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Preface

This book is based on material developed by the authors for an introductory
course in System Theory and an advanced course on Multivariable Control
Systems at the University of Bologna, Italy and the University of Florida,
Gainesville, Florida. A characterizing feature of the graduate-level course is
the use of new geometric-type techniques in dealing with linear systems, both
from the analysis and synthesis viewpoints. A primary advantage of these
techniques is the formulation of the results in terms of very simple concepts
that give the feeling of problems not masked by heavy, misleading mathemat-
ics. To achieve this, fundamental tools known as “controlled invariants” and
their duals, “conditioned invariants” (hence the title of the volume) have been
developed with a great deal of effort during the last twenty years by numer-
ous researchers in system and control theory. Among them, we would like to
mention W.M.Wonham, A.SMorse, J.B. Pearson, B.A. Francis, J.C.Willems,
F.Hamano, H.Akashi, B.P.Molinari, J.M.H. Schumacher, S.P.Bhattacharyya,
C.Commault, all of whose works have greatly contributed to setting up and
augmenting the foundations and applications of this geometric approach.

The presentation is organized as follows. Chapter 1 familiarizes the reader
with the basic definitions, properties, and typical problems of general dynamic
systems. Chapter 2 deals with linear system analysis: it is shown that the
linear structure allows the results to be carried forward in a simpler form and
easier computational procedures to be developed. Basic topics, such as stability,
controllability, and observability, are presented and discussed. Both chapters are
supported by the mathematical background given in Appendix A. The material
presented up to this point meets the needs of an introductory-level course in
system theory. Topics in Appendix A may be used in part or entirely, as required
by the reader’s previous educational curriculum.

The remainder of the book addresses an advanced linear system audi-
ence and stresses the geometric concepts. Chapter 3 establishes a connec-
tion between basic concepts of linear algebra (like invariants, complementabil-
ity, changes of basis) and properties of linear time-invariant dynamic sys-
tems. Controllability and observability are revisited in this light and the most
important canonical forms and realization procedures are briefly presented.
Then, elementary synthesis problems such as pole assignment, asymptotic ob-
server theory, state feedback, and output injection are discussed. Chapter 4
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first introduces the most specific tools of the geometric approach, then in-
vestigates other linear time-invariant system properties, like constrained and
functional controllability and observability, system invertibility, and invari-
ant zeros. Controlled and conditioned invariants are widely used to treat
all these topics.

Chapter 5 presents the most general linear time-invariant systems synthesis
problems, such as regulator and compensator design based on output dynamic
feedback. Complete constructive solutions of these problems, including the
reduced-order cases, are presented, again using geometric tools and the concept
of invariant zero. Chapter 6 presents methods for extending the geometric
techniques to the case where some parameters of the controlled system are
subject to variation and the overall control scheme has to be “robust” against
this, a case which is very important in practice. Finally, Appendix B provides
the computational bases and some software to support problems and exercises.

In courses that are more oriented to practice of regulation rather than
rigorous, unified mathematical description, most of Chapter 5 may be omitted.
In fact Chapter 6, on robust regulation, which extends to the multivariable
case some classic automatic control design techniques, includes a completely
self-contained simplified statement of the regulator problem.

This material has been developed and brought to its final form with the
assistance of many people to whom we wish to express our sincere appreciation.
Among those to whom we owe a particular debt of gratitude are Dr. A.Piazzi,
who made a substantial contribution to our research in the field of geometric
approach in recent years and in establishing most of the new material published
here.

We also wish to acknowledge the continuous and diligent assistance of Mrs.
M. Losito of the Department of Electronics, Computer Sciences and Systems
of the University of Bologna for her precision in technically correcting the
manuscript and preparing the software relative to specific algorithms and CAD
procedures, and Mrs. T.Muratori, of the same department, for her artistic touch
in preparing the layout of the text and the figures.

G. Basile and G. Marro

Bologna, Italy
July 1991



Glossary

a) Standard symbols and abbreviations

∀ for all
∋ such that
∃ there exists
⇒ implies
⇔ implies and is implied by
:= equal by definition
A, X sets or vector spaces
a, x elements of sets or vectors
∅ the empty set
{xi} the set whose elements are xi

Af , Xf function spaces
∈ belonging to
⊂ contained in
⊆ contained in or equal to
⊃ containing
⊇ containing or equal to
∪ union
⊎ aggregation (union with repetition count)
∩ intersection
−̇ difference of sets with repetition count
× cartesian product
⊕ direct sum
B the set of binary symbols 0 and 1
N the set of all natural integers
Z the set of all integer numbers
R the set of all real numbers
C the set of all complex numbers
Rn the set of all n-tuples of real numbers
[t0, t1] a closed interval
[t0, t1) a right open interval
f(·) a time function

ḟ(·) the first derivative of function f(·)
f(t) the value of f(·) at t
f |[t0,t1] a segment of f(·)
j the imaginary unit
z∗ the conjugate of complex number z
sign x the signum function (x real)
|z| the absolute value of complex number z
arg z the argument of complex number z
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‖x‖n the n-norm of vector x
〈x, y〉 the inner or scalar product of vectors x and y
grad f the gradient of function f(x)
sp{xi} tha span of vectors {xi}
dimX the dimension of subspace X
X⊥ the orthogonal complement of subspace X
O(x, ǫ) the ǫ-neighborhood of x
intX the interior of set X
cloX the closure of set X
A, X matrices or linear transformations
O a null matrix
I an identity matrix
In the n × n identity matrix
AT the transpose of A
A∗ the conjugate transpose of A
A−1 the inverse of A (A square nonsingular)
A+ the pseudoinverse of A (A nonsquare or singular)
adj A the adjoint of A
det A the determinant of A
tr A the trace of A
ρ(A) the rank of A
im A the image of A
ν(A) the nullity of A
kerA the kernel of A
‖A‖n the n-norm of A
A|I the restriction of the linear map A to the A-invariant I
A|X/I the linear map induced by A on the quotient space X /I
� end of discussion

Let x be a real number, the signum fuction of x is defined as

signx :=

{

1 for x ≥ 0
−1 for x < 0

and can be used, for instance, for a correct computation of the argument of the complex
number z =u + jv:

|z| :=
√

u2 + v2 ,

arg z := arcsin
v√

u2 + v2
signu +

π

2

(

1 − signu
)

sign v ,

where the co-domain of function arcsin has been assumed to be (−π/2, π/2].
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b) Specific symbols and abbreviations

J a generic invariant
V a generic controlled invariant
S a generic conditioned invariant

maxJ (A, C) the maximal A-invariant contained in C
minJ (A,B) the minimal A-invariant containing B
maxV(A,B, E) the maximal (A,B)-controlled invariant

contained in E
minS(A, C,D) the minimal (A, C)-conditioned invariant

containing D

maxVR(A(p),B(p), E) the maximal robust (A(p),B(p))-controlled
invariant contained in E

R the reachable set of pair (A, B):
R=minJ (A,B), B := imB

Q the unobservable set of pair (A, C):
Q=maxJ (A, C), C := kerC

RE the reachable set on E :
RE =V∗ ∩minS(A, E ,B), where V∗ := maxV(A,B, E), E := kerE

QD the unobservable set containing D:
QD =S∗ +maxV(A,D, C), where S∗ :=minS(A, C,D), D := imD

Φ(B+D,E) the lattice of all (A,B+D)-controlled invariants
self-bounded with respect to E and containing D:
Φ(B+D,E) := {V : AV ⊆V + B , D⊆V ⊆E , V ⊇V∗ ∩B}

Ψ(C∩E,D) the lattice of all (A, C)-conditioned invariants
self-hidden with respect to D and contained in E :
Ψ(C∩E,D) := {S : A(S ∩C)⊆S , D⊆S ⊆E , S ⊆S∗ + C}

Vm the infimum of Φ(B+D,E):
Vm =V∗ ∩S∗

1 , S∗
1 := minS(A, E ,B+D)

SM the supremum of Ψ(C∩E,D):
(SM =S∗ +V∗

1 , V∗
1 =maxV(A,D, C ∩E) )

VM a special element of Φ(B+D,E), defined as VM :=V∗ ∩ (V∗
1 +S∗

1 )
Sm a special element of Ψ(C∩E,D), defined as Sm :=S∗ +V∗

1 ∩S∗
1
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Chapter 1

Introduction to Systems

1.1 Basic Concepts and Terms

In this chapter standard system theory terminology is introduced and explained
in terms that are as simple and self-contained as possible, with some representa-
tive examples. Then, the basic properties of systems are analyzed, and concepts
such as state, linearity, time-invariance, minimality, equilibrium, controllability,
and observability are briefly discussed. Finally, as a first application, finite-state
systems are presented.

Terms like “system,” “system theory,” “system science,” and “system engi-
neering” have come into common use in the last three decades from various fields
(process control, data processing, biology, ecology, economics, traffic-planning,
electricity systems, management, etc.), so that they have now come to assume
various shades of meaning. Therefore, before beginning our treatment of sys-
tems, we shall try to exactly define the object of our study and outline the class
of problems, relatively restricted, to which we shall refer in this book.

The word system denotes an object, device, or phenomenon whose time
evolution appears through the variation of a certain number of measurable
attributes as with, for example, a machine tool, an electric motor, a computer,
an artificial satellite, the economy of a nation.

A measurable attribute is a characteristic that can be correlated with one or
more numbers, either integer, real or complex, or simply a set of symbols. Ex-
amples include the rotation of a shaft (a real number), the voltage or impedance
between two given points of an electric circuit (a real or complex number), any
color belonging to a set of eight well-defined colors (an element of a set of eight
symbols; for instance, digits ranging from 1 to 8 or letters from a to h), the
position of a push button (a symbol equal to 0 or 1, depending on whether it is
released or pressed). In dealing with distributed-parameter systems, attributes
can be represented by real or complex-valued functions of space coordinates.
Examples include the temperature along a continuous furnace (a real function
of space), the voltage of a given frequency along a transmission line (a complex
function of space coordinates).

In order to reproduce and analyze the behavior of a system, it is necessary
to refer to a mathematical model which, generally with a certain approxima-

1
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Σ

Figure 1.1. Schematic representation of a system.

tion, represents the links existing between the various measurable attributes or
variables of the system. The same system can be related to several mathemat-
ical models, each of which may correspond to a different compromise between
precision and simplicity, and may also depend on the particular problem.

Since mathematical models are themselves systems, although abstract, it is
customary to denote both the object of the study and its mathematical model
by the word “system.” The discipline called system theory pertains to the
derivation of mathematical models for systems, their classification, investigation
of their properties, and their use for the solution of engineering problems.

A system can be represented as a block and its variables as connections with
the environment or other systems, as shown by the simple diagram of Fig. 1.1.

As a rule, in order to represent a system with a mathematical model, it
is first necessary to divide its variables into causes or inputs and effects or
outputs . Inputs correspond to independent and outputs to dependent variables.
A system whose variables are so divided is called an oriented system and can
be represented as shown in Fig. 1.2, with the connections oriented by means of
arrows.

Σ

Figure 1.2. Schematic representation of an oriented system.

It is worth noting that the distinction between causes and effects appears
quite natural, so it is often tacitly assumed in studying physical systems; never-
theless in some cases it is anything but immediate. Consider, for instance, the
simple electric circuit shown in Fig. 1.3(a), whose variables are v and i. It can
be oriented as in Fig. 1.3(b), i.e., with v as input and i as output: this is the
most natural choice if the circuit is supplied by a voltage generator. But the
same system may be supplied by a current generator, in which case i would be
the cause and v the effect and the corresponding oriented block diagram would
be as shown in Fig. 1.3(c).

Systems can be divided into two main classes: memoryless or purely algebraic
systems, in which the values of the outputs at any instant of time depend only
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Figure 1.3. An electric system with two possible orientations.

on the values of the inputs at the same time, and systems with memory or
dynamic systems, in which the values of the outputs depend also on the past
time evolution of the inputs.

In dynamic systems the concept of state plays a fundamental role: in intu-
itive terms, the state of a system is the information that is necessary at every
instant of time, in order to be able to predict the effect of the past history of
the system on its future behavior. The state consists of a set of variables or, in
distributed-parameter systems, of one or more functions of space coordinates,
and is subject to variation in time depending on the time evolution of the inputs.

The terms “input,” “state,” and “output” of a system usually refer to all its
input, state, and output variables as a whole, whereas the terms input function,
output function, and motion indexmotion refer to the time evolution of such
variables. In particular, input and output functions are often called input and
output signals ; the terms stimulus and response are also used.

A system that is not connected to the environment by any input is called a
free or autonomous system; if, on the contrary, there exist any such inputs that
represent stimuli from the environment, they are called exogenous (variables or
signals) and it is said to be a forced system. In control problems, it is natural
to divide inputs into manipulable variables and nonmanipulable variables. The
former are those whose values can be imposed at every instant of time in order
to achieve a given control goal. The latter are those that cannot be arbitrarily
varied; if unpredictable, they are more precisely called disturbances.

1.2 Some Examples of Dynamic Systems

This section presents some examples of dynamic systems and their mathematical
models, with the aim of investigating their common features.

Example 1.2.1 (a simple electric circuit) Consider the electric circuit shown
in Fig. 1.4. It is described by the equations, one differential and one algebraic,

ẋ(t) = a x(t) + b u(t) (1.2.1)

y(t) = c x(t) + d u(t) (1.2.2)
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u

x

y

R1

R2

C

Figure 1.4. A simple electric circuit.

where the functions on the right side are respectively called state velocity func-
tion and output function; u and y denote the input and output voltages, x the
voltage across the capacitor, which can be assumed as the (only) state variable,
and ẋ the time derivative dx/dt. Constants a, b, c, and d are related to the
electric parameters shown in the figure by the following easy-to-derive relations:

a := − 1

C(R1 + R2)
b :=

1

C(R1 + R2)

c :=
R1

R1 + R2
d :=

R2

R1 + R2

(1.2.3)

The differential equation (1.2.1) is easily solvable. Let t0 and t1 (t1 > t0) be two
given instants of time, x0 the initial state, i.e., the state at t0 and u(·) a given
piecewise continuous function of time whose domain is assumed to contain the
time interval [t0, t1]. The solution of equation (1.2.1) for t∈ [t0, t1] is expressed
by

x(t) = x0 ea(t−t0) +

∫ t

t0

ea(t−τ) b u(τ) dτ (1.2.4)

as can be easily checked by direct substitution.1 Function (1.2.4) is called the
state transition function: it provides the state x(t) as a function of t, t0, x0,
and u[t0, t]. By substituting (1.2.4) into (1.2.2) we obtain the so-called response
function

y(t) = c
(

x0 ea(t−t0) +

∫ t

t0

ea(t−τ) b u(τ) dτ
)

+ d u(t) � (1.2.5)

1 Recall the rule for the computation of the derivative of an integral depending on a
parameter:

d

dt

∫ b(t)

a(t)

f(x, t) dx = f
(

b(t), t
)

ḃ − f
(

a(t), t
)

ȧ +

∫ b(t)

a(t)

ḟ(x, t) dx

where

ḟ(x, t) :=
∂

∂t
f(x, t)
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Figure 1.5. An electric motor.

Example 1.2.2 (an electromechanical system) Let us now consider the
slightly more complicated electromechanical system shown in Fig. 1.5, i.e., an
armature-controlled d.c. electric motor. Its behavior is described by the follow-
ing set of two differential equations, which express respectively the equilibrium
of the voltages along the electric mesh and that of the torques acting on the
shaft:

va(t) = Ra ia(t) + La
d ia
dt

(t) + vc(t) (1.2.6)

cm(t) = B ω(t) + J
dω

dt
(t) + cr(t) (1.2.7)

In (1.2.6) va is the applied voltage, Ra and La the armature resistance and
inductance, ia and vc the armature current and counter emf, while in (1.2.7) cm

is the motor torque, B, J , and ω the viscous friction coefficient, the moment of
inertia, and the angular velocity of the shaft, and cr an externally applied load
torque. If the excitation voltage ve is assumed to be constant, the following two
additional relations hold:

vc(t) = k1 ω(t) cm(t) = k2 ia(t) (1.2.8)

where k1 and k2 denote constant coefficients, which are numerically equal to
each other if the adopted units are coherent (volt and amp for voltages and
currents, Nm and rad/sec for torques and angular velocities). Orient the system
assuming as input variables u1 := va, u2 := cr and as output variable y := θ, the
angular position of the shaft, which is related to ω by the simple equation

dθ

dt
(t) = ω(t) (1.2.9)

Then assume as state variables the armature current, the angular velocity, and
the angular position of the shaft, i.e., x1 := ia, x2 := ω, x3 := θ. Equations (6–9)
can be written in compact form (using matrices) as

ẋ(t) = A x(t) + B u(t) (1.2.10)

y(t) = C x(t) + D u(t) (1.2.11)
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where2 x := (x1, x2, x3), u := (u1, u2) and

A :=





−Ra/La −k1/La 0
k2/J −B/J 0

0 1 0



 B :=





1/La 0
0 −1/J
0 0





C := [ 0 0 1 ] D := [ 0 0 ] �

(1.2.12)

Note that the mathematical model of the electric motor has the same struc-
ture as that of the simple electric circuit considered before, but with the con-
stants replaced by matrices. It is worth pointing out that such a structure is
common to all lumped-parameter linear time-invariant dynamic systems, which
are the most important in connection with control problems, and will also be
the protagonists in this book. A further remark: the last term in equation
(1.2.11) can be deleted, D being a null matrix. In fact, in this case the input
does not influence the output directly, but only through the state. Systems
with this property are very common and are called purely dynamic systems.

z1 q
q1

z

u

Figure 1.6. A surge tank installation.

Example 1.2.3 (a hydraulic system) A standard installation for a hydroelec-
tric plant can be represented as in Fig. 1.6: it consists of a reservoir, a conduit
connecting it to a surge tank, which in turn is connected to the turbines by
means of a penstock. At the bottom of the surge tank there is a throttle, built
in order to damp the water level oscillations. Let z1 be the total elevation of
water level in the reservoir, z that in the surge tank, F (z) the cross-sectional
area of the surge tank, which is assumed to be variable, z2 the static head at
the end of the conduit, q the flow per second in the conduit, q1 that into the
surge tank, and u that in the penstock. Neglecting water inertia in the surge
tank, it is possible to set up the equations

k2 (z1(t) − z2(t)) = k1 q(t) |q(t)|+ q̇(t) (1.2.13)

z2(t) − z(t) = k3 q1(t) |q1(t)| (1.2.14)

ż(t) = F (z) q1(t) (1.2.15)

q1(t) = q(t) − u(t) (1.2.16)

2 Here and in the following the same symbol is used for a vector belonging to R
n and a

n× 1 matrix.



1.2. Some Examples of Dynamic Systems 7

which can be referred to, respectively, as the conduit equation, the throttle
equation, the surge tank equation, and the flow continuity equation; k1, k2, and
k3 denote constants. By substituting for z2 and q1, the first-order differential
equations

q̇(t) = −k1 q(t) |q(t)| + k2

(

z1(t) − z(t) −

k3 (q(t) − u(t)) |q(t) − u(t)|
)

(1.2.17)

ż(t) = F (z) (q(t) − u(t)) (1.2.18)

are obtained. Let z2 be assumed as the output variable: this choice is consistent
since z2 is the variable most directly related to the power-delivering capability
of the plant: it can be expressed by the further equation

z2(t) = z(t) + k3 (q(t) − u(t)) |q(t) − u(t)| (1.2.19)

If the water level elevation in the reservoir is assumed to be constant, the
only input is u, which is typically a manipulable variable. We choose as state
variables the flow per second in the conduit and the water level elevation in the
surge tank, i.e., x1 := q, x2 := z, and, as the only output variable the static head
at the penstock, i.e., y := z2. Equations (1.2.17–1.2.19) can be written in the
more compact form

ẋ(t) = f(x(t), u(t)) (1.2.20)

y(t) = g(x(t), u(t)) (1.2.21)

where x := (x1, x2) and f , g are nonlinear continuous functions. �

u

z0 z1 zz z0 z1

f(z)

x(t, z)

(a) (b)

Figure 1.7. A continuous furnace and related temperature

distributions.

Example 1.2.4 (a distributed-parameter system) As an example of a
distributed-parameter system, we consider the continuous furnace represented
in Fig. 1.7(a): a strip of homogeneous material having constant cross-sectional
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area is transported with adjustable speed u through a furnace. Both the tem-
perature distributions in the furnace and in the strip are assumed to be variable
in the direction of movement z and uniform within sections orthogonal to this
direction. Denote by f(z) the temperature along the furnace, which is assumed
to be constant in time, and by x(t, z) that along the strip, which is a function of
both time and space. The system is described by the following one-dimensional
heat diffusion equation:

∂x(t, z)

∂t
= k1

∂2x(t, z)

∂z2
+ u(t)

∂x(t, z)

∂z
+ k2 (x(t, z) − f(z)) (1.2.22)

where k1 and k2 are constants related respectively to the internal and surface
thermal conductivity of the strip. We assume the speed u as the input variable
and the temperature of the strip at the exit of the furnace as the output variable,
i.e.,

y(t) = x(t, z1) (1.2.23)

The function x(t, ·) represents the state at time t; the partial differential
equation (1.2.23) can be solved if the initial state x(t0, ·) (initial condition), the
strip temperature before heating x(·, z0) (boundary condition), usually constant,
and the input function u(·), are given. �

u

0 T 2T 3T 4T 5T 6T t

u(0)

u(1)
u(2)

u(3)

u(4)
u(5)

Figure 1.8. Piecewise constant function.

Example 1.2.5 (a discrete-time system) We refer again to the electric circuit
shown in Fig. 1.4 and assume that its input variable u is changed in time by
steps, as shown in Fig. 1.8, and the output variable is detected only at the time
instants T, 2T, . . . . Such a situation occurs when a continuous-time system
is controlled by means of a digital processor, whose inputs and outputs are
sampled data.

Denote by u(i ) the input value in the time interval [iT, (i + 1)T ) and by y(i )
the output value at the time iT ; the system is easily shown as being described
by a difference equation and an algebraic equation, i.e.,

x(i +1) = ad x(i ) + bd u(i ) (1.2.24)

y(i ) = c x(i ) + d u(i ) (1.2.25)
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where coefficients c and d are the same as in equation (1.2.2), whereas ad, bd

are related to a, b and the sampling period T by

ad = eaT bd = b

∫ T

0

ea(T−τ) dτ =
b

a

(

eaT − 1
)

(1.2.26)

Subscript d in the coefficients stands for “discrete.” In discrete-time systems,
time is an integer variable instead of a real variable and time evolutions of the
system variables are represented by sequences instead of continuous or piecewise
continuous functions of time. Let j, i (i > j) be any two (integer) instants of
time, x0 the initial state, i.e., the state at time j, and u(·) the input sequence
in any time interval containing [j, i].3 The state transition function is obtained
by means of a recursive application of (1.2.24) and is expressed by

x(i ) = ad
i−j x0 +

i−1
∑

k=1

ad
i−k−1 bd u(k) (1.2.27)

The response function is obtained by substituting (1.2.27) into (1.2.25) as

y(i ) = c
(

ad
i−j x0 +

i−1
∑

k=1

ad
i−k−1 bd u(k)

)

+ d u(i ) � (1.2.28)

Σ

u1

u2

y

u1u2u1u2 f g

xx 0000 0101 1111 1010

00

0

00

00000 000

11 11 1

1

1

(a)

(b) (c)

Figure 1.9. A finite-state system and its characterizing functions.

Example 1.2.6 (a finite-state system) The finite-state system is represented
as a block in Fig. 1.9(a): the input variables u1, u2 are the positions of two

3 For the sake of precision, note that this time interval is necessary in connection with the
response function, but can be restricted to [j, i − 1] for the state transition function.
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push buttons and the output variable y is the lighting of a lamp. The value of
each variable is represented by one of two symbols, for instance 1 or 0 according
to whether the push buttons are pressed or released and whether the lamp
is lighted or not. The input data are assumed to be sampled, i.e., they are
accepted when a clock pulse is received by the system; also the possible output
variable changes occur at clock pulses, so that their time evolution is inherently
discrete. The system behavior is described in words as follows: “lamp lights up
if the current input symbol is 01 and, between symbols 00 and 11, 11 previously
appeared as the latter.” A mathematical model that fits this behavior is

x(i + 1) = f(x(i ), u(i )) (1.2.29)

y(i ) = g(x(i ), u(i )) (1.2.30)

where f , g are the so-called next-state function and output function; x is a
binary state variable whose value (which is also restricted to 0 or 1) changes
only when the current sampled input is 00 or 11: hence x implements the
“system memory.” If the functions f and g are those defined in the tables
shown in Fig. 1.9(b) and in Fig. 1.9(c), it is evident that the output variable
changes in time according to the previous word description. �

Representative examples of finite-state systems are digital processors, i.e.,
the most widespread electronic systems of technology today. Their state can
be represented by a finite number, although very large, of binary symbols, each
corresponding to a bit of memory; their input is a keyboard, hence it is similar
to that of the above simple example; their output is a sequence of symbols
which is translated into a string of characters by a display, a monitor, or a
printer. Their time evolution, at least in principle, can be represented by a
mathematical model consisting of a next-state and an output function. The
former is ruled by a high-frequency clock and is such that an input symbol is
accepted (i.e., influences system behavior) only when it is changed with respect
to the previous one.

1.3 General Definitions and Properties

Referring to the examples presented in the previous section, which, although
very simple, are representative of the most important classes of dynamic sys-
tems, let us now state general definitions and properties in which the most basic
connections between system theory and mathematics are shown.

First, consider the sets to which the variables and functions involved in the
system mathematical model must belong. In general it is necessary to specify

1. a time set T
2. an input set U
3. an input function set Uf
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4. a state set X
5. an output set Y

The values and functions belonging to the above sets are called admissible.
Only two possibilities will be considered for the time set: T = R (time is
measured by a real number) and T = Z (time is measured by an integer number).
It is worth noting that the properties required for a set to be a time set from a
strict mathematical viewpoint are fewer than the properties of either R or Z; for
instance, multiplication does not need to be defined in a time set. Nevertheless,
since the familiar R and Z fit our needs, it is convenient to adopt them as the
only possible time sets and avoid any subtle investigation in order to find out
what is strictly required for a set to be a time set. On the basis of this decision,
the following definitions are given.

Definition 1.3.1 (continuous-time and discrete-time system) A system is said
to be continuous-time if T = R, discrete-time if T = Z.

Definition 1.3.2 (purely algebraic system) A memoryless or purely algebraic
system is composed of sets T , U , Y, and an input-output function or input-
output map:

y(t) = g(u(t), t) (1.3.1)

Definition 1.3.3 (dynamic continuous-time system) A dynamic continuous-
time system is composed of sets T (= R), U , Uf , X , Y of a state velocity
function indexstate velocity function

ẋ(t) = f(x(t), u(t), t) (1.3.2)

having a unique solution for any admissible initial state and input function and
of an output function or output map

y(t) = g(x(t), u(t), t) (1.3.3)

Definition 1.3.4 (dynamic discrete-time system) A dynamic discrete-time
system is composed of sets T (= Z), U , Uf , X , Y of a next-state function4

x(i + 1) = f(x(i ), u(i ), i ) (1.3.4)

and of an output function or output map

y(i ) = g(x(i ), u(i ), i ) (1.3.5)

The following definition refers to a specialization of dynamic systems that
occurs very frequently in practice.

Definition 1.3.5 (purely dynamic system) A purely dynamic system is one
in which the output map reduces to

y(t) = g(x(t), t) (1.3.6)
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u

x
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purely

dynamic
system

purely
algebraic
system

Figure 1.10. Decomposition of a general dynamic system.

Therefore, a purely dynamic system is such that input does not affect the
output directly, but only through the state; thus, in continuous-time purely
dynamic systems the output is a continuous function of time and in discrete-
time purely dynamic systems the output is delayed by at least one sampling
period with respect to the input. Any dynamic system can be considered as
composed of a purely dynamic system and a purely algebraic one, interconnected
as shown in Fig. 1.10. Most system theory problems are approached by referring
to purely dynamic systems: since the mathematical model of a purely algebraic
system is very simple (it reduces to a function), the extension of the theory to
the general case is usually straightforward.

Definition 1.3.6 (time-invariant system) A system is called time-invariant or
constant if time is not an explicit argument of the functions of its mathematical
model; otherwise, it is called time-varying.

Functions referred to in the above statement are those on the right of
equations (1.3.1–1.3.6). For the sake of generality they have been written
for time-varying systems: it is sufficient to omit time as the last argument
in brackets in order to obtain the corresponding equations for time-invariant
systems.

The next concept to introduce is that of linearity, which is of paramount
importance in system theory because it allows numerous properties to be derived
and many rigorous synthesis procedures to be sketched. By studying linear
systems the designer is provided with a rich store of experience that is also very
useful in approaching the most general nonlinear problems.

Definition 1.3.7 (linear system) A system is linear if the sets U , Uf , X , Y
are vector spaces (all over the same field F) and the functions that compose
its mathematical model are linear with respect to x, u for all admissible t. A
dynamic system that is not linear is called nonlinear.

As a consequence of the above definition, in the case of purely algebraic
linear systems instead of equation (1.3.1) we will consider the equation

y(t) = C(t) u(t) (1.3.7)

4 In the specific case of discrete-time systems, symbols i or k instead of t are used to
denote time. However, in general definitions reported in this chapter, which refer both to
the continuous and the discrete-time case, the symbol t is used to denote a real as well as an
integer variable.
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whereas in the case of continuous-time linear dynamic systems, instead of
equations (1.3.2, 1.3.3) we refer more specifically to the equations

ẋ(t) = A(t) x(t) + B(t) u(t) (1.3.8)

y(t) = C(t) x(t) + D(t) u(t) (1.3.9)

In the above equations A(t), B(t), C(t), and D(t) denote matrices with elements
depending on time which, in particular, are constant in the case of time-invariant
systems.

Similarly, for discrete-time linear dynamic systems instead of equations
(1.3.4, 1.3.5) we refer to the equations

x(i + 1) = Ad(i ) x(i ) + Bd(i ) u(i ) (1.3.10)

y(i ) = Cd(i ) x(i ) + Dd(i ) u(i ) (1.3.11)

where Ad(i ), Bd(i ), Cd(i ) and Dd(i ) are also matrices depending on discrete
time that are constant in the case of time-invariant systems.

If, in particular, U := Rp, X := Rn, Y := Rq, i.e., input, state, and output are
respectively represented by a p-tuple, an n-tuple, and a q-tuple of real numbers,
A(t), B(t), C(t), D(t), and the corresponding symbols for the discrete-time
case can be considered to denote real matrices of proper dimensions, which are
functions of time if the system is time-varying and constant if the system is
time-invariant.

In light of the definitions just stated, let us again consider the six exam-
ples presented in the previous section. The systems in Examples 1.2.1–1.2.4
are continuous-time, whereas those in Examples 1.2.5 and 1.2.6 are discrete-
time. All of them are time-invariant, but may be time-varying if some of the
parameters that have been assumed to be constant are allowed to vary as given
functions of time: for instance, the elevation z1 of the water level in the reser-
voir of the installation shown in Fig. 1.6 may be subject to daily oscillations
(depending on possible oscillations of power request) or yearly oscillations ac-
cording to water inlet dependence on seasons. As far as linearity is concerned,
the systems considered in Examples 1.2.1, 1.2.2, and 1.2.5 are linear, whereas
all the others are nonlinear.

