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CONTROLLABILITY OF SECOND-ORDER IMPULSIVE

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

STATE-DEPENDENT DELAY

Ganesan Arthi and Krishnan Balachandran

Abstract. The purpose of this paper is to investigate the controllability
of certain types of second order nonlinear impulsive systems with state-
dependent delay. Sufficient conditions are formulated and the results are

established by using a fixed point approach and the cosine function theory.
Finally examples are presented to illustrate the theory.

1. Introduction

In this paper, we establish sufficient conditions for the controllability of
nonlinear second order impulsive functional differential equations with state-
dependent delay. More precisely, we consider the following abstract control
system:

x′′(t) = Ax(t) +Bu(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], t ̸= ti,(1)

x0 = φ ∈ B, x′(0) = η ∈ X,(2)

△x(ti) = Ii(xti), i = 1, 2, . . . , n,(3)

△x′(ti) = Ji(xti), i = 1, 2, . . . , n,(4)

where A is the infinitesimal generator of a strongly continuous cosine family of
bounded linear operators (C(t))t∈R defined on a Banach space X. The control
function u(·) is given in L2(I, U), a Banach space of admissible control functions
with U as a Banach space and B : U → X as a bounded linear operator; the
function xt : (−∞, 0] → X,xt(θ) = x(t + θ), belongs to some abstract phase
space B described axiomatically; 0 < t1 < · · · < tn < a are prefixed numbers;
f : I×B → X, ρ : I×B → (−∞, a], Ii(·) : B → X, Ji(·) : B → X are appropriate
functions and the symbol △ξ(t) represents the jump of the function ξ(·) at t,
which is defined by △ξ(t) = ξ(t+)− ξ(t−).
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Impulsive differential equations arise naturally from a wide variety of appli-
cations such as aircraft control, inspection process in operation research, popu-
lation dynamics, drug administration and threshold theory in biology. That is
why in recent years they form an object of investigations. However, the control
theory of impulsive differential equations has not yet been sufficiently studied
elaborately compared to that of ordinary differential equations. The concept
of controllability plays an important role in the analysis and design of control
systems. Controllability of nonlinear systems with and without impulses has
been studied by many authors [3, 22, 26-28, 30]. For more details on impulsive
differential equations and on their applications, we refer to the monographs of
Lakshmikantham et al. [24] and Samoilenko and Perestyuk [31] and the refer-
ences therein. Neutral differential systems with impulses arise in many areas
of applied mathematics and these systems have been extensively investigated
during the last decades.

On the other hand, delay-differential equations form one of the oldest branch-
es of the theory of infinite-dimensional dynamical systems - theory which de-
scribes qualitative properties of systems, changing in time. Recently a new class
of delay equations - equations with state-dependent delay (SDD) has attracted
much attention of researchers. Functional differential equations with state-
dependent delay have become more important in some mathematical models
of real phenomena. The reader is referred to [1, 4, 5, 7, 8, 11-14, 32] and refer-
ences therein for some examples and applications. The problem of the existence
of solutions of functional differential equations with state-dependent delay has
been treated recently in [2, 16-20, 25]. The literature related to second order
nonlinear systems with state-dependent delay is not vast, to our knowledge,
in the recent works [6, 15]. We also cite [9, 12, 35] for the case of neutral
differential equations with dependent delay. To the best of our knowledge, the
study of controllability of abstract nonlinear second order impulsive systems
with state-dependent delay is an almost untreated topic in the literature and
this fact is the main motivation for this article.

The rest of this article is organized as follows. In Section 2, we introduce
some notations and necessary preliminaries. In Section 3, we establish the
controllability results for the abstract Cauchy problem. In Section 4, we present
some examples to show the application of the results.

2. Preliminaries

In what follows we recall some definitions, notations, lemmas and results
that we need in the sequel.

Throughout this paper, (X, ∥·∥) is a Banach space and A is the infinitesimal
generator of a strongly continuous cosine family of bounded linear operators
(C(t))t∈R on Banach space X. We denote by (S(t))t∈R the sine function asso-

ciated with (C(t))t∈R which is defined by S(t)x =
∫ t
0
C(s)xds for x ∈ X and

t ∈ R.
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The notation [D(A)] stands for the domain of the operator A endowed with
the graph norm ∥x∥A = ∥x∥ + ∥Ax∥, x ∈ D(A). Moreover, in this work, E
is the space formed by the vectors x ∈ X for which C(·)x is of class C1 on
R. It was proved by Kisynski [23] that E endowed with the norm ∥x∥E =
∥x∥ + sup0≤t≤1 ∥AS(t)x∥, x ∈ E, is a Banach space. The operator valued
function

H(t) =

[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded linear operators on the space E×X
generated by the operator A = [ 0 I

A 0 ] defined on D(A)×E. From this, it follows
that AS(t) : E → X is a bounded linear operator and that AS(t)x→ 0, t→ 0,
for each x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable function,

then the function y(t) =
∫ t
0
S(t − s)x(s)ds defines an E-valued continuous

function. This assertion is a consequence of the fact that∫ t

0

H(t− s)

[
0
x(s)

]
ds =

[ ∫ t

0

S(t− s)x(s)ds,

∫ t

0

C(t− s)x(s)ds
]T

defines an E ×X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + g(t), 0 ≤ t ≤ a,(5)

x(0) = u, x′(0) = v,(6)

where g : I → X is an integrable function, has been discussed in [33]. Similarly
the existence of solutions of semilinear second order abstract Cauchy problems
has been treated in [34]. We only mention here that the function x(·) given by

x(t) = C(t)u+ S(t)v +

∫ t

0

S(t− s)g(s)ds, 0 ≤ t ≤ a,(7)

is called a mild solution of (5)-(6) and that when u ∈ E, x(·) is continuously
differentiable and

x′(t) = AS(t)u+ C(t)v +

∫ t

0

C(t− s)g(s)ds, 0 ≤ t ≤ a.(8)

For additional details on the cosine function theory, we refer the reader to
[10, 33, 34].

