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Abstract: Finding a suitable catalyst is an important research direction in hydrogen (H2) production
from water electrolysis. We report a synthetic method to obtain IrxCo/C clusters by polyol reduction.
The catalyst is small in size and can be evenly distributed. The Ir3Co/C cluster catalyst had very
good activity under acidic conditions. The overpotential of the best-performing Ir3Co/C cluster for
the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is only 290 mV and
91 mV when 10 mA cm−2 and 100 mA cm−2. The catalyst performance may be improved because of
the synergistic effect and the small size of the prepared catalyst, which accelerates proton transfer.
This approach offers a strategy to reduce costs while improving catalytic activity.

Keywords: electrolysis; nanoclusters; Ir-based catalysts

1. Introduction

Hydrogen is an ideal source of energy; an important step in harnessing it is to develop
ultra-stable and efficient technology [1]. Among the many preparation methods, the
electrolysis of water is a promising approach [2,3]. It includes the anodic oxygen evolution
reaction and the cathodic hydrogen evolution reaction. However, the weak point is that the
anodic oxygen evolution reaction has a large overpotential and slow kinetics [4,5].

Among catalysts, noble metals have very good catalytic activity. Ir-based catalysts are
considered to be excellent materials for the OER under alkaline conditions [6,7]. Neverthe-
less, due to their high price, slow kinetics under acidic conditions, and easy corrosion [8],
Ir-based catalysts are not widely used. Until now, researchers have used a number of
different methods to improve catalytic performance. For example, the prepared struc-
tures include three-dimensional porous [9] catalysts; core–shell [10] structures; and cubic
nanocage [11] structures; deposited Ni-P films [12], embedded on copper foam [13]; and
doping transition metals [14] in noble metal catalysts. These methods proved that the
reasonable design of catalysts can significantly improve their catalytic effects.

Therefore, researchers have performed many related studies. For the material, it is
mainly the introduction of a second component to enhance OER catalysis [15–17]. Bimetal-
lic alloys, such as Ir-Ni [18], Ir-Ru [19], and FeCo [20], have been shown to have significantly
improved water electrolysis performance. The improved performance is due to the syner-
gistic effect between metals, which can reduce the adsorption energy of intermediates. In
the synthesis procedure, clusters prepared by traditional methods are easy to condense.
However, recent research has shown that loading the catalyst on the carbon layer [21,22]
can overcome this deficiency.

It is on the basis of these studies that we chose to study transition metal-doped
precious metal (cobalt (Co))-doped Ir). For the synthesis method, we used the oil bath
method to synthesize IrxCo cluster catalysts by adjusting the proportion of metal precursors.
Considering the influence of catalyst size on the performance of the catalyst, we prepared
the catalyst on the nanometer scale. The reduction in the catalyst size allows the electrolyte
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to contact the catalyst more fully and catalyze the reaction. The prepared clusters are
uniformly distributed on the thin carbon layer (IrxCo/C). This is expected to promote the
industrial development of water electrolysis for hydrogen production.

2. Results and Discussion

By reducing the polyols and adjusting the ratio of the Ir and Co precursors, different
proportions of the IrxCo/C (x = 1, 2, 3) clusters can be obtained (see Figure S1 and Experi-
mental section). First, the crystallinity of the Ir3Co/C cluster and XC-72R was measured
and compared by X-ray diffraction (XRD) (Figure 1a). On the one hand, it was found that
there were no characteristic peaks of other metals in the sample, but only the characteristic
peaks of carbon at 24.5◦ and 44.5◦. This may be due to the fact that the scanning rate was too
fast during the XRD analysis, resulting in the absence of the corresponding characteristic
peaks. Alternatively, the Ir3Co/C cluster itself may have an amorphous structure. On the
other hand, when the sample contains more Co, the change in half peak width is opposite
to the decrease of peak strength (Figure S2), indicating that the nanoparticles have lower
crystallinity and a smaller crystal size [23]. From another point of view, the peak strength
of clusters decreases greatly, which indicates that clusters are successfully loaded on the
carbon support, which further proves the synergistic effect of replacing Ir with Co on
catalyst performance.
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Figure 1. (a) XRD characterizations of Ir3Co/C and XC-72R. (b) XPS images of Ir3Co/C and Ir/C.
(c) TEM image and (d,e) HRTEM diagram of Ir3Co/C. (f) EDS spectrum. (g) HAADF-STEM image of
Ir3Co/C, from left to right are STEM-EDS mappings of Ir, Co, and C.