The input sets are R, R2, R, R, R, B respectively, the state sets are R,
R3, R2, Rf , R, B, and the output sets are R, R, R, R, R, B. Rf denotes
a vector space of functions with values in R. Also the input function set Uf

must be specified, particularly for continuous-time systems in order to guarantee
that the solutions of differential equation (1.3.2) have standard smoothness and
uniqueness properties. In general Uf is assumed to be the set of all the piecewise
continuous functions with values in U , but in some special cases, it could be
different: if, for instance, the input of a dynamic system is connected to the
output of a purely dynamic system, input functions of the former are restricted
to being continuous. In discrete-time systems in general Uf is a sequence with
values in U without any special restriction.
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U

u2

u1

Figure 1.11. A possible input set contained in R
2.

A proper choice of the input set can be used in order to take into account
bounds for the values of input variables. For instance, it is possible to model
independent bounds of each of two input variables by assuming the subset of
R2 shown in Fig. 1.11 as the input set. Such bounds may correspond to safety
limits for control action so that the controlled device is not damaged and/or to
limits that cannot be exceeded because of sharp physical constraints. Note that
such a limitation of the input set causes nonlinearity.

Examples. It is reasonable to specify a bound Va for the absolute value of
the applied voltage va to the electric motor considered in Example 1.2.2, in
order to avoid damage due to overheating: −Va ≤ va(t)≤Va. It is physically
impossible for flow u in the hydraulic installation considered in Example 1.2.3
to be negative and exceed an upper bound U depending on the diameter of the
nozzle in the turbine and the maximum static head at the output of penstock:
0≤u(t)≤U .

In Definitions 1.3.3 and 1.3.4 dynamic systems are simply introduced by
characterizing two possible classes of mathematical models for them. Note
that, although the concepts of input and output are primitive, being related
to the connections of the system to the environment, the concept of state has
been introduced as a part of the mathematical model, not necessarily related to
the presence of corresponding internal physical variables. Indeed, the state is
necessary in order to pursue the natural way of thinking of systems as objects
basically ruled by the relationship of cause and effect. The following property
is a formalization of this concept of state.

Property 1.3.1 (concept of state) The state of a dynamic system is an element
(of a set called state set) subject to variation in time and such that its value
x(t0) at a given instant of time t0, together with an input function segment
u|[t0,t1], univocally determines the output function segment y|[t0,t1].

Property 1.3.1 implies the property of causality: all dynamic systems which
are considered in this book are causal or nonanticipative, i.e., their output at
any instant of time t does not depend on the values of input at instants of time
greater than t.
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The nature of the state variables deeply characterizes dynamic systems, so
that it can be assumed as a classification for them, according to the following
definition.

Definition 1.3.8 (finite-state or finite-dimensional system) A dynamic system
is called finite-state, finite-dimensional , infinite-dimensional if its state set
is respectively a finite set, a finite-dimensional vector space, or an infinite-
dimensional vector space.

A more compact mathematical description of dynamic system behavior is
obtained as follows: equation (1.3.2) – by assumption – and equation (1.3.4)
– by inherent property – have a unique solution that can be expressed as a
function of the initial instant of time t0, the initial state x0 :=x(t0), and the
input function u(·), that is:

x(t) = ϕ(t, t0, x0, u(·)) (1.3.12)

Function ϕ is called the state transition function. Being the solution of a
differential or a difference equation, it has some special features, such as:

1. time orientation: it is defined for t≥ t0, but not necessarily for t < t0;

2. causality : its dependence on the input function is restricted to the time
interval [t0, t]:

ϕ(t, t0, x0, u1(·)) = ϕ(t, t0, x0, u2(·)) if u1|[t0,t] =u2|[t0,t]

3. consistency :
x = ϕ(t, t, x, u(·))

4. composition: consecutive state transitions are congruent. i.e.,

ϕ(t, t0, x0, u(·)) = ϕ(t, t1, x1, u(·))
provided that

x1 := ϕ(t1, t0, x0, u(·)) , t0 ≤ t1 ≤ t

The pair (t, x(t))∈T ×X is called an event : when the initial event (t0, x(t0))
and the input function u(·) are known, the state transition function provides a
set of events, namely a function x(·) : T →X , which is called motion. To be
precise, the motion in the time interval [t0, t1] is the set

{(t, x(t)) : x(t) = ϕ(t, t0, x(t0), u(·)) , t∈ [t0, t1]} (1.3.13)

The image of motion in the state set, i.e., the set

{x(t) : x(t) =ϕ(t, t0, x(t0), u(·)) , t∈ [t0, t1]} (1.3.14)

of all the state values in the time interval [t0, t1] is called the trajectory (of the
state in [t0, t1]).



16 Chapter 1. Introduction to Systems

x

x(0)

0

0

t1

t1

t2

t2

t

t

u

(a)

(b)

Figure 1.12. A possible motion and the corresponding input function.

When the state set X coincides with a finite-dimensional vector space Rn, the
motion can be represented as a line in the event space T ×X and the trajectory
as a line in the state space X , graduated versus time. The representation in the
event space of a motion of the electric circuit described in Example 1.2.1 and the
corresponding input function are shown in Fig. 1.12, while the representation in
the state space of a possible trajectory of the electromechanical system described
in Example 1.2.2 and the corresponding input function are shown in Fig. 1.13.
For any given initial state different input functions cause different trajectories,
all initiating at the same point of the state space; selecting input at a particular
instant of time (for instance, t3) allows different orientations in space of the
tangent to the trajectory at t3, namely of the state velocity (ẋ1, ẋ2, ẋ3).

The analysis of dynamic system behavior mainly consists of studying tra-
jectories and the possibility of influencing them through the input. Then the
geometric representation of trajectories is an interesting visualization of the
state transition function features and limits. In particular, it clarifies state
trajectory dependence on input.

Substituting (1.3.12) into (1.3.3) or (1.3.5) yields

y(t) = γ(t, t0, x0, u|[t0,t]) t ≥ t0 (1.3.15)

Function γ is called the response function and provides the system output
at generic time t as a function of the initial instant of time, the initial state,
and a proper input function segment. Therefore equation (1.3.15) represents
the relationship of cause and effect which characterizes the time behavior of a
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Figure 1.13. A possible trajectory and the corresponding

input function.

dynamic system and can be considered as an extension of the cause and effect
relationship expressed by (1.3.1) for memoryless systems. Equation (1.3.15)
expresses a line in the output space, which is called output trajectory .

A very basic concept in system theory is that of the minimality of an input-
state-output mathematical representation.

Definition 1.3.9 (indistinguishable states) Consider a dynamic system. Two
states x1, x2 ∈X are called indistinguishable in [t0, t1] if

γ(t, t0, x1, u(·)) = γ(t, t0, x2, u(·)) ∀ t ∈ [t0, t1] , ∀ u(·) ∈ Uf (1.3.16)

Definition 1.3.10 (equivalent states) Consider a dynamic system. Two states
x1, x2 ∈X that are indistinguishable in [t0, t1] ∀ t0, t1 ∈T , t1 >t0 are called
equivalent.

Definition 1.3.11 (minimal system) A dynamic system that has no equivalent
states is said to be in minimal form or, simply, minimal.

Any nonminimal dynamic system can be made minimal by defining a new
state set in which every new state corresponds to a class of equivalent old states,
and by redefining the system functions accordingly.
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Definition 1.3.12 (equivalent systems) Two dynamic systems Σ1, Σ2 are said
to be equivalent if they are compatible (i.e., if T1 = T2, U1 =U2, Uf1 =Uf2 =Uf ,
Y1 =Y2) and to any state x1 ∈X1 of Σ1 it is possible to associate a state x2 ∈X2

of Σ2, and vice versa, such that 5

γ1(t, t0, x1, u(·)) = γ2(t, t0, x2, u(·)) ∀ t0 , ∀ t≥ t0 , ∀u(·)∈Uf (1.3.17)

In some control problems it is necessary to stop the time evolution of the
state of a dynamic system at a particular value. This is possible only if such a
value corresponds to an equilibrium state according to the following definition.

Definition 1.3.13 (temporary equilibrium state) In a dynamic system any
state x∈X is a temporary equilibrium state in [t0, t1] if there exists an admis-
sible input function u(·)∈Uf such that

x = ϕ(t, t0, x, u(·)) ∀ t ∈ [t0, t1] (1.3.18)

The state x is called simply an equilibrium state if it is a temporary equilibrium
state in [t0, t1] for all the pairs t0, t1 ∈T , t1 >t0.

Note that, owing to the property of time-shifting of causes and effects,
in time-invariant systems all temporary equilibrium states in any finite time
interval are simply equilibrium states. Referring to the geometric representation
of the state evolution as a state space trajectory, equilibrium states are often
also called equilibrium points.

When the corresponding dynamic system is either time-invariant or linear,
functions ϕ and γ have special properties, which will now be investigated.

Property 1.3.2 (time-shifting of causes and effects) Let us consider a time-
invariant system and for any τ ∈T and all the input functions u(·)∈Uf define
the shifted input function as

u∆(t + τ) := u(t) ∀ t ∈ T (1.3.19)

assume that u∆(·) ∈ Uf for all u(·) ∈ Uf , i.e., that the input function set is
closed with respect to the shift operation. The state transition function and the
response function satisfy the following relationships:

x(t) = ϕ(t, t0, x0, u(·)) ⇔ x(t + τ) = ϕ(t + τ, t0 + τ, x0, u∆(·)) (1.3.20)

y(t) = γ(t, t0, x0, u(·)) ⇔ y(t + τ) = γ(t + τ, t0 + τ, x0, u∆(·)) (1.3.21)

Proof. We refer to system equations (1.3.2, 1.3.3) or (1.3.4, 1.3.5) and assume
that the system is time-invariant, so that functions on the right are independent
of time. The property is a consequence of the fact that shifting any function of
time implies also shifting its derivative (in the case of continuous-time systems)
or all future values (in the case of discrete-time systems), so that equations are
still satisfied if all the involved functions are shifted. �

5 If Σ1 e Σ2 are both in minimal form, this correspondence between initial states is clearly
one-to-one.
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Assuming in equations (1.3.20) and (1.3.21) τ := − t0, we obtain

x(t) = ϕ(t, t0, x0, u(·)) ⇔ x(t− t0) = ϕ(t− t0, 0, x0, u∆(·))
y(t) = γ(t, t0, x0, u(·)) ⇔ y(t− t0) = γ(t− t0, 0, x0, u∆(·))

from which it can be inferred that

1. when the system referred to is time-invariant, the initial instant of time
can be assumed to be zero without any loss of generality;

2. the state transition and response functions of time-invariant systems are
actually dependent on the difference t− t0 instead of t and t0 separately.

Property 1.3.3 (linearity of state transition and response functions) Let us
consider a linear dynamic system and denote by α, β any two elements of the
corresponding field F , by x01, x02 any two admissible initial states and by u1(·),
u2(·) any two admissible input function segments. The state transition and
response functions satisfy the following relationships:

ϕ(t, t0, α x01 + β x02, α u1(·) +β u2(·)) =

α ϕ(t, t0, x01, u1(·)) + β ϕ(t, t0, x02, u2(·)) (1.3.22)

γ(t, t0, α x01 + β x02, α u1(·) +β u2(·)) =

α γ(t, t0, x01, u1(·)) + β ϕ(t, t0, x02, u2(·)) (1.3.23)

which express the linearity of ϕ and γ with respect to the initial state and input
function.

Proof. We refer to equation (1.3.8) or (1.3.10) and consider its solutions
corresponding to the different pairs of initial state and input function segments
x01, u1(·) and x2, u2(·), which can be expressed as

x1(t) = ϕ(t, t0, x01, u1(·))
x2(t) = ϕ(t, t0, x02, u2(·))

By substituting on the right of (1.3.8) or (1.3.10) α x1(t) +β x2(t),
α u1(t) + β u2(t) in place of x(t), u(t) and using linearity, we obtain on the left
the quantity α ẋ1(t) +β ẋ2(t) in the case of (1.3.8), or α x1(t +1) + β x2(t +1)
in the case of (1.3.10). Therefore, α x1(t) +β x2(t) is a solution of the differ-
ential equation (1.3.8) or difference equation (1.3.10); hence (1.3.22) holds. As
a consequence, (1.3.23) also holds, provided that γ is the composite function of
two linear functions. �

In the particular case α = β = 1, equations (1.3.22, 1.3.23) correspond to the
so-called property of superposition of the effects.
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Property 1.3.4 (decomposability of state transition and response functions)
In linear systems the state transition (response) function corresponding to the
initial state x0 and the input function u(·) can be expressed as the sum of the
zero-input state transition (response) function corresponding to the initial state
x0 and the zero-state state transition (response) function corresponding to the
input function u(·).
Proof. Given any admissible initial state x0 and any admissible input function
u|[t0,t], assume in equations (1.3.22, 1.3.23), α := 1, β := 1, x01 :=x0, x02 := 0,
u1(·) := 0, u2(·) :=u(·); it follows that

ϕ(t, t0, x0, u(·)) = ϕ(t, t0, x0, 0) + ϕ(t, t0, 0, u(·)) (1.3.24)

γ(t, t0, x0, u(·)) = γ(t, t0, x0, 0) + γ(t, t0, 0, u(·)) � (1.3.25)

The former term of the above decomposition is usually referred to as the free
motion (free response), the latter as the forced motion (forced response). The
following properties are immediate consequences of the response decomposition
property.

Property 1.3.5 Two states of a linear system are indistinguishable in [t0, t1]
if and only if they generate the same free response in [t0, t1].

Property 1.3.6 A linear system is in minimal form if and only if for any
initial instant of time t0 no different states generate the same free response.

1.4 Controlling and Observing the State

The term controllability denotes the possibility of influencing the motion x(·)
or the response y(·) of a dynamical system Σ by means of the input function
(or control function) u(·)∈Uf .

In particular, one may be required to steer a system from a state x0 to x1

or from an event (t0, x0) to (t1, x1): if this is possible, the system is said to be
controllable from x0 to x1 or from (t0, x0) to (t1, x1). Equivalent statements are:
“the state x0 (or the event (t0, x0)) is controllable to x1 (or to (t1, x1))” and
“the state x1 (or the event (t1, x1)) is reachable from x0 (or from (t0, x0)).”

Example. Suppose the electric motor in Fig. 1.5 is in a given state x0 at
t = 0: a typical controllability problem is to reach the zero state (i.e., to null
the armature current, the angular velocity, and the angular position) at a time
instant t1, (which may be specified in advance or not), by an appropriate choice
of the input function segment u|[0,t1]; if this problem has a solution, state x0 is
said to be controllable to the zero state (in the time interval [t0, t1]).

Controllability analysis is strictly connected to the definition of particular
subsets of the state space X , that is:

1. the reachable set at the final time t = t1 from the event (t0, x0)

R+(t0, t1, x0) := {x1 : x1 = ϕ(t1, t0, x0, u(·)), u(·)∈Uf} (1.4.1)
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2. the reachable set at any time in [t0, t1] from the event (t0, x0)

W+(t0, t1, x0) := {x1 : x1 = ϕ(τ, t0, x0, u(·)), τ ∈ [t0, t1], u(·)∈Uf} (1.4.2)

3. the controllable set to the event (t1, x1) from the initial time t0
R−(t0, t1, x1) := {x0 : x1 = ϕ(t1, t0, x0, u(·)), u(·)∈Uf} (1.4.3)

4. the controllable set to the event (t1, x1) from any time in [t0, t1]

W−(t0, t1, x1) := {x0 : x1 = ϕ(t1, τ, x0, u(·)), τ ∈ [t0, t1], u(·)∈Uf} (1.4.4)

In the previous definitions the ordering relation t0 ≤ t1 is always tacitly
assumed. Clearly

R+(t0, t1, x) ⊆ W+(t0, t1, x) ∀x ∈ X (1.4.5)

R−(t0, t1, x) ⊆ W−(t0, t1, x) ∀x ∈ X (1.4.6)

R−(t0, t1, x1)

C(t1, x1)

C(t0, x0)

x1

x0
t0

R + (t0, t1, x0)

P0 P1

t1 t

Figure 1.14. Sets of reachable and controllable states.

The geometric meaning of the above definitions is clarified by Fig. 1.14,
which refers to the particular case X = R2: in the event space, R+(t0, t1, x0)
is obtained by intersecting the set C(t0, x0) of all the admissible motions
which include the event (t0, x0) with the hyperplane P1 := {(t, x) : t = t1},
while W+(t0, t1, x0) is obtained by projecting the set C(t0, x0)∩M, where
M := {(t, x) : t∈ [t0, t1]}, on P1 := {(t, x) : t = t1} along the t axis. R−(t0, t1, x0)
and W−(t0, t1, x0) are derived in a similar way.

Definition 1.4.1 (reachability from or controllability to an event) The state
set of a dynamic system Σ or, by extension, system Σ itself, is said to
be completely reachable from the event (t0, x) in the time interval [t0, t1] if
W+(t0, t1, x) =X , completely controllable to event (t1, x) in the time interval
[t0, t1] if W−(t0, t1, x) =X .
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In time-invariant systems, R+(t0, t1, x), W+(t0, t1, x), R−(t0, t1, x),
W−(t0, t1, x) do not depend on t0, t1 in a general way, but only on the dif-
ference t1 − t0, so that the assumption t0 =0 can be introduced without any
loss of generality and notation is simplified as:

1. R+
t1(x): the reachable set at t = t1 from the event (0, x);

2. W+
t1 (x): the reachable set at any time in [0, t1] from the event (0, x);

3. R−
t1(x): the controllable set to x at t = t1 from the initial time 0;

4. W−
t1 (x): the controllable set to x at any time in [0, t1] from initial time 0.

Given any two instants of time t1, t2 satisfying t1 ≤ t2, the following hold:

W+
t1 (x) ⊆ W+

t2 (x) ∀x ∈ X (1.4.7)

W−
t1

(x) ⊆ W−
t2

(x) ∀x ∈ X (1.4.8)

Notations W+(x), W−(x) refer to the limits

W+(x) := lim
t→∞

W+
t (x) W−(x) := lim

t→∞
W−

t (x)

i.e., denote the reachable set from x and the controllable set to x in an arbitrarily
large interval of time.

Definition 1.4.2 (completely controllable system) A time-invariant system is
said to be completely controllable or connected if it is possible to reach any state
from any other state (so that W+(x) =W−(x) =X for all x∈X ).

Consider now the state observation. The term observability denotes gener-
ically the possibility of deriving the initial state x(t0) or the final state x(t1)
of a dynamic system Σ when the time evolutions of input and output in the
time interval [t0, t1] are known. Final state observability is denoted also with
the term reconstructability . The state observation and reconstruction problems
may not always admit a solution: this happens, in particular, for observation
when the initial state belongs to a class whose elements are indistinguishable in
[t0, t1].

Like controllability, observability is also analyzed by considering proper
subsets of the state set X , which characterize dynamic systems regarding the
possibility of deriving state from input and output evolutions, i.e.:

1. the set of all the initial states consistent with the functions u(·), y(·) in the
time interval [t0, t1]

Q−(t0, t1, u(·), y(·)) := {x0 : y(τ) = γ(τ, t0, x0, u(·)) , τ ∈ [t0, t1]} (1.4.9)

2. the set of all the final states consistent with the functions u(·), y(·) in the
time interval [t0, t1]

Q+(t0, t1, u(·), y(·)) :=

{x1 : x1 = ϕ(t1, t0, x0, u(·)) , x0 ∈Q−(t0, t1, u(·), y(·))} (1.4.10)
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It is clear that in relations (1.4.9) and (1.4.10) y(·) is not arbitrary, but
constrained to belong to the set of all the output functions admissible with
respect to the initial state and the input function. This set is defined by

Yf(t0, u(·)) := {y(·) : y(t) = γ(t, t0, x0, u(·)) , t≥ t0 , x0 ∈X} (1.4.11)

Definition 1.4.3 (diagnosis or homing of a system) The state set of a dynamic
system Σ or, by extension, system Σ itself, is said to be observable in [t0, t1]
by a suitable experiment (called diagnosis) if there exists at least one input
function u(·)∈Uf such that the set (1.4.9) reduces to a single element for
all y(·)∈Yf(t0, u(·)); it is said to be reconstructable in [t0, t1] by a suitable
experiment (called homing) if there exists at least one input function u(·)∈Uf

such that the set (1.4.10) reduces to a single element for all y(·)∈Yf(t0, u(·)).

A dynamic system without any indistinguishable states in [t0, t1] is not
necessarily observable in [t0, t1] by a diagnosis experiment since different input
functions may be required to distinguish different pairs of initial states. This is
typical in finite-state systems and quite common in general nonlinear systems.

Definition 1.4.4 (completely observable or reconstructable system) The state
set of a dynamic system Σ or, by extension, system Σ itself, is said to be
completely observable in [t0, t1] if for all input functions u(·)∈Uf and for all
output functions y(·)∈Yf(t0, u(·)) the set (1.4.9) reduces to a single element;
it is said to be completely reconstructable in [t0, t1] if for all input functions
u(·)∈Uf and for all output functions y(·)∈Yf(t0, u(·)) the set (1.4.10) reduces
to a single element.

Since the final state is a function of the initial state and input, clearly every
system that is observable by a suitable experiment is also reconstructable by
the same experiment and every completely observable system is also completely
reconstructable.

In time-invariant systems Q−(t0, t1, u(·), y(·)) and Q+(t0, t1, u(·), y(·)) do not
depend on t0 and t1 in a general way, but only on the difference t1 − t0, so that,
as in the case of controllability, the assumption t0 =0 can be introduced without
any loss of generality. In this case the simplified notations Q−

t1(u(·), y(·)),
Q+

t1(u(·), y(·)) will be used.
The above sets are often considered in solving problems related to system

control and observation. The most significant of these problems are:

1. Control between two given states: given two states x0 and x1 and
two instants of time t0 and t1, determine an input function u(·) such that
x1 =ϕ(t1, t0, x0, u(·)).
2. Control to a given output : given an initial state x0, an output value

y1 and two instants of time t0, t1, t1 >t0, determine an input u(·) such that
y1 = γ(t1, t0, x0, u(·)).



24 Chapter 1. Introduction to Systems

3. Control for a given output function: given an initial state x0, an admissible
output function y(·) and two instants of time t0, t1, t1 >t0, determine an input
u(·) such that y(t) = γ(t, t0, x0, u(·)) for all t∈ [t0, t1].

4. State observation: given corresponding input and output functions
u(·), y(·) and two instants of time t0, t1, t1 >t0, determine an initial state
x0 (or the whole set of initial states) consistent with them, i.e., such that
y(t) = γ(t, t0, x0, u(·)) for all t∈ [t0, t1].

5. State reconstruction: given corresponding input and output functions u(·),
y(·) and two instants of time t0, t1, t1 > t0, determine a final state x1 (or the
whole set of final states) consistent with them, i.e., corresponding to an initial
state x0 such that x1 =ϕ(t1, t0, x0, u(·)), y(t) = γ(t, t0, x0, u(·)) for all t∈ [t0, t1].

6. Diagnosis : like 4, except that the solution also includes the choice of a
suitable input function.

7. Homing : like 5, except that the solution also includes the choice of a
suitable input function.

Moreover, problems often arise where observation and control are simulta-
neously required. For instance, problems 1 and 2 would be of this type if initial
state x0 was not given.

1.5 Interconnecting Systems

Decomposing complex systems into simpler interconnected subsystems makes
their analysis easier. It is useful because many properties of the overall system
are often determined by analyzing corresponding properties of subsystems. Fur-
thermore, it is convenient to keep different types of devices distinct, for instance
those whose behavior can be influenced by a suitable design (like controllers and,
more generally, signal processors), and those that, on the contrary, cannot be
affected in any way.

1.5.1 Graphic Representations of Interconnected Sys-

tems

Complex systems consisting of numerous interconnected parts are generally
represented in drawings by means of block diagrams and signal-flow graphs.
They will be adopted here too, so, although they are very well known, it
seems convenient to briefly recall their distinguishing features and interpretative
conventions.

Block diagrams. Block diagrams are a convenient representation for sys-
tems that consist of numerous interconnected parts. In this book they will
be used in a rather informal way: they will be referred without any graphic
difference to the single-variable as well as to the multivariable case, and the



1.5. Interconnecting Systems 25

mathematical model of the subsystem represented with a single block will be
reported inside the block not in a unified way, but in the form that is most
consistent with the text.

Figure 1.15. Branching point and summing junction.

Figure 1.16. Some types of blocks.

The main linkage elements between blocks are the branching point , repre-
sented in Fig. 1.15(a) and the summing junction, represented in Fig. 1.16(b).
They are described respectively by the simple relations

y(t) = x(t)

z(t) = x(t)

and
z(t) = x(t) + y(t)

Some types of blocks are shown in Fig. 1.16(a–e): block (a) represents
the linear purely algebraic constant input-output relation y =K u, where K
is a real constant or a real matrix; (b) and (c) represent nonlinear purely
algebraic constant input-output relations, specifically a saturation or a block of
saturations and an ideal relay or block of ideal relays (or signum functions): if
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referred to multivariable cases, they are understood to have the same number of
outputs as inputs; (d) represents a dynamic link specified by means of a transfer
function in the single-variable case or a transfer matrix in the multivariable
case; (e) a dynamic link specified by an ISO description: note, in this case,
the possible presence of a further input denoting the initial state. In some
block diagrams, as for instance those shown in Fig. 1.10 and 1.25 to 1.27, no
mathematical model is specified inside the blocks, but simply a description in
words of the corresponding subsystem. When, on the other hand, a precise
mathematical description is given for each block of a diagram, the complete
diagram is equivalent to a set of equations for the overall system, in which
interconnection equations are those of branching points and summing junctions.

Signal-flow graphs. Signal-flow graphs are preferred to block diagrams
to represent complex structures consisting of several elementary (single-input
single-output) parts, each described by a transfer constant or a transfer function.
Their use is restricted to show the internal structure of some linear systems
which, although possibly of the multivariable type, can be represented as a
connection of single-variable elements. The major advantage of signal-flow
graphs over block diagrams is that the transfer constant or the transfer function
relating any input to any output can be derived directly from a simple analysis
of the topological structure of the graph.

A signal-flow graph is composed of branches and nodes. Every branch
joins two nodes in a given direction denoted by an arrow, i.e., is oriented and
characterized by a coefficient or transfer function, called transmittance or gain.
Every node represents a signal , which by convention is expressed by a linear

combination of the signals from whose nodes there exist branches directed to
it, with the transmittances of these branches as coefficients. A node that has
no entering branches is called an independent or input node, while the other
nodes are called dependent nodes: clearly, every dependent node represents a
linear equation, so that the graph is equivalent to as many linear equations in
as many unknowns as there are dependent nodes.

Figure 1.17. A signal-flow graph.

As an example, consider the simple signal-flow graph represented in Fig. 1.17:
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transmittances are denoted by a, b, c, d, e, f, g, h and can be real constants or
transfer functions. The graph corresponds to the set of linear equations

x1 = a x0 + h x4 (1.5.1)

x2 = b x1 + g x2 + f x4 (1.5.2)

x3 = e x1 + c x2 (1.5.3)

x4 = d x3 (1.5.4)

in the unknowns x1, x2, x3, x4.
Choose x4 as the output signal: we can derive a gain that relates x4 to x0 by

solving equations (1.5.1–1.5.4). Otherwise, we can take advantage of the relative
sparseness of the signal-flow graph (in the sense that nodes are not connected
by branches in all possible ways) to use a topological analysis method which in
most practical cases turns out to be very convenient.

For this, some further definitions are needed. A path joining two given
nodes is a sequence of adjacent branches that originates in the first node and
terminates in the second passing through any node only once. The transmittance
of a path P is the product of the transmittances of all the branches in the path.
A loop is a closed path. The transmittance of a loop L is the product of the
transmittances of all the branches in the loop. A loop consisting of a single
branch and a single node, as for instance loop g in Fig. 1.17, is called a self-
loop. Two paths or two loops, or a path and a loop are said to be nontouching
if they do not have any common node.

The Mason formula allows determination of the gain relating any dependent
node to any source node of a signal-flow graph as a function of the transmit-
tances of all the paths joining the considered nodes and all loops in the graph.
In order to express the formula, a little topological analysis is needed: denote
by Pi, i∈P, where Jp is a set of indexes, the transmittances of all the different
paths joining the considered nodes; by Lj , j ∈J1, those of all the different loops
in the graph; by J2 the set of the pairs of indices corresponding to nontouching
loops; by J3 that of the triples of indices corresponding to nontouching loops by
three, and so on; furthermore, let J1,i be the set of the indices of all the loops
not touching path Pi; J2,i that of the indices of all the pairs of nontouching
loops not touching path Pi, and so on. When a set of indexes is empty, so are
all subsequent ones.

The Mason formula for the transmittance coefficient relating the considered
nodes is

T =
1

∆

∑

i∈Jp

Pi ∆i (1.5.5)

where

∆ := 1 −
∑

i∈J1

Li +
∑

(i,j)∈J2

Li Lj −
∑

(i,j,k)∈J3

Li Lj Lk + . . . (1.5.6)
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∆i := 1 −
∑

i∈J1,i

Li +
∑

(i,j)∈J2,i

Li Lj −
∑

(i,j,k)∈J3,i

Li Lj Lk + . . . (1.5.7)

∆ is called the determinant of the graph, whereas ∆i denotes the determinant
of the partial graph obtained by deleting the path Pi, i.e., by deleting all nodes
belonging to Pi and all pertinent branches.

Going back to the example of Fig. 1.17, in order to derive the gain T relating
x4 to x0, first identify all paths and loops and determine their transmittances:

P1 = abcd , P2 = aed , P3 = abf

L1 = edh , L2 = bcdh , L3 = bfh , L4 = g

then consider the corresponding nonempty index sets:

Jp = {1, 2, 3} , J1 = {1, 2, 3, 4} , J2 = {(1, 4)} , J12 = {4}

The Mason formula immediately yields

T =
abcd + aed (1−g) + abf

1 − edh − bcdh − bfh − g + edhg

1.5.2 Cascade, Parallel, and Feedback Interconnections

It is useful to define three basic interconnections of systems, which are often
referred to when considering decomposition problems.

Figure 1.18. Cascaded systems.

1. Cascade. Two dynamic systems Σ1 and Σ2 are said to be connected in
cascade (or, briefly, cascaded) if, at any instant of time, the input of Σ2 is a
function of the output of Σ1, as shown in Fig. 1.18. For the cascade connection
to be possible, condition T1 = T2 is necessary. The input set of the overall system
is U =U1, whereas the output set is Y =Y2 and the state set is X =X1 ×X2.

2. Parallel . Two dynamic systems Σ1 and Σ2 are said to be connected in
parallel if, at any instant of time, their inputs are functions of a single variable
u∈U , which is the input of the overall system, while the output y ∈Y of the
overall systems is, at any instant of time, a function of both outputs y1 and
y2. Condition T1 = T2 is also required in this case; the state set of the overall
system is X =X1 ×X2. The parallel connection is shown in Fig. 1.19.
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Figure 1.19. Parallel systems.

Figure 1.20. Feedback-connected systems.

