some linear and semilinear heat equations
in [91] and [39] respectively.

Let us briefly describe this procedure in the example under consideration. First
of all, without loss of generality, we set u0 ≡ 0. Given u1 ∈ L2(Ω) we introduce the
functional

Jk(f) =
1
2

∫ T

0

∫
ω

f2dxdt+
k

2
‖ u(T )− u1 ‖2L2(Ω) (4.24)

which is well defined in L2(ω×(0, T )) for all k > 0, where u is the solution of (2.10)
with u0 ≡ 0.

It was proved in [91] that Jk has a unique minimizer fk ∈ L2(ω × (0, T )) for all
k > 0 and that this sequence of controls is such that

uk(T ) → u1 in L2(Ω), k →∞. (4.25)

In view of (4.25), to compute the control f satisfying (4.2) it is sufficient to take
f = fk where k = k(ε) is sufficiently large.

Using the results above it is easy to get explicit estimates of the rate of conver-
gence in (4.25) (we refer to [41] for the details of the proof):

Theorem 4.7. ([41]) Given T > 0, ω an open non-empty subset of Ω and u1 ∈
H1

0 (Ω), there exists C > 0 such that

‖ uk(T )− u1 ‖≤ C/ log k (4.26)

and
‖ fk ‖L2(ω×(0,T ))≤ C

√
k/ log k (4.27)

when k →∞.

Note that (4.26)-(4.27) provide logarithmic (and therefore very slow) convergence
rates. This fact agrees with the extremely high cost (exponentially depending on
1/ ε) that approximate controllability requires.
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4.3. Unbounded domains. It is well known that one of the most relevant features
of the heat equation is the infinite speed of propagation. This property has also
important consequences on the controllability of heat like equations. Indeed, due to
infinite speed of propagation, the heat equation is approximately controllable also
in unbounded domains, in an arbitrarily small time and with controls supported in
any non empty open subset of the domain or of the boundary. This result can be
also extended to the semilinear setting (see [137]).

The situation is completely different in the context of null controllability. Indeed,
as it was shown in [110], the heat equation in the half line is not controllable to
zero by means of boundary controls. Even more, it was proved that none C∞ and
compactly supported initial data may be driven to zero in any time T > 0. This
result was later extended to several space dimensions in [111]. According to these
results, roughly speaking, in order to obtain the null controllability property for
the heat equation in an unbounded domain one may only leave a bounded domain
without control. In this geometrical setting the null controllability property was
proved in [14].

5. The semilinear heat equation. In section 4 we have analyzed in some de-
tail the approximate and null controllability of the constant coefficient linear heat
equation and the corresponding observability estimates.

In this section, following [157], we discuss the approximate controllability of the
semilinear heat equation with a globally Lipschitz nonlinearity. We shall apply the
fixed point method introduced in [147] and later adapted to the heat equation in
[34] and [149].

Consider the semilinear heat equation ut −∆u+ f(u,∇u) = v1ω in Ω× (0, T )
u = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω.

(5.1)

The function f : R × Rn → R is assumed to be globally Lipschitz all along the
paper, i.e.

∃L > 0 :| f(y, ξ)− f(z, η) |≤ L [| y − z | + | ξ − η |] ,
∀y, z ∈ R; ξ, η ∈ Rn. (5.2)

We observe that, for any y ∈ L2(0, T ; H1
0 (Ω)) the following identity holds:

f(y,∇y)− f(0, 0) =
∫ 1

0

d

dσ
(f(σy, σ∇y))dσ (5.3)

=
∫ 1

0

∂f

∂y
(σy, σ∇y)dσy +

∫ 1

0

∂f

∂η
(σy, σ∇y)dσ · ∇y.

In (5.3) ∂f/∂y and ∂f/∂η denote respectively the partial derivatives of f with
respect to the variables y and ∇y.

We set

F (y) =
∫ 1

0

∂f

∂y
(σy, σ∇y)dσ; G(y) =

∫ 1

0

∂f

∂η
(σy, σ∇y)dσ. (5.4)

In view of the globally Lipschitz assumption (5.2) on f , F andGmap L2
(
0, T ;H1

0 (Ω)
)

into a bounded set of L∞(Ω× (0, T )). Moreover,

‖ F (y) ‖L∞(Ω×(0,T ))≤ L, ∀y ∈ L2
(
0, T ;H1

0 (Ω)
)
, (5.5)

‖ G(y) ‖(L∞(Ω×(0,T )))n≤ L, ∀y ∈ L2
(
0, T ;H1

0 (Ω)
)
, (5.6)
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L being the Lipschitz constant of f .
Using these notations system (5.1) can be rewritten as follows ut −∆u+ F (u)u+G(u) · ∇u+ f(0, 0) = v1ω in Ω× (0, T )

u = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω.

(5.7)

Given y ∈ L2
(
0, T ;H1

0 (Ω)
)

we now consider the “linearized” system ut −∆u+ F (y)u+G(y) · ∇u+ f(0, 0) = v1ω in Ω× (0, T )
u = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω.