To consider the impulsive conditions (3)-(4), it is convenient to introduce
some additional concepts and notations.

A function u : [µ, τ ] → X is said to be a normalized piecewise continuous
function on [µ, τ ] if u is piecewise continuous and left continuous on (µ, τ ]. We
denote by PC([µ, τ ], X) the space of normalized piecewise continuous functions
from [µ, τ ] into X. In particular, we introduce the space PC formed by all
normalized piecewise continuous functions u : [0, a] → X such that u(·) is
continuous at t ̸= ti, u(t

−
i ) = u(ti) and u(t+i ) exists, for i = 1, 2, . . . , n. In

this paper, we always assume that PC is endowed with the norm ∥u∥PC =
sups∈I ∥u(s)∥. It is clear that (PC, ∥ · ∥PC) is a Banach space.
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In what follows, we put t0 = 0, tn+1 = a and, for u ∈ PC, we denote by ũi,
for i = 0, 1, . . . , n−1, the function ũi ∈ C([ti, ti+1];X) given by ũi(t) = u(t) for
t ∈ (ti, ti+1] and ũi(ti) = limt→t+i

u(t). Moreover, for a set B ⊆ PC, we denote

by B̃i, for i = 0, 1, . . . , n− 1, the set B̃i = {ũi : u ∈ B}. We will herein define
the phase space B axiomatically, using ideas and notations developed in [21]
and suitably modify to treat retarded impulsive differential equations. More
precisely, B will denote the vector space of functions defined from (−∞, 0] into
X endowed with a seminorm denoted ∥ · ∥B and such that the following axioms
hold:

(A) If x : (−∞, µ + b] → X, b > 0, is a function such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ, µ+ b], X), then, for every t ∈ [µ, µ+ b), the following
conditions hold:
(i) xt is in B,
(ii) ∥x(t)∥ ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t− µ) sup {∥x(s)∥ : µ ≤ s ≤ t}+M(t− µ)∥xµ∥B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞),K is continuous,
M is locally bounded and H,K,M are independent of x(·).

(B) The space B is complete.

Now we consider some examples of phase spaces.

Example 2.1. The phase space PCh(X).
A function ψ : (−∞, 0] → X is said to be normalized piecewise continuous if

ψ is left continuous and the restriction of ψ to any interval [−r, 0] is piecewise
continuous. Let h : (−∞, 0] → [1,∞) be a continuous nondecreasing function
which satisfies the conditions (g-1), (g-2) in the terminology of [21]. Next we
slightly modify the definition of spaces ch, c

0
h in [21]. We denote, by PCh(X),

the space formed by the normalized piecewise continuous functions ψ such that
ψ/h is bounded on (−∞, 0] and, by PC0

h(X), the subspace of PCh(X) consisting
of functions ψ such that [ψ(θ)/h(θ)] → 0 as θ → −∞. It is easy to see that B =

PCh(X) and B = PC0
h(X) endowed with the norm ∥ψ∥B := supθ∈(−∞,0]

∥ψ(θ)∥
h(θ)

are phase spaces in the sense defined above.

Example 2.2. The phase space PCr × Lp(h,X).
Let r ≥ 0, 1 ≤ p < ∞ and let h(·) : (−∞,−r] → R be a non-negative

measurable function which satisfies the conditions (g-5), (g-6) in the terminol-
ogy of [21]. Briefly this means that h is locally integrable and there exists a
non-negative, locally bounded function γ(·) on (−∞, 0] such that h(ξ + θ) ≤
γ(ξ)h(θ) for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a
set with Lebesgue measure zero. The space B = PCr × Lp(h,X) consists
of all classes of Lebesgue-measurable functions φ : (−∞, 0] → X such that
φ|[−r,0] ∈ PC([−r, 0], X) and h∥φ∥p is Lebesgue integrable on (−∞,−r). The
seminorm in this space is defined by

∥φ∥B = sup {∥φ(θ)∥ : −r ≤ θ ≤ 0}+
(∫ −r

−∞
h(θ)∥φ(θ)∥pdθ

)1/p
.
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Proceeding, as in the proof of [21, Theorem 1.3.8], it follows that B is a space
which verifies the axioms (A) and (B). Moreover, when r = 0, this space
coincides with C0 × Lp(h,X) and if, in addition p = 2, we can take H =

1,K(t) = (1 +
∫ 0

−t h(θ)dθ)
1/2 and M(t) = γ(−t)1/2 for t ≥ 0.