3. Feedback . Two dynamic systems Σ1 and Σ2 are said to be connected in
mutual feedback if, at any instant of time, their inputs u1 and u2 are functions
of y2 and y1 and of two further variables, v1 ∈V1 and v2 ∈V2 respectively. The
input, output, and state sets of the overall system are U =V1 ×V2, Y =Y1 ×Y2,
X =X1 ×X2. Condition T1 =T2 is also required in this case. The feedback
connection is shown in Fig. 1.20.

When two (or more) systems are connected to each other, common signals
must be congruent with regard both to the sets over which variables are defined
and to time, which must be real or integer for all considered systems. However,
connection is also possible in the absence of these congruences provided that
suitable signal converters are used.

An output signal from a continuous system can be converted into an input
signal to a discrete system by means of a device, called a sampler , which
performs the processing represented in Fig. 1.21. This consists of taking samples
of the continuous signal at given instants of time. The reverse conversion
is achieved by using a hold device, which maintains its output at the value
corresponding to the last received sample, as shown in Fig. 1.22.

In order to obtain congruence of values, devices called quantizers are used.
For instance, see in Fig. 1.23 the processing that transforms a real-valued func-
tion of time into an integer-valued function of time; the input-output charac-
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Figure 1.21. Sampler.

Figure 1.22. Hold device.

teristic function of the device is shown in Fig. 1.24.

When a continuous system is connected to a discrete system whose variables
have a finite number of values (for instance, a digital processor), both a sampler
and a quantizer, connected to each other in cascade, are required.

1.6 A Review of System and Control Theory

Problems

In this section the most important problems pertinent to the system and control
theory area are briefly presented. The solution of some of them by means of
state-space techniques is the aim of this book, so they will be the object of more
ample consideration and discussion in subsequent chapters.

System theory problems can be divided into two major classes: analysis and
synthesis problems, the former referring to the investigation of inherent proper-
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Figure 1.23. Quantizer.

Figure 1.24. Input-output characteristic function of a quantizer.

ties of systems, usually stated and approached through mathematical models,
the latter to the derivation of mathematical tools or artificial subsystems, called
controllers or regulators, to influence system behavior properly. Of course, there
is a strict connection between analysis and synthesis since most general proper-
ties of systems are investigated to achieve precise information on the solvability
of certain synthesis problems or on the feasibility of some synthesis-oriented
procedures.
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The most important analysis problems are the following:

1. Modeling : to derive a suitable mathematical model for a system;

2. Motion and response analysis: to determine the state time evolution (mo-
tion) and the output time evolution (response), given the initial state and the
input function;

3. Stability analysis: in plain terms, stability is the property of a system
to react with bounded variations of state and output functions to bounded
variations of the input function;

4. Controllability analysis: to investigate the possibility of reaching given
values of state or output vectors or obtaining particular types of state or output
evolutions by means of admissible input functions;

5. Observability analysis: to investigate the possibility of achieving knowl-
edge of the state from complete or partial knowledge of the input and output
functions;

6. Identifiability analysis: to investigate the possibility of deriving an input-
output model or some of its parameters from complete or partial knowledge of
the input and output functions.

Some related synthesis problems are:

1. Control input synthesis: to determine an input function that, from a given
initial state, causes system evolution to meet a specified control task;

2. Control input and initial state and time synthesis: same as above, but the
initial state and, in the time-varying case, the initial time have to be determined
besides the input function, for a specified control task;

3. Synthesis of a state observer : to determine a procedure or a device to
derive the state of a system from a finite record of input and output functions;

4. Synthesis of an identifier : to determine a procedure or a device that derives
a model of a system or some parameters of it from a finite record of input and
output functions;

5. Synthesis of an automatic control apparatus : to design a processor that,
taking into account measurements of some of the output variables, automatically
sets the manipulable variables to achieve a given control task.

Problems 1 and 2 above are typical open-loop or feedforward control prob-
lems, since the controller works without any information on the actual system
time evolution, i.e., without being able to check whether the control objective is
being reached. The possibility of implementing a completely open-loop control
strategy largely depends on the precision of the available mathematical model
of the controlled system. The corresponding connection is shown in Fig. 1.25,
where r denotes the reference input for the controller, which is here understood
in a broad sense as the complete amount of information needed to specify the
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Figure 1.25. Open-loop control connection.

Figure 1.26. Connection for observation or identification.

control task, u the manipulable input, d the nonmanipulable input or distur-
bance, y the output.

The “control task” is different from case to case; for instance, it may con-
sist of reproducing a given state or output trajectory with a minimum error,
or in reaching a given final state from a given initial state in an optimal way;
optimality is usually expressed in mathematical terms by a performance index ,
which is usually a given functional of the system time evolution, i.e., of input,
state, and output functions, to be minimized. The block diagram in Fig. 1.25
shows a logical cause-effect connection rather than an actual physical connec-
tion: in fact, computation of an optimal open-loop control law is not necessarily
performed in real time.

Problems 3 and 4 are represented by the block diagram shown in Fig. 1.26,
where the manipulable input u is assumed to be completely known, disturbance
input d may be inaccessible or not for measurement, and z indicates the informa-
tion provided by the device (estimate of state or parameters of an input-output
model). Again observation and identification, being open-loop operations, are
not necessarily performed in real time by means of a device continuously con-
nected to the system like the one shown in the figure, but can also be viewed
as off-line processing of recorded data.
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Figure 1.27. Closed-loop control connection.

When, on the other hand, continuous monitoring of the controlled system is
needed to obtain the desired control task, it is necessary to use the closed-loop
or feedback connection shown in Fig. 1.27 as a block diagram, in which the
controller receives information both from the environment, through r and d,
and the controlled system, through connection y. In the controlled system, d
denotes the disturbance input, c the regulated output , possibly different from the
informative output y, e the control error. The feedback connection is the most
interesting for on-line control purposes since it allows any type of error made
in achieving the control task to be compensated by performing corrections over
the manipulable variables related to measurements of representative quantities
of the controlled system. Thus, lack of accuracy in the mathematical model or
in the manipulable variables actuation is automatically adjusted.

Example 1.6.1 (optimal control) Suppose a guided missile has to be con-
trolled to reach an earth satellite. The manipulable variables are the intensity
and direction of engine thrust. A preliminary step for control is to determine an
optimum policy, i.e., the initial time, the initial situation if the launching pad is
not fixed, and the control function according to a given performance index; this
could, for instance, be a minimum overall fuel consumption or the minimum
time for a given total amount of fuel. The solution of this problem is usually
achieved before the launch, hence it is completely open-loop. �

Example 1.6.2 (tracking control) After launch of the aforesaid missile, we
are faced with a completely different control problem: to ensure that the
previously determined trajectory is actually followed despite possible, relatively
small imperfections of the mathematical model used and the thrust controlling
apparatus. To this end, the actual trajectory is continuously monitored and
corrections are made should it tend to diverge from the desired one; this kind
of control is a typical example of a closed-loop action and is called tracking .
indextracking Contrary to the open-loop, it can automatically compensate for
unknown and unpredictable disturbances or simply for precision limits of the
mathematical model. �
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Example 1.6.3 (adaptive control) A robot arm must handle several types
of objects whose mass is not known in advance, and deposit them in specified
positions. This, too, can be considered a tracking problem, but the system does
not have a completely known dynamic behavior because the mass is not known
in advance. The controller in this case must be adaptive or self-tuning , i.e., must
vary its dynamics to achieve satisfactory performance in all circumstances (good
speed and absence of oscillations). Control action and parametric identification
are obtained together, with interacting policies. In fact, by means of movement
a twofold effect is obtained: to position objects and evaluate their masses by
measuring the corresponding effort, so that a motion trajectory which fits both
these requirements must be followed. �

The above examples, although referred to particular cases, point out some
general aspects of control problems. Complicated control policies, such as those
relating to overall optimization of multivariable plants, are usually computed
off-line, hence open-loop, but implemented by means of suitable closed-loop
automatic tracking apparatus. In some cases, an on-line identification process
coordinated with the control task is required to improve performance.

1.7 Finite-State Systems

A finite-state system, or finite-state machine, or automaton is a discrete-time
system whose input, state, and output sets are finite. Finite-state systems are
used as models of numerous physical and nonphysical objects, like computers,
automatic machine-tools, computer programs, telephone switching apparatus.

In the framework of system theory, they are quite interesting because, al-
though they require a very simple mathematical background (the most elemen-
tary concepts of algebra), finite-state systems are generally nonlinear. For this
reason, simple examples taken from finite-state system theory can be used, for
instance, to clarify how restrictive linearity assumption is with respect to general
system behavior. Furthermore, the algorithms that solve control and observa-
tion problems of finite-state systems help to gain insight into the meaning and
way of operation of the most relevant algorithms of the geometric approach to
linear systems, which have a very similar structure.

Finite-state systems, being particular discrete-time systems, satisfy Defini-
tion 1.3.4. The input set is U := {u1, . . . , up}, the input function set Uf is the
set of all the sequences u(·) : T → U , the state set is X := {x1, . . . , xn}, and
the output set is Y := {y1, . . . , yq}. Discrete time will be herein denoted by i so
that the next-state function and the output function can be written as

x(i + 1) = f(x(i ), u(i )) (1.7.1)

y(i ) = g(x(i ), u(i )) (1.7.2)

Transitions occur when a suitable synchronizing event or clock signal (for
instance, a sequence of impulses) is applied to a clock input. The synchronizing
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events can be generated independently of the other inputs or related to them; for
instance, when a keyboard is used as the input device, an impulse is generated
when any key is pressed, causing the corresponding symbols to be accepted.
Hence, the synchronizing events do not necessarily need to be uniformly spaced
in time.

In the usual automata terminology the mathematical model expressed by
(1.7.1, 1.7.2), referring to a nonpurely dynamic system, is called a Mealy model ,
whereas that expressed by the purely dynamic system

x(i + 1) = f(x(i ), u(i )) (1.7.3)

y(i ) = g(x(i )) (1.7.4)

is called a Moore model .

Figure 1.28. A unit delay.

A particular finite-state purely dynamic system is the unit delay (see
Fig. 1.28) described by the equations

x(i + 1) = u(i ) (1.7.5)

y(i ) = x(i ) (1.7.6)

or by the sole input-output equation

y(i +1) = u(i ) (1.7.7)

As in the general case, a memoryless , or purely algebraic, or purely combina-
torial finite-state system is one whose mathematical model reduces to the sole
algebraic relation

y(i ) = g(u(i )) (1.7.8)

Property 1.7.1 Any finite-state system can be realized by interconnecting a
purely combinatorial system and a unit delay.

Proof. Consider the connection shown in Fig. 1.29, which is clearly described
by (1.7.1, 1.7.2) and is obtained by connecting a memoryless system (pointed
out by dashed lines) and a unit delay. �
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Figure 1.29. Realization of a finite-state system.

Functions f and g which, according to (1.7.1, 1.7.2), describe the behavior
of finite-state systems, can be specified by means of two tables or a graph, as
follows.

1. Transition and output tables : In the most general case (Mealy model)
transition and output tables are shown in Fig. 1.30(a,b). They have n rows
and p columns, labeled with the state and input symbols respectively: the
intersection of row xi and column uj shows the value of next-state function
f(xi, uj) and output function g(xi, uj). In the case of a purely dynamic system
(Moore model) the output table is simplified as shown in Fig. 1.30(c).

2. Transition graphs: The transition graph has n nodes, which represent the
n states of the system. Referring to Fig. 1.31(a), consider the generic node xi

and denote by Uij the set of all the input symbols such that f(xi,Uij) = {xj},
i.e., of symbols which cause transition from state xi to xj . If Uij is nonempty,
the graph has an oriented branch joining nodes xi and xj , which is labeled with
the set of symbols {uk/yk}, where k is any subscript such that uk ∈Uij and
uk := g(xi, uj). In other words, for every node xi there are as many outgoing
branches as there are possible transitions, i.e., as there are possible future states,
which in the graph appear as the terminal nodes of these branches. Each branch
is labeled with symbols of the type uk/yk, as many as the input symbols causing
the considered transition. This type of graph refers to the Mealy model; the
graph for the Moore model is shown in Fig. 1.31(b): outputs are related to
nodes instead of to each different transition in the branches.
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Figure 1.30. Transition and output tables.

Figure 1.31. Transition graphs.

Example 1.7.1 (a sequence detector) The input set is the set of characters
of a keyboard and the device is required to detect the sequence ARE�, where �

denotes space; the output set is {0, 1} and the output is required to assume
value 1 every time the sequence is detected. The transition table, output table,
and transition graph corresponding to this description in words are shown in
Fig. 1.32: for the sake of simplicity, input σ is used for any character different
from ARE�.

Let us now examine the most important characterizing features of finite-state
systems related to control and observation.

1.7.1 Controllability

Following the notation introduced in Section 1.3, let

ϕ(k, 0, x(0), u(·)) (1.7.9)

γ(k, 0, x(0), u(·)) (1.7.10)
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Figure 1.32. Transition and output table and transition

graph of a sequence detector.

be the transition and response functions of a finite-state system. Clearly
(1.7.9, 1.7.10) are implicitly defined by recursion formulae (1.7.1, 1.7.2) or
(1.7.3, 1.7.4).

Given any two states xi, xj ∈X , xi is said to be controllable to xj in k steps
or xj is said to be reachable from xi in k steps if there exists an input sequence
u|[0,k−1] such that

xj = ϕ(k, 0, xi, u(·)) (1.7.11)

Given any two states xi, xj ∈X , xi is said to be controllable to xj or xj is
said to be reachable from xi if there exists an input sequence u|[0,k−1] such that
(1.7.11) holds.

Given any state x∈X , with R+
k (x) we shall denote the set of all the reachable

states, or briefly, the reachable set, from x in k steps, with W+
k (x) the reachable
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set from x in any number of steps not greater than k. Clearly, R+
k (x)⊆W+

k (x).
Similarly, with R−

k (x) and W−
k (x) we will refer to the set of all the states

controllable to x in k steps or in any number of steps not greater than k.
Clearly, R−

k (x)⊆W−
k (x).

Algorithm 1.7.1 The sets R+
k (x) and R−

k (x) are provided by the recursion
equations

R+
0 (x) = {x}

R+
i (x) =

p
⋃

j=1

f(R+
i−1(x), uj) (i =1, . . . , k) (1.7.12)

R−
0 (x) = {x}

R−
i (x) =

p
⋃

j=1

f−1(R−
i−1(x), uj) (i = 1, . . . , k) (1.7.13)

where f(R+
i−1(x), uj) and f−1(R−

i−1(x), uj) denote respectively the image of
R+

i−1(x) and the inverse image of R−
i−1(x) in the function f(x, uj) : X →X

(for any given uj).

Proof. The meaning of the recursion relation (1.7.12) is clear: the set of
reachable states from x in i steps is the union of sets that are obtained by
transforming, with respect to f , the set of reachable states from x in i− 1 steps
for all input symbols. A similar argument applies to (1.7.13). �

Algorithm 1.7.2 The sets W+
k (x) and W−

k (x) are provided by the recursion
equations

W+
0 (x) = {x}

W+
i (x) = W+

0 (x) ∪
(

p
⋃

j=1

f(W+
i−1(x), uj)

)

(i =1, . . . , k) (1.7.14)

W−
0 (x) = {x}

W−
i (x) = W−

0 (x) ∪
(

p
⋃

j=1

f−1(W−
i−1(x), uj)

)

(i =1, . . . , k) (1.7.15)

Proof. First, we consider relations (1.7.14) and prove that the recursion
formula is equivalent to

W+
i (x) = W+

i−1(x) ∪
(

p
⋃

j=1

f(W+
i−1(x), uj)

)

(i =1, . . . , k) (1.7.16)

which, in turn, simply expresses the definition of W+
i (x). Clearly, in (1.7.16) it

is W+
i (x)⊇W+

i−1(x) (i =1, . . . , k), so that

p
⋃

j=1

f(W+
i−1(x), uj) ⊇

p
⋃

j=1

f(W+
i−2(x), uj)
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Substitute in the i-th relation of (1.7.16) the first term on the right, provided
by the previous relation (the i− 1-th). It follows that

W+
i (x) = W+

i−2(x) ∪
(

p
⋃

j=1

f(W+
i−2(x), uj)

)

∪
(

p
⋃

j=1

f(W+
i−1(x), uj)

)

= W+
i−2(x) ∪

(

p
⋃

j=1

f(W+
i−1(x), uj)

)

(1.7.17)

In a similar way it is possible to prove that in (1.7.17) W+
i−2(x) can be

substituted by W+
i−3(x), and so on until (1.7.14) is obtained. Relations (1.7.15)

are proven by a similar argument. �

By W+(x) we shall denote the set of states reachable from x (with sequences
of any length) and by W−(x) the set of states controllable to x. The following
holds.

Theorem 1.7.1 The sets W+(x) and W−(x) can be determined respectively
with the recursion formulae (1.7.14) and (1.7.15), stopping at the first value of
i such that W+

i+1(x) =W+
i (x) or W−

i+1(x) =W−
i (x).

Proof. If, for a value of i, say k, W+
k+1(x) =W+

k (x), sequence (1.7.14) for all
values of i greater than k provides the same set, since at each additional step the
same formula is applied to the same set. This argument also holds for sequence
(1.7.15). �

Corollary 1.7.1 Consider a finite-state system having n states. If state xj is
reachable from xi, transition can be obtained in, at most, n− 1 steps.

Proof. It has been remarked in the previous proof that the number of el-
ements of sets W+

i (x) (i =0, 1, 2, . . . ) strictly increases until the condition
W+

i+1(x) =W+
i (x) is met. Since W0(0) has at least one element, the total num-

ber of transitions cannot be greater than n− 1. �

Theorem 1.7.2 A finite-state system is completely controllable or strongly con-
nected if and only if W+(x) =W−(x) =X for all x∈X .

Proof. Only if. In a strongly connected system both the transition from x to
any other state and the inverse transition must be possible.

If. For any two states xi, xj ∈X , since xi ∈W−(x), xj ∈W+(x), it is possible
to reach x from xi and xj from x. �

Algorithms 1.7.1 and 1.7.2 are the basic tools for solving control problems
of finite-state systems. The most common of these problems are the following.

Problem 1.7.1 (control between two given states) Given any two states xi, xj,
find a minimal-length input sequence that causes transition from xi to xj.
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Solution. For the problem to admit a solution, one of the following relations
must clearly be satisfied:

xj ∈ W+(xi) (1.7.18)

or
xi ∈ W−(xj) (1.7.19)

Refer, for instance, to (1.7.19): let k be such that xi ∈ W−
k (xj),

xi /∈ W−
k−1(xj); by definition, there exists an input u(0) such that x(1) =

f(xi, u(0)) ∈ W−
k−1(xj), an input u(1) such that x(2) = f(x(1), u(1)) ∈

W−
k−2(xj), and so on. Thus, an input sequence u|[0,k−1] exists that tranfers

the state from xi to xj . �

Problem 1.7.2 (control to a given output) Given an initial state xi and an
output value yj, find a minimal-length input sequence that, starting from xi,
produces yj as the last output symbol.

Solution. The set of all the states that, by an appropriate choice of the input,
can produce the output yj, is

Xj :=

p
⋃

r=1

g−1({yj}, ur) (1.7.20)

By applying Algorithm 1.7.2 with W−
0 (Xj) :=Xj an integer k is determined

such that xi ∈W−
k (Xj), xi /∈W−

k−1(Xj), then it is possible to proceed as in the
previous problem in order to derive the input sequence u|[0,k−1]. Let xk ∈Xj be
the state that can be reached by applying this sequence: by definition, there
exists an input u(k) such that yj = g(x(k), u(k)); this completes the sequence
u|[0,k], which solves the problem. �

Problem 1.7.3 (control for a given output sequence) Find, if possible, an
input sequence u|[0,k] that produces a given output sequence y|[0,k] starting at a
given initial state xi.

Solution. The set of all the initial states compatible with the given output
sequence is provided by the recursion algorithm

Xk =

p
⋃

r=1

g−1({y(k)}, ur)

Xk−i =

p
⋃

r=1

(

g−1({y(k− i )}, ur) ∩ f−1(Xk−i+1, ur)
)

(i =1, . . . , k) (1.7.21)

which can be explained in the following terms: Xk is the set of all the states
from which, by a suitable input, it is possible to obtain the output y(k), while
Xk−1 is the similar set which allows the output y(k− 1) and transition to a
state belonging to Xk to be obtained, and so on. For the problem to admit a
solution, it is clearly necessary that x(0)∈X0: the input sequence u|[0,k] can be
determined as for Problem 1.7.1. �
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1.7.2 Reduction to the Minimal Form

In the particular case of finite-state systems, Definition 1.3.9 can be stated in
the following terms: two states xi, xj ∈X are said to be indistinguishable in k
steps or k-indistinguishable if

γ(r, 0, xi, u(·)) = γ(r, 0, xj, u(·)) ∀ r ∈ [0, k] , ∀u(·)
or, in words, if, for any input sequence of length k +1, the same output sequence
is obtained starting either at xi or xj . Note that k-indistinguishability, being
clearly reflexive, symmetric, and transitive, is an equivalence relation. The
induced state partition will be denoted by Pk. Since the set of all the partitions
of a finite set X is a lattice, it is possible to define in the set of all the state
partitions a partial ordering relation, addition and multiplication, a supremum
(the maximal partition PM , with a unique block), and an infimum (the minimal
partition Pm, with as many blocks as there are elements in X ). Furthermore,
given a function f : X →Y and any partition P of Y , the inverse image of P in
f is defined as the partition of X whose blocks are the inverse images in f of
the blocks of P . In light of these additional definitions, the following algorithm
can be set.

Algorithm 1.7.3 The k-indistinguishability partition Pk is provided by the
recursion equations

P0 =

p
∏

j=1

g−1(Pm, uj)

Pi = P0 ·
(

p
∏

j=1

f−1(Pi−1, uj)
)

(i = 1, . . . , k) (1.7.22)

Proof. The first of (1.7.22) provides the 0-indistinguishability partition, i.e.,
the partition of states whose blocks in relation (2) provide the same output for
all inputs. Consider, instead of the next recursion relations (1.7.22),

Pi = Pi−1 ·
(

p
∏

j=1

f−1(Pi−1, uj)
)

(i =1, . . . , k) (1.7.23)

which will be proved to be equivalent to them. The i-th of (1.7.23) ex-
presses that, for any two states to be i-indistinguishable, they must be (i− 1)-
indistinguishable and any transition from them has to occur toward (i− 1)-
indistinguishable states. In fact, if there should exist an input corresponding to
a transition toward (i− 1)-distinguishable states, an input sequence u|[0,k] with
this input as the first element would allow us to distinguish the two states re-
ferred to. We shall prove now that in (1.7.22) the recursion formula is equivalent
to (1.7.23): note that in sequence (1.7.23) Pi ≤Pi−1 (i = 1, . . . , k), so that

p
∏

j=1

f−1(Pi−1, uj) ≤
p
∏

j=1

f−1(Pi−2, uj) (1.7.24)
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Then, substitute in the i-th relation of (1.7.23) the first term on the right, Pi−1,
provided by the previous relation. It follows that

Pi = Pi−2 ·
(

p
∏

j=1

f−1(Pi−1, uj)
)

·
(

p
∏

j=1

f−1(Pi−2, uj)
)

= Pi−2 ·
(

p
∏

j=1

f−1(Pi−1, uj)
)

(1.7.25)

In a similar way, it is possible to prove that in (1.7.25) Pi−2 can be substituted
by Pi−3, and so on, until (1.7.22) is obtained. �

In the particular case of finite-state systems, Definition 1.3.10 can be stated
in the following terms: two states xi and xj are said to be equivalent if they are k-
indistinguishable for any k. The corresponding state partition P = {p1, . . . , ps}
is called equivalence partition.

Theorem 1.7.3 The equivalence partition P can be determined with the recur-
sion relations (1.7.22), stopping at the first value of i such that Pi+1 = Pi.

Proof. If, for a value of i, say k, Pk+1 = Pk, sequence (1.7.21) for all values of
i greater than k provides the same partition, since at each additional step the
same formula is applied to the same partition. �

Corollary 1.7.2 Consider a finite-state system having n states. Any two
(n− 2)-indistinguishable states are equivalent.

Proof. Partition P0 has at least two blocks and the subsequent Pi (i = 1, 2, . . . )
have a number of blocks strictly increasing until the condition Pk+1 =Pk is
obtained for a certain k. Hence, the value of k cannot be greater than n− 2. �

According to Definition 1.3.11, a finite-state system is said to be in minimal
form or minimal if it has no equivalent states, i.e., if P =Pm. According to
Definition 1.3.12, two finite-state systems Σ1 and Σ2 are said to be equivalent
if U1 =U2, Y1 =Y2, and if for any state x1 ∈X1 (x2 ∈X2) of one of them there
exists a state x2 ∈X2 (x1 ∈X1) of the other such that

γ1(k, 0, x1, u(·)) = γ2(k, 0, x2, u(·)) ∀ k ≥ 0 , ∀u(·) (1.7.26)

Theorem 1.7.4 Two finite-state systems Σ1 and Σ2 are equivalent if and only
if the composite system Σ defined by

1. U = U1 = U2

2. Y = Y1 = Y2

3. X = X1 ∪ X2
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4. f(x, u) =

{

f1(x, u) if x∈X1

f2(x, u) if x∈X2

5. g(x, u) =

{

g1(x, u) if x∈X1

g2(x, u) if x∈X2

has states of both Σ1 and Σ2 in every block of the equivalence partition.

Proof. A characterizing feature of system Σ is that all transitions occur
between states of X1 if the initial state belongs to X1 and between states of
X2 if the initial state belongs to X2. In order to prove the theorem, simply note
that relation (1.7.26), which states the equivalence of Σ1 and Σ2, implies the
equivalence of x1 and x2, considered as states of Σ. �

Definition 1.7.1 (minimal form of a finite-state system) Let Σ be a finite-
state system not in minimal form: the minimal form of Σ is the equivalent
system Σ′, defined by

1. U ′ = U
2. Y ′ = Y
3. X ′ = P = {p1, . . . , ps}
4. f ′(pi, u) = pj if f(xi, u) =xj , xi ∈ pi, xj ∈ pj

5. g′(pi, u) = g(xi, u) if xi ∈ pi

The concepts of k-indistinguishability and equivalence partition are used
in order to solve observation and reconstruction problems. One of the most
important of these is the pairwise diagnosis experiment , which is formulated as
follows.

Problem 1.7.4 (pairwise diagnosis experiment) Let xi and xj be the unique
admissible initial states of a minimal finite-state system Σ: determine an input
sequence having minimum length that allows us to determine which of them is
the actual initial state from the output function.

Solution. Let k be such that xi and xj belong to different blocks of Pk

but to the same block of Pk−1, i.e., such that they are k-distinguishable
and (k− 1)-indistinguishable. Then, there exists an input u(0) which pro-
duces transitions from xi and xj toward (k− 1)-distinguishable but (k− 2)-
indistinguishable states, an input u(1) which produces transitions from such
states toward (k− 2)-distinguishable but (k− 3)-indistinguishable states, and
so on: the input u(k− 1) produces transitions toward 0-distinguishable states,
so that a suitable input u(k) causes outputs to be different. The determined
input sequence u|[0,k] allows the two initial states to be distinguished by consid-
ering the last element of the corresponding output sequence y|[0,k]. Note that,
in any case, k≤n− 2. �
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Example 1.7.2 An experiment to distinguish the initial states L and M in
the finite-state system shown in Fig. 1.32 can be determined as follows: first,
subsequent k-indistinguishability partitions Pk (k =0, 1, . . . ) are determined
until L and M are in different blocks. In the particular case referred to we
get

P0 = {L, M, N ; O}
P1 = {L, M ; N ; O}
P2 = {L; M ; N ; O}

The states L and M are 2-distinguishable: in fact, input R causes transitions to
states L and N , then E to L and O, which are 0-distinguishable, since � causes
the output to be 0 and 1 respectively. Then the problem is solved by the input
sequence {R, E, �}, which produces either the output sequence {0, 0, 0} if the
initial state is L or {0, 0, 1} if it is M . �

1.7.3 Diagnosis and State Observation

According to the definition stated in Section 1.4, the diagnosis problem of a
finite-state system Σ, assumed to be minimal, is the following: given an admis-
sible initial state set XA ⊆X , determine the actual initial state by applying a
suitable input sequence and considering the corresponding output sequence; in
other words, an input sequence has to be determined such that the correspond-
ing output sequence is different for every x(0)∈XA. It has been shown in the

Figure 1.33. A case where diagnosis is not possible.

previous section (Problem 1.7.4) that the diagnosis problem always admits a
solution if XA has only two elements. If, on the other hand, elements of XA are
more numerous, the problem may not admit a solution. As an example of such
a case, consider the partial graph shown in Fig. 1.33 concerning a system with
{0, 1} as input and output set: an input sequence beginning with 0 destroys
all chances of distinguishing L and M , while an input sequence beginning with
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1 destroys all chances of distinguishing M and N . Therefore, diagnosis with
XA := {L, M, N} is not possible, at least with a simple experiment , i.e., with a
single trial.

If the system can be “reset” after every trial (i.e., brought again to the
unknown initial state), a multiple experiment can be performed: it will be
shown ( Theorem 1.7.5) that this kind of experiment always solves the diagnosis
problem.

The diagnosis experiments, simple or multiple, can be preset or adaptive: in
a preset experiment the input sequence is determined in advance, while in an
adaptive sequence it depends on the output values as they arrive.

Figure 1.34. A case where adaptive diagnosis is possible and

preset diagnosis is not.

In some instances the diagnosis problem is solved with a simple, adaptive
experiment, but not with a simple, preset experiment. As an example for this,
consider the partial graph shown in Fig. 1.34, again referring to a system with
{0, 1} as input and output set. Let XA := {O, P, Q, R}: applying the input
sequence {0, 1} destroys all chances of distinguishing Q and R, while {0, 0}
destroys those of distinguishing O and P . However, it is possible to follow
another policy: apply input 0 and observe the output; if it is 0, Q and R are
excluded as initial states and subsequent application of input 1 allows us to
distinguish between O and P , while if it is 1, O and P are excluded as initial
states and subsequent application of input 0 allows us to distinguish between
Q and R.

A simple diagnosis experiment, although not generally providing the initial
state in XA (if elements of XA are more than two), allows the exclusion of
a certain number of elements of XA as initial states (at least one). In fact,
there exists an input sequence that allows any pair of states xi, xj in XA to be
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distinguished (i.e., a pairwise diagnosis sequence for them) and corresponds to
a partition P0 of initial states with at least two blocks, since xi and xj clearly
must belong to different blocks. Hence the following result.

Theorem 1.7.5 The diagnosis problem always admits a solution with a multi-
ple experiment, which can be preset or adaptive.

Proof. Applying an input sequence that allows two states of XA to be distin-
guished (pairwise diagnosis experiment) induces a partition of XA with a differ-
ent output sequence associated to each block. This procedure can be repeated
for each block (multiple preset experiment) or for the particular block to which
the initial state actually turns out to belong (multiple adaptive experiment),
until complete information on the initial state is obtained. �

The initial state partition induced by the knowledge of the output sequence
is provided by the following simple algorithm, which refers to the most general
case XA =X .