(5.8)

Observe that (5.8) is a linear system on the state u with potentials

a = F (y) ∈ L∞(Ω× (0, T )) and b = G(y) ∈ (L∞(Ω× (0, T )))n

satisfying the following uniform bound

‖ a ‖L∞(Ω×(0,T ))≤ L, ‖ b ‖(L∞(Ω×(0,T )))n≤ L. (5.9)

With this notation system (5.8) may be rewritten in the form ut −∆u+ au+ b · ∇u+ f(0, 0) = v1ω in Ω× (0, T )
u = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω.

(5.10)

We now fix the initial datum u0 ∈ L2(Ω), the target u1 ∈ L2(Ω), ε > 0 and the
finite-dimensional subspace E of L2(Ω).

Using the variational approach to approximate controllability introduced by
Lions in [89], further developed in [34] and adapted to the problem of finite-
approximate controllability in [149], we build a control v for the linear system
(5.8) such that {

‖ u(T )− u1 ‖L2(Ω)≤ ε,
πE(u(T )) = πE(u1). (5.11)

Thus, for any y ∈ L2
(
0, T ; H1

0 (Ω)
)

we define a control v = v(x, t; y) ∈ L2(ω ×
(0, T )) such that the solution u = u(x, t; y) ∈ C

(
[0, T ]; L2(Ω)

)
∩ L2

(
0, T ; H1

0 (Ω)
)

of (5.10) satisfies (5.11). This allows to build a non-linear mapping

N : L2
(
0, T ; H1

0 (Ω)
)
→ L2

(
0, T ; H1

0 (Ω)
)
, N (y) = u. (5.12)

We claim that the problem is then reduced to finding a fixed point of N . Indeed,
if y ∈ L2

(
0, T ; H1

0 (Ω)
)

is such that N (y) = u = y, the solution u of (5.10) is
actually solution of (5.7). Then, the control v = v(y) is the one we were looking
for since, by construction, u = u(y) satisfies (5.11).

As we shall see, the nonlinear map N :L2
(
0, T ; H1

0 (Ω)
)
→ L2

(
0, T ; H1

0 (Ω)
)

satisfies the following two properties:

N is continuous and compact; (5.13){
the range of N is bounded, i.e. ∃R > 0 :
‖ N (y) ‖L2(0,T ; H1

0 (Ω))≤ R, ∀y ∈ L2
(
0, T ; H1

0 (Ω)
)
. (5.14)

In view of these two properties and as a consequence of Schauder’s fixed point
Theorem, the existence of a fixed point of N follows immediately.

The uniform bound (5.14) on the range of N is a consequence of the uniform
bound (5.9) on the potentials a and b which, in turn, is a consequence of the globally
Lipschitz assumption (5.2).
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Roughly speaking, the control problem for the semilinear equation (5.1) through
this fixed point method, is reduced to the obtention of a uniform controllability
result for the family of linear control problems (5.10) under the constraint (5.9).
At this level the unique continuation result of C. Fabre [33] for equations of the
form

ϕt −∆ϕ+ aϕ+ div(bϕ) = 0
with L∞-coefficients a and b plays a crucial role.

As a consequence of these developments the following result is proved:

Theorem 5.1. ([39, 157]) Assume that f satisfies (5.2). Then, for all T > 0,
system (5.1) is finite-approximately controllable.

More precisely, for any finite-dimensional subspace E of L2(Ω), u0, u1 ∈ L2(Ω)
and ε > 0 there exists a control v ∈ L2(ω× (0, T )) such that the solution u of (5.1)
satisfies (5.11).

Remark 5.2. This result was proved in [39] by means of a suitable penalization
of an optimal control problem. The proof based on the fixed point technique we
present here was given in [157].

The rest of this section is devoted to give a brief sketch of the proof of this result.
We proceed in several steps.

Step 1. Let us first analyze in more detail the controllability of the linearized
systems.

Given L∞-potentials a ∈ L∞(Ω × (0, T )), b ∈ (L∞(Ω× (0, T )))n and a real
constant λ ∈ R we consider the control problem ut −∆u+ au+ b · ∇u+ λ = v1ω in Ω× (0, T )

u = 0 on ∂Ω× (0, T )
u(0) = u0 in Ω.

(5.15)

Let E be a finite-dimensional subspace of L2(Ω). Given u0 ∈ L2(Ω), u1 ∈ L2(Ω)
and ε > 0 we look for a control v ∈ L2(ω× (0, T )) such that the solution u of (5.15)
satisfies (5.11).

The following holds:

Proposition 5.3. Let T > 0. Then, there exists a control v ∈ L2(ω × (0, T )) such
that the solution u ∈ C

(
[0, T ]; L2(Ω)

)
∩L2

(
0, T ; H1

0 (Ω)
)

of (5.15) satisfies (5.11).
Moreover, for any R > 0 there exists a constant C(R) > 0 such that

‖ v ‖L2(ω×(0,T ))≤ C(R) (5.16)

for any a ∈ L∞(Ω× (0, T )), b ∈ (L∞(Ω× (0, T )))n satisfying

‖ a ‖L∞(Ω×(0,T ))≤ R, ‖ b ‖(L∞(Ω×(0,T )))n≤ R. (5.17)

Remark 5.4. Proposition 5.3 does not provide any estimate on how the norm of
the control v depends on E, u0, u1 and ε > 0. However (5.16) guarantees that v
remains uniformly bounded when the potentials a, b remain bounded in L∞.

