
 Open access Journal Article DOI:10.1007/S10710-012-9174-5

Controllable procedural map generation via multiobjective evolution
— Source link

Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing ...+3 more authors

Institutions: IT University of Copenhagen, Technical University of Dortmund, Blekinge Institute of Technology

Published on: 01 Jun 2013 - Genetic Programming and Evolvable Machines (Springer US)

Topics: Population and Evolutionary computation

Related papers:

 Search-Based Procedural Content Generation: A Taxonomy and Survey

 Interactive evolution for the procedural generation of tracks in a high-end racing game

 Experience-Driven Procedural Content Generation

 Evolutionary Game Design

 Evolving interesting maps for a first person shooter

Share this paper:

View more about this paper here: https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-
1sdlf60yls

https://typeset.io/
https://www.doi.org/10.1007/S10710-012-9174-5
https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls
https://typeset.io/authors/julian-togelius-3xqtmvlou6
https://typeset.io/authors/mike-preuss-2adgzikqc1
https://typeset.io/authors/nicola-beume-35idigg2h8
https://typeset.io/authors/simon-wessing-1f5jek9uoc
https://typeset.io/institutions/it-university-of-copenhagen-1nw8f3wn
https://typeset.io/institutions/technical-university-of-dortmund-1ihjdmfu
https://typeset.io/institutions/blekinge-institute-of-technology-16qgxbak
https://typeset.io/journals/genetic-programming-and-evolvable-machines-3jrzpekx
https://typeset.io/topics/population-3rqw3kx3
https://typeset.io/topics/evolutionary-computation-id65m1zy
https://typeset.io/papers/search-based-procedural-content-generation-a-taxonomy-and-2zl3hvwc6o
https://typeset.io/papers/interactive-evolution-for-the-procedural-generation-of-qnd8av2tyj
https://typeset.io/papers/experience-driven-procedural-content-generation-262z1mnbb5
https://typeset.io/papers/evolutionary-game-design-51aqxjw8pd
https://typeset.io/papers/evolving-interesting-maps-for-a-first-person-shooter-2q5g4keldn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls
https://twitter.com/intent/tweet?text=Controllable%20procedural%20map%20generation%20via%20multiobjective%20evolution&url=https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls
https://typeset.io/papers/controllable-procedural-map-generation-via-multiobjective-1sdlf60yls

Controllable procedural map generation

via multiobjective evolution

Julian Togelius • Mike Preuss • Nicola Beume •

Simon Wessing • Johan Hagelbäck •

Georgios N. Yannakakis • Corrado Grappiolo

Received: 15 August 2012 / Revised: 14 October 2012 / Published online: 16 March 2013

� Springer Science+Business Media New York 2013

Abstract This paper shows how multiobjective evolutionary algorithms can be

used to procedurally generate complete and playable maps for real-time strategy

(RTS) games. We devise heuristic objective functions that measure properties of

maps that impact important aspects of gameplay experience. To show the generality

of our approach, we design two different evolvable map representations, one for an

imaginary generic strategy game based on heightmaps, and one for the classic RTS

game StarCraft. The effect of combining tuples or triples of the objective functions

are investigated in systematic experiments, in particular which of the objectives are

partially conflicting. A selection of generated maps are visually evaluated by a

population of skilled StarCraft players, confirming that most of our objectives

Area Editor for Games: Moshe Sipper.

J. Togelius � G. N. Yannakakis � C. Grappiolo
IT University of Copenhagen, 2300 Copenhagen S, Denmark

e-mail: julian@togelius.com

G. N. Yannakakis

e-mail: yannakakis@itu.dk

C. Grappiolo

e-mail: cogr@itu.dk

M. Preuss (&) � N. Beume � S. Wessing

TU Dortmund, Otto-Hahn-Str. 14, Dortmund, Germany

e-mail: mike.preuss@tu-dortmund.de

N. Beume

e-mail: nicola.beume@tu-dortmund.de

S. Wessing

e-mail: simon.wessing@tu-dortmund.de

J. Hagelbäck

Blekinge Institute of Technology, Karlskrona, Sweden

e-mail: johan.hagelback@bth.se

123

Genet Program Evolvable Mach (2013) 14:245–277

DOI 10.1007/s10710-012-9174-5

correspond to perceived gameplay qualities. Our method could be used to com-

pletely automate in-game controlled map generation, enabling player-adaptive

games, or as a design support tool for human designers.

Keywords Real-time strategy games � RTS � Procedural content generation �
Evolutionary computation � Multiobjective optimisation � StarCraft

1 Introduction and motivation

Procedural content generation (PCG) refers to the automatic or semi-automatic

generation of game content. PCG comes in many flavours, as there are many types

of game content that can be generated (such as levels, adventures, characters,

weapons, planets, plants, histories) and many ways in which the content can be

generated (many of them based on methods from artificial intelligence (AI) or

computational intelligence (CI), such as constraint satisfaction, planning or

evolutionary computation, others based on e.g. fractals). PCG can also be used in

different ways in games, for example for offline content creation during game

development, in support tools for human designers or for fully automatic online

content creation based on player actions. Similarly, there are different motivations

for using PCG, such as speeding up game development, saving human designer

effort/cost, saving main memory or secondary storage space, academic curiosity or

enabling completely new types of games. What is clear is that PCG is gaining

increasing attention among both commercial game developers, indie developers and

academic game researchers.

This paper presents a search-based approach to generating maps for real-time

strategy games. More specifically, we use a multiobjective evolutionary algorithm

to generate maps for both an imaginary generic strategy game based on heightmaps,

and for the classic RTS game StarCraft, using objective functions based on theories

of player entertainment. We believe this approach has significant merits over

previous approaches to generating terrains, and also that we are the first to

automatically generate complete, playable maps for strategy games. We have

previously explored this method in two published papers [1, 2]; this paper builds on

those papers, and extends the work published there through adding experiments that

combine three objectives rather than just two, through refining the objective

functions, through rerunning most of the experiments and presenting a larger set of

results, through analysing the results in more depth, through letting human players

evaluate the results and through providing an extended background discussion.

We do not claim to have ‘‘solved’’ the problem of automatic strategy game map

generation, as designing a suitably balanced map (especially a three-player map) is a

hard task even for a skilled human designer; indeed, the maps we have been able to

create have a number of areas to improve on, as evidenced by user studies.

However, we believe our general approach is already more controllable and

applicable than any other map generation algorithm available, and that with more

refined constraints and heuristics it could produce professional-quality maps. Our

main contributions are the general approach, two map representations, a number of

246 Genet Program Evolvable Mach (2013) 14:245–277

123

reusable heuristics, and an in-depth study and evaluation of some attempts to evolve

good strategy game maps using the proposed approach.

The paper is structured as follows: The next section gives a background to the

research described in this paper, discussing the role of PCG for strategy games, the

search-based approach to PCG and uses of multiobjective optimisation in games. In

Sect. 3, we present the two game domains we use for our experiments: an imaginary

generic strategy game, and the classic RTS game StarCraft. Section 4 outlines some

high-level design decisions. In Sect. 5 we describe how we represent maps for both

of these games. Section 6 first discusses our motivations for various objective

functions to be optimised simultaneously by a multiobjective evolutionary

algorithm (MOEA), followed by a description of the objective functions themselves.

The missing puzzle piece before describing the experiments is the particular MOEA

we used and its configuration (Sect. 7) In Sect. 8, we describe a systematic

investigation of the interplay of pairs and triples of the devised objective functions,

in order to clarify the design trade-offs in the problem and to ascertain the

advantages of multiobjective techniques. Section 9 summarises the results of a user

study, validating that our objective functions agree with perceived map design

qualities. We conclude by discussing how this method can be used in some different

content generation scenarios.

2 Preliminaries

2.1 Procedural map and terrain generation

Maps are central to many computer games, including First-Person Shooters (FPS)

and many Role-Playing Games (RPG), in which the player experiences the world

from a first-person perspective as he navigates a typically hostile environment. But

they are perhaps most important for strategy games, both of the turn-based variety

and RTS games. In these games, the player views the playing area from a third-

person perspective (usually from above) while directing one or several units as they

traverse an area and perform missions, usually involving battle. In this paper, we

will mainly be concerned with RTS games.

Most strategy games come with a set of hand-crafted maps, used both in single-

player ‘‘campaign’’ mode and multi-player matches. These maps are usually created

by professional map designers, having extensive experience of the game as well as

key design considerations. However, there are numerous reasons for wanting to

automatically generate maps. Perhaps the most obvious reason is that by generating

a fresh map each time the game is played, you extend the life-span of the game by

permitting the player to explore a fresh map and the specific challenges it entails

each time the game is played. This also means that any advantages a player has

accrued through learning a map by heart are nullified.

A slightly less obvious reason is that maps could be tailored to suit specific

players or groups of players, and/or to generate particular gameplay experiences.

For example, a player that has proven adept at a particular form of strategy might be

presented with a freshly generated map that challenges her to develop other aspects

Genet Program Evolvable Mach (2013) 14:245–277 247

123

of her strategic thinking; or, if she has been determined by the game to be less

motivated by challenge and more by easy progress, a new map could be generated

that plays to the strengths of her particular playing style while seeming dissimilar to

previous maps she has played. In a multi-player game, maps might be generated that

balance out the strengths of different players’ playing styles and levels of

proficiency, without resorting to explicit handicapping in terms of game rules or

resources supplied. Such a mechanism would place particular demands on models of

player behavior and preferences, as well as on how the map creation algorithm can

be controlled.

But one might also want to use procedural map generation algorithms as

authoring and design support tools, to complement human creativity. In this case the

PCG tools would be used off-line, before a game is shipped or before new high-

quality maps are made available for download. The role of the algorithm would be

to suggest new map designs according to specified parameters or constrains, which

could then be modified and refined by human map designers.