Algorithm 1.7.4 Knowledge of the output sequence y|[0,k] corresponding to a
given input sequence u|[0,k] allows the establishment of a set of admissible initial
states, which coincides with one of the blocks of the partition P0 provided by the
recursion equation

Pk = g−1(Pm, u(k))

Pk−i = g−1(Pm, u(k− i )) · f−1(Pk−i+1, u(k− i )) (i = 1, . . . , k) (1.7.27)

Proof. Pk is the partition of the final states x(k) induced by the property of
producing the same output y(k) under the input u(k) (which is clearly an equiv-
alence relation); Pk−1 is induced by the property of causing the same partial out-
put sequence {y(k− 1), y(k)} under the partial input sequence{u(k − 1), u(k)}
(also an equivalence relation): in other words, states x(k− 1) belonging to a
block of Pk−1 produce the same output under the input u(k− 1) and with this
input are transformed into future states that produce the same output with
input u(k). A similar argument applies for the generic Pk−i. �

The observation problem (i.e., to derive information on the initial state from
the knowledge of corresponding input and output sequences) can be solved
as stated in the following problem, by an iterative procedure very similar to
Algorithm 1.7.4.

Problem 1.7.5 (state observation) Determine the initial state set in XA com-
patible with given sequences of input and output u|[0,k], y|[0,k].

Solution. The recursion relation

Xk = g−1({y(k)}, u(k))

Xk−i = g−1({y(k− i )}, u(k− i )) ∩ f−1(Xk−i+1, u(k− i ))

(i = 1, . . . , k) (1.7.28)
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provides, as the last term, the set of initial states compatible with the given
sequences, i.e., E−

k (u(·), y(·)). The solution of the stated problem is clearly
XA ∩X0. �

1.7.4 Homing and State Reconstruction

According to the definition stated in Section 1.4, the homing problem of a
finite-state system Σ, which is assumed to be minimal, consists of the following
problem: given an admissible initial state set XA ⊆X , determine the final
(or current) state by applying a proper input sequence and considering the
corresponding output sequence.

Like diagnosis experiments, homing experiments can be preset or adaptive,
according to whether the input sequence is determined in advance or made to
depend on the output values as they arrive. Contrary to diagnosis, homing
always admits a solution with a simple experiment.

To present the algorithm that solves the homing problem, it is convenient
to introduce the concept of partialization of a set X : a partialization of X is a
collection Q of subsets of X (which, similar to those of partition, will be called
“blocks” herein) such that

1. the same element can belong to several blocks of Q;

2. the sum of all elements in Q (possibly repeated) is not greater than n.

It is easy to check that, given both a function f : X →X and a partialization
Q of X , the set Q′ := f(Q) whose elements are the images of all blocks of Q
with respect to f is also a partialization of X . In particular, transforming
with respect to f a partition of X , which is also a partialization, provides
a partialization. The product of a partition P by a partialization Q is the
partialization whose blocks are obtained by intersecting blocks of P and Q in
all possible ways.

Algorithm 1.7.5 Knowledge of the output sequence y|[0,k] corresponding to a
given input sequence u|[0,k] allows the establishment of a set of admissible future
states x(k +1), which coincides with one of the blocks of the partialization Qk+1

and a set of admissible current states x(k), which coincides with one of the
blocks of the partialization Q′

k, provided by the recursion relations

Q0 = {XA}
Qi = f(Q′

i−1, u(i− 1)) (i =1, . . . , k +1) (1.7.29)

where
Q′

i−1 = Qi−1 · g−1(Pm, u(i− 1)) (1.7.30)

Proof. First, we consider sequence (1.7.29): Q1 clearly is the partialization of
states x(1) induced by the property of deriving with a transition corresponding
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to u(0) from states x(0) belonging to XA and producing the same output y(0)
under the input u(0), Q2 is the partialization of states induced by the property
of deriving with a transition corresponding to u(1) from states u(1) of a single
block of Q1 producing the same output y(1) under the input u(1); in other
words, every block of Q2 collects all states x(2) which correspond to the same
output sequence {y(0), y(1)} under the input sequence {u(0), u(1)}, provided
the initial state belongs to XA. In a similar way, by induction, the expression
of the generic Qi is derived. The meaning of the right side member of (1.7.30),
which is a part of the right side member of (1.7.29), is implied by the previous
argument. �

Theorem 1.7.6 Homing of a minimal finite-state system can always be per-
formed with a single preset experiment.

Proof. Note that in the iterative procedure set by Algorithm 1.7.5 every
block of Qi−1 may be partitioned (by intersection with g−1(Pm, u(i− 1)) and
every part is transformed to a block of Qi: hence, the number of elements of
every block of Qi is not greater than that of the corresponding blocks of Qi−1.
Thus, an input sequence that is not favorable (i.e., that does not improve the
knowledge of state) in the worst case leaves the maximum number of elements
per block in Qi and Q′

i unchanged. If, on the other hand, at a certain time
i any two states, say xi and xj , belong to the same block, it is sufficient to
apply a pairwise diagnosis sequence for them from that time on to be sure to
improve current state knowledge. By joining sequences that pairwise separate
all states, an input sequence u|[0,k] is obtained which solves the homing problem,
because it corresponds to a partialization Qk+1 whose blocks all contain a single
state. �

In the homing problem, as in the diagnosis problem, an adaptive experiment
is, in general, shorter than a preset one, because the future input sequence is
determined during the experiment referring to only one block of Qi, singled out
by examining the previously occurred output sequence. The reconstruction
problem (i.e., to derive information on the final or current state from the
knowledge of corresponding input and output sequences) can be solved by the
following iterative procedure very similar to Algorithm 1.7.5.

Problem 1.7.6 (state reconstruction) Given the set of admissible initial states
XA, determine the sets of states x(k +1) or x(k) compatible with given input
and output sequences u|[0,k] and y|[0,k].

Solution. By an argument similar to the one developed to prove Algorithm
1.7-5, the following recursion relations are derived:

X0 = {XA}
Xi = f(X ′

i−1, u(i− 1)) (i = 1, . . . , k +1) (1.7.31)
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where

X ′
i−1 = Xi−1 ∩ g−1(y(i− 1), u(i− 1)) (1.7.32)

which provide the sets Xk+1 of future states x(k +1) and X ′
k of current states

x(k) compatible with the given input and output sequences and with the given
initial state set XA. �

When XA =X , the described procedure provides the set E+
k (u(·), y(·)) de-

fined in Section 1.4 as X ′
k.

Figure 1.35. Connection of a state observer.

Relations (1.7.31, 1.7.32) allow us to define a state observer , i.e., a finite-
state system which, connected to Σ as shown in Fig. 1.35, continuously provides
the set of future states Xi+1 or the set of current states X ′

i . The input set of
the observer is U ×Y , both state and output sets coincide with the set of all
subsets of X , while next-state and output function are easily derivable from
(1.7.31, 1.7.32). If the initial state of the observer is the single-element set
corresponding to the actual state of the observed system, its output is the
single-element set containing future state x(i + 1) or current state x(i ); if, on
the other hand, the initial state is different, but congruent (i.e., a set containing
the actual state of the observed system, possibly the whole state set X ), the
observer provides as output the maximum information on future and current
state of the observed system; in order to “synchronize” the observer for complete
information, it is sufficient to apply an input sequence corresponding to a preset
homing experiment, which always exists by virtue of Theorem 1.7.6.

1.7.5 Finite-Memory Systems

Definition 1.7.2 (finite-memory system) A finite-state system Σ is said to be
finite-memory if it can be represented by an input-output model of the type

y(i ) = g′(u(i ), u(i− 1), . . . , u(i−µ), y(i− 1), y(i−2), . . . , y(i−µ)) (1.7.33)

where g′ denotes a function from Uµ+1 ×Yµ to Y.
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The minimal value of the integer µ is called the memory of Σ. A finite-
memory finite-state system can be realized according to the interconnection
scheme shown in Fig. 1.36, which refers to the input-output model (1.7.33)
instead of that shown in Fig. 1.29, which refers to the input-state-output model
(1.7.1, 1.7.2).

Figure 1.36. Realization of a finite-memory system.

The most common finite-state systems are generally finite-memory; for in-
stance, the sequence detector shown in Fig. 1.32 is finite-memory. On the other
hand, some finite-state systems, although very simple, are infinite-memory. As
an example, consider the system shown in Fig. 1.37, where U =Y = {0, 1}. If
an arbitrarily long input sequence consisting of all 0 is applied, the system re-
mains in any one of the two states with output 0 while, when input is 1, output
depends on the state. Therefore, the output in any instant of time cannot be
expressed as a function of previous input and output sequences and current
input.

Figure 1.37. An example of infinite-memory system.

Theorem 1.7.7 If system (1.7.1, 1.7.2) is minimal and finite-memory, its state
can be expressed as a function of previous input and output sequences having
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length µ, i.e.,

x(i ) = f ′(u(i− 1), u(i− 2), . . . , u(i−µ), y(i−1), y(i− 2), . . . , y(i−µ))
(1.7.34)

where f ′ denotes a function from Uµ ×Yµ to X .

Proof. If (1.7.34) does not hold, the same input sequence u|[i−µ,i−1] can
take the system into two distinguishable states also causing the same output
sequence y|[i−µ,i−1]. These states being distinguishable, there exists an input
sequence u|[i,i+r] (r≥ 0) such that the corresponding output sequences y|[i,i+r]

are different, so that (1.7.33) cannot hold. �

As a consequence of Theorem 1.7.7, any input sequence u|[0,µ−1] having
length µ can be used as a homing sequence for a minimal finite-state system
with finite memory µ. In other words, such a system is always reconstructable.
On the other hand, if the system is not finite-memory, by definition there always
exists at least one input sequence u|[0,r], with r arbitrarily large, which does not
solve the homing problem.

Going a step further with this argument, it is possible to derive a procedure
to establish whether a minimal finite-state system is finite-memory or not. To
achieve this it is necessary to introduce the concept of cover of a set X : a cover
C of X is a collection of subsets of X (again called “blocks”) with the following
properties:

1. the same element can belong to several blocks of C ;

2. the union of all blocks coincides with X ;

3. no block is contained in another block.

Note that a partition is a particular cover. It can be easily proved that
the set of all covers of X is a lattice with the partial order relation: Ci ≤Cj if
every block of Ci is contained in Cj. Denote by R(P) the reduction operation
which, for any set P of subsets of X , consists of the elimination of every
subset contained in another set. Addition and multiplication of two covers are
defined as: C1 + C2 := R(A), where A is the union of the blocks of C1 and C2;
C1 ·C2 := R(B), where B is the set whose elements are obtained by intersecting
blocks of C1 and C2 in all possible ways. Minimal cover Cm and maximal cover
CM of a given set X are equal respectively to the minimal partition Pm and to
the maximal partition PM .

Algorithm 1.7.6 Let Σ be a minimal, strictly connected, finite-state system:
if the sequence of covers of X provided by the recursion relation

C0 = CM

Ci = R
(

p
⋃

j=1

f(Ci−1 · g−1(Pm, uj), uj)
)

(i =1, 2, . . . ) (1.7.35)
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is such that Ck = Cm, Σ is finite-memory with memory µ =k. On the other
hand, if Ci = Ci−1 �=Cm for a certain i, Σ is not finite-memory.

Proof. Since Σ is strictly connected, every state has at least a predecessor, so
that sets Ci on the left of (1.7.35) are covers of X . Furthermore, Ci ≤Ci−1: in
fact from C1 ≤C0 it follows that

p
⋃

j=1

f(C1 · g−1(Pm, uj), uj) ≤
p
⋃

j=1

f(C0 · g−1(Pm, uj), uj)

hence, C2 ≤C1, and so on.
If, for a value of i, say k, Ck+1 =Ck, sequence (1.7.35) for all values of i

greater than k provides the same cover, since at each additional step the same
formula is applied to the same cover.

Note that all blocks of partializations Qi (i = 1, . . . , k +1) provided by Algo-
rithm 1.7.5 for a given input sequence u|[0,k] and for XA :=X , are contained in
blocks of Ci. Hence, if there exists an input sequence u|[0,r−1], for r large at will,
which does not allow the final state to be determined, the equality Cr =Cm is
not possible.

On the other hand, since every block of Ci has a corresponding sequence
u|[0,i−1] such that this block belongs to Qi, if any sequence u|[0,µ−1] allows the
determination of the final state, condition Cµ =Cm is clearly necessary. �
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Chapter 2

General Properties of Linear

Systems

2.1 The Free State Evolution of Linear Sys-

tems

When dealing with multivariable dynamic systems, in most cases mathematical
models are used that consist of vector (i.e., with vectors as variables) differen-
tial or difference equations. Although these equations are generally nonhomo-
geneous because of the inputs, in the fundamental case of linear systems the
basic features of their solutions are closely related to those of the corresponding
homogeneous equations, which describe the free evolution of the state. Hence,
it is helpful to study and classify the types of solutions of homogeneous linear
equations and their connections with the general properties of linear maps; in
this framework a fundamental tool is the state transition matrix, which is herein
defined and analyzed.

2.1.1 Linear Time-Varying Continuous Systems

Consider the linear time-varying system

ẋ(t) = A(t) x(t) (2.1.1)

where x∈Fn (F := R or F := C) and A(t) is an n×n matrix of piecewise
continuous functions of time with values in F . On the assumption that the real-
valued function k(t) := ‖A(t)‖ is bounded and piecewise continuous, Theorem
A.6.4 ensures the existence of a unique solution of (2.1.1) such that x(t0) =x0

for all x0 ∈Fn and all t∈R.

Note that:

1. the set of all solutions of (2.1.1) is a vector space: in fact, given any
two solutions x1( · ), x2( · ) of (2.1.1), α1x1( · ) +α2x2( · ) is also a solution
of (2.1.1) for all α1, α2 ∈F ;

57
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2. the zero function x( · ) =0 is a solution of (2.1.1): it is called the trivial
solution; due to uniqueness, no other solution can vanish at any instant of
time.

The state transition matrix is a fundamental tool used to achieve a better
insight into the structure of the vector space of the solutions of (2.1.1).

Definition 2.1.1 (state transition matrix) Let ϕi( · ) (i =1, . . . , n) be the n
solutions of (2.1.1) with initial conditions ϕi(t0) = ei (i =1, . . . , n), where ei

denotes the i-th vector of the main basis of Fn, i.e., the i-th column of the n×n
identity matrix. The matrix Φ( · , t0) having the functions ϕi( · ) as columns is
called the state transition matrix of system (2.1.1).

In other words, the state transition matrix is the solution of the matrix
differential equation1

Ẋ(t) = A(t) X(t) (2.1.2)

with initial condition X(t0) = I. In (2.1.2) X(t) denotes an n×n matrix with
elements in F .

A basic property of the state transition matrix is set in the following theorem.

Theorem 2.1.1 The state transition matrix Φ(t, t0) is nonsingular for all
t, t0 ∈R, t≥ t0.

2

Proof. Denote, as before, by ϕi(t) (i =1, . . . , n) the n columns of the state
transition matrix. By contradiction, assume that for a particular t the equality

α1ϕ1(t) + . . . + αnϕn(t) = 0

holds with the αi (i =1, . . . , n) not all zero; since the right side is a solution of
(2.1.1), due to uniqueness it must be the trivial solution, so that

α1ϕ1(t0) + . . . + αnϕn(t0) = α1e1 + . . . + αnen = 0

which is impossible, since vectors ei (i =1, . . . , n) are a linearly independent
set. �

Corollary 2.1.1 The set of all solutions of (2.1.1) is an n-dimensional vector
space over F .

Proof. Consider any solution x( · ) of (2.1.1) and denote by x1 its value at
any instant of time t1 ≥ t0. Since Φ(t1, t0) is nonsingular, there exists a vector
a∈Fn such that

x1 = Φ(t1, t0) a (2.1.3)

1 Time derivatives or time integrals of any matrix X(t) of functions of time are the matrices
whose elements are the time derivatives or time integrals of the elements of X(t).

2 The statement also holds for t < t0; this extension of the state transition matrix will be
discussed a little later.
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hence, due to uniqueness
x( · ) = Φ( · , t0) a

This means that the n columns of Φ( · , t0) are a basis for the vector space of all
solutions of (2.1.1). �

Another basic property of the state transition matrix can be derived from
the previous argument. Since Φ(t0, t0) = I, relation (2.1.3) shows that a is the
value x(t0) of function x( · ) at t0. Hence (2.1.1) can be rewritten as

x(t1) = Φ(t1, t0) x(t0) (2.1.4)

or
x(t0) = Φ−1(t1, t0) x(t1)

Clearly, the state transition matrix Φ(t1, t0) represents the transformation of
the initial state x(t0) at time t0 into the state x(t1) at time t1 performed by the
differential equation (2.1.1). Being nonsingular, it can be also used to solve the
inverse problem, i.e., to derive the state at time t0 to which a given state at
t1 corresponds in the relative solution of (2.1.1). In other words (2.1.4) is also
consistent when t1 <t0.

The state transition matrix satisfies:

1. inversion:
Φ(t, t0) = Φ−1(t0, t) (2.1.5)

2. composition:
Φ(t, t0) = Φ(t, t1) Φ(t1, t0) (2.1.6)

3. separation:
Φ(t, t0) = Θ(t) Θ−1(t0) (2.1.7)

4. time evolution of the determinant:

det Φ(t, t0) = e
∫ t

t0
trA(τ) dτ

(2.1.8)

where trA denotes the trace of matrix A (the sum of all the elements on the
main diagonal).

Note that (2.1.7) can be obtained from (2.1.5) by setting for instance
Θ(t) :=Φ(t, 0) or Θ(t) :=Φ(t, t0) for any t0;

Proof of 4. The time derivative of det Φ(t, t0) is the sum of the determinants
of all the matrices obtained by substituting the elements of a row (column) of
Φ(t, t0) with their time derivatives. For instance, the first element of this sum
is the determinant of









ϕ̇11(t) ϕ̇12(t) . . . ϕ̇1n(t)
ϕ21(t) ϕ22(t) . . . ϕ2n(t)

...
...

. . .
...

ϕn1(t) ϕn2(t) . . . ϕnn(t)









(2.1.9)
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Since the state transition matrix satisfies equation (2.1.2), it follows that

ϕ̇1i(t) =

n
∑

j=1

a1j(t) ϕji(t) (i = 1, . . . , n) (2.1.10)

By replacing the first row of (2.1.9) with (2.1.10) and recalling some properties
of the determinants, such as linearity with respect to any row and vanishing
when any row is a linear combination of other rows, it is easily seen that the
determinant of (9) is a11(t) det Φ(t, t0). By taking into account all terms of the
sum, it follows that

d

dt
det Φ(t, t0) = trA(t) det Φ(t, t0)

This scalar differential equation together with the initial condition
det Φ(t0, t0) = 1 clearly implies (2.1.8). �

The following properties are consequences of the argument that proves The-
orem A.6.4; in particular, Property 2.1.2 directly follows from Corollary A.6.1.

Property 2.1.1 The Peano-Baker sequence

Φ(t, t0) = I ,

Φi(t, t0) = I +
∫ t

t0
A(τ) Φi−1(τ, t0) dτ (i = 1, 2, . . .

(2.1.11)

converges uniformly to the state transition matrix Φ(t, t0).

Property 2.1.2 The elements of the state transition matrix Φ(t, t0) are con-
tinuous functions of time.

Property 2.1.2 suggests an iterative procedure to compute the state transi-
tion matrix of time-varying systems.

Definition 2.1.2 (continuous-time adjoint system) The linear time-varying
system

ṗ(t) = −AT (t) p(t) (A(·) real) (2.1.12)

or
ṗ(t) = −A∗(t) p(t) (A(·) complex) (2.1.13)

is called the adjoint system of system (2.1.1).

Property 2.1.3 The inner product of a solution x(t) of equation (2.1.1) and
a solution p(t) of equation (2.1.12) or (2.1.13) is a constant.

Proof. Consider the case of A( · ) being real and set the equalities

d

dt
〈x(t), p(t)〉 = 〈ẋ(t), p(t)〉 + 〈x(t), ṗ(t)〉

= 〈A(t)x(t), p(t)〉 + 〈x(t),−AT (t)p(t)〉
= 〈A(t)x(t), p(t)〉 − 〈A(t)x(t), p(t)〉 = 0
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Since the components of x(t) and p(t) are continuous functions, it follows that
〈x(t), p(t)〉 is a constant. The same argument with obvious changes applies
when A( · ) is complex. �

Property 2.1.4 Let Φ(t, τ) be the state transition matrix of system (2.1.1),
and Ψ (t, τ) that of the adjoint system (2.1.12) or (2.1.13). Then

ΨT (t, τ) Φ(t, τ) = I (A(·) real) (2.1.14)

or
Ψ ∗(t, τ) Φ(t, τ) = I (A(·) complex) (2.1.15)

Proof. Let A( · ) be real. Note that for any τ all elements of matrix
ΨT (t, τ) Φ(t, τ) are left inner products of a solution of equation (2.1.1) by
a solution of (2.1.12); hence the matrix is constant. On the other hand,
ΨT (τ, τ) =Φ(τ, τ) = I; hence this constant matrix is the identity matrix I. The
conjugate transposes substitute the transpose matrices if A( · ) is complex. �

2.1.2 Linear Time-Varying Discrete Systems

The previous arguments will now be extended to the case of discrete-time
systems. Consider the linear time-varying homogeneous difference system

x(i + 1) = Ad(i ) x(i ) (2.1.16)

and apply a procedure similar to the aforementioned in order to derive the state
transition matrix. Instead of vector equation (2.1.16), refer to the corresponding
matrix equation

X(i +1) = Ad(i ) X(i ) (2.1.17)

where matrices of sequence X(i ) are assumed to be square. Solution of (2.1.17)
with initial condition X( j ) = I is the state transition matrix Φ(i, j ) of sys-
tem (2.1.16).

Unlike continuous-time systems, state transition matrix Φ(i, j ) may be sin-
gular in this case: this happens if and only if Ad(k) is singular for at least
one value of k such that j ≤ k≤ i− 1. However, if equation (2.1.16) has been
obtained from (2.1.1) by means of a sampling process, the corresponding state
transition matrix is nonsingular for all i, j.

The discrete-time state transition matrix satisfies the following properties:

1. inversion:
Φ(i, j ) = Φ−1( j, i ) (2.1.18)

2. composition:
Φ(i, j ) = Φ(i, k) Φ(k, j ) (2.1.19)
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3. separation (if for at least one k, Θ(i) :=Φ(i, k) is nonsingular for all i):

Φ(i, j ) = Θ(i ) Θ−1( j ) (2.1.20)

4. time evolution of the determinant:

det Φ(i, j ) =

i−1
∏

k=j

det Ad(k) (2.1.21)

Also, the adjoint system concept and related properties can easily be ex-
tended as follows. Proofs are omitted, since they are trivial extensions of those
for the continuous-time case.

Definition 2.1.3 (discrete-time adjoint system) The linear time-varying sys-
tem

p(i ) = AT
d (i ) p(i +1) (Ad(·) real) (2.1.22)

or
p(i ) = A∗

d(i ) p(i +1) (Ad(·) complex) (2.1.23)

if A( · ) is complex, is called the adjoint system of system (2.1.16).

Property 2.1.5 The inner product of a solution x(i ) of equation (2.1.16) and
a solution p(i ) of equation (2.1.22) or (2.1.23) is a constant.

Property 2.1.6 Let Φ(i, j ) be the state transition matrix of system (2.1.16)
and Ψ (i, j ) that of the adjoint system (2.1.22) or (2.1.23). Then

ΨT (i, j ) Φ(i, j ) = I (A(·) real) (2.1.24)

or
Ψ ∗(i, j ) Φ(i, j ) = I (A(·) complex) (2.1.25)

2.1.3 Function of a Matrix

Consider a function f : F →F (F := R or F := C) that can be expressed as an
infinite series of powers, i.e.,

f(x) =
∞
∑

i=0

ci x
i (2.1.26)

The argument of such a function can be extended to become a matrix instead
of a scalar through the following definition.

Definition 2.1.4 (function of a matrix) Let A be an n×n matrix with ele-
ments in F and f a function that can be expressed by power series (2.1.26);
function f(A) of matrix A is defined by

f(A) :=

∞
∑

i=0

ci A
i (2.1.27)
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Note that, according to this definition, A and f(A) commute, i.e.,
A f(A) = f(A) A. The infinite series (2.1.27) can be expressed in finite terms
by applying one of the following procedures.

The Interpolating Polynomial Method. Let m(λ) be the minimal poly-
nomial (monic) of A and α0, . . . , αm− 1 its coefficients, so that

Am+k = −(αm− 1A
m + k− 1 + αm− 2A

m + k − 2 + . . . + α0A
k) (k = 0, 1, . . . )

hence it is possible to express any power of A equal to or higher than m in the
right side of (2.1.27) as a linear combination of lower powers of A, so that by
collection of the common factors,

f(A) =

m−1
∑

i=0

γi A
i (2.1.28)

This means that any function of a matrix f(A) can be expressed as a polyno-
mial with degree not greater than that of the minimal polynomial of A. Let
ϕ(λ) and ψ(λ) be any pair of polynomials such that f(A) =ϕ(A) =ψ(A) or
ϕ(A)−ψ(A) =O. Thus, the minimal polynomial m(λ) divides ϕ(λ)−ψ(λ),
i.e., there exists a polynomial q(λ) such that

ϕ(λ) − ψ(λ) = m(λ) q(λ)

Consider the eigenvalues of A (λ1, . . . , λh), which are roots of the minimal
polynomial, and denote by m1, . . . , mh their multiplicities in m(λ). Since

m(λi) = m′(λi) = . . . = m(mi − 1)(λi) = 0 (i = 1, . . . , h)

it follows that

ϕ(λi) = ψ(λi)

ϕ′(λi) = ψ′(λi)

. . . . . . . . .

ϕ(mi − 1)(λi) = ψ(mi − 1)(λi) (i = 1, . . . , h)

We conclude that all the polynomials equal to f(A) and their derivatives up to
the (mi − 1)-th assume the same values over spectrum {λi (i =1, . . . , n)} of A.
Let

ϕ(λ) :=

m−1
∑

i=0

γi λ
i (2.1.29)

be the polynomial at the right side of (2.1.28). Since the minimal polynomial
and its derivatives are zero at λi (i = 1, . . . , h), by the same argument used to
derive (2.1.28) from (2.1.27) (i.e., by direct substitution into the infinite series
(2.1.26) and its derivatives) it follows that

f(λi) =
∑m−1

k=0 γk λk
i = ϕ(λi) (i = 1, . . . , h)

f ′(λi) = ϕ′(λi) (i =1, . . . , h)
=. . . . . . . . .

f (mi − 1)(λi) = ϕ(mi − 1)(λi) (i = 1, . . . , h)

(2.1.30)
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Coefficients γi (i =1, . . . , m− 1) can easily be obtained from (2.1.30). In fact,
by substituting (2.1.29) into (2.1.30) we get a set of m linear equations that can
be written in compact form as

V γ = v (2.1.31)

where V denotes an m×m matrix that can be partitioned by rows into mi ×m
matrices Vi (i =1, . . . , h) defined as

Vi :=



















1 λi λ2
i . . . λm−1

i

0 1 2λi . . . (m− 1)λm−2
i

0 0 2 . . .
(m− 1)!
(m− 3)!

λm−3
i

...
...

...
. . .

...

0 0 0 . . .
(m− 1)!
(m−mi)!

λm−mi

i



















In (2.1.31) γ ∈Rm denotes the vector having coefficients γi (i =0, . . . , m− 1) as
components and v is defined as

v :=
(

f(λ1) , f ′(λ1) , . . . , f (m1 − 1)(λ1) , . . . ,

f(λh) , f ′(λh) , . . . , f (mh − 1)(λh)
)

(2.1.32)

Each row of Vi is the derivative of the previous one with respect to λi. The
element in row j and column k has value zero for k < j and λk−j

i (k− 1)!/(k− j)!
for k≥ j.
Matrix V is nonsingular; in fact, if during computation of each submatrix Vi

we divide the general row j (j > 1) by j before differentiating it, we obtain a
matrix V ′ such that

detV = k1 detV ′

where k1 is the product of the integers by which the rows of V have been divided.
V ′ has a structure similar to V ; it consists of blocks like

V ′
i =



















1 λi λ2
i . . . λm−1

i

0 1 2λi . . . (m− 1)λm−2
i

0 0 1 . . .
(m− 1)!
2(m− 3)!

λm−3
i

...
...

...
. . .

...

0 0 0 . . .
(m− 1)!

(mi − 1)! (m−mi)!
λm−mi

i



















where the general coefficient belonging to row j and column k is zero for k < j
and λk−j

i (k− 1)!/((j − 1)! (k− j)!) for k≥ j; this particular structure corre-
sponds to the transpose of a generalized Vandermonde matrix, whose deter-
minant is given by

detV ′ =
∏

1≤i<j≤h

(λj − λi)
mjmi
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hence it is different from zero, as the eigenvalues λi (i =1, . . . , h) are assumed to
be noncoincident. V being nonsingular, vector γ is finally derived as γ = V −1 v.
Note that any element of f(A) is a linear function of v, i.e.

(f(A))ij = 〈kij(A), v〉

where vectors kij ∈Cm (i, j =1, . . . , m) depend only on A, while v depends both
on A and f .

The Maclaurin Expansion and the Jordan Form. Let function f be
analytic at the origin. Consider, as a particular case of (2.1.27), the Maclaurin
expansion

f(A) :=
∞
∑

i=0

f (i)(x)

i !

∣

∣

∣

x=0
Ai (2.1.33)

Denote by B the Jordan form of A, expressed by (A.4.11). From

B = T−1A T

it follows that

Bi = T−1Ai T ∀ i ∈ N

hence

f(B) = T−1f(A) T or f(A) = T f(B) T−1

Function f(B) is easily derived, because of the particular structure of the Jordan
form, shown in (A.4.9). In fact

f(B) =



















f(B11) O . . . O . . . O
O f(B12) . . . O . . . O
...

...
. . .

...
. . .

...
O O . . . f(B1,k1) . . . 0
...

...
. . .

...
. . .

...
O O . . . O . . . f(Bh,kh

)



















(2.1.34)

while the function of a single ℓ× ℓ Jordan block is obtained from series (2.1.33)
as

f(Bij) =















f(λi) f ′(λi)
1
2
f ′′(λi) . . . 1

(ℓ−1)!
f (ℓ−1)(λi)

0 f(λi) f ′(λi) . . . 1
(ℓ−2)!

f (ℓ−2)(λi)

0 0 f(λi) . . . 1
(ℓ−3)!

f (ℓ−3)(λi)
...

...
...

. . .
...

0 0 0 . . . f(λi)















(2.1.35)

where f (k)(λi) denotes the k-th derivative of f(x) at x =λi.
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2.1.4 Linear Time-Invariant Continuous Systems

For stationary systems the concepts just presented assume a simpler form.
Furthermore, the computational support needed for their use in engineering
design framework is quite standard, well checked, and reliable.

Consider the time-invariant or constant linear homogeneous system

ẋ(t) = A x(t) (2.1.36)

where A denotes a real or complex n×n matrix. Since A is constant, it is
customary in this case to assume t0 = 0. As before, denote the state transition
matrix by Φ(t, 0) and consider the successive approximations method (2.1.11):

Φ0(t, 0) = I

Φi(t, 0) = I + At +
A2t2

2
+ . . . +

Aiti

i !
(i = 1, 2, . . . )

from which it follows that

Φ(t, 0) = lim
i→∞

Φ(t, 0) =
∞
∑

i=0

Aiti

i !
= eA t (2.1.37)

where the last equality is a consequence of Definition 2.1.4 of a function of a
matrix.