X-ray photoelectron spectroscopy (XPS) was used to record the structure of Ir3Co/C
clusters (Figure S3). From Figure 1b, we can see that Ir in Ir3Co/C has a partial negative
charge because, compared to Ir/C, its characteristic peak is shifted to the right, the lower
binding energy end. In addition, as shown in Figure S4, compared with Ir3Co/C, the Ir
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4f peak of Ir/C shifts to the end with higher binding energy. From Figure S3a, it can be
seen that the sample has O 1s, C 1s, and Ir 4f peaks, which proves that the sample contains
oxygen, carbon, and iridium elements. As for the peak of O 1s, it may be due to partial
oxidation of samples exposed to air. It can be seen from the Ir 4f spectrum of the Ir3Co/C
sample that Ir has two valence states, namely Ir0 and Ir4+ (Figure S3b). As shown in Figure
S3c, the peak of Co 2p is very disordered, due to the small amount of Co in the sample,
which leads to a low probability of Co detection. In Figure S3d, it is shown that the carbon
bond types in the sample are alternating single and double bonds.

The Ir3Co/C clusters were detected by transmission electron microscopy (TEM). It
can be seen from Figure 1c that the sample is evenly distributed on the carbon carrier.
From Figure 1d, the yellow markings show that the particle has continuous lattice fringe,
of which the corresponding crystal planes are (111) and (200). From Figure 1e, the size
of the crystal is 1.7–1.8 nm, indicating that the prepared crystal is similarly very uniform.
Figure 1f shows the electron diffraction spectrum (EDS) of Ir3Co/C. The appearance of
characteristic peaks indicate the presence of C, Ir, and Co, with the highest content of C.
The presence of these elements was also demonstrated by high-angle annular dark field
scanning TEM (HAADF-STEM) (Figure 1g). This is consistent with the conclusion obtained
from the electron diffraction spectrum.

Ir-based catalysts are widely used in energy and environmental applications due to
face-centered-cubic (fcc) structure [24,25]. However, its performance is hampered in acidic
conditions. Thus, it is necessary to seek a catalyst with excellent performance under acidic
conditions. The OER polarization curves of catalysts under acidic conditions are shown in
Figure 2a. The required overpotentials are 446, 338, 360, 328, and 290 mV for Pt/C, IrCo/C,
Ir2Co/C, Ir/C, and Ir3Co/C when the current density is 10 mA cm−2 (Figure 2b). The
minimum value of 290 mV indicated that Ir3Co/C had the best catalytic performance, which
was less than Ir/C (38 mV). Table S3 shows the performance comparison of these catalysts.
The comparison of the OER performance of Ir3Co/C with IrO2 and RuO2 under acidic
conditions is shown in Table S4. When the Co content is optimal, the polarization curve
shows a lower overpotential, which is mainly due to the synergistic interaction between Ir
and Co. The Tafel slope also confirms this viewpoint. The Tafel slopes of Pt/C, IrCo/C,
Ir2Co/C, Ir/C, and Ir3Co/C are 187.84, 65.40, 65.21, 51.67, and 50.27 mV dec−1 (Figure 2c).
Ir3Co/C has the lowest Tafel slope, indicating that the catalytic OER reaction kinetics were
very fast. In addition, compared with its electron transfer impedance (Rct), the Ir3Co/C
has the smallest electron transfer impedance (Figure 2d). The activity can be evaluated
by the electrochemically active surface area (ECSA) (Figure S5). The Cdl of Ir3Co/C is
39.61 mF cm−2 (Figure S6), which is the highest among all the samples. This means that it
can expose more active sites, thus speeding up the reaction. This result suggests that the
intrinsic OER activities for Pt/C, Ir2Co/C, IrCo/C, Ir/C, and Ir3Co/C increased in order.
Combined with the above results, Ir3Co/C has good catalytic performance, and has great
application prospect.