Remark 2.3. Let ψ ∈ B and t ≤ 0. The notation ψt represents the function
defined by ψt(θ) = ψ(t + θ). Consequently if the function x(·) in the axiom
(A) is such that x0 = ψ, then xt = ψt. We observe that ψt is well defined for
t < 0, since the domain of ψ is (−∞, 0]. We also note that, in general, ψt /∈ B;
consider, for example, functions of the type xµ(t) = (t − µ)−αχ(µ,0], µ > 0,
where χ(µ,0] is the characteristic function of (µ, 0], µ < −r and αp ∈ (0, 1), in
the space PCr × Lp(h;X).

The terminology and notations are those generally used in functional anal-
ysis. In particular, for Banach spaces (Z, ∥ · ∥Z), (W, ∥ · ∥W ), the notation
L(Z,W ) stands for the Banach space of bounded linear operators from Z into
W and we abbreviate to L(Z) whenever Z = W . Moreover Br(x : Z) denotes
the closed ball with center at x and radius r > 0 in Z. Additionally, for a
bounded function ξ : I → Z and 0 ≤ t ≤ a, we employ the notation ∥ξ∥t for

∥ξ∥t = sup {∥ξ(s)∥ : s ∈ [0, t]} .

In particular, if M(·),K(·) are the functions in the axiom (A), then Ma =
supt∈IM(t) and Ka = supt∈I K(t).

For completeness, we include the following well-known results.

Lemma 2.4 ([26, Lemma 3.1.]). Assume that (Hf1), (Hf2), (W ) hold. Then
the operator

Ny(t) =

∫ t

0

S(t− s)[f(s, y(s)) + (Buy)(s)]ds, t ∈ [0, b],

is completely continuous.

Lemma 2.5 ([29, Sadovskii’s Fixed Point Theorem]). Let F be a condensing
operator on a Banach space X. If F (S) ⊂ S for a convex, closed and bounded
set S of X, then F has a fixed point in S.

3. Controllability results

In this section, we study the controllability results for the abstract nonlinear
second order impulsive systems. Along this section N and Ñ are positive
constants such that ∥C(t)∥ ≤ N and ∥S(t)∥ ≤ Ñ for every t ∈ I. To prove
our results, we always assume that ρ : I ×B → (−∞, a] is continuous and that
φ ∈ B.

In the sequel, we introduce the following conditions:

(Hφ) Let R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ I × B, ρ(s, ψ) ≤ 0}. The function t →
φt is well defined from R(ρ−) into B and there exists a continuous and
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bounded function Jφ : R(ρ−) → (0,∞) such that ∥φt∥B ≤ Jφ(t)∥φ∥B
for every t ∈ R(ρ−).

(H1) The function f : I × B → X satisfies the following conditions:
(i) Let x : (−∞, a] → X be such that x0 = φ and x|I ∈ PC. The

function t → f(t, xρ(t,xt)) is measurable on I and the function

t→ f(s, xt) is continuous on R(ρ−) ∪ I for every s ∈ I.
(ii) For each t ∈ I, the function f(t, ·) : B → X is completely contin-

uous.
(iii) There exist an integrable functionm : I → [0,∞) and a continuous

non-decreasing function W : [0,∞) → (0,∞) such that, for every
(t, ψ) ∈ I × B,

∥f(t, ψ)∥ ≤ m(t)W (∥ψ∥B), lim inf
ξ→∞

W (ξ)

ξ
= Λ <∞.

(iv) For every positive constant r, there exists an αr ∈ L1(I) such that

sup
∥ψ∥≤r

∥f(t, ψ)∥ ≤ αr(t).

(H2) B is a continuous operator from U to X and the linear operator W :
L2(I, U) → X, defined by

Wu =

∫ a

0

S(a− s)Bu(s)ds,

has a bounded invertible operator W−1 which takes values in

L2(I, U)/kerW

such that ∥B∥ ≤ M1 and ∥W−1∥ ≤ M2 for some positive constants
M1,M2.

(H3) There are positive constants LIi , LJi such that

∥Ii(ψ1)− Ii(ψ2)∥ ≤ LIi∥ψ1 − ψ2∥B, ψj ∈ B, j = 1, 2, i = 1, 2, . . . , n,

∥Ji(ψ1)− Ji(ψ2)∥ ≤ LJi∥ψ1 − ψ2∥B, ψj ∈ B, j = 1, 2, i = 1, 2, . . . , n.

(H4) The maps Ii, Ji : B → X, i = 1, 2, . . . , n are completely continuous
and there exist continuous non-decreasing functions Φi,Γi : [0,∞) →
(0,∞), i = 1, 2, . . . , n, such that

∥Ii(ψ)∥ ≤ Φi(∥ψ∥B), lim inf
ζ→+∞

Φi(ζ)

ζ
= ζi <∞,

∥Ji(ψ)∥ ≤ Γi(∥ψ∥B), lim inf
ζ→+∞

Γi(ζ)

ζ
= σi <∞.

Remark 3.1. The condition (Hφ) is frequently satisfied by functions that are
continuous and bounded. In fact, assume that the space of continuous and
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bounded functions Cb((−∞, 0], X) is continuously included in B. Then there
exists L > 0 such that

∥φt∥B ≤ L
supθ≤0∥φ(θ)∥

∥φ∥B
∥φ∥B, t ≤ 0, φ ̸= 0, φ ∈ Cb((−∞, 0], X).

