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	e concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or
linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this
framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability
of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or su
cient
conditions for the controllability of the leader-follower network are derived based onmatrix theory and graph theory. In particular,
it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or
a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented.
Some simulation examples are given for illustration and veri�cation.

1. Introduction

Recent technological advances have stimulated broad inter-
ests in the notion of network controllability [1–12], which cap-
tures the ability to control aggregated dynamics of a net-
worked system and guide it to a desired state by using lim-
ited external inputs [13, 14]. Inmost real dynamical networks,
the nodes might have di�erent dynamics. For example, the
generators of a power network have di�erent physical para-
meters and are certainly di�erent from motors, which
together form a heterogenous network with nonidentical
node dynamics. 	erefore, it is of both theoretical and prac-
tical importance to study the controllability of networked
systems with nonidentical node dynamics, which can help
develop a better understanding of the interplay between the
complexity of the overall network topology and the collective
dynamics of a networked system.

	e controllability problem for a leader-follower multia-
gent systemwas proposed by Tanner [1], who formulated it as
the classical controllability of a single-input linear system and
then derived a necessary and su
cient algebraic condition

in terms of the eigenvalues and eigenvectors of a submatrix
of the graph’s Laplacian matrix. Ji et al. [2] then gave a suf-
�cient condition for multileader controllability based on the
algebraic characteristics of a submatrix of the incidence
matrix. Subsequently, Rahmani andMesbahi [3, 4] discussed
an intricate relationship between controllability and graph
symmetry with respect to the leader and gave a su
cient
condition for uncontrollability. Later, Ji et al. studied the con-
trollability in the multileader setting via equitable partitions
[5, 6]. It is worth noting that, in the above works [1–6], the
interconnection graph is assumed to be connected. Ji et al.
[7] introduced the concept of leader-follower connectedness
and investigated the controllability of a multileader system
that may not be connected. 	e work in [8] focused on the
controllability of discrete-time single-leader switching net-
works, which was further extended to continuous-time
single-leader switching networks [9]. Additionally, some suf-
�cient algebraic conditions were derived for a multileader
system with time delays in the states, where both single and
double integrator dynamics were considered [10]. Moreover,
Lou andHong [11] employed a new equitable partition, that is,
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weight-balanced partition, to classify interconnection graphs.
Zhang et al. [12] established a bound on the controllable
subspace for a given multiagent system using an almost
equitable partition.

On the other hand, Liu et al. [15] developed some ana-
lytical tools to study the structural controllability of large-
scale weighted and directed networks and solved the min-
imum input problem based on Lin’s structural controlla-
bility theorem [16]. Wang et al. [17] further proposed a
general approach to optimizing the structural controllability
of a complex network by judiciously perturbing the net-
work structure. Cowan et al. [18] pointed out that the main
results in [15] hinge on a critical modeling assumption: the
results (implicitly) require that the “default” structures of the
dynamical systems at the nodes of the network have in�nite
time constants, which do not re�ect the dynamics of real
physical and biological systems. It is important to emphasize
that the controllability addressed in the present paper is
fundamentally di�erent from the “structural controllability’’
[15–18] and “pinning controllability” [19]. In fact, structural
controllability is a weaker notion than the classical control-
lability, whereas pinning controllability discussed in [19] is
essentially “synchronizability”.

To summarize, the previous works [1–15, 17, 20], except
for [18], did not consider the situation where the nodes have
internal dynamics. However, many real networks including
social networks, power grids, foodwebs, regulatory networks,
and neuronal networks manifest intrinsic dynamics at each
living node. Additionally, all the works in [1–12, 15, 17, 18]
assumed that the dimension of the state of each node is one.
Although Cai and Zhong [20] studied the controllability of
a swarm system with higher-dimensional agent dynamics,
they did not consider the nodal intrinsic dynamics.	e intro-
duction of higher-dimensional heterogenous node dynamics
makes the controllability of the entire system more com-
plicated since, apart from the complexity of the network
structure, the complexity of the dynamics of the nodes has
to be considered simultaneously.

	e contributions of this paper are as follows. 	e classic
concept of controllability from control theory is extended to
weighted and directed complex networks with nonidentical
node dynamics in a systematic way. 	e leader-follower
structure is introduced to characterize a network where a few
nodes take a leader’s role and are subject to external signals
while the remaining nodes simply follow the leaders. Neces-
sary and/or su
cient conditions on node dynamics and net-
work topology for controllability are given in either algebraic
or graph-theoretic forms. Furthermore, some approaches to
improving the controllability are presented.