The control v is not unique. The construction we develop below provides the
control of minimal L2-norm. It is this control of minimal norm which satisfies the
uniform boundedness condition (5.16).
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Proof of Proposition 5.3. Without loss of generality we may assume that λ = 0
and u0 ≡ 0.

Consider the adjoint system −ϕt −∆ϕ+ aϕ− div(bϕ) = 0 in Ω× (0, T )
ϕ = 0 on ∂Ω× (0, T )
ϕ(T ) = ϕ0 in Ω.

(5.18)

Taking into account that the potentials a and b are bounded it is easy to see
that for any ϕ0 ∈ L2(Ω) system (5.18) has a unique solution in the class ϕ ∈
C
(
[0, T ]; L2(Ω)

)
∩ L2

(
0, T ; H1

0 (Ω)
)
.

We now consider the functional J : L2(Ω) → R defined as follows:

J(ϕ0) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+ ε ‖ (I − πE)ϕ0 ‖L2(Ω) −
∫

Ω

u1ϕ0dx. (5.19)

It is easy to see that

J : L2(Ω) → R is continuous; (5.20)

J : L2(Ω) → R is convex. (5.21)
Moreover

J : L2(Ω) → R is strictly convex . (5.22)
This property is a consequence of the following unique continuation result due

to Fabre [33]:

Proposition 5.5. ([33]). Assume that a ∈ L∞(Ω×(0, T )) and b ∈ (L∞(Ω×(0, T )))n.
Let ϕ0 ∈ L2(Ω) be such that the solution ϕ of (5.18) satisfies

ϕ = 0 in ω × (0, T ). (5.23)

Then, necessarily, ϕ0 ≡ 0.

Using this unique continuation result it can be shown that the functional J :
L2(Ω) → R is also coercive. More precisely, the following holds:

Proposition 5.6. Under the assumptions above

lim inf
‖ϕ0‖L2(Ω)→∞

J(ϕ0)
‖ ϕ0 ‖L2(Ω)

≥ ε. (5.24)

Proof of Proposition 5.6. The proof of this Proposition follows the argument
in [34] and [145] combined with the unique-continuation result of Proposition 5.5.
Let us recall it for the sake of completeness.

Let
{
ϕ0

j

}
be a sequence in L2(Ω) such that∥∥ϕ0

j

∥∥
L2(Ω)

→∞ as j →∞. (5.25)

We denote by {ϕj} the corresponding sequence of solutions of (5.18).
We also set

ϕ̂0
j = ϕ0

j

/
‖ ϕ0

j ‖L2(Ω), ϕ̂j = ϕj

/
‖ ϕ0

j ‖L2(Ω) . (5.26)

Obviously ϕ̂j is the solution of (5.18) with the normalized initial data ϕ̂0
j .

We have
J
(
ϕ0

j

)
‖ ϕ0

j ‖L2(Ω)
=

‖ ϕ0
j ‖L2(Ω)

2

∫ T

0

∫
ω

|ϕ̂j |2 dxdt (5.27)

+ ε
∥∥(I − πE)ϕ̂0

j

∥∥
L2(Ω)

−
∫

Ω

u1ϕ̂0
jdx.
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We distinguish the following two cases:

Case 1. lim inf
j→∞

∫ T

0

∫
ω

|ϕ̂j |2 dxdt > 0;

Case 2. lim inf
j→∞

∫ T

0

∫
ω

|ϕ̂j |2 dxdt = 0.

In the first case, due to (5.25), the first term in (5.27) tends to +∞ while the
other two remain bounded. We deduce that

lim inf
j→∞

J
(
ϕ0

j

)∥∥ϕ0
j

∥∥
L2(Ω)

= +∞

in this case.
Let us now analyze the second case. Let us consider a subsequence (still denoted

by the index j to simplify the notation) such that∫ T

0

∫
ω

|ϕ̂j |2 dxdt→ 0, as j →∞. (5.28)

By extracting subsequences we may deduce that

ϕ̂0
j ⇀ ϕ̂0 weakly in L2(Ω). (5.29)

Consequently
ϕ̂j ⇀ ϕ̂ weakly in L2

(
0, T ; H1

0 (Ω)
)

(5.30)

where ϕ̂ is the solution of (5.18) with datum ϕ̂0. According to (5.28) we deduce
that

ϕ̂ ≡ 0 in ω × (0, T )

and, as a consequence of Proposition 5.5, that ϕ̂0 ≡ 0. Therefore, if (5.28) holds,
necessarily

ϕ̂0
j ⇀ 0 weakly in L2(Ω). (5.31)

But then, E being finite-dimensional, πEϕ̂
0
j → 0 in L2(Ω) and therefore∥∥(I − πE)ϕ̂0

j

∥∥
L2(Ω)

→ 1 (5.32)

since
∥∥ϕ̂0

j

∥∥
L2(Ω)

= 1 for all j.
As a consequence of (5.31) and (5.32) we deduce that

lim inf
j→∞

J
(
ϕ0

j

)∥∥ϕ0
j

∥∥
L2(Ω)

≥ lim inf
j→∞

[
ε
∥∥(I − πE)ϕ̂0

j

∥∥
L2(Ω)

−
∫

Ω

u1ϕ̂0
jdx

]
= ε.

This concludes the proof of Proposition 5.6.