Therefore, the state transition matrix of a constant system is the matrix
exponential . As in the scalar case, the matrix exponential satisfies

eA(t+τ) = eA t eA τ (2.1.38)

which is an immediate consequence of the composition property of the state
transition matrix. On the other hand, in general

e(A+B)t �= eA t eB t (2.1.39)

In fact, consider the expansions

e(A+B)t = I + (A + B)t +
(A + B)2t2

2
+ . . .

and

eA teB t =
(

I + A t +
A2t2

2
+ . . .

)(

I + B t +
B2t2

2
+ . . .

)

= I + (A + B) t +
A2t2

2
+ A B t2 +

B2t2

2
+ . . .

By subtraction we derive

e(A+B)t − eA teB t = (BA − AB)
t2

2
+ . . .
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By continuing this expansion, it is easily seen that the right side vanishes if and
only if AB =BA, i.e., (2.1.39) holds with the equality sign if and only if A and
B commute.

Some methods for computation of the matrix exponential are now presented.

The Power Series Expansion. The most natural way to compute the matrix
exponential is to use the definition formula

eA t =
∞
∑

i=0

Aiti

i !
(2.1.40)

The series on the right side of (2.1.40) for any finite t converges to a matrix
having finite norm. In fact, let m := ‖A‖; since ‖Ai‖≤mi for all i∈N, it follows
that

∥

∥

∥

∞
∑

i=0

Aiti

i !

∥

∥

∥
≤

∞
∑

i=0

‖Ai‖|ti|
i !

≤
∞
∑

i=0

mi|ti|
i !

= em|t|

Hence (2.1.40) can be used for computational purposes; however, it requires
many multiplications and involves a truncation error that greatly depends on
the properties of matrix A. A preliminary scaling is often introduced to improve
accuracy. For instance, repeatedly divide matrix A by 2 (say q times) until
condition ‖At‖< 1/2 is met. Then apply expansion (2.1.40) until the difference
in norm of two consecutive partial sums is equal to a machine zero and perform
the inverse scaling by squaring q times the obtained result.3

Use of the Jordan Form. In this case matrix (2.1.34) becomes

eB t =

















eB11t O . . . O . . . O
O eB12t . . . O . . . O
...

...
. . .

...
. . .

...
O O . . . eB1,k1

t . . . 0
...

...
. . .

...
. . .

...
O O . . . O . . . eBh,kh

t

















(2.1.41)

while the exponential of a single ℓ× ℓ Jordan block is the following particular-
ization of (2.1.35):

eBijt =

















eλit t eλit t2

2
eλit . . . tℓ−1

(ℓ−1)!
eλit

0 eλit t eλit . . . tℓ−2

(ℓ−2)!
eλit

0 0 eλit . . . tℓ−3

(ℓ−3)!
eλit

...
...

...
. . .

...
0 0 0 . . . eλit

















(2.1.42)

The main drawback of this procedure is that the derivation of transformation
T is quite laborious and subject to ill-conditioning effects.

3 See Golub and Van Loan [B.3], p. 558.
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The Interpolating Polynomial Method. By using the procedure consid-
ered in Subsection 2.1.3, the general element of the exponential matrix can be
derived as

(eA t)ij = 〈kij(A), v〉 (2.1.43)

where both kij(A) and v belong to Cm (m denotes the degree of the minimal
polynomial of A ). Vector v is

v := (eλ1t, t eλ1t, . . . , tm1 − 1 eλ1t, , . . . , eλht, t eλht, . . . , tmh − 1 eλht) (2.1.44)

Use of the Schur Form. It is shown in Section A.4 that for any real or
complex n×n matrix A there exists a unitary similarity transformation U such
that

B = U∗A U =









λ1 b12 . . . b1n

0 λ2 . . . b2n
...

...
. . .

...
0 0 . . . λn









(2.1.45)

Matrix exponential eB t can be computed column by column as the solution of
the n differential equations

żi(t) = B zi(t) , zi(0) = ei (i = 1, . . . , n) (2.1.46)

where ei denotes the i-th vector of the main basis of Cn.
Note that, in particular, all the components of solution zi(t) with an index

greater than i are equal to zero, while the i-th component is the complex
exponential eλit. Due to the particular structure of B, the solutions of (2.1.46)
are easily obtained by substitution of the components of each vector zi(t),
starting from the i-th, into the scalar differential equations corresponding to
the previous components.

It will be shown that every nonzero component of zi(t) is a linear combination
of exponential terms like

frj(t) = tr eλjt (j =1, . . . , h; r = 0, . . . , mj − 1) (2.1.47)

where mj is the multiplicity of λj in the minimal polynomial of A. Since
superposition holds, the problem reduces to solving some scalar differential
equations of the type

ż(t) = λi z(t) + b frj(t) , z(0) = 0 (2.1.48)

Two cases are possible.

1. λi = λj. The solution of (2.1.48) is

z(t) =
b tr+1

r + 1
eλit (2.1.49)

since

z(t) =

∫ t

0

eλi(t−τ)b frj(τ) dτ = b eλit

∫ t

0

τ r dτ =
b tr+1

r + 1
eλit



2.1. The Free State Evolution of Linear Systems 69

2. λi �= λj. In this case z(t) is computed by considering the sequence of func-
tions wℓ(t) (ℓ =0, . . . , r) defined below, which are the solutions of (2.1.48)
with forcing terms fℓj(t) (ℓ =0, . . . , r). The solution is z(t) = wr(t), with

w0(t) = b
eλit − eλjt

λi − λj

wℓ(t) =
1

λi − λj
(ℓ wℓ−1(t) − b tℓ eλjt) (ℓ =1, . . . , r)

(2.1.50)

The first of (2.1.50) is derived immediately. In order to prove the subsequent
ones, consider

wℓ(t) =

∫ t

0

eλi(t− τ)b τ ℓ eλjτ dτ = b eλit

∫ t

0

e(λj −λi)τ τ ℓ dτ

Integrating by parts with τ ℓ as finite factor and e(λj −λi)τ dτ as differential factor

wℓ(t) = b eλit
(τ ℓe(λj −λi)τ

λj − λi

∣

∣

∣

t

0
− ℓ

λj − λi

∫ t

0

τ ℓ− 1 e(λj −λi)τ dτ
)

=
1

λj − λi

(

b tℓ eλjt − ℓ

∫ t

0

eλi(t− τ) b τ ℓ− 1 eλjτ dτ
)

The value of r in (2.1.47) is limited to be at most mj − 1. In fact, case 1 is
recursively possible at most mj − 1 times, since the maximal dimension of the
cyclic invariant subspaces corresponding to λj is mj .

The previous computational methods point out an important property: all
the elements of the matrix exponential eA t are linear combinations with constant
complex coefficients of the time functions which appear as the components of
vector v in (2.1.44). These functions, whose general expressions are also given
at the right side of (2.1.47), are called modes of system (2.1.36).

Modes expressed by eλt with real λ are shown in Fig. 2.1(a–c): the three cases
correspond respectively to λ positive, negative, and zero; modes expressed by
tr eλt, again with real λ positive, negative, and zero, are shown in Fig. 2.1(d–f).

If A is real it is convenient to sum the modes corresponding to pairs of
complex conjugate eigenvalues that are linearly combined with complex conju-
gate coefficients in every element of the matrix exponential. A real function is
obtained by means of the following standard procedure. Consider the sum

S := h tr eλt + h ∗ tr eλ∗t (2.1.51)

and denote by u, v, and σ, ω the real and imaginary parts of h and λ respectively,
so that

S = tr ((u + jv)e(σ + jω)t + (u − jv)e(σ − jω)t)

By defining
m := 2 |h| , ϕ := arg h
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k eλt, λ> 0 k eλt, λ< 0

k eλt, λ= 0 k t2 eλt, λ> 0

k t2 eλt, λ,< 0 k t2 eλt, λ= 0

(a) (b)

(c) (d)

(e) (f)

Figure 2.1. Modes corresponding to real eigenvalues.
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k eλt + k∗ eλ∗ t, σ > 0 k eλt + k∗ eλ∗ t, σ < 0

k eλt + k∗ eλ∗ t, σ = 0 t2(k eλt + k∗ eλ∗ t), σ > 0

t2(k eλt + k∗ eλ∗ t), σ < 0 t2(k eλt + k∗ eλ∗ t), σ = 0

(a) (b)

(c) (d)

(e) (f)

Figure 2.2. Modes corresponding to pairs of complex conju-

gate eigenvalues.



72 Chapter 2. General Properties of Linear Systems

it follows that

S =
m

2
tr eσt (ej(ωt+ϕ) + e−j(ωt+ϕ))

= m tr eσt cos(ωt + ϕ)

= m tr eσt sin
(

ωt + ϕ +
π

2

)

When r is zero the resulting time function is typically one of those shown
in Fig. 2.2(a–c) (respectively for λ positive, negative, and zero), while for r
different from zero, for instance r = 2, it is one of those shown in Fig. 2.2(d–f).

The same result could have been obtained by considering the “real” Jordan
form whose general block is of the type (A.4.26): denote by σ, ω the real and
imaginary part of λ and define

C :=

[

σ ω
−ω σ

]

(2.1.52)

so that

eC t =

[

eσt cos ωt eσt sin ωt
−eσt sin ωt eσt cos ωt

]

(2.1.53)

as can be checked by applying the identity

d

dt
eC t = C eC t

It is easily seen that the exponential of a “real” Jordan block of type (A.4.26)
has the same structure as matrix (2.1.42), but with 2× 2 matrices eCit instead
of scalars eλit in the terms on and above the main diagonal, 2× 2 null matrices
instead of the scalar 0’s below the main diagonal.

It is now possible to draw some interesting conclusions: the general mode
(2.1.47) corresponds to a function of time whose behavior as time approaches
infinity is one of the following:

1. It converges to zero if the real part of the corresponding eigenvalue is
negative;

2. It remains bounded if r is zero and the real part of the corresponding
eigenvalue is zero;

3. It diverges if the real part of the corresponding eigenvalue is positive or if r
is different from zero and the real part of the eigenvalue is zero.

The above modes are called respectively asymptotically or strictly stable,
(merely) stable and unstable.
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2.1.5 Linear Time-Invariant Discrete Systems

All the previous arguments will be briefly extended to discrete-time systems.
Consider the discrete-time constant homogeneous system

x(i + 1) = Ad x(i) (2.1.54)

whose state transition matrix is clearly

Φ(i, j) = Ai−j
d (2.1.55)

i.e., reduces to the power of a matrix .
The four procedures to compute the state transition matrix of continuous-

time systems can also be profitably used in the discrete-time case.

The Direct Method. Repeating the matrix multiplication many times may
involve significant errors due to truncation and great computation time. To
minimize these drawbacks, it is convenient to use the binary powering method :4

expand exponent k in binary form as

k =

n
∑

i=0

βi 2
i

then initialize i← 0, Z ←Ad, B ← I if β0 =0 or B ←Ad if β0 = 1 and, until
i = n, compute i← i + 1, Z ←Z2, B ←B if βi = 0 or B ←ZB if βi =1. At the
end, the result B =Ak

d is obtained. The coefficients βi (i =0, 1, . . . , n) can be
obtained at each step as the remainders of repeated divisions of k by 2 in the
set of integers, until the quotient is zero.

Use of the Jordan form. From

B = T−1Ad T

it follows that

Bk = T−1A k
d T , hence A k

d = T Bk T−1

Consider (A.4.11). Clearly

Bk =



















Bk
11 O . . . O . . . O

O Bk
12 . . . O . . . O

...
...

. . .
...

. . .
...

O O . . . Bk
1,k1

. . . 0
...

...
. . .

...
. . .

...
O O . . . O . . . Bk

h,kh



















(2.1.56)

4 See Golub and Van Loan [B.3], p. 552.
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while the k-th power of a single ℓ× ℓ Jordan block is easily obtained by direct
computation as

Bk
ij =















λk
i k λk− 1

i

(

k
2

)

λk− 2
i . . .

(

k
ℓ−1

)

λk− ℓ+ 1
i

0 λk
i k λk− 1

i . . .
(

k
ℓ−2

)

λk− ℓ+ 2
i

0 0 λk
i . . .

(

k
ℓ−3

)

λk− ℓ+ 3
i

...
...

...
. . .

...
0 0 0 . . . λk

i















(2.1.57)

where

(k

h

)

:=











k(k− 1) . . . (k−h +1)

h !
for k ≥ h , h > 0

1 for k ≥ h , h = 0
0 for k < h

The Interpolating Polynomial Method. By means of the procedure
described in Subsection 2.1.3, the general element of the k-th power of matrix
Ad is obtained as

(A k
d )ij = 〈kij(Ad), v〉 (2.1.58)

where both kij(Ad) and v belong to Cm and m denotes the degree of the minimal
polynomial of Ad . Vector v is defined as

v :=
(

λk
1, k λk− 1

1 , . . . , k(k− 1) . . . (k−m1 + 2) λk−m1 +1
1 , . . . ,

λk
h, k λk− 1

h , . . . , k(k− 1) . . . (k−mh + 2) λk−mh + 1
h

)

(2.1.59)

Relation (2.1.59) only makes sense when k≥m. However, the following equiv-
alent expression for v holds without any constraint on the value of k.

v =
(

λk
1, k λk− 1

1 , 2!
(k

2

)

λk− 2
1 , . . . , (m1 − 1)!

( k

m1 − 1

)

λk−m1 + 1
1 , . . . ,

λk
h, k λk− 1

h , 2!
(k

2

)

λk− 2
h , . . . , (mh − 1)!

( k

mh − 1

)

λk−mh +1
h

)

(2.1.60)

Use of the Schur form. By means of a procedure similar to the one
presented for computation of the matrix exponential, it is possible to reduce
the computation of A k

d to the solution of scalar difference equations of the
general type

z(k + 1) = λi z(k) + b frj(k) , z(0) = 0 (2.1.61)

where

frj(k) = r!
(k

r

)

λk−r
j (j = 1, . . . , h; r =0, . . . , mj − 1) (2.1.62)

In the solution of (2.1.61) two cases are possible.
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1. λi = λj. Solution of (2.1.61) is

z(k) =
b

r +1
(r +1)!

( k

r +1

)

λk− r− 1
i (2.1.63)

2. λi �= λj. In this case z(k) is computed by considering the sequence of func-
tions wℓ(k) (ℓ =0, . . . , r) defined below, which are the solutions of (2.1.61)
with forcing terms fℓj(k) (ℓ =0, . . . , r). The solution is z(k) =wr(k), with

w0(k) = b
λk

i − λk
j

λi − λj

wℓ(k) =
1

λi − λj

(

ℓ wℓ−1(k) − b ℓ !
(

k
ℓ

)

λk−ℓ
j

)

(ℓ =1, . . . , r)

(2.1.64)

Also in the case of discrete-time systems the components of vector v in
(2.1.59) or (2.1.60) are called modes. Modes corresponding to a pair of complex
conjugate eigenvalues appear with complex conjugate coefficients. The sum
(2.1.51) in this case is changed into

S :=
(k

r

)

(h λk− r + h ∗ λ∗ k− r) (2.1.65)

or, by using the previously introduced notation

S =
(k

r

)

((u + jv)(σ + jω)k− r + (u − jv)(σ − jω)k− r)

By setting

ρ := |λ| , ϑ := arg λ

m := 2 |h| , ϕ := arg h

it follows that

S =
m

2

(k

r

)

ρk (ej((k − r)ϑ+ϕ) + e−j((k − r)ϑ+ϕ))

= m
(k

r

)

ρk cos((k− r)ϑ + ϕ)

= m
(k

r

)

ρk sin
(

(k− r)ϑ + ϕ +
π

2

)

Furthermore, instead of (2.1.52, 2.1.53) the following matrices are easily derived

C =

[

ρ cos ϑ ρ sin ϑ
−ρ sin ϑ ρ cos ϑ

]

(2.1.66)

Ck =

[

ρk cos kϑ ρk sin kϑ
−ρk sin kϑ ρk cos kϑ

]

(2.1.67)
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The k-th power of a “real” Jordan block of type (A.4.26) has the same structure
as matrix (2.1.57) but, on and above the main diagonal, functions λk− ℓ+ 1

i are
replaced by 2× 2 matrices Ck− ℓ +1

i and, below the main diagonal, zeros are
replaced by 2× 2 null matrices.

The general mode (2.1.62) has one of the following behaviors as k approaches
infinity:

1. It converges to zero if the magnitude of the corresponding eigenvalue is less
than one;

2. It remains bounded if r is zero and the magnitude of the corresponding
eigenvalue is equal to one;

3. It diverges if the magnitude of the corresponding eigenvalue is greater than
one or if r is different from zero and the magnitude of the eigenvalue is equal
to one.

These modes are called respectively asymptotically or strictly stable,
(merely) stable, and unstable.

2.2 The Forced State Evolution of Linear Sys-

tems

Let us now examine specifically linear systems whose evolution in time is de-
scribed in Section 1.3 by equations (1.3.8, 1.3.9) in the continuous-time case
and (1.3.10, 1.3.11) in the discrete-time case. In order to derive solutions for
these equations, we will refer to the mathematical background presented in the
previous section, in particular to the concepts of the state transition matrix and
the function of a matrix.

2.2.1 Linear Time-Varying Continuous Systems

First refer to differential equation (1.3.8) and denote by Φ(t, t0) the state tran-
sition matrix of the related homogeneous equation

ẋ(t) = A(t) x(t) (2.2.1)

An expression for the state transition function ϕ(t, t0, x0, u|[t0,t]) is derived
as follows.

Theorem 2.2.1 The solution of differential equation (1.3.8), with initial con-
dition x(t0) =x0 and piecewise continuous input function u(·), is

x(t) = Φ(t, t0) x(t0) +

∫ t

t0

Φ(t, τ) B(τ)u(τ) dτ (2.2.2)
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Proof. First, clearly (2.2.2) satisfies the initial condition, since Φ(t0, t0) = I.
Then by differentiating both members of (2.2.2) and taking into account the
rule for computation of the derivative of an integral depending on a parameter
(see footnote 1 in Section 1.2) one obtains

ẋ(t) = Φ̇(t, t0) x(t0) + Φ(t, t) B(t) u(t) +

∫ t

t0

Φ̇(t, τ) B(τ) u(τ) dτ

= A(t)

(

Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ

)

+ B(t) u(t)

= A(t) x(t) + B(t) u(t) �

Since Theorem 2.2.1 is of basic importance in linear system theory, we
present another simple proof of it.

Another Proof of Theorem 2.2.1. For any identically nonsingular and
differentiable matrix function of time X(t), consider the relation

d

dt
X−1(t) = −X−1(t) Ẋ(t) X−1(t)

which is obtained by differentiating the identity X−1(t) X(t) = I. Replacing
X(t) with Φ(t, t0) yields

d

dt
(Φ−1(t, t0) x(t)) = −Φ−1(t, t0) Φ̇(t, t0) Φ−1(t, t0) x(t) + Φ−1(t, t0) ẋ(t)

From Φ̇(t, t0) =A(t) Φ(t, t0) and differential equation (1.3.8) it follows that

d

dt
(Φ−1(t, t0) x(t)) = Φ−1(t, t0) (ẋ(t) − A(t) x(t))

= Φ−1(t, t0) B(t) u(t)

By integrating both members, we finally obtain

Φ−1(t, t0) x(t) = c +

∫ t

t0

Φ−1(τ, t0) B(τ) u(τ) dτ

where c denotes a constant vector depending on the initial condition. By
using inversion and composition properties of the state transition matrix, it
is immediately shown that the above formula is equivalent to (2.2.2). �

Substitution of (2.2.2) into (1.3.9) immediately provides the following ex-
pression for the response function γ(t, t0, x0, u|[t0,t]):

y(t) = C(t) Φ(t, t0) x0 + C(t)

∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ + D(t) u(t)

= C(t) Φ(t, t0) x0 +

∫ t

t0

C(t) Φ(t, τ) B(τ) u(τ) dτ + D(t) u(t) (2.2.3)
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The integrals on the right of (2.2.2, 2.2.3) are convolution integrals whose
kernels are the functions

V (t, τ) = Φ(t, τ) B(τ) (2.2.4)

W (t, τ) = C(t) Φ(t, τ) B(τ) + D(t) δ(t) (2.2.5)

Matrix W (t, τ) is called the impulse response of the system. The symbol
δ(t) denotes a Dirac impulse which is introduced as follows. Consider the
piecewise continuous function ∆(τ, t0, ·) represented in Fig. 2.3 and suppose that
parameter τ tends to zero: at the limit, we obtain having infinite amplitude and
unitary area. The Dirac impulse at t =0 will be denoted by δ(t) and at t = t0
by δ(t− t0). Still referring to Fig. 2.3, we define

∫ t2

t1

δ(t− t0) dt := lim
τ→0

∫ t2

t1

∆(τ, t0, t) dt = 1

∆(τ, t0, t)

1
τ

0 t1 t0 t0 + τ t2 t

Figure 2.3. An impulse.

Similarly, for any continuous function of time f(·), we define

∫ t2

t1

f(t) δ(t− t0) dt := lim
τ→0

∫ t2

t1

f(t) ∆(τ, t0, t) dt = f(t0)

Referring now to a purely dynamic system [D(t) =O in (1.3.9)] with zero
initial state, apply the impulse represented in Fig. 2.3 to its i-th input, the other
inputs being set equal to zero. At the limit for τ approaching zero we obtain

yi(t) =

∫ t

t0

W (t, τ) ei δ(t− t0) dτ = W (t, t0) ei (i =1, . . . , p)

where ei denotes the i-th column of the identity matrix Ip. Hence each single
column of W (t, t0) represents the system response to a Dirac impulse applied
at t0 to each single input.

Relation (2.2.3) for a purely dynamic system with zero initial state becomes

y(t) =

∫ t

t0

W (t, τ) u(τ) dτ (2.2.6)
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This means that the zero-state response of a purely dynamic linear system
depends only on its impulse response function. Equation (2.2.6) is a typical
input-output model or IO model of a linear system, while equations (1.3.8, 1.3.9)
represent an input-state-output model or ISO model .

2.2.2 Linear Time-Varying Discrete Systems

The previous considerations can easily be extended to the discrete-time case,
corresponding to system equations (1.3.10, 1.3.11). Often discrete-time systems
derive from continuous ones subject to piecewise constant input functions of the
type shown in Fig. 1.8 and with output accordingly sampled. Denote by t0 + iT
(i = 0, 1, . . .) the times corresponding to input changes and output sampling.
Matrices of the discrete-time model are related to those of the continuous-time
one by:

Ad(i ) = Φ(t0 +(i +1)T, t0 + iT ) (2.2.7)

Bd(i ) =

∫ t0+(i+1)T

t0+iT

Φ(t0 + (i +1)T, τ) B(τ) dτ (2.2.8)

Cd(i ) = C(t0 + iT ) (2.2.9)

Dd(i ) = D(t0 + iT ) (2.2.10)

The state transition matrix Φ(i, j ) in this case is derived in connection with
the homogeneous difference equation

x(i + 1) = Ad(i ) x(i ) (2.2.11)

The following theorem is the discrete counterpart of Theorem 2.2.1 and can
easily be proved by direct check.

Theorem 2.2.2 The solution of the difference equation (1.3.10) with initial
condition x(j ) =x0 is

x(i ) = Φ(i, j ) x0 +

i−1
∑

k=j

Φ(i, k +1) Bd(k) u(k) (2.2.12)

Substitution of (2.2.12) into (1.3.10) yields

y(i ) = Cd(i ) Φ(i, j ) x0 + Cd(i )

i−1
∑

k=j

Φ(i, k + 1) Bd(k) u(k) +

Dd(i ) u(i ) (2.2.13)

The right side members of (2.2.12, 2.2.13) represent the state transition and
response function of the discrete-time case, respectively. The matrix

W (i, j ) := Cd(i ) Φ(i, j +1) Bd(j ) + Dd(i) (2.2.14)

is called the impulse response of the considered discrete-time system. Its mean-
ing is analogous to the continuous-time case. Its k-th column represents the
zero-state response to an input identically zero, except for the k-th component,
which is equal to one at time j.
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2.2.3 Linear Time-Invariant Systems

The class of systems under consideration will now be further restricted to time-
invariant ones which, in the continuous-time case, are described by

ẋ(t) = A x(t) + B u(t) (2.2.15)

y(t) = C x(t) + D u(t) (2.2.16)

and in the discrete-time case by

x(i + 1) = Ad x(i ) + Bd u(i ) (2.2.17)

y(i ) = Cd x(i ) + Dd u(i ) (2.2.18)

Time-invariance implies the following very important features:

1. A better computability of the state transition matrix and easier solvability
of the nonhomogeneous differential equation which describes the state evolution
of the system subject to control. In fact, while in the time-varying case it
is necessary to use numerical integration procedures (such as Runge-Kutta
methods), for time-invariant systems it is possible to express the state transition
matrix in finite terms, for instance with the interpolating polynomial method
presented in the previous section.

2. A more straightforward and deeper insight into the mathematical essence of
the structural constraints which may condition the action on the state through
the input and/or the knowledge of the state through the output: such an insight
will be particularly stressed with the geometric techniques presented in Chapters
3 and 4.

3. The possibility of relating state-space with polynomial matrix models
which, although very restricted in use (since they are not at all extensible to
the time-varying and nonlinear cases), allow a more satisfactory approach to
some structure-independent problems such as identification. This alternative
modeling of linear constant systems will be briefly reviewed in the next two
sections.

In the continuous-time case the state transition function on the right of
(2.2.2) is expressed in terms of the matrix exponential as follows:

x(t) = eAtx0 +

∫ t

0

eA(t− τ)B u(τ) dτ (2.2.19)

while in the discrete-time case the state transition function on the right of
(2.2.12) is expressed in terms of the matrix power as

x(i ) = Ad
i x0 +

i−1
∑

j=0

Ad
i−j−1Bd u(j ) (2.2.20)
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Note that when dealing with time-invariant systems the initial time is usually
assumed to be zero without any loss of generality because of the time-shifting
property. The two terms on the right of (2.2.19) and (2.2.20) represent the
zero-input and zero-state transition function.

We now consider the computation of the right side member of (2.2.19).The
first term, i.e., the zero-input state transition function, is expressed in terms
of a simple matrix exponential, while a mathematical description of the input
function u(·) is needed to compute the second term, i.e., the convolution integral.
Two important cases will be considered:

1. The input function is available as a sequence of samples;

2. The input function is available as a solution of a known homogeneous time-
invariant differential equation.

Input Available as a Sequence of Samples. This case is easily transformed
into a discrete-time case: denote by u(ti) (i =0, 1, . . . ) the input samples and
suppose that the actual input function is constant between samples, i.e., that
u(t) =u(ti), ti ≤ t < ti+1. This assumption is technically sound, since in many
cases input to a continuous-time system is provided by a digital processor with
a “hold” output circuitry. In other cases, it is possible to use a discretization
fine enough to have good reproduction of the actual input, without any other
approximation in solving the system differential equation. In order to improve
the computational precision, it is also possible to introduce a linear interpolation
between samples by means of an artifice, as will be shown in Subsection 2.2.5.

Consider a general instant of time t and denote by ti, ti+1 two subsequent
sampling instants such that ti ≤ t < ti+1; equation (2.2.19) can be written as

x(t) = eAtx0 +
i−1
∑

k=0

(

∫ tk+1

tk

eA(t−τ)dτ
)

B u(tk) +
(

∫ t

ti

eA(t−τ)dτ
)

B u(ti)

= eAtx0 +
i−1
∑

k=0

eA(t−tk+1)f(A, (tk+1 − tk))B u(tk) +

f(A, t) B u(ti) (2.2.21)

where f(A, t) denotes the matrix exponential integral, defined as

f(A, t) :=

∫ t

0

eAτdτ (2.2.22)

whose computation will be considered in the next subsection. In the previous
derivation the following identity has been used:

∫ t1

t0

eA(t1−τ)dτ = −
∫ 0

t1−t0

eAxdx =

∫ t1−t0

0

eAτdτ
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In conclusion, the state transition function of a constant continuous-time sys-
tem with a piecewise constant input is expressed as a finite sum whose terms are
easily computable using the matrix exponential and the matrix exponential inte-
gral. If sampling is uniform with period T and the output is also synchronously
sampled, the system is described by the discrete-time model (2.2.17, 2.2.18)
where matrices Ad, Bd, Cd, Dd are related to the corresponding ones of the
continuous-time case by the relations

Ad := eAT (2.2.23)

Bd := f(A, T ) B (2.2.24)

Cd := C (2.2.25)

Dd := D (2.2.26)

which particularize (2.2.7–2.2.10). In (2.2.24), f(A, T ) still denotes the function
defined by (2.2.22). In conclusion, the computation is performed by using
(2.2.20), which only requires a computational algorithm for the power of a
matrix.

Input Provided by an Exosystem. We shall now consider the other re-
markable case in which the convolution integral in (2.2.19) is easily computable.
The input is assumed to be a linear function of the solution of a homogeneous lin-
ear differential equation, i.e., to be provided as the output of the time-invariant
free system

v̇(t) = W v(t) , v(0) = v0 (2.2.27)

u(t) = L v(t) (2.2.28)

where W and L denote properly dimensioned real matrices. In explicit form,
we have

u(t) = L eWt v0 (2.2.29)

This case has considerable practical importance: in fact, it allows the repro-
duction of “test signals” such as steps, ramps, sine and cosine functions, which
are widely used for comparison and classification of dynamic system features.
Since input in this case is a linear combination of modes, in order to distinguish
the outside modes from those inherent in the system itself, we will call the for-
mer exogenous modes and the latter internal modes. System (2.2.27, 2.2.28),
which generates exogenous modes, is called an exosystem. Design techniques
based on using simple test signals as inputs, which are very easily manipulable
in computations, are widely used in regulator synthesis.

Referring to the connection shown in Fig. 2.4, we introduce the extended
state

x̂ :=

[

x
v

]

with x̂0 :=

[

x0

v0

]

and the corresponding extended matrices

Â :=

[

A BL
O W

]

, Ĉ := [ C DL ]
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v0 x0

y

system

u

exosystem

v̇ = W v

u = L v

ẋ = Ax + B u

y = C x + D u

Figure 2.4. A system connected to an exosystem.

The time evolution of the extended state and, in particular, of the system state
that is a part of it, is obtained as the solution of the homogeneous linear matrix
differential equation

˙̂x(t) = Â x̂(t) , x̂(0) = x̂0 (2.2.30)

Thus
x̂(t) = eÂt x̂0

and, consequently

y(t) = Ĉ x̂(t) = Ĉ eÂt x̂0

i.e., the response function is determined by means of a matrix exponential
computation.

To show how this technique is used, let us report some examples. Consider
the single input system

ẋ(t) = A x(t) + b u(t) (2.2.31)

y(t) = C x(t) + d u(t) (2.2.32)

where b and d denote row matrices, and set the problem to determine its zero-
state responses to the test signals shown in Fig. 2.5.

