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In this paper, a new controllable V-shape multi-scroll attractor is presented, where a variety of
symmetrical and unsymmetrical attractors with a variable number of scrolls can be controlled
using new staircase nonlinear function and the parameters of the system. This attractor can be
used to generate random signals with a variety of symbol distribution. Digital implementation
of the proposed generator is also presented using a Xilinx Virtex R© 4 Field Programmable Gate
Array and experimental results are provided. The digital realization easily fits into a small area
(< 1.5% of the total area) and expresses a high throughput (4.3Gbit/s per state variable).
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1. Introduction

Butterfly attractors, first introduced in [Lorenz, 1963], are among the mostly known chaotic systems. The
original butterfly attractor was defined by three differential equations, with multiplication as the non-linear
element. The attractors in [Elwakil & Kennedy, 2001; Chen & Lu, 2003], introduced modified versions of
the system to create butterfly attractors without the need of multiplication. Rather, the sign and modules
functions are used as the nonlinear elements. Several other multi-scroll versions of the butterfly attractor
were introduced based on variety of techniques [Yu et al., 2010; Lu & Chen, 2006], such as using a pulse
signal [Elwakil et al., 2002a; Elwakil & Ozogus, 2008], a sawtooth wave function [Yu et al., 2008], or a
piecewise linear function [Zhang et al., 2008].

Chaos control received increased research attention in the last two decades due to its useful engineering
applications. For example, chaotic oscillators find applications in chaotic based digital communication
systems [Chen et al., 2010] such as chaos shift keying (CSK) [Galias & Maggio, 2001; Xia et al., 2004] and
chaotic pulse-position modulation [Chiang & Hu, 2010]. Moreover, chaos is used in cryptography [Guglielmi
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et al., 2009; Pareschi et al., 2009], water marking and image encryptions [Sidiropoulos et al., 2009; Mazloom
& Eftekhari-Moghadam, 2009; Barakat et al., 2011], and random number generation [Ergn & Ozoguz,
2010; Zidan et al., 2011b]. In addition, multi-scrolls attractors are proven to have better properties, like
having higher entropy for random number generation, compared to normal attractors [Yalcin, 2007]. The
implementation of these generators ranges from using discrete elements and operational amplifiers [Lu et al.,
2006; Elwakil & Kennedy, 2001; Salama et al., 2003], completely MOS based [Radwan et al., 2004; Tavas
et al., 2010],to fully integrated [Elwakil et al., 2002b]. Hybrid analog/digital implementation was introduced
in [Radwan et al., 2007]. In addition, several digital implementations have been presented recently, using
logistic maps as in [Chen et al., 2010] and the numerical solution of differential based chaotic equation as
in [Zidan et al., 2011b; Mansingka et al., 2011a,b].

In this paper, a new multi-scroll attractor based on a staircase nonlinear function is presented. The
system did not require external inputs to move from one scroll to another. Rather, the output shifts
between the multiple scrolls in a chaotic scheme. The proposed attractor have the new scrolls aligned
in a diagonally scheme rather than vertical or hormonal. These scrolls can be shaped into a variety of
symmetrical and unsymmetrical shapes, including V- and Heart-shapes. The number of scrolls can be
asymmetrically controlled using the parameters of the system. This controlled multi-scroll attractor can be
used to generate random signals with a variety of symbol distributions which could find future applications.

The time series output of the system variable can be controlled to have either a shifting DC bias or a
variable amplitude by moving between different scrolls. The proposed multi-scroll system is based on the
modified Lorenz butterfly, which is defined in [Elwakil & Kennedy, 2001] as,

Ẋ = a (Y −X) (1a)

Ẏ = sign (X) (b− Z) (1b)

Ż = |X| − cZ (1c)

where Ẋ, Ẏ and Ż are the differential equations defining the system, and a, b and c are the system’s
parameters. This system is transformed to multi-scroll using the new proposed nonlinear function. The
introduced system is verified to be chaotic using its attractor and by having a positive Maximum Lya-
punov Exponent (MLE). To implement chaotic generators on digital system, is also presented. For further
validation purposes, the system is implemented on Xilinx Virtex R© 4 XC4VSX35 Field Programmable Fate
Array (FPGA), and experimental results are provided. The realization fits into a very small area, exhibits
a high throughput, and allows introducing controllable version of the circuit.