While most strategy games stick with prefabricated maps (possibly comple-

mented with an end-user map editor), a significant minority are based on random

map generation. An influential example is the Civilization series of epic turn-based

strategy games, in which the default game mode sees the player playing on a newly

randomly generated world map. No authoritative information has to the authors’

best knowledge been released about Civilization’s map generation algorithm, but

the very short time taken to generate a map suggests a relatively uncomplicated

algorithm. The available parameters for map generation are relatively few, the most

important parameters relate to the size and connectedness of the world’s landmass;

further, in the opinion of the authors, the resulting maps are often not very well

balanced. Still, these maps are good enough, as Civilization poses very different

challenges to an RTS such as StarCraft: Civilization is not usually played as a

competitive game, and play sessions are extremely long, free-form and

unpredictable.

A simple way of generating maps similar to those used by Civilization is to seed

the ocean with embryonal islands, and having them grow out in random directions a

predefined number of steps [3]. Certain features on land, such as forest areas, can be

created in the same way. Simple constraints, such as not connecting certain land

areas to fill in canals, can easily be added.

Other approaches involve using fractals, such as the diamond-square algorithm

[4]. The diamond-square algorithm works by iteratively subdividing areas of space

and offsetting the midpoint by random amounts. Such algorithms are most

commonly used with height maps to generate, for example, believable mountains.

An advantage of this family of algorithms is that they are so fast that they can often

be used for real-time terrain generation [5].

Recently, Doran and Parberry [6] suggested the use of software agents for

generating terrain. In their approach, a large number of agents are let loose on an

initially featureless piece of terrain and collectively shaping it. Each type of agent

has a particular task, and the workings of some of them resemble forces of nature; so

for example the river agents travel from mountains to coast following the steepest

descent gradient. The agents are applied in phases, with coastline agents followed

248 Genet Program Evolvable Mach (2013) 14:245–277

123

by smoothing agents, etc. This approach is claimed to be more controllable than

fractal-based terrain generation algorithms.

In many cases, several different algorithms need to be combined in order to

create a rich and detailed large-scale landscape. When such combinations of

procedural terrain generation algorithms need to allow for human editing at various

levels of detail, specific problems arise, such as how to retain human micro-level

edits when re-generating macro-level features [7].

None of the above approaches take balancing of the map into account, and a map

generated using any of these techniques is unlikely to satisfy a competitive strategy

game player, as it would unfairly advantage one player or another.

The roguelike genre of games (the original Rogue game as well as countless

successors, such as Nethack, Moria and Diablo) is unique in being fundamentally

based on random map generation. In these games the player fights through a

randomly generated dungeon—walls, placements of monsters, traps and treasure are

all generated at the beginning of each game or play session. The dungeon generators

used here often work either similarly to fractal terrain generation approaches

(generate a straight line from start to exit, iteratively deform the path a number of

times, and then grow randomly branching paths until the room is filled), or by

glueing together a number of prefabricated segments [3].

2.2 Search-based procedural content generation

The above examples represent what can be called constructive PCG. This means

that the generation algorithm only makes one attempt: it proceeds from start to

finish with none or only insignificant backtracking. In contrast to this, generate-and-

test algorithms make several attempts, and only keep those candidate maps content

instances that pass some sort of test. A good example is Tarn Adams’ ambitious

game Dwarf Fortress, for which initial fractal map generation is often repeated a

couple of times, and the user is shown screenshots of ‘‘failed’’ maps along with

explanations of what went wrong, e.g. wrong elevation distribution.

Search-based procedural content generation (SBPCG) is a particular type of

generate-and-test PCG, where the generated candidate content is not simply rejected

or accepted by the test but graded on one or several numeric dimensions, and where

a search algorithm is used to find better content based on the evaluations of

previously generated content.

Usually, some sort of evolutionary algorithm (e.g. a genetic algorithm or an

evolution strategy) is used as the core algorithm for SBPCG. In these cases, a

population of candidates (e.g. maps) is created randomly at the beginning of a run of

the algorithm, and at each generation the worst candidates (according to some

objective function) are replaced with new candidates generated through mutation

and/or recombination from the best candidates. Core concerns when devising an

SBPCG solution to some content generation task is how to represent the content and

how to devise the objective function. An overview of SBPCG can be found in [8].

One of the main arguments for SBPCG is that it allows the designer to formulate

the desired properties of the content more explicitly than with other content

generation methods. Another argument is that it allows the use of content

Genet Program Evolvable Mach (2013) 14:245–277 249

123

representations that sometimes yield infeasible solutions (e.g. unusable maps), as

such candidates can be discarded but still form the basis for later, better candidates.

The main argument against SBPCG is that it can be very time-consuming, making it

less suitable for real-time PCG. However, choosing the objective function and the

search space carefully can allow the whole process to finish in a fraction of a

second.

There have been a few previous attempts to use evolutionary algorithms to

generate height maps for terrains before. Frade et al. used genetic programming to

evolve terrains, with the evolved expression tree mapping coordinates on a grid to

elevation at that point. The objective function was based on ‘‘accessibility’’ meaning

that all flat areas should be connected while no individual flat area grows too big.

Only the height map was evolved, no other features of the map [9].

Sorenson and Pasquier evolve simple dungeon layouts for e.g. roguelike games,

using a map representation where rooms and hallways of different sizes are placed

on a two-dimensional surface which is by default non-traversible. The objective

function is simply the length from start to finish, and the only constraint that the path

should be connected [10]. Similarly, Ashlock et al. [11] evolved path-planning

problems in which the objective was to maximise distance from start to finish by

placing walls at various positions and angles.

In the above examples, only parts of game environments (e.g. height maps and

walls) are evolved—not complete, playable levels with e.g. items, monsters,

resources. This is probably part of the reason why the objective functions are only

tangentially related to actual game playability and entertainment; path length and

accessibility do not alone make for a well-designed level.

In contrast, some recent SBPCG papers have explicitly been based on notions of

player entertainment. Togelius et al. [12] evolved racing game tracks based on

objectives inspired by Malone’s entertainment dimensions; Pedersen et al. [13]

evolved levels for Super Mario Bros based on an empirically derived model of

player affect; Hastings et al. [14] evolved weapons for a 2D shooter based on player

activity in the game; Togelius and Schmidhuber [15] evolved rulesets for predator-

prey games; and Browne [16] evolved board games based on measures derived from

studies of successful games. None of these studies concerned maps or terrains,

however. Further, they all used either a single objective function or an arithmetic or

ordinal combination of several objective functions, yielding in effect a single

objective.

2.3 Multiobjective evolution

In standard evolutionary computation a single objective function is sought to

optimise and therefore used to evaluate candidate solutions. However, for many

problems it is hard to combine all demands into a single objective measure; e.g.

when we want a car to be cheap, fast and safe, we need to optimise in three objective

dimensions. In many cases, the objectives are partially conflicting, for example a

faster car is typically less cheap.

The intuitive solution is to simply add the objective measures together (using

some weighting of each measure), and optimise for the resulting composite

250 Genet Program Evolvable Mach (2013) 14:245–277

123

measure. This method has several drawbacks. One is that it is hard for the user to

articulate her preferences by appropriate weights; this does not become easier until

the trade-off between objectives has been explored. Another is that optimisation

along a single dimension does not allow for exploration of the often complicated

ways in which the various objective dimensions interact (e.g., above a certain price

threshold faster cars might not be less cheap). Depending on these interactions,

some desired combinations of function values may be unreachable for any

weighting. Furthermore, it is a well-known fact in multiobjective optimisation that

for some problems, no weighted-sum single-objective approach can reach some

existing optimal compromise solutions a multiobjective algorithm could attain.1

Multiobjective evolutionary algorithms (MOEA) are state-of-the-art methods for

multiobjective problems, and are now a major research direction within evolution-

ary computation as well as common in industrial applications. An MOEA presumes

at least two objective functions that are partially conflicting, and proceeds to search

for a Pareto front. The Pareto front is the set of Pareto-optimal solutions, i.e.

solutions that cannot be improved in one objective without worsening in another; it

contains all possible optimal compromises between the objectives. A solution is

called dominated when there is another solution that is better in at least one

objective and worse in none. Elements of the Pareto front are not dominated by

definition as no dominating points exist. In practice, only an approximation of the

Pareto front can be expected to be found by the MOEA. In this context, the term of a

nondominated set is important: A nondominated set contains only solutions that

have not been dominated by other solutions so far. The MOEA iteratively improves

a nondominated set as an approximation to the Pareto front and its final set is the

algorithms result presented to the user.

When using two or three objectives, the Pareto front (approximation) can be

conveniently plotted as a graph, allowing visual exploration of the tradeoffs

between these objectives. Visual or automated inspection of Pareto fronts helps to

understand the space of design possibilities. For example, one can detect situations

where a small loss in one objective would lead to a huge improvement in another, or

the opposite. The possibility to visualise the tradeoffs inherent in a design problem

makes multiobjective optimisation via MOEAs a great but as yet underused tool for

design and authoring support.

More than three objectives are usually hard to handle, as the objective space

grows exponentially with the number of objectives. On the other hand the fraction

of points being comparable to a point (either better or worse in all objective values

but not both) becomes exponentially small. This makes a progress towards the

Pareto front quite hard and requires much resources, i.e. the generation and

evaluation of many points, which might be too time-consuming in case of complex

objective evaluation like simulations. Moreover, the interpretation of results

becomes hard as it is problematic to visualise results in case of more than three

objectives.

1 This is the case if the set of optimal compromises, also called the Pareto front (please see next

paragraph), has a concave shape. Das et al. [17] discuss the problem in more detail, simple examples are

e.g. given by Koski [18].