The signal shown in Fig. 2.5(a) is called a unit step: the zero-state response
of system (2.2.32, 2.2.32) to it is determined by extending the state with a scalar
extra state coordinate v and considering the time evolution of the free system

˙̂x(t) = Âx̂(t) , x̂(0) = x̂0 (2.2.33)

y(t) = Ĉ x̂(t) (2.2.34)

where

Â :=

[

A b
O 0

]

, x̂0 :=

[

O
1

]

, Ĉ := [ C d ]

A similar procedure can be applied for the signal shown in Fig. 2.5(b), called
a unit ramp, for that shown in Fig. 2.5(c), consisting of the sum of a step and
a ramp, and for the sinusoid shown in Fig. 2.5(d). In these cases two scalar
extra state coordinates v1 and v2 are needed and matrices in (2.2.33, 2.2.34) are
defined as

Â :=





A b O
O 0 1
O 0 0



 , x̂0 :=





O
0
1



 , Ĉ := [ C d 0 ]



84 Chapter 2. General Properties of Linear Systems

uu

uu

t

t

tt

1

1

1

1

1

0

0

00

− 1

k1

k2

u(t) =

{

0 for t < 0
1 for t ≥ 0

u(t) =

{

0 for t < 0
t for t ≥ 0

u(t) =

{

0 for t < 0
k1 + k2 t for t ≥ 0

u(t) =

{

0 for t < 0
sin ω t for t ≥ 0

(a) (b)

(c) (d)

Figure 2.5. Some test signals.

Â :=





A b O
O 0 1
O 0 0



 , x̂0 :=





O
k1

k2



 , Ĉ := [C d 0 ]

Â :=





A b O
O 0 ω
O −ω 0



 , x̂0 :=





O
0
1



 , Ĉ := [C d 0 ]

2.2.4 Computation of the Matrix Exponential Integral

Consider the matrix exponential integral, i.e., function f(A, t) defined by
(2.2.22), which is used in expression (2.2.14) for the input distribution ma-
trix of the discrete system corresponding to a uniformly sampled continuous
system. If A is nonsingular, it can easily be expressed in terms of the matrix
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exponential by means of the relation

f(A, t) = A−1(eAt − I ) (2.2.35)

which follows from the term-by-term integration of the infinite series

eAt = I + At +
A2t2

2
+ . . . +

Aiti

i!
+ . . . (2.2.36)

which yields

f(A, t) = It +
A t2

2
+

A2t3

6
+ . . . +

Aiti+1

(i + 1)!
+ . . . (2.2.37)

clearly equivalent to (2.2.35). If A is singular, it is possible to use one of the
following two computational methods.

The Interpolating Polynomial Method. Consider the finite sum

f(A, t) =

m−1
∑

i=0

ηi(t) Ai (2.2.38)

Define

w(t) :=
(

∫ t

0

eλ1τdτ ,

∫ t

0

τ eλ1τdτ , . . . ,

∫ t

0

τm1 − 1 eλ1τdτ , . . . ,

∫ t

0

eλhτdτ ,

∫ t

0

τ eλhτdτ , . . . ,

∫ t

0

τmh − 1 eλhτdτ
)

(2.2.39)

and compute the vector η(t)∈Rm having coefficients ηi(t) (i =0, . . . , m− 1) as
components, by means of the relation

η(t) = V −1 w(t) (2.2.40)

where V is the same nonsingular matrix introduced in Subsection 2.1.3 to
compute a general function of a matrix. The components of vector w(t) are
integrals of the general type

Ik(t) :=

∫ t

0

τk eλτ dτ (2.2.41)

which, if λ �=0, can be computed by means of the recursion formula

Ik(t) =
τk eλτ

λ

∣

∣

∣

τ=t

τ=0
− k

λ
Ik−1(t) (2.2.42)

This immediately follows from the well-known integration by parts

∫ t1

t0

f(τ) ġ(τ) dτ = f(τ) g(τ)
∣

∣

∣

τ=t1

τ=t0
−
∫ t1

t0

ḟ(τ) g(τ) dτ
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with the assumptions

f(τ) := τk hence ḟ(τ) = k τk−1

ġ(τ) dτ := eλτ dτ hence g(τ) =
1

λ
eλτ

On the other hand, for λ =0 it is possible to obtain directly

Ik(t) =
tk+1

k + 1

Summing up:

Ik(t) =























eλt

λ

(

tk − k
λ

tk−1 +
k(k− 1)

λ2 tk−2 −

. . . + (−1)k k!
λk

)

− (−1)k k!
λk+1 for λ �=0

tk+1

k + 1
for λ =0

(2.2.43)

v0 x0

x

system

u

integrators

v̇ = 0

u = v
ẋ = Ax + B u

Figure 2.6. Representation of extended system (2.2.44, 2.2.45).

A Submatrix of an Extended Matrix Exponential. Function f(A, t)
can be computed also as a submatrix of the matrix exponential of a properly
extended system. We shall present this method for the direct computation of
matrix Bd defined in (2.2.24): of course, it will provide f(A, t) in the particular
case Bd := In. Consider the continuous-time extended free system

˙̂x(t) = Â x̂(t) , x̂(0) = x̂0 (2.2.44)

with

x̂ :=

[

x
v

]

, x̂0 :=

[

x0

v0

]

, Â :=

[

A B
O O

]

(2.2.45)

which represents the interconnection shown in Fig. 2.6. Clearly v(t) = v0 in the
time interval [0, T ] for any T , so that, from

x̂(T ) = eÂT x̂0 =

[

eAT x0 + f(A, T )Bv0

v0

]

it follows that

eÂT =

[

eAT f(A, T )B
O Ip

]

=

[

Ad Bd

O Ip

]

(2.2.46)

i.e., Ad, Bd are easily derived as submatrices of the above extended matrix
exponential.
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2.2.5 Approximating Continuous with Discrete

Discretizing the input function was presented in Subsection 2.2.3 as a method
to compute the convolution integral on the right of (2.2.19): the input was ap-
proximated with a piecewise constant function, so that the convolution integral
was transformed into a finite sum with terms easily computable as functions of
the “matrix exponential” and “matrix exponential integral” types.

uu

uu

00

00

jj

jj

j+1j+1

j+1j+1

ii

ii

tt

tt

(a) (b)

(c) (d)

Figure 2.7. Several ways to reconstruct a continuous func-

tion from samples.

Such a reconstruction of a continuous function from a finite sequence of
samples is not unique: other means to reach the same goal are represented
in Fig. 2.7. Two of them, those shown in Fig. 2.7(a) and Fig. 2.7(d), can
also be used to convert, in real time, a sequence of samples into a function
of time, so that they correspond to actual hold devices , while those shown in
Fig. 2.7(b) and Fig. 2.7(c) cannot be implemented in real time since they require
knowledge of the next sample at any instant of time; nevertheless, they can be
used to compute the convolution integral, because in this case the sequence of
all samples can be assumed to be a priori known.
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The four approximations are called, respectively: backward rectangular or
zero-order hold , forward rectangular , trapezoidal , and first-order hold . The
first-order hold approximation consists of maintaining between the sample at
iT and that at (i +1)T , the constant slope corresponding to linear interpolation
between samples at (i− 1)T and iT .

Recall definitions (2.2.23, 2.2.24) for Ad, Bd: the convolution integral in
backward rectangular and forward rectangular approximations is computed by
expressing the effect at time k of the pulse at generic time j (emphasized by
hatching in figure) and summing over j. The following expressions are obtained
in the two cases:

k−1
∑

j=0

Ak−j−1
d Bd u(j ) (2.2.47)

k−1
∑

j=0

Ak−j−1
d Bd u(j +1) (2.2.48)

In the cases of trapezoidal and first-order hold approximations, the generic
impulse is trapezoidal instead of rectangular and can be expressed as the sum of
a rectangle and a triangle. The effect of the triangular pulse can be computed
by means of an artifice, by considering that the triangular pulse with amplitude
∆u can be obtained from an auxiliary dynamic system that integrates over T
a rectangular pulse with amplitude ∆u/T with zero initial condition. Consider
the extended system

[

ẋ(t)
ż(t)

]

=

[

A B
O O

] [

x(t)
z(t)

]

+

[

O
Ip

]

u(t)

which, in fact, represents the original system with an integrator on each input.
Denote by A1 and B1 the corresponding matrices and set

C1 := [ In O ]

The effect at time T of a triangular pulse with amplitude ∆u applied between
0 and T is

1

T
C1 f(A1, T ) B1 ∆u

Let

Bt :=
1

T
C1 f(A1, T ) B1

The convolution integral is approximated in the two cases by the sums

k−1
∑

j=0

Ak−j−1
d

(

Bd u(j ) + Bt(u(j + 1) − u(j ))
)

(2.2.49)

k−1
∑

j=0

Ak−j−1
d

(

Bd u(j ) + Bt(u(j ) − u(j − 1))
)

, u(−1) :=0 (2.2.50)
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Matrices Ad, Bd, Bt can be computed as submatrices of the exponential of a
properly extended matrix. In fact, it is easily shown that

eÂT =





Ad Bd T Bt

O Ip T Ip

O O Ip



 if Â :=





A B O
O O Ip

O O O



 (2.2.51)

2.3 IO Representations of Linear Constant

Systems

Consider a time-invariant continuous-time linear system Σ with input u∈R
p

and output y ∈Rq. A typical input-output representation (or briefly IO repre-
sentation) of Σ is a differential equation of the type5

µ
∑

k=0

Qk
dk

dtk
y(t) =

µ
∑

k=0

Pk
dk

dtk
u(t) (2.3.1)

where Pk and Qk (k = 1, . . . , µ) denote real matrices with dimensions q× p and
q × q respectively; in particular, Qµ is assumed to be nonsingular. The integer
µ is called the order of the representation.

For a simpler notation and more straightforward algebraic handling, it is
customary to represent with a polynomial any differential operator consisting
of a linear combination of the derivatives of a given time function, like both
members of (2.3.1). Let, for any function of time6 c(·):

s x(t) :=
d

dt
x(t) , s2 x(t) :=

d2

dt2
x(t) , . . .

and, accordingly, write (2.3.1) as

µ
∑

k=0

Qk sk y(t) =

µ
∑

k=0

Pk sk u(t)

5 The differential equation (2.3.1) has a meaning only if input and output functions are
differentiable at least µ times. This assumption is very restrictive in system theory, where
it is often necessary to refer to piecewise continuous functions, which are not differentiable,
at least at discontinuity points. For a rigorous approach (2.3.1) should be interpreted in the
light of distribution theory, i.e., in the framework of a suitable extension of the concept of
function. This is not at all worth doing for the particular case at hand, since the drawback
can be overcome in a simple and realistic way by considering (2.3.1) merely as a conventional
representation of the integral equation obtained by integrating both its members µ times,
and introducing each time in one of its members a proper integration constant whose value
is related to the system initial condition.

6 It is worth noting at this point that the introduction of the Laplace transform and
related mathematical background is very far beyond the scope of this book; here symbol s
and polynomials in s are simply short notations for the linear operator “first derivative” and
a linear combination of a function and its subsequent order derivatives.
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or simply
Q(s) y(t) = P (s) u(t) (2.3.2)

where P (s) and Q(s) denote polynomial matrices defined by

P (s) :=

µ
∑

k=0

Pk sk , Q(s) :=

µ
∑

k=0

Qk sk (2.3.3)

The discrete-time case can be handled in a very similar way. Consider a time-
invariant discrete-time linear system Σ with input u∈R

p and output y ∈R
q. A

typical input-output representation of Σ is a difference equation of the type

µ
∑

k=0

Qk y(i + k) =

µ
∑

k=0

Pk u(i + k) (2.3.4)

where Pk and Qk (k = 1, . . . , µ) denote real matrices with dimensions q× p and
q × q respectively; in particular, Qµ is assumed to be nonsingular. The integer
µ is called the order of the representation. For a simpler notation, referring to
any sequence x(i ) (i = 1, 2, . . . ) define

z x(i ) := x(i + 1) , z2 x(i ) := x(i + 2) , . . .

and write (2.3.4) accordingly as

Q(z) y(i ) = P (z) x(i ) (2.3.5)

where P (z) and Q(z) are the polynomial matrices

P (z) :=

µ
∑

k=0

Pk zk , Q(z) :=

µ
∑

k=0

Qk zk (2.3.6)

In the cases of single-input single-output systems, i.e., when p = q =1, equa-
tions (2.3.2) and (2.3.5), referring respectively to the continuous- and the
discrete-time cases, can be written simply as

y(t) =
P (s)

Q(s)
u(t) , y(i ) =

P (z)

Q(z)
u(i )

In this way the product of a time function or a time sequence by a ratio of
polynomials in the variable s (the derivative operator) or z (the shift operator)
is given a well-defined conventional meaning. Such ratios are called transfer
functions of the systems referred to and are a complete representation of their
zero-state dynamic behavior; their usefulness is particularly clear in dealing
with complex systems consisting of numerous interconnected parts. In fact,
the rules for the reduction of block diagrams and signal-flow graphs, which are
briefly presented as complementary material of this chapter, can be applied
to transfer functions as well as to real transmittance coefficients, and lead to
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overall transfer functions which in the previous convention represent the actual
differential or difference equation relating the particular input and output re-
ferred to in the reduction. This expedient leads to significantly simpler notation
and implementation of mathematical passages: in fact, all operations on poly-
nomials performed in the course of the reduction like, for instance, products
and sums, correspond to similar operations on the represented differential op-
erators. In block diagrams a dynamic subsystem can be simply represented as
a single block, as shown in Fig. 2.8(a) (continuous-time case) or in Fig. 2.8(b)
(discrete-time case).

u(t) P (s)
Q(s)

y(t) P (z)
Q(z)

u(i) y(i)

(a) (b)

Figure 2.8. Block representations of single-input single-

output linear systems.

Note that in transfer functions the degree of the polynomial at the numerator
is not greater than that of the polynomial at the denominator, because of a well-
known physical realizability condition, which excludes terms directly related to
the time derivative of the input signal from the system response. Should this
condition not be satisfied, in the response to a sine wave there would be terms
with amplitude increasing when input frequency increases, which is a physical
nonsense.

The roots of the polynomial equations

P (s) = 0 or P (z) = 0

and
Q(s) = 0 or Q(z) = 0

are called respectively zeros and poles of the transfer function P (s)/Q(s) or
P (z)/Q(z).

Similar arguments can be developed for multi-input multi-output systems;
in fact (2.2.2) and (2.2.5) can also be written as

y(t) = Q−1(s) P (s) u(t) with Q−1(s) =
adjQ(s)

detQ(s)

and

y(i ) = Q−1(z) P (z) u(i ) with Q−1(z) =
adjQ(z)

detQ(z)

Each element of the transfer matrices

G(s) := Q−1(s) P (s) and G(z) := Q−1(z) P (z)
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is a polynomial ratio, and represents the transfer function that relates the input
and output corresponding to its column and its row respectively.

In the multivariable case poles are the roots of the polynomial equations
detQ(s) = 0 or detQ(z) = 0, while the extension of the concept of zero leads
to the so-called invariant zeros, which will be defined in Section 4.4 in the
framework of the geometric approach.

2.4 Relations Between IO and ISO Represen-

tations

It is quite evident that the IO (input-output) and the ISO (input-state-output)
representations of linear dynamic constant systems are equivalent and related
to each other. This section considers the problem of deriving any one of them
from the other.

The IO description appears to be more compact and more direct, particularly
when a mathematical model of a real system is derived from records of the
input and output functions by means of an identification procedure; however,
in engineering practice the state-space approach is more convenient for the
following reasons:

1. the relative ease with which some nonlinearities and physical bounds, such
as saturations, are taken into account;

2. a more direct dependence of the model coefficients on the actual values of
physical parameters, which facilitates the study of sensitivity and robustness.

These reasons are important enough to adopt the ISO representation and
restrict the IO one to the domain of mathematical inquisitiveness, provided
the widespread belief that IO models are necessary to solve such problems as
regulation, noninteraction, and stabilization, is absolutely unfounded. In fact,
in this book such problems will be solved referring exclusively to ISO models:
the passage from one to the other of the representations will be considered in
this section, merely as an interesting exercise.

We will consider first the passage from ISO to IO representation, for which
a constructive procedure is suggested in the proof of the following theorem.

Theorem 2.4.1 System (2.2.15, 2.2.16) admits an IO representation of the type
(2.3.2, 2.3.3), in which µ is the degree of the minimal polynomial of A.

Proof. Consider the subsequent time derivatives of both members of (2.2.16)
and take into account (2.2.15):

y(t) = C x(t) + D u(t)

s y(t) = C A x(t) + C B u(t) + D s u(t)

s2 y(t) = C A2 x(t) + C A B u(t) + C B s u(t) + D s2 u(t)
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. . . . . . . . .

sµ y(t) = C Aµ x(t) +

µ−1
∑

j=0

C Aj B sµ−j−1 u(t) + D sµ u(t)

Let λµ + q1λ
µ− 1 + . . . + qµ be the minimal polynomial of A. Multiply the

first of the above relations by qµ, the second by qµ− 1, and so on, so that the
last but one is multiplied by q1, and sum all of them. It follows that

sµ y(t) +

µ
∑

i=1

qi s
µ−i y(t) =

µ
∑

i=1

Pi s
i u(t) (2.4.1)

where Pi (i =1, . . . , µ) are constant q× p matrices. The obtained representation
is clearly of the type (2.3.2, 2.3.2). �

The following similar result for discrete-time systems is derived by simply
replacing s with z.

Corollary 2.4.1 System (2.2.17, 2.2.18) admits an IO representation of the
type (2.3.5, 2.3.6), in which µ is the degree of the minimal polynomial of Ad.

From (2.4.1) the transfer matrix G(s) is immediately derived. Collecting
y(t) on the left and dividing by the minimal polynomial yields

G(s) =

∑µ
i=0 Pi s

i

sµ +
∑µ

i=1 qi sµ−i
(2.4.2)

Note that every element of the matrix on the right of (2.4.2) is a strictly proper
rational function.

Another procedure to derive the system transfer matrix is the following.
Write (2.2.15, 2.2.16) in the form

s x(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

Thus

x(t) = (sI − A)−1 B u(t)

y(t) = (C (sI − A)−1 B + D)u(t)

hence

G(s) = C (sI − A)−1 B + D

=
1

det(sI − A)
C adj(sI − A) B + D (2.4.3)

The rational functions in matrix (2.4.3) are strictly proper, since det(sI −A)
is a polynomial with degree n and C adj(sI −A) B is a polynomial matrix
whose elements have degrees less than or equal to n− 1. The possible difference
between the maximal degree of the polynomial at the denominator of (2.4.2) and
that of (2.4.3) is due to possible cancellations of common factors in numerator
and denominator of polynomial fractions, which have not been considered in
deriving (2.4.3).
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2.4.1 The Realization Problem

We now consider the inverse problem, i.e., the passage from IO to ISO rep-
resentation. In literature this is called the realization problem. Given the
polynomial matrices P (s), Q(s) which appear in (2.3.2) or transfer matrix
G(s) =Q−1(s) P (s), derive matrices A, B, C, D of a corresponding ISO repre-
sentation of type (2.2.15, 2.2.16). The solution to the realization problem is
not unique: even the state-space dimension n may be different in different re-
alizations of the same transfer matrix. A minimal realization is one in which
n is a minimum. In this section we present a constructive procedure to derive
a convenient realization, but not a minimal one, at least in the multi-input
multi-output case.

First refer to a single-input single-output (SISO) system with transfer func-
tion G(s), which is assumed to be proper rational of the type

G(s) =
P (s)

Q(s)
= k0 +

M(s)

Q(s)
(2.4.4)

where M(s)/Q(s) is strictly proper. Denote by m the degree of P (s) and by
n that of Q(s), which is assumed to be monic without any loss of generality:
if not, divide both numerator and denominator by the coefficient of its greater
power in s. If m <n, set k0 := 0, M(s) := P (s); if m =n, divide P (s) by Q(s)
and set k0 equal to the quotient and M(s) to the remainder. Furthermore,
denote by λi, mi (i = 1, . . . , h) the roots of the polynomial equation Q(s) = 0
and their multiplicities.

It is well known that the strictly proper function M(s)/Q(s) admits the
partial fraction expansion

M(s)

Q(s)
=

h
∑

i=1

mi
∑

ℓ=1

kiℓ

(s − λi)ℓ

where

kiℓ :=
1

(mi − ℓ)!

dmi − ℓ

dsmi − ℓ

(

(s − λi)
mi

M(s)

Q(s)

)
∣

∣

∣

s=λi

(i = 1, . . . , h; ℓ = 1, . . . , mi) (2.4.5)

so that the transfer function can be written as

G(s) = k0 +
h
∑

i=1

mi
∑

ℓ=1

kiℓ

(s − λi)ℓ
(2.4.6)

It is convenient to transform (2.4.6) into a form with real coefficients: sup-
pose that λ1, . . . , λr are real and λr +1, . . . , λc are complex poles with the imag-
inary part positive, and λc + 1, . . . , λh are their conjugates. Denote with σi, ωi



2.4. Relations Between IO and ISO Representations 95

the real and imaginary part of λi (i = r + 1, . . . , c), with uiℓ, viℓ the real and
imaginary part of kiℓ (i = r + 1, . . . , c; ℓ =1, . . . , mi), i.e.,

λi =

{

σi + j ωi (i = r + 1, . . . , c)
σi − j ωi (i = c +1, . . . , h)

kiℓ =

{

uiℓ + j viℓ (i = r +1, . . . , c; ℓ =1, . . . , mi)
uiℓ − j viℓ (i = c +1, . . . , h; ℓ =1, . . . , mi)

The equivalence of (2.4.6) to the real coefficients expression

G(s) = k0 +
r
∑

i=1

mi
∑

ℓ=1

kiℓ

(s − λi)ℓ
+

c
∑

i = r + 1

mi
∑

ℓ=1

αiℓ s + βiℓ

(s2 − ai s + bi)ℓ
(2.4.7)

where
ai := 2 σi

bi := σi
2 + ωi

2 (2.4.8)

and αiℓ, βiℓ are functions of σi, ωi, uik, vik (k = 1, . . . , ℓ), can be proved by direct
check.

1

1

1

1

1

1

s−1s−1

s−1s−1

σ + j ωσ + j ω

σ − j ωσ − j ω

u1 + j v1 u2 + j v2

z1 + j i1 z2 + j i2

u2 − j v2

z1 − j i1
z2 − j i2

u1 − j v1

Figure 2.9. The Jordan-type complex realization.

Example 2.4.1 Consider the expansion (2.4.6) and, in particular, suppose that
a double complex pole is present in it with its conjugate, and refer to the
corresponding terms

u1 + jv1

s − σ − jω
+

u2 + jv2

(s − σ − jω)2
+

u1 − jv1

s − σ + jω
+

u2 − jv2

(s − σ + jω)2
(2.4.9)
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1

1

1

1

1

s−1s−1

s−1s−1

σσ

σσ

2u1 2u2

− 2 v2

i1 i2

− 2 v1

ωω
−ω−ω

z1

Figure 2.10. The Jordan-type real realization.

1

1

11 s−1s−1s−1s−1

aa − b− b

α1 α2

β2β1

Figure 2.11. The block-companion real realization.

A signal-flow graph realization for these is shown in Fig. 2.9. It represents
the Jordan realization in the complex field. Note that the involved signals
z1 + ji1, z2 + ji2, z1 − ji1, z2 − ji2, are complex conjugate.

The real and imaginary parts of all signals can be separated as shown in the
equivalent flow graph of Fig. 2.10, which refers to the Jordan realization in the
real field.

The corresponding block-companion form in the present case has the struc-

u(t)

s−1s−1

y(t) u(i) y(i)
(a) (b)

Figure 2.12. An integrator and a unit delay element.
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chains of modes relating to λ1

chains of modes relating to λr

chains of modes relating to λr+1, λc+1

chains of modes relating to λc, λh

k0

u y

1

1

1

1

1

1

1

1

Figure 2.13. The general signal-flow graph for the single-

input single-output case.

ture shown in Fig. 2.11. The terms (2.4.9) are replaced by

α1s + β1

s2 − a s + b
+

α2s + β2

(s2 − a s + b)2
(2.4.10)

where

a = 2 σ , b = σ2 + ω2

α1 = 2 u1 , β1 = −2 u1 σ − 2 v1 ω + 2 u2

α2 = −4 v2 ω , β2 = −4 u2 ω2 + 4 v2 σ ω

The aforementioned identities can be derived by means of the following
general procedure:

1. Express as a single fraction each pair of complex conjugate terms of the
original expansion;
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2. Reduce the degree of the polynomial to one at the numerator of each term
by means of repeated divisions: for instance, when the denominator is squared,
use

N(s)

D2(s)
=

Q(s)

D(s)
+

R(s)

D2(s)

where Q(s) and R(s) denote the quotient and the remainder of the division of
N(s) by D(s);

3. Collect terms with the same denominator and equate the numerator coef-
ficients. �

1

1

s−1s−1

s−1

ẋv

xv

xv

λi

ki ℓ

βi ℓ

ẋv+1 xv+1 = ẋv

αi

− bi

αi ℓ

(a)

(b)

Figure 2.14. The elements of real chains and complex chains.

We are now ready to derive the realization. We shall first present a cor-
responding signal-flow graph in which the meaning of the state variables is
particularly stressed, then associate to it a state-space mathematical model,
i.e., an ISO mathematical description. In the signal-flow graph the dynamic be-
havior is concentrated in the basic element integrator . The counterpart of the
integrator in discrete-time systems is the unit delay . These elements in signal-
flow graphs are denoted with the single branches represented in Fig. 2.12, while
the corresponding elementary differential and difference equations are

ẏ(t) = u(t) and y(i + 1) = u(i )
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and the transfer functions, i.e., the transmittances of the branches

g(s) =
1

s
and gd(z) =

1

z

The continuous-time system with transfer function (2.4.7) can be represented
by the signal-flow graph whose structure is shown in Fig. 2.13, with a possible
input to output direct algebraic link having a constant k0 as transmittance, and
a chain of standard dynamic elements for each real pole and each pair of complex
conjugate poles, the length of the chain being equal to pole multiplicity. The
elements of the chains are shown in Fig. 2.14(a,b) respectively for a real pole
and a pair of complex conjugate poles cases; each element introduces a state
variable xv in the former case, or a pair of state variables xv, xv+1 in the latter.

Refer to the overall signal-flow graph shown in Fig. 2.13 and number all the
states subsequently from right to left and from the top downward. Matrices
A, B, C, D of the corresponding realization are obtained from the signal-flow
graph by expressing the state time derivatives as functions of state vector x and
input u. Since these functions are available as nodes, they are directly provided
by the graph.

For instance, in a particular case in which the transfer function has a triple
real pole and a pair of double complex conjugate poles, the realization has the
following structure:

A =



















λ1 1 0
0 λ1 1
0 0 λ1

O

O

0 1 0 0
b2 a2 1 0
0 0 0 1
0 0 b2 a2



















, B =





















0
0
1
0
0
0
1





















,

C = [ k13 k12 k11 β12 α12 β11 α11 ] , D = k0

Exactly the same procedure applies in the discrete-time case, with the only
difference being that integrators have to be replaced with unit delays.

It is easily shown that the procedure extends to the multi-input multi-output
(MIMO) case. Since this extension is quite straightforward, we will present
it through an example: the particular case of a system with two inputs and
three outputs, i.e., represented by a 3× 2 transfer matrix. For each input,
consider all the transfer functions relating it to the outputs, which are the
elements of a column of the transfer matrix, and take into account each involved
pole, possibly common to several transfer functions, with the maximal order of
multiplicity; then implement chains as in Fig. 2.14, with connections to all
outputs by means of branches having as transmittances the coefficients of the
partial fraction expansion of the corresponding transfer function. The signals
of these connections are summed together for each output, i.e., are merged into
a single node in the graph, as shown in Fig. 2.15.
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Here again it is very straightforward to derive matrices A, B, C, D of a
corresponding ISO description, which is a realization of the given transfer matrix
but, in general, not a minimal one: however, it can easily be transformed into
a minimal realization by means of a simple algorithm, which will be presented
in Subsection 3.3.1 after introduction of the Kalman canonical decomposition.

chains corresponding
to G11(s), G21(s), G31(s)

chains corresponding
to G12(s), G22(s), G32(s)

u1
y1

u2

y2

y3

Figure 2.15. A flow-graph realization of a 3× 2 transfer matrix.

In literature the previously proposed realization is called a parallel realiza-
tion, since it is composed of elementary blocks connected in parallel. Matrix
A has a block-companion form. The most significant advantage offered by this
realization over most of the other known ones is robustness with respect to pa-
rameter variations. In fact, the eigenvalues of A, on which the system stability
depends, are related to the matrix nonzero coefficients by explicit simple for-
mulae, so that their sensitivity to variations of these coefficients is very direct
and in any case can be easily computed and taken into account.

2.5 Stability

The term stability in the broad sense denotes the capability of a dynamic system
to react with bounded variations of its motion or response to bounded initial
state, input, or parameter perturbations. The notion of stability implies that
the vector spaces of input, state, output, and parameter vectors and functions
are metric. This will be true for all dynamic systems considered in the sequel.
Stability plays a fundamental role in approaching most linear system analysis
and synthesis problems, since the property of being stable is required for all
actual control system implementations. Hence, in this section we will review
the most important mathematical definitions and properties of stability.

2.5.1 Linear Time-Varying Systems

Refer to the linear time-varying free system

ẋ(t) = A(t) x(t) (2.5.1)
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The concept of stability is introduced through the following definition which,
for linear systems, specializes the well-known concept of stability in the sense
of Liapunov.

Definition 2.5.1 (stability in the sense of Liapunov) The linear system (2.5.1)
is said to be stable in the sense of Liapunov if for all t0 and for all ǫ> 0 there
exists an η > 0 such that

‖x(t0)‖ < η ⇒ ‖x(t)‖ < ǫ ∀ t ≥ t0 (2.5.2)

It is said to be asymptotically stable in the sense of Liapunov if, in addition to
2.5.2),

lim
t→∞

‖x(t)‖ = 0 (2.5.3)

The following theorems express stability of system (2.5.1) in terms of tran-
sition matrix properties.

Theorem 2.5.1 The linear system (2.5.1) is stable in the sense of Liapunov if
and only if for all t0 there exists a real number M such that

‖Φ(t, t0)‖ ≤ M < ∞ ∀ t ≥ t0 (2.5.4)

Proof. If. From

x(t) = Φ(t, t0) x(t0)

it follows that

‖x(t)‖ ≤ ‖Φ(t, t0)‖ ‖x(t0)‖ ≤ M ‖x(t0)‖
hence, by assuming η := ǫ/M , we derive ‖x(t)‖< ǫ, t≥ t0, if ‖x(t0)‖<η.

Only if. If at a time t1 no value of M exists such that (2.5.4) holds, owing
to the matrix norm inequality

‖A‖ ≤
n
∑

i=1

n
∑

j=1

|aij |

there exists at least one element ϕij(t1, t0) of Φ(t1, t0) whose absolute value is
unbounded; by assuming an initial state x(t0) with the j-th component equal
to η and the others equal to zero, an x(t1) is obtained with the i-th component
unbounded, i.e., an x(t1) unbounded in norm for any value of η; hence, the
system is not stable. �

Theorem 2.5.2 System (2.5.1) is asymptotically stable in the sense of Lia-
punov if and only if (2.5.4) holds for all t0 and

lim
t→∞

‖Φ(t, t0)‖ = 0 (2.5.5)
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Proof. If. Let η := ‖x(t0)‖. Since

‖x(t)‖ ≤ ‖Φ(t, t0)‖ ‖x(t0)‖ = ‖Φ(t, t0)‖ η (2.5.6)

if (2.5.5) holds, the system is asymptotically stable in the origin.
Only if. Since for a proper choice of x(t0) relation (2.5.6) holds with

the equality sign, if (2.5.5) were not satisfied it would not be true that
limt→∞ ‖x(t)‖=0 for all x(t0) such that ‖x(t0)‖> 0. �

Let us refer now to equation (1.3.8) and consider system stability at zero
state with respect to input function perturbations. Since linear systems stability
with respect to input function perturbations does not depend on the particular
equilibrium state or on the particular motion referred to, it is possible to define
bounded input-bounded state stability as follows.

