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We demonstrate that field-responsive magnetorheological (MR) fluids can be used for variable-
strength controllable adhesion. The adhesive performance is measured experimentally in tensile tests
(a.k.a. probe-tack experiments) in which the magnetic field is provided by a cylindrical permanent
magnet. Increasing the magnetic field strength induces higher peak adhesive forces. We hypothesize
that the adhesion mechanism arises from the shear resistance of a yield stress fluid in a thin gap.
This hypothesis is supported by comparing the experimentally measured adhesive performance to
the response predicted by a lubrication model for a non-Newtonian fluid with a field-dependent
yield stress. The model predictions are in agreement with experimental data up to moderate field
strengths. Above a critical magnetic field strength the model over-predicts the experimentally
measured values indicating non-ideal conditions such as local fluid dewetting from the surface.

I. INTRODUCTION

Viscous Newtonian fluids confined in sufficiently small
gaps can provide strong resistance to the separation of
two parallel rigid surfaces, a phenomenon known as Ste-
fan adhesion [1]. This type of Newtonian fluid adhesion
is important in understanding “tackiness” [2, 3], but is
limited in application because a finite separation velocity
is required to induce adhesive Newtonian stresses.

In contrast, a suitably non-Newtonian fluid – e.g. a
yield stress fluid [4, 5] – can provide adhesive force even
under static conditions. Yield stress fluids are materi-
als which approximately behave as a solid below a criti-
cal stress condition, flow as a liquid for larger stresses,
and can repeatedly and reversibly transition between
these solid-like and liquid-like states. A yield stress fluid
can therefore be interpreted as an extreme case of non-
Newtonian shear-thinning viscosity. The adhesive qual-
ity of yield stress fluids can be readily observed in peanut
butter, whipped cream, or toothpaste. In biology, yield
stress fluid adhesion is thought to be the attachment
mechanism of wall-climbing snails and slugs [6], and engi-
neered devices have recently been inspired to exploit yield
stress fluid adhesion as a locomotion strategy to climb
walls [7, 8]. Confined yield stress fluids have been stud-
ied under tensile loading [9, 10] and compressive squeeze
flow, e.g. [11–14]. The tensile adhesive performance is
directly related to the yield stress of the fluid, which typ-
ically exhibits isotropic properties [15].

Field-responsive or so-called “smart” yield stress fluids
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are also available, which exhibit a variable microstruc-
ture (and yield stress) as a function of the applied exter-
nal field, e.g. magnetic or electric. Many field-responsive
materials and structures exist [16], but here we focus
on magnetorheological (MR) fluids. MR fluids typically
consist of a suspension of non-colloidal ferromagnetic
particles. An external magnetic field induces magnetic
dipoles in the particles, causing them to form chains
along field lines. This field-aligned anisotropic config-
uration strongly resists shear deformation with displace-
ments perpendicular to the field lines, and most stud-
ies and applications subject MR fluids to shear loading.
Only a few results have been published on tensile loading
of MR fluids, such as experimental studies of oscillatory
squeeze flow [17] and theoretical modeling of tensile adhe-
sion [18], but the true efficacy of tensile adhesive loading
for a field-responsive yield stress fluid is an open question
which we address in this work.

The prospect of utilizing MR fluids for tensile adhesion
is compelling, since this would allow for controllable, tun-
able, and reversible attachment. As an additional prac-
ticality, adhesion to arbitrary surfaces (such as walls or
windows) requires that the field source be located on only
one side of the fluid, thus inhibiting the option of creat-
ing a homogeneous magnetic field condition. As a con-
sequence, functional MR fluid adhesion must tolerate a
nonhomogeneous magnetic field.

Here we demonstrate experimentally that MR fluids
can be used with nonhomogeneous fields (e.g. created by
a permanent magnet that is placed near a drop of the
MR fluid) to attach to non-ferromagnetic substrates in-
cluding plastic, aluminum, ceramic tile, and wood. Fig. 1
demonstrates the feasibility of using magnetic fields for
switchable adhesion to various nonmagnetic substrates.

Adhesive performance will depend on the method of
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FIG. 1: Demonstration of reversible adhesion to nonmagnetic
substrates using field-activated magnetorheological (MR)
fluid. Surfaces shown are wood, aluminum, and ceramic tile,
demonstrating adhesion across a range of substrate surface
roughness. The suspended mass, m = 112 g, is a switchable
permanent magnet configuration which creates a magnetic
field strength on the order of B = 0.16 T over an area of ap-
proximately A ≈ 230 mm2. The holding stress is therefore at
least mg/A ≈ 4.8 kPa.

separation of the two surfaces, such as normal pull-off,
shearing, or peeling [19]. Here experimental results are
reported for both normal and shear loading of a field-
responsive yield stress fluid confined between rigid sur-
faces, as the external magnetic field and the geometry
of the adhesive contact are varied. The peak adhesive
force and the mode of failure are all controlled by the
field-responsive nature of the magnetorheological fluid
comprising the adhesive layer. Using a combination of
experimental measurements and non-Newtonian lubrica-
tion flow modeling, we argue that the mechanism of this
tensile adhesion is due to the field-responsive shear yield
stress of the magnetorheological fluid.

II. BACKGROUND: FLUID ADHESION

Consider a fluid confined in a small gap (h/R ≪ 1)
between rigid parallel surfaces, as shown in Fig. 2. Both
capillary forces and bulk viscous stresses resist separation
of the plates. The capillary force on a bounding surface,
assuming an axially and vertically symmetric meniscus,
is given by [20]

FCapillary =
γ

h/2
cos θE(πR

2) + γ sin θE(2πR) (1)

where γ is the surface tension and θE is the contact an-
gle. Eq. 1 is the superposition of a capillary pressure
difference within the fluid and the line traction at r = R.
For a wetting fluid θE < 90◦ and the fluid acts to pull
the plates together. Under static conditions the pressure
profile in the fluid is constant as a function of the radius,
p(r) ∼ r0, since no other forces exist in the radial direc-
tion. The pressure differential across the curved interface
will dominate when R/(h tan θE) > 1, which is generally
the case of a single wetting droplet confined in a small
gap, but for an array of discrete droplets the line trac-
tion will be multiplied by the number of droplets and can
become dominant [21].
Bulk material stresses will also resist separation of the

plates. For a viscous fluid, material stresses will result

FIG. 2: (a) Sketch of the experimental setup for adhesive
pull-off tests of a field-responsive magnetorheological fluid.
Instrument materials are non-magnetic. The adhesive fluid
layer (radius R, gap height h) resides between rigid surfaces.
The lower plate has a cavity to allow a permanent magnet
(radius Rm) to be introduced to “activate” the adhesive with
a nonhomogeneous field. The top of the magnet is separated
from the bottom of the fluid by a distance δ. (b) Free body
diagrams for yield stress fluid adhesion. For the top plate only
forces in the z-direction are shown. For the fluid, the shape of
the control volume is a ring. The fluid is modeled locally as
a perfect plastic with a radially dependent yield stress. Small
gaps are assumed (h/R ≪ 1), so that material deformation
consists primarily of shear.

when the plates are separated at finite velocity. As the
(thin) gap increases, conservation of volume requires the
fluid to flow radially inward, and the no-slip condition at
the surfaces creates a shear gradient in the z-direction.
This inward shear flow requires a radial pressure gradi-
ent, such that the pressure in the fluid is below ambi-
ent. This resulting negative gauge pressure tends to pull
the plates together, resisting separation and acting adhe-
sively. The classic problem of “Stefan adhesion” [1, 22]
considers the case of an incompressible Newtonian fluid
in the limit of small gaps (h/R ≪ 1). For quasi-static
loading conditions we neglect the inertia of the solid com-
ponents. This assumption should be checked [23, 24];

for our experiments, ḣ = 10µm/s, ḧ ∼ 10µm/s2 from
analysis of typical data (where the dot indicates a time
derivative), and a system massM of a few hundred grams

gives Mḧ ∼ 3 ·10−6 N. This is much less than any exper-
imentally measured force, therefore the measured load F
is balanced only by the material stress. Neglecting sys-
tem inertia, the momentum balance in the z-direction is
determined by the free body diagram shown in Fig. 2b,
resulting in

