
Received November 8, 2018, accepted December 21, 2018, date of publication January 1, 2019,
date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889877

Controllable Sparse Antenna Array
for Adaptive Beamforming

WANLU SHI1, YINGSONG LI 1,2, (Member, IEEE), LUYU ZHAO 3, (Member, IEEE),

AND XIAOGUANG LIU 4, (Senior Member, IEEE)
1College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
2Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
3Key Laboratory of Antennas and Microwave Technologies, Xidian University, Xi’an 710071, China
4Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616, USA

Corresponding author: Yingsong Li (liyingsong@ieee.org)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFE0111100, in part

by the Key Research and Development Program of Heilongjiang under Grant GX17A016, in part by the Science and Technology

Innovative Talents Foundation of Harbin under Grant 2016RAXXJ044, in part by the Natural Science Foundation of Beijing under Grant

4182077, in part by the China Postdoctoral Science Foundation under Grant 2017M620918, in part by the Natural Science Foundation of

China under Grant 61701366, and in part by the Fundamental Research Funds for the Central Universities under Grant HEUCFM180806.

ABSTRACT We propose an l0-norm constrained normalized least-mean-square (CNLMS) adaptive beam-

forming algorithm for controllable sparse antenna arrays. To control the sparsity of the antenna array, an l0-
norm penalty is used as a constraint in the CNLMS algorithm. The proposed algorithm inherits the advantages

of the CNLMS algorithm in beamforming. The l0-norm constraint can force the quantities of antennas to a

certain number to control the sparsity by selecting a suitable parameter. In addition, the proposed algorithm

accelerates the convergence process compared with the existing algorithms in sparse array beamforming,

and its convergence is presented in this paper. To reduce the computation burden, an approximating l0-norm
method is employed. The performance of the proposed algorithm is analyzed through simulations for various

array configurations.

INDEX TERMS l0-norm, sparse controllable array, NLMS algorithm, constrained adaptive beamforming.

I. INTRODUCTION

Beamforming is an important application of array processing

and is widely used in radar, sonar, mobile communications,

seismic sensing, biomedical engineering and other fields.

The formed beam realizes high gain in the desired direc-

tion and suppresses interferences in other directions so as to

enhance signal-to-interference-plus-noise ratio (SINR). The

linearly constrained minimum variance (LCMV) algorithm

introduced by Frost, III [1] is a famous beamforming method

for creating a beam in the desired direction and forming a

null in the direction of the interfering signal. The LCMV

algorithm minimizes the output power with the objective of

minimizing the contribution of undesired interference and

maintains a constant gain in the direction of observation.

Adaptive beamforming algorithms adjust the weighted vec-

tors of the antenna array tomatch the time-varying signals and

interferences. The classic beamforming algorithm CNLMS is

a normalized adaptive version of LCMV, which was derived

with the assumption that array elements can be adjusted in

real-time [2].

In some applications, e.g. radar, large arrays are essen-

tial for achieving the desired performance. However, large

antenna arrays require intensive computation, complex

transceiver architectures and consume a significant amount

of power. As a result, existing beamforming algorithms may

be limited by the power consumption, cooling requirement,

computation resources, and cost, for large arrays. With the

recent development in sparse signal processing [3]–[13],

a promising approach for solving the problems mentioned

above is to force the filter coefficients toward sparsity which

in beamforming applications is defined as the proportion of

active antenna elements.

Making use of the sparse characteristics which exist

in many applications, e.g. wireless communications,

speech signal processing, and remote sensing, sparse

signal processing shows particular advantage and have

drawn remarkable attention in recent years. Motivated by

the Least Absolutely Shrinkage and Selection Operator

(LASSO) [14] and Compressive Sensing (CS) [15], LMS

based algorithms have been introduced for sparse system
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identification [3]–[5], [16]–[18]. Among these algorithms,

the zero-attracting LMS (ZA-LMS) and the reweighted

zero-attracting LMS (RZA-LMS) proposed in [3] are rep-

resentative. In ZA-LMS, an l1-norm penalty on the filter

coefficients is applied to the quadratic cost function of

the standard LMS algorithm and results in an modified

LMS updating with a zero attractor for all the filter taps.

RZA-LMS further improved the filtering performance by

considering reweighted step sizes of the zero attractor for

different taps. The zero-attracting technique has been also

expanded to many other algorithms [19]–[24]. In addition,

another type of algorithms for sparse system identifica-

tion is Proportionate Normalized LMS (PNLMS) and its

variations [16]–[18], [25]–[33]. Motivated by CNLMS and

the methods of sparse system identification, the l1-norm
linearly constrained normalized LMS (L1-CNLMS) algo-

rithm and its weighted version (L1-WCNLMS) are proposed

in [34]. L1-WCNLMS employs an l1-NC on the filter coef-

ficients to force the weighting vector towards sparsity and is

able to form the desired beam using fewer antennas. However,

it is not easy to control the sparsity of the array using

L1-WCNLMS algorithm.