It is easy to see that the space Cb((−∞, 0], X) is continuously included in
PCh(X) and PC0

h(X). Moreover, if h(·) verifies (g-5), (g-6) in [21] and h(·)
is integrable on (−∞,−r], then the space Cb((−∞, 0], X) is also continuously
included in PCr ×Lp(h;X). For complementary details related to this matter,
see Proposition 7.1.1 and Theorems 1.3.2 and 1.3.8 in [21].

Remark 3.2. In the rest of this paper, y : (−∞, a] → X is the function defined
by y(t) = φ(t) on (−∞, 0] and y(t) = C(t)φ(0) + S(t)η for t ∈ I. Also
∥y∥a,Ma,Ka and Jφ0 are the constants defined by ∥y∥a = sups∈[0,a] ∥y(s)∥,
Ma = sups∈[0,a]M(s), Ka = sups∈[0,a]K(s), Jφ0 = supt∈R(ρ−) J

φ(t).

Definition 3.3. The system (1)-(4) is said to be controllable on the interval
I, if for every φ ∈ D(A), η ∈ E and x1 ∈ X, there exists a control u ∈ L2(I, U)
such that the mild solution x(t) of (1)-(4) satisfies x(a) = x1.

Lemma 3.4 ([19, Lemma 2.1]). Let x : (−∞, a] → X be a function such that
x0 = φ and x(·)|I ∈ PC. Then

∥xs∥B ≤ (Ma + Jφ0 )∥φ∥B +Ka sup {∥x(θ)∥; θ ∈ [0,max {0, s}]} , s ∈ R(ρ−) ∪ I.

Now we prove our main results.

3.1. Second-order impulsive systems

In this section, we study an impulsive control problem with state-dependent
delay of the form (1)-(4). Motivated by (7), we introduce the following concept
of mild solutions for the system (1)-(4).

Definition 3.5. A function x : (−∞, a] → X is called a mild solution of the
impulsive abstract Cauchy problem (1)-(4), if x0 = φ, xρ(s,xs) ∈ B for every
s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)φ(0) + S(t)η +

∫ t

0

S(t− s)
[
Bu(s) + f(s, xρ(s,xs))

]
ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Theorem 3.6. Let the conditions (Hφ), (H1)-(H4) hold. Then the system
(1)-(4) is controllable on (−∞, a] provided that(

1 + aÑM1M2

)[
Ka

(
ÑΛ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi + ÑLJi)

)]
< 1.
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Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the uni-
form convergence topology. Using the assumption (H2), for an arbitrary func-
tion x(·), we define the control

u(t) = W−1

[
x1 − C(a)φ(0)− S(a)η −

∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
n∑
i=1

C(a− ti)Ii(xti)−
n∑
i=1

S(a− ti)Ji(xti)

]
(t).

Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)η +

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds

+

∫ t

0

S(t− ξ)BW−1

[
x1 − C(a)φ(0)− S(a)η

−
∫ a

0

S(a− s)f(s, x̄ρ(s,x̄s))ds−
n∑
i=1

C(a− ti)Ii(x̄ti)

−
n∑
i=1

S(a− ti)Ji(x̄ti)

]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the
system (1)-(4). Clearly, (Ψx)(a) = x1, which means that the control u steers
the system from the initial state φ to x1 in time a, provided we can obtain
a fixed point of the operator Ψ which implies that the system is controllable.
Here x̄ : (−∞, a] → X is such that x̄0 = φ and x̄ = x on I. From the axiom
(A) and our assumptions on φ, we infer that Ψx ∈ PC.

Next we claim that there exists r > 0 such that Ψ(Br(y|I , Y )) ⊆ Br(y|I , Y ).
If this property is false, then for every r > 0, there exist xr ∈ Br(y|I , Y ) and
tr ∈ I such that r < ∥Ψxr(tr)− y(tr)∥. By using Lemma 3.4, we get

r < ∥Ψxr(tr)− y(tr)∥

≤ NH∥φ∥B + Ñ∥η∥+ Ñ

∫ tr

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds

+ ÑM1M2

∫ tr

0

[
∥x1∥+NH∥φ∥B + Ñ∥η∥

+ Ñ

∫ a

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds+

n∑
i=1

N(LIi∥x̄ti − yti∥B
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+ ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJi∥x̄ti − yti∥B + ∥Ji(yti)∥)

]
dξ

+

n∑
i=1

N(LIi∥x̄ti − yti∥B + ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJi∥x̄ti − yti∥B + ∥Ji(yti)∥)

≤ NH∥φ∥B + Ñ∥η∥+ ÑW ((Ma + Jφ0 )∥φ∥B +Kar +Ka∥y∥a)
∫ a

0

m(s)ds

+ aÑM1M2

[
∥x1∥+NH∥φ∥B + Ñ∥η∥

+ ÑW ((Ma + Jφ0 )∥φ∥B +Kar +Ka∥y∥a)
∫ a

0

m(s)ds

+

n∑
i=1

N(LIiKar + ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJiKar + ∥Ji(yti)∥)

]

+
n∑
i=1

N(LIiKar + ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJiKar + ∥Ji(yti)∥)

and hence(
1 + aÑM1M2

)[
Ka

(
ÑΛ

∫ a

0

m(s)ds+

n∑
i=1

(NLIi + ÑLJi)

)]
≥ 1,

which is contrary to our assumption.
Let r > 0 be such that Ψ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove

that Ψ is a condensing map on Br(y|I , Y ) into Br(y|I , Y ). We introduce the
decomposition Ψ = Ψ1 +Ψ2 where

Ψ1x(t) = C(t)φ(0) + S(t)η +
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti),

Ψ2x(t) =

∫ t

0

S(t− s)[f(s, x̄ρ(s,x̄s)) +Bu(s)]ds.