Definition 2.5.2 (BIBS stability) The linear system (1.3.8) is said to be
stable with respect to input function perturbations or bounded input-bounded
state (BIBS) stable if for all t0 and for all ǫ> 0 there exists an η > 0 such that
from ‖u(t)‖<η, t≥ t0 the following holds:

‖x(t)‖ = ‖
∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ‖ < ǫ ∀ t ≥ t0 (2.5.7)

Theorem 2.5.3 The linear system (1.3.8) is BIBS stable if and only if

∫ t

t0

‖V (t, τ)‖ dτ :=

∫ t

t0

‖Φ(t, τ) B(τ)‖ dτ ≤ M < ∞ ∀ t ≥ t0 (2.5.8)

Proof. If. Norms satisfy

‖x(t)‖ = ‖
∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ‖ ≤
∫ t

t0

‖V (t, τ)‖ ‖u(τ)‖ dτ

and, since ‖u(t)‖≤ η, t≥ t0, it follows that ‖x(t)‖≤Mη, t≥ t0. On the assump-
tion η := ǫ/M equation (2.5.8) clearly holds.

Only if. If equation (2.5.8) is not satisfied, i.e., if there exists a time t1 such
that the integral

∫ t1

t0

‖V (t1, τ)‖ dτ

is unbounded, the integral
∫ t1

t0

|vij(t1, τ)| dτ

is unbounded for at least one pair of indices i, j. In fact

∫ t1

t0

‖V (t1, τ)‖ dτ ≤
∫ t1

t0

n
∑

r=1

p
∑

s=1

|vrs(t1, τ)| dτ
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=

n
∑

r=1

p
∑

s=1

∫ t1

t0

|vrs(t1, τ)| dτ

≤ n p sup
r,s

∫ t1

t0

|vrs(t1, τ)| dτ

Assume an input function u(t) with the j-th component defined as

uj(t) := η sign (vij(t1, t))

and the other components identically zero. Since

xi(t1) =

∫ t1

t0

vij(t1, τ) uj(τ) dτ = η

∫ t1

t0

|vij(t1, τ)| dτ

for such an input function, the i-th component of x(t1) is unbounded, i.e., x(t1)
is unbounded in norm for any value of η; hence, the system is not BIBS stable
in the zero state. �

Bounded input-bounded output stability can be approached in a similar way:
the following definition and theorem are derived.

Definition 2.5.3 (BIBO stability) The linear system (1.3.8, 1.3.9) is said to
be bounded input-bounded output (BIBO) stable if for all t0 and all ǫ> 0 there
exists an η > 0 such that from ‖u(t)‖<η, t≥ t0 it follows that

‖y(t)‖ = ‖C(t)

∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ + D(t) u(t)‖ < ǫ ∀ t ≥ t0 (2.5.9)

Theorem 2.5.4 The linear system (1.3.8, 1.3.9) is BIBO stable if and only if

∫ t

t0

‖W (t, τ)‖ dτ =

∫ t

t0

‖C(t) Φ(t, τ) B(τ)‖ dτ ≤ M < ∞ ∀ t ≥ t0 (2.5.10)

Proof. (Hint) An argument similar to that reported above for Theorem 2.5-3
can be used. Furthermore, it is also necessary to take into account the possible
direct action of input on output through matrix D(t). This does not cause any
problem, since this matrix has been assumed to be bounded in norm for all
t. �

The previous definitions and theorems refer to linear time-varying continuous
systems of type (1.3.8, 1.3.9). Their extension to discrete systems of type
(1.3.10, 1.3.11) in the same section is straightforward.
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2.5.2 Linear Time-Invariant Systems

The results derived in the previous subsection for general linear time-varying
systems correspond to a more direct computational framework in the particular
case of linear time-invariant systems.

Consider the linear time-invariant free system

ẋ(t) = A x(t) (2.5.11)

The main result, which relates stability to the eigenvalues of the system matrix,
is stated in the following theorem.

Theorem 2.5.5 The linear system (2.5.11) is stable in the sense of Liapunov
if and only if

1. no eigenvalue of A has positive real part;

2. the eigenvalues of A with zero real part are simple zeros of the minimal
polynomial.

Proof. If. Recall that every element of the matrix exponential is a linear
combination of the time functions

eλ1t, t eλ1t, . . . , tm1−1eλ1t, . . . , eλht, t eλht, . . . , tmh−1eλht (2.5.12)

where λi, mi (i =1, . . . , h) denote the distinct eigenvalues of A and their multi-
plicities as zeros of the minimal polynomial. Hence, if conditions 1 and 2 hold,
i.e., if all modes are stable, it follows that

‖eAt‖ ≤ M < ∞ ∀ t ≥ 0 (2.5.13)

and, owing to Theorem 2.5.1, the system is stable in the zero state.
Only if. It is necessary to prove that all functions (2.5.12) appear in the

elements of the matrix exponential, so that (2.5.13) holds only if 1 and 2
are satisfied: if not, the absolute value of at least one element of the matrix
exponential would be unbounded at the limit for t approaching infinity. Denote
by B the Jordan form of A. Since B = T−1A T , from (2.5.13) it follows that

‖eBt‖ ≤ M ′ < ∞ ∀ t ≥ 0

Since the multiplicity of an eigenvalue as a zero of the minimal polynomial is
equal to the dimension of the greatest Jordan block of this eigenvalue (see below
for proof), from relations (2.1.41, 2.1.42) it follows that all functions (2.5.12) are
elements of eBt; hence, 1 and 2 are necessary. The minimal polynomial of A
can be written, in factored form, as

m(λ) = (λ − λ1)
m1 (λ − λ2)

m2 . . . (λ − λh)
mh (2.5.14)
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Since similar matrices have the same minimal polynomial, m(λ) is the minimal
polynomial of B also. Consider the identity

m(B) = (B − λ1I)m1 (B − λ2I)m2 . . . (B − λhI)mh = O (2.5.15)

The factor (B −λ1I)m1 has the block-diagonal form















(B11 −λ1I)m1 . . . O . . . O
...

. . .
...

. . .
...

O . . . (B1,k1 −λ1I)m1 . . . O
...

. . .
...

. . .
...

O . . . O . . . (Bh,kh
−λ1I)m1















(2.5.16)

where the first k1 matrices on the main diagonal, which in the Jordan form
correspond to the eigenvalue λ1, have the structure

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

















Denote the dimensions of such matrices with ℓ1j (j = 1, . . . , k1): they satisfy

(B1j − λ1I)ℓ1j = O , (B1j − λ1I)ℓ1j−1 �= O

or, in other terms, they are nilpotent of orders ℓ1j . It follows that, if m1 ≥ ℓ1j

(j =1, . . . , k1) all submatrices in (2.5.16) concerning λ1 are zero; hence, the first
factor in (2.5.15) is zero. The other factors are nonzero, being powers of upper
triangular matrices with nonzero elements on the main diagonal. Thus, relation
m(B) = O implies that the value of each mi (i =1, . . . , h) is not less than the
dimension of the greater Jordan block corresponding to λi. Actually it must
be exactly equal since, if not, a polynomial nulled by B would exist with lower
degree than the minimal polynomial: that obtained by substituting, in (2.5.14),
mi with the dimension of the greatest Jordan block corresponding to λi. �

Corollary 2.5.1 The linear system (2.5.11) is stable in the sense of Liapunov
if and only if

1. no eigenvalue of A has positive real part;

2. all Jordan blocks corresponding to eigenvalues with zero real part have di-
mensions equal to one.

Proof. The proof is contained in that of the previous theorem. �
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Theorem 2.5.6 The linear system (2.5.11) is asymptotically stable in the sense
of Liapunov if and only if all eigenvalues of A have negative real part.

Proof. Also in this case similarity transformation into the Jordan form provides
the most direct proof argument. Recall Theorem 2.5.2 and definitions of norms
in finite-dimensional vector spaces: it is clear that system (2.5.11) is zero-state
stable if and only if every element of eBt tends to zero for t approaching infinity.

Let λ =σ + jω be a generic eigenvalue of A. Hence

lim
t→∞

tkeλt = lim
t→∞

tkeσtejωt = lim
t→∞

tkeσt(cosωt + j sen ωt) = 0

if and only if

lim
t→∞

tkeσt = 0 (2.5.17)

It is easily seen by using De L’Hospital’s rule that (2.5.17) holds for all non-
negative integers k if and only if σ < 0. �

As far as BIBS and BIBO stability are concerned, two interesting results
will be stated in Subsection 3.3.1, after introduction of the Kalman canonical
decomposition.

Linear time-invariant discrete systems. The above theorems are easily
extended to linear discrete systems. First, recall that in the discrete-time case
modes, instead of functions of type (2.5.12), there are sequences of the type

λk
1, k λk−1

1 , . . . , ℓ1!

(

k

ℓ1

)

λk−ℓ1
1 , . . . , λk

h, k λk−1
h , . . . , ℓh!

(

k

ℓh

)

λk−ℓh

h (2.5.18)

with ℓj := mj − 1 (j =1, . . . , h). In connection with stability of the free system

x(i + 1) = Ad x(i ) (2.5.19)

the following results hold. They can be proved by a procedure similar to that
used earlier for continuous systems.

Theorem 2.5.7 The linear system (2.5.19) is stable in the sense of Liapunov
if and only if

1. no eigenvalue of A has absolute value greater than one;

2. the eigenvalues of A with absolute value equal to one are simple zeros of the
minimal polynomial.

Theorem 2.5.8 The linear system (2.5.19) is asymptotically stable in the sense
of Liapunov if and only if all eigenvalues of A have absolute value less than one.
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2.5.3 The Liapunov and Sylvester Equations

The concept of Liapunov function is basic in the stability theory of nonlinear
systems and will herein briefly be recalled in order to state some interesting
results for the very particular case of linear time-invariant systems. Refer to
the free system

ẋ(t) = f(x(t)) (2.5.20)

where x∈Rn and function f is continuous and satisfies f(0) = 0. A continuous
function V : R

n → R is said to be positive definite in a domain D containing
the origin if V (0) = 0 and V (x) > 0 for all x∈D, x �= 0. It is called a Lia-
punov function if, moreover, V̇ (x) := 〈gradV, f(x)〉≤ 0 for all x∈D, x �= 0 . Let
Dh := {x : V (x) < h}, Dh ⊆D. A system that admits a Liapunov function is
simply stable at the origin for every initial state belonging to Dh. Furthermore,
it is asymptotically stable at the origin for every initial state belonging to Dh

if V̇ (x) is strictly negative for all x∈Dh, x �=0.

The Liapunov Equation. Refer to the free system (2.5.11) and consider
the quadratic form

V (x) = 〈x, Px〉 (2.5.21)

where P denotes a n×n symmetric, real positive definite matrix. The time
derivative along a generic trajectory is

V̇ (x) = 〈Ax, Px〉 + 〈x, PAx〉
= 〈x, AT Px〉 + 〈x, PAx〉
= −〈x, Mx〉

(2.5.22)

with
M := −(AT P + PA) (2.5.23)

Note that, P being symmetric, M is symmetric. If the quadratic form (2.5.22)
is negative definite, function (2.5.21) is a Liapunov function and system (2.5.11)
is globally (i.e., for all initial states) asymptotically stable in the zero state. The
equation

AT X + XA = C (2.5.24)

is called a Liapunov matrix equation. The following results point out the
importance of Liapunov equations in connection with stability of linear time-
invariant systems.

Lemma 2.5.1 Consider the functional

Γ :=

∫ ∞

0

〈x(t), M x(t)〉 dt (2.5.25)

where M denotes any real symmetric matrix, and suppose that matrix A of free
system (2.5.11) is strictly stable. The value of Γ along the trajectory of (2.5.11)
starting at x0 is

Γ0 = 〈x0, P x0〉 (2.5.26)



108 Chapter 2. General Properties of Linear Systems

where P is the unique solution of the Liapunov equation

AT P + P A = −M (2.5.27)

Proof. Existence and uniqueness of the solution of (2.5.27) are a consequence
of Theorem 2.5.10 reported herein, concerning the Sylvester equation. In fact, A
being nonsingular by assumption, matrices A and −AT have no common eigen-
values (their eigenvalues are nonzero and have opposite sign). Furthermore, the
solution is a symmetric matrix because the linear function on the left trans-
forms a symmetric matrix P into a symmetric matrix M and, by uniqueness,
the inverse transformation has the same property. Function

s(t) := −〈eAt x0, P eAt x0〉

with P satisfying (2.5.27), is an indefinite integral of

−〈eAt x0, M eAt x0〉

In fact,

ṡ(t) = 〈A eAt x0, P eAt x0〉 + 〈eAt x0, P A eAt x0〉
= 〈eAt x0, A

T P eAt x0〉 + 〈eAt x0, P A eAt x0〉
= −〈eAt x0, M eAt x0〉

hence

Γ0 = s(t)
∣

∣

∣

t=∞

t=0
= 〈x0, P x0〉 �

Theorem 2.5.9 The Liapunov equation (2.5.27) admits a unique, symmetric
positive definite solution P for any symmetric positive definite M if and only if
matrix A has all eigenvalues with the negative real part.

Proof. If. The statement directly follows from Lemma 2.5.1, since the function
under the integral sign in (2.5.25) is strictly positive for all x(t) �= 0; hence,
(2.5.27) is strictly positive for all x0 �=0.

Only if. If (2.5.27) has a positive definite solution P with M positive definite,
(2.5.21) is a Liapunov function, and system (2.5.11) is asymptotically stable in
the zero state. Thus, A has all eigenvalues with negative real part owing to
Theorem 2.5.6. �

The Sylvester Equation. Consider the matrix equation

AX − XB = C (2.5.28)

where A is an m×m matrix, B an n×n matrix, and X and C are both m×n.
Equation (2.5.28) is very basic in linear system theory: it is a generalization
of the Liapunov equation and expresses the complementability condition of an
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invariant subspace, which recurs in numerous instances in regulation theory.
Equation (2.5.28) can also be written as the following set of mn scalar equations:

m
∑

k=1

aikxkj −
n
∑

k=1

xikbkj = cij (i =1, . . . , m ; j = 1, . . . , n)

or, with a different matrix notation









A− b11Im −b21Im . . . −bn1Im

−b12Im A− b22Im . . . −bn2Im
...

...
. . .

...
−b1nIm −b2nIm . . . A− bnnIm

















X1

X2
...

Xn









=









C1

C2
...

Cn









where Xj and Cj (j = 1, . . . , n) denote the j-th columns of X and C.
By properly redefining matrices, the previous equations can be written in

the form

Âx̂ = b̂ (2.5.29)

where Â is (mn)× (mn), while x̂ and b̂ are both (mn)× 1. A well-known
necessary and sufficient condition for equation (2.5.29) to have a solution is

b̂ ∈ imÂ

A necessary and sufficient condition for the existence and uniqueness of the
solution is stated in the following theorem.

Theorem 2.5.10 Equation (2.5.28) admits a unique solution if and only if A
and B have no common eigenvalues.7

Proof. Only if. Let A and B be respectively m×m and n×n. Equation
(2.5.28) is equivalent to a set of nm linear equations with nm unknowns. Its
solution is unique if and only if the corresponding homogeneous equation

AX − XB = O (2.5.30)

admits X =O as the unique solution. Let λ be a common eigenvalue, so
that there exist nonzero vectors (column matrices) u, v such that A v =λ v,
BT u =λ u, or, for transposes, uTB = λ uT . The nonzero matrix X := v uT sat-
isfies equation (2.5.30). In fact,

A v uT − v uT B = λ v uT − v λ uT = O

If. Let σ(B) = {µ1, . . . , µh} be the spectrum of B and

(λ − µi)
mij (i =1, . . . , h; j =1, . . . , ki)

7 The proof herein reported is due to Ostrowski and Schneider [24].
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the elementary divisors of B: ki is the number of Jordan blocks correspond-
ing to the eigenvalue µi and mij (j =1, . . . , ki) their dimensions. It is well
known that B admits n linearly independent generalized eigenvectors vijℓ

(i = 1, . . . , h; j =1, . . . , ki; ℓ =1, . . . , mij), satisfying

B vij1 = µi vij1

B vijℓ = µi vijℓ + vij,ℓ− 1

(i = 1, . . . , h; j =1, . . . , ki; ℓ =2, . . . , mij)

If X is a nonzero solution of (2.5.30), there exists at least one generalized
eigenvector vijℓ such that X vijℓ �=0: choose ℓ in the corresponding chain in
such a way that

X vijℓ �= 0 , X vij,ℓ− 1 = 0

hence

0 = (AX − XB) vijℓ = A X vijℓ − X µi vijℓ = (A − µiI) X vijℓ

That is, µi is an eigenvalue of A. �

Numerical solution of Sylvester equation (hence of Liapunov equation, which
is a particular case) can be obtained through the Schur decomposition in the
following terms.8

Algorithm 2.5.1 (solution of the Sylvester equation) Consider equation
(2.5.24) and perform the Schur decomposition of A and B:

U M U∗ X − X V N V ∗ = C

where U and V are unitary, M and N upper-triangular complex matrices.
Premultiply by U∗ and postmultiply by V , thus obtaining

M D − D N = G with D := U∗ X V , G := U∗ C V

which can be directly solved by

D1 = (M − n11 Im)−1 G1

Di = (M − nii Im)−1
(

Gi +

i−1
∑

j=1

nji Dj

)

(i = 2, . . . , n)

where Di and Gi (i =1, . . . , n) denote the i-th columns of D and G. Then
compute X = U D V ∗. �

8 This method and Fortran programs for its implementation were proposed by Bartels and
Stewart [2].
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2.6 Controllability and Observability

It will be shown that the sets defined in Section 1.4 assume particular structures
for linear systems, so that procedures to solve general control and observation
problems can easily be derived.

2.6.1 Linear Time-Varying Systems

A basic property of the sets of states reachable from the origin and of states
controllable to the origin is as follows.

Property 2.6.1 In the case of linear time-varying systems the reachable set
from the origin R+(t0, t1, 0) and the controllable set to the origin R−(t0, t1, 0)
are subspaces of the state space X .

Proof. The set R+(t0, t1, 0) is a subspace, being the image of the linear
transformation ϕ(t1, t0, 0, u(·)) from Uf to X . R−(t0, t1, 0) can be defined as

{x : (x, u(·)) ∈ N} (2.6.1)

where N denotes the subset of X ×Uf defined by

N := {(x, u(·)) : 0 = ϕ(t1, t0, x, u(·))}

which is a subspace, being the kernel of a linear transformation. The set (2.6.1)
is a subspace, being the projection of a subspace. �

On the other hand, the sets W+(t0, t1, 0) and W−(t0, t1, 0) are not generally
subspaces in the case of time-varying systems.9 It will be shown in the next
subsection that, on the contrary, they are subspaces in the case of linear time-
invariant systems.

As a consequence of Properties 2.6.1 and 1.3.4 (decomposability of motion),
the following statement holds.

9 This can be shown with a simple example. Consider a linear discrete system described
by equations (1.3.10, 1.3.11), with

Ad(0) := Ad(1) :=

[

0 0
1 0

]

, Bd(0) :=

[

1
0

]

, Bd(1) :=

[

0
1

]

Let Ad :=Ad(0)= Ad(1); clearly

R+(0, 1, 0) = imBd(0)

R+(0, 2, 0) = Ad imBd(0) + imBd(1)

and, since Ad imBd(0)= imBd(1), it follows that

W+(0, 2, 0) := R+(0, 1, 0) ∪R+(0, 2, 0) = imBd(0) ∪ imBd(1)

which shows that W+(0, 2, 0) is not a subspace.



112 Chapter 2. General Properties of Linear Systems

Property 2.6.2 In the case of linear time-varying systems the set R+(t0, t1, x0)
is the linear variety defined as the sum of subspace R+(t0, t1, 0) and any state
reachable from x0 in [t0, t1], while the set R−(t0, t1, x1) is the linear variety
defined as the sum of the subspace R−(t0, t1, 0) and any state from which x1 can
be reached in [t0, t1].

Now we shall examine some computational aspects of control. Refer to the
linear time-varying system (1.3.8, 1.3.9) and consider the problem of computing
basis matrices for the subspaces R+(t0, t1, 0) and R−(t0, t1, 0).10

The following lemma will be the basic tool to derive the main results.

Lemma 2.6.1 Let F (·) be an n×m matrix whose elements are piecewise con-
tinuous functions in [t0, t1] with values in Rm. The equality

F T (t) x = 0 ∀ t ∈ [t0, t1] (2.6.2)

holds if and only if x ∈ kerG(t0, t1), where G(t0, t1) denotes the Gramian matrix
defined as

G(t0, t1) :=

∫ t1

t0

F (t) F T (t) dt (2.6.3)

Proof. Matrix G(t0, t1) is symmetric, being the integral of a symmetric matrix.
Furthermore

〈x, G(t0, t1) x〉 =

∫ t1

t0

‖F T (t) x‖ 2
2 dt ∀ x ∈ R

n

hence G(t0, t1) is positive semidefinite and any x∈Rn such that
〈x, G(t0, t1) x〉=0 also satisfies the equality F T (t) x =0 for all t∈ [t0, t1] and vice
versa. On the other hand, owing to Theorem A.5.4 from G(t0, t1) being positive
semidefinite it follows that 〈x, G(t0, t1) x〉=0 if and only if x∈ kerG(t0, t1). �

If relation (2.6.2) holds for x �= 0, the rows of F (·) are linearly dependent in
[t0, t1] by definition, so that the rows of F (·) are linearly independent in [t0, t1]
if and only if G(t0, t1) is nonsingular.

Theorem 2.6.1 Refer to system (1.3.8, 1.3.9). The following equalities hold.

R+(t0, t1, 0) = imP (t0, t1) (2.6.4)

R−(t0, t1, 0) = Φ−1(t1, t0) imP (t0, t1) = Φ(t0, t1) imP (t0, t1) (2.6.5)

where P (t0, t1) denotes the symmetric positive semidefinite matrix

P (t0, t1) :=

∫ t1

t0

Φ(t1, τ) B(τ) BT (τ) ΦT (t1, τ) dτ (2.6.6)

10 A generic subspace S ∈R
n is numerically determined by means of a matrix S such that

S = imS, which is called a basis matrix of S.
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Proof. Since kerP (t0, t1) = (imP (t0, t1))
⊥, to prove (2.6.4) it is sufficient to

show that the nonzero states belonging to kerP (t0, t1) are not reachable from
the origin in [t0, t1], while those belonging to imP (t0, t1) are reachable. Suppose
that a state x1 is reachable from the origin in [t0, t1]; hence there exists an input
function u(·) such that

x1 =

∫ t1

t0

Φ(t1, τ) B(τ) u(τ) dτ (2.6.7)

Let x1 ∈ kerP (t0, t1). The left scalar product of both members of the previous
relation by x1 gives

〈x1, x1〉 =

∫ t1

t0

〈BT (τ) ΦT (t1, τ) x1 , u(τ)〉 dτ

Owing to Lemma 2.6.1, BT (t) ΦT (t1, t) x1 = 0 for all t∈ [t0, t1], so that for any
input function u(·) condition x1 ∈ kerP (t0, t1) implies x1 =0. On the other hand,
let x1 ∈ imP (t0, t1), so that

x1 = P (t0, t1) P +(t0, t1) x1

where P +(t0, t1) denotes the pseudoinverse of P (t0, t1); by using (2.6.6) the
previous expression can be written as

x1 =

∫ t1

t0

Φ(t1, τ) B(τ) BT (τ) ΦT (t1, τ) P +(t0, t1) x1 dτ

which, by comparison with (2.6.7), states that x1 is reachable from the origin
with the particular input

u(t) := BT (t) ΦT (t1, t) P +(t0, t1) x1 (2.6.8)

To prove (2.6.5), note that relation x0 ∈R−(t0, t1, 0) implies the existence of an
input function u(·) such that

0 = Φ(t1, t0) x0 +

∫ t1

t0

Φ(t1, τ) B(τ) u(τ) dτ

i.e.,
−Φ(t1, t0) x0 ∈ R+(t0, t1, 0)

hence
x0 ∈Φ−1(t1, t0)R+(t0, t1, 0) = Φ(t0, t1)R+(t0, t1, 0)

This completes the proof. �

In conclusion, system (1.3.8, 1.3.9) is completely controllable and com-
pletely reachable in [t0, t1] (i.e., R+(t0, t1, 0) =R−(t0, t1, 0) =Rn, hence
R+(t0, t1, x) =R−(t0, t1, x) = Rn for all x∈Rn) if and only if matrix P (t0, t1),
defined in (2.6.6), is nonsingular (strictly positive definite).
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Problem 2.6.1 (control between two given states) Refer to system
(1.3.8, 1.3.9). Determine an input function u(·) which produces transition be-
tween two arbitrarily given states x0, x1 in the time interval [t0, t1].

Solution. By linearity, the input function that solves the problem also drives
the system from the origin to x2 :=x1 −Φ(t1, t0) x0, so that, for the problem to
have a solution, relation x2 ∈R+(t0, t1, 0) must be satisfied. Recall (2.6.8): it is
possible to assume

u(t) := BT (t) ΦT (t1, t) P +(t0, t1) x2 , t∈ [t0, t1] (2.6.9)

Owing to a well-known feature of the pseudoinverse matrix, such a control
function provides the best approximation (in euclidean norm) to the final state
x1 when this is not reachable from x0. �

Matrix P (t0, t1) can be computed by the following procedure: denote by
Φ̂(·, ·) the state transition matrix corresponding to the system matrix

Â(t) :=

[

A(t) B(t) BT (t)
O −AT (t)

]

(2.6.10)

and by M the submatrix corresponding to the first n rows and the last n columns
of Φ̂(t1, t0). Then

P (t0, t1) = M ΦT (t1, t0) (2.6.11)

where Φ(·, ·) denotes the transition matrix corresponding to A(t). Computation
is particularly simple in the case of time-invariant systems, where

Φ̂(T, 0) = eÂT , ΦT (T, 0) = eAT T

Extension of the preceding material on the state controllability to the out-
put controllability is relatively simple, since “pointwise” output controllability
is easily reconducted to state controllability. Continuous or “functional” out-
put controllability will be investigated in Section 4.3 by using the geometric
approach.

We shall now consider observability of linear time-varying systems. The sets
Q−(t0, t1, u(·), y(·)) and Q+(t0, t1, u(·), y(·)), defined in Section 1.4, have special
features in the linear system case, owing to Property 1.3.4 (decomposability of
the response function). The following two properties will be proved together.

Property 2.6.3 Like any other system, a linear system completely observable
in [t0, t1] is also reconstructable in [t0, t1]. The converse is also true in the case
of linear continuous systems.

Property 2.6.4 A linear system completely observable by a diagnosis experi-
ment or reconstructable by a homing experiment is simply completely observable
or reconstructable. In other words, for linear systems there is no advantage in
using a special input function to derive the initial or final state from the response
function.
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Proof. The response decomposition property implies that

Q−(t0, t1, u(·), y(·)) =

{x : y(τ) = γ(τ, t0, x, 0) + γ(τ, t0, 0, u(·)) , τ ∈ [t0, t1]}
Assume y1(t) := γ(t, t0, 0, u(·)). It follows that

Q−(t0, t1, u(·), y(·)) =

Q−(t0, t1, 0, y(·)−y1(·)) = Q−(t0, t1, 0, y0(·)) (2.6.12)

where y0(·) := y(·)− y1(·) denotes the free response, which depends only on the
state at time t0. Then, from (1.4.10)

Q+(t0, t1, u(·), y(·)) =

Φ(t1, t0)Q−(t0, t1, 0, y0(·)) + {ϕ(t1, t0, 0, u(·))} (2.6.13)

If the set (2.6.12) reduces to a single element, (2.6.13) also does, while the
contrary is true only if matrix Φ(t1, t0) is nonsingular, i.e., in particular, for
continuous systems. If the set (2.6.12) or the set (2.6.13) reduces to a single
element, this occurs independently on input u(·). �

Property 2.6.5 In the case of linear systems the sets Q−(t0, t1, 0, 0),
Q+(t0, t1, 0, 0) are subspaces of X .

Proof. The set Q−(t0, t1, 0, 0) is a subspace, being the kernel of the lin-
ear transformation from X to Yf which associates to any x∈X function
y(τ) = γ(τ, t0, x, 0), τ ∈ [t0, t1]. The set Q+(t0, t1, 0, 0) is a subspace, being its
image in the linear transformation from X to X corresponding to the transition
matrix Φ(t1, t0). �

The following result is a consequence of zero-input response linearity.

Property 2.6.6 In the case of linear systems the set Q−(t0, t1, 0, y0(·)) is
the linear variety defined as the sum of any initial state corresponding to
free response y0(·) in [t0, t1] and the subspace Q−(t0, t1, 0, 0), while the set
Q+(t0, t1, 0, y0(·)) is the linear variety defined as the sum of any initial state
corresponding to free response y0(·) in [t0, t1] and the subspace Q+(t0, t1, 0, 0).

Computational aspects of observation problems for linear systems are similar
to those of control problems. First of all, we shall consider determination of the
subspaces Q−(t0, t1, 0, 0) and Q+(t0, t1, 0, 0).

Theorem 2.6.2 Refer to system (1.3.8, 1.3.9). The following equalities hold.

Q−(t0, t1, 0, 0) = kerQ(t0, t1) (2.6.14)

Q+(t0, t1, 0, 0) = Φ(t1, t0) kerQ(t0, t1) (2.6.15)

where Q(t0, t1) denotes the symmetric positive semidefinite matrix

Q(t0, t1) :=

∫ t1

t0

ΦT (τ, t0) CT (τ) C(τ) Φ(τ, t0) dτ (2.6.16)
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Proof. Owing to Lemma 2.6.1, the relation

y0(t) = C(t) Φ(t, t0) x0 = 0 ∀ t∈ [t0, t1]

is satisfied if and only if x0 ∈ kerQ(t0, t1). On the other hand, if the initial state
x0 belongs to imQ(t0, t1), it can be uniquely determined from the free response
y0(t). In fact, by using (2.6.16) in the equality x0 =Q+(t0, t1) Q(t0, t1) x0, it
follows that

x0 = Q+(t0, t1)

∫ t1

t0

ΦT (τ, t0) CT (τ) C(τ) Φ(τ, t0) x0 dτ

i.e.,

x0 = Q+(t0, t1)

∫ t1

t0

ΦT (τ, t0) CT (τ) y0(τ) dτ (2.6.17)

Relation (2.6.15) directly follows from (2.6.13). �

As a consequence of the previous theorem, it can be stated that sys-
tem (1.3.8, 1.3.9) is completely observable and reconstructable in [t0, t1] (i.e.,
Q−(t0, t1, 0, 0) =Q+(t0, t1, 0, 0) = {0}) if and only if matrix Q(t0, t1) defined in
(2.6.16) is nonsingular (strictly positive definite).

Problem 2.6.2 (observing the initial state) Refer to system (1.3.8, 1.3.9).
Given functions u(·), y(·) in the time interval [t0, t1], determine the initial state
x0.