In view of the properties (5.20), (5.21) and (5.24) of the functional J we deduce
that J achieves its minimum at a unique ϕ̂0 ∈ L2(Ω), i.e.{

J
(
ϕ̂0
)

= min
ϕ0∈L2(Ω)

J
(
ϕ0
)

J
(
ϕ̂0
)
< J

(
ϕ0
)
, ∀ϕ0 ∈ L2(Ω), ϕ0 6= ϕ̂0.

(5.33)

It is easy to see that the control

v = ϕ̂ in ω × (0, T ), (5.34)
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ϕ̂ being the solution of (5.18) with the minimizer ϕ̂0 as datum is such that the
solution u of  ut −∆u+ au+ b · ∇u = v1ω in Ω× (0, T )

u = 0 on ∂Ω× (0, T )
u(0) = 0 in Ω

(5.35)

satisfies (5.11) (see [157] for the details of the proof).
This concludes the proof of the finite-approximate controllability of the linear

equation (5.15).
In order to prove the uniform bound (5.16), we first observe that the problem

may be reduced to the case u0 ≡ 0 and λ = 0, provided u1 is allowed to vary in a
relatively compact set of L2(Ω).

The following holds:

Proposition 5.7. Let R > 0 and K be a relatively compact set of L2(Ω). Then,
the coercivity property (5.24) holds uniformly on u1 ∈ K and potentials a and b
satisfying (5.17).

Remark 5.8. Note that the functional J depends on the potentials a and b and the
target u1. Proposition 5.7 guarantees the uniform coercivity of these functionals
when u1 ∈ K, K being a compact set of L2(Ω) and the potentials a and b are
uniformly bounded.

As a consequence of Proposition 5.7 we deduce that the minimizers ϕ̂0 of the
functionals J are uniformly bounded when u1 ∈ K and the potentials a and b are
uniformly bounded. Consequently, the controls v = ϕ̂ are uniformly bounded as
well.

The proof of Proposition 5.7 is similar to the one we have given for Proposition
5.5.

This completes the proof of Proposition 5.3.

Step 2. As indicated above, in order to conclude the existence of a fixed point of
N by means of Schauder’s fixed point method it is sufficient to check the following
three facts:

N : L2
(
0, T ; H1

0 (Ω)
)
→ L2

(
0, T ; H1

0 (Ω)
)

is continuous; (5.36)

N : L2
(
0, T ; H1

0 (Ω)
)
→ L2

(
0, T ; H1

0 (Ω)
)

is compact; (5.37)

∃R > 0 :‖ N (y) ‖L2(0,T ; H1
0 (Ω))≤ R, ∀y ∈ L2

(
0, T ; H1

0 (Ω)
)
. (5.38)

Let us prove these three properties.

Continuity of N . Assume that yj → y in L2
(
0, T ; H1

0 (Ω)
)
. Then the potentials

F (yj), G(yj) are such that

F (yj) → F (y) in Lp(Ω× (0, T )) (5.39)

G(yj) → G(y) in (Lp(Ω× (0, T )))n (5.40)
for all 1 ≤ p <∞ and

‖ F (yj) ‖L∞(Ω×(0,T ))≤ L; ‖ G(yj) ‖(L∞(Ω×(0,T )))n≤ L. (5.41)

According to Proposition 5.3 the corresponding controls are uniformly bounded:

‖ vj ‖L2(ω×(0,T ))≤ C, ∀j ≥ 1 (5.42)
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and, more precisely,
vj = ϕ̂j in ω × (0, T ) (5.43)

where ϕ̂j solves
−ϕt −∆ϕ+ F (yj)ϕ− div (G(yj)ϕ) = 0 in Ω× (0, T )
ϕ = 0 on ∂Ω× (0, T )
ϕ(T ) = ϕ̂0

j in Ω
(5.44)

with the datum ϕ̂0
j minimizing the corresponding functional Jj . We also have∥∥ϕ̂0

j

∥∥
L2(Ω)

≤ C. (5.45)

By extracting subsequences we have

ϕ̂0
j ⇀ ϕ̂0 weakly in L2(Ω) (5.46)

and, in view of (5.39)-(5.40), arguing as in the proof of Proposition 5.7, we deduce
that

ϕ̂j ⇀ ϕ̂ weakly in L2
(
0, T ; H1

0 (Ω)
)

(5.47)
where ϕ̂ solves −ϕt −∆ϕ+ F (y)ϕ− div (G(y)ϕ) = 0 in Ω× (0, T )

ϕ = 0 on ∂Ω× (0, T )
ϕ(T ) = ϕ̂0 in Ω.

(5.48)

We also have that

∂tϕ̂j is bounded in L2
(
0, T ; H−1(Ω)

)
, (5.49)

and, once again, by Aubin-Lions compactness Lemma, it follows that

ϕ̂j → ϕ̂ strongly in L2(Ω× (0, T )). (5.50)

Consequently
vj → v in L2(ω × (0, T )) (5.51)

where
v = ϕ̂ in ω × (0, T ). (5.52)

It is then easy to see that

uj → u in L2
(
0, T ; H1

0 (Ω)
)

(5.53)

where ut −∆u+ F (y)u+G(y) · ∇u+ f(0, 0) = v1ω in Ω× (0, T )
u = 0 on ∂Ω× (0, T )
u(0) = u0 in Ω

(5.54)

and (5.11) holds.
To conclude the continuity of N it is sufficient to check that the limit ϕ̂0 in

(5.46) is the minimizer of the functional J associated to the limit control problem
(5.54), (5.11).