Now

∥Bu(s)∥ ≤ M1M2

[
∥x1∥+NH∥φ∥B + Ñ∥η∥+ Ñ

∫ a

0

αr(s)ds

+N
n∑
i=1

Φi∥x̄ti∥+ Ñ
n∑
i=1

Γi∥x̄ti∥

]

≤ M1M2

[
∥x1∥+NH∥φ∥B + Ñ∥η∥+ Ñ

∫ a

0

αr(s)ds

+
n∑
i=1

r(NΦi + ÑΓi)

]
= Ao.
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Here we can apply the same technique that is used in Lemma 2.4. From the
hypothesis (Hφ), (H1) and (H2), we infer that Ψ2 is completely continuous.
Moreover, from the estimate

∥Ψ1x−Ψ1z∥PC ≤ Ka

n∑
i=1

(
NLIi + ÑLJi

)
∥x− z∥PC ,

it follows that Ψ1 is a contraction on Br(y|I , Y ) which implies that Ψ is a
condensing operator on Br(y|I , Y ).

Finally, from Lemma 2.5, Ψ has a fixed point in Y . This means that any
fixed point of Ψ is a mild solution of the problem (1)-(4). This completes the
proof. □

3.2. Second-order impulsive neutral systems

In this section, we prove the result on controllability of nonlinear systems
with state-dependent delay. Consider the impulsive neutral control system of
the form

d

dt
[x′(t)− h(t, xt)] = Ax(t) +Bu(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], t ̸= ti,(9)

x0 = φ ∈ B, x′(0) = η ∈ X,(10)

△x(ti) = Ii(xti), i = 1, 2, . . . , n,(11)

△x′(ti) = Ji(xti), i = 1, 2, . . . , n,(12)

where A,B, ρ, f, Ii and Ji are defined as in equations (1)-(4). Here h : I×B →
X is an appropriate function. Furthermore we assume the following conditions:

(H5) The function h : I × B → X is completely continuous and there exists
Lh > 0 such that

∥h(t, ψ1)− h(t, ψ2)∥ ≤ Lh∥ψ1 − ψ2∥B, (t, ψi) ∈ I × B, i = 1, 2.

(H6) There exist positive constants c1, c2 such that ∥h(t, ψ)∥ ≤ c1∥ψ∥B + c2
for every (t, ψ) ∈ I × B.

Motivated by (7), let us start by defining what we mean by a mild solution of
problem (9)-(12).

Definition 3.7. A function x : (−∞, a] → X is called a mild solution of the
impulsive abstract Cauchy problem (9)-(12), if x0 = φ, xρ(s,xs) ∈ B for every
s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)φ(0) + S(t)[η − h(0, φ)] +

∫ t

0

C(t− s)h(s, xs)ds

+

∫ t

0

S(t− s)
[
Bu(s) + f(s, xρ(s,xs))

]
ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.
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Theorem 3.8. Let the conditions (Hφ), (H1)-(H6) hold. Then the system
(9)-(12) is controllable on (−∞, a] provided that(
1 + aÑM1M2

)[
Ka

(
aNLh + ÑΛ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi + ÑLJi)

)]
< 1.

Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the uni-
form convergence topology. Using the assumption (H2), for an arbitrary func-
tion x(·), we define the control

u(t) = W−1

[
x1 − C(a)φ(0)− S(a) [η − h(0, φ)]

−
∫ a

0

C(a− s)h(s, xs)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
n∑
i=1

C(a− ti)Ii(xti)−
n∑
i=1

S(a− ti)Ji(xti)

]
(t).

Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)[η − h(0, φ)] +

∫ t

0

C(t− s)h(s, x̄s)ds

+

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+

∫ t

0

S(t− ξ)BW−1

[
x1

−C(a)φ(0)− S(a) [η − h(0, φ)]−
∫ a

0

C(a− s)h(s, x̄s)ds

−
∫ a

0

S(a− s)f(s, x̄ρ(s,x̄s))ds−
n∑
i=1

C(a− ti)Ii(x̄ti)

−
n∑
i=1

S(a− ti)Ji(x̄ti)

]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the
system (9)-(12). Clearly, (Ψx)(a) = x1, which means that the control u steers
the system from the initial state φ to x1 in time a, provided we can obtain
a fixed point of the operator Ψ which implies that the system is controllable.
Here x̄ : (−∞, a] → X is such that x̄0 = φ and x̄ = x on I. From the axiom
(A) and our assumptions on φ, we infer that Ψx ∈ PC.