F = −2π

∫ R

0

p(r)rdr (2)

where p(r) is the gauge pressure relative to atmospheric
conditions outside of the fluid. Positive adhesive forces,
F > 0, correspond to negative pressures in the fluid, and
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negative pressure (positive radial pressure gradient) must
exist to drive fluid flow inward. For a Newtonian fluid
at low Reynolds number with h/R ≪ 1, the quasi-steady
lubrication approximation is valid, and the momentum
balance in the r-direction simplifies to

∂p

∂r
= µ

∂2vr
∂z2

(3)

where µ is the (constant) Newtonian viscosity and vr(r, z)
is the radial fluid velocity. Combining the momentum
balance with continuity,

1

r

∂(rvr)

∂r
+

∂vz
∂z

= 0, (4)

results in the familiar parabolic flow profile and a net
required force given by [22]

FNewtonian =
3

2
µ
ḣ

h
πR2

(

R

h

)2

(5)

where the terms have been grouped to indicate that the
adhesive force arises from a viscous stress (µḣ/h) acting
across the area πR2, multiplied by the square of the as-
pect ratio (R/h)2. A Newtonian fluid therefore acts as
an adhesive but only in response to a dynamic situation
with non-zero separation velocity ḣ.
A suitably non-Newtonian fluid such as a yield stress

fluid [4, 5], can provide an adhesive force F even under
static conditions [9]. Yield stress fluids (including mag-
netorheological fluids) are materials which approximately
behave as a solid below a critical stress condition, flow as
a liquid for larger stresses, and can repeatedly transition
between these two states. Flow is typically assumed to
occur when an invariant of the deviatoric stress tensor
exceeds a critical value, 1

2
σ

′ : σ′ ≥ σ2
y [13, 25]. We are

interested in surface separation with thin gaps (h/R ≪ 1,
see Fig. 2), in which the deformation is approximated as
shear dominated. In this case the deviatoric stress for
a viscoplastic fluid is also approximated as shear domi-
nated with σzr = σrz as the only non-zero components,
and the yield criteria simplifies to σzr ≥ σy. If the yield
stress fluid is approximated as a perfectly plastic mate-
rial with constant stress σy during flow (we will show
rheological measurements to support this modeling ap-
proximation in Fig. 3) then the flow stress is indepen-
dent of the shear-rate and therefore independent of the
kinematics of deformation. For such a perfectly plastic
yield stress material, fluid inertia is negligible compared
to material stress if ρḣ2R/σyh ≪ 1 (at most this ratio is
∼ 10−7 for our tests and we therefore neglect fluid iner-
tia). The momentum balance in the r-direction is then
determined from the free body diagram of Fig. 2b, and
is given by

dp

dr
=

2σy(r)

h
sgn(ḣ) (6)

where h is the instantaneous height of the cylindrical fluid
sample and sgn(ḣ) is used to achieve the appropriate sign

for either squeeze flow (sgn(ḣ) = −1) or pull-off adhesion

tests (sgn(ḣ) = +1). In the present study only “probe
tack” adhesion tests are performed (tensile loading), for

which sgn(ḣ) = +1. The yield stress may vary as a func-
tion of the radius, σy(r), for example due to a nonhomo-
geneous magnetic field which activates the fluid (this is
considered in the following section). For a passive per-
fectly plastic fluid, σy = constant throughout the entire
fluid, and Eq. 6 can be integrated from the edge r = R
to arbitrary r, revealing a linear pressure profile. This
pressure field is then integrated according to the vertical
force balance (Eq. 2), giving the pull-off adhesion force
for a perfect plastic fluid with constant yield stress,

FYieldStress =
2

3
σyπR

2

(

R

h

)

(7)

where terms have been grouped to indicate a yield stress
σy acting over the contact area πR2 multiplied by the
aspect ratio (R/h). This result assumes small gaps
(h/R ≪ 1), uniform fluid contact with the bounding
surfaces, and a constant plastic yield stress σy which is
independent of shear-rate. The material deformation is
primarily shear and therefore adhesive performance relies
on the magnitude of the shear yield stress.
We have considered various asymptotic limiting re-

sults for thin-gap fluid adhesion mechanisms (Eqs. 1, 5,
7) to give context to our results with a magnetorheo-
logical fluid (a viscoplastic fluid with a field-dependent
yield stress). Note that each mechanism has a different
sensitivity to the aspect ratio (R/h)k, where k = 0 for
capillary effects, k = 1 for yield stress fluids with con-
stant flow stress, and k = 2 for viscous Newtonian fluids
with constant viscosity. Furthermore, Newtonian fluid
adhesion requires a finite separation velocity, whereas ad-
hesive phenomena arising from capillarity or fluid yield
stresses do not.

III. MODEL: MAGNETORHEOLOGICAL

FLUID ADHESION WITH NONHOMOGENEOUS

FIELDS

Here we extend the previous results of yield stress fluid
adhesion discussed in Section II to include a radially
dependent yield stress. We derive the resulting adhe-
sive force for a field-dependent yield stress fluid subject
to a nonhomogeneous magnetic field. The momentum
balance in the z-direction (Eq. 2) and the r-direction
(Eq. 6) presented above are still valid. Additionally, we
must identify an appropriate constitutive equation relat-
ing shear yield stress to field strength and we must specify
the configuration of the magnetic field.
The choice of constitutive equation is driven by experi-

mental rheological measurements of the magnetorheolog-
ical fluid (Fig. 3 and Fig. 4). For the fluid used here, a
weak apparent shear yield stress, denoted σy0, exists in
the ambient state even when no magnetic field is present.
The shear yield stress increases in response to an external
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magnetic field strength B (with field lines perpendicular
to the shearing direction) according to a power law rela-
tionship. Up to moderate field strengths of B ≈ 0.2 T,
the constitutive equation relating shear yield stress to
perpendicular external field strength can be written as

σy = σy0 + αB2 (8)

where σy0 ≈ 6.24 Pa and α = 137737 Pa.T−2 are the
measured values for the MR fluid used in our study
(c.f. Fig. 3 and Fig. 4).
The final required input is the form of the magnetic

field B(r) which activates the MR fluid. Here we con-
sider the case of a cylindrical permanent magnet (radius
Rm, length Lm) which is offset from the fluid by a finite
distance δ (Fig. 2). All other materials and structures in
the setup are non-magnetic, and therefore have negligi-
ble influence on the magnetic field lines. The permanent
magnet creates a nonhomogeneous magnetic field within
the region of interest. For a given distance above the
magnet, δ + h, calculations indicate that the magnetic
field strength is approximately constant for r ≤ Rm, but
decays as a power law B ∼ r−3 for r > Rm (see Ap-
pendix D). Field lines are not strictly perpendicular to
the shearing direction in this case, however, as a first or-
der approximation we will neglect the field orientation
and consider only spatial decay in the magnitude of the
excitation field. The field magnitude can then be repre-
sented as

B(r) =

{

B0 r/Rm ≤ 1

B0

(

r
Rm

)−3

r/Rm ≥ 1.
(9)

Equations 2, 6, 8, 9 can be combined to determine the
adhesive force F resulting from the field-activated MR
fluid setup. Two cases are distinguished. Case 1 will
refer to the situation in which R ≤ Rm, i.e. the fluid
does not extend beyond the cross-sectional area of the
magnet and is therefore activated by a constant magnetic
field B0. Case 2 will refer to R ≥ Rm, in which the fluid

at r > Rm experiences a nonhomogeneous and decaying
magnetic field strength.
For Case 1 (R ≤ Rm) the shear yield stress is spatially

homogeneous, σy = σy0 + αB2
0 (Eq. 9). Integrating the

momentum balance of Eq. 6 from R to r and using the
boundary condition p(R) = 0 (neglecting surface tension
effects) shows that the pressure field varies linearly in r,

p(r) = −
2(σy0 + αB2

0)

h
(R− r), (10)

and takes the maximum negative value at r = 0. This
pressure field is then used in Eq. 2 to determine the force
F acting on the top plate,