The prepared catalyst was also tested OER performance under alkaline conditions.
The polarization curve of Ir3Co/C is furthest to the left (Figure S7a), which means the least
polarization occurred. The overpotential is only 310 mV (Figure S7b), the lowest Cdl is
found (Figure S7c), and the double layer capacitance is only 7.50 mF cm−2 (Figure S7d),
which is the largest among various catalysts. Through the test, we found that the catalytic
effect of Ir3Co/C decreased slightly under alkaline conditions, but was still higher than the
samples of Ir/C and Pt/C. These results indicate that Ir3Co/C has a better catalytic effect
under acidic conditions.
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The hydrogen evolution reaction of the prepared catalyst was further tested under
acidic conditions. Pt-based catalysts are considered to be the best catalysts for HER [26], on
account of their low overpotential and excellent reaction kinetics. The polarization curves of
HER under acidic medium is shown in Figure 3a. It can be found that the polarization curve
of Ir3Co/C is very close to Pt/C. Figure 3b shows that the overpotential of Ir3Co/C is much
lower than those of the catalysts, except Pt/C, indicating its outstanding activities with only
a 91 mV overpotential at 100 mA cm−2. The lower charge-transfer resistance (Figure 3c) also
proves its excellence. The Cdl of Ir3Co/C is between Pt/C and Ir/C (Figure 3d). Then, we
tested the HER of the catalyst under alkaline conditions. The polarization curve in Figure
S8a shows that the catalyst achieves high current density. This is because the background
current is so high that it has a very high initial potential. When the current density reaches
100 mA cm−2, the overpotential of Ir3Co/C is only 84 mV (Figure S8b), which is very small.
In addition, its Cdl is higher than other catalysts (Figure S8d), although the downside is that
its electrochemical impedance is very large (Figure S8c), indicating that its reaction speed is
slow. In summary, Ir3Co/C is expected to be a candidate for a high-efficiency catalyst for
water electrolysis, especially under acidic conditions, with excellent performance.

Compared with some previous catalysts (Tables S5 and S6), the prepared Ir3Co/C cat-
alysts has good catalytic performance. The main reasons for the performance improvement
of the catalyst are as follows: First, a smaller nanocluster structure is formed and more
active sites are generated. Second, the carbon-based carrier can effectively increase the
conductivity and fix the nanoclusters. Finally, Co and Ir metals have synergistic effect that
promote the occurrence of the reaction.
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3. Materials and Methods
3.1. Experimental Materials and Material Characterization
3.1.1. Experimental Materials

All the materials were purchased from the reagent company, except the ultrapure
water. The water was obtained by an ultrapure purification system. And none of them
were processed. The specific materials are as follows:

Iridium(III) chloride hydrate (IrCl3 xH2O, A.R, Titan Corp, Shanghai, China), Cobalt(II)
chloride hexahydrate (CoCl2·6H2O, A.R, Titan Corp, Shanghai, China), Sodium citrate
(C6H5Na3O7, A.R, Sinopharm group, Shanghai, China), potassium hydroxide (KOH, A.R,
Sinopharm group, Shanghai, China), ethylene glycol (C2H5OH, A.R, Sinopharm group,
Shanghai, China), sulphuric acid (H2SO4, Tianjin No. 3 Chemical Reagent factory, Tianjin,
China),XC-72 carbon powder (Cabot Corp, Boston, USA), and Nafion (~5 wt%, Sigma-
Aldrich Corp, Shanghai, China).

3.1.2. Materials Characterization

Characterizations of Crystal Structure: X-ray diffraction (XRD, Rigaku Ultima IV,
Rigaku, Tokyo, Japan) (scan speed: 4◦ min−1, 2θ range: 5–90◦) to observe the crystal
structure of the catalysts.

Characterizations of Surface Composition: X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi, Thermo Fisher Scientific, Waltham, MA, USA) to study the surface
composition of the catalysts.

Characterizations of Morphology and Structure: The morphology and structure of the
catalysts were characterized by Transmission electron microscopy (TEM, FEI Tecnai G2
F20, Thermo Fisher Scientific, Waltham, MA, USA) and High-resolution TEM (HRTEM, FEI
Tecnai G2 F30, Thermo Fisher Scientific, Waltham, MA, USA).
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3.1.3. Preparation of Working Electrode

• Nafion (5%), ultra-pure water and ethanol were used to prepare slurry at 1:9:10.
• 5 mg catalyst was mixed with 1 mL of the slurry.
• Ultrasonic to uniform dispersion.
• The pipette gun was used to take 16 µL of the slurry and uniformly add it to the carbon

paper with an area of 0.25 cm2.
• The working electrode load obtained was 0.32 mg cm−2.