Next we prove that there exists r > 0 such that Ψ(Br(y|I , Y )) ⊆ Br(y|I , Y ).
If we assume that this property is false, then for every r > 0, there exist
xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ∥Ψxr(tr) − y(tr)∥. Then, from
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Lemma 3.4, we find that

r < ∥Ψxr(tr)− y(tr)∥

≤ NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥] +N

∫ tr

0

∥h(s, ¯(xr)s)− h(s, ys)∥ds

+N

∫ tr

0

∥h(s, ys)∥ds+ Ñ

∫ tr

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds

+ ÑM1M2

∫ tr

0

[
∥x1∥+NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥]

+N

∫ a

0

∥h(s, ys)∥ds+N

∫ a

0

∥h(s, ¯(xr)s)− h(s, ys)∥ds

+ Ñ

∫ a

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds+

n∑
i=1

N(LIi∥x̄ti − yti∥B + ∥Ii(yti)∥)

+
n∑
i=1

Ñ(LJi∥x̄ti − yti∥B + ∥Ji(yti)∥)

]
dξ

+
n∑
i=1

N(LIi∥x̄ti − yti∥B + ∥Ii(yti)∥)

+

n∑
i=1

Ñ(LJi∥x̄ti − yti∥B + ∥Ji(yti)∥)

≤ NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥] +NLhKa

∫ tr

0

∥xr − y∥sds

+N

∫ tr

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar+Ka∥y∥a)

∫ a

0

m(s)ds

+ aÑM1M2

[
∥x1∥+NH∥φ∥B+Ñ [∥η∥+∥h(0, φ)∥]+NLhKa

∫ a

0

∥xr − y∥sds

+N

∫ a

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar+Ka∥y∥a)

∫ a

0

m(s)ds

+

n∑
i=1

N(LIiKar + ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJiKar + ∥Ji(yti)∥)

]

+
n∑
i=1

N(LIiKar + ∥Ii(yti)∥) +
n∑
i=1

Ñ(LJiKar + ∥Ji(yti)∥)

and hence(
1 + aÑM1M2

)[
Ka

(
aNLh + ÑΛ

∫ a

0

m(s)ds+

n∑
i=1

(NLIi + ÑLJi)

)]
≥ 1,
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which contradicts our assumption.
Let r > 0 be such that Ψ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove

that Ψ is a condensing map on Br(y|I , Y ) into Br(y|I , Y ). We introduce the
decomposition Ψ = Ψ1 +Ψ2 where

Ψ1x(t) = C(t)φ(0) + S(t)[η − h(0, φ)] +

∫ t

0

C(t− s)h(s, x̄s)ds

+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti),

Ψ2x(t) =

∫ t

0

S(t− s)[f(s, x̄ρ(s,x̄s)) +Bu(s)]ds.

Now

∥Bu(s)∥ ≤ M1M2

[
∥x1∥+NH∥φ∥B + Ñ [∥η∥+ c1∥φ∥+ c2]

+N

∫ a

0

(c1∥x̄s∥+ c2)ds+ Ñ

∫ a

0

αr(s)ds+N

n∑
i=1

Φi∥x̄ti∥

+ Ñ

n∑
i=1

Γi∥x̄ti∥

]

≤ M1M2

[
∥x1∥+NH∥φ∥B + Ñ [∥η∥+ c1∥φ∥+ c2]

+ aN(c1r + c2) + Ñ

∫ a

0

αr(s)ds+
n∑
i=1

r(NΦi + ÑΓi)

]
= Ão.

Here we can apply the same technique that is used in Lemma 2.4. From the
hypothesis (Hφ), (H1) and (H2), we infer that Ψ2 is completely continuous.
Moreover, from the estimate

∥Ψ1x−Ψ1z∥PC ≤ aNLhKa∥x− z∥PC +Ka

n∑
i=1

(
NLIi + ÑLJi

)
∥x− z∥PC

≤ Ka

[
aNLh +

n∑
i=1

(
NLIi + ÑLJi

) ]
∥x− z∥PC ,

it follows that Ψ1 is a contraction on Br(y|I , Y ) which implies that Ψ is a
condensing operator on Br(y|I , Y ).

Finally, from Sadovskii’s fixed point theorem, Ψ has a fixed point in Y . This
means that any fixed point of Ψ(·) is a mild solution of the problem (9)-(12).
This completes the proof. □



1284 G. ARTHI AND K. BALACHANDRAN

Theorem 3.9. Let the conditions (Hφ), (H1)-(H6) hold. Then the system
(9)-(12) is controllable on (−∞, a] provided that(

1 + aÑM1M2

)[
Ka

(
aNLh + ÑΛ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi + Ñσi)

)]
< 1.

Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the uni-
form convergence topology. Using the assumption (H2), for an arbitrary func-
tion x(·), we define the control

u(t) = W−1

[
x1 − C(a)φ(0)− S(a) [η − h(0, φ)]

−
∫ a

0

C(a− s)h(s, xs)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
n∑
i=1

C(a− ti)Ii(xti)−
n∑
i=1

S(a− ti)Ji(xti)

]
(t).

Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)[η − h(0, φ)] +

∫ t

0

C(t− s)h(s, x̄s)ds

+

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+

∫ t

0

S(t− ξ)BW−1

[
x1

− C(a)φ(0)− S(a) [η − h(0, φ)]−
∫ a

0

C(a− s)h(s, x̄s)ds

−
∫ a

0

S(a− s)f(s, x̄ρ(s,x̄s))ds−
n∑
i=1

C(a− ti)Ii(x̄ti)

−
n∑
i=1

S(a− ti)Ji(x̄ti)

]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the
system (9)-(12). Clearly, (Ψx)(a) = x1, which means that the control u steers
the system from the initial state φ to x1 in time a, provided we can obtain
a fixed point of the operator Ψ which implies that the system is controllable.
Here x̄ : (−∞, a] → X is such that x̄0 = φ and x̄ = x on I. From the axiom
(A) and our assumptions on φ, we infer that Ψx ∈ PC.