Genet Program Evolvable Mach (2013) 14:245–277 251

123

2.4 Multiobjective evolution applied to games

Multiobjective evolution has been used for a number of different tasks in games,

such as optimising controllers both for memory capacity and for playing well [19],

optimising controllers for both playing well and playing and a human-like fashion

[20], optimising several different measures of well-playing simultaneously [21] and

for finding strategies that are well-performing yet behaviourally simple [22]. As far

as we know, multiobjective techniques have not been used in procedural content

generation before.

Optimising some aspect of a game for playability is inherently a multiobjective

problem, as it is very hard to formulate a reliable single-dimensional algorithmic

measure of how entertaining a game is; it is indeed not trivial to formulate partial

measures of game enjoyability. When designing game content, it would seem

invaluable for a designer to be able to conveniently visualise the tradeoffs inherent

in a design problem; when automatically generating game content tailored to

particular players, it would also seem ideal to first generate a selection of candidate

content from which appropriate game content for the particular player could then be

chosen, based on her previous playing style and experience model. Additionally,

variations from human-created solutions are desirable for a diversified game, and

this is what evolutionary algorithms naturally are able to accomplish.

3 Game domains

We test our algorithms by evolving maps for two different domains: an imaginary

strategy game, containing some of the most common elements of strategy games,

and the StarCraft RTS game. In both games, we assume that a map needs to include

positions for player-controlled bases and positions for resources of different kinds.

These features, or more or less isomorphic ones, are common to many strategy

games of different types.

3.1 Generic strategy game

Our imaginary game has a key feature in commonwithmany strategy games (including

TotalWar,DawnofWar and several games createdwith the Spring engine), namely that

the terrain is based on a height map capable of accommodating complex landscape

features—especially hills and valleys of differing height and steepness.We suppose that

elevation differences are associated with a movement penalty, so that moving up and

down hillsides takes more time (or movement points) than moving along flat territory.

There might or might not be visibility effects associated with the heightmap, such as

units only being visible when in line of sight.

3.2 StarCraft

StarCraft is one of the most famous strategy games ever. It was released by Blizzard

Entertainment in 1998 and has, as of 2009, sold more than 11 million copies. The

252 Genet Program Evolvable Mach (2013) 14:245–277

123

game is famous for its exquisite balance between the different playable factions, and

is very popular for tournament play.

The game features three factions; terrans, humans that have left planet earth to

travel to distant areas of our galaxy; zerg, a race of insectoid creatures; and protoss,

a humanoid race with very advanced technology and psionic abilities.

In the game the player has to plan and build a base with different structures, each

with a specific purpose. To afford structures and building units the player has to

gather resources from minerals and vespene gas, located around the game map.

Units must be created to defend the home base and to attack and defeat the enemy

players. Different units have different strengths and weaknesses; e.g., some are good

defenders, some deal plenty of damage but are not very mobile, others are fast but

do not do very much damage. The game also features a technology tree in which

players can spend resources to research upgrades for units and structures.

The game can be played in a single-player story line mode, or a skirmish mode

where the player battles against other players or computer controlled enemies. A

large world-wide fan base has contributed large amounts of player generated

content, such as multiplayer maps and map editors.

StarCraft does not have hills and valleys like our imaginary strategy game above;

the terrain is mostly flat. Instead of height maps, StarCraft is built on the notion of

impassable and passable areas. Passable areas are those that ground troops can pass

through, and impassable areas are elements such as rock formations and rivers,

which cannot be passed by ground troops. Nevertheless, the illusion of passable

mountain areas (plateaus) is created by painting the inner part of an area that is

surrounded by impassable tiles in a different color and adding ramps. However, the

movement is restricted in exactly the same way as if the impassable tiles were walls.

4 Meta-design considerations

Before designing the map representation and fitness functions, we had to decide on a

number of high-level design questions that would delimit the space of possible maps

we search. It is quite common in StarCraft and some other strategy games to create

either two- or four-player maps, with one- or two-way symmetry, in order to

guarantee the fairness of the map. In the opinion of the authors, symmetry makes a

map more predictable (if you have seen a particular landscape feature close to your

base, you can count on the enemy having an identical feature next to his own) and

therefore less interesting. We reasoned that symmetry is a result of not having tools

available for creating balanced asymmetric map. Therefore we decided not only to

not enforce symmetry in the map representation, but also to generate three-player

maps, where perfect symmetry is impossible and near-symmetry rather hard to

achieve. The generation mechanism would have to find ways of creating

asymmetric balanced maps.

It should be noted these high-level design decisions are not uncontroversial. As

we will see, these decisions amounted to posing a design problem that would

challenge even professional map designers, and which is beyond the capabilities of

any known map generation algorithms.

Genet Program Evolvable Mach (2013) 14:245–277 253

123

5 Map representation

The map representation for both domains (the imaginary strategy game and

StarCraft) have many things in common, and differ mainly in the representation of

terrain features. We start with what both representations have in common.

The naive map representation, laid out spatially like it would in the actual game,

is unlikely to induce a good search space for evolutionary or other stochastic search

algorithms, for reasons of dimensionality and locality. Therefore the evolutionary

algorithm works on a genotype which is a somewhat indirect representation of the

phenotype, the map which is used for objective testing and visualisation. The

genotype is about an order of magnitude smaller than the phenotype in terms of

memory size, and we believe it is also likely to induce a space that has better

locality relative to several of our objectives. On the continuum of direct-indirect

representations presented in [8], our representation would be at level one or two

from the top (the ‘‘direct’’ end of the scale).

Each time objectives are calculated, a phenotype is created from each genotype.

The genotype (indirect) representation is a fixed-length array of real values between

0 and 1. The length of the array is decided by the number and types of map

elements. These are the four types of elements encoded in the genotype:

– Base: / and h coordinates of each base.

– Resource type 1: x and y coordinates of each resource of type 1. In StarCraft,

this translates to a mineral source.

– Resource type 2: x and y coordinates of each resource of type 2. In StarCraft,

this translates to a well for vespene gas.

– Terrain features. The representation of these differ between the two game

domains, but in both cases each terrain element is defined by 5 floating point

values.

For the generic strategy game domain, we generate maps with 3 bases, 4

resources of each type and 10 terrain features, leading to genotypes of length

3 � 2þ 4 � 2þ 4 � 2þ 5 � 10 ¼ 72. For the StarCraft domain, we use 8 mineral fields

and 7 vespene gas fields (minerals are more important when the game starts,

vespene for later stages), leading to genotypes of length 86.

The indirect representation has the advantage that it can be efficiently searched by

many common global optimisation algorithms, such as evolution strategies and particle

swarm optimisation. In particular, many of these algorithms assume a real-valued

representation, and that local changes in the genotype have local effects in the

phenotype. For example, when changing the / coordinate of the base, the positions of

nearby resources are not changed, and neither are the mountains; it is easy to imagine

representations where this would not be the case, such as many fractal representations.

Additionally, this representation is scale invariant; a phenotype of any size can be

created out of the genotype. (Seemore about representation considerations in SBPCG in

Sect. 3.1 of [23].) However, one shall consider that even this very condensed map

representation leads to relatively large genotypes (&50–100 real-valued variables), so

that search in this large space is not trivial. This may be a reason why automated map

creation has been tried only rarely in the past.

254 Genet Program Evolvable Mach (2013) 14:245–277

123

The phenotype (direct) representation is a spatial representation similar to how

the map would be represented in the actual game engine. This representation

consists of a two-dimensional array detailing the terrain, and lists of the x and

y positions of all bases and resources. The terrain array is constructed very

differently in the two domains, but the base and resource locations are generated in

the same way.

Resource locations in the phenotype are generated by simply multiplying the

x and y values of each resource in the genome with the height and width of the

terrain array. Base placement is a bit more involved. The coordinates for each base

are generated using a method based on polar coordinates. The two parameters for

the base are treated as angle and length of an axis extending from the center of the

map, at the end of which the base is placed. Additionally, the representation is

constrained so that each base is forced to be within its own arc of the circle,

meaning that for three bases each base is placed within its own 120 degree arc; the

length of the axis is constrained to be between 1/2 and 1 of the radius of the map,

meaning that bases cannot be place too close to the center of the map. By means of

polar coordinates, we restrict base placement so as to make neighboring bases

unlikely in order to increase the chances of obtaining a playable map. Coordinates

lying outside the map are simply mapped to the outermost cell of the map in that

direction. This increases the probability of placing bases on the map borders and is a

desired effect.

5.1 Generic strategy game terrain representation

In the generic strategy game, the terrain features are mountains. For each mountain

we consider the two standard deviations (rx and ry) of a three-dimensional

Gaussian distribution with a mean [x, y] (representing the coordinates of the

Gaussian mountain peak); and a weighting parameter, h, that adjusts the height of

the Gaussian surface. The terrain array has size 100 9 100, and each cell can take

on a discrete number between 0 and 99 representing elevation at that point. All cells

of the heightmap are initially set to elevation zero.

The mountains are then drawn as Gaussian curves in two dimensions. The peak

(x and y values for the mountain in the genome multiplied by 100) is elevated to the

height set for that mountain (multiplied by the height parameter, h—h is 99 in these

experiments). The standard deviation values along the x and y axes (rx and ry) are

calculated by multiplying the corresponding value in the genome by 10. For cells

that are affected by more than one Gaussian 3D bell, the highest value from any of

them is used in the phenotype (final map).

5.2 StarCraft terrain representation

When generating StarCraft maps, the terrain array has size 64 9 64 (the standard

size for a StarCraft skirmish map).