2. Notation and Preliminaries

2.1. Notation. 	roughout the paper, R(C) denotes the set
of real (complex) numbers and R

�(C�) the space of real
(complex)�-vectors. 	e � × � unit (zero) matrix is denoted
by ��(0�). 1� denotes the �-dimensional column vector of
ones and 0� the column vector of zeroes. 	e subscript �
might be omitted if it is clear from the context.��(��) stands

for the transpose (conjugate transpose) of matrix � ∈ R
�×�

(vector � ∈ C). diag{�1, . . . , ��} denotes the � × � diagonal
matrix with its diagonal elements being �1, . . . , ��. Re(⋅) is the
real part of a complex number and Im(⋅) the imaginary part.⊗ denotes the Kronecker product.

Lemma 1 (see [21]). For real matrices �, 
, �, and � with
compatible dimensions, one has the following.

(i) (� + 
) ⊗ � = � ⊗ � + 
 ⊗ �.
(ii) (� ⊗ 
)(� ⊗ �) = (��) ⊗ (
�).
(iii) (� ⊗ 
)� = �� ⊗ 
�.
(iv) Let � be an � × � matrix with le� eigenvectors1, . . . , � corresponding to its eigenvalues �1, . . . , ��,

and 
 an � × �matrix with le� eigenvectors �1, . . . , ��
corresponding to its eigenvalues �1, . . . , ��. 	en, � ⊗�� are le� eigenvectors of � ⊗ 
 corresponding to its
eigenvalues ���� (� = 1, . . . , �, � = 1, . . . , �).

2.2. Graphs and 	eir Algebraic Representations. A weighted
digraph (or a weighted directed graph) [22] G = (V,E,W)
consists of a node set V = {1, . . . , �}, an edge set E ⊂ V×
V, and a weight set W. An edge, denoted by (�, �), is an
ordered pair of distinct nodes of V. (�, �) ∈ E means that
there is a direct edge from node � to node �. In this paper,
simple weighted digraphs are considered. 	at is, self-loops
and multiple edges are precluded.

A sequence of edges, (V�, V�+1), � = 1, . . . , � − 1, is called
a directed path and is denoted by P = V1 → ⋅ ⋅ ⋅ → V�,
where all the nodes V1, . . . , V� are distinct. Node V1 is called
the beginning node and V� the end node of the path. In this
case, node V� is said to be reachable from node V1. A directed
cycle is a closed directed path of the formP� = V1 → ⋅ ⋅ ⋅ →
V� → V1, where the beginning node and end node are the
same.

If V	 ⊂ V and E
	 ⊂ E, then G

	 = (V	,E	) is called a
subgraph of G = (V,E), written as G	 ⊂ G. In addition, if
G
	 contains all the edges (�, �) ∈ E with �, � ∈ V

	, then G
	 is

called an induced subgraph of G. Graphs G1 = (V1,E1) and
G2 = (V2,E2) are said to be disjoint ifV1⋂V2 = 0.

	e adjacency matrix of a weighted directed graph G,
A(G) ∈ R

�×� is de�ned by [23]

[A (G)]�� = {{{
���, (�, �) ∈ E,
0, otherwise, (1)

where ��� > 0 is the weight of edge (�, �).
Remark 2. An unweighted digraph (or digraph) is a weighted
digraph with ��� = 1 for �, � = 1, . . . , �.

	e graph Laplacian is de�ned by

[L (G)]�� = {{{{{

�∑
�=1,� ̸= �

���, � = �,
−���, � ̸= �.