Solution. Derive the free response

y0(t) = y(t) − C(t)

∫ t

t0

Φ(t, τ) B(τ) u(τ) dτ − D(t) u(t)

and use (2.6.17). Owing to a property of the pseudoinverse matrix, the right
side of (2.6.17) directly provides the orthogonal projection of the initial state
on the orthogonal complement of Q−(t0, t1, 0, 0); this coincides with x0 if the
system is completely observable. �

The problem of reconstructing final state x1, or its orthogonal projection
x2 on the orthogonal complement of Q+(t0, t1, 0, 0) when the system is not
completely reconstructable, can be solved in a similar way. If the system is
completely observable, i.e., if the problem of determining the initial state has a
unique solution, from (2.2.2) with t = t1 it is possible to derive x1 if x0 is known.

To solve Problem 2.6.2 from a computational standpoint it is still convenient
to use the adjoint system. In fact, consider the system

ṗ(t) = −AT (t) p(t) + CT (t) y0(t) (2.6.18)
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with initial condition p(t0) = 0. Solving in [t0, t1] provides

p(t1) =

∫ t1

t0

Ψ (t1, τ) CT (τ) y0(τ) dτ

= ΦT (t0, t1)

∫ t1

t0

ΦT (τ, t0) CT (τ) y0(τ) dτ

By comparison with (2.6.17), if the system is completely observable (hence
matrix Q(t0, t1) is invertible), the initial state can be derived as

x0 = Q−1(t0, t1) Ψ (t0, t1) p(t1) (2.6.19)

The observation or reconstruction of the state can be realized “on line” as
follows: by means of a model of system (1.3.8, 1.3.9) with zero initial state
determine the forced response y1(·) and subtract it from the output function
to obtain the free response y0(·), which, in turn, is the input function to the
adjoint system (2.6.18), whose solution with zero initial condition provides the
value p(t1) to use in (2.6.19). The final state owing to (2.2.2) is expressed as

x1 = Φ(t1, t0) Q−1(t0, t1) Ψ (t0, t1) p(t1) + ϕ1(t1)

where ϕ1(t1) is the final value of the forced motion.

Extension to Discrete Systems. The extension of the above to discrete
systems is straightforward, so that we shall report the main results without
proof.

Refer to system (1.3.10, 1.3.11). The following equalities hold.

R+(j, i, 0) = imP (j, i ) (2.6.20)

R−(j, i, 0) = Φ−1(i, j ) imP (j, i ) (2.6.21)

where P (j, i ) denotes the symmetric positive semidefinite matrix

P (j, i ) :=
i−1
∑

k=j

Φ(i, k + 1) Bd(k) BT
d (k) ΦT (i, k + 1)

The problem of controlling the state trajectory between two given states
x0, x1 in the time interval [j, i] is solved by

u(k) = BT
d (k)ΦT (i, k +1) P +(j, i ) x2 , k ∈ [j, i− 1] (2.6.22)

with x2 :=x1 −Φ(i, j ) x0.

The subspaces of the initial and final states corresponding to zero response
in the time interval [j, i ] for system (1.3.10, 1.3.11) are, respectively

Q−(j, i, 0, 0) = kerQ(j, i ) (2.6.23)

Q+(j, i, 0, 0) = Φ(i, j ) kerQ(j, i ) (2.6.24)
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where Q(j, i ) denotes the symmetric positive semidefinite matrix

Q(j, i ) :=
i

∑

k=j

ΦT (k, j ) CT
d (k) Cd(k) Φ(k, j )

The problem of determining the initial state x0 (or its orthogonal projection
on the orthogonal complement of Q−(j, i, 0, 0) when the system is not com-
pletely observable) from functions u(·), y(·) given in the time interval [j, i ], can
be solved by means of

y0(k) = y(k) − Cd(k)

k−1
∑

h=j

Φ(k, h +1) Bd(h) u(h) −

Dd(k) u(k), k ∈ [j, i] (2.6.25)

x0 = Q+(j, i )

i
∑

k=j

ΦT (k, j ) CT
d (k) y0(k) (2.6.26)

2.6.2 Linear Time-Invariant Systems

Consistent with notation introduced in Section 1.4, denote by R+
t1(x) the reach-

able set from x in [0, t1] and by R−
t1(x) the controllable set to x in [0, t1]. By

Property 2.6.1 R+
t1(0) and R−

t1(0) are subspaces of X , while by Property 2.6.2
R+

t1(x) and R−
t1(x) are linear varieties contained in X .

Property 2.6.7 In the case of linear time-invariant systems the following in-
clusions hold:

R+
t1

(0) ⊆ R+
t2
(0) for t1 ≤ t2 (2.6.27)

R−
t1

(0) ⊆ R−
t2
(0) for t1 ≤ t2 (2.6.28)

Proof. Let x1 ∈R+
t1(0), so that a control function u1(t), t∈ [0, t1] exists, which

drives the state from zero to x1 at time t1; the control function defined as
u2(t) = 0 for t∈ [0, t2 − t1] and u2(t) =u1(t− t2 + t1) for t∈ [t2 − t1, t2] clearly
drives the state from zero to x1 at time t2, hence (2.6.27) holds. A similar
argument proves (2.6.28). �

The following corollary is an immediate consequence of Property 2.6.7.

Corollary 2.6.1 In the case of linear time-invariant systems the following
equalities hold:

W+
t1 (0) = R+

t1(0) (2.6.29)

W−
t1

(0) = R−
t1
(0) (2.6.30)

Let us consider, in particular, linear time-invariant continuous systems. The
basic result for controllability is stated in the following theorem.



2.6. Controllability and Observability 119

Theorem 2.6.3 Refer to system (2.2.15, 2.2.16). The reachable set from the
origin in [0, t1] is

R+
t1
(0) = imP with P := [B AB . . . An−1B] (2.6.31)

Proof. From Lemma 2.6.1 and Theorem 2.6.1 it follows that any x1 such that

x1 ∈ R+
t1
(0)⊥ (2.6.32)

satisfies
BT ΦT (t1, τ) x1 = 0 ∀ τ ∈ [0, t1] (2.6.33)

and, conversely, (2.6.32) holds for all x1 satisfying (2.6.33). Let t := t1 − τ , so
that (2.6.33) is written as

BT eAT t x1 = 0 ∀ t ∈ [0, t1] (2.6.34)

Since the function on the left of (2.6.34) is analytic and identically zero in the
interval [0, t1], all its derivatives are also identically zero. Differentiating at t = 0
yields

BT (AT )i x1 = 0 (i = 0, . . . , n− 1) (2.6.35)

In (2.6.35) it is not necessary to consider powers higher than n− 1. In fact, the
Cayley-Hamilton theorem implies

An = −(a1 An−1 + a2 An−2 + . . . + an I)

hence
An B = −(a1 An−1 B + a2 An−2 B + . . . + an B) (2.6.36)

Transpose and multiply on the right by x1. Then

BT (AT )n x1 = −(a1 BT (AT )n−1 x1 + . . . + an BT x1)

so that (2.6.35) are satisfied also for i≥n. Recall the matrix exponential power
series expansion: clearly relations (2.6.35) are not only necessary, but also
sufficient for (2.6.34) to hold. On the other hand, (2.6.35) are equivalent to
x1 ∈ kerP T . Since (2.6.34) is satisfied if and only if (2.6.32) holds, (2.6.31) is
proved. �

The following property expresses Theorem 2.6.3 in coordinate-free form and
can be considered as a first step towards a geometric settling of the controlla-
bility and observability concepts.

Property 2.6.8 Refer to system (2.2.15, 2.2.16). The reachable set from the
origin in [0, t1] can be expressed as

R+
t1

(0) = minJ (A,B) (2.6.37)

where minJ (A,B) denotes the minimal A-invariant containing B := imB.11

11 The set of all A-invariants containing a given subspace B is a non-distributive lattice
with respect to ⊆, +,∩, which admits a supremum, the whole space X , and an infimum,
minJ (A,B).
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Proof. It has already been proved that imP is an A-invariant. Since all the
columns of matrix P clearly belong to all other A-invariants containing B, imP
coincides with minJ (A,B). �

Property 2.6.9 Refer to system (2.2.15, 2.2.16). The controllable set to the
origin is equal to the reachable set from the origin, i.e.,

R−
t1

(0) = R+
t1

(0) (2.6.38)

Consider (2.6.5), which in this case can be written as

R−
t1
(0) = e−At1 R+

t1
(0)

and note that any A-invariant is also an invariant with respect to eAt and e−At, as
immediately follows from the power series expansion of the matrix exponential;
equality (2.6.38) is implied by e−At1 being nonsingular. �

It is remarkable that the expressions for R+
t1(0) and R−

t1(0) derived earlier are
independent of t1, i.e., in the case of linear time-invariant continuous systems
the reachable subspace and the controllable subspace do not depend on the
length of time for control, provided it is nonzero.

From now on, the simple symbol R will be used for many sets referring to
controllability of linear time-invariant continuous systems:

R := minJ (A,B) = R+
t1
(0) = R−

t1
(0) = W+

t1
(0) = W−

t1
(0) (2.6.39)

The subspace B := imB will be called the forcing actions subspace and R
the controllability set or controllability subspace. System (2.2.15, 2.2.16) will be
said to be completely controllable if R=X . In this case it is also customary to
say that the pair (A, B) is controllable.

Observability of linear time-invariant systems is now approached in a similar
way. Denote by Q−

t1(u(·), y(·)) and Q+
t1(u(·), y(·)) the sets of all initial and final

states compatible with input function u(·) and output function y(·) in [0, t1],
also called the unobservable set and the unreconstructable set in [0, t1] with
respect to the given input and output functions. By Property 2.6.5 Q−

t1(0, 0)
and Q+

t1(0, 0) are subspaces of X , while by Property 2.6.6 Q−
t1(u(·), y(·)) and

Q+
t1(u(·), y(·)) are linear varieties contained in X .

Property 2.6.10 In the case of linear time-invariant systems the following
equalities hold:

Q−
t1

(0, 0) ⊇ Q−
t2
(0, 0) for t1 ≤ t2 (2.6.40)

Q+
t1

(0, 0) ⊇ Q+
t2
(0, 0) for t1 ≤ t2 (2.6.41)

Proof. Initial states belonging to Q−
t2(0, 0) cause zero free response in the time

interval [0, t2], which contains [0, t1], so that they also belong to Q−
t1(0, 0) and

(2.6.40) is proved. A similar argument proves (2.6.41). �
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Let us consider, in particular, linear time-invariant continuous systems. The
most important result of observability is stated in the following theorem, dual
of Theorem 2.6.3.

Theorem 2.6.4 Refer to system (2.2.15, 2.2.16). The zero-input unobservable
set in [0, t1] is

Q−
t1
(0, 0) = kerQ with QT := [CT AT CT . . . (AT )n−1CT ] (2.6.42)

Proof. From Lemma 2.6.1 and Theorem 2.6.2 it follows that any x0 such that

x0 ∈ Q−
t1

(0, 0) (2.6.43)

satisfies
C Φ(τ, 0) x0 = 0 ∀ τ ∈ [0, t1] (2.6.44)

and, conversely, (2.6.43) holds for all x0 satisfying (2.6.44). Relation (2.6.44)
can also be written as

C eAτ x0 = 0 ∀ τ ∈ [0, t1] (2.6.45)

and by the argument considered in the proof of Theorem 2.6.3 condition
x0 ∈ kerQ is proved to be necessary and sufficient for (2.6.43) to hold. �

Theorem 2.6.4 can be stated in coordinate-free form as follows.

Property 2.6.11 Refer to system (2.2.15, 2.2.16). The zero-input unobservable
set in [0, t1] can be expressed as

Q−
t1

(0) = maxJ (A, C) (2.6.46)

where maxJ (A, C) denotes the maximal A-invariant contained in C := kerC.12

Proof. From the proof of Property 2.6.8 it follows that imQT is the minimal
AT -invariant containing imCT , so that its orthogonal complement kerQ is the
maximal A-invariant contained in kerC. �

Property 2.6.12 Refer to system (2.2.15, 2.2.16). The zero-input unrecon-
structable set in [0, t1] is equal to the zero-input unobservable set, i.e.,

Q+
t1

(0, 0) = Q−
t1

(0, 0) (2.6.47)

Proof. Consider (2.6.15), which in this case can be written as

Q+
t1
(0, 0) = eAt1 Q−

t1
(0, 0)

12 The set of all A-invariants contained in a given subspace C is a nondistributive lattice with
respect to ⊆, +,∩, which admits a supremum, maxJ (A, C), and an infimum, the origin {0}.
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Equality (2.6.47) follows from Q−
t1(0, 0) being an A-invariant, hence an invari-

ant also with respect to eAt1 and from the matrix exponential being nonsingu-
lar. �

The above expressions for Q−
t1(0, 0) and Q+

t1(0, 0) are independent of t1,
so that in the case of linear time-invariant continuous systems the zero-input
unobservable subspace and the zero-input unreconstructable subspace do not
depend on the length of time for observation, provided it is nonzero.

In the following, the simple symbol Q will be used for both:

Q := maxJ (A, C) = Q−
t1(0, 0) = Q+

t1(0, 0) (2.6.48)

The subspace C := kerC will be called the inaccessible states subspace and Q
the unobservability set or unobservability subspace. System (2.2.15, 2.2.16) will
be said to be completely observable if Q= {0}. In this case it is also customary
to say that the pair (A, C) is observable.

Extension to Discrete Systems. We shall now extend the results on
controllability and observability to linear time-invariant discrete systems. Refer
to system (2.2.17, 2.2.18): let R+

i (0) be the reachable set from the origin in i
steps. It is easy to see that

R+
i (0) = imPi with Pi := [Bd Ad Bd . . . Ai−1

d Bd] (i =1, 2, . . . ) (2.6.49)

In fact, let x1 ∈R+
i (0)⊥. From (2.6.20) and Theorem A.5.4 it follows that

BT
d (AT

d )ix1 = 0, hence x1 ∈ kerP T
i . The Cayley-Hamilton theorem implies that

the maximal reachable subspace is attained in a number of steps not greater
than n. It coincides with the minimal Ad-invariant containing the forcing action
subspace Bd := imBd, i.e., R+(0) := limi→∞R+

i (0) =R+
n (0) =minJ (Ad,Bd).

The controllable set to the origin in i steps is determined from
(2.6.21) as R−

i (0) =A−i
d R+

i (0). Moreover, R−(0) := limi→∞R−
i (0) =R−

n (0) =
A−n

d minJ (Ad,Bd).
The zero-input unobservable subspace in i steps Q−

i (0, 0) (i =0, 1, . . . ) is
expressed by

Q−
i (0, 0) = kerQi with QT

i := [CT
d AT

d CT
d . . . (AT

d )i CT
d ] (i =0, 1, . . . )

(2.6.50)
In fact, let x0 ∈Q−

i (0, 0)⊥. From (2.6.23) and Theorem A.5.4 it fol-
lows that CdA

i
dx0 =0, hence x0 ∈ kerQT

i . The Cayley-Hamilton theorem
implies that the minimal unobservable subspace corresponds to a num-
ber of steps not greater than n− 1. It coincides with the maximal Ad-
invariant contained in the inaccessible states subspace Cd := kerCd, i.e.,
Q−(0, 0) := limi→∞Q−

i (0, 0) =Q−
n−1(0, 0) =maxJ (Ad, Cd).

The zero-input unreconstructable subspace in i steps is determined from
(2.6.24) as Q+

i (0, 0) =Ai
d Q−

i (0, 0). Moreover, Q+(0, 0) := limi→∞Q+
i (0, 0) =

Q+
n (0, 0) =An

d maxJ (Ad, Cd).
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As for the continuous system, we define R :=R+(0) =minJ (Ad,Bd) and
Q :=Q−(0, 0) =maxJ (Ad, Cd). However, for discrete systems the equalities
R−(0) =R+(0) and Q−(0, 0) =Q+(0, 0) are not true in general. They are
replaced by the inclusions R−(0)⊇R+(0) and Q−(0, 0)⊇Q+(0, 0), which derive
from the general property that if J is an A-invariant, both AJ and A−1J are
A-invariants, hence, by a recursion argument, AiJ and A−iJ (i =2, 3, . . . ) are
A-invariants.
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Sci. Toulouse, vol. 9, pp. 203–474, 1907.

18. Luenberger, D.G., “Invertible solutions to the operator equation TA-BT=C,”
Proc. Am. Math. Soc., vol. 16, pp. 1226–1229, 1965.

19. MacFarlane, A.G.J., “System matrices,” Proc. IEE , vol. 115, no. 5, pp. 749–754,
1968.

20. — , “The development of frequency-response methods in automatic control,”
IEEE Trans. Autom. Control , vol. AC-24, no. 2, pp. 250–265, 1979.

21. Minorsky, N., Introduction to Nonlinear Mechanics, J. W. Edwards, Ann Arbor,
1947.

22. Molinari, B.E., “Algebraic solution of matrix linear equations in control theory,”
Proc. IEE , vol. 116, pp. 1748–1754.

23. Ogata, K., State Space Analysis of Control Systems, Prentice Hall, Englewood
Cliffs, N.J., 1967.

24. Ostrowski, A., and Schneider, H., “Some theorems on the inertia of general
matrices,” J. of Math. Analysis and Applications, vol. 4, pp. 72–84, 1962.

25. Rosenbrock, H.H., “Transformation of linear constant system equations,” Proc.

IEE , vol. 114, no. 4, pp. 541–544, 1967.

26. — , “On linear system theory,” Proc. IEE , vol. 114, no. 9, pp. 1353–1359, 1967.

27. — , “Computation of minimal representations of a rational transfer-function
matrix,” Proc. IEE , vol. 115, no. 2, pp. 325–327, 1968.

28. — , State-space and Multivariable Theory, Nelson, London, 1970.

29. Rosenbrock, H.H., and Storey, C., Mathematics of Dynamical Systems, Nelson,
London, 1970.

30. Sansone, G., and Conti, R., Equazioni Differenziali Non Lineari , Edizioni Cre-
monese, Rome, 1956.

31. Schultz, D.G., and Melsa, J.L., State Function and Linear Control Systems,
McGraw-Hill, New York, 1967.

32. Tou, J.T., Modern Control Theory , McGraw-Hill, New York, 1964.

33. Varah, J.M., “On the separation of two matrices,” SIAM J. Numer. Anal., vol.
16, pp. 216–222, 1979.

34. Vidyasagar, M., Nonlinear System Analysis, Prentice Hall, Englewood Cliffs,
N.J., 1978.

35. Vidyasagar, M., Control System Synthesis: A Factorization Approach, The MIT
Press, Cambridge, Mass., 1985.

36. Willems, J.L., Stability Theory of Dynamical Systems, Wiley, New York, 1970.



Chapter 3

The Geometric Approach:

Classic Foundations

3.1 Introduction

The essence of the geometric approach consists of developing most of the math-
ematical support in coordinate-free form, to take advantage of simpler and more
elegant results, which facilitate insight into the actual meaning of statements
and procedures; the computational aspects are considered independently of the
theory and handled by means of the standard methods of matrix algebra, once
a suitable coordinate system is defined. The cornerstone of the approach is the
concept of invariance of a subspace with respect to a linear transformation. In
this chapter the properties and geometric meaning of invariants are presented
and investigated, and their connection with the most important classical sys-
tem theory problems like controllability, observability, and pole assignability is
pointed out.

3.1.1 Some Subspace Algebra

The coordinate-free approach used from now on in this book requires a com-
putational background in terms of operations and transformations involving
subspaces, which are reflected, of course, in numerical procedures referring to
their basis matrices. The most important of these operations and some of their
properties are briefly reviewed in this section.

Consider subspaces X ,Y ,Z of finite-dimensional inner product vector spaces
Rn, Rm (Cn, Cm) and denote with A both an m×n real (complex) matrix and
its corresponding linear transformation from Rn to Rm (from Cn to Cm).

The basic operations on subspaces are:

1. Sum:
Z = X + Y := {z : z = x + y , x∈X , y ∈Y} (3.1.1)

2. Linear transformation:

Y = AX := {y : y = Ax , x∈X} (3.1.2)

125
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3. Orthogonal complementation:

Y = X⊥ := {y : 〈y, x〉 = 0 , x∈X} (3.1.3)

4. Intersection:
Z = X ∩ Y := {z : z ∈X , z ∈Y} (3.1.4)

5. Inverse linear transformation:

X = A−1 Y := {x : y = Ax , y ∈Y} (3.1.5)

The set of all the subspaces of a given vector space W is a nondistribu-
tive lattice with ⊆ as the partial ordering relation and +, ∩ as the binary
operations. Its universal bounds are W and {0}.

The following relations are often considered in algebraic manipulations re-
garding subspaces. Their proofs, all quite simple, are here omitted for the sake
of brevity.

X ∩ (Y + Z) ⊇ (X ∩ Y) + (X ∩ Z) (3.1.6)

X + (Y ∩ Z) ⊆ (X + Y) ∩ (X + Z) (3.1.7)

(X⊥)⊥ = X (3.1.8)

(X + Y)⊥ = X⊥ ∩ Y⊥ (3.1.9)

(X ∩ Y)⊥ = X⊥ + Y⊥ (3.1.10)

A (X ∩ Y) ⊆ AX ∩ AY (3.1.11)

A (X + Y) = AX + AY (3.1.12)

A−1 (X ∩ Y) = A−1 X ∩ A−1 Y (3.1.13)

A−1 (X + Y) ⊇ A−1 X + A−1 Y (3.1.14)

Relations (3.1.6), (3.1.7) show that the lattice of all subspaces of a given
vector space is nondistributive. A particular case in which they hold with the
equality sign is considered in the following property.

Property 3.1.1 Relations (3.1.6),(3.1.7) hold with the equality sign if any one
of the involved subspaces X ,Y ,Z is contained in any of the others.

Proof. First, consider (3.1.6). Let Y ⊆X and x be any vector belonging to the
subspace on the left, so that x∈X and there exist two vectors y ∈Y and z ∈Z
such that x = y + z but, since y ∈X , also z ∈X , then x∈ (X ∩Y) + (X ∩Z).
If X ⊆Y , both members reduce to X , while, if Y ⊆Z, both members reduce
to X ∩Z. Now consider (3.1.7). Let X ⊆Y and y be any vector belonging to
the subspace on the right, so that y ∈Y and there exist two vectors x∈X and
z ∈Z such that y =x + z but, since x∈Y , also z ∈Y , then y ∈X +(Y ∩Z). If
Y ⊆X , both members reduce to X , while, if Z ⊆Y , both members reduce to
X +Z. �
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Two other properties, which relate a generic subspace to its orthogonal
complement and allow interesting dualities to be set, are presented. One states,
in particular, that the orthogonal complement of an A-invariant is an AT-
invariant in the real field and an A∗-invariant in the complex field, and the
other suggests a procedure to compute the inverse transform of a subspace.

Property 3.1.2 Consider a linear map A :Fn →Fm (F = R or F = C) and
any two subspaces X ⊆Fn and Y ⊆Fm. In the real and complex fields the
following relations hold:

AX ⊆ Y ⇔ AT Y⊥ ⊆ X⊥ (3.1.15)

AX ⊆ Y ⇔ A∗ Y⊥ ⊆ X⊥ (3.1.16)

Proof. Refer to (3.1.15). Inclusion on the left implies 〈Ax, y〉=0 for all x∈X
and for all y ∈Y⊥ or, equivalently, 〈x, AT y〉 for all x∈X and for all y ∈Y⊥

which, in turn, implies and is implied by AT Y⊥ ⊆X⊥. �

Property 3.1.3 Consider a linear map A :Fn →Fm (F = R or F = C) and a
subspace Y ⊆Fm. In the real and complex fields the following relations hold:

(A−1 Y)⊥ = AT Y⊥ (3.1.17)

(A−1 Y)⊥ = A∗ Y⊥ (3.1.18)

Proof. Refer to (3.1.17). Let Y be a basis matrix of Y⊥, so that im Y =Y⊥,
ker Y T =Y . It follows that

AT Y⊥ = AT im Y = im (AT Y ) =
(

ker (Y T A)
)⊥

= (A−1 ker Y T)⊥

= (A−1 Y)⊥ �

To implement computational procedures for operations on subspaces, the
Gauss-Jordan elimination method or the Gram-Schmidt orthonormalization
process - both provided with a suitable linear dependence test - can be used. For
instance, computations with the Gram-Schmidt process are realized as follows.

1. Sum of two subspaces. Let X, Y be basis matrices of subspaces X ,Y ⊆Fn,
with F = R or F = C. A basis matrix Z of Z :=X +Y is obtained by
orthonormalizing the columns of matrix [X Y ].

2. Linear transform of a subspace. Let X be a basis matrix of subspace
X ⊆Fn. A basis matrix Y of Y := AX is obtained by orthonormalizing the
columns of matrix A X.

3. Orthogonal complement of a subspace. Let X, n×h, be a basis matrix of
subspace X ⊆Fn. A basis matrix Y of Y :=X⊥ is obtained by orthonor-
malizing the columns of matrix [X In] and selecting the last n−h of the n
obtained vectors.
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4. Intersection of two subspaces. It is reduced to sum and orthogonal comple-
mentation owing to (3.1.8), (3.1.10).

5. Inverse linear transform of a subspace. It is reduced to direct transform
and orthogonal complementation owing to (3.1.8), (3.1.17), (3.1.18).

Some useful geometric-approach-oriented matlab routines based on the
above subspace computations are reported in Section B.4.

3.2 Invariants

Consider a linear transformation A : X →X with X :=Fn. Recall that an
A-invariant is a subspace J ⊆X such that

AJ ⊆ J (3.2.1)

Property 3.2.1 A subspace J with basis matrix V is an A-invariant if and
only if there exists a matrix X such that

A V = V X (3.2.2)

Proof. Let vi (i = 1, . . . , r) be the columns of V : J is an A-invariant if and
only if each transformed column is a linear combination of all columns, i.e., if
and only if there exist vectors xi such that A vi = V xi (i =1, . . . , r); relation
(3.2.1) expresses these equalities in compact form. �

3.2.1 Invariants and Changes of Basis

Refer to a linear function A : Fn →Fm, with F = R or F = C, represented by
an m×n real or complex matrix A with respect to the main bases of Fn and
Fm. Recall that a change of basis or similarity transformation1 is defined by
two nonsingular real or complex matrices P, Q whose columns are the vectors
of the new bases expressed with respect to the main ones. If x, y are the old
coordinates and ξ, η the new ones, so that x = Pξ, y = Qη, it follows that

η = Q−1A Pξ = A′ ξ, with A′ := Q−1A P

If A maps a vector space Fn into itself, so that it is possible to assume a unique
change of basis represented by the transformation T :=Q = P , we obtain, as a
special case

η = T−1A Tξ = A′ ξ with A′ := T−1A T

A suitable choice of matrix T is often used to point out structural features of
the involved linear transformation. Typical examples are the Jordan canonical
form and the Schur decomposition presented in Appendix A.

1 Changes of coordinates are also treated in Section A.2. They are briefly recalled here
for the sake of completeness and in simpler form (the first reference bases are main bases).
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By using (3.2.2) it can be immediately shown that invariance is a coordinate-
free concept. Let V be a basis matrix of J and W the transformed basis matrix
in the new coordinates defined by T . Clearly W = T−1V . The identity

T−1A T (T−1V ) = (T−1V ) X

which is easily derived from (3.2.2), is equivalent to

A′ W = W X (3.2.3)

which proves the assertion.

Theorem 3.2.1 Let A : X →X , X :=Fn, be a linear map and J ⊆X be an
A-invariant subspace. There exists a similarity transformation T such that

A′ := T−1A T =

[

A′
11 A′

12

O A′
22

]

(3.2.4)

where A′
11 is an h×h matrix with h := dimJ .

Proof. Assume T := [T1 T2], with imT1 =J . Clearly

W := T−1 T1 =

[

Ih

O

]

which, together with (3.2.3), implies structure (3.2.4). �

3.2.2 Lattices of Invariants and Related Algorithms

We shall now investigate some specific properties of invariant subspaces. Let
A : X →X be a linear transformation and B any subspace of X : the set of all
A-invariants containing B is a nondistributive lattice with respect to ⊆, +, ∩ .
The supremum of the lattice is clearly X , while the infimum is the intersection
of all the A-invariants containing B. It will be called the minimal A-invariant
containing B and denoted by the symbol minJ (A,B) . It can be determined
by means of the following algorithm.

Algorithm 3.2.1 (the minimal A-invariant containing imB) Subspace
minJ (A,B) coincides with the last term of the sequence

Z0 = B (3.2.5)

Zi = B + AZi−1 (i = 1, . . . , k) (3.2.6)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.
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Proof. First, note that Zi ⊇Zi−1 (i =1, . . . , k). In fact, instead of (3.2.6),
consider the recursion expression

Z ′
i := Z ′

i−1 + AZ ′
i−1 (i =1, . . . , k)

with Z ′
0 :=B, which defines a sequence such that Z ′

i ⊇Z ′
i−1 (i =1, . . . , k); hence,

AZ ′
i ⊇AZ ′

i−1 (i =1, . . . , k). This sequence is equal to (3.2.6): by induction,
note that if Z ′

j =Zj (j =1, . . . , i− 1), also Z ′
i =B+AZi−2 + AZi−1 =Zi (since

AZi−2 ⊆AZi−1). If Zk+1 =Zk, also Zj =Zk for all j >k + 1 and Zk is an A-
invariant containing B. In fact, in such a case Zk =B+ AZk; hence, B⊆Zk,
AZk ⊆Zk. Since two subsequent subspaces are equal if and only if they have
equal dimensions and the dimension of the first subspace is at least one, an A-
invariant is obtained in at most n− 1 steps. The last subspace of the sequence
is the minimal A-invariant containing B, as can be proved again by induction.
Let J be another A-invariant containing B: if J ⊇Zi−1, it follows that J ⊇Zi.
In fact, J ⊇B+ AJ ⊇B+AZi−1 =Zi. �

These results are easily dualized: let A : X →X be a linear transformation
and C any subspace of X : the set of all A-invariants contained in C is a
nondistributive lattice with respect to ⊆, +, ∩ . The infimum of the lattice
is clearly {0}, while the supremum is the sum of all the A-invariants contained
in C. It will be called the maximal A-invariant contained in C and denoted by
the symbol maxJ (A, C). It can be determined as follows (in the real case for
the sake of simplicity): from

AJ ⊆ J ⇔ AT J ⊥ ⊆ J ⊥

C ⊇ J ⇔ C⊥ ⊆ J ⊥

it follows that
maxJ (A, C) = (minJ (AT , C⊥))⊥ (3.2.7)

This reduces computation of maxJ (A, C) to that of minJ (A,B) . Relation
(3.2.7) can be used to prove the following algorithm, dual of Algorithm 3.2.1.

Algorithm 3.2.2 (the maximal A-invariant contained in kerC) Subspace
maxJ (A, C) coincides with the last term of the sequence

Z0 = C (3.2.8)

Zi = C ∩ A−1Zi−1 (i = 1, . . . , k) (3.2.9)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.

Proof. Relations (3.2.8, 3.2.9) are equivalent to

Z⊥
0 = C⊥

Z⊥
i = (C ∩ A−1Zi−1)

⊥ = C⊥ + AT Z⊥
i−1

which, owing to Algorithm 3.2.1