To do this, given ψ0 ∈ L2(Ω) we have to show that J
(
ϕ̂0
)
≤ J

(
ψ0
)
. But this is

immediate since, by lower semicontinuity, we have

J
(
ϕ̂0
)
≤ lim inf

j→∞
Jj

(
ϕ̂0

j

)
,

on one hand,
J
(
ψ0
)

= lim inf
j→∞

Jj

(
ψ0
)
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on the other one, and finally

Jj

(
ϕ̂0

j

)
≤ Jj

(
ψ0
)

since ϕ̂0
j is the minimizer of Jj .

Compactness of N . The arguments above show that when y lies in a bounded
set B of L2

(
0, T ;H1

0 (Ω)
)
, u = N (y) also lies in a bounded set of L2

(
0, T ; H1

0 (Ω)
)
.

We have to show that N (B) is relatively compact in L2
(
0, T ; H1

0 (Ω)
)
. But this

can be obtained easily by means of the regularizing effect of the heat equation.
Indeed, we have  ut −∆u = h in Ω× (0, T )

u = 0 on ∂Ω× (0, T )
u(0) = u0 in Ω,

with
h = v1ω − F (y)u−G(y) · ∇u− f(0, 0)

which is uniformly bounded in L2(Ω× (0, T )).
Then, u can be decomposed as

u = p+ q

where  pt −∆p = 0 in Ω× (0, T )
p = 0 on ∂Ω× (0, T )
p(0) = u0 in Ω

and  qt −∆q = h in Ω× (0, T )
q = 0 on ∂Ω× (0, T )
q(0) = 0 in Ω.

Obviously, p is a fixed element of L2
(
0, T ; H1

0 (Ω)
)
. On the other hand, by

classical regularity results on the heat equation we deduce that q lies in a bounded
set of L2

(
0, T ; H2(Ω)

)
∩H1

(
0, T ; L2(Ω)

)
, which, as a consequence of Aubin-Lions

compactness Lemma, is a relatively compact set of L2
(
0, T ; H1

0 (Ω)
)
.

This completes the proof of the compactness of N .

Boundedness of the range of N . Proposition 5.3 shows that there exists C > 0
such that the control v = v(y) satisfies

‖ v(y) ‖L2(ω×(0,T ))≤ C.

Classical energy estimates for system (5.54) show that

‖ u(y) ‖L2(0,T ; H1
0 (Ω))≤ C

as well, since the potentials involved in it are uniformly bounded.
This concludes the proof of Theorem 5.1.

6. Space semi-discretizations.
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6.1. Galerkin approximations of the Navier-Stokes equations. Let Ω be a
bounded open set of R2 or R3. Let ω be an open non-empty subset of Ω. Given
T > 0 we consider the Navier-Stokes equations

yt − µ∆y + y · ∇y = −∇p+ vχω in QT ,
y = 0 on ΣT ,
div y = 0 in QT ,
y(0) = y0 in Ω.

(6.1)

In (6.1) y = y(x, t) is the velocity field (the state), p = p(x, t) is the pressure,
v = v(x, t) the control and χω denotes the characteristic function of the set ω.
Thus the control acts on the system through the subset ω.

We denote by V the Hilbert space

V =
{
ϕ ∈

(
H1

0 (Ω)
)3

: divϕ = 0 in Ω
}

endowed with the norm induced by
(
H1

0 (Ω)
)3.

Let E be a finite-dimensional subspace of V : E = span[e1, · · · , eN ].
The Galerkin approximation of system (6.1) is as follows: y ∈ C([0, T ];E)

y(0) = πE(y0)
(yt, e) + µ(∇y,∇e) + (y · ∇y, e) = (vχω, e) , ∀e ∈ E.

(6.2)

In (6.2), πE denotes the orthogonal projection from V over E and (·, ·) denotes the
scalar product in L2(Ω).

System (6.2) is a set of N ordinary differential equations which are non-linear.
Global existence of solutions is insured by the fact that (e ·∇e, e) = 0 for all e ∈ E.

The following holds:

Theorem 6.1. ([96]-[98]) Assume that

the dimension of span {ej |ω}j=1,··· ,N equals N. (6.3)

Then, for any T > 0 system (6.2) is exactly controllable. More precisely, for any
y0 ∈ E and y1 ∈ E there exists a control v ∈ L2 (ω × (0, T )) such that the solution
y of (6.2) satisfies

y(T ) = y1. (6.4)

Assumption (6.3) guarantees that N linearly independent controls act on the
N−dimensional system (6.2). This is a natural sufficient condition for controllabil-
ity, but very possibly it is not a necessary condition.

The existence of Galerkin basis satisfying (6.3) is proved in [95]. In fact, in [95]
it is proved that condition (6.3) is fulfilled generically among the set of Riesz basis
of V .

The proof of Theorem 6.1 uses the fixed point argument of section 5. Given
z ∈ C([0, T ];E) we analyze the exact controllability of the linearized system y ∈ C([0, T ];E)

y(0) = πE(y0)
(yt, e) + µ(∇y,∇e) + (z · ∇y, e) = (vχω, e) , ∀e ∈ E.