Inspired by the L1-WCNLMS algorithm in [34], we devel-

oped an l0-NC CNLMS (L0-CNLMS) algorithm with bet-

ter performance and stability. l0-NC is a feasible choice

because l0-norm represents the amount of non-zero elements.

For example, in CS theory, l0-norm minimization solution

is optimal for sparse signal recovery. In beamforming, the

l0-norm solution has not seen wide-spread use due to

its Non-Polynomial (NP) hard problem. Several possible

remedies have been proposed [4], [5], [35]–[37]. In [4],

an l0-norm constrained LMS (CLMS) algorithm is proposed

for sparse system identification which utilizes an approxi-

mative expression of l0-norm. In [37], different approaches

for approximating l0-norm are introduced to realize sparsity-

aware data-selective adaptive filters. In addition, a soft

parameter function penalized normalized maximum cor-

rentropy criterion (SPF-NMCC) algorithm is proposed for

sparse system identification in [5]. In comparison with zero-

attracting MCC (ZA-MCC), SPF-NMCC algorithm achieves

a better performance which proves that l0-norm constrained

algorithm can speed up the convergence process compared

with l1-norm penalty method [38].

From the above mentioned recent studies, the sparse beam-

forming can be realized by using norm penalties into the

corresponding cost function. In this paper, an approximat-

ing l0-NC is used to develop an L0-CNLMS algorithm for

improving the beamforming performance for controllable

sparse antenna arrays. The L0-CNLMS algorithm can achieve

better performance than L1-WCNLMS algorithm. Similar to

the L1-WCNLMS algorithm, a new convergence factor is

developed to dynamically adjust the convergence speed of the

algorithm.

The proposed L0-CNLMS algorithm can reach a large

degree of sparsity of down to 20%. The performance

of the L0-CNLMS algorithm is validated by considering

FIGURE 1. Signal processing of planar antenna array.

different array shapes and conditions. A comparison between

the L0-CNLMS and the L1-WCNLMS is provided to demon-

strate that the L0-CNLMS can accelerate the convergence

process. The proposed algorithm shows great potential for

satellite communication [39], tactical military communica-

tion systems [40], and many other applications that use sparse

antenna arrays.

II. MATHEMATICAL MODEL OF ADAPTIVE

ARRAY PROCESSING

Figure 1 illustrates a planar antenna array composed of M
elements receivingQ far-field signals including interferences

and signal of interest (SOI) with wavelength λ and various

azimuths (θ i) and zeniths (φi) during N snapshots. Since we

are interested in only the far field, the signals can be seen as

plane waves. Figure 2 shows the arrangement of the planar

antenna array.

If we define the data received by the origin of coordinates

during the k th snap as x(k), then the data received by the

antennas in other positions x(k,Pm) can be obtained through
the propagation time-delay τm:



























τm =
ai

Tpm

c
, m = 1, ...,M , i = 1, . . . ,Q,

x(k,Pm) = x(k−τm), k = 1, . . . ,N

x(k) =

Q
∑

i=1

fi(k)e
−j2πc

λ
k + n(k),

(1)

where Pm is the antenna coordinate, c is the propagating

speed of signals, ai = [− sin θi cosφi, − sin θi sinφi]
T is

a unit vector, θi and φi are the input direction of signals,

fi(k) is the complex envelope of the input signals and n(k)
represents the noise vector. Here, we consider only narrow-

band signal whose complex envelope fi(k) is approximately

constant during the time-delay. We can then transform the

time-delay information into the variation of phase, i.e., the

spatial characteristics of antenna array can be expressed by

phase information. As such, the input data during k th snapshot
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FIGURE 2. Antenna array coordinate graph.

is:

xk = [x(k − τ1) x(k − τ2) · · · x(k − τM )]T . (2)

The output signal yk during k th snap is:

yk = wH
k xk , k = 1, . . . ,N , (3)

where wk is the coefficient vector. So the instantaneous error

is ek = dk−yk , where dk represents the desired output signal.
The input signals matrix X can be defined as:

X = [ x1 x2 · · · xN ] = AF + N, (4)

where A is the M × Q steering matrix which contains the

spatial characteristics information, F is the Q × N complex

envelope matrix, and N indicates white noise matrix.