F =
2

3
(σy0 + αB2

0)πR
2

(

R

h

)

. (11)

which applies only for Case 1 with R ≤ Rm (note the
similarity to Eq. 7 for a passive yield stress fluid with
homogeneous yield stress).
For Case 2 (R ≥ Rm) the same procedure is followed,

but the nonhomogeneous magnetic field strength must be
considered. For the region 0 ≤ r ≤ Rm, the yield stress
is constant, σy = σy0+αB2

0 , and Eq. 6 is integrated from
r = Rm to arbitrary r < Rm to find

p(r) = p(Rm)−
2(σy0 + αB2

0)

h
(Rm − r), for 0 ≤ r ≤ Rm

(12)

which is similar to Eq. 10 but includes the matching con-
dition p(Rm). The pressure field for Rm ≤ r ≤ R is found
by integrating Eq. 6 from r = R to arbitrary r > Rm,
using the boundary condition p(R) = 0. The momen-
tum balance includes an inhomogeneous yield stress, and
thus requires both the yield stress constitutive expression
(Eq. 8) and the magnetic field condition (Eq. 9). Inte-
gration of Eq. 6 results in the following expression for the
pressure field

p(r) = −
2σy0

h
(R− r)−

2

5
αB2

0

Rm

h

[

(

r

Rm

)−5

−

(

R

Rm

)−5
]

, for Rm ≤ r ≤ R. (13)

The radial decay in the magnitude of the pressure for r ≥
Rm is very strong, since dp/dr ∼ σy ∼ B2 ∼ (r/Rm)−6

in this region. The expressions for the pressure field
(Eqs. 12 and 13) can then be used to determine the ad-
hesive force F ; first by using Eq. 13 to solve for the term
p(Rm), and then by substitution into and integration of

Eq. 2. The expression for the resulting normal force F is

F

Fm
=











(

1 +
σy0

αB2

0

)(

R
Rm

)3

R/Rm < 1
[

2−
(

R
Rm

)−3

+
σy0

αB2

0

(

R
Rm

)3
]

R/Rm > 1

(14)

where the characteristic force Fm = 2
3
αB2

0πR
2
m(Rm/h0)

takes the form of an adhesive force for a yield stress fluid
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(c.f. Eqs. 7 and 11). Note that the upper expression in
Eq. 14, for R/Rm < 1, is equivalent to Eq. 11. This di-
mensionless form of Eq. 14 has been chosen as it is partic-
ularly convenient for considering both cases of R/Rm < 1
and R/Rm > 1.

For this yield stress fluid model, a finite force is re-
quired to initiate deformation. The peak force required
to initiate deformation, Fpeak, is a useful metric for the
adhesive performance and is associated with the initial
conditions R = R0, h = h0. The gain in adhesive per-
formance associated with the MR response is determined
by three dimensionless variables: R/Rm (the radial ex-
tent of the fluid sample compared to the size of the mag-
net), σy0/αB

2
0 (the ratio of the ambient yield stress to

the additional field-induced yield stress), and F/Fm (the
dimensionless adhesive force).

For R/Rm ≤ 1 the fluid experiences a homogeneous
field strength B0, and therefore exhibits a homogeneous
yield stress. For this case the adhesive force is equivalent
to the perfectly plastic yield stress fluid model (see Eq. 7),
such that adhesive force increases as the cube of the fluid
radius, F ∼ R3. For cases in which the fluid extends be-
yond the radius of the permanent magnet, R0/Rm > 1,
the activation field strength is nonhomogeneous, decreas-
ing for r > Rm. Adding more fluid (increasing R0/Rm)
will increase the peak adhesive force but with weaker de-
pendency on R0/Rm.

Regarding the second dimensionless parameter, if
σy0/αB

2
0 = 0, the adhesive performance will asymptoti-

cally approach a constant value as R0/Rm ≫ 1, F/Fm →
2. However, the MR fluid used in this study exhibits a
finite apparent yield stress at zero field, σy0 ≈ 6.24 Pa.
This off-state yield stress can dominate the response if
(σy0/αB

2
0)(R/Rm)3 ≫ 2, e.g. when the fluid extends far

beyond the magnet.

IV. EXPERIMENTAL RESULTS

We have measured the material response in sim-
ple shearing deformation (shear rheometry) and normal
force tensile adhesion (sometimes known as “probe tack”
tests). Shear rheometry is used to measure the field-
dependent shear yield stress, σy(B), which is an input to
the probe-tack adhesion models (Eqs. 7 and 14). Tensile
adhesion experiments are performed on a separate lin-
ear force/displacement instrument with sensitive normal
force resolution. Adhesive tensile tests are performed by
separating the two disks at constant (apparent) speed

ḣA, and the resulting force curves are measured. The
apparent separation hA is related to the true separation
h via the instrument compliance [2], as outlined in Ap-
pendix A. The adhesive force predictions of Eqs. 7 and 14
are given for instantaneous values of fluid radius R and
height h. In our experiments the fluid volume is constant,
such that the instantaneous radius R(t) is related to the

FIG. 3: Steady shear flow rheology of the experimental flu-
ids. The passive yield stress fluid, aqueous Carbopol 2wt%,
pH 7, is fit to the Herschel-Bulkley model (Eq. B1) with
σy = 140.0 Pa, K = 55.2 Pa.sn, and n = 0.429. The magne-
torheological fluid approximately behaves as a perfectly plas-
tic yield stress fluid with constant stress as a function of shear
rate. Lines connect these MR fluid data points as a guide to
the eye, and low rate yield stress values are extrapolated and
shown in Fig. 4.

instantaneous height h(t),

R(t)2 =
R2

0h0

h(t)
(15)

in which R0 and h0 are the initial values of fluid radius
and height, respectively. Further details of the instru-
ment setup and methods are given in Appendix A.
Two yield stress fluids are examined. We measured the

steady shear flow rheology of each, as shown in Fig. 3.
Each fluid exhibits a constant shear stress over a wide
range of shear rates, and we interpret this stress plateau
as the fluid yield stress σy. We first present adhesion
measurements for a “passive” yield stress fluid which ex-
hibits a significant yield stress without requiring a mag-
netic field (σy ≈ 140 Pa). This serves as a starting point
to show the signature of yield stress fluid adhesion and
validate our experimental setup. The passive yield stress
fluid is a water-based suspension of soft, water-swollen
microgel particles (Carbopol 940, 2wt% in water), and
has a consistency similar to a hair gel. Additional mate-
rial information and rheometry details are given in Ap-
pendix B.
We then proceed to report our measurements of mag-

netorheological (MR) fluid adhesion and compare this to
our model prediction (Eq. 14). A commercially avail-
able magnetorheological (MR) yield stress fluid is used,
in which the ambient yield stress is small (σy0 ≈ 6.24 Pa)
but can increase by several orders of magnitude in re-
sponse to an external magnetic field. Fig. 3 gives the
full steady shear rheology curves as a function of exter-
nal magnetic field. The low-rate stress plateaus of Fig. 3
are interpreted as the static shear yield stress, and are
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FIG. 4: Shear yield stress for the magnetorheological fluid
as a function of the external magnetic field strength (field
lines perpendicular to shearing direction). Yield stress values
extracted from Fig. 3 (circles). The dashed line is a power
law fit to the data (ignoring the data point at the largest field
strength B = 0.462 T), resulting in α = 137737 Pa.T−2.