The five real numbers that define each terrain feature are interpreted as starting

position (x, y), left and right turn probabilities, and pen lifting probability. All cells of

each map phenotype are by default passable. Impassable areas are then ‘‘drawn’’ in a

Genet Program Evolvable Mach (2013) 14:245–277 255

123

manner similar to turtle graphics [24]. The drawing of each impassable area starts at its

designated x and y position by marking that cell as impassable. The ‘‘pen’’ then

repeatedly moves one step in its current direction (starting direction is right) and marks

the new cell as impassable, until it reaches a cell which is already impassable or the

border of the map. At each cell, it decides whether to turn left, turn right and/or ‘‘lift the

pen’’ and leave a gap in the line according to its designated probability for each of these

actions.Only one of these actions is taken at each step,with a turn angle of 45�. That is, if

the turtle turns left, the next step starts over again at the samepositionwithout painting. If

it does not turn left, the probability for a right turn is checked, and if it does not turn right,

the probability for a gap is checked. If none of this applies, the turtle justmoves one step

forward in its current orientation and marks the new position as impassable. Checking

left turns first consistently is done to enlarge the chance that the resulting curve is closed.

However, as it still often happens that the resulting line is not closed (especially if the left

turn probability is low), one attempt to draw towards the original x and y starting position

is made by simply setting the orientation according to the vector between current and

starting position and starting the whole process over again. One further additional

constraint is used to prevent very long lines without turns: whenever 5 consecutive steps

have been made into one direction, the orientation of the turtle is changed by rotating it

45� into the direction to the starting position.

In order to ensure a deterministic genotype to phenotype mapping, a fixed

random number table with 200 entries is used to decide whether to turn and/or leave

gaps. (Non-deterministic genotype to phenotype mappings are known to induce

significant evaluation noise [23].)

The last steps in the generation of a complete StarCraft map are that (1) a GIF

image file is generated from the phenotype, in which each cell type has a different

color, and that (2) the SCPM software2 automatically creates a complete StarCraft

map from the image. Further manual editing is then possible using StarCraft map

editors. The maps shown in this paper have been slightly edited for visual appeal,

without changing the functional structure of the evolved maps.

6 Evaluation functions for map generation

In SBPCG, there is a distinction among three types of evaluation functions:

interactive, simulation-based and direct [8]. Interactive evaluation functions rely on

human game players playing the candidate content and providing direct or indirect

feedback about its quality. While in a sense the ultimate type of evaluation function,

interactive evaluation functions require very large amounts of player input and are

only possible in some types of games, such as ongoing massively multiplayer games

[14]. Simulation-based evaluation functions assess content automatically through

algorithmically playing the game or some aspect of the game using the candidate

content. Such evaluations can potentially be accurate predictors of player

enjoyment, but require both artificial intelligence capable of playing the game

competently in a human-like manner and often substantial computation time

2 Available at http://www.clanscag.com.

256 Genet Program Evolvable Mach (2013) 14:245–277

123

http://www.clanscag.com

[12, 15]. Direct evaluation functions base their fitness calculations directly on the

phenotype representation of the content. Such evaluation functions are obviously

much easier to implement and faster to compute than simulation-based functions,

but it is hard to devise direct objective functions that accurately predict key aspects

of player experience (except when basing them on data-driven player models built

from extensive user studies [13]).

In this paper, we will not attempt full simulation-based evaluation functions, as

we do not have access to any game engine for our imaginary generic strategy game,

and the StarCraft game is proprietary, closed source and does not have a satisfactory

API. Even if we could script StarCraft to test aspects of our levels through

automated playthrough, this would be prohibitively time-consuming as StarCraft

cannot be sped up to run much faster than real-time (this goes for most commercial

games), and most evolutionary runs would need tens of thousands of objective

evaluations. This is also why we do not use any interactive objective functions; we

do not have access to enough cheap labor to manually play through and evaluate

masses of algorithmically generated maps, especially those maps that would be

considered ‘‘errors’’ in the trial-and-error process of evolutionary computation.

However, we can simulate one key aspect of RTS gameplay: moving between

two points along the shortest possible path. We use the classical A* algorithm for

this task, which returns the number of cells along the shortest path (avoiding

impassable areas)—if not otherwise specified, ‘‘distance’’ means the length of

shortest path found by A* in the rest of the paper.

But this only answers the ‘‘how’’ question in relation to objective function

design, not the ‘‘what’’ question: what sort of maps do we want to create? We

agreed on a number of desirable characteristics of good strategy game maps, in the

sense that they create conditions for enjoyable gameplay.

– Playability: It should be possible to engage in normal gameplay: building up a

base, attacking enemies etc.

– Fairness: All players should have similar possibility of winning the game given

the same skill level. Note that this does not necessarily mean that starting

positions should be or look similar.

– Skill differentiation: Superior tactics should win more often, so the map should

allow use of different tactics.

– Interestingness:Maps should not all look the same, and should not be bland (e.g.

symmetrical or featureless).

These characteristics can be related to a number of theories of what constitutes

enjoyable game experiences. For example, Malone analyses fun in gameplay into its

components challenge (the right amount of it), fantasy and curiosity [25].

Czikszentmihalyi’s Flow theory also centers on having the right amount of

challenge [26], whereas Koster’s ‘‘Theory of fun for game design’’ is fundamentally

based on learnability, meaning that the player constantly improves aspects of his/

her gameplay [27].

In terms of these theories, playability is of course strongly related to challenge, in

addition to operating on a level below (and presupposed by) the aforementioned

theories; fairness to both challenge (playing against a vastly superior or inferior

Genet Program Evolvable Mach (2013) 14:245–277 257

123

enemy leads to a challenge imbalance) and learnability (playing against someone

who, adjusted for superior/inferior map, is about your own strength encourages

learning); skill differentiation to learnability and curiosity (encouraging players to

try out new strategies); and interestingness to fantasy and curiosity.

We defined a number of different objective measures (mainly based on distance)

for both the generic strategy game and for StarCraft, intended to reflect the desired

map characteristics outlined above. It was at the time of their formulation not clear

to which degree the various functions conflicted or induced searchable objective

landscapes. The experiments in this paper investigate the interplay of pairs and

triples of these functions, as it is computationally infeasible to optimise for all of the

functions at the same time. All objective functions are to be maximised and are

normalised to values in [0,1].

6.1 Generic strategy game evaluation functions

On generic strategy game maps, the A* algorithm measures the weighted distance

between points. In our formulation, each transition between any two cells has a cost

of 5 plus the difference in elevation between the two cells. This takes elevation

changes into account and means that the shortest path between two points might

mean going around a mountain or valley, even if the path straight across the

mountain or valley would result in fewer cells traversed. We defined the following

functions for generic strategy game maps:

– f0: Base distance. The f0 function is calculated as the average weighted distance

between bases.

Motivation: fairness and interestingness. For multiplayer games, all players

should have bases at approximately the same effective distance from each other

(either this means they are separated by long expanses of plains, or by mountain

peaks). Bases should be not be too easily reachable from each other, to avoid too

short games.

– f1: Base on ground. The f1 function promotes low elevation for bases and is

expressed as: f1 = 1 -
P

i{hi
B/NB}, where hi

B is the elevation of base i and NB is

the number of bases considered.

Motivation: playability and fairness. Bases should be placed on flat areas to

allow placement of adjacent buildings and spatial allocation of newly produced

units. Bases should all be placed on the same elevation to avoid unfair

advantages (cf. Masada).

– f2: Asymmetry. The f2 function corresponds to the average elevation difference

between a strategically chosen cell (at position (w, h) where w is map width

divided by 4 and h is map height divided by 4) and its counterparts on the

opposite half of the grid in both x and y axes (w, 3h), (3w, h), (3w, 3h).

Motivation: interestingness. Symmetric maps might look artificial and boring,

and if symmetry is common among produced maps (if the generating algorithm

displays a preference for this) players might come to count on the same feature

(base, mountain or resource) be available on the opposite side of the grid and

adjust their strategies accordingly.

258 Genet Program Evolvable Mach (2013) 14:245–277

123

– f3: Resource distance. The f3 function is expressed as f3 = 1 - ({max{DR} -

{min{DR}, where max{DR} and min{DR} are, respectively, the maximum and

minimum distances from any base to their nearest resource of any type.

Motivation: fairness. All bases should have the same access to resources.

– f4: Resource clustering. Function f4 expresses the spatial diversity of resources

within a map (within a number of meta-cells) and it is calculated via Shannon’s

entropy formula: f4 = - (1/logC)
P

i(ri/R)log(ri/R), where c is the number of

meta-cells the map is divided upon; ri is the number of resources on meta-cell

i and R is the total number or resources available. In this study, the map is

divided into 9 square meta-cells, so that the first meta-cell contains all cells

between (0, 0) and (32, 32) etc.

Motivation: interestingness and skill differentiation. Maps where resources are

clustered together (f4 & 1) motivates some players to explore more, and gives

them more surprises; they also allow more skillful players to take advantage of

their superior tactical knowledge by deciding when to explore and which areas

to defend.

6.2 StarCraft objective functions

Based on the experiences gained from the map generator for the imaginary RTS

game, we further develop objective functions for StarCraft.

On StarCraft maps, the A* algorithm simply measures the number of cells along

the shortest path between two points, not traversing any impassable areas. As the

existence of impassable areas may result in unplayable maps, we designed a simple

‘‘sanity check’’ that is executed before any objective function is run. This test

ensures that every base and all resources are accessible (there exists a path which is

not blocked by impassable areas) from every other base. Any map not satisfying

these criteria is assigned a value of 0 in all objectives, effectively discarding it. It

should be noted that this constraint precludes the generation of ‘‘air war’’ maps,

where the players can only reach others’ bases using aircraft.

6.2.1 Base placement functions

The first two objective functions relate mainly to the properties of the placement of

players’ starting bases, and to the impassable area around and between bases.

– fb0:Base space. For playability, some space for other buildings is requirednext to the

base. Out of the 5*5 cells surrounding a base, the base space is defined as the fraction

of these cells that are passable and reachablewithin 5 steps (usingA*) from the base.

This objective value is the mean of the base space of all bases.

– fb1: Base distance. The measure makes sure that the bases are not too easy to

reach from each other so that each player has the opportunity to develop their

base before clashing with the others. It contributes to playability and skill

differentiation as the game is more difficult for all players when starting close to

each other. fb1 is the minimum distance between any two bases, divided by the

sum of the map’s width and height.