The beam pattern for a direction (θ, φ) is:

B(θ, φ) = wH exp

{

−j
2πaTpm

λ

}

. (5)

III. NORM AND SPARSITY

In this paper, an approximate l0-NC is employed. In CS

theory, l0-norm minimization solution is the optimal solution

for sparse signal recovery. However, the l1-norm, which has

the same solution under particular conditions, is popular in

many applications because l0-norm minimization is a NP

hard problem. In recent years, many studies on l0-norm have

been proposed [37], [41]. In [37], different approaches for

approximating l0-norm are introduced.

In this paper, l0-norm is approximated as:

||w(k)||0 ≈ Sβ (w(k)) =

M−1
∑

i=0

(1 − e−β|wi(k)|), (6)

where parameter β controls the approximation. Figure 3(a)

shows the effect of β. As β increases, the curvature of

Sβ (w(k)) becomes sharper. When β is very large, the function

is close to l0-norm.

In order to reduce the computational complexity brought

by the exponential function, we use the first order Taylor

series expansions of exponential functions [4]:

fβ (x) = e−β|x| =

{

1 − β|x| β|x| ≤ 1;

0 elsewhere,
(7)

FIGURE 3. (a) Performance of Sβ (w(k)) for various parameter β. (b) The
curves of function fβ (x) with various parameter β.

shown in Fig. 3(b), a larger β signifies stronger attraction for

small coefficients but less scope width.

One may notice that the sparse adaptive beamforming

method proposed in [34] employs an l1-norm as a constrain to

derive the final update formulation. The L1-WCNLMS is an

l1-norm canonical technique, which is implemented via using

the l1-norm constraint to speed up the convergence procedure.

By applying the approximate expression of the exponential

functions, it is obvious that the equation:

||wk ||0 ≈ Sβ (w(k)) ≈ JHk wk , (8)

is satisfied in terms of the gradient as Jk , of approximated l0-
norm. Equation (8) is an important condition for the proposed

algorithm.

IV. THE CLMS ALGORITHM AND THE CNLMS

ALGORITHM

A. THE CLMS ALGORITHM

The solution to the LCMV algorithm introduced in [1] and

[42] is:

wopt = R−1C(CHR−1C)−1f, (9)

where R, C, f are the covariance matrix, constrained matrix,

constrained vector, respectively. H represents Hermitian oper-

ator (conjugate transpose), and the covariance matrix R is

defined as E[xkx
H
k ]. It is estimated by the time average.

CLMS algorithm is the adaptive version of LCMV [1],

[42]. The target function of CLMS algorithm is:

min
w

E
[

|ek |
2
]

s.t. CHw = f. (10)

The Lagrange multiplier is used to transform the con-

strained optimization problem for the solution of uncon-

strained extreme value problem. The cost function is:

Lclmsk = E
[

|ek |
2
]

+ γH
1 (C

Hw − f). (11)

By using the steepest descent method, the coefficient vec-

tor updating equation at iteration k can be calculated:

wk+1 = wk −
µ

2
gwL

clms
k , (12)

where gwL
clms
k is the gradient vector of Lclmsk and points to the

steepest rise direction of the cost function [34], [42]:

gwL
clms
k = −2E

[

e∗kxk
]

+ Cγ 1. (13)

6414 VOLUME 7, 2019



W. Shi et al.: Controllable Sparse Antenna Array for Adaptive Beamforming

In the calculation process, the instantaneous estimate of

E[x∗
kx

H
k ] is employed:

ĝwL
clms
k = −2e∗kxk + Cγ 1. (14)

Applying the constrain relation CHwk+1 = f, γ 1 can be

solved. Finally, the updating equation for CLMS algorithm

is:

wk+1 = P
[

wk + µe∗kxk
]

+ fc, (15)

with:
{

P = IM×M − C(CHC)
−1

CH,

fc = C(CHC)
−1

f,
(16)

where P is a symmetric projection matrix, fc is an M×1

vector, I is the unit matrix, and µ is the convergence factor.

Because wk was forced to satisfy the constraint in (10), it is

obvious that the following equation is satisfied [2]:

Pwk + fc = wk . (17)

B. THE CNLMS ALGORITHM

To accelerate the convergence of CLMS algorithm, the nor-

malized version CNLMS algorithm is proposed [2]. A fea-

sible method is to reduce the instantaneous error eap(k) =

dk − xHk wk+1 as much as possible during each iteration.

As a result, a variableµk is used to replace the constantµ [2],

[34], [42].

