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CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR

NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON

UNBOUNDED DOMAIN WITH INFINITE DELAY IN

BANACH SPACES

Dimplekumar N. Chalishajar and Falguni S. Acharya

Abstract. In this paper, we prove sufficient conditions for controllability
of second order semi-linear neutral impulsive differential inclusions on
unbounded domain with infinite delay in Banach spaces using the theory
of strongly continuous Cosine families. We shall rely on a fixed point

theorem due to Ma for multi-valued maps. The controllability results in
infinite dimensional space has been proved without compactness on the
family of Cosine operators.

1. Introduction

In this paper we prove controllability of second order semi-linear neutral
impulsive differential inclusions with non local conditions of the form:

(1.1)



d
dt

[
y′(t)− f(t, yt, y

′(t))
]
∈ Ay(t) +Bu(t) + F (t, yt, y

′(t));

t ∈ J := [0,∞); t ̸= tk,

∆y|t=tk = Ik(ytk , y
′(tk)); k = 1, 2, . . . , p,

∆y′|t=tk = Ik(ytk , y
′(tk)); k = 1, 2, . . . , p,

y0 = ϕ ; y′(0) = x0,

where A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous
Cosine family

{
C(t) : t ∈ R

}
defined on E, and F : J × Bh × E → 2E is a

bounded, closed, convex multi-valued map. Let J0 = (−∞, 0] and non-local
condition ϕ ∈ Bh and x0 ∈ E be the given initial values. Also, f : J ×Bh → E
is a given function, the state function y(t) takes values in E, and the control
u ∈ L2(J, U), a Banach space of admissible control functions with U as a
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Banach space. B is a bounded linear operator from U to E and E is a Banach
space with norm | · |.

Also, 0 < t0 < t1 < · · · < tp < tp+1 = m(→ ∞ as t → ∞); Ik, Ik ∈
C(E×E,E), k = 1, 2, . . . , p are bounded, ∆y|t=tk = y(t+k )− y(t−k ), ∆y

′|t=tk =

y′(t+k ) − y′(t−k ), and y(t
−
k ) and y(t

+
k ), y

′(t−k ) and y
′(t+k ) represent the left and

right limits of y(t) and y′(t) respectively, at t = tk. Also, for any continuous
function y defined on the interval J1 = (−∞,∞) with values in E and for any
t ∈ J , we denote by yt an element of C(J0, E) defined by yt(θ) = y(t+θ), θ ∈ J0.
Here we present the abstract space Bh. Assume that h : (−∞, 0] → (0,∞) is a

continuous function with l := (
∫ 0

−∞ h(s)ds < +∞). Define

Bh = {ϕ : (−∞, 0] → E | for any r > 0, ϕ(θ) is bounded and measurable

function on [−r, 0] and
∫ 0

−∞
h(s) sup

s≤θ≤0
|ϕ(θ)|ds < +∞},(1.2)

where Bh endowed with the norm

∥ϕ∥Bh
:=

∫ 0

−∞
h(s) sup

s≤θ≤0
|ϕ(θ)|ds for all ϕ ∈ Bh.

Obviously, (Bh, ∥ · ∥Bh
) is a Banach space.

Lemma 1.1. Suppose y ∈ Bh. Then for each t ∈ J, yt ∈ Bh. Moreover,

l|y(t)| ≤ ∥yt∥Bh
≤ l sup

s∈[0,t]

(|y(s)|+ ∥y0∥Bh
),

where l := (
∫ 0

−∞ h(s)ds < +∞).

Proof. For a proof see [19]. □

The controllability of second-order systems with local and nonlocal condi-
tions with impulse effect are interesting and researchers are engaged in it. A
useful tool in the study of abstract second order equations is the theory of
strongly continuous Cosine families ([26], [27]). Quinn and Carmichael [23]
have first shown that the controllability problem in Banach spaces can be con-
verted into a fixed point problem for a single valued map. Benchohra and
Ntouyas [4] proved the existence and controllability results for nonlinear differ-
ential inclusions with nonlocal conditions. Also, they considered controllability
of functional differential and integro-differential inclusions in Banach spaces
[2] without infinite delay and impulse effect. In both the papers they used a
fixed point theorem for condensing maps due to Martelli. George, Chalisha-
jar, and Nandakumaran [12] studied the controllability on infinite time horizon
for second-order semi-linear neutral functional differential inclusion in Banach
spaces. Benchohra and Ntouyas [5] studied the existence of solutions for sec-
ond order impulsive functional differential equation in Banach spaces using a
fixed point theorem due to Schaefer [25] without infinite delay. Later, Liu [19]
discussed controllability of impulsive neutral functional differential inclusion
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with infinite delay using the Martelli fixed point theorem; he considered first
order systems with finite time horizon. However, in all of the above works, the
authors imposed some severe compactness assumption on the operator family
generated by A, which implies that E has finite dimension. So the exam-
ples considered in [19, 2, 4] are ordinary differential equations but not partial
differential equations which shows a lack of existence (exact controllability) in
abstract (control) space [28]. This fact and several other applications of neutral
equation/inclusion are the main motivation of this paper.

On the other hand, the theory of impulsive differential equation has become
an important area of investigation stimulated by their numerous applications to
problem in mechanics, electric and electronic engineering, medicines, biology,
ecology etc. Since many system arising from realistic models heavily depend
on histories (which is characterized be the effect of infinite delay on state equa-
tions), there is a need to study partial functional differential systems/inclusions
with infinite delay (also on unbounded time interval). Many evolution processes
are characterized by the fact that at certain moments of time they experience
a change of state abruptly. This process is subject to short term perturbation
whose duration is negligible in comparison with the duration of the process
[24].

In this paper, we prove sufficient conditions for controllability of second-
order semi-linear neutral impulsive differential inclusions in Banach spaces with
infinite delay and unbounded domain using the theory of strongly continuous
Cosine families. We shall rely on a fixed point theorem due to Ma for multi-
valued maps [20]. This work is the generalization of papers of Benchohra and
Ntouyas [5], George, Chalishajar and Nandakumaran [12] and Liu [19].

After preliminaries in Section 2, we reduce the controllability problem (1.1)
to the search for fixed points of a suitable multi-valued map on C(J,E) in
Section 3. In order to prove the existence of fixed points in finite dimension,
we shall rely on a theorem due to Ma [20], which is an extension of Schaefer’s
theorem [25] to multi-valued maps between locally convex topological spaces.
An example is provided to support the theory in Section 4. Section 5 deals
with exact controllability of system (1.1) in infinite dimension spaces without
having a compactness assumption on family of Cosine operators.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multi-valued analysis which are used throughout this paper. Let Jm =
[0,m],m ∈ N. The space C(J,E) is the Banach space of continuous functions
from J into E with the metric [11]

d(y, z) =
∞∑
m=0

2−m∥y − z∥m
1 + ∥y − z∥m

for each y, z ∈ C(J,E),
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where

∥y∥m := sup

{
|y(t)| : t ∈ Jm

}
.

Let B(E) be the Banach space of bounded linear operators from E to E with
the standard norm. A measurable function y : J → E is Bochner integrable if
and only if |y| is Lebesgue integrable. For properties of the Bochner integral,
we refer to [6]. Let L1(J,E) denotes the Banach space of Bochner integrable
functions and Ub denotes a neighborhood of 0 in C(J,E) defined by

Ub :=
{
y ∈ C(J,E) : ∥y∥m ≤ b

}
.