Genet Program Evolvable Mach (2013) 14:245–277 259

123

6.2.2 Resource placement functions

The next four objective functions relate to the placement of resources, relative to

each other and to bases; all of these measures mainly contribute to fairness.

– fr1: Distance from base to closest resource. The distance from each base to its

closest mineral and its closest gas wells is calculated. fr1 is the quotient between

the minimal and maximal distance to the closest resource for all bases.

– fr2: Resource safety. Another measure of how clearly resources are assigned to a

single player, fr2 measures the average deviation of path lengths between one

resource and all bases (see Fig. 1). So, for bases b1; . . .; bn and resources

r1; . . .; rm we calculate all path lengths between resources and bases and group

them by resource type:

8j ¼ 1; . . .;m : Dj ¼ fdistðrj; biÞ j i ¼ 1; . . .; ng:

fr2 ¼ minfsGas; sMineralsg, where sGas and sMinerals are simply the average standard

deviations of the respective sets Dj.

6.2.3 Path functions

The remaining two evaluation functions deal with the character of the paths of the

map. These functions mainly contribute to skill differentiation and interestingness.

– fp1: Path overlapping. We consider the paths from the bases to all resources and

calculate to what extent paths of different players overlap. In case many cells are

used from different bases we assume that the players’ units are likely to meet.

The value of fp1 is the average number of users of cells belonging to a path. It

contributes to skill differentiation, as it increases the number of possible flash

points which the player must monitor for conflicts. To produce maps with few

interaction for unexperienced players, we also optimise in the inverse direction

(low values of fp1) and which we denote as function f-p1.

(a) (b)

Fig. 1 Safe and unsafe resources. Bases are depicted by pentagons, resources as circles. The lines mark

shortest possible paths for attackers/defenders. a Unsafe resources, b safe resources

260 Genet Program Evolvable Mach (2013) 14:245–277

123

– fp2: Choke points. We consider the average narrowest gap on all paths between

bases. The narrowest gap along a path from A to B is calculated by first

calculating a shortest path and then traversing along the path and counting the

width of the path at each cell. Gap width is calculated through determining

whether the path is currently moving horizontally or vertically through

comparison with the previous cell in the path, and searching orthogonally to

the path direction until either an impassable cell or the border of the map is

encountered. If the narrowest gap is less than 10 cells wide, it is deemed a choke

point. A copy of the map is then made, and this gap is filled in with impassable

cells on the copy of the map. A new attempt is then made to find the shortest

path from A to B, and if a path still exists, the increase in length between the

new and the old path is recorded.

The choke points function for a pair of bases is calculated as:

0:5 � ð10� gÞ þ 0:5 �
0:5 if no new path is found;

d=w otherwise.

�

where g is thewidth of the narrowest gap in the original path, d is the difference in length

between the new and old path, and w is twice the diagonal length of the map.

Choke points contribute to skill differentiation in that a good player might be able to

exploit such points by using a smaller defending force to stop a larger attacking force,

which cannot use the strength of its numbers as they have to pass sequentially through

the narrow gap. Here, we also consider the inverse function f-p2 to create easy maps.

7 Optimisation by multiobjective evolutionary algorithm

Most MOEAs work similarly. A population of search points (called individuals) is

generated randomly at first, and then adapted to the problem in order to move

towards the Pareto front by a repeated cycle of variation and selection. Variation

creates new search points by mixing information of existing ones (recombination)

and performing undirected steps with a defined expected length (mutation).

Selection choses the best of the old and new individuals for the preceding iteration

and deletes the others. Like other evolutionary algorithms, MOEAs are black box

algorithms, meaning that they do not rely on explicit domain knowledge. The most

popular and long-established MOEA, NSGA-II [28], has proven its worth in many

benchmark and real-world applications. However, it is nowadays outperformed by

state-of-the-art MOEAs, such as the SMS-EMOA [29].

The SMS-EMOA, which we use in this paper, generates only one new individual

per cycle and removes the individual with the smallest hypervolume contribution,

i.e. the one that dominates the smallest part of the objective space. To accommodate

the need for setting one or several constraints, we employ a modified selection

scheme here. Individuals outside the allowed region get a penalty equalling their

distance to it. When considering which individual to remove, the one with the

largest penalty always gets precedence. Thus, valid individuals are never removed

in the presence of invalid ones.

Genet Program Evolvable Mach (2013) 14:245–277 261

123

We employ the NSGA-II standard recombination/mutation operators simulated

binary crossover (SBX) and polynomial mutation (PM) from [28] with (near)

default parameter values of gc = 20 and gm = 153. SBX has been introduced in

[30] and is based on a polynomial distribution that is 1-centered and that is the

flatter, the lower the respective g value is. While in SBX, the distribution is applied

as multiplier to the difference of the parents (each variable separately), the mutation

follows the same scheme but works directly on the variable values of one individual.

After some testing, the run length was fixed to 50,000 evaluations for the generic

strategy game and to 100,000 evaluations for StarCraft. Small further progress after

this time is still observed sometimes but considered irrelevant. In all experiments,

we use populations of 20 individuals, which we consider sufficient to achieve a

reasonable approximation of the Pareto front as we are only interested in a small

number of resulting maps and a rough impression of the front. Increasing the

population size will increase the runtime (in evaluations) at least linearly, leading to

unacceptable waiting times if we think of applying the technique as supportive

method in a map design context.

8 Experiments

We performed a large number of experiments using both game domains in order to

find partial conflicts between objective functions and generate interesting Pareto

fronts. In order to investigate whether multiobjective evolution can provide a

tangible advantage over other optimisation techniques, we need to know whether

there exist partial conflicts between the objectives, meaning that a tradeoff will need

to be made in optimising two objectives simultaneously. If it is further found that

the individual objectives correspond to desirable properties of maps (as will be

investigated in a user study for the StarCraft domain) this is a strong indication that

tradeoffs between different desirable qualities fundamentally exist in the map design

problem itself. The investigation of degree of conflicts between objectives in this

section therefore serves both to clarify the usefulness of multiobjective techniques

for designing maps, and indirectly to investigate properties of the underlying design

problem. The experiments in this section are ordered by game domain (generic

strategy game vs StarCraft) and number of objectives (2 vs 3).

8.1 Generic strategy game

For the generic strategy game, we only explored the interplay of pairs of objectives.

The experiments were chiefly concerned with finding which pairs of objectives

exhibit partial conflicts. Therefore multiple evolutionary runs were done with 12

pairs of the 5 objectives, and the resulting Pareto fronts exhibited.

Partial conflicts (as indicated by substantial Pareto fronts) were found between

objective pairs [f1 (base on ground) and f2 (asymmetry)], (f1 and f3 (resource

3 In [28], both parameters have been set to 20, other authors use 20 and 15. However, the difference in

algorithm behavior is most likely negligible.

262 Genet Program Evolvable Mach (2013) 14:245–277

123

distance)), (f2 and f3) and [f3 and f4 (resource clustering)]. The resulting Pareto front

for objective pair f3 and f4 is shown in Fig. 2. Four maps taken from that front are

depicted in Fig. 3.

These conflicts can all be explained in qualitative terms. For example, the easiest

way of optimising base on ground is to simply remove all mountains—this makes

sure that all bases are at elevation zero. But this also makes for a completely

topologically symmetrical map. Almost all additions of mountains to the map

reduce the symmetry (increase asymmetry score) but most such additions will also

elevate some base, reducing the base on ground score. Of course, some

configurations of mountains exist where asymmetry is high (though probably not

maximal) while all bases are on ground, but such configurations are hard to find—

this is why the conflict is partial between the objectives. A similar explanation can

be given for the conflict between resource distance and resource clustering, which is

visualised in the figures referred to above: in most configurations where all bases

have the same access to resources, the resources are by necessity quite far from each

other, so clustering is low.

It appears from these pictures that the algorithm finds maps that are interestingly

different from one end of the Pareto front to the next. In particular, the heightmap-

based representation turns out to provide a relatively high locality in the spaces

defined by the various fitness functions, a crucial component of evolvability. Any

judgment about playability must be qualified by the fact that the maps are not

created for any game in particular. Still, the various fitness functions and constraints

on the terrain generation contain an implicit game design sketch, which could

relatively easily be fleshed out to a full game.

0.97 0.975 0.98 0.985 0.99 0.995 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

f
3

f 4

Fig. 2 Pareto front approximation for the objective pair f3 - f4. The solutions a, b, c, d correspond to

the 4 maps in Fig. 3

Genet Program Evolvable Mach (2013) 14:245–277 263

123

8.2 StarCraft

The most extensive set of experiments concerned maps for the StarCraft game.

Before the main investigation of tradeoffs between our objective functions, we

performed initial exploratory studies check whether functions were possible to

optimise or trivial on their own, and whether there seemed to be conflicts with other

objectives at all. Both base placement functions (fb0 and fb1) were very simple to

optimise to maximal or near-maximal values, so they are included as constraints;

maps with less than 0.5 on any of these functions are discarded immediately.

Additionally, fb1 is used as an objective in its own right. These initial experiments

were followed by a systematic exploration of the search space induced by our

representation and fitness function.

8.2.1 Two-objective experiments

The aim of our main 2-objective study was to find out the degree of conflict between

the map objectives we developed. We performed runs with all pairs of those

objectives that were non-trivial to optimise on their own, with the aim of revealing

trade-offs between them. For each pair 11 runs were performed. The results can be

seen in Tables 1 and 2, using two different indicators of the degree of conflict.