Considering (15) and (17), we obtain:

eap(k) = ek
(

1 − µkx
H
k Pxk

)

. (18)

To minimize eap(k), we use the partial derivative of e2ap(k)
with respect to µk :

∂
[

|eap(k)|2
]

∂µ∗
k

=
∂

[

eap(k)e∗ap(k)
]

∂µ∗
k

= 0. (19)

According to [42]:

∂
[

|eap(k)|2
]

∂µ∗
k

=
1

2

[

∂|eap(k)|2

∂ℜµk
+ j

∂|eap(k)|2

∂ℑµk

]

, (20)

where ℜµk and ℑµk are the real and imaginary parts of µk .

(19) can then be transformed as:

∂
[

|eap(k)|2
]

∂µ∗
k

=
eap(k)

2

[

∂e∗ap(k)

∂ℜµk
+ j

∂e∗ap(k)

∂ℑµk

]

. (21)

Then, we can obtain

µk =
µ0

xHk Pxk + ǫ
, (22)

where the parameter ǫ is positive to avoid excessive step size

when xHk Pxk is too small. Finally, the CNLMS algorithm

coefficients updating function is:

wk+1 = P

[

wk + µ0
ekxk

xHk Pxk + ǫ

]

+ f. (23)

V. THE PROPOSED L0-CNLMS ALGORITHM

A. ALGORITHM DERIVATIVE PROCESS

In [4], an l0-norm penalty on the filter coefficients is incor-

porated to the cost function of LMS algorithm to speed

up coefficient shrinkage. In [43], an l1-norm penalty is

added to the constrain list of CLMS algorithm to enhance

sparsity.

In this paper, an l0-norm is utilized. The objective function

is:

min
w
E

[

|ek |
2
]

s.t.

{

CHw = f;

||w||0 = t,
(24)

where || · ||0 denotes l0-norm that counts the number of non-

zero entries in w, and t is the constrain of ||w||0.

The cost function is:

L l0k = E
[

|ek |
2
]

+ γH
1

(

CHw − f
)

+ γl0 [||w||0 − t]. (25)

According to (6), the proposed cost function can be written

as:

L l0k = E
[

|ek |
2
]

+ γH
1

(

CHw − f
)

+ γl0

[

M−1
∑

i=0

(

1 − e−β|wi(k)|
)

− t

]

. (26)

The instantaneous estimate of the gradient L l0k in (26) is

expressed as:










gwε(w) = −2 e∗kxk + Cγ 1 + γl0Jk ,

Jk = β[sgn(w1)(1 − β|w1|)

, · · · , sgn(wM )(1 − β|wM |)]T.

(27)

where sgn(·) is an element-wise sign operator, which is

defined as:

sgn(x) =







x

|x|
x 6= 0;

0 elsewhere.
(28)

According to the steepest descent method, the coefficients

updating equation can be written as:

wk+1 = wk −
µ

2

{

−2e∗kxk + Cγ 1 + γl0Jk
}

. (29)

Next, we use constraints in (24) to eliminate γ 1 and

γ l0 . Here, we assume that the algorithm has converged, i.e.

wk+1 = wk . The approximation JHk wk+1 = t is proposed
in [34], aswk andwk+1 are expected to be in the same hyper-

quadrant. Then the constraints can be written as:

CHwk+1 = CHwk = f (30a)

JHk wk+1 = t. (30b)

Using (30a), γ 1 can be solved premultiplying (29) by CH:

γ 1 = G
(

2e∗kxk − γl0Jk
)

, (31)

where G = (CHC)−1CH.
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Using (30b) and applying (8), l0-norm is denoted as tk =

JHk wk . Multiplying (29) by JHk :

t = tk −
µ

2

{

−2e∗kJ
H
k xk + JHk Cγ 1 + γ2n

}

, (32)

where n=JHk Jk is a scalar.

Defining l0-norm error as eL0 (k) = t − tk , and substituting
(31) to (32), γl0 can be solved:

γl0 = −
2

mµ
eL0 (k) +

2e∗kJ
H
k Pxk

m
, (33)

where m = JHk PJk is a scalar.

Taking γ 1 and γl0 into (29) and making use of (17), we can

obtain the update equation for L0-CLMS:

wk+1 = wk + µ0e
∗
kQ + fL0 (k), (34)

where:


















































P = IM×M − C(CHC)
−1

CH,

q = JHk Pxk ,

m = JHk PJk ,

Q = P(xk −
qJk
m

),

ek = −wH
k xk ,

fL0 (k) = (t − JHk wk )(
PJk

m
).

(35)

The same approach of CNLMS algorithm can be applied to

the L0-CNLMS algorithm.