2. Proposed Multi-Scroll Attractor

Based on the modified Lorenz attractor given in [Elwakil & Kennedy, 2001], we introduce a new multi-
scroll attractor by adding additional nonlinear function to the system. The introduced system did not
require external input for expressing the multi-scroll scheme. The original system given in equation (1) is
modified as,

Ẋ = Y −X (2a)

Ẏ = sign (X) [1−mZ +G (Z)] (2b)

Ż = |X| − 0.5Z (2c)

where m is an added parameter to the system and G (Z) is the nonlinear function responsible to produce
multi-scroll. The new proposed staircase nonlinear function, G (Z) is defined as a step-piecewise function,
such that,

G (Z) =


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where di is the additive coefficient and si is the limiting coefficient. The introduced piecewise nonlinear
equation is a multiple-step function resembling the shape of stairs, and the number of scrolls of the attractor
is 2N . Fig 1(a) shows the proposed multi-scroll attractor.
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Fig. 1. (a) Multi-scroll attractor created using the proposed system. Used parameters: N = 3, m = 1, d1 = 1.4, d2 = 2.8,
s0 = 1.555, and s1 = 3.25. (b) Illustration for the V-shape attractor showing the effect of ∆dk and si.

2.1. Controlling the attractor shape

The shape of the attractor is mainly controlled by the coefficients di, si, and m. Using these parameters a
variety of attractors can be produced. The additive coefficients (di) control the size of the generated scrolls
by following governing equation:

∆dk = dk −
k−1
∑

i=1

di (4)

where k = {1, 2, · · · , N − 1}. The limiting coefficients (si), however, define the boundaries at which the
system shifts from one scroll to another. All these parameters should be selected to terminate each scroll
at the correct position. Fig. 1(b) shows how the additive and the limiting coefficients affects the shape of
the output. The figure also shows that the limiting coefficients should be set to limit the scrolls just at its
upper edge.

Symmetrical V-shape attractor:

A V-shape multi-scroll attractor can be achieved by designing the system parameters such that all the
scrolls posses the same size, as can be seen in Fig. 2(a). These equal sized scrolls are generated by setting
the (di) coefficients to:

∆dk = a, ∀k (5)

where a is a constant that is set to produce scrolls of the same size of the original two scrolls. The parameters
(si) will have in turn a constant difference between each two successive parameters, such that,

sk+1 − sk = sk − sk−1, ∀k (6)
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Symmetrical heart-shape attractor:

The heart-shape is produced by setting the parameter m = 2. This amplifies of the effect of the variable Z
in equations (2b), which changes the shape of the attractor significantly, and the attractor takes the shape
of family of interconnected scroll-pairs, rather than a group of adjacent parabolic rings, as can be seen in
Fig. 2(b).

Asymmetrical attractors:

An extra degree of freedom in shaping the attractor can be added by extending the nonlinearity to be
function in X and Z simultaneously. In other words the system equation Ẏ changes to,

Ẏ = sign (X) (b−mZ +H (X,Z)) (7)

and H is given by,

H (X,Z) =

{

G− (Z) X < 0

G+ (Z) X ≥ 0
(8)

where G+ (Z) and G− (Z) are two instants of the equation (3). In the modified equation, a different control
is defined for the scrolls lies on the positive and negative parts of the X-axis. The modifications introduced
in equation (7) allow the attractor to have different scroll shapes and numbers on the opposite sides of
Z-axis. Fig. 4 shows two asymmetrical V-shape attractors created using the proposed nonlinear function,
and shows also that the asymmetrical V-shape is as smooth as the symmetrical one.