Table 1 shows the average sizes of the final Pareto front approximations, i.e. the

number of non-dominated solutions in the last generation. Small fronts are usually

indicators of a low degree of conflict. For the pairs of opposing functions fp1, f-p1

and fp2, f-p2 all points are Pareto-optimal and so a large number of points showing

Fig. 3 The four generated maps taken from the Pareto front approximation for the objective pair f3 - f4
displayed in Fig. 2. Bases are illustrated as yellow spheres; resources are depicted as either red (type 1) or

blue (type 2) cones (Color figure online)

264 Genet Program Evolvable Mach (2013) 14:245–277

123

different trade-offs are obtained. Table 2 shows the hypervolume of the final non-

dominated sets relative to the reference point (2,2). For this indicator, low values

indicate high degrees of conflict. (A value of 2.0 indicates that both objectives can

be maximised simultaneously.) A strong conflict seem to exist for fr2 with fp1, f-p1

and fp2. A weak conflict can be observed for fr1 and f-p2.

Figure 4 shows the estimated attainment function (EAF) for each pair of

objectives. An EAF is an approximation of the shape of a pareto front based on

density functions [31, 32]. The size of dominated area (around the upper right

corner) corresponded to the hypervolume of the front.

The structure of the matrix in Fig. 4 equals the structure of Tables 1 and 2. A

strong conflict can be observed regarding fr2, fp2. Here, all the function values are

big (bad) compared to the better values achieved in combination with other

objectives. It can concluded that one objective prevents the improvement of the

other competing one. Weak conflicts seem to exists among fr1, f-p2 since the values

of both function reach very good values, better than in combination with

other objectives. When completely contrary objectives are optimised, like for

fp1, f-p1, fp2, f-p2, the Pareto front approximation is a line that show possible values

of the functions.

8.2.2 Three-objective experiments

It would be infeasible to do an exhaustive study of the conflicts within all possible

triples of objectives, both because of the computation time required to produce the

results and the effort required to analyse them. Therefore, based on the results of the

two-objective runs, we selected three interesting objective functions to be used in

three-objective runs. We are here trying to find a triple of objectives where each

objective partially conflicts with each of the other two, and where the three

objectives are still relatively orthogonal to each other in terms of what they measure,

reasoning that such combinations of objectives give rise to the most useful and

meaningful Pareto fronts in design space.

As objective functions we chose the base distance fb1, typed bases-resource

distance fr1, and choke points fp2. Additionally, the base distance is also a constraint

so that only maps with fb1 C 0.5 are valid, ensuring that the starting positions are

relatively fair. These three objectives represent all 3 function groups and may be

considered a good choice as the first two ensure that playable maps result and the

Table 1 Average number of individuals in the final non-dominated fronts for each function combination

fr1 fr2 fp1 f-p1 fp2 f-p2

fb1 8.3636 6.5455 7.4545 9.7273 4.4545 7.3636

fr1 4.0909 2.4545 3.7273 3.3636 1.5455

fr2 5.1818 2.5455 2.8182 2.4545

fp1 17.0909 3.3636 1.0000

f-p1 3.0909 2.2727

fp2 17.0909

Genet Program Evolvable Mach (2013) 14:245–277 265

123

third one strives for interesting maps. However, one may also exchange e.g. fr1 with

fr2 or fp2 with fp1.

Figure 5 depicts the resulting fronts of 5 independent runs (lower figure) and the

non-dominated points attained from the composition of all fronts (upper figure).

Fig. 4 Estimated attainment function of the 2-dimensional experiments. The columns and rows have the

following order of function: fb1, fr1, fr2, fp1, f-p1, fp2, f-p2 (labels below figures are row indicators)

Table 2 Average hypervolume values of the final non-dominated fronts for each function combination

fr1 fr2 fp1 f-p1 fp2 f-p2

fb1 0.6858 0.4076 0.5512 0.4457 0.7680 0.8520

fr1 0.1379 0.5668 0.4553 0.2705 1.0380

fr2 0.0978 0.0982 0.0563 0.2047

fp1 0.3290 0.2401 0.7938

f-p1 0.2123 0.6729

fp2 0.3551

266 Genet Program Evolvable Mach (2013) 14:245–277

123

Values of fb1\ 0.5 would make a map invalid and are not part of the final front of

any run. In the lower figure, single run fronts have different colours, showing that

they are quite diverse. This is probably an effect of the very large search space, and

similar to what has been obtained in a recent real-world multiple criteria

optimisation problem investigation [33]. It seems that there are many ways to

achieve the same objective function values, and that it depends on the starting

population of each run to which area of the solution space it converges. A general

treatment of such different front realisations has been given in [34]. Nearly all runs

ended with a front of size 20 (the population size), meaning that there is a

considerable amount of conflict between the objectives.

Analysing the results, it seems that the choke points objective and the base-

resources distance objective are strongly in conflict, regardless of base distance

values. For base distance against base-resources distance, there seems to be a

weaker conflict which interacts with the choke points objective, so that for certain

choke point function values, a much better front becomes available. However, base

distance and choke points seem to be in very weak conflict only as it is possible to

reach near optimal solutions in both at the same time. In Figs. 6 and 7, we depict 10

example maps obtained from a single run, please see the next section for more

details. However, we would like to note that the map style looks quite different from

manually crafted maps: the maps are strongly asymmetric and feature large linear or

areal blocks of impassable areas. Given that it is impossible to design perfectly

symmetrical square 3-player maps, the lack of symmetry is not surprising.

8.2.3 Testing in the wild

Some of the evolved maps were used for the first StarCraft AI competition [35] at

the 2010 IEEE Conference on Computational Intelligence and Games. In this

competition, competitors pit their best StarCraft AIs against each other and the

objective is simply to write the AI code that survives longest. Though technical

issues prevented a conclusive winner from being found, the results of using evolved

maps were encouraging.

9 User study

After investigating the search space induced by our representation and evaluation

functions, the partial conflict between our objectives and the feasibility of evolving

complete maps, we needed to investigate whether the objective functions actually

corresponded to perceived qualities of map design. The best judges of the existence

of such qualities in maps ought to be experienced StarCraft players, who have seen

and played a large variety of maps, presumably of different quality. In order to reach

out to a sizable number of experienced StarCraft players, and in order to be able to

conduct the survey within reasonable time, we would need to use an Internet-based

survey. (Using local students would mean a population of less experienced players,

and therefore presumably less reliable answers.) Due to the technical, legal and

other problems with letting survey participants play the maps in the actual StarCraft

Genet Program Evolvable Mach (2013) 14:245–277 267

123

game engine, we opted to simply let participants view images of the generated

maps. Overall, our study attracted 147 participants of which 7 (roughly 5 %) were

female. The vast majority (133) of participants were between 16 and 30 years old,

and 134 (91 %) saw themselves as experienced StarCraft gamers.

(a)

(b)

Fig. 5 Optimisation in 3 dimensions: Base distance fb1, bases-resource distance fr1, and choke points fp2.

The upper figure shows only the non-dominated points of the aggregated set of the 5 fronts, the lower

figure all points of the fronts. Note the slightly different scaling. a Non-dominated points of 5 runs, b the

final fronts of the same 5 runs

268 Genet Program Evolvable Mach (2013) 14:245–277

123

While the user study was designed to investigate the correlation between

objectives and specific traits of the maps, as a side effect we obtained the opinions

of experienced players about the overall quality of the maps, as related to the

(presumably high quality) maps usually enjoyed by the participants. The reader is

advised to bear in mind that the objective of our research is not at this stage to rival

the capacities and performance of professional human map designers, even though

we hope that a system built on the methods we explore here will one day be able to

do so.

The study took the following form: participants were first presented with a page

of instructions, including a legend of the maps. They were then presented with a

brief demographic questionnaire, including questions about whether and how often

they played strategy games. The main part of the survey consisted of a single web

page including ten different maps, so that the participants could easily compare the

maps with each other, and a number of questions concerning each map. The same

Fig. 6 First 4 of 10 example maps generated from the Pareto front of one 3D run (see Table 3 for

function values); these maps were in the user study

Genet Program Evolvable Mach (2013) 14:245–277 269

123

Fig. 7 Maps 5–10 of the 10 example maps used in the user study

270 Genet Program Evolvable Mach (2013) 14:245–277

123

ten maps were used for all participants, but their order was randomised between

participants. The number ten is a compromise between the need for statistical

significance (more maps) and user fatigue (less maps). All employed maps were

taken from the last population of one 3-objective optimisation run using the same

objectives as for our presented 3-objective study (Sect. 8.2.2), namely base distance

fb1, typed bases resource distance fr1, and choke points fp2. We chose the ten most

extreme maps in order to allow the users to recognise the differences easily. (These

were not necessarily the maps that ‘‘looked best’’ to us.)

For each map, three forced-choice questions were asked, ten tags could be

applied and the participant was given the option to write a free-text comment on the

map. The main questions were whether the participant agreed with the statements

‘‘the map has a fair resource distribution’’, ‘‘the map has a fair base starting point

distribution’’ and ‘‘the map has choke points’’; each of these questions had to be

answered with ‘‘yes’’, ‘‘no’’ or ‘‘I don’t know’’ for each of the maps before the user

could submit the survey form (following the recommendations in [36]). The ten tags

were simple check boxes, which the participant could choose to check none or as

many as they wanted for each map; the tags were ‘‘interesting’’, ‘‘fun’’, ‘‘good

gameplay’’, ‘‘engaging’’, ‘‘immersive’’, ‘‘boring’’, ‘‘frustrating’’, ‘‘challenging’’,

‘‘fair’’ and ‘‘symmetrical’’.

In order to collect both experienced and inexperienced StarCraft players as

participants in the survey, we advertised it widely using social networking sites

(Facebook, Twitter and Google Plus), blog posts, emails to academic mailing lists

and the message board of the StarCraft enthusiast site Team Liquid. In addition to

survey participation from many highly experienced players, the Team Liquid post

got 47 replies from players commenting on our maps in detail4.