According to the update equation of L0-CLMS algorithm

list on (34), we can obtain:

eap (k) = ek (1 − µkQxk) . (36)

Applying (19), (20) and (21), we can get µk for the

L0-CNLMS algorithm:

µk =
µ0[ek − fHL0 (k)xk ]

ekQHxk + ǫ
. (37)

The final updating function of L0-CNLMS algorithm is:

wk+1 = wk + µke
∗
kQ + fL0 (k), (38)

where:


































































P = IM×M − C(CHC)
−1

CH,

q = JHk Pxk ,

m = JHk PJk ,

Q = P(xk −
qJk
m

),

ek = −wH
k xk ,

fL0 (k) = (t − JHk wk )(
PJk

m
),

µk =
µ0[ek − fHL0 (k)xk ]

ekQHxk + ǫ
.

(39)

The final algorithm is expressed via pseudo-codes in

Algorithm 1.

Algorithm 1 Algorithm for L0-CNLMS

Input:t , µ0, k , β, in
Output: w out

Initialisation:
1: P = IM×M − C(CHC)−1CH;

2: fc = C(CHC)−1f;

3: w(1) = fc;

LOOP Process
4: while (k<kmax) do

5: ek=dk -w
H
k xk ;

6: eL0 (k) = t − tk ;
7: Jk = β[sgn[w1](1-β|w1|),···,sgn[wM ](1-β|wM |)]T;

8: q=JHk Pxk ;

9: m=JHk PJk ;

10: Q = P(xk −
qJk
m );

11: fL0 (k) = (t − JHk wk )(
PJk
m );

12: µk =
µ0[ek−fHL0

(k)xk ]

ekQHxk+ǫ
;

13: wk+1 = wk + µke
∗
kQ + fL0 (k);

14: end while

15: return w

TABLE 1. Complex operations in each iterations.

The computational complexity of the proposed

L0-CNLMS in each iteration is given in Table 1 under the

assumption that Q = 1. It can be seen that the complexity of

the proposed L0-CNLMS is O(M ) which is similar to that of

CNLMS. However, the proposed L0-CNLMS is superior to

the CNLMS and the L1-WCNLMS with respect to the con-

vergence and the performance for sparse array beamforming,

which will be verified in next section.

In our proposed L0-CNLMS algorithm, we aim to develop

an l0-norm based sparse adaptive beamforming method,

which exploits the sparse characteristic of the array while

keeping the same beam patterns with previous adaptive beam-

forming algorithms. We use the l0-norm constraint in the new

cost function to get the derivation of the proposed L0-CNLMS

algorithm in detail. Since the l0-norm is an approximation

for getting a close solution of l0-norm constraint due to

the NP-hard problem, other l0-norm approximation can be

used for smoothing the l0-norm, such as smooth l0-norm in

compressed sensing [15], [36], l0-norm in adaptive filters [4].

In the L0-CNLMS algorithm, we introduce the l0-norm to

create a new cost function since the l0-norm constraint can

directly get the active array elements to accelerate the conver-

gence and achieve a better sparse beamforming. The deriva-

tion of the proposed algorithm is based on the gradient

descent method which has been found in the adaptive filter

and adaptive beamforming algorithms [9]–[11], [34], [43].
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FIGURE 4. Algorithm working process.

TABLE 2. Parameter values for SHA simulations.

In addition, our proposed L0-CNLMS utilizes two different

constraints to obtain the high gain and sparsity of the array.

Thus, the active antenna array elements can be controlled

to realize sparse array with reliable and controllable beam

patterns.

B. ALGORITHM WORKING PROCESS

From equation (24), we can see that the proposed L0-CNLMS

algorithm has two constraints, where one is used for obtain-

ing high gain and suppressing the interferences while the

other one is to exploit the sparsity. In our proposed algo-

rithm, we aim to propose sparse controllable beamforming

algorithm to use less active array elements and to achieve

acceptable beam pattern performance in comparison with

other algorithms. The operating principle of our proposed L0-

CNLMS algorithm is presented in Fig. 4. Since we use the

l0-NC to exploit the sparsity property of the arrays to reduce

the active elements and to reduce the computational burden,

the small coefficients are attracted to zero without sacrificing

the gain of the main lobe. Thus, the active coefficients in the

array become larger, which will deteriorate the side lobe level

(SLL) and the first null beam width (FNBW).

VI. SIMULATION RESULTS

Simulations are carried out on various array configurations

to evaluate the effectiveness of the L0-CNLMS algorithm

for adaptive array beamforming. Then, investigations and

comparisons of L0-CNLMS and L1-WCNLMS are illustrated

to demonstrate the improvement of the proposed algorithm.

Interferers and SOI in the experiments are narrowband QPSK

signals. Parameters of the simulations are listed in the follow-

ing tables.