The convergence in C(J,E) is the uniform convergence in the compact intervals,
i.e., yj → y in C(J,E) if and only if ∥yj − y∥m → 0 in C(Jm, E) as j → ∞ for
each m ∈ N. A set M ⊆ C(J,E) is a bounded set if and only if there exists a
positive function ξ ∈ C(J,R+) such that

|y(t)| ≤ ξ(t) for all t ∈ J and y ∈M.

The Arzela-Ascoli theorem says that a set M ⊆ C(J,E) is compact if and only
if M is in the Banach space (C(Jm, E), ∥ · ∥m).

We say that one-parameter family {C(t) : t ∈ R} of bounded linear operators
in B(E) is a strongly continuous Cosine family if and only if

(1) C(0) = I, I is the identity operator on E.
(2) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R.
(3) the map t 7→ C(t)y is strongly continuous in t on R for each fixed

y ∈ E.

The strongly continuous Sine family {S(t) : t ∈ R}, associated to the strongly
continuous Cosine family {C(t) : t ∈ R} is defined by

S(t)y =

∫ t

0

C(s)yds, y ∈ E, t ∈ R.

Assume the following condition on A.

(H1) A is the infinitesimal generator of a strongly continuous Cosine family
C(t), t ∈ R, which is compact for t > 0; of bounded linear operators E into

itself and the adjoint operator A∗ is densely defined, i.e., D(A∗) = E∗ (see [6]).
The infinitesimal generator of a strongly continuous Cosine family C(t), t ∈

R is the operator A : D(A) ⊂ E → E defined by

Ay =
d2

dt2
C(t)y|t=0, y ∈ D(A),

where D(A) = {y ∈ E : C(·)y ∈ C2(R, E)}, endowed with the norm

∥y∥E = ||y||+ ||Ay||, y ∈ D(A).
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Define E1 = {y ∈ E : C(·)y ∈ C1(R, E)}. It was proved by Kisynski [17] that
E1 endowed with the norm

∥y∥1 = ||y||+ sup
0≤t≤1

||AS(t)y||, y ∈ E

is a Banach space. The operator valued function G(t) =
(
C(t) S(t)
AS(t) AC(t)

)
is a

strongly continuous group of linear operators on the space E1 × E generated

by the operator Ã = ( 0 I
A 0 ) defined on D(A) × E1. From this, it follows that

AS(t) : E1 → E is a bounded linear operator and that AS(t) → 0 as t→ 0 for
each y ∈ E1.

Lemma 2.1 ([26]). Let (H1) hold. Then the following hold.

(1) There exist constants M1 ≥ 1 and w ≥ 0 such that∣∣C(t)| ≤M1e
w|t| and

∣∣S(t)− S(t∗)
∣∣ ≤M1

∫ t∗

0

ew|s|ds for t, t∗ ∈ R.

(2) For y ∈ E, S(t)y ∈ E1 and so S(t)E ⊂ E1 for t ∈ R.
(3) For y ∈ E1, C(t)y ∈ E1, S(t)y ∈ D(A) and d

dtC(t)y = AS(t)y, t ∈ R.
(4) For y ∈ D(A), C(t)y ∈ D(A) and d2

dt2C(t)y = AC(t)y for t ∈ R.

Lemma 2.2 ([26]). Let (H1) holds; let v ∈ C1(R, E), and let

q(t) =

∫ t

0

S(t− s)v(s)ds.

Then,

q ∈ C2(R, E) for t ∈ R, and q(t) ∈ D(A).

Further, q satisfies

q′(t) =

∫ t

0

C(t− s)v(s)ds and q′′(t) = Aq(t) + v(t).

For more details on strongly continuous Cosine and Sine family, we refer the
reader to the book of Goldstein [13].

We now recall some preliminaries about multi-valued maps. Let(X, ∥ · ∥) be
a Banach space. A multi-valued map G : X → 2X is convex (resp. closed) if
G(x) is convex (resp. closed) in X for all x ∈ X. The map G is bounded on
bounded sets if G(B) = Ux∈BG(x) is bounded in X for any bounded set B of
X (i.e. supx∈B{sup{∥y∥ : y ∈ G(x)}} <∞). G is called upper semi continuous
(u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty, closed subset
of X and if for each open set B of X containing G(x0), there exists an open
neighborhood A of x0 such that G(A) ⊆ B. The map G is said to be completely
continuous if G(B) is relatively compact for every bounded subset B ⊆ X.

If the multi-valued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph. That is, if xn → x0
and yn → y0, where yn ∈ G(xn), then y0 ∈ G(x0). We say, G has a fixed point
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if there is x ∈ X such that x ∈ G(x). In the following, BCC(X) denotes the
set of all nonempty bounded, closed and convex subsets of X.

A multi-valued map G : J → BCC(X) is said to be measurable, if for each
x ∈ X, the distance function Y : J → R defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)}

is measurable. For more details on multi-valued maps, see ([10], [16]).
An upper semi-continuous map G : X → 2X is said to be condensing, if

for any subset B ⊆ X, with α (B) ̸= 0, we have α (G (B)) < α (B), where α
denotes the Kuratowski measure of non-compactness.

We remark that a completely continuous multi-valued map is the easiest
example of a condensing map. For more details on multivalued maps see the
book of Deimling [10].

We assume the following hypotheses:

(H2) Let m ∈ N. Let W : L2(J, U) → E be the linear operator defined by

Wu =

∫ m

0

S(m− s)Bu(s)ds.

Then W : L2(J, U)/ kerW → E induces a bounded invertible operator W̃−1

and there exist positive constantsM2 andM3 such that |B| ≤M2 and |W̃−1| ≤
M3. For construction of W̃−1, refer to [23].

(H3) The function f : J × Bh × E → E is completely continuous and for any
bounded set Q ⊆ C(J1, E), the family {t 7→ f(t, yt) : y ∈ Q} is equi-continuous
in C(J,E).

Further, assume that there exist constants 0 ≤ c1 < 1 and c2 ≥ 0 such that
for all t ∈ J , ϕ ∈ Bh, we have

|f(t, ϕ, y)| ≤ c1(∥ϕ∥Bh
+ |y|) + c2.

(H4)(i) The multi-valued map (t, ψ, y) 7→ F (t, ψ, y) is measurable with respect
to t for each ψ ∈ Bh and y ∈ E and F is u.s.c. with respect to second and third
variable for each t ∈ J. Moreover, for each fixed z ∈ C(J1, E) and y ∈ C(J,E),
the set

SF,z,y = {v ∈ L1(J,E) : v(t) ∈ F (t, zt, y(t)) for a.e. t ∈ J}

is nonempty.
(ii) We assume F satisfies the following estimate. Given ψ ∈ Bh and y ∈ E,

there exists P ∈ L1(J,R+)

∥F (t, ψ, y)∥ := sup{|v| : v ∈ F (t, ψ, y)} ≤ P (t)Ω(∥ψ∥Bh
+ |y|),

where Ω : R+ → (0,m] is continuous and increasing and there is a c > 0 such
that the integral

∫∞
c

ds
s+ψ(s) is sufficiently large (an explicit lower bound and

expression for c can be given).
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(H5)(i) Each function Ik : Bh × E → E1 is completely continuous and there

exist constants cjk, j = 1, 2 such that

∥Ik(ψ, y)∥E1
≤ c1k(∥ψ∥Bh

+ |y|) + c2k; k = 1, 2, . . . , p for every (ψ, y) ∈ Bh × E.