Most of the commenters on our experiments at Team Liquid appreciated the

effort to automatically create StarCraft maps (claiming that it would be very useful

for players if we succeeded) but said that the generated maps were not very good

maps at all. In particular, a very common opinion was that the maps could not be

balanced because they were not symmetrical; any balanced map, in the opinion of

these players, must be symmetrical. Additionally, the decision to focus on three-

player maps was frequently criticised, as it is very hard to make these maps

symmetrical.

The results of the survey can be seen in Tables 3 and 4, and the most important

correlations from the statistical evaluation are depicted in Table 5. We performed

two different statistical tests. At first, it is important to know if the obtained user

answers are at all different for the different maps in a statistical sense, or if the user

answer variations can be explained by noise. We investigated this by means of the

prop.test in the statistical software R, which ‘‘can be used for testing the null

hypothesis that the proportions (probabilities of success) in several groups are the

same’’5. The null hypothesis is that all measured proportions (one for each map)

4 The complete thread can be found at http://www.teamliquid.net/forum/viewmessage.php?topic_id=

245185¤tpage=All
5 The manual is available e.g. here: http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prop.test.

html, the test goes back to a paper by Wilson [37]

Genet Program Evolvable Mach (2013) 14:245–277 271

123

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prop.test.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/prop.test.html
http://www.teamliquid.net/forum/viewmessage.php?topic_id=245185¤tpage=All
http://www.teamliquid.net/forum/viewmessage.php?topic_id=245185¤tpage=All

concerning a specific property (e.g. base fairness) stem from variations of a single

fixed probability. According to Table 5, there is a clear influence for resource

fairness and choke points (p values around 10-6, whether there is none for base

fairness. Note that our sample size (10) is relatively small, so that differences must

be relatively strong for the test to get significant. However, it is clear that base

fairness is not perceived as being very different for the maps, and that tag values are

not significantly different between maps.

The second statistical test is a non-parametric correlation test after Kendall (again

we employed an R method, in this case cor.test) that compares the ranks induced

by ordering after an objective value and one based on its corresponding user answer.

We thus feed the test with the 10 values from each of the corresponding columns in

Table 3. The result is similar to the one above, namely that there is a relatively

strong anti-correlation between objective values (which were formulated for

minimisation) and user answers (questions posed for maximisation) for the same

two cases resource fairness and choke points. As we have very few samples (10), the

correlation tests themselves do not become significant, but they are not very far

from doing so. The resulting correlations are near to what is usually regarded as

strong anti-correlation (around -0.4) in psychology, thus the user feedback is in

remarkably strong agreement to the measured objective function values.

10 Discussion

As we had hypothesised, many of the objective functions partially conflict with each

other. One of the reasons why we expected this is that the game design

Table 3 Function values and normalized user answers (from 147 users) to the main questions

Map fBase fRes fChoke base res choke

1 1.38 1.00 1.42 0.180 0.144 0.583

2 1.23 1.46 1.05 0.160 0.118 0.625

3 1.48 1.40 1.04 0.289 0.127 0.641

4 1.20 1.57 1.05 0.091 0.224 0.783

5 1.16 1.66 1.07 0.209 0.158 0.655

6 1.48 1.61 1.02 0.121 0.191 0.674

7 1.24 1.18 1.05 0.191 0.227 0.787

8 1.12 1.76 1.07 0.155 0.169 0.739

9 1.45 1.00 1.11 0.296 0.211 0.697

10 1.33 1.00 1.67 0.238 0.168 0.510

The fBase, fRes, and fChoke values give the objective values measured while producing each map,

namely for base fairness, resource fairness, and choke points. Note that we minimise here, where 1.00 is

the attainable minimum and 2.00 is the maximum. The next 3 columns give the fraction of users that

answered yes to the main questions as corresponding to the function values: fair base starting point

distribution (base), fair resource starting point distribution (res), contains choke points (choke)

272 Genet Program Evolvable Mach (2013) 14:245–277

123

considerations that these objectives intend to model partially conflict even when

humans design. The most fair map is a completely symmetric and relatively

uninteresting-looking one; the resource distribution which best assigns resources

unequivocally to individual players does not cluster the resources as well; the

requirement that all bases have enough space to grow gives less room for the type of

easily defended entrances to bases that could constitute choke points, etc.

We believe that similar design tradeoffs between properties desirable from a

gameplay perspective exist for many, perhaps most, game genres and types of game

content. For example, it is hard to design a ruleset for a game that is both easy to

grasp and hard to master, or to design an NPC personality which is both

psychologically believable and acts in a way which fits with the storyline of a game.

Therefore, it is plausible that the multiobjective technique introduced here could be

used in other game genres and for other types of game content—subject to the

development of appropriate content representations and objective functions.

Our three-objective experiment should be seen as a first step rather than a

complete coverage of the matter. To our knowledge, the use of more than 2

objectives in PCG has not been studied before, and the main question is if the larger

Table 4 Tag frequencies provided by the 147 users for the 10 example maps

Map intr fun ggp eng imm bor frus chall fair sym

1 15 4 2 2 0 30 46 12 2 0

2 14 6 1 1 3 27 46 20 1 0

3 19 0 2 2 1 27 51 21 3 0

4 19 4 3 1 0 30 48 19 1 1

5 15 1 1 2 0 35 56 18 1 2

6 22 7 4 3 2 28 44 17 2 2

7 19 5 3 7 1 30 43 17 2 1

8 27 4 1 2 0 26 49 17 3 0

9 19 2 3 2 1 25 38 20 2 2

10 11 3 2 5 0 36 52 20 2 1

Legend: interesting (intr), fun (fun), good gameplay (ggp), engaging (eng), immersive (imm), boring

(bor), frustrating (frus), challenging (chall), fair (fair), symmetrical (sym). Note that some maps lacked

some tag values for technical reasons)

Table 5 Relation of user feedback data to map specific objective function values

Property fBase/base fRes/res fChoke/choke

User answer to map value correlation -0.1111 -0.4140 -0.3492

p value correlation test 0.7275 0.1022 0.1715

p value equal proportions test 0.2037 7.373e-06 6.358e-06

The column fBase/base stands for base fairness, fRes/res for resource fairness and fChoke/choke for the

choke point objective. First line is the Kendall tau correlation, second gives the correlation test p value.

Third row consists of the p values of an equal proportions test of the 10 answer ratios for each map

property (failing this test means that user feedback shall be disregarded)

Genet Program Evolvable Mach (2013) 14:245–277 273

123

effort in setting up and understanding the results is rewarded by interesting findings.

Doubtlessly, inspecting two-objective results in order to detecting conflicts is much

easier. Thus, one should only resolve to larger numbers of objectives when a first

impression of the nature and interaction of the single functions has been obtained.

Note that in multiobjective optimisation in general, the interpretation of results

regarding the detection of conflicts is an active research topic and there are no

commonly-agreed upon techniques. We hope that we have been able to add to the

growing understanding of that topic, as well as to PCG research, with our study.

10.1 How can we use multiobjective evolution as a design support tool?

To make our ideas about how MOEAs can aid designers more concrete, we present

a short fictive scenario.

A designer is at work on producing an extensive library of maps for a new

strategy game. The plan is to be able to balance the gameplay by having ready-made

maps that empower weaker players by catering to their particular strengths, and

indirectly handicapping stronger players through presenting them with the sorts of

challenges they are least good at. Presently, the designer is tasked with finding maps

that work well when the weaker player (player 1) is adept at tactical combat, but bad

at harvesting resources and building up an effective base defence, and the stronger

player (player 2) has as an only weakness a tendency to only build very large and

advanced bases that require a great many resources. The designer therefore specifies

that, although players 1 and 2 should have the same number of resources in their

general sphere of interest, player 1 should have ‘‘her’’ resources much closer to her

initial base and clustered together, whereas player 2’s resources are spread out over

a large area. The designer also specifies that the bases should be relatively close to

each other (so that player 1 could conceivably attack before player 2 has finished

building), and that there should be only a single path between the bases and that path

should contain a choke point close to player 1’s base (so she can defend easily).

After specifying these requirements, the designer runs a number of multiobjective

runs and look at the resulting combined Pareto front. The tradeoffs are studied, and

the designer decides to what degree each of the objectives will have to be

compromised. A small number of solutions, taken from different evolutionary runs

in order to ensure diversity, are selected for further inspection and editing. In the last

phase, human judgment and aesthetic sensibility is used to ensure that the maps are

indeed playable and to improve them through manual editing. The process proposed

here has similarities to what has elsewhere been called mixed-initiative PCG [38].

10.2 Making maps better

Our user study was designed to verify whether optimising for a particular objective

yielded an increase in the map quality the fitness function was intended to model.

The results are overall positive, both in that there were significant differences in

terms of perceived qualities between maps optimised for different objective

combinations, and that of the three main assessed qualities (base fairness, resource

fairness, presence of choke points), at least the latter two were found strongly

274 Genet Program Evolvable Mach (2013) 14:245–277

123

correlated with the corresponding objectives. The base fairness is problematic in

that the human testers generally did not agree with this being a valuable objective

for which different degrees of fulfilment would be reasonable (we do not fully agree

with this especially when we think of balancing a game for two differently able

players). We therefore consider the effectiveness of these fitness functions

validated.

On the other hand, the maps we generated were not ‘‘good’’ maps, in the sense

that an experienced player would enjoy one of our maps as much as a professionally

designed map.

One interesting way of indirectly assessing the quality of generated maps would

be to first create a predictor of map quality based on extracted features from existing

maps. As StarCraft is a hugely popular game for which manual map editors have

been available for a long time, several rich repositories of player-made maps exist.

Some of these repositories feature rankings of popularity and/or perceived quality

for their maps, based on the ratings of thousands of players. It would be eminently

doable to calculate all objective scores for the functions defined above on each map.