2.2. Mathematical Analysis

Equilibrium points:

The equilibrium points of the system described by (2) are given by,

Y ∗ = X∗ (9a)

Z∗ = 2 |X∗| (9b)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

X

Z

(a)

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

X

Z

(b)

Fig. 2. (a) V-shape attractor, and (b) heart-shape attractor, created using the proposed system. Used parameters: (a) N = 4,
m = 1, d1 = 1.15, d2 = 2.3, d3 = 3.45, s0 = 1.56, s1 = 2.7115, and s2 = 3.863; (b) N = 3, m = 2, d1 = 2, d2 = 8, s0 = 0.865,
and s1 = 2.53. The red crosses marks the equilibrium points locations.
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Fig. 3. Asymmetrical V-shape attractors. (a) Equal size scrolls, four on the negative X-axis part and two on the positive
part. (b) Three equal size scrolls on the negative X-axis part and three different size scrolls on the positive direction.

G (Z∗) = mZ∗ − 1 (9c)

Based on equation (9c) we can get the following points,

Z∗

i =
di + 1

m
, si−1 < Zi ≤ si (10a)

(X∗, Y ∗, Z∗) =

(

±
Z∗

i

2
,±

Z∗

i

2
, Z∗

i

)

(10b)

Fig. 2 shows the plot of the equilibrium points over the V- and Heart-attractors. In addition, a graphical
method to obtain the equilibrium points is shown in Fig. 4(a).

Stability Analysis:

For each equilibrium point, the Jacobi matrix can be derived from,

J =





−1 1 0
0 0 ∓m
±1 0 −0.5



 (11)

The upper sign is for positive X∗ and the lower sign is for negative X∗. The trace of the Jacobi matrix is
the sum of the eigenvalues, which equals to,

trace (J) = ∇V =
∂fx
∂X

+
∂fy
∂Y

+
∂fz
∂Z

=
3

∑

i=1

λi = −1.5 < 0 (12)

and reflect that this is a dissipation system. Through the computation, the characteristic equation of this
system is given by,

s3 + 1.5s2 + 0.5s+m = 0 (13)

Therefore, the poles (eigenvalues) of this system are (−1.5832, 0.0416 ± 0.7937j) for m = 1, and
(−1.8260, 0.163 ± 1.0338j) form m = 2. It is clear that in both cases, two poles exist in the right half
plane while the other lies on the left half plane such that their summation is always negative. The poles
versus the parameter m are shown in Fig. 4(b) where, the two conjugate poles are located on the jω axis
at m = 0.75 with eigenvalues (−1.5,±0.171j), and enter the unstable region at m > 0.75.
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Fig. 4. (a) The locations of the equilibrium points for heart-shape with 2 scrolls (2Z − 1) and V-shape with {4, 4} scrolls
(Z − 1) (b) The poles of the system given in 2 for different values of m.

Symmetry:

It is clear from the system equations in (2) that the system is invariant under the transformation (x, y, z) →
(−x,−y, z) with a symmetry plan at Z = 0.

2.3. Maximum Lyapunov Exponent (MLE)

While the output of the proposed system is in the shape of a chaotic attractor, the sufficient condition
to prove chaos is to have a positive MLE [Pecora et al., 1997]. Fig. 5 shows the calculated MLE for the
original system and one of the proposed multi-scroll. Clearly, the figure shows that both of the systems have
a positive MLE, saturating at 0.0288 and 0.0497 for the original and the multi-scroll systems respectively.
The calculations are made using the tool provided in [Perc, 2010; Kodba et al., 2005], with a time series
containing more than 245,00 iterations.