(6.5)

Note that in system (6.5) the non-linear term (y · ∇y, e) of (6.2) has been replaced
by the linear one (z · ∇y, e).

We prove the exact controllability of system (6.5) using the Hilbert Uniqueness
Method (HUM) (see J.-L. Lions [88]). At this level the assumption (6.3) plays a
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crucial role. We then obtain bounds on the control v and the state y which are
independent of z and finally we apply Schauder’s fixed point Theorem as in section
5 to the map z 7→ y from C([0, T ];E) into itself. To do this we use the cancellation
property of the non-linearity of the Navier-Stokes equations, namely, the fact that
(z · ∇e, e) = 0. The fixed point y of this map solves the non-linear system (6.2)
and, by construction, satisfies the control constraint at time t = T .

We refer to [96] for the details of the proof. We also refer to [97, 98] for the case
where the control acts on the boundary of Ω.

There are by now a number of significant results on the null-controllability of the
Navier-Stokes equations (see for instance [28] and [29]). The problem of passing
to the limit in the controls obtained in Theorem 6.1 as the dimension N of the
finite-dimensional system tends to infinity is open.

6.2. Finite-difference space discretizations of the 1−d wave equation. Let
us consider the 1− d wave equation utt − uxx = 0, 0 < x < L, t > 0

u(0, t) = u(L, t) = 0, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L.

(6.6)

The energy

E(t) =
1
2

∫ L

0

[
|ut(x, t)|2 + |ux(x, t)|2

]
dx (6.7)

remains constant in time.
Let us consider now the wave equation with a control acting on the extreme

x = L of the boundary ytt − yxx = 0, 0 < x < L, t > 0
y(0, t) = 0, y(L, t) = v(t), t > 0
y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < L.

(6.8)

It is by now well known that the wave equation (6.8) is exactly controllable. More
precisely, the following holds: If T ≥ 2L, for any (y0, y1) ∈ L2(0, L) × H−1(0, L)
there exists a control v ∈ L2(0, T ) such that the solution of (6.8) satisfies

y(x, T ) ≡ yt(x, T ) ≡ 0. (6.9)

This exact controllability result is equivalent to the following boundary observ-
ability property of the adjoint system: For any T ≥ 2L there exists a positive
constant C(T ) > 0 such that

E(0) ≤ C(T )
∫ T

0

|ux(L, t)|2 dt (6.10)

holds for every solution of (6.6).
In this section we report on the work of [62, 63] in which we analyze the semi-

discrete version of (6.10).
Let us take N ∈ N and set h = L/(N + 1). We consider the following finite-

difference space semi-discretization of (6.6):
u′′j = [uj+1 + uj−1 − 2uj ]

/
h2, t > 0, j = 1, · · · , N

u0 = uN+1 = 0, t > 0
uj(0) = u0,j , u

′
j(0) = u1,j , j = 1, · · · , N.

(6.11)



CONTROLLABILITY OF PDE AND ITS APPROXIMATIONS 503

The energy of system (6.11) is given by

Eh(t) =
h

2

N∑
j=1

∣∣u′j(t)∣∣2 +
h

2

N∑
j=0

|uj+1(t)− uj(t)|2

h2
(6.12)

and it is also conserved in time.
We analyze the following semi-discrete version of (6.10):

Eh(t) ≤ C

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣2 dt. (6.13)

More precisely, we are interested on the existence of a positive constant C > 0
such that (6.13) holds. Moreover, we want to analyze whether (6.13) holds with
a constant C which is independent of h so that the observability inequality (6.10)
for the continuous wave equation (6.6) might be viewed as the limit as h → 0 of
observability inequalities of the form (6.13) for the semi-discrete systems (6.11).

Let us first analyze the spectrum of system (6.11). The corresponding eigenvalue
problem is of the form:{

− [ωj+1 + ωj−1 − 2ωj ]/h2 = λωj , j = 1, · · · , N
ω0 = ωN+1 = 0. (6.14)

The eigenvalues and eigenvectors of (6.14) may be computed explicitly (see [64]): λj(h) = 4
h2 sin2

(
πjh
2L

)
, j = 1, · · · , N

ωj ≡ (ωj,1, · · · , ωj,N ) ; ωj,k = sin
(

jπhk
L

)
, j, k = 1, · · · , N

(6.15)

The following identity holds:

h
N∑

k=0

∣∣∣∣ωk+1 − ωk

h

∣∣∣∣2 =
2L

4− λh2

∣∣∣ωN

h

∣∣∣2 (6.16)

for any eigenvector of (6.15). Observe that this identity provides the ratio be-
tween the total energy of the eigenvectors (represented by the quantity on the left
hand side of (6.16)) and the energy concentrated on the boundary (represented by
|ωN/h|2).