(2)

	e sum of all entries in any row ofL(G) is zero.
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3. Problem Description

Consider a weighted and directed networked system con-
sisting of � nodes with linear or linearized nonidentical
dynamics, described by

"̇� (#) = $�Γ"� (#) + �∑
�=1

L��Γ ("� (#) − "� (#)) + *�
-� (#) ,
� = 1, . . . , �,

(3)

where "� ∈ R
� is the state vector of the �th node, -� ∈

R
� the control input of node �, and 
 ∈ R

�×� the control
input matrix. One has *� = 1 if node � is subject to an
exogenous control signal and *� = 0 otherwise. Here, $�Γ"�
($� ∈ R and $� ̸= 0) describes the intrinsic dynamics of node �,Γ = (/��) ∈ R

�×� is a constant matrix indicating the inner-
coupling between di�erent components, and the Laplacian
matrixL = (L��) ∈ R

�×� denotes the outer-coupling among
the nodes, which contains all the weights of the network.

Remark 3. Network model (3) describes a generic networked
system. Several models considered previously can be seen as
special cases of (3). For example, in [1–7, 11, 12, 15, 17], $� = 0,� = 1, and Γ = 
 = 1, in [18], � = 1 and Γ = 
 = 1, and in
[20], $� = 0.

	e nodes in the network can be divided into two dif-
ferent groups: leaders and followers, where external control
inputs are injected only at the leaders. Denote the set of
controlled nodes as the leader set, V�, and the remaining
nodes as the follower set,V. Herein, the subscripts 2 and 3
denote the leaders and followers, respectively. It follows that
V�⋃V = V and V�⋂V = 0. De�ne the follower graph
G to be the subgraph induced by V and the leader graph
G� the subgraph induced by V�. Obviously, G� and G are
disjoint.

Without loss of generality, one can reorganize the indices
of the nodes in such a way that the �rst 5 (1 ≤ 5 < �) nodes
are chosen to be controlled. 	at is, one can label the leaders
from 1 to 5 and the followers from 5 + 1 to �. 	e associated
Laplacian matrixL is thereby partitioned as

L = [ 8 � 8 �8� 8] , (4)

where 8 � and 8 are 5×5 and (�−5)×(�−5)matrices, respec-
tively. However, they generally no longer have the Laplacian
matrix properties. Moreover, 8� denotes the information
�ow from the leaders to the followers and 8 � the �ow from
the followers to the leaders.

De�ning :(#) = ["�1 (#), . . . , "�� (#)]� ∈ R
�� and ;(#) =[-�1 (#), . . . , -�� (#), 0�, . . . , 0�]� ∈ R

��, system (3) can be

rewritten in a matrix form as

:̇ (#) = [(C −L) ⊗ Γ]: (#) + (Δ ⊗ 
); (#) , (5)

whereC = diag{$1, . . . , $�} and Δ = diag{ �⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, . . . , 1, �−�⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0, . . . , 0}.

Some de�nitions and lemmas are introduced below.

De
nition 4. 	e system (5) is said to be controllable if, for
any initial state :(0) and target state :(D) in the state space,
there exists an input signal ;(#) such that the driven system
can be steered from:(0) to:(D) in �nite time.

	e classical controllability theorem [24] asserts the
equivalence of the following statements.

Lemma 5. Given system "̇(#) = �0"(#) + 
0-(#), where " ∈
R
�, - ∈ R

�, and �0 and 
0 are matrices with appropriate
dimensions, the following statements are equivalent.

(i) 	e system is completely controllable.

(ii) 	e controllability matrix

Q = [
0 �0
0 ⋅ ⋅ ⋅ ��−10 
0] (6)

is of full row rank.

(iii) 	e relationship ]��0 = �]� implies ]�
0 ̸= 0�, where
] is the nonzero le� eigenvector of �0 corresponding to
the eigenvalue �.

Conditions (ii) and (iii) in Lemma 5 are referred to as
the controllability rank criterion and PBH eigenvector test,
respectively.

4. Controllability Analysis

In this section, the controllability of system (5) is analyzed in
detail. Before proceeding, some de�nitions are given.