3. A Digital Implementation Technique for Chaotic Generators

Differential based chaos generators are usually realized by implementing analog integrators that utilize
big capacitors to store the system state. However, the initial condition of analog generators cannot be
set precisely. Further more, the analog chaotic generators are sensitive to the running conditions, process
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Fig. 5. The MLE versus number of iterations for the originally introduced modified system and asymmetrical V-shape
attractor with four scrolls on the left size and two scrolls on the right side.
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variations, and the operating temperature. On the other hand, a digital implementation does not requires
any capacitors, and registers are used to store the state of the system. The latter important characteristic
of digital chaos generator is its extremely small areas. This approach enables us to generate the digital
data directly in contrast to earlier methods where the continuous time chaotic circuit is used as the entropy
source followed by a threshold function implemented using comparators [Yalcin et al., 2004] or a successive
approximation Analog to Digital Converter (ADC) [Tavas et al., 2010].
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Fig. 6. The general schematic of the digital implementation for any third-order differential-based digital chaotic generator.

Any chaos generator can implemented in a digital scheme by realizing the numerical solution of the
nonlinear differential equation describe the system. Explicitly, registers are used to store the state of
the system, while the solution is implemented as combinational circuits [Zidan et al., 2011b; Mansingka
et al., 2011a,b]. Fig. 6 shows the general architecture for any third-order differential-based digital chaotic
generator. As can be seen the system state variables X, Y and Z are stored into three n-bit registers. The
numerical solution of the state variablesX, Y and Z are realized as combinational blocks. A comparison
for the chaotic response of different numerical solutions is discussed in [Zidan et al., 2011a].

Realization of the proposed system:

The proposed system is implemented digitally by realizing its numerical solution. The system of equations
given in (2) is solved using Euler method, such that,

Fx (X,Y ) = Xt+h = Xt + h (Yt − xt) (14a)

Fy (X,Y, Z) = Yt+h = Yt + h sign (Xt) [b−mZt +G (Xt)] (14b)

Fz (X,Z) = Zt+h = Zt + h (|Xt| − 0.5Zt) (14c)

where t donates the time and h donates the time step.
The state variables X, Y and Z are realized as n-bit registers, where n is the number of bits used to

represent numbers in the digital system. The registers are updated with the new state at each positive edge
of a clock cycle. These registers are the sequential part of the system, and rather than that equations (14)
are implemented in a combinational scheme. The effect of the bus-width (n) where studied in [Mansingka
et al., 2011b], where it was found that very small values for n is not sufficient for generating chaos.
According to [Mansingka et al., 2011b] the MLE peak is due to the added nonlinearity to the system by
limited number of bits.

The area and the delay of the system were improved by using different techniques. Among these
improvements is the elimination the multiplication by constant operation, by converting this operation
into wired shift. This conversion is done by setting the values of the constants to be in the orders of two.
The multiplication by the time step h is neutralized by setting it value as, h = 2r, where r is an integer and
is set to 4 in the proposed implementations. The other constant multiplication m is eliminated natively,
since m only takes the value of one or two.

Fig. 7 shows the schematic of the implementation. The function Fx (X,Y ) given in equation (14a) is
implemented as a multi-input adder circuit, with X added to a shifted version of Y and −X. The bottleneck
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of the system which describes the Fy (X,Y, Z) function, is equation (14b), and includes the evaluation the
proposed nonlinear function G (Z). The calculated G (Z) is then added to ‘1’ and subtracted from a shifted
version of Z. The output of this operation, i.e. the expression [b−mZt +G (Xt)], is multiplied by sign (Xt),
which is equivalent to a two’s complement circuit with the sign (Xt) as “enable”. Then, Y is added to a
shifted version of the two’s complement output. The last expression Fz (X,Z), given in equation (14c), is
finally evaluated by calculating the summation of Z, shifted version of Z, and the shifted version of |X|.

The asymmetrical attractors are implemented by realizing the nonlinear function H (X,Z) in equa-
tion (8). The implementation of this expression was done by multiplexing two version of G (Z) for the
positive and negative values of X, where the MUX selection line is the sign bit of X.