FIGURE 5. SHA simulations: The beam patterns for the L0-CNLMS
compared with CNLMS and LCMV algorithms, pink lines show the
directions of interferences, the yellow line is on behalf of the SOI. The
thinned array at iteration k = 6 × 103, white circles represent the
elements turned off by L0-CNLMS. (a) Simulation I: Beam patterns,
(b) Simulation I: Array sparsity = 19.8%, (c) Simulation II: Beam patterns,
(d) Simulation II: Array sparsity = 49.5%, (e) Simulation III: Beam
patterns, (f) Simulation III: Array sparsity = 19.8%.

A. STANDARD HEXAGONAL ARRAY (SHA)

In the first simulation, we consider a SHA receiving signals

for satellite communication. Each edge of SHA employs

6 antennas, leading to a total of 91 antennas. The major

parameters of the simulation are listed in Table 2. We vary

the direction of the signals, the number of the signals, and the

sparsity of the antenna array.

Results are shown in Fig. 5 and Fig. 6. The L0-CNLMS,

LCMV and CNLMS algorithms form beams with nearly

identical shape in the main lobe and nulls. From the mean-

square-error (MSE) and the l0-norm shown in Figure 6,

the MSE performance of the L0-CNLMS algorithm is better

than that of CNLMS. The L0-CNLMS algorithm converges

after 3,000 iterations and achieves similar performance

with various signals’ zeniths, quantity and directions. The

L0-CNLMS algorithm achieves a sparsity of 19.8%, 49.5%,

and 19.8% which equal to the prescribed parameter t of 0.2,
0.5, 0.2.
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FIGURE 6. SHA simulations: The MSE performance for L0-CNLMS and
CNLMS algorithms and l0-norm of the coefficient vector at iteration
k = 6 × 103. (a) Simulation I: MSE, (b) Simulation I: l0-norm,
(c) Simulation II: MSE, (d) Simulation II: l0-norm.

TABLE 3. Parameter values for RA simulations.

B. RECTANGULAR ARRAY (RA)

In the second simulation, we consider a 100-element

RA receiving C-band signals commonly found in radar

systems. The parameters of the simulations are listed

in Table 3.

Figure 7 is the result of RA simulation. Detail perfor-

mances of MSE and l0-norm are omitted for brevity. We can

conclude from the results that the proposed algorithm can

be used in RA properly. Same as SHA, the L0-CNLMS

can deal with the varying conditions successfully and form

the ideal beam. Similarly, the sparsity of the antenna arrays

are controlled exactly and equal to the parameter t . In this

way, we can change the performance of the formed beam

through regulating the sparsity of the antenna array which is

significant in sparse array beamforming.

C. TRIANGULAR ARRAY (TA)

In this simulation, TA is considered as the senor for P-band

signals which has particularly advantage in stealth aircraft

FIGURE 7. RA simulations: The beam patterns for the L0-CNLMS
compared with CNLMS and LCMV algorithms. The thinned array at
iteration k = 3 × 103. (a) Simulation I: Beam patterns, (b) Simulation I:
Array sparsity = 20%. (c) Simulation II: Beam patterns, (d) Simulation II:
Array sparsity = 40%, (e) Simulation III: Beam patterns, (f) Simulation III:
Array sparsity = 69%.

TABLE 4. Parameter values for TA simulations.

and satellite detection. TA in this simulation contains 9 rows

where each row consists of 13 elements. The parameters of

the simulations are given in Table 4.

As Fig. 8 indicates, the beams are formed successfully

against the SOI and interferences, and the sparsity of arrays

match the parameter t well.
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FIGURE 8. TA simulations: The beam patterns for L0-CNLMS compared
with CNLMS and LCMV algorithms. The thinned array at iteration
k = 3 × 103. (a) Simulation I: Beam patterns, (b) Simulation I: Array
sparsity = 34.2%, (c) Simulation II: Beam patterns, (d) Simulation II: Array
sparsity = 53.8%.

TABLE 5. Parameter values for IA simulations.

D. IRREGULAR ARRAY (IA)

In the fourth simulation, we study an IA working at S-band.

Here, the IA is a 112-element rectangular array with circular

boundary. Parameters of the simulations are given in Table 5.

The simulation results show similar performances as the

above cases (Fig. 9) which means the proposed algorithm can

deal with different applications and control the sparsity.

E. INVESTIGATION AND COMPARISON OF THE L0-CNLMS

Herein, we present the performance of the L0-CNLMS in

comparison with the L1-WCNLMS algorithm to verify its

benefits and improvements. An X-band SHA is used to ana-

lyze the proposed method in these experiments.