(ii) The functions Ik : Bh × E → E are completely continuous and there

exist constants djk, j = 1, 2 such that

∥Ik(y)∥E ≤ d1k(∥ψ∥Bh
+ |y|) + d2k; k = 1, 2, . . . , p for every (ψ, y) ∈ Bh × E.

(H6) For each bounded set Q ⊆ C((−∞,m], E) and for each t ∈ Jm the set{
C(t)ϕ(0) + S(t)[x0 − f(0, ϕ)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)v(s)ds

+
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(ytk , y
′(tk)) : y ∈ Q

}
is relatively compact in E.

The integral equation formulation of the system (1.1) is given by
(2.1)

y(t) = ϕ(t); if t ∈ J0
y(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t
0
C(t− s)f(s, ys, y

′(s))ds

+
∫ t
0
S(t− s)Bu(s)ds+

∫ t
0
S(t− s)v(s)ds+

∑
0<tk<t

C(t− tk)

Ik(ytk , y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(ytk , y
′(tk)); if t ∈ J

(see [21]), where v ∈ SF,y,y′ = {v ∈ L1(J,E) : v(t) ∈ F (t, yt, y
′(t)) for a.e.

t ∈ J} is called the mild solution on J of the inclusion (1.1) provided
∫ t
0
C(t−

s)f(s, ys, y
′(s))ds is integrable, x0 = ϕ ∈ Bh.

Remark 2.3. If dim E < ∞ and J is a compact real interval, then SF,y,y′ ̸= ϕ
(see [18]).

Definition 2.4. The system (1.1) is said to be controllable on J ′ = J/{t1, t2,
. . . , tp} if for every ϕ ∈ Bh with ϕ(0) ∈ D(A), x0 ∈ E1, y1 ∈ E and there exists
a control u ∈ L2(Jm, U) such that the solution y(·) of (1.1) satisfies y(m) = y1
and the conditions ∆y|t=tk = Ik(ytk , y

′(tk)) and ∆y′|t=tk = Ik(ytk , y
′(tk)); k =

1, 2, . . . , p and y′(0) = x0.

Lemma 2.5 ([18]). Let J be a compact real interval and X be a Banach space.
Let F be a multi-valued map satisfying (H4)(ii) and let Γ be a linear continuous
mapping from L1(J,X) to C(J,X). Then the operator

ΓoSF : C(J,X) → BCC(C(J,X)) defined by y → (ΓoSF )(y) := Γ(SF,yt,y′)

is a closed graph operator.
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Lemma 2.6 ([20]). Let X be a locally convex space and N1 : X → 2X be
a compact, convex, u.s.c. multi-valued map such that there exists a closed
neighborhood Up of 0 for which N1(Up) is a relatively compact set for each
neighborhood Up. If the set

Ω1 :=

{
y ∈ X : λy ∈ N1(y) for some λ > 1

}
is bounded, then N1 has a fixed point.

3. Controllability result

We now state and prove the main controllability result.

Theorem 3.1. Assume that the hypotheses (H1)-(H6) are satisfied. Then the
inclusion (1.1) is controllable for x0 and y1 on J.

Proof. Consider the space

Bb(J1, E) =

{
y : (−∞,m) → E; y(t) is continuous at t ̸= tk, y(t

−
k ) = y(tk),

and y(t+k ) exists for every k = 1, 2, . . . , p

}
and

B1
b (J1, E) =

{
y ∈ Bb(J1, E) : y′(t) is continuous at t ̸= tk, y

′(t−k ) = y′(tk),

and y′(t+k ) exists for every k = 1, 2, . . . , p

}
with the norm

∥y∥b1 = ∥y0∥Bh
+ sup
t∈Jm

{∥y(s)∥b, ∥y′(s)∥b} ; 0 ≤ s ≤ b, y ∈ Bb and y′ ∈ B1
b ,

where ∥y∥b = supt∈Jm |y(t)|. Here, yk is a restriction of y to Jk = (tk, tk+1]; k =
1, 2, . . . , p such that ||yk||Jk

= sups∈Jk ||yk(s)||.
To consider the impulsive conditions, it is convenient to introduce some

additional notations. In what follows, put t0 = 0, tp+1 = m and for y ∈ Bb we
denote by ỹk ∈ C((tk, tk+1];E), k = 0, 1, . . . , p, the function given by

ỹk(t) =

{
y(t); t ∈ (tk, tk+1];
y(t+k ); t = tk.

Let us define a space

Z =

{
Bb(J1, E) ∩ B1

b (J1, E) ∩ C2(J1, E)

}
.



CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE 821

Using the hypothesis (H2) for y ∈ Z, we define the control formally as

(3.1)

u(t) = W̃−1

[
y1 − C(m)ϕ(0)− S(m)

[
x(0)− f(0, ϕ, x0)

]
−
∫ m

0

C(m− s)f(s, ys, y
′(s))ds−

∫ m

0

S(m− s)v(s)ds

−
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk))

−
∑

0<tk<t

S(t− tk)Ik(ytk , y
′(tk))

]
(t).

Let h be given by

(3.2)

h(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)v(s)ds+

∫ t

0

S(t− η)Bu(η)dη

+
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk))

+
∑

0<tk<t

S(t− tk)Ik(ytk , y
′(tk)).

Using the above control, define a multi-valued map N1 : Z → 2Z by

(N1y)(t) = ϕ(t) for − r ≤ t ≤ 0; r ∈ N,

and for m ≥ t ≥ 0,

N1y := {h ∈ C(Jk, E) : h satisfies (3.2)}.
Here, u is defined as in (3.1) and v ∈ SF,yt,y′ .

Clearly, the fixed points of N1 are mild solutions to (1.1). We show that N1

satisfies the hypotheses of Lemma 2.4.
Clearly, (N1y)(m) = y1, which means that the control u steers the system

from initial state y0 to y1 in time m, provided we obtain a fixed point of the
nonlinear operator N1.
Step 1: The set Ψ := {y ∈ Z : λy ∈ N1(y), λ > 1} is bounded. To see this, let
y ∈ Ψ, then y has the representation for t ≥ 0.

y(t) = λ−1h(t)

= λ−1C(t)ϕ(0) + λ−1S(t)[x0 − f(0, ϕ, x0)]

+ λ−1

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+ λ−1

∫ t

0

S(t− s)v(s)ds+ λ−1

∫ t

0

S(t− η)Bu(η)dη
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+ λ−1

[ ∑
0<tk<t

C(t− tk)Ik(ytk , y
′(tk))+

∑
0<tk<t

S(t− tk)Ik(ytk , y
′(tk))

]
,

where u is defined as in (3.1).
It is then easy to observe that y is a mild solution of the inclusion (1.1).
Thus, we have to obtain bounds on y and y′ independent of λ > 1 which

will prove the boundedness of Ψ.

|y(t)| ≤ M |ϕ|+Mm [|x0|+ c1(||ϕ||Bh
+ |x0|) + c2]

+M

∫ t

0

{
c1(||ys||+ |y′(s)|) + c2

}
ds

+Mm

∫ t

0

P (s)Ω(∥ys∥+ |y′(s)|)ds

+MmM2M3

∫ t

0

{
|y1|+M |ϕ|+Mm[|x0|+ c1(||ϕ||+ |x0|) + c2]

+M

∫ m

0

{c1(||yη||+ |y′(η)|) + c2} dη

+Mm

∫ m

0

P (η)Ω(||yη||+ |y′(η)|)dη

}
ds

+M
∑

0<tk<t

{
c1k(∥ytk∥+ |y′(tk)|) + c2k

}
+Mm

∑
0<tk<t

{
d1k(∥ytk∥+ |y′(tk)|) + d2k

}
; t ∈ Jm.