The outputs of the chaotic generator are within bounded intervals, which saves the shape of the
attractor. Therefore, fixed-point numbers representation is suitable for system realization. This selection
will reduce the area required and delay significantly. Distribution of the 32 bits is used within the system.
Selection was governed by the bounding interval of the multi-scroll output, the bounding interval of the
intermediate results, and the effect of the negative shift of the parameter (h). The 32-bits are distributed
such that the highest significant bytes are reserved for the two’s complement integer and the rest of the
bits are for the fraction part.

Nonlinear circuit realization:

The piecewise nonlinear function G (Z), given in equation (3), can be simply implemented as a series
of comparators along with a multiplexer (MUX). An optimized version on this technique is provided in
Fig. 8(a), where parallel comparators are used and their outputs are encoded to drive the MUX selection
lines. Based on the selection input, the MUX will select from the set of {0, d1, · · · , dN−1}.

The nonlinear function can be also redefined as,

G (Z) =
1

2

N
∑

l=0

∆dl ∗ (sign (Z − s) + 1) (15)

where ∆d0 = 0. With equation (15), another implementation is provided in Fig. 8(b), where the ∆d
parameters are used to shape the attractor directly (rather than d). Since the usage of ∆d eases the shaping
of the attractor, since it is directly affect the size of each scroll as shown in Fig. 1(b). The implementation
based on ∆d is shown in Fig. 8(b).
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Fig. 7. Schematic diagram for the implementation of the proposed system. All the wires represent buses. The βi is a wired
shift, were β1 = log2 (h), β2 = log2 (mh), and β3 = log2 (0.5h).
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Fig. 8. Block diagram of the different realizations of the nonlinear function, G (Z).

Real-time Controllable Circuit:

Controlling the shape of the scrolls was based on determining which scrolls are to be generated and the
size of each scrolls. Fig. 9 shows a simple circuit that is capable of controlling the scrolls generation. The
circuit is based on enabling or disabling the ∆d variables based on an external input. By referring to
equation (15), it could be concluded that the number of scrolls can be limited by setting the higher order
∆d parameters to zero. The ∆d enabling could be fully controlled by the user simply by using the control
lines as shown in Fig. 9. Further, the used control can be limited to selecting the number of scrolls, and
this number decoded internal to enable the control lines.

The control could be extended by registering the values of ∆d from an external input. This scheme
will enable controlling the size of scrolls beside its number. Despite this controlling privilege, it should be
noted that changing the values of the additive coefficient, forces us to reset the limiting coefficient. Finally,
the shape of the attractor selected from V- and heart-shapes by setting the value of the parameter m.
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Fig. 9. Block diagram of the circuit used to control the scrolls of the attractor.

4. Experimental Results

The proposed multi-scroll system were written in Verilog VHDL and realized on Xilinx Virtex R© 4
XC4VSX35 FPGA. Within the simulation phase, Xilinx ISE R© 11 and the GNU iVerilog software were

used. The attractors, the time diagrams, and the histograms are captured using the TekTronix
TM

MSO
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414 mixed signal oscilloscope. All the circuits were synthesized using Xilinx ISE R© 11, with optimized for
time (speed) option selected.

The introduced circuit exhibits small area and high throughput. Table 1 shows the occupied area and
the maximum frequency and throughput for various implementations. The results shows the multi-scroll
system can reach a maximum frequency of 134.7 MHz (4.3 Gbits/s per state variable) and less than 1.5%
of the total area of the used FPGA. The area and speed were calculated with the variables X and Z used
as the output ports. The achieved throughput exceeds the data reported by Intel in [Taylor & Cox, 2011]

Table 1. Detailed area utilization and the maximum frequency and throughput for different im-
plementations on Xilinx Virtex 4R© XC4VSX35 FPGA.