1) SMALL SPARSE RATIO

For small sparse ratio, the parameters listed in Table 6 are

used to investigate the behaviors of the L0-CNLMS and the

simulation results are given in Figs. 10 and Fig. 11. For the

case I, as we can see from Fig. 10, L1-WCNLMS finally

FIGURE 9. IA simulations: The beam patterns for L0-CNLMS compared
with CNLMS and LCMV algorithms. The thinned array at iteration
k = 3 × 103. (a) Simulation I: Beam patterns, (b) Simulation I: Array
sparsity = 59.8%, (c) Simulation II: Beam patterns, (d) Simulation II: Array
sparsity = 89.2%.

TABLE 6. Comparison in small sparse ratio.

achieves a sparse solution after 2 × 104 times of iterations,

while the proposed L0-CNLMS converges at 3 × 103 times.

This means L0-CNLMS achieves a higher level of sparsity

faster than L1-WCNLMS. It is also observed that the SLL

in the L1-WCNLMS is higher than that of the L0-CNLMS

although the L1-WCNLMS employs much more elements.

That is to say, the L0-CNLMS can achieve better beam pattern

performance with fewer antennas.

For case II, we change the directions of interferences.

From Fig. 11, it is found that the L1-WCNLMS fails to get

the sparse solution and has the same beam pattern with the

CNLMS. On the contrary, L0-CNLMS can still successfully

get the sparse solution. Fig. 11 (c) and (d) illustrate the reason

why L1-WCNLMS may lose the sparse solution. It can be

seen that the L1-WCNLMS algorithm has already converged

and its coefficients don’t change any more after 5 × 103
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FIGURE 10. Comparison of L0-CNLMS and L1-WCNLMS in small sparse
ratio, Case I: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms. (b) The thinned array for L1-WCNLMS
at iteration k = 2 × 104, array sparsity = 49.5%, (c) The thinned array for
L0-CNLMS at iteration k = 3 × 103, array sparsity = 38.5%,
(d) Comparison of MSE performance of L0-CNLMS and L1-WCNLMS.

TABLE 7. Comparison in big sparse ratio.

iterations, since the l1-NC forces all the coefficients to small

uniformly. From the comparisons, we found that the L0-

CNLMS algorithm is stable and robust when it is used for

dealing with the sparse antenna array beamforming.

2) LARGE SPARSE RATIO

When the sparse ratio is large, our proposed L0-CNLMS

showsmore stable beam patterns then those of L1-WCNLMS,

making it more suitable for various engineering applications.

For obtaining the comparison results, the simulation param-

eters are presented in Table 7 and the simulations are shown

in Fig. 12. It turns out that the L0-CNLMS shows a better

performance in terms of the beam patterns and MSE for the

same experiment conditions.

Several experiments are carried out to verify the stabiliza-

tion of L0-CNLMS and L1-WCNLMS algorithms. We can

FIGURE 11. Comparison of L0-CNLMS and L1-WCNLMS in small sparse
ratio, Case II: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms. (b) The thinned array for L0-CNLMS
at iteration k = 3 × 103, array sparsity = 59.3%, (c) Coefficients in
working process, iteration k from 1 to 3 × 103, (d) Coefficients in working
process, iteration k from 5 × 103 to 2 × 104.

draw a conclusion from Fig. 13 that the beam patterns

for L0-CNLMS are much more stable than those of the

L1-WCNLMS based beam patterns. Especially, the

L0-CNLMS has the same shape for the main lobe in different

experiments. Also, the sparsity of the L1-WCNLMS varies

from 18.7% to 49.5%, while the L0-CNLMS has the stable

sparsity which can get a high accuracy.

VII. ITERATION CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of the

proposed L0-CNLMS algorithm. Herein, we consider wo as

the optimal coefficient vector, nk as the noise. Also, we define

the coefficient error as1wk = wk−wo. In this case, the priori

error in the k th iteration can be described as:

ek = xHk wo + nk − xHk wk = nk − xHk 1wk . (40)

Substituting µk into the final updating function of the

proposed algorithm in equation (38), we obtain:

wk+1 = wk +
µ0

εk
[ek − fHL0 (k)xk ]Q + fL0 (k), (41)

where εk = QHxk is a scalar.
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FIGURE 12. Comparison of L0-CNLMS and L1-WCNLMS in big sparse
ratio, Simulation: (a) The beam patterns for L0-CNLMS compared with
L1-WCNLMS and CNLMS algorithms, (b) The thinned array for L1-WCNLMS
at iteration k = 3 × 103, array sparsity = 18.7%, (c) The thinned array for
L0-CNLMS at iteration k = 3 × 103, array sparsity = 19.8%,
(d) Comparison of MSE performance for L0-CNLMS and L1-WCNLMS.