De
nition 6. A graph G with the Laplacian matrixL is said
to be a controllable graph if and only if [8 8�] is a control-
lable matrix pair.

De
nition 7. De�ne the extended graph G as the graph with
the extended Laplacian matrix

L = L −C = [8 � −C� 8 �8� 8 −C
] , (7)

where C� = diag{$1, . . . , $�} and C = diag{$�+1, . . . , $�}.
Moreover,

8 −C = GLG�, 8� = GLH, (8)

whereG = [0(�−�)×� ��−�] andH = [�� 0�×(�−�)]�.
A su
cient and necessary condition for the controllabil-

ity of system (5) is now established.

�eorem 8. 	e system (5) is controllable if and only if the
following two conditions are satis
ed simultaneously:

(i) [Γ 
] is a controllable matrix pair;

(ii) there exists no le� eigenvector of L with the 
rst 5
entries being all zeroes.
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Proof. It follows from Lemma 5(iii) that the system (5) is
uncontrollable if and only if there exists a nonzero le�

eigenvector ] ∈ C
�� of (C−L) ⊗ Γ such that ]�(Δ⊗
) = 0�.

According to Lemma 1, there exist two nonzero vectors ]1 ∈
C
� and ]2 ∈ C

�, which are le� eigenvectors ofC −L and Γ,
respectively, such that ] = ]1 ⊗ ]2 and (]�1 ⊗ ]

�
2 )(Δ ⊗ 
) = 0�.

Furthermore, one has

(]�1Δ) ⊗ (]�2
) = 0
�. (9)

It follows that (9) is true if and only if either

(i) ]�1Δ = 0�, that is, there exists a le� eigenvector of L
with the �rst 5 elements being all zeroes, or

(ii) ]�2
 = 0�, that is, [Γ 
] is an uncontrollable matrix
pair.

	e proof is thus completed.

Remark 9. By 	eorem 8, the controllability of system (5) is
decoupled into two independent problems: one is to analyze
the controllability of the isolated leader subsystem "̇ = Γ" +
-, which depends only on the intrinsic dynamics of the
isolated node, and the other is to identify whether there exists

a le� eigenvector ofLwith the �rst 5 entries being all zeroes,
which is determined byG.

4.1. Controllability of the Isolated Leader Subsystem. Consider
the system

"̇ = Γ" + 
-, (10)

where Γ ∈ R
�×� and 
 ∈ R

�×� are de�ned in (3).
In general, the controllability of system (10) can be

derived by using the classic controllability rank criterion or
PBH eigenvector test. In this subsection, two special cases ofΓ are further discussed below, since it characterizes the inner-
coupling among di�erent components.

First, consider the fully diagonal inner-coupling Γ = ��.
�eorem 10. 	e system (10) is controllable if and only if� ≤I and rank(
) = �.

Proof. Since Γ = ��, the controllability matrix of the pair[Γ 
] is
Q = [
 Γ
 ⋅ ⋅ ⋅ Γ�−1
 ] = [
 
 ⋅ ⋅ ⋅ 
 ] . (11)

According to the second statement of Lemma 5, [Γ 
] is
controllable if and only if� ≤ I and rank(
) = �. 	e proof
is thus completed.

Remark 11. From	eorem 10, all the leaders’ states should be
controlled in order to render the system controllable.

Secondly, assume Γ is symmetric and the sumof all entries
in each row of Γ is zero.
�eorem 12. 	e system (10) is uncontrollable if 1��
 = 0�.

Proof. Since Γ is symmetric, for each eigenvalue, its le� and
right eigenvectors are the same. Additionally, the sum of all
elements in any row of Γ is zero. 	erefore, 0 is an eigenvalue

of Γ associated with eigenvector 1� = [1, . . . , 1]�. It follows
from PBH eigenvector test that if 1��
 = 0�, then [Γ 
] is
uncontrollable. 	e proof is thus completed.