A model could then be trained (e.g. via neuroevolution) to reproduce the ranking

observed on the repository, with only the objective vector as input. This would give

us a predictor of map quality, which could be used to rate existing maps; it could

also be used to create one or several new objective functions resulting from

nonlinear combinations of these features. However, we have to be aware that the

model would reflect the tastes of the players at that time; setting up maps with new,

unseen features as 3-player/asymmetric maps would not be covered.

10.3 Symmetry in map design, and the purpose of PCG

The outcomes of our user study surprised us to some extent, in that so many of the

commenters complained about the lack of symmetry in the maps our algorithms had

generated. We had started out it with the assumption that symmetrical maps were

boring because they were predictable, and considered the asymmetrical nature of

our maps a feature rather than a bug (in fact, it would have been much easier to

generate symmetrical maps, though in our opinion less interesting). However, most

of the experienced StarCraft players that commented on our maps at Team Liquid

disagreed with us. Many of them reasoned that as the maps were not symmetrical,

they cannot be balanced. One explanation is that they have never seen an

asymmetrical balanced map, and cannot imagine how such a map could be

balanced, but would have liked the maps if they were shown to be balanced through

extensive playthroughs. Another explanation is that such players value the

symmetry and associated predictability in itself, in striking contrast to the authors.

Certain players appreciate knowing their content very well, whether it be racing

tracks or maps for FPS or RTS games, so they can perfect a strategy on a particular

level; others value variation and novelty. When using procedural content generation

to adapt gameplay such inter-player differences should be kept in mind; it is also

important to test with the type of player population for which a particular PCG

approach is targeted.

Genet Program Evolvable Mach (2013) 14:245–277 275

123

11 Conclusions

We have shown that complete and playable strategy game maps can be generated

using multiobjective evolution. We have also introduced a generic indirect

evolvable representation for such maps, together with its specialisation to two

particular map spaces (StarCraft and a heightmap-based game). We have introduced

more than a dozen evaluation functions related to gameplay experience, several of

which partially conflict with each other; most of these functions could easily be

generalised to other strategy games. Finally, we have empirically demonstrated that

some of our key evaluation functions correlate with perceived map qualities.

We believe that with relative little additional work, the method described here could

be used as design a support tool for offline map generation in real games. For online

content generation tobe feasible, somework remains to bedone, in particular theprocess

needs to be sped up. As discussed above, a number of interesting research projects could

be undertaken to further develop the technique introduced here.

Acknowledgments This research was supported in part by the Danish Research Agency project

AGameComIn (number 274-09-0083) and in part by the EU FP7 ICT project SIREN (number 258453). As

stated in the introduction, this paper is based on two previously published papers [1, 2]; the differences

and additions with regard to those papers are detailed in the introduction.

References

1. J. Togelius, M. Preuss, G.N. Yannakakis, Towards multiobjective procedural map generation, in

Proceedings of the FDG Workshop on Procedural Content Generation (2010)

2. J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G.N. Yannakakis, Multiobjective

exploration of the starcraft map space, in Proceedings of the IEEE Conference on Computational

Intelligence and Games (CIG) (2010)

3. T. Adams, Re: optimization-based versus ‘‘constructive’’ pcg (post to the ‘‘procedural content gen-

eration’’ google group)

4. G.S.P. Miller, The definition and rendering of terrain maps, in Proceedings of SIGGRAPH, vol 20

(1986)

5. J. Olsen, Realtime procedural terrain generation, University of Southern Denmark, Tech. Rep. (2004)

6. J. Doran, I. Parberry, Controllable procedural terrain generation using software agents, in IEEE

Transactions on Computational Intelligence and AI in Games (2010)

7. R. Smelik, T. Tutenel, K.J. deKraker, R.Bidarra, Integrating procedural generation andmanual editing of

virtual worlds, in Proceedings of the FDG Workshop on Procedural Content Generation (2010)

8. J. Togelius, G.N. Yannakakis, K.O. Stanley, C. Browne, Search-based procedural content generation: a

taxonomy and survey, in IEEE Transactions on Computational Intelligence and AI in Games, vol in print

(2011)

9. M. Frade, F.F. de Vega, C. Cotta, Evolution of artificial terrains for video games based on acces-

sibility, in Proceedings of the European Conference on Applications of Evolutionary Computation

(EvoApplications), vol 6024 (Springer LNCS, 2010), pp. 90–99

10. N. Sorenson, P. Pasquier, Towards a generic framework for automated video game level creation, in

Proceedings of the European Conference on Applications of Evolutionary Computation (EvoAppli-

cations), vol 6024 (Springer LNCS, 2010), pp. 130–139

11. D. Ashlock, T. Manikas, K. Ashenayi, Evolving a diverse collection of robot path planning problems,

in Proceedings of the Congress On Evolutionary Computation (2006), pp. 6728–6735

12. J. Togelius, R. De Nardi, S.M. Lucas, Towards automatic personalised content creation in racing

games, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2007)

13. C. Pedersen, J. Togelius, G.N. Yannakakis, Modeling player experience in super mario bros, in

Proceedings of the IEEE Symposium on Computational Intelligence and Games (2009)

276 Genet Program Evolvable Mach (2013) 14:245–277

123

14. E. Hastings, R. Guha, K.O. Stanley, Evolving content in the galactic arms race video game, in

Proceedings of the IEEE Symposium on Computational Intelligence and Games (2009)

15. J. Togelius, J. Schmidhuber, An experiment in automatic game design, in Proceedings of the IEEE

Symposium on Computational Intelligence and Games (2008)

16. C. Browne, Automatic generation and evaluation of recombination games, Ph.D. dissertation,

Queensland University of Technology (2008)

17. I. Das, J.E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for pareto

set generation in multicriteria optimization problems, in Structural and Multidisciplinary Optimi-

zation, vol 14 (1997), pp. 63–69

18. J. Koski, Defectiveness of weighting method in multicriterion optimization of structures, Commu-

nications in Applied Numerical Methods, vol 1 (1985), pp. 333–337

19. A. Agapitos, J. Togelius, S.M. Lucas, J. Schmidhuber, A. Konstantinides, Generating diverse

opponents with multiobjective evolution, in Proceedings of the IEEE Symposium on Computational

Intelligence and Games (2008)

20. N. van Hoorn, J. Togelius, D. Wierstra, J. Schmidhuber, Robust player imitation with multiobjective

evolution, inProceedings of the IEEE Symposium on Computational Intelligence and Games (CIG) (2009)

21. J. Schrum, R. Miikkulainen, Constructing complex npc behavior via multi-objective neuroevolution,

in Proceedings of the Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE) (2008)

22. F.J. Gomez, J. Togelius, J. Scmidhuber, Measuring and optimizing behavioral complexity for evo-

lutionary reinforcement learning, in Proceedings of the International Conference on Artificial Neural

Networks (ICANN) (2009)

23. J. Togelius, G.N. Yannakakis, K.O. Stanley, C. Browne, Search-based procedural content generation,

in Proceedings of the European Conference on Applications of Evolutionary Computation (Evo-

Applications), vol 6024 (Springer LNCS, 2010)

24. S. Papert, Teaching children thinking. Massachusetts Institute of Technology AI Memos, Tech. Rep.

247 (1971)

25. T.W. Malone, What makes computer games fun? Byte 6, 258–277 (1981)

26. M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience (Harper & Row, New York,

1990)

27. R. Koster, Theory of Fun for Game Design (O’Reilly Media, Scottsdale, AZ, 2004), p. 256

28. K. Deb, A. Pratap, S. Agarwal, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE

Trans. Evolut. Comput. 6(2), 182–197 (2002)

29. N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: multiobjective selection based on dominated

hypervolume. European Journal of Operational Research, 181(3), 1653–1669 (2007)

30. K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9,

115–148 (1995)

31. M. López-Ibáñez, L. Paquete, T. Stützle, EAF graphical tools, 2010 (Online). Available:

http://iridia.ulb.ac.be/manuel/eaftools

32. V.G. da Fonseca, C.M. Fonseca, A.O. Hall, Inferential performance assessment of stochastic opti-

misers and the attainment function, in EMO ’01: Proceedings of the First International Conference

on Evolutionary Multi-Criterion Optimization (Springer, London, 2001), pp. 213–225

33. M. Preuss, C. Kausch, C. Bouvy, F. Henrich, Decision space diversity can be essential for solving

multiobjective real-world problems, in MCDM for Sustainable Energy and Transportation Systems,

EMO Track, ed. by M. Ehrgott et al. (Springer, Berlin, 2008), pp. 367–377

34. G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto

subsets, in Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007,

Proceedings, ser. Lecture Notes in Computer Science, vol 4403, ed. by S. Obayashi, K. Deb, C.

Poloni, T. Hiroyasu, T. Murata (Springer, 2007), pp. 36–50

35. J. Hagelbäck, M. Preuss, B. Weber, CIG 2010 StarCraft RTS AI Competition (2010), http://ls11-

www.cs.tu-dortmund.de/rts-competition/starcraft-cig2010/

36. G.N. Yannakakis, How to model and augment player satisfaction: a review, in Proceedings of the 1st

Workshop on Child, Computer and Interaction (ACM Press, Chania, Crete, 2008)

37. E. Wilson, Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22,

209–212 (1927)

38. G. Smith, J.Whitehead,M.Mateas, Tanagra: reactive planning and constraint solving formixed-initiative

level design. IEEE Trans. Comput. Intell. AI Games 3(3), 201–215 (2011). doi:10.1109/TCIAIG.

2011.2159716

Genet Program Evolvable Mach (2013) 14:245–277 277

123

View publication statsView publication stats

http://dx.doi.org/10.1109/TCIAIG.2011.2159716
http://dx.doi.org/10.1109/TCIAIG.2011.2159716
http://ls11-www.cs.tu-dortmund.de/rts-competition/starcraft-cig2010/
https://www.researchgate.net/publication/257564581
http://iridia.ulb.ac.be/manuel/eaftools
http://ls11-www.cs.tu-dortmund.de/rts-competition/starcraft-cig2010/