Using the assumptions, it is easy to obtain positive constants C1, C2, C3 de-
pending on the initial values and bounds on the Cosine and Sine operators such
that

|y(t)| ≤ C1 + C2

∫ t

0

(
∥ys∥+ |y′(s)|

)
ds+ C3

∫ t

0

P (s)Ω
(
∥ys∥+ | y′(s)|

)
ds

+M
∑

0<tk<t

{
c1k(∥ytk∥+ |y′(tk)|) + c2k

}
+Mm

∑
0<tk<t

{
d1k(∥ytk∥+ |y′(tk)|) + d2k

}
.

Denoting by v(t) the right-hand side of the above inequality, we get

µ(t) ≤ v(t).

Here the function µ is defined by

µ(t) = sup
{
|y(s)| : −r ≤ s ≤ t

}
; t ∈ Jm, r ∈ N.
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Further, v(0) = C1 and

v′(t) ≤ C2(µ(t) + |y′(t)|) + C3P (t)Ω(µ(t) + |y′(t)|)
≤ C2(v(t) + |y′(t)|) + C3P (t)Ω(v(t) + |y′(t)|), t ∈ Jm.

Now,

y′(t) = λ−1ASϕ(0) + λ−1C(t)[x0 − f(0, ϕ, x0)] + λ−1f(t, yt, y
′(t))

+ λ−1

∫ t

0

AS(t− s)f(s, ys, y
′(s))ds+ λ−1

∫ t

0

C(t− η)BW̃−1

[
y1 − C(m)ϕ(0)− S(m)[x0 − f(0, ϕ, x0)]−

∫ m

0

C(m− s)

f(s, ys, y
′(s))ds−

∫ m

0

S(m− s)v(s)ds
]
(η)dη + λ−1

∫ t

0

C(t− s)v(s)ds

+
∑

0<tk<t

AS(t− tk)Ik(ytk , y
′(tk)) +

∑
0<tk<t

C(t− tk)Ik(ytk , y
′(tk)).

We can estimate y′ in a similar fashion. There exist positive constants C4, C5,
C6, C7 such that

|y′(t)| ≤ C4 + C5(∥yt∥+ |y′(t)|) + C6

∫ t

0

(∥ys∥+ |y′(t)|)ds

+ C7

∫ t

0

P (s)Ω(∥ys∥+ |y′(s)|)ds

≤ C4 + C5µ(t) + C6

∫ t

0

∥ys∥ds+ C7

∫ t

0

P (s)Ω(∥ys∥+ |y′(s)|)ds

≤ C4 + C5v(t) + C6

∫ t

0

∥ys∥ds+ C7

∫ t

0

P (s)Ω(∥ys∥+ |y′(s)|)ds.

Denoting by r(t) the right-hand side of the above inequality, we have

|y′(t)| ≤ r(t), t ∈ J
r(0) = C4 + C5C1

and

r′(t) ≤ C5v
′(t) + C6µ(t) + C7P (t)Ω(µ(t) + |y′(t)|)

≤ C5v
′(t) + C6v(t) + C7P (t)Ω(v(t) + r(t))

≤ (C2C5 + C6)v(t) + (C3C5 + C7)P (t)Ω(v(t) + r(t)),

where the last inequality is obtained from the estimate of v′(t). Let

w(t) = v(t) + r(t), t ∈ J.

Then,
c := w(0) = v(0) + r(0) = C1 + C4 + C1C5

and

w′(t) = v′(t) + r′(t)
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≤ (C2 + C2C5 + C6)v(t) + (C3 + C3C5 + C7)P (t)Ω(v(t) + r(t))

= (C2 + C2C5 + C6)w(t) + (C3 + C3C5 + C7)P (t)Ω(w(t))

≤ m(t)[w(t) + Ω(w(t))],

where m(t) := max{C2+C2C5+C6, (C3+C3C5+C7)P (t)}. This implies that∫ w(t)

c

ds

s+Ω(s)
=

∫ w(t)

w(0)

ds

s+Ω(s)
≤

∫ m

0

m(s)ds <

∫ ∞

c

ds

s+Ω(s)
,

where the last inequality follows from assumption (H4)(ii). This implies that
there exists a constant L such that

w(t) = v(t) + r(t) ≤ L, t ∈ J.

Thus

∥y(t)∥ ≤ v(t) ≤ L, t ∈ J

∥y′(t)∥ ≤ r(t) ≤ L, t ∈ J

and hence Ψ is bounded.
Step 2: N1y is convex for each y ∈ Z.

Indeed, if h1, h2 ∈ N1y, then there exist v1, v2 ∈ SFi,yt,y′ such that for
i = 1, 2, we have

hi(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)vi(s)ds+

∫ t

0

S(t− η)Bu(η)dη

+
∑

0<tk<t

C(t− tk)Ik(y(tk), y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(y(tk), y
′(tk)),

where u is defined as in (3.1) with v replaced by vi. Then it is an easy matter
to see that, for 0 ≤ k ≤ 1,

(kh1 + (1− k)h2)(t)

= C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)(kv1 + (1− k)v2)(s)ds+

∫ t

0

S(t− η)Bu(η)dη

+
∑

0<tk<t

C(t− tk)Ik(y(tk), y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(y(tk), y
′(tk)),

where u is defined as in (3.1) with v = kv1 + (1− k)v2.
Since SF,yt,y′ is convex as F is convex, we have v = kv1+(1−k)v2 ∈ SF,yt,y′

and hence kh1 + (1− k)h2 ∈ N1y.
Step 3: N1(Uq) is bounded in Z for each q ∈ N, where Uq is a neighborhood
of 0 in Z.
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We have to show that there exists a positive constant l1 such that for any
y ∈ Uq and h ∈ N1y such that ∥h∥Z ≤ l1. In other words, we have to bound
the sup-norm of both h and h′. We can write

h(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)v(s)ds+

∫ t

0

S(t− η)Bu(η)dη

+
∑

0<tk<t

C(t− tk)Ik(y(tk), y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(y(tk), y
′(tk)),

and therefore

h′(t) = AS(t)ϕ(0) + C(t)[x0 − f(0, ϕ, x0)] + f(t, yt, y
′(t))

+

∫ t

0

AS(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

C(t− η)BW̃−1
[
y1 − C(m)ϕ(0)− S(m)[x0 − f(0, ϕ, x0)]

−
∫ m

0

C(m− s)f(s, ys, y
′(s))ds−

∫ t

0

S(m− s)v(s)ds
]
(η)dη

+

∫ t

0

C(t− s)v(s)ds+
∑

0<tk<t

AS(t− tk)Ik(y(tk), y
′(tk))

+
∑

0<tk<t

C(t− tk)Ik(y(tk), y
′(tk)),

where u is defined as in (3.1) and v ∈ SF,yt,y′ .
The assumptions will give uniform estimates for v and y which in turn can be

used to obtain the required bounds for h and h′ for every y ∈ Uq and h ∈ N1y.
We have

∥h(t)∥ ≤ C1 + C2

∫ t

0

(∥ys∥+ |y′(s)|)ds+ C3

∫ t

0

P (s)Ω
(
∥ys∥+ |y′(s)|

)
ds,

|h|Z ≤ C1 + C2

∫ m

0

(∥ys∥ds+ |y′(s)|) + C3

∫ m

0

P (s)Ω
(
∥ys∥+ |y′(s)|

)
ds

= l1.