It is also easy to check that

λN (h)h2 → 4 as h→ 0. (6.17)

Combining (6.16)-(6.17) it is immediate to see that the following negative result
holds:

Theorem 6.2. ([62, 63]) For any T > 0

sup
u solution of (6.11)

 Eh(0)∫ T

0

|uN (t)/h|2 dt

→∞, as h→ 0. (6.18)

In order to state the positive counterpart of Theorem 6.18 we develop solutions
of (6.11) in Fourier series:

u =
N∑

j=1

(
aj sin

(√
λjt
)

+ bj cos
(√

λjt
))

ωj . (6.19)
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The fact that the constant in (6.13) may not remain uniformly bounded as h→ 0
(as stated in (6.18)) is due to the pathological behavior of the high frequencies.
Indeed, as a consequence (6.16)-(6.17), it follows that the ratio

h
N∑

k=0

∣∣∣∣ωk+1 − ωk

h

∣∣∣∣2
/

|ωN/h|2 (6.20)

tends to infinity as h→ 0 for the N -th eigenvectors. This allows to prove that the
uniform observability inequality fails simply by considering solutions of (6.11) of
the form

u = sin
(√

λN (h)t
)
ωN (6.21)

in separated variables corresponding to the N -th eigenvectors, which is associated
to the largest eigenvalue λN (h).

This indicates that, in order to obtain uniform observability inequalities, the
high frequencies have to be filtered or truncated. To do that, given any 0 < γ < 1
we introduce the following class of solutions Cγ(h) of (6.11) of the form:

u =
γN∑
j=1

(
aj sin

(√
λjt
)

+ bj cos
(√

λjt
))

ωj . (6.22)

Note that in (6.22) the eigenvectors corresponding to the indexes j > γN do not
enter.

The following holds:

Theorem 6.3. ([62, 63]) For any 0 < γ < 1 there exists T (γ) > 2L such that for
all T > T (γ) there exists C = C(T, γ) such that (6.13) holds for any solution of
(6.11) in the class Cγ(h) and any h > 0.

Moreover, T (γ) ↗∞ as γ ↗ 1 and T (γ) ↘ 2L as γ ↘ 0.

This result was proved in [62, 63] using two different methods: Discrete multiplier
techniques and Ingham’s inequalities for series of complex exponentials.

Note that, as indicated in Theorem 6.3, the time needed for the uniform observ-
ability to hold tends to infinity as γ ↗ 1. This is due to the fact that the gap
between the roots of the consecutive highest eigenvalues entering in the Fourier
development of solutions in Cγ(h) tends to zero as γ ↗ 1. On the other hand as
γ ↘ 0 the time needed for the uniform observability converges to the observability
time of the continuous wave equation. Therefore, as a consequence of Theorem 6.3,
the observability of the wave equation (6.6) may be obtained as limit of uniform
observability inequalities as h→ 0 provided γ → 0 as well.

There are clear analogies between the results of section 3 on the wave equation
with rapidly oscillating coefficients and those of this section. We refer to [158] for
a detailed discussion of this issue.

Very recently a fundamental contribution to this subject has been made by S.
Micu [107]. He has proved that, in particular, if the initial data to be controlled
for the wave equation has only a finite number of non trivial Fourier components,
then the controls of the semi-discrete systems remain bounded as the mesh size
tends to zero. This result has been proved by a technical analysis of the behavior
of the biorthogonal families to the sequences of complex exponentials involved in
the Fourier expansion of solutions of the semi-discrete systems.

Note that this positive result by S. Micu is compatible with the negative ones we
presented above. Indeed, as shown above, the boundary observability inequalities
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for the semi-discrete systems are not uniform when the mesh size tends to zero.
This, according to the Uniform Boundedness Principle, indicates that there exist
initial data for the wave equation in L2(0, L) × H−1(0, L), for which the controls
of the semi-discrete problem diverge. According to the result by S. Micu this
pathological initial data have necessarily an infinite number of non trivial Fourier
components.

6.3. Finite-difference space semi-discretizations of the heat equation. Let
us consider now the following 1−d heat equation with control acting on the extreme
x = L:  ut − uxx = 0, 0 < x < L, 0 < t < T

u(0, t) = 0, u(L, t) = v(t), 0 < t < T
u(x, 0) = u0(x), 0 < x < L.

(6.23)

This is the so called boundary control problem.
It is by now well known that system (6.23) is null controllable (see for instance

D.L. Russell [129, 130]). To be more precise, the following holds: For any T > 0,
and u0 ∈ L2(0, L) there exists a control v ∈ L2(0, T ) such that the solution y of
(6.1) satisfies

u(x, T ) ≡ 0 in (0, L). (6.24)

As indicated in section 4, this null controllability result is equivalent to a suitable
observability inequality for the adjoint system: ϕt + ϕxx = 0, 0 < x < L, 0 < t < T,

ϕ(0, t) = ϕ(L, t) = 0, 0 < t < T
ϕ(x, T ) = ϕ0(x), 0 < x < L.

(6.25)

The corresponding observability inequality is as follows: For any T > 0 there exists
C(T ) > 0 such that ∫ L

0

ϕ2(x, 0)dx ≤ C

∫ T

0

|ϕx(L, t)|2 dt (6.26)

holds for every solution of (6.25).
Let us consider now the semi-discrete versions of systems (6.23) and (6.25):

u′j − [uj+1 + uj−1 − 2uj ]
/
h2 = 0, 0 < t < T, j = 1, · · · , N

u0 = 0, uN+1 = v, 0 < t < T
uj(0) = u0,j , j = 1, · · · , N ;

(6.27)


ϕ′j + [ϕj+1 + ϕj−1 − 2ϕj ]

/
h2 = 0, 0 < t < T, j = 1, · · · , N

ϕ0 = ϕN+1 = 0, 0 < t < T
ϕj(T ) = ϕ0,j , j = 1, · · · , N.