4.2. Controllability of the Extended Graph. It follows from
	eorem 8 that if condition (i) of 	eorem 8 is already
satis�ed, then the controllability of system (5) is reduced to

the controllability of the extended graphG.
Consider the system

"̇ = (C −L) ", (12)

or equivalently,

[ "̇�"̇] = [C� − 8 � −8 �−8� C − 8] ["�"] , (13)

where "� = ["�1 , . . . , "�� ]� denotes the states of the leaders and" = ["��+1, . . . , "�� ]� those of the followers.
From (13), the dynamics of the � − 5 followers can be

rewritten as

"̇ = (C − 8) " − 8�"�. (14)

Remark 13. By De�nitions 6 and 7, that G is controllable
is equivalent to that the system (14) is controllable through"�. 	erefore, the controllability of G is reduced to the
problemwhether the leaders can drive the followers from any
con�guration to any other con�guration in �nite time. 	is
question will be answered next. It should be emphasized that

parameter $� of node � makes the controllability of G more
challenging than the question based on the original graphG.

4.2.1. Algebraic Criteria. In this section, the controllability of

G is discussed.

�eorem 14. G is controllable if and only if there exists no le�

eigenvector ofL with the 
rst 5 entries being all zeroes.
Proof. 	is theorem reveals that G is uncontrollable if and

only if there exists a le� eigenvector of L with the �rst 5
entries being all zeroes.

Necessity. Let ] ∈ C
� be a le� eigenvector ofL corresponding

to the eigenvalue � ∈ C with the �rst 5 elements being zeros.

From (7) and (8), one has 8 − C = GLG� and 8� =GLH, where G = [0(�−�)×� ��−�] and H� = [�� 0�×(�−�)].
SinceG�G = diag{0�, ��−�}, it follows thatG�G] = ]. From

]
�
L = �]�, one has (G])�(8 − C) = ]

�G�(GLG�) =
�(G])� and (G])�8� = (G])�GLH = 0�. Let ] = G].

	en, ]�(8 −C) = �]� and ]
�8� = 0�. According to (iii)

of Lemma 5,G is uncontrollable.
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Su�ciency. Assume that G is not controllable. By the PBH

eigenvector criterion, G is uncontrollable if there exist a
nonzero eigenvector ] ∈ C

�−� and a corresponding eigen-

value � ∈ C such that ]�(8 − C) = �]� and ]
�8� = 0�.

Construct a new vector

] = [0
]
] . (15)

	en, one has

]
�
L = [0� ]

�] [8 � −C� 8 �8� 8 −C
]

= []�8� ]� (8 −C)]
= [0� �]�]
= �]�.

(16)

	is implies that ] is a le� eigenvector of L with the �rst 5
elements being zeros. 	e proof is thus completed.

�eorem 15. 	e system (14) is controllable if 8 −C andL
have no common eigenvalues.

Proof. It su
ces to prove that if the system is uncontrollable
then there exists at least one common eigenvalue between8 −C andL.

Assume that the system (14) is not controllable. From (iii)

of Lemma 5, there exists a vector ] ∈ C
�−� such that ]�(8 −

C) = �]� for some � ∈ C, with ]
�8� = 0�. Moreover,

[0� ]
�] [8 � −C� 8 �8� 8 −C

] = []�8� ]� (8 −C)]
= � [0� ]

�] ,
(17)

which implies that � is also an eigenvalue of L with

eigenvector [0� ]
�]�. 	e proof is thus completed.

Note that	eorem 15 is only a su
cient condition.	ere-

fore, the systemmight be controllable even if 8 −C andL
have common eigenvalues, which is di�erent from the results
for undirected graphs [5, 6]. 	is can be veri�ed by a special
case that there is no edge from the followers to the leaders.
	e following result is given for further explanation.

�eorem16. If there is no edge from the followers to the leaders

in the system (14), then 8 − C and L have common eigen-
values.

Proof. In this case,L can be rewritten as

L = [8 � −C� 0�×(�−�)8� 8 −C
] . (18)

1

2 3

Figure 1: A digraph with $2 ̸= $3.
Since 8 − C is a principal diagonal submatrix of L, it

can be described by G�(8 − C) = LG�, where G =[0(�−�)×� ��−�] is an (� − 5) × � matrix. Let ] be the right
eigenvector of 8 − C corresponding to �. 	en, one has

L(G�]) = (LG�)] = G�(8−C)] = G�(�]) = �(G�]).
	at is, G�] is the right eigenvector of L corresponding to
the common eigenvalue �. 	e proof is thus completed.