Similarly,

∥h′(t)∥ ≤ C4 + C5(∥yt∥+ ∥y′(s)∥) + C6

∫ t

0

(∥ys∥ds+ ∥y′(s)∥)ds

+ C7

∫ t

0

P (s)Ω(∥ys∥+ ∥y′(s)∥)ds,

|h′|Z ≤ C4 + C5(∥yt∥+ ∥y′(s)∥) + C6

∫ m

0

(∥ys∥+ ∥y′(s)∥)ds
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+ C7

∫ m

0

P (s)Ω(∥ys∥+ ∥y′(s)∥)ds

= l2.

Step 4: N1(Uq) is equi-continuous for each q ∈ N. That is, the family {h ∈
N1y : y ∈ Uq} is equi-continuous.

Let Uq =
{
y ∈ Z, ∥y∥ ≤ q

}
for some q ≥ 1. Let y ∈ Uq, h ∈ N1y and

t1, t2 ∈ J such that 0 < t1 < t2 ≤ m. Then,

|h(t1)− h(t2)|
≤

∣∣[C(t1)− C(t2)]ϕ(0)
∣∣+ ∣∣[S(t1)− S(t2)][x0 − f(0, ϕ, x0)]

∣∣
+
∣∣ ∫ t1

0

[C(t1 − s)− C(t2 − s)]f(s, ys, y
′(s))ds

∣∣
+
∣∣ ∫ t2

t1

C(t2 − s)f(s, ys, y
′(s))ds

∣∣
+
∣∣ ∫ t1

0

[S(t1 − η)−S(t2 − η)]BW̃−1

[
y1−C(m)ϕ(0)−S(m)[x0 − f(0, ϕ, x0)]

−
∫ m

0

C(m−s)f(s, ys, y′(s))ds−
∫ m

0

S(m−s)v(s)ds−
∑

0<tk<t1

{
[C(t1 − tk)

− C(t2 − tk)]Ik(y(tk), y
′(tk)) + [S(t1 − tk)− S(t2 − tk)]Ik(y(tk), y

′(tk))

}
−

∑
t1<tk<t2

{
C(t2 − tk)Ik(y(tk), y

′(tk)) + S(t2 − tk)Ik(y(tk), y
′(tk))

}]
(η)dη

∣∣
+
∣∣ ∫ t2

t1

S(t2 − η)BW̃−1

[
y1 − C(m)ϕ(0)− S(m)[x0 − f(0, ϕ, x0)]

−
∫ m

0

C(m− s)f(s, ys, y
′(s))ds−

∫ m

0

S(m− s)v(s)ds

−
∑

t1<tk<t2

{
C(t2 − tk)Ik(y(tk), y

′(tk)) + S(t2 − tk)Ik(y(tk), y
′(tk))

}]
(η)dη

∣∣
+
∣∣ ∫ t1

0

[S(t1 − s)− S(t2 − s)]v(s)ds
∣∣+ ∣∣ ∫ t2

t1

S(t2 − s)v(s)ds
∣∣

+
∑

0<tk<t1

∣∣C(t1 − tk)Ik(y(tk), y
′(tk)) + S(t1 − tk)Ik(y(tk), y

′(tk))
∣∣

+
∑

t1<tk<t2

∣∣C(t2 − tk)Ik(y(tk), y
′(tk)) + S(t2 − tk)Ik(y(tk), y

′(tk))
∣∣.

Now using the bounds on y, v and the given assumptions, by a routine calcu-
lation, we obtain a positive constant L > 0 such that

|h(t1)− h(t2)|
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≤ L{|C(t1)− C(t2)|+ |S(t1)− S(t2)|}

+ L

{∫ t1

0

|C(t1 − s)− C(t2 − s)|ds+
∫ t2

t1

|C(t2 − s)|ds
}

+ L

{∫ t1

0

|S(t1 − s)− S(t2 − s)|ds+
∫ t2

t1

|S(t2 − s)|ds
}

+ L

{ ∑
0<tk<t1

∣∣[C(t1 − tk) + S(t1 − tk)]− [C(t2 − tk)− S(t2 − tk)]
∣∣

+
∑

t1<tk<t2

∣∣[C(t2 − tk) + S(t2 − tk)]
∣∣}.

In an analogous way, one can also obtain a similar estimate for |h′(t1)−h′(t2)|.
Note that C(t) and S(t) are uniformly continuous in the uniform operator

topology. Thus, the above estimates implies the required equi-continuity. This
also proves the relative compactness of N1(Uq). Now it remains to prove the
u.s.c of N1. By our discussion in Section 1, it is enough to prove that N1 has
a closed graph. We do this in the next step using Lemma 2.3.
Step 5: Let hn ∈ N1yn and hn −→ h∗, yn −→ y∗. We must show that
h∗ ∈ N1y

∗. By definition, there exists vn ∈ SF,ynt ,y
′
n
such that

hn(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)vn(s)ds+

∫ t

0

S(t− η)Bun(η)dη

+
∑

0<tk<t

{
C(t− tk)Ik(yntk

, y′n(tk)) + S(t− tk)Ik(yntk
, y′n(tk))}

}
,

where un is defined as in (3.1) and y is replaced by yn. The difficulty is that
we do not have the convergence of vn and hence that of un. In fact, we cannot
expect the convergence of vn and the existence of v∗ (to be defined later) has
to be achieved by a suitable selection. First, we separate the part of vn from
un. Write un = ūn + ũn, where

ūn(t) = W̃−1

[
y1 − C(m)ϕ(0)− S(m)

[
x(0)− f(0, ϕ)

]
−
∫ m

0

C(m− s)f(s, yns)ds

−
∑

0<tk<t

{
C(t− tk)Ik(yntk

, y′n(tk)) + S(t− tk)Ik(yntk
, y′n(tk))

}]
(t)

and

ũn(t) = −W̃−1

[∫ m

0

S(m− s)vn(s)ds+
∑

0<tk<t

{
C(t− tk)Ik(yntk

, y′n(tk))
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+ S(t− tk)Ik(yntk
, y′n(tk))

}]
(t).

Thus, we get from (3.2) that

h̃n(t) := hn(t)− C(t)ϕ(0)− S(t)[x0 − f(0, ϕ, x0)]

−
∫ t

0

C(t− s)f(s, yns)ds−
∫ t

0

S(t− η)Būn(η)dη

−
∑

0<tk<t

{
C(t− tk)Ik(yntk

, y′n(tk)) + S(t− tk)Ik(yntk
, y′n(tk))

}

+

∫ t

0

S(t− η)Bũn(η)dη +

∫ t

0

S(t− s)vn(s)ds.