(6.28)

In this case, in contrast with the results we have described on the wave equation,
systems (6.27) and (6.28) are uniformly controllable and observable respectively as
h→ 0.

More precisely, the following results hold:

Theorem 6.4. ([103, 104]) For any T > 0 there exists a positive constant C(T ) > 0
such that

h
N∑

j=1

|ϕj(0)|2 ≤ C

∫ T

0

∣∣∣∣ϕN (t)
h

∣∣∣∣2 dt (6.29)

holds for any solution of (6.28) and any h > 0.
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Theorem 6.5. ([103, 104]) For any T > 0 and {u0,1, · · · , u0,N} there exists a
control v ∈ L2(0, T ) such that the solution of (6.27) satisfies

uj(T ) = 0, j = 1, · · · , N. (6.30)

Moreover, there exists a constant C(T ) > 0 independent of h > 0 such that

‖ v ‖2L2(0,T )≤ Ch
N∑

j=1

|u0,j |2 . (6.31)

These results were proved in [104] using Fourier series and a classical result on
the sums of real exponentials (see for instance Krabs [68] and Fattorini-Russell [37])
that plays the role of Ingham’s inequality in the context of parabolic equations.

Let us recall it briefly: Given ξ > 0 and a decreasing function N : (0,∞) →
N such that N(δ) → ∞ as δ → 0, we introduce the class L(ξ,N) of increasing
sequences of positive real numbers {µj}j≥1 such that

µj+1 − µj ≥ ξ > 0, ∀j ≥ 1, (6.32)∑
k≥N(δ)

µ−1
k ≤ δ, ∀δ > 0. (6.33)

The following holds:

Proposition 6.6. Given a class of sequences L(ξ,N) and T > 0 there exists a
constant C > 0 (which depends on ξ,N and T ) such that∫ T

0

∣∣∣∣∣
∞∑

k=1

ake
−µkt

∣∣∣∣∣
2

dt ≥ C∑
k≥1

µ−1
k


∑
k≥1

| ak |2 e−2µkT

µk
(6.34)

for all {µj} ∈ L(ξ,N) and all bounded sequence of real numbers.

One can even prove that the null controls for the semi-discrete equation (6.27)
can be built so that, as h→ 0, they tend to the null control for the continuous heat
equation (6.23) (see [104]).

7. Some open problems. In this section we present some open problems related
to the topics we addressed in this paper.

1.- The extension of the results of section 3 on the wave equation with rapidly
oscillating coefficients to the multi-dimensional wave equation is a widely open
problem.

Nevertheless, the multi-dimensional counterpart of Theorem 3.3 for smooth den-
sities ρ has been proved by G. Lebeau in [80] using Bloch waves decompositions
and microlocal analysis techniques.

2.- In section 4 we have proved sharp estimates on the cost of approximate
controllability for the constant coefficient heat equation.

In the more general case where the equation under consideration is (2.21) with
a = a(x, t) a L∞ potential depending both on x and t the estimate we get in [41] is
worse than in (4.3). Indeed, we get an estimate of the order of exp(c/ε2) as ε→ 0.
Whether this estimate is sharp or not is an open problem. Note that the estimate
we got in section 4 of the order of exp(c/ε) is also valid when a = a(x) since we
may use Fourier series developments. The same can be said about the case where
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a depends on t only since a simple change of unknown reduces the problem to the
constant coefficient heat equation. The problem is open when a depends both on
x and t.

3.- In the context of the constant coefficient heat equation we have obtained the
sharp estimate

∞∑
k=1

|ak|2 e−c
√

λk ≤ C

∫ T

0

∫
ω

ϕ2dxdt (7.1)

for the solutions ϕ of the adjoint heat equation (2.11).
The problem of characterizing the best constant c in (7.1) in terms of the geo-

metric properties of Ω and ω and T is also open. At this respect one should take
into account that the construction in Theorem 4.6 provides an explicit lower bound
on the constant c in terms of the radius A of the largest ball contained in Ω \ ω.

4.- The results of section 6.2 on the exact controllability of the finite-difference
approximations of the wave equation has been extended to two space dimensions
in [156]. The results of section 6.3 on the null controllability of the finite-difference
approximations of the heat equation to several space dimensions can also be ex-
tended to the case where the domain is a square and the control acts on one side
of the boundary (see [103]). The problem is open in the case of a general domain.

5.- The questions we have discussed in problem # 4 above are open in the case
of the semilinear heat and wave equations with globally Lipschitz nonlinearities.

6.- In section 6.1 we have proved the controllability of the Galerkin approxi-
mations of the Navier-Stokes equations under the condition (6.3) on the Galerkin
basis. The problem is open when (6.3) does not hold.

7.- The results of section 6.1 do not provide any estimate on the size of the
control in terms of the dimension N of the Galerkin approximation. Passing to
the limit as N → ∞ to recover the controllability properties of the Navier-Stokes
equations that are by now well known (see [28, 29] and [45]) is a completely open
problem.
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