4.2.2. Example 1. As shown in Figure 1, node 1 is selected to

be the leader and $2 ̸= $3. It can be veri�ed thatL and 8−C
have two common eigenvalues 1 − $2 and 1 − $3, and the rank
of the controllability matrix [8� (8 − C)8�] is 2. By (ii)
of Lemma 5, the graph is still controllable, although L and8 −C have common eigenvalues.

Now, consider the special case with $1 = $2 = ⋅ ⋅ ⋅ = $� = $.
Corollary 17. A directed path is controllable if the beginning
node is selected to be the only leader.

Proof. 	e extended Laplacian matrix of a directed path
(Figure 2(a)) is given by

L =
[[[[[[
[

−$ 0 0 ⋅ ⋅ ⋅ 0−1 1 − $ 0 ⋅ ⋅ ⋅ 00 −1 1 − $ ⋅ ⋅ ⋅ 0
...

... d d
...0 0 ⋅ ⋅ ⋅ −1 1 − $

]]]]]]
]
. (19)

By direct calculation, the eigenvalues of L are −$ and 1 − $
with the le� eigenvectors [1, 0, . . . , 0]� and [1, −1, 0, . . . , 0]�,
respectively. It follows from 	eorem 14 that the graph is
controllable.

Corollary 18. A directed cycle with a single leader is control-
lable.

Proof. For a directed cycle (Figure 2(b)), the extended Lapla-
cian matrix is given by

L =
[[[[[[
[

1 − $ 0 0 ⋅ ⋅ ⋅ −1−1 1 − $ 0 ⋅ ⋅ ⋅ 00 −1 1 − $ ⋅ ⋅ ⋅ 0
...

... d d
...0 0 ⋅ ⋅ ⋅ −1 1 − $

]]]]]]
]
. (20)

	e real and imaginary parts of the eigenvalues � satisfy the

elliptic relationship [Re(�) + $− 1]2 + [Im(�)]2 = 1. However,
all the eigenvalues of 8−C are equal to 1−$.	us, it follows
from	eorem 15 that the graph is controllable.
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1 2 3 4 �

(a) A directed path

1 2 3

45�

(b) A directed cycle

Figure 2: Illustration of network topologies.

1 2

34

(a) �2 = �4

3 1

24

5

(b) �4 = �5

Figure 3: 	e digraphs that are leader symmetric: (a) with respect to node {1}, (b) with respect to nodes {1, 2}.

4.2.3. Graph	eoretical Criteria.So far, some su
cient and/or
necessary conditions for network controllability have been
derived. However, these conditions are basically algebraic,
which remains elusive on the exact graphical interpretation.
In fact, the study of the graph associated with a controlled
system is equivalent to the study of the underlying algebraic
system, which motivates us to study the controllability from
a graph-theoretic perspective. It turns out that the graph-
theoretic conditions are indeed more intuitive and easier to
evaluate.

First, some de�nitions are introduced.

De
nition 19. A permutation matrix U ∈ R
�×� is a 0-1 matrix

with a single nonzero element in each row and column.

De
nition 20. 	e system (14) is leader symmetric with
respect to the leaders if there exists a nonidentity permutation
matrix U such that

U (8 −C) = (8 −C) U, U8� = 8�. (21)

Remark 21. De�nition 20 is an extension of De�nition 5.7 in
[6]. 	e main di�erences are twofold.

(i) De�nition 5.7 in [6] is applicable only to single-
leader systems and unweighted graphs, whereas
De�nition 20 works also for multiple-leader systems
and weighted digraphs.

(ii) Because of the nonidentical node dynamics,C must
satisfy certain conditions in addition to that the
original graph is leader symmetric.

Some examples are given here for illustration.