Note that the LHS of the above equation does not contain vn. In order to apply
Lemma 2.5, define Γ : L1(J,E) → C(J,E) by

Γ(v)(t) := −
∫ t

0

S(t− s)BW̃−1

[∫ m

0

S(m− η)v(η)dη

]
(s)ds

+

∫ t

0

S(t− s)v(s)ds.

Then, h̃n(t) ∈ ΓSF,ynt ,y
′
n
and since hn and yn converges, we deduce that h̃n

also converges to h̃∗ which is given by

h̃∗(t) := h∗(t)− C(t)ϕ(0)− S(t)[x0 − f(0, ϕ)]−
∫ t

0

C(t− s)f(s, y∗s )ds

−
∫ t

0

S(t− η)Bū(η)dη −
∑

0<tk<t

[Ik(y
∗(tk)) + (t− tk)Ik(y

∗(tk))],

where ū has the same definition as ūn with yn replaced by y∗. Finally, from
Lemma 2.5, there exists v∗ ∈ ΓSF,y∗t ,y′∗ such that

h∗(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ)] +

∫ t

0

C(t− s)f(s, y∗s )ds

+

∫ t

0

S(t− s)v∗(s)ds+

∫ t

0

S(t− η)Bu∗(η)dη

+
∑

0<tk<t

[Ik(y
∗(tk)) + (t− tk)Ik(y

∗(tk))],

where u∗ is defined as in (1.1) with y replaced by y∗. Observe that we do not
claim the convergence of un to u∗ and vn to v∗.

This shows that N1 has a closed graph. As a consequence of Lemma 2.6, we
deduce that N1 has a fixed point in Z. Thus, the system (1.1) is controllable
on J and this completes the proof of the main theorem. □
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4. Example

Consider the following second-order partial differential inclusion:

(4.1)



∂
∂t

[
∂y
∂t (t, ξ)−

∫ t
−∞

∫ π
0
b(t− s, η, ξ)dηds)

]
∈ ∂2y

∂ξ2 (t− ξ) + u(t, ξ)

+
∫ t
−∞ F (t, t− s, ξ, y(s, ξ))dξ; t ∈ [0,m], ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, for t ∈ [0,m],
y(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π,
∂y
∂t (0, ξ) = x0(y), t ∈ J = [0,m] for 0 < y < π,

∆y(tk)(ξ) =
∫ tk
−∞ ak(tk − s)y(s, ξ)ds,

∆y′(tk)(ξ) =
∫ tk
−∞ ãk(tk − s)y(s, ξ)ds,

where 0 < t1 < t2 < · · · < tp < m and ϕ ∈ C0 × L2([0, π], E).
Let E = L2[0, π] and Cr = C([−r, 0];E) be as in Section 1.
(a) The functions b(s, η, ξ), ∂b∂ξ (s, η, ξ) are completely continuous and satisfy

the growth conditions.
(b) The function F : R4 → R is Caratheodory and there exist a measurable

function ν : R3 → R and an upper semi-continuous function ζ : R3 → R such
that

||F (t, s, ξ, x)|| ≤ ν(t, s, ξ) + ζ(t, s)||x||, (t, s, ξ, x) ∈ R4, t ∈ [0,m].

Moreover, f(t, ·), Ik; k = 1, 2, . . . , p, are bounded linear operators, and

||Ik|| ≤ ck, ||Ik|| ≤ dk; k = 1, 2, . . . , p.

(c) The functions ak, ãk ∈ C([0,m],R) for k = 1, 2, . . . , p.
Assume that conditions (a)-(c) are satisfied. The problem can be modelled

as the abstract impulsive problem (1.1) by defining

f(t, ψ)(ξ) :=

∫ 0

−∞

∫ π

0

b(s, ν, ξ)ψ(s, ν)dνds,

F (t, ψ, x)(ξ) :=

∫ 0

−∞
F (t, s, ξ, ψ(s, ξ))ds,

Ik(ψ)(ξ) =

∫ 0

−∞
ak(s)ψ(s, ξ)ds, Ik(ψ)(ξ) =

∫ 0

−∞
ãk(s)ψ(s, ξ)ds.

Here, u : (0, π)× J → R is continuous in t which is the control function.
Define A : E → E by Aω = ω′′;ω ∈ D(A), where

D(A) = {ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then A has a spectral representation

Aω = Σ∞
n=1 − n2(ω, ωn)ωn, ω ∈ D(A),
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where ωn(s) =
√

2
π sinns; n = 1, 2, 3, . . . is the orthogonal set of eigen-functions

of A. Further, it can be shown that A is the infinitesimal generator of a strongly
continuous Cosine family C(t), t ∈ R defined on E which is given by

C(t)ω = Σ∞
n=1 cosnt(ω, ωn)ωn, ω ∈ E.

The associated Sine family is given by

S(t)ω = Σ∞
n=1

1

n
sinnt(ω, ωn)ωn, ω ∈ E.

The control operator B : L2(J,E) → E is defined by

(Bu)(t)(ξ) = u(t, ξ),

which satisfies the condition (H2). Now the PDE (4.1) can be represented in
the form (1.1). Hence, by Section 3 the system is controllable.

In particular, if F (t, yt, y
′(t)) is a single valued map, then the system (1.1)

becomes

(4.2)


d
dt

[
y′(t)− f(t, yt, y

′(t))
]
= Ay(t) +Bu(t) + F (t, yt, y

′(t));
t ∈ J := [0,∞); t ̸= tk;
∆y|t=tk = Ik(ytk , y

′(tk)); k = 1, 2, . . . , p,
∆y′|t=tk = Ik(ytk , y

′(tk)); k = 1, 2, . . . , p,
y0 = ϕ ; y′(0) = x0.

By using Sadovskii’s fixed-point theorem, we can analogously study the con-
trollability of the system (4.2).

Hypothesis(H41) The function F: J × Bh × E → E satisfies the following
condition, for each t ∈ J, the function F (t, ·, ·) : Bh×E → E is continuous; and
for each ψ ∈ Bh, y ∈ E, the function F (·, ψ, y) : J → E is strongly measurable.

Theorem 4.1. If the hypotheses (H1)-(H3), (H41), (H5), and (H6) are satis-
fied, then the system (4.2) is controllable on J.

Proof. The mild solution of the system (4.2) is given by

y(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)F (s, ys, y
′(s))ds

+
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk)) +

∑
0<tk<t

S(t− tk)Ik(ytk , y
′(tk)).

We define an operator N : Z → Z by

(Ny)(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +

∫ t

0

C(t− s)f(s, ys, y
′(s))ds

+

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)F (s, ys, y
′(s))ds
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+
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk)) +

∑
0<tk<t

S(t− tk)Īk(ytk , y
′(tk)).

Then we can decompose N into N = N1 +N2, where

(N1y)(t) =

∫ t

0

C(t− s)f(s, ys, y
′(s))ds+

∫ t

0

S(t− s)Bu(s)ds

+

∫ t

0

S(t− s)F (s, ys, y
′(s))ds

and

(N2y)(t) = C(t)ϕ(0) + S(t)[x0 − f(0, ϕ, x0)] +
∑

0<tk<t

C(t− tk)Ik(ytk , y
′(tk))

+
∑

0<tk<t

S(t− tk)Īk(ytk , y
′(tk)),

and verify that N1 is a contraction while N2 is a compact operator. Thus, by
Sadovskii’s fixed- point theorem, the operator N has at least one fixed point
on Z, which shows the controllability of the system (4.2) on interval J . The
proof is similar to Step 4 of Theorem 3.1. □

5. Exact controllability in infinite dimensional space

In Section 4, we have proved controllability result with compactness of semi-
group/ Cosine operator. But if the semigroup is compact then the assumption
(H2) in Section 2 and assumption (H2) in [19] are valid only in finite dimen-
sional space so the applications are restricted to ordinary differential control
systems but not to partial differential equations. Thus example given in Sec-
tion 4 and ([2], [4], [5], [19]) cannot be recovered as of the abstract result in
infinite dimension.