Next we prove that there exists r > 0 such that Ψ(Br(y|I , Y )) ⊆ Br(y|I , Y ).
If we assume that this property is false, then for every r > 0, there exist
xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ∥Ψxr(tr) − y(tr)∥. Then, from
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Lemma 3.4, we get

r < ∥Ψxr(tr)− y(tr)∥

≤ NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥] +N

∫ tr

0

∥h(s, ¯(xr)s)− h(s, ys)∥ds

+N

∫ tr

0

∥h(s, ys)∥ds+ Ñ

∫ tr

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds

+ ÑM1M2

∫ tr

0

[
∥x1∥+NH∥φ∥B+Ñ [∥η∥+∥h(0, φ)∥]+N

∫ a

0

∥h(s, ys)∥ds

+N

∫ a

0

∥h(s, ¯(xr)s)− h(s, ys)∥ds+ Ñ

∫ a

0

m(s)W (∥xrρ(s, ¯(xr)s)
∥B)ds

+N
n∑
i=1

∥Ii(x̄ti)∥+ Ñ
n∑
i=1

∥Ji(x̄ti)∥

]
dξ +N

n∑
i=1

∥Ii(x̄ti)∥+ Ñ
n∑
i=1

∥Ji(x̄ti)∥

≤ NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥] +NLhKa

∫ tr

0

∥xr − y∥sds

+N

∫ tr

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar+Ka∥y∥a)

∫ a

0

m(s)ds

+ aÑM1M2

[
∥x1∥+NH∥φ∥B+Ñ [∥η∥+∥h(0, φ)∥]+NLhKa

∫ a

0

∥xr−y∥sds

+N

∫ a

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar+Ka∥y∥a)

∫ a

0

m(s)ds

+N

n∑
i=1

Φi(∥x̄ti∥B) + Ñ

n∑
i=1

Γi(∥x̄ti∥B)

]

+N

n∑
i=1

Φi(∥x̄ti∥B) + Ñ

n∑
i=1

Γi(∥x̄ti∥B).

Since Φi and Γi are nondecreasing operators, we have

r ≤ NH∥φ∥B + Ñ [∥η∥+ ∥h(0, φ)∥] +NLhKa

∫ tr

0

∥xr − y∥sds

+N

∫ tr

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar+Ka∥y∥a)

∫ a

0

m(s)ds

+ aÑM1M2

[
∥x1∥+NH∥φ∥B+Ñ [∥η∥+∥h(0, φ)∥]+NLhKa

∫ a

0

∥xr−y∥sds

+N

∫ a

0

(c1∥ys∥B+c2)ds+ÑW ((Ma+J
φ
0 )∥φ∥B+Kar +Ka∥y∥a)

∫ a

0

m(s)ds
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+N
n∑
i=1

Φi(r
∗) + Ñ

n∑
i=1

Γi(r
∗)

]
+N

n∑
i=1

Φi(r
∗) + Ñ

n∑
i=1

Γi(r
∗),

where ∥x̄ti∥B ≤ r∗ = (Ma + Jφ0 )∥φ∥B +Ka(r + ∥y∥a) and hence(
1 + aÑM1M2

)[
Ka

(
aNLh + ÑΛ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi + Ñσi)

)]
≥ 1,

which contradicts our assumption.
Arguing as in the proof of Theorem 3.8, we can prove that Ψ(·) is a condens-

ing map on Br(y|I , Y ) and, from Lemma 2.5, we conclude that there exists a
mild solution x(·) for (9)-(12). The proof is complete. □

Remark 3.10. Similar results to those of sub-linear growth cases [6, Corollary
3.1, 3.2 and 3.3] hold for controllability results.

4. Examples

In this section, we consider some applications for our results. We choose the
space X = L2([0, π]),B = PC0 × L2(h,X) is the space introduced in Example
2.2 and A : D(A) ⊂ X → X is the operator defined by Au = u′′ with domain
D(A) = {u ∈ X,u′′ ∈ X,u(0) = u(π) = 0}. It is well known that A is the
infinitesimal generator of a strongly continuous cosine function (C(t))t∈R on
X. Moreover A has a discrete spectrum with eigenvalues of the form −n2,
n ∈ N, and the corresponding normalized eigenfunctions given by zn(ζ) :=

( 2π )
( 1
2 ) sin(nζ). Also the following properties hold:

(a) The set of functions {zn : n ∈ N} forms an orthonormal basis of X.
(b) If x ∈ D(A), then Ax = −

∑∞
n=1 n

2⟨x, zn⟩zn.
(c) For x ∈ X,C(t)x =

∑∞
n=1 cos(nt)⟨x, zn⟩zn and the associated sine

family is S(t)x =
∑∞
n=1

sin(nt)
n ⟨x, zn⟩zn.