Slice Flip-flops Look-Up-Tables Frequency Throughput
Attractor Type (30,720) (30,720) (MHz) (Gbit/s)

Original Attractor 97 255 130.1 4.2
Heart-Shape (6 scrolls) 97 235 134.7 4.3
V-Shape (12 scrolls) 105 359 99.3 3.2

4.1. Attractors

The attractor shape is the main property that differentiates between chaotic systems. Thus, Fig. 10 shows
several snapshots from the oscilloscope for different system implementations of the attractors in the Z-X
plane for comparison purposes. Figures 10(a-d) show the symmetric V-shape implementations for 4, 6, 8,
and 12 scrolls respectively, the figures 10(e-h) show the generated asymmetrical V-shape attractors, figures
10(i-j) show a V-shape attractor with different scrolls’ sizes, controlled using ∆d, and finally, the figures
10(k-l) show the heart shape attractor, where the parameter m = 2.

4.2. Time outputs and histograms

Fig. 11 shows the time series output of the various implementations as captured from the oscilloscope,
for the variable (X), where it is clearly shown the different time series for different implementation. The
V-shape time response shows that the DC value of the oscillation changes as the attractor shifts from

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 10. Oscilloscope snapshots of the attractors’ projection on the Z-X plane for different system implementations, (a-d)
symmetric V-shape, (e-f) asymmetrical V-shape, (i,j) V-shape attractor with different scrolls’ sizes, and (k,l) heart-shape.
Z,X = 100 mV/div and each sub-figure is 10 divisions per axis.
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one scroll to another, as shown in the figures 11(a-c). On the other hand, the amplitude of the oscillation
changes when the attractor moves between scrolls in the heart-shape, as shown in figure 11(d). The time
series relieves the number of scrolls within the system, as DC levels for V-shape, or different oscillations
amplitude as in heart-shape. Figure 11(b) shows the time response for an unbalanced V-shape attractor,
with different number of scrolls on the two sides of the Z-axis. The unbalanced V-Shape attractor has a
nonzero total DC bias for the time series of the variable (X).

(a) (b)

(c) (d)

Fig. 11. Oscilloscope time series output of the various implementations for the variable (X).The sub-figures shows (a) 8-scrolls
symmetric V-shape, (b) asymmetrical V-shape with two scrolls on the left side and six on the right, (c) 6-scrolls V-shape with
different sized scrolls, and (d) 6-scrolls heart-shape. X = 100 mV/div and each sub-figure shows 10 divisions on X-axis.

The histogram or the output depends mainly on the shape of the generated attractor. Combining this
property with the ease of control of the shape of the proposed attractor, shaping the histogram becomes
possible. This property can be attractive for applications that require a special shape of histogram with
a random output. Fig. 12 shows a comparison between the histogram of symmetric and asymmetrical
attractors. Although the number of distinct histograms depends on many factors, including system param-
eters and the numbers of used bits, a rough estimate can be calculated using the number of scrolls. For a
system consisting of {n,m} maximum scrolls (V-shape), the total number of histograms is n ∗m. Some of
these histograms will be almost mirrored such as the cases {1, 2} and {2, 1}. Thus the number of distinct
histograms can be calculated using the following formula,

Nhistograms = n ·m−
min (n,m) (min (n,m)− 1)

2
(16)

(a) (b) (c) (d) (e) (f)

Fig. 12. Histogram oscilloscope snapshots of the variable X for (a) 6-scrolls heart shape attractor, (b) {3,3}-scrolls symmetric
V-shape attractor, (c) {4,4}-scrolls symmetric V-shape attractor, (d) {5,3}-scrolls asymmetrical V-shape, (e) {6,4}-scrolls
asymmetrical V-shape, and (f) {1,6}-scrolls asymmetrical V-shape
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5. Conclusion

In this paper a new controllable multi-scroll attractor is presented.A variety of symmetrical and asym-
metrical attractors with controlled number of scrolls can be provided, including V- and heart-shapes. The
introduced system is based on a proposed staircase nonlinear function, which is different from previously
published nonlinear functions. The system is verified to be chaotic by calculating the Maximum Lyapunov
Exponent (MLE). Further, the proposed system was implemented, in a digital scheme, on Xilinx Virtex R© 4
XC4VSX35 FPGA, and experimental results are provided. The realization fits into a small area (< 1.5%)
and expresses a high throughput (> 4.3Gbit/s).
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