Lemma 5.1. Let PC([0, τ ]);E) be a space formed by normalized piecewise con-

tinuous functions on ([0, τ ];E). Let Bh ⊆ PC such that B̃k = {Ṽk : V ∈ Bh},
where

Ṽk(t) =

{
V (t); t ∈ (tk, tk+1],
V (t+k ); t = tk.

The set Bh ⊆ PC is relatively compact if and only if each set B̃k is relatively
compact in the space C([tk, tk+1];E).

Proof. For the proof refer to [14]. □

Hypothesis(H11) A : D(A) → E is the infinitesimal generator of an uni-
formly bounded analytic Cosine operators C(t); t ∈ R on E. We define the
fractional power (−A)α, 0 < α ≤ 1, as a closed linear operator on its domain
D((−A)α) which is dense in E and the expression ∥y∥α = ∥(−A)αy∥ is the
norm in D((−A)α).
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One has to be precise for the meaning of derivative in system (4.2). x ∈ PC is
piecewise smooth if x is continuously differentiable at t ̸= ti, i = 0, 1, 2, . . . , n+1;
and for t = ti, i = 0, 1, 2, . . . , n, there exists right side derivative x′R(t) =

lims→0+
x(t+s)−x(t+)

s , while for t = ti, i = 1, 2, . . . , n + 1, there exists left side

derivative x′L(t) = lims→0−
x(t+s)−x(t−)

s . Also, x′(0) corresponds to x′R(0) and
we represent by x′(t), the left derivative of x at t > 0. Furthermore, we denote
by PC1 the space of piecewise smooth functions (in above sense) endowed with
the norm |u|1 = |u|+ |u′|.

Lemma 5.2. Let h1 : [0,m] → E1 be an integrable function such that h1 ∈ PC.
Then

(i) the function v(t) =
∫ t
0
C(t− s)h1(s)ds ∈ PC1,

(ii) the function s→ AS(t− s)h1(s) is integrable on [0, t], t ∈ [0,m], and

(iii) v′(t) = h1(t) +A
∫ t
0
S(t− s)h1(s)ds, t ∈ J.

Proof. For the proof refer to [15]. □

We assume following hypotheses.

Hypothesis(H31) There exists 0 < β < 1 such that f(·) is Eβ-valued and
(i) For every y : (−∞,m] → E such that y0 ∈ Bh and y|J ∈ PC, the function

t→ (−A)βf(t, yt, y′(t)) is continuous on J .
(ii) For each t ∈ J, the function (−A)βf(t, ·, ·) : Bh × E → E is continuous

and there exist positive constants c1 and c2 such that

∥(−A)βf(t, ϕ, y)∥ ≤ c1(∥ϕ∥Bh
+ |y|) + c2, (t, ϕ, y) ∈ J × Bh × E.

Hypothesis(H42) The function F : J × Bh × E → E satisfies,
(i) For every y : (−∞,m] → E such that y0 = ϕ and y|J ∈ PC1, the function

t→ F (t, yt, y
′(t)) is strongly measurable.

(ii) For each t ∈ J, the function F (t, ·, ·) : Bh × E → E is continuous.
(iii) There exists an integrable function PF : J → [0,∞) and a continuous

nondecreasing function Ω : [0,∞) → (0,∞) such that

∥F (t, ϕ, y)∥ ≤ P (t)Ω(∥ϕ∥Bh
+ |y|), (t, ϕ, y) ∈ J × Bh × E.

(H7) There exist continuous functions f1 : J ×E1 → E1 and f2 : J ×Bh → E1

such that f(t, ϕ, y) = f1(t, y)+f2(t, ϕ) and the following conditions are fulfilled:
(i) The function f2 : J ×Bh → E1 is completely continuous and there exists

a continuous nondecreasing function Ω : [0,∞) → (0,∞) and Lf > 0 such that

|f1(t, x)− f1(t, y)| ≤ Lf |x− y|; t ∈ J ; x, y ∈ E.

|f2(t, ϕ)|E1 ≤ Ω(∥ϕ∥Bh
); (t, ϕ) ∈ J × Bh.

(ii) Let S(m) = {y : (−∞,m] → E : y0 = 0, y|J ∈ PC} endowed with the
norm of uniformly convergence. The functions vy(t) = f1(t, y(t)) and wy(t) =

f2(t, yt) are continuous on J , and the set of functions {(̃wy) :: y ∈ PC, |y||J ≤ r}
is uniformly equi-continuous on [ti, ti+1]; i = 0, 1, 2, . . . , p.
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Theorem 5.3. Assume that F verifies (H42) and g verifies (H31). Suppose
that ϕ(0) ∈ E1 and following conditions are fulfilled:

(a) For every bounded set B1 ⊆ Bh × E, the set F (J × B1) is relatively
compact in E.

(b) Assumptions (H11), (H2), (H5), (H7) hold, and

Lf{m(M +N1) + 1}+Km

{
(m+N1)

p∑
k=1

c1k + (Mm+N)

p∑
k=1

d1k

}
+Km lim

ξ→+∞
inf

{
Mm

ΩF (ξ)

ξ

∫ m

0

P (s)ds+
ΩF (ξ)

ξ

+M
ΩF (ξ)

ξ

∫ m

0

P (s)ds+Mm
ΩF (ξ)

ξ
+N1m

ΩF (ξ)

ξ

}
(5.1)

+
MM2

r

{
(m+ 1)

∫ t

0

|ur1(s)|ds+mM3

∫ t

0

|ur2(s)|ds
}
< 1.

Then the system (4.2) is controllable on J.

Proof. Let

S1(m)=

{
S(m) = y : (−∞,m] → E : y0 = 0, y|J ∈ PC1, y′(0) = −f(0, ϕ, x0)

}
endowed with the norm of PC1. Clearly, S1(m) is a closed and convex subset
of PC1. Define the operator Γ : S1(m) → S1(m) by

(Γz)(t) =

∫ t

0

C(t− s)f1(s, z
′(s) + x′(s))ds+

∫ t

0

C(t− s)f2(s, zs + xs)ds

+

∫ t

0

S(t− s)F (s, zs + xs, z
′(s) + x′(s))ds

+
∑

0<tk<t

C(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

+
∑

0<tk<t

S(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

+

∫ t

0

S(t− s)BW̃−1

{
−

∫ m

0

C(m− η)f1(η, z
′(η) + x′(η))dη

−
∫ m

0

C(m− η)f2(η, zη + xη)dη

−
∫ m

0

S(m− η)F (η, zη + xη, z
′(η) + x′(η))dη

−
∑

0<tk<t

C(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))
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−
∑

0<tk<t

S(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

}
ds; t ∈ J.