(d) If G is the group of translations on X defined by G(t)x(ζ) = x̃(ζ +
t), where x̃(·) is the extension of x(·) with period 2π, then C(t) =
1
2 [G(t)+G(−t)]. Hence it follows, see [10], that A = B2 where B is the

infinitesimal generator ofG and E =
{
x ∈ H1(0, π) : x(0) = x(π) = 0

}
.

4.1. Second order system

Consider the following impulsive differential equation with state-dependent
delay and control

∂2

∂t2
w(t, ξ) =

∂2

∂ξ2
w(t, ξ) + µ(t, ξ)

+

∫ t

−∞
a(s− t)w(s− ρ1(t)ρ2(∥w(t)∥), ξ)ds,(13)

for t ∈ I = [0, a], ξ ∈ [0, π], subject to the initial conditions

w(t, 0) = w(t, π) = 0, t ∈ I = [0, a],
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w(τ, ξ) = φ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π,

△w(ti)(ξ) =
∫ ti

−∞
bi(ti − s)w(s, ξ)ds, i = 1, 2, . . . , n,

△w′(ti)(ξ) =

∫ ti

−∞
b̃i(ti − s)w(s, ξ)ds, i = 1, 2, . . . , n.

We have to show that there exists a control µ which steers (13) from any
specified initial state to the final state in a Banach space X.

To do this, let φ ∈ B, the functions ρi : [0,∞) → [0,∞), i = 1, 2; a : R → R

be continuous, Lf =
(∫ 0

−∞
(a2(s))
g(s) ds

) 1
2

<∞ and the following condition hold:

(a) The functions bi, b̃i ∈ C(R,R) and LIi :=
(∫ 0

−∞
b2i (s)
g(s) ds

) 1
2

, LJi =(∫ 0

−∞
b̃2i (s)
g(s) ds

) 1
2

, i = 1, . . . , n, are finite.

Assume that the bounded linear operator B : U ⊂ I → X is defined by

(Bu)(t)(ξ) = µ(t, ξ), ξ ∈ [0, π].

Define the operators f : I × B → X, ρ : I × B → X and Ii, Ji : B → X by

f(t, ψ)(ξ) =

∫ 0

−∞
a(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2(∥ψ(0)∥),

Ii(ψ)(ξ) =

∫ 0

−∞
bi(−s)ψ(s, ξ)ds, i = 1, 2, . . . , n,

Ji(ψ)(ξ) =

∫ 0

−∞
b̃i(−s)ψ(s, ξ)ds, i = 1, 2, . . . , n.

With the choice of A, B, f, ρ, Ii and Ji, (1)-(4) is the abstract formulation of
(13). Now the linear operator W is given by

(Wu)(ξ) =

∞∑
n=1

∫ π

0

1

n
sin ns(µ(s, ξ), zn)znds, ξ ∈ [0, π].

Assume that this operator has a bounded inverse W−1 in L2(I, U)/KerW .
Moreover the functions f, Ii and Ji, i = 1, 2, . . . , n are bounded linear opera-
tors with ∥f(t, ·)∥L(B,X) ≤ Lf , ∥Ii∥L(B,X) ≤ LIi , ∥Ji∥L(B,X) ≤ LJi . Hence the
second order impulsive system (13) is controllable.

4.2. Second order neutral system

Consider the following impulsive neutral differential equation with state-
dependent delay and control

∂

∂t

[
∂

∂t
w(t, ξ) +

∫ t

−∞

∫ π

0

b(t− s, η, ξ)w(s, η)dηds

]
=

∂2

∂ξ2
w(t, ξ)



1288 G. ARTHI AND K. BALACHANDRAN

+µ(t, ξ) +

∫ t

−∞
a(s− t)w(s− ρ1(t)ρ2(∥w(t)∥), ξ)ds,(14)

for t ∈ I = [0, a], ξ ∈ [0, π], subject to the initial conditions

w(t, 0) = w(t, π) = 0, t ∈ I,

∂

∂t
w(0, ξ) = ξ(π),

w(τ, ξ) = φ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π,

△w(ti)(ξ) =
∫ ti

−∞
bi(ti − s)w(s, ξ)ds, i = 1, 2, . . . , n,

△w′(ti)(ξ) =

∫ ti

−∞
b̃i(ti − s)w(s, ξ)ds, i = 1, 2, . . . , n,

where φ, B, a, ρi, i = 1, 2 and Lf are as defined in Example 4.1. Assume
that the condition (a) of the previous example holds and that

(b) The functions b(s, η, ξ), ∂b(s,η,ξ)
∂ξ are continuous and measurable, b(s, η, π)

= b(s, η, 0) = 0 and

Lh = max

{(∫ π

0

∫ 0

−∞

∫ π

0

1

g(s)

(
∂ib(s, η, ξ)

∂ξi

)
dηdsdξ

) 1
2

: i = 0, 1

}
<∞.

Define the functions A, B, f, ρ, Ii, Ji and W as in Example 4.1 and the map
h : I × B → X by

h(ψ)(ξ) =

∫ 0

−∞

∫ π

0

b(s, ν, ξ)ψ(s, ν)dνds.

With the choice of A, B, W, h, f, ρ, Ii and Ji, the system (14) can be
modelled as (9)-(12). Moreover the function h is a bounded linear operator
with ∥h(t, ·)∥L(B,X) ≤ Lh. Hence the second order impulsive neutral system
(14) is controllable.
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