1

32 4

Figure 4:	edigraph that is leader asymmetricwith respect to node{1}: $2 = $3 ̸= $4.

Example 22. Figure 3(a) shows a directed leader-follower
network with V� = {1} and V = {2, 3, 4}. It can be veri�ed
that

L = [[[
[

−$1 0 0 0−1 1 − $2 0 00 −1 2 − $3 −1−1 0 0 1 − $4
]]]
]
, (22)

with

8 −C = [
[
1 − $2 0 0−1 2 − $3 −10 0 1 − $4

]
]
, 8� = [

[
−10−1]]

.
(23)

Assuming $2 = $4, one can �nd a nonidentity permutation
matrix

U = [
[
0 0 10 1 01 0 0]]

, (24)

satisfying (21). As a result, it is leader symmetric with respect
to {1}. Likewise, the digraph of Figure 3(b) is leader symmet-
ric about {1, 2}.



Mathematical Problems in Engineering 7

1

2

3

�

(a) A complete digraph

1

2

3

4

5

6

7

�

.

.

.

(b) A star digraph

Figure 5: Illustration of network topologies.

�eorem 23. 	e system (14) is uncontrollable if it is leader
symmetric.

Proof. If system (14) is leader symmetric, then there exists a
nonidentity permutation matrix U such that U(8 − C) =(8 −C)U. Let � and ] be the corresponding eigenvalue and
le� eigenvector of 8 − C, respectively, satisfying ]

�(8 −
C) = �]�. As a result, ]�(8 − C)U = �]�U = �(U�])�.
Using (21), (U�])�(8 −C) = ]

�U(8 −C) = ]
�(8 −C)U = �(U�])�. 	is implies that U�] is also a le� eigenvector

of 8 −C corresponding to the eigenvalue �. Furthermore,

one has ]−U�] is also a le� eigenvector of 8−C. By (21), it
follows that (]−U�])�8� = ]

�8�−]�U8� = ]
�8�−]�8� =

0�. 	is suggests that the eigenvector ] − U�] of 8 − C is
orthogonal to 8�, which does not satisfy the controllability
condition in (iii) of Lemma 5. 	erefore, the system (14) is
uncontrollable. 	e proof is completed.

Remark 24. 	eorem 23 provides a graph-theoretic result for
the uncontrollability of system (14). Note that leader sym-
metry is only a su
cient condition rather than a necessary
one. For example, the graph shown in Figure 4 is asymmetric
about the leader {1}, but it is uncontrollable.

Consider the case of $1 = $2 = ⋅ ⋅ ⋅ = $� = $. Some
corollaries can be easily derived from	eorem 23.

Corollary 25.A complete digraphwith a single leader is uncon-
trollable.

Proof. It is well known that each node in a complete
digraph (Figure 5(a)) has an in-degree (or out-degree) � − 1.
Corollary 25 is a direct consequence of 	eorem 23 because
of its leader symmetry.

Corollary 26. A star digraph is uncontrollable with respect to
the center node.

Proof. A star digraph is symmetric about the center node
(Figure 5(b)). If one chooses the center node as the leader, the
graph is leader symmetric. It thus follows that a star digraph
with the center node being the leader is uncontrollable.

1 2

34

1.5

1.2

1

1
1

Figure 6: Illustration of a network topology.

5. Controllability Improvement of
Heterogenous Networked Systems

	ere exists a fundamental and yet challenging problem in
the study of the controllability of complex networks: how to
improve the controllability of an uncontrollable networked
system? In this section, some approaches to improving the
controllability are suggested.

5.1. Increasing the Number of Leaders. It can be veri�ed that
leader reachable is a necessary condition for being control-
lable. 	at is, the graph is uncontrollable if there exist fol-
lowers who are isolated or have no incoming edge from any
leader or other follower.	erefore, the isolated nodes and the
nodeswithout incoming edge should be �rst selected to be the
leaders. As shown in Figure 3(a), node 1 has no incoming edge
from other nodes and is thus chosen to be a leader. It follows
that the graph is leader symmetric about the leader node 1
and is, therefore, uncontrollable when $2 = $4. However, if
node 2 or node 4 is also selected to be a leader, the leader
symmetry property does not hold anymore. It follows from
(ii) of Lemma 5 that the system becomes controllable. 	is
example shows that increasing the number of leaders may
improve the controllability.