FIG. 5: Adhesive performance of the passive yield stress fluid,
Carbopol 2wt%. The initial fluid thickness h0 is varied for
each test, whereas the initial fluid radius R0 = 24 mm and
plate speed ḣA = 10 µm/s are constant for all curves; (a)
Force vs. displacement during pull-off, (b) Measured peak
force compared to model prediction (Eq. 16).

plotted in Fig. 4 to show the measured shear yield stress
dependence on external magnetic field. We observe a
quadratic dependence σy ∼ B2 up to B ≈ 0.2 T. Addi-
tional material details are given in Appendix B.

A. Passive yield stress fluid adhesion

Adhesive tensile tests for the passive yield stress fluid
(Carbopol 940, 2wt%) are shown in Fig. 5, in which the
gap height has been corrected for instrument compliance
(the corrected height h is shown; see Appendix A for
details of the compliance correction).

To prepare the adhesion experiment, the yield stress
fluid is squeezed down to an initial height h0 (see Ap-
pendix A for complete details). After squeezing we ob-
serve a residual negative force, due to compressing a fluid
with a large yield stress. Once the pull-off test begins,
the initial negative (compressive) force is released and the
adhesive (tensile) force rapidly rises and reaches a maxi-
mum after a very small change in gap height. The rate of
increase before the peak is likely due to elasticity in the
material before yield, and the peak therefore represents
the force required to yield and flow the material. After
this maximum adhesive force the signal decays rapidly as
the gap height increases. For this constant volume exper-
iment the force can be written as a function of the initial
geometry, R0, h0, and the instantaneous sample thick-
ness h, by substituting the constant volume constraint of
Eq. 15 into the force expression of Eq. 7, resulting in

FYieldStress =
2

3
σyπR

2
0

(

R0

h0

)(

h0

h

)5/2

. (16)

Notice here that the scaling relationship for constant vol-
ume deformation of a perfect plastic material is F ∼
h−5/2 (for a Newtonian fluid it would be F ∼ h−5, from
Eqs. 5 and 15). The log-log plot of Fig. 5a shows that
this scaling relationship holds for these tests, indicating
perfectly plastic yield stress adhesion. The peak force is
directly related to the adhesive performance. The exper-
imentally measured peak force is compared to the model
prediction (Eq. 16 evaluated at h = h0) in Fig. 5b for
various initial conditions. No fitting parameters are used
here, since the geometry is known and the rheology was
measured independently (Fig. 3). The model agrees well
with experimental results. A small systematic deviation
is apparent at the smallest initial gap heights h0, which
suggests a slight shear-rate dependence of the material
stress since smaller initial gaps h0 corresponds to higher
characteristic shear rates, γ̇ = Ṙ/(h/2), i.e. higher initial

characteristic shear rates γ̇0 = ḣR0/h
2
0. Such shear-rate

dependence in the material stress is consistent with the
rheological measurements of Fig. 3.

These results provide insight into yield stress fluid ad-
hesion and serve as a starting point for understanding
magnetorheological fluid adhesion. The correspondence
between model and experiment for the passive yield stress
fluid provides confidence that the experimental setup can
be used to explore the unique situation of field-activated
magnetorheological fluid adhesion against non-magnetic
substrates.
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FIG. 6: Experimentally measured adhesive performance of
the ambient MR fluid (B0 = 0 T). Various initial fluid radii

R0 examined for the same separation speed ḣA = 10µm/s and
initial height h0 = 0.5 mm. The inset shows the measured
initial static adhesive force F0 which is attributed to capillary
effects. Model lines show upper-bound estimates of Eq. 1 with
γ = 50 mN/m for capillary adhesion originating from either
a pressure jump at the interface (fully wetting, θE = 0◦, with
log-log slope=2), or maximum line traction (θE = 90◦, with
log-log slope=1).

B. Field-responsive magnetorheological fluid

Adhesive tensile tests for the MR fluid are performed
in the same manner as described for the passive fluid.
For field-activated adhesion tests, there is an additional
step of introducing the permanent magnet after the fluid
sample is squeezed to a thickness h0.

Experimental results for the ambient MR fluid (no per-
manent magnet) are shown in Fig. 6, with tensile force F
as a function of increasing gap height h. Here the initial
fluid radius varies while all other test parameters are kept
constant. The force approximately scales as F ∼ h−5/2

when the gap is sufficiently small (h/R ≪ 1) which sug-
gests yield stress fluid adhesion. This is consistent with
the rheological observation that the MR fluid has a small
apparent yield stress, even in the absence of an external
magnetic field.

The initial force F0 for these ambient tests is non-zero
and positive, i.e. the fluid pulls downward on the upper
plate (in contrast to the Carbopol tests in Fig. 5). We
attribute this initial static adhesion to capillary effects,
which become dominant over the material stresses as
both yield stress σy and radius R decrease. The capillary
force can be compared to the yield stress force by consid-
ering Eq. 1 and Eq. 7; taking the capillary pressure dif-
ference term of Eq. 1, the ratio is FCapillary/FYieldStress =
3γ/σyR. We can estimate this ratio with an upper bound
estimate of surface tension γ = 50 mN/m for this oil-
based fluid, R = 21.5−4.0 mm, and σy = 6.24 Pa for the

ambient MR fluid. For the ambient tests of Fig. 6, the ra-
tio FCapillary/FYieldStress = 1.1− 6, indicating significant
capillary effects.

A detailed account of capillary adhesion is beyond the
scope of this work, and requires careful and precise ex-
perimental protocols to control details such as contact
line pinning, interfacial curvature, and parallelism errors
(we refer the reader to recent work such as [26]). These
effects are negligible when the magnetic field is activated
and the yield stress increases by several orders of mag-
nitude; however, to illustrate that the deviations from
our model predictions at small R0 with the field off can
be plausibly attributed to Capillary effects, we report
the measured initial static force, shown as the inset of
Fig. 6. The static force increases with fluid radius, and
is compared to estimates of capillary force contributions
using Eq. 1 with γ = 50 mN/m. The model lines con-
sider separately the pressure differential and line traction
contributions of Eq. 1, i.e. when contact angle θE = 0◦

and θE = 90◦, respectively. The contact angle at the
edge of this viscous non-Newtonian fluid may vary due
to pinning and we therefore consider these two extremes.
The pressure drop effect is much larger than the maxi-
mum line traction for this geometry, and does a better
job of estimating the order of magnitude of the initial
static force F0. However, the quantitative trend in the
capillary-dominated regime does not precisely correspond
with the simple theory of Eq. 1. We speculate that the
lack of correspondence is due to uncontrolled contact line
pinning, large initial gap, and possible parallelism errors.
We will therefore subtract the initial static adhesive force
to analyze the peak adhesive force, Fpeak−F0, in order to
eliminate the static capillary force contribution and fo-
cus on the viscous contribution to adhesive performance.
This correction is unnecessary for all other tests reported
here, which have much larger yield stresses and therefore
capillary forces are negligible, FCapillary/FYieldStress ≪ 1.
Indeed, an initial static adhesion was only observed for
the ambient MR fluid with low yield stress.

Activating the MR fluid increases the adhesive force
dramatically. Fig. 7 shows a representative set of force
vs. displacement curves for the MR fluid activated by a
moderate magnetic field B0 = 0.061 T (σy = 520 Pa,
σy0/αB

2
0 = 0.012). Each curve corresponds to different

values of R0/Rm, with all other parameters held con-
stant. A line representing F ∼ h−5/2 is shown for ref-
erence, which would be expected to apply for the cases
with homogeneous shear yield stress (R0/Rm ≤ 1) and
very small gaps h/R ≪ 1. This is approximately the
case as the plates begin to pull apart, indicating a fluid
adhesive failure mechanism dominated by a yield stress.
The maximum adhesive force occurs at the beginning of
the pull-off test for each of these curves. Interestingly,
for the curves with R0/Rm ≥ 1, the adhesive force peaks
and is approximately constant over a range of h. This
behavior is distinct from the passive yield stress fluid
performance (Fig. 5), and may be related to the nonho-
mogeneous magnetic field condition, in which a reservoir
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FIG. 7: Experimentally measured adhesive performance for a
moderately activated MR fluid (Alnico 8 disc magnet, B0 =
0.061 T). Various initial fluid radii, 4.0 ≤ R0 ≤ 25.2 mm,
with magnet radius Rm = 6.35 mm. The separation speed
ḣA = 10µm/s and initial height h0 = 0.5 mm are the same
for each curve.