Taking fL0 (k) into consideration, (41) can be rewritten as:

wk+1 = wk + [I −
µ0

εk
QxHk ]fL0 (k) +

µ0

εk
e∗kQ. (42)

Next, Substituting (40) into (42), we get

wk+1 = wk + [I −
µ0

εk
QxHk ]fL0 (k) +

µ0

εk
(n∗
k − xHk 1wk )Q.

(43)

Notice that fL0 (k) = (t − JHk wk )(
PJk
m ). In the proposed

algorithm, we use the constraint that JHk wk+1 = t , i.e., the
equation JHk wo = t is satisfied when the algorithm is con-

verged. Using his method, fL0 (k) can also be expressed as:

fL0 (k) = (JHk wo − JHk wk )(
PJk

m
)

= −JHk 1wk (
PJk

m
)

= −A1wk , (44)

where A =
PJkJ

H
k

m . Obviously, A is an idempotent matrix

which means the eigenvalues of matrix A can only be 0 or 1.

Also, we can easily obtain that tr[A] = 1, which is to say that

matrixA has only one non-zero eigenvalue which equals to 1.

After substituting (44) into (43), and describing the updat-

ing equation in coefficient error form, we have:

1wk+1 = 1wk + [I −
µ0

εk
QxHk ](−A1wk )

+
µ0

εk
(n∗
k − xHk 1wk )Q

= [I − µ0B]1wk − [I − µ0B]A1wk

+
µ0

εk
n∗
kQ

FIGURE 13. Multiple simulations of L0-CNLMS and L1-WCNLMS in big
sparse ratio, (a), (b): Beam patterns for L0-CNLMS and L1-WCNLMS under
multiple simulations, respectively. (c), (e) and (g): The antenna array
thinned by L0-CNLMS of which the sparsities are 19.8%, 19.8% and 19.8%,
respectively. (d), (f) and (h): The antenna array thinned by L1-WCNLMS of
which the sparsities are 49.5%, 36.3% and 18.7%, respectively.

= [I − µ0B][I − A]1wk +
µ0

εk
n∗
kQ, (45)

where B =
QxHk
εk

. Similar toA, B is also an idempotent matrix

whose maximum eigenvalue is λmax = 1.

Then, we take expectations on both sides of (45), and then,

we have

E[1wk+1] = E{[I − µ0B][I − A]1wk} + E[
µ0

εk
n∗
kQ].

(46)
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Considering the independence assumption, that is, 1wk is

statistic independence with nk , xk and Jk [42], and taking into

account that the expectation of nk is 0, we can obtain:

E[1wk+1]

= [I − µ0B][I − A]E[1wk ]

= [I − µ0B][I − A − µ0B − µ0AB]
k [I − A]E[1w0]

(47)

Note that AB = 0, and thus (47) can be rewritten as:

E[1wk+1] = [I − µ0B][I − A − µ0B]
k [I − A]E[1w0]

(48)

In the discussions above, we have concluded that matri-

ces A and B have the same eigenvalues, of which N − 1

are equal to 0 and the other one is 1. Thus, if µ0 satisfies

|1 − 1 − µ0| < 1 and |1 − 0 − µ0| < 1, the algorithm will

converge. In this case, we have

0 < µ0 < 1, (49)

while the convergence domain for L1-WCNLMS is given

in [34], which is

0 < µ1 < 2. (50)

It turns out that L1-WCNLMS has a more widely conver-

gence domain, but it should be pointed out that the selec-

tion of step-size for both L0-CNLMS and L1-WCNLMS

are always far below the upper bound for a better perfor-

mance [34].

VIII. CONCLUSION

In this paper, an L0-CNLMS algorithm is proposed for adap-

tive beamforming as an improved version of L1-WCNLMS in

sparse antenna arrays with controllable sparsity. The results

of the simulations presented in Section VI show that the

proposed algorithm is suitable for sparse array beamforming

in various array configurations.

The proposed algorithm can form excellent beams under

different conditions, e.g., different number of signals and

varying directions. Besides, the sparsity of the antenna array

can be controlled by a parameter t . As such, a trade-off

between the beam quality and hardware/power consumption

can be achieved for any particular application and system

requirement. In addition, the L0-CNLMS algorithm con-

verges faster and uses fewer antennas to achieve a better per-

formance when compared with the L1-WCNLMS algorithm.

We can see from the simulation results that the proposed

L0-CNLMS algorithm is superior to the mentioned algo-

rithms for handling sparse beamforming. The SLL of the

proposed L0-CNLMS algorithm is slightly higher than that of

conventional non-sparse algorithms. For the non-sparse array,

the proposed algorithm has high computations which may

limit its applications. Thus, the adaptive beamforming algo-

rithm with low complexity, low SLL and high performance

should be developed in the future work to meet all the array

beamforming applications.
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