3.2. Material Synthesis

For the Ir3Co/C, 40 mg C6H5Na3O7 and 30 mL ethylene glycol were placed into
identical round-bottomed flasks and ultrasonicated to fully dissolve sodium citrate. Then,
2168 µL IrCl3·xH2O (0.1 g mL−1) solution and 268 µL CoCl2·6H2O (0.2 g mL−1) solution
was measured by a pipette and placed into a distillation flask. The flask was placed on
a magnetic stirrer and a stirrer bar was added to ensure that the solution was stirred
evenly. Then, the pH of solution was adjusted to 9 by using 1 M KOH, and 40 mg XC-72
carbon powder was added to conduct ultrasound. After the ultrasonication (Ningbo Xinzhi
Biotechnology Co., LTD., Ningbo, China), the solution was placed into an oil bath with a
magnetic stirrer (Germany IKA Co., LTD., ZheJiang, China). The speed and temperature
were set to 300 rpm and 160 ◦C, and the reaction lasted for four hours. After the acquired
catalyst was cooled completely, it was filtered, washed with ultrapure water, and dried
in a blast oven (Shanghai Yiheng Science & Technology Co., LTD., Shanghai, China) for
8 h. Finally, after the sample was sufficiently dried, it was ground to obtain the required
catalyst. The preparation methods for the rest of the samples were the same, except for the
different amounts used.

3.3. Electrochemical Measurements

The electrochemical test were performed via the three-electrode system in the CHI
760E electrochemical workstation (Chenhua, Shanghai, China). The working electrode was
carbon paper (area: 0.25 cm2) supported by the catalyst; the counter electrode was a carbon
rod; and the reference electrode was Ag/AgCl (acidic conditions) or Hg/HgO (alkaline
conditions). Linear sweep curve (LSV) (sweep rate: 5 mV s−1), cyclic voltammetry curve
(CV) (sweep rate: 10, 20, 40, 50, 60, 80, and 100 mV s−1), and electrochemical alternating
impedance (EIS) (potential: 1.4 V, frequency range: 100-0.01 Hz) were utilized to test
electrochemical performance. The acidic and alkaline solutions were 0.5 M H2SO4 and 1 M
KOH. The data obtained were corrected against the reversible hydrogen electrode (RHE).

4. Conclusions

In brief, IrxCo/C clusters were synthesized by a simple method. The size of Ir3Co/C
clusters was 1.7–1.8 nm. The abundance of active sites increased its catalytic activity.
Ir3Co/C has excellent performance under different pH conditions. The OER was best
under acidic conditions, with an overpotential of 290 mV at 10 mA cm−2. It also had
very good HER performance, with an overpotential of 91 mV at 100 mA cm−2. Therefore,
the catalyst is expected to be used as a bifunctional catalyst. This provides a method to
increase the activity of a catalyst while reducing the cost. Therefore, it has broad application
prospects in the process of water electrolysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12080914/s1, Figure S1: Synthesis diagram of IrxCo clusters
was prepared by oil bath; Figure S2: XRD patterns of XC-72R Vulcan carbon, Ir/C, IrCo/C, Ir2Co/C
and Ir3Co/C; Figure S3: XPS spectra of Ir3Co/C: (a) survey, (b) Ir 4f, (c) Co 2p, (d) C 1s; Figure
S4: XPS spectra of Ir/C: (a) survey, (b) Ir 4f, (c) C 1s; Figure S5: CV curves at different scan rates
(10, 20, 40, 50, 60, 80 and 100 mV s−1) for (a) IrCo/C, (b) Ir2Co/C, (c) Ir3Co/C, (d) Ir/C; Figure
S6: Electrical double layer capacitor (Cdl) of the OER in 0.5 M H2SO4; Figure S7: (a) LSV curves
of the OER in 1 M KOH. (b) The overpotential at 10 mA cm−2. (c) EIS results of the catalysts.
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(d) Electrical double layer capacitor (Cdl); Figure S8: (a) LSV curves of the HER in 1 M KOH. (b) The
overpotential at 100 mA cm−2. (c) EIS results of the catalysts. (d) Electrical double layer capacitor
(Cdl); Table S1. Main reagents in the experiment; Table S2. Main instruments of the experiment;
Table S3: Comparison of different catalysts; Table S4: Comparison of the OER performance of IrO2
and RuO2 with Ir3Co/C [8,27]; Table S5: OER electrocatalysts reported recently [19,28–31]; Table S6.
HER electrocatalysts reported recently [32–36].
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