5.2. Changing the Nodal Parameters. Nodal intrinsic dynam-
ics is considered for the system (5). It follows that parameter$� of node � is an important quantity determining the control-
lability of the networked system. For example, in Figure 3(b),
if $4 ̸= $5, then the leader symmetry property is not satis�ed. It
follows from (ii) of Lemma 5 that the system is controllable,
which implies that changing the nodal intrinsic parameters
may improve the controllability.
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Figure 7: 	e evolution of node states without control.

5.3. Changing the Edge Weights. Note that the edge weights
in the system (5) can be di�erent, indicating that one can
change the weights to possibly improve the controllability
of the system. For instance, in Figure 3(b), by assigning
di�erent weights of the edges (2, 4) and (2, 5), the leader
symmetry property is also violated so that the digraph
becomes controllable.

5.4. Example 2. To verify the theoretical results, consider a
directed and weighted network with four di�erent nodes, as
shown in Figure 6. Let� = I = 2, Γ = �2, and 
 = diag{1, 2}.
	e local dynamics of the nodes are given by

"̇1 = 1.5"1, "̇2 = −10"2, "̇3 = "3, "̇4 = −2"4.
(25)

Node 1 is selected to be a leader, so one has

L = [[[
[

2 0 −1 −1−1.5 1.5 0 00 −1.2 1.2 00 0 −1 1
]]]
]
, 8 = [

[
1.5 0 0−1.2 1.2 00 −1 1]]

.
(26)

It follows from 	eorem 10 that [Γ 
] is controllable. Fur-
thermore, one can calculate the eigenvalues of 8 − C
and L, obtaining {0.2, 3, 11.5} and {−0.1263, 0.8709, 2.9681,11.4872}, respectively. By 	eorem 15, the extended digraph
is controllable.

	e evolution of the states of the network without control
input is depicted in Figures 7(a) and 7(b).	e whole network
is unstable. Design the control law -1 = −10"1. 	en, as
shown in Figures 8(a) and 8(b), all the nodes are controlled
to zeroes.

6. Conclusions

In this paper, the controllability of a weighted and directed
network with nonidentical node dynamics has been inves-
tigated, where the network has a leader-follower structure.
	e controllability of the controlled network is converted
to two subproblems. 	e �rst subproblem is to analyze the
controllability of the isolated leader subsystem. 	e second
subproblem is to examine the controllability of the extended
follower subgraph. A set of conditions for assessing network
controllability and identifying nodes playing a key role
in network controllability have been established based on
matrix theory. Additionally, by using graph theory, several
controllability properties have been translated into graph
conditions, which are generally more intuitive and informa-
tive, therefore, easier to use for applications.

It is found that the controllability of a controlled network
with heterogeneous node dynamics is determined by both the
node local dynamics and the graph topology including the
number of leaders, the location of leaders, and the connection
pattern among followers. 	is result is constructive since it
allows for selecting leaders to render the system controllable.
Under this framework, the notion of controllability of com-
plex networks with various essentially di�erent structures
has been generalized. It has been shown that a single-leader
network is controllable if it is a directed path or cycle,
otherwise uncontrollable if it is a complete digraph or a star
digraph. It has also been shown that the controllability of the
system can be improved by increasing the number of leaders,
changing the nodal local parameters, or assigning di�erent
weights to the edges.

	e main di�erence between our work and the previous
works lies in the introduction of di�erent kinetic constants for
the uncoupled nodes.	e results obtained here aremerely the
�rst step in the study on controllability of complex networks
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Figure 8: 	e evolution of node states under control.

with heterogenous node dynamics. Future research along the
same line might include the cases of noise, uncertainties,
and time-varying topology. In addition, the dual property
of the observability of complex networks is worthy of future
investigation. 	e concept of “structural observability” [25]
may help build up a general framework for future research
on this topic.
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