FIG. 8: Experimentally measured adhesive performance for a
strongly activated MR fluid (Neodymium disc magnet, B0 =
0.296 T). Various initial fluid radii, R0 = 4.0 − 25.2 mm,
with magnet radius Rm = 6.35 mm. The separation speed
ḣA = 10µm/s and initial height h0 = 0.5 mm are the same
for each curve. The inset is a linear-linear plot of the same
data, which highlights the iterative sawtooth failure leading
up to the peak force (observed for R0/Rm = 2.81, 3.97).

of “un-activated” fluid is available to be drawn into the
region with approximately constant magnetic field B0.
The sustained magnitude of this tensile force makes the
adhesive contact more robust. These results are repre-
sentative of tests with moderate external magnetic fields,
B0 < 0.1 T.

An example of experimental measurements with a

stronger magnetic field is shown in Fig. 8, in which
B0 = 0.296 T (σy0/αB

2
0 = 0.00052). Just as in Fig. 7, the

fluid radius R0/Rm is varied while all other experimen-
tal parameters are held constant. The force vs. displace-
ment curves for this case are quite different than those
shown in Fig. 7. First, the peak adhesive force increases
by a factor of 10 for comparable geometric parameters
but stronger magnetic field. In Fig. 8 the peak stress
does not occur near the initial gap height, rather the
force grows to a maximum value at gap height h∗ > h0.
Furthermore, a distinct sawtooth pattern can be seen
in the curves for R0/Rm ≥ 2.81. The linear-linear plot
in Fig. 8 (inset) highlights the sawtooth behavior. This
sawtooth pattern is extremely repeatable, and perform-
ing successive tests on the same sample results in curves
that are almost identical including even the phase of the
sawtooth portion. We interpret this as a stick-slip phe-
nomenon, for which a sufficient condition is a compliant
drive component (our system stiffness S = 124 N/mm)
and a static friction force that is higher than the kinetic
friction force. For our case the slip seems to occur at
the fluid/solid interface near the magnet – when viewed
from below through the transparent bottom plate, the
fluid radius R can be observed to “jump” at a frequency
which corresponds with the sawtooth frequency. We ob-
serve that the force amplitude ∆F between peak and
trough depends on the speed of separation, such that ∆F
decreases as ḣ increases, eventually leading to smooth
force vs. displacement curves at a sufficiently large sep-
aration speed ḣ (we observed smaller amplitude ∆F at

ḣ = 30µm/s, but no stick-slip at ḣ = 100µm/s). This is
consistent with the idea of a critical velocity to eliminate
stick-slip behavior (e.g. see [27]). While sticking, the rise
in force is related to the compliance of the instrument;
the slope of this region is nearly linear and we observe
dF/dhA ∼ 70 N/mm, which is slightly less than the in-
strument stiffness and indicates non-perfect sticking. We
expect the drop in force during slip, ∆F , to occur over
a timescale that depends on the system stiffness and the
system inertia, T = 2π/ω with ω =

√

S/M (for under-
damped slip [27]). For our system M is on the order
of a few hundred grams, therefore the slip timescale is
approximately T ∼ 0.01 s which is lower than our mea-
surement resolution ∆t = 0.15 s. The stick-slip behavior
should also depend on the surface roughness. Such de-
tailed modeling is beyond the scope of this manuscript,
however the sawtooth force curves can still be compared
with other measurements and with the model proposed
in Section III by considering the absolute maximum peak
adhesive force for each curve.

In Figs. 9–10, the peak adhesive forces from multiple
experimental measurements (beyond the representative
force curves shown in Figs. 6–8) are compared with pre-
dictions of the model developed in Section III. The model
(Eq. 14) is quantitatively predictive for the case of low to
moderate field activation B0 < 0.1 T with no fitting pa-
rameters (Fig. 9). In Fig. 9b it can be seen that the peak
force increases as a function of the fluid radius, levels off
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FIG. 9: Comparison between experimentally measured peak
adhesive force with apparent speed ḣA = 10 µm/s (sym-
bols) and model predictions (lines) at moderate magnetic
field (B0 ≤ 0.061 T) with model parameters σy0 = 6.24 Pa,
α = 137737 Pa.T−2. (a) Ambient results (no magnet present)
neglecting initial capillary force F0, B0 = 0 T from Fig. 6,
compared to model prediction (Eq. 7). (b) Moderate mag-
netic field, B0 = 0.061 T, for various initial geometries
h0 and (R0/Rm) (see Fig. 7 for representative curves with
h0 = 0.5 mm). The theoretical predictions of the current
model are given by the lines (Eq. 14). Model parameters are
measured with independent tests, and therefore no adjustable
parameters are used.

as R0/Rm > 1, and increases again at large R0/Rm once
the contribution from the static yield stress becomes sig-
nificant.

For magnetic activation with higher fields (B0 >
0.146 T), the model developed in Section III over-predicts
the experimental measurements, as shown in Fig. 10.
Some over-prediction would be expected for B0 > 0.2 T
due to the sub-quadratic scaling of the yield stress as
the field is increased (Fig. 4), but this cannot completely
account for the model discrepancy. Indeed, the experi-
mental force vs. displacement curves presented in Fig. 8
show dramatically different behavior than those obtained
at lower field activation. The failure mode under high
field activation is characterized by the growth of adhe-
sive force as the gap is increased, followed by the abrupt
failure near the peak force. It is likely that interfacial
failure (i.e. de-wetting or crack propagation at the fluid-
surface interface) is occurring within these tests, which
is not included in the current fluid flow model. It is
common to use the terminology of “cohesive failure” (de-
formation and yielding within the bulk MR material) to
contrast with “adhesive failure” (at the interface between
the adhesive and the probe) [19]. The model here only
considers cohesive failure, and any adhesive failure or de-
tachment events would lower the total tensile force and
reduce the performance predictions of the model.

Although the model over-predicts the peak adhe-

FIG. 10: High magnetic field (B0 ≥ 0.146 T) comparison
between measured peak adhesive force (symbols) and model
predictions (σy0 = 6.24 Pa, α = 137737 Pa.T−2), for various
initial geometries h0 and (R0/Rm). The theoretical predic-
tions of the current model are given by the lines (Eq. 14). No
fitting parameters are used. The experimentally measured
adhesive strength is systematically lower than predicted by
theory for these large field strengths.

FIG. 11: Absolute measurement of adhesive performance in
tension with a magnetorheological fluid, using data presented
in Figs. 6–8. The model lines are for a homogeneous perfect
plastic yield stress fluid with σy = 6.24 Pa, Eqs. 7 and 18. (a)
Absolute measurement of peak tensile force Fpeak, and (b)
work of adhesion W for each experiment. The magnetic field
is B0 = 0 T (ambient), B0 = 0.061 T, and B0 = 0.296 T; each
test uses initial fluid thickness h0 = 0.5 mm. When present,
the magnet radius is Rm = 6.35 mm.

sive force at the highest magnetic fields examined here
(Fig. 10), we observe that the adhesive performance does
continue to improve with increased magnetic field. In-
creasing the magnetic field strength increases the adhe-
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sive force Fpeak and also the measured work of adhesion

W =

∫ hmax

h0

Fdh. (17)

Fig. 11 summarizes the experimentally attainable tensile
adhesion in terms of peak force Fpeak and work of adhe-
sion W . The data points in Fig. 11 are calculated for the
representative experiments of Figs. 6–8, which used var-
ious magnetic field strength B0 = 0 T, B0 = 0.061 T,
and B0 = 0.296 T at constant initial fluid thickness
h0 = 0.5 mm. The work of adhesion is calculated us-
ing only the portion of the force curve with positive force
F (h) > 0. For some magnetically activated cases we ob-
served a negative initial force F0 < 0 when the magnet
was introduced. In our notation a negative force indi-
cates fluid pushing the plates apart (Fig. 2), and our
observation of an initial force pushing the plates apart
is consistent with other experimental reports in the lit-
erature [28, 29]. We observe that the initial negative
force quickly becomes positive as the plates are sepa-
rated, i.e. becomes adhesive, resisting further separation
in our notation. For the ambient experiments B0 = 0 T,
capillary forces contribute to an initial non-zero force ad-
hesive force F0 > 0 and analysis of peak force Fpeak and
work of adhesion W are performed on both the total
force curves F (h) (shown in Fig. 6) and also the shifted
force curves calculated by subtracting the initial capillary
force, F (h) − F0, in order to focus on the viscous phe-
nomenon (“less F0” data in Fig. 11). The capillary effect
is particularly apparent at smaller initial fluid radius R0.
The absolute peak force Fpeak, shown in Fig. 11a,

climbs by about two orders of magnitude between the
ambient state B0 = 0 T and the maximum activated
state B0 = 0.296 T for a comparable area of contact.
This increase in Fpeak is monotonic for a given quantity
of fluid, represented by initial fluid radius R0. The work
of adhesion W is shown in Fig. 11b, which is a measure
of the total energy required to separate the two bounding
surfaces. The work of adhesion W also climbs by about
two orders of magnitude under strong magnetic activa-
tion.
The model line for work of adhesion WYieldStress in

Fig. 11b is given for a perfect plastic yield stress fluid
with homogeneous shear yield stress σy = 6.24 Pa (the
ambient MR fluid with no magnet). The expression is
given by

WYieldStress =
4

9
πσyR

3
0 (18)

which is found by substituting the expression for the ten-
sile force exerted by a yield stress fluid, Eq. 16, into
the work of adhesion definition, Eq. 17, and integrat-
ing from h0 to ∞. For a yield stress fluid the work
of adhesion is proportional to the cube of the contact
radius, WYieldStress ∼ R3

0, and the result for a Newto-
nian fluid is WNewtonian ∼ R4

0 (this can be found from
Eqs. 5 and 17). Some researchers may prefer to con-
sider the work of adhesion per unit area, W/A with units

mJ/mm2. For example for disks of radius R0 = 20 mm
the work of adhesion (per unit area) for the MR fluid
increases from W/A = 1.3 · 10−4 mJ/mm2 with the
field off (0.0 T with total force F ) to a work of adhe-
sion of W/A = 1.5 · 10−3 mJ/mm2 with the field on
(B0 = 0.296 T). We also note that W/A is not constant
for the viscous flow adhesion mechanisms discussed here,
and that W/A = constant would appear as a quadratic
scaling W ∼ R2

0 in Fig. 11b.
It is noteworthy that capillary effects, via the initial

static force F0, seem to play an important role when
looking at the work of adhesion W with small fluid ra-
dius R0. At small radius R0, the work of adhesion W
calculated from the total force curves (filled symbols in
Fig. 11b) can be larger for the ambient compared to the
activated state. We attribute this larger work of adhe-
sion to sustained fluid contact in the ambient case, which
is shown in Fig. 6 by sustained force curves F (h) > 0 up
to the maximum height tested, hmax = 4 mm. This is
in contrast to the activated cases which exhibit a more
pronounced adhesive failure and detachment of fluid, as
observed in the force curves of Fig. 7 and Fig. 8, which
can show an abrupt drop in force F (h) at finite height
h < 4 mm. For a sufficient quantity of fluid, R0 > 1 mm,
the initial static capillary force F0 is less important, and
the work of adhesion W monotonically increases as a
function of magnetic field strength.

As the magnetic field strength is increased, fluid de-
tachment limits the upper bound of adhesive perfor-
mance with magnetorheological fluids – this seems to
be why the model of Section III fails at high magnetic
field. Despite that limitation, the presence of fluid de-
tachment provides a unique advantage compared to other
forms of fluid adhesion. Specifically, under certain cir-
cumstances, very little fluid is left on the substrate after
pull-off. While the fluid is activated, the fluid is attracted
to the magnetic field source. If forced detachment occurs,
then the activated MR fluid can be pulled away and de-
adheres from the underlying substrate, sticking preferen-
tially to the surface containing the magnetic field source.
This is analogous to picking up iron filings with a per-
manent magnetic, but in this case one removes the bulk
of a magnetic fluid adhesive. The remnant fluid adhering
to the magnetic activation surface showed some remark-
able regular patterns, including cusp-like “flower petals”
in the fluid. See supplementary material at [URL will be
inserted by AIP] for images of remnant fluid patterns.

V. CONCLUSIONS

We have experimentally demonstrated that field-
activated magnetorheological (MR) fluids can be used
for switchable normal force adhesion to non-magnetic
substrates. The adhesion test apparatus allows one to
vary and control the adhesive strength by varying the
magnitude of the external magnetic field. A represen-
tative range of absolute adhesive performance is shown
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in Fig. 11, demonstrating that MR fluid adhesive perfor-
mance can be controlled over several orders of magnitude.

Our experimental data shows that MR fluid adhesive
strength is determined by the yielding of the MR fluid
flowing radially in a thin gap. To support this hypothe-
sis we have developed a model of MR fluid adhesion un-
der nonhomogeneous magnetic fields and compared this
with experimental measurements. The comparison is sat-
isfactory for moderate fields, in which we experimentally
observe the force scaling (F ∼ h−5/2) predicted by the
yield stress lubrication model. The model quantitatively
describes the peak adhesive force for moderate magnetic
field strengths B < 0.1 T with no free parameters. For
stronger magnetic field B0 > 0.1 T the adhesive force
continues to increase with magnetic field strength, but
additional modes of failure not captured in our simple
model can occur. Consequently, the model over-predicts
the adhesive performance for B0 > 0.1 T. Guided by ex-
perimental observation we attribute this in part to wet-
ting failure (i.e. debonding or crack propagation) at the
bounding surface furthest from the magnet, which is in-
fluenced by the magnetic body force attracting the fluid
toward the excitation magnet. Such attraction to the
magnet is not detrimental, since in applications this may
enable minimal residual material to be left behind after
the adhesive contact is removed.

We anticipate that the topic of field-activated MR fluid
adhesion will be a rich source of both scientific and en-
gineering development in the future. Many unexplored
parameters still exist for the problem of field-responsive
magnetorheological fluid adhesion, such as substrate ma-
terial, surface roughness, fluid thickness, magnetic field
orientation, and other modes of adhesive failure such as
peeling. Furthermore, a number of interesting phenom-
ena can be explored in more detail in the future. This
includes the stick/slip sawtooth waves observed in the
force vs. displacement curves with strong magnetic fields
(Fig. 8). This phenomenon can be examined by varying
the instrument compliance, and is motivated by the pos-
sibility that the sawtooth wave may indicate the proxim-
ity to adhesive failure in a functional device. Additional
phenomena include the over-prediction of peak forces for
strong magnetic fields (Fig. 10) and the “flower” instabil-
ity which is observed at moderate magnetic field strength
[URL will be inserted by AIP].
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APPENDIX A: INSTRUMENTATION

The shear rheology of the fluids is probed using the
AR-G2 rotational rheometer (TA Instruments, New Cas-
tle, DE). The water-based passive yield stress fluid
was tested with a plate-plate geometry (diameter D =
40 mm, gap h = 1 mm) using a solvent trap to miti-
gate evaporation. The magnetorheological fluid was also
tested with a plate-plate geometry, with a gap of h =
0.5 mm. Ambient tests of the MR fluid used the stan-
dard rheometer setup and a top plate with D = 40 mm.
To examine the magnetic field dependent rheology, a top
plate with diameter D = 20 mm was used in concert
with the MRF Rheometer Cell developed by Ocalan [30].
For both fluids, adhesive-backed waterproof sandpaper
(600 grit McMaster Carr 47185A51) was attached to the
top and bottom plates to help avoid slip at the bounding
surfaces.

The parallel plate geometry imposes a nonhomoge-
neous strain field, with maximum strain at the edge
of the plate (r = R). The material shear stress at
the plate edge, σR, cannot be determined from a sin-
gle torque measurement for a nonlinear material re-
sponse. The true stress can be determined from σR =
σA

1
4
(3 + d lnσA/d ln γ̇R) (e.g. see Macosko [31]), where

σR is the true stress at the edge of the disk and σA is
the apparent stress determined by σA = 2M/πR3 where
M is the measured torque and R is the disk radius (the
apparent stress calculation assumes a linear viscoelas-
tic material response). Applying this correction requires
derivatives of the apparent stress data. To calculate the
required derivatives, we fit a fifth order polynomial func-
tion to the raw data of lnσA vs. ln γ̇R, since this allows
calculation of the derivative of a smooth analytical func-
tion rather than differentiating discrete raw data. This
approach was applied to all rheological measurements.

The normal “pull off” adhesion was examined using
a linear load/displacement instrument, the TA.XTplus
Texture Analyzer (Stable Micro Systems, UK). The fluid
is confined between two rigid surfaces. The top surface is
an aluminum disk which can be displaced in the normal
direction as shown in Fig. 2. This experiment is some-
times referred to as a “probe tack” test [19]. Adhesive-
backed sandpaper (P2000 grit) was attached to the top
plate unless noted otherwise. The fine grit gave repro-
ducible results with minimum gap interference. The bot-
tom plate is made of transparent plastic and can be ac-
cessed from below to introduce a permanent magnet. We
have fabricated two bottom plate surfaces with different
dimensions to allow for different size magnets and dif-
ferent magnet offset distances. One plate is solid poly-
carbonate of thickness 12.1 mm. The magnet is held to
the bottom of the plate and separated from the fluid by
a distance δ = 12.1 mm. The plastic surface contact-
ing the fluid is sandblasted to provide a finite roughness
(r.m.s. roughness Rq = 1.84µm from 2D surface profilom-
etry (Tencor P-11 Surface Profiler)). A second plate is
made from transparent acrylic, thickness 8.3 mm, and
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fabricated with a cylindrical hole in which a magnet can
be placed δ = 1.0 mm from the fluid (Fig. 2). For the
MR fluid tests, the diameter of the top plate (typically
D = 48 mm) is always bigger than the initial fluid di-
ameter, which avoids the uncertainties associated with
contact lines pinned to the edge of the plate. The MR
fluid easily flows in the absence of a magnetic field, and
an initial drop of known volume can be deposited with a
pipette and subsequently squeezed into a disk shape. In
contrast, the passive yield stress fluid does not flow eas-
ily. Consequently its volume is not easily allocated with
a pipette and, furthermore, the “droplet” does not nat-
urally take a disk shape when squeezed. To increase ex-
perimental precision in these tests, the fluid diameter and
plate diameter are chosen to be the same, D = 48 mm,
which ensures a proper initial condition of a disk shape
with known radius. Here the passive yield stress fluid is
deliberately overfilled so that excess material is squeezed
out of all sides of the confinement space. Excess gel is
then scraped away or “trimmed” using a blade so that
the initial shape and the fluid radius can be precisely
controlled.

The Texture Analyzer is known to exhibit finite com-
pliance in the loading direction which can cause ex-
perimental artifacts under certain adhesive test condi-
tions [2]. For our setup the system stiffness was measured
to be S = 0.124 N/µm (Compliance 1/S = 8.08µm/N).
The stiffness was calibrated by placing the solid plates in
contact and continuing to lower the drive motor (appar-
ent height hA). The stiffness is the magnitude of the slope
dF/dhA during plate contact, and was reasonably ap-
proximated as linear within our range of measurements.
The system compliance is used to determine the true gap
thickness, h, from the apparent gap thickness hA accord-
ing to h = hA − F/S where F is positive as defined in

Fig. 2. Similarly for the true plate velocity, ḣ = ḣA−Ḟ /S
where the over-dot represents a time derivative. For these
tests the apparent gap hA is the directly controlled pa-
rameter. All tests reported here were performed at con-
stant apparent velocity ḣA.

The parallelism error of the bounding surfaces was also
quantified. To measure the parallelism error, the top sur-
faces were bought into contact (gap h = 0) which occurs
at a single contact point on the edge of the top plate. A
gap will persist around the rest of the plate edge, and the
maximum gap is measured by sliding gauge sheets of dif-
ferent thickness into the gap. Across the diameter of the
D = 48 mm top plate, the maximum parallelism error
is approximately d ≈ 127µm, or an angle of 0.15◦. The
minimum gap height used in these studies is h = 400µm,
which represents the distance between the two nearest
points on the bounding plates. All models in this work
assume parallel surfaces; a detailed analysis of higher or-
der effects due to non-parallel plates can be found, for
example, in [32] for power-law fluids.

APPENDIX B: MATERIALS

The passive yield stress fluid is a water-based suspen-
sion of soft, water-swollen microgel particles, and has a
consistency similar to a hair gel. The polymer microgel
particles are available commercially under the name Car-
bopol 940, obtained from the Noveon corporation (Cleve-
land, OH). The Carbopol-based solution was prepared at
a concentration of 2%(w/w), where w/w refers to weight
of the additive with respect to the total weight of the
mixture. The polymer was obtained as a white powder,
and was added to deionized water being agitated with a
magnetic stirrer. Samples were mixed for a minimum of
30 minutes. The Carbopol-water mixture initially has a
pH near 3, and was neutralized with 4 M NaOH solution
to achieve pH=7, producing a clear gel at the targeted
concentration. The rheology of Carbopol mixtures de-
pends on the pH, with maximum thickening occurring
within a pH range of 6-7 [33].
Rheological measurements for the passive yield stress

fluid (Carbopol) are presented in Fig. 3. These tests
were performed by specifying the shear-rate (from high to
low), in which case the instrument uses a control feedback
loop to impose the appropriate torque. A rate-specified
test was preferred here to correspond with the normal
adhesion tests which also impose kinematic deformation
conditions, i.e. displacement controlled tests. Further-
more, a rate-specified rheological test allows for the ob-
servation of a stress plateau across a broad range of shear-
rates. Recent work has reported slow transients in shear
flow of Carbopol (as long as 105 seconds) associated with
shear-banding [34]. We also observed long transients and
a lack of equilibrium, especially when the shear rate was
ramped from low to high. Ramping shear rate down from
high to low gave more reproducible results, but we note
that slow transients could still be observed at the low
shear rates when the “steady” shear stress was recorded,
i.e. after waiting a maximum of 60 seconds at each data
point.
The steady shear stress is shown as a function of shear-

rate in Fig. 3. The Carbopol solution (X symbols) is not
a perfectly plastic material. However, at low shear-rates
the shear stress may be approximated as a plateau across
several decades of shear-rate. The results across the en-
tire range of shear-rates are fit to a Herschel-Bulkley
model,

σ = σy +Kγ̇n. (B1)

resulting in σy = 140.0 Pa, K = 55.2 Pa.sn, and n =
0.429 (shown in Fig. 3, solid line).
The field-active magnetorheological fluid was acquired

from LORD Corp., (Cary, NC), available under the name
MRF-132DG. The MR fluid is oil-based and contains
carbonyl iron particles (1-20µm) at a volume fraction
between 20%-40%, plus additives. The iron particles
serve as magnetically-responsive constituents. An exter-
nal magnetic field induces magnetic dipoles in the par-
ticles, causing them to form chains which dramatically
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change the mechanical properties of the viscoplastic sus-
pension.

The rheology of the MR fluid in steady shear flow
(shear stress vs. shear rate) is shown in Fig. 3 for a range
of magnetic field activation. The ambient state exhibits
a broad stress plateau across several orders of magnitude
in shear-rate, which serves as an apparent yield stress.
Such a static yield stress is functionally useful for in-
hibiting the sedimentation of iron particles. For non-
colloidal iron particles, the buoyant (or gravitational)
force (4/3)πa3∆ρg must be smaller than the force avail-
able from the yield stress πa2σy, where ∆ρ is the density
difference and a is the characteristic particle radius. We
can estimate that a yield stress σy ≥ 1.8 Pa is required
for particles with ∆ρ = 6.87 g/cm3 and a = 20µm, and
this criteria is satisfied by the MR fluid (Fig. 3). The
MR fluid is not perfectly plastic, however, and the stress
eventually increases as a function of shear-rate. As the
magnitude of the magnetic field is increased, the yield
stress increases and the MR fluid becomes more of a
perfect plastic material, as evidenced by the flat stress
profiles in Fig. 3.

The apparent yield stress is extracted from the cor-
rected flow curves of Fig. 3. For the field-activated
states, the yield stress is estimated from the average
stress at the three lowest shear-rates. For the ambi-
ent response (open symbols), the effective yield stress
may depend on the characteristic shear-rate. For in-
stance, σy0 ≈ 6.24 Pa at a characteristic shear rate

γ̇ = ḣR0/h
2
0 = 0.254 s−1, which corresponds to the ex-

perimental parameters h0 = 0.5 mm, R0 = 6.35 mm, and
ḣ = 10µm.s−1 used in Figs. 6–Fig. 8.

APPENDIX C: MR FLUID RATE DEPENDENT

ADHESION

The influence of separation speed ḣA is shown in
Fig. 12. The force approximately scales as F ∼ h−5/2

when the gap is sufficiently small (h/R ≪ 1) which sug-
gests fluid adhesion dominated by yield stress. The weak
rate dependence indicates that the off-state MR fluid is
not a perfectly plastic material with constant flow stress,
since the pull-off force slightly increases as a function of
pull-off speed (this is consistent with rheological mea-
surement shown in Fig. 3). Although the dependence is

weak, the slowest pull-off speed available (ḣA = 10µm/s)
is used in all subsequent tests to avoid artifacts related to
speed. Fig. 12 includes a dashed line indicating the model
prediction using a yield stress value σ(γ̇ = 3.1 s−1) =
7.99 Pa. This stress (from linear interpolation of experi-
mental data points in Fig. 3) corresponds to the charac-

teristic shear-rate γ̇ ≈ ḣR0/h
2
0 = 1.5 s−1 for the condi-

tions ḣ = 10µm/s, R0 = 24 mm, h0 = 0.4 mm.

FIG. 12: Experimentally measured adhesive performance of
the “off state” MR fluid. Various separation speeds are exam-
ined for the same initial radius R0 = 24 mm and initial height
h0 = 0.4 mm. Here the dashed line is the prediction of the
perfect plastic yield stress adhesion model with σy = 7.99 Pa,
corresponding to the experimentally measured shear stress at
the characteristic shear rate γ̇ = ḣR0/h

2

0 = 1.5 s−1. The
model line is shifted up to include the same initial force bias
F0 = 0.083 N as measured for the experiment at ḣ = 10µm/s.
The top plate is the native aluminum surface.

APPENDIX D: MAGNETIC FIELD

CONFIGURATION FOR PULL-OFF TESTS

Motivated by the utility of adhesion against an ar-
bitrary substrate, we activate the fluid from only one
side. Three different disc-shaped permanent magnets
were used to activate the MR fluid. The weakest mag-
net is made from Alnico8, with radius Rm = 6.35 mm
and length Lm = 6.35 mm. The magnetic strength was
measured with a Hall effect probe (F.W. Bell, model
#5180 Gauss/Tesla probe). Across the stand-off distance
δ = 1.0 mm, the measured field is B = 0.059 T at the cen-
ter and B = 0.061 T on average near Rm/2 (four point
average). For modeling and analysis, B0 = 0.061 T is
used to represent the field across the area of the magnet.

Neodymium magnets are used for the two strongest
magnets. These are rare earth magnets comprised of
neodymium, iron, and boron. The first of these has
radius Rm = 6.35 mm and length Lm = 9.5 mm.
Across the stand-off distance δ = 1.0 mm, the field
strength is measured to be B = 0.319 T at the cen-
ter and B = 0.296 T on average near Rm/2. This fi-
nal value is used to describe the field strength for adhe-
sive tests, B0 = 0.296 T. The final neodymium magnet
is the largest, with radius Rm = 12.7 mm and length
Lm = 12.7 mm. This magnet is used beneath the en-
tire thickness of the bottom polycarbonate plate, with a
stand-off distance δ = 12.1 mm. At this distance the field
measured at the center is B = 0.163 T, and the average
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FIG. 13: Magnetic field profile for the Neodymium magnet,
including the layer of magnetorheological fluid at various radii
(R0 = 2, 5, 10, 20 mm). The geometry is axisymmetric with
a cylindrical polar coordinate system. (a) Magnitude of the
external field on the top surface of the fluid, |B| vs. r for
z=constant. Localized spikes in the magnetic field occur near
the edge of the fluid, but generally the profile is flat above the
magnet (r < Rm = 6.35 mm) and decays as a cubic power law
beyond the edge of the magnet (r > Rm). (b) Representative
magnetic field in the r-z plane with fluid radius R0 = 20 mm.
Darker shading indicates lower external field |B|; flux lines
are also shown.

field is B = 0.146 T. This final value is used as the field
strength for MR fluid adhesive tests, B0 = 0.146 T.

At sufficiently large distances (r ≫ Rm) a cylindri-
cal permanent magnet can be represented as a magnetic
dipole. The magnetostatic problem for a magnetic dipole
can be solved analytically only in the far field, in which
case the magnetic field strength decays as B ∼ L−3,
where L is the distance from the dipole (e.g. see [35]).
The region of interest for our problem (Fig. 2) is close
to the magnet and may be influenced by the presence of
the MR fluid, and therefore the analytical solution does

not strictly apply. The magnetic field was calculated us-
ing a finite element analysis (FEA) package, Maxwell SV
(Ansoft, LLC, Pittsburgh, PA).

Results were obtained for the magnetostatic problem of
a cylindrical permanent magnet with a thin, disk-shaped
layer of MR fluid at a finite stand-off distance, δ, between
the magnet and fluid (Fig. 13, c.f. Fig. 2). Representa-
tive results are presented in Fig. 13 for a Neodymium
magnet with various quantities of MR fluid present. The
radius of the cylindrical magnet is Rm = 6.35 mm, with
length Lm = 9.5 mm. The geometry is axisymmetric
with a cylindrical polar coordinate system. The mag-
net was modeled with a material selection option avail-
able in Maxwell SV (material ‘NdFe30’). The presence
of a magnetically permeable fluid will alter the magnetic
field. FEA was used to examine this effect, using a fluid–
magnet separation of δ = 1.0 mm, a fluid thickness h =
0.5 mm, and various fluid radii (R0 = 2, 5, 10, 20 mm).
The fluid was modeled with a nonlinear B-H response
curve as provided by the the fluid manufacturer. The
plane of interest is the top surface of fluid, with |B| shown
in the vacuum outside of the fluid so that values may be
compared with Hall probe measurements of the external
field. The magnetic field at this location is of interest
because it is furthest from the magnet and is likely to be
the weakest link determining adhesion performance.

Fig. 13b shows a representative FEA calculation in the
r-z plane, including both flux lines and the magnitude
|B| represented by shading. Fig. 13a gives |B| vs. r for
various cylindrical fluid volumes. In the presence of MR
fluid, the magnetic field spikes near r = R0 due to the
curvature at the fluid boundary. In this case the fluid
was modeled with rounded edges, with radius of curva-
ture h/2. The most important feature of Fig. 13 is the
observation that the magnitude of the field is approxi-
mately constant for r ≤ Rm, but decays as a power law
B ∼ r−3 for r > Rm. This decay coincides with the
far field solution, and is confirmed by FEA calculations.
These results were used in the model, Eq. 9.
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