(Γz)′(t)

= f1(t, z
′(t) + x′(t)) + f2(t, zt + xt) +

∫ t

0

AS(t− s)f1(s, z
′(s) + x′(s))ds

+

∫ t

0

AS(t− s)f2(s, zs + xs)ds+

∫ t

0

C(t− s)F (s, zs + xs, z
′(s) + x′(s))ds

+
∑

0<tk<t

AS(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

+
∑

0<tk<t

C(t− tk)Īk(ztk + xtk , z
′(tk) + x′(tk))

+

∫ t

0

C(t− s)Bu(s)ds

+

∫ t

0

S(t− s)BW̃−1

{
−
∫ m

0

AS(m− η)f1(η, z
′(η) + x′(η))dη

−
∫ m

0

AS(m− η)f2(η, zη + xη)dη

−
∫ m

0

C(m− η)F (η, zη + xη, z
′(η) + x′(η))dη

−
∑

0<tk<t

AS(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

}
ds; t ∈ J.

Clearly Γ is continuous using (H31) and (H42). Next we prove that there
exists r0 ≥ 0 such that Γ(Br0(0, S

1(m))) ⊂ Br0(0, S
1(m)). Assume that this is

false; then for every r > 0 (which is different ‘r’ then Section 3), there exists
zr ∈ B(0, S1(m)) such that |Γzr|1 > r. So we have

r ≤ |Γzr + (Γ(zr))′|1 ≤ |Γzr|+ |(Γ(zr))′|

≤ M

∫ t

0

|f1(s, (zr)′(s) + x′(s))|ds+M

∫ t

0

|f2(s, zrs + xs)|ds

+Mm

∫ t

0

|F (s, zrs + xs, (z
r)′(s) + x′(s))|ds

+M
∑

0<tk<t

|Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|

+Mm
∑

0<tk<t

|Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|
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+MmM2

∫ t

0

[
M

∫ m

0

|f1(η, (zr)′(η) + x′(η))|dη

+M

∫ m

0

|f2(η, zrη + xη)|dη +Mm

∫ m

0

|F (η, zrη + xη, (z
r)′(η) + x′(η))|dη

+M
∑

0<tk<t

|Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|

+Mm
∑

0<tk<t

|Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|

]
ds

+ |f1(t, (zr)′(t) + x′(t))|+ |f2(t, zrt + xt)|

+

∫ t

0

|AS(t− s)||f1(s, (zr)′(s) + x′(s))|ds

+

∫ t

0

|AS(t− s)||f2(s, zrs+xs)|ds+M
∫ t

0

|F (s, zrs + xs, (z
r)′(s)+x′(s))|ds

+
∑

0<tk<t

|AS(t− tk)||Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|

+M
∑

0<tk<t

|Ik(zrtk + xtk , (z
r)′(tk) + x′(tk))|+MM2

∫ t

0

|ur1(s)|ds

+MmM2M3

∫ t

0

|ur2(s)|ds

≤ M

∫ m

0

Lf

(
r + |x′|m + |f1(s, 0)|

)
ds+mM

(
Kmr + sup

s∈J
∥xs∥Bh

)
+Mm

∫ m

0

P (s)ΩF

(
Kmr + sup

s∈J
(∥xs∥Bh

+ |x′|m)

)
ds

+M

p∑
k=1

c1k

(
Kmr + ∥xtk∥Bh

+ |x′(tk)|
)

+ c2k+Mm

p∑
k=1

d1k

(
Kmr + ∥xtk∥Bh

+ |x′(tk)|
)
+d2k+MmM2

∫ t

0

|ur1(s)|ds

+ Lf (r + |x′|m) + |f1(t, 0)|+ΩF

(
Kmr + sup

s∈J
∥xt∥

)
+N1

∫ m

0

Lf

(
r+|x′|m+|f1(s, 0)|1

)
ds+N1mΩF

(
Kmr + sup

s∈J
∥xs∥Bh

)
+M

∫ t

0

P (s)ΩF

(
Kmr + sup

s∈J
(∥xs∥Bh

+ |x′|m)

)
ds

+N1

p∑
k=1

c1k

(
Kmr + ∥xtk∥Bh

+ |x′(tk)|
)
+ c2k
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+M

p∑
k=1

d1k

(
Kmr + ∥xtk∥Bh

+ |x′(tk)|
)
+ d2k

+MM2

∫ t

0

|ur1(s)|ds+MmM2M3

∫ t

0

|ur2(s)|ds,

r ≤
[
Lf{m(M +N1) + 1}+Km{(m+N1)

p∑
k=1

c1k + (Mm+N)

p∑
k=1

d1k}

+Km lim
ξ→+∞

inf

{
Mm

ΩF (ξ)

ξ

∫ m

0

P (s)ds+
ΩF (ξ)

ξ

+M
ΩF (ξ)

ξ

∫ m

0

P (s)ds+Mm
ΩF (ξ)

ξ
+N1m

ΩF (ξ)

ξ

}
+
MM2

r

{
(m+ 1)

∫ t

0

|ur1(s)|ds+mM3

∫ t

0

|ur2(s)|ds
}]

which yields that

Lf{m(M +N1) + 1}+Km{(m+N1)

p∑
k=1

c1k + (Mm+N)

p∑
k=1

d1k}

+Km lim
ξ→+∞

inf

{
Mm

ΩF (ξ)

ξ

∫ m

0

P (s)ds+
ΩF (ξ)

ξ

+M
ΩF (ξ)

ξ

∫ m

0

P (s)ds+Mm
ΩF (ξ)

ξ
+N1m

ΩF (ξ)

ξ

}
+
MM2

r

{
(m+ 1)

∫ t

0

|ur1(s)|ds+mM3

∫ t

0

|ur2(s)|ds
}

≥ 1.

This contradicts the equation (5.1).
Now we consider the decomposition Γ = Γ1 + Γ2, where

(Γ2z)(t) =

∫ t

0

C(t− s)f2(s, zs + xs)ds

+

∫ t

0

S(t− s)F (s, zs + xs, z
′(s) + x′(s))ds

+
∑

0<tk<t

C(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

+
∑

0<tk<t

S(t− tk)Ik(ztk + xtk , z
′(tk)

+ x′(tk)) +

∫ t

0

S(t− s)BW̃−1

{
−
∫ m

0

C(m− η)f2(η, zη + xη)dη

−
∫ m

0

S(m− η)F (η, zη + xη, z
′(η) + x′(η))dη
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−
∑

0<tk<t

C(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

−
∑

0<tk<t

S(t− tk)Ik(ztk + xtk , z
′(tk) + x′(tk))

}
ds.

Using the axiom of the phase space Bh, it is easy to observe that

∥Γ1z1 − Γ1z2∥ ≤ Lf

(
m(M +N1) + 1

)
∥z1 − z2∥1; z1, z2 ∈ S1(m).

This implies that Γ1 is a contradiction on Br0(0, S
1(m)). Moreover, the proof

of Theorem 5.2 of [8] helps us to show that Γ2 : S1(m) → PC is com-
pletely continuous. On the other hand, using the compactness properties of
the functions F, f2, I

j
k, j = 1, 2 and proceeding in similar way we can show

that (Γ2z)
′ : Br0(0, S

1(m)) → PC is completely continuous. This proves that
(Γ2z)

′ : Br0(0, S
1(m)) → PC is completely continuous. Hence the proof is

complete. □

Acknowledgement. Authors express their gratitude to the anonymous ref-
eree for valuable comments and suggestions which are helpful to modify the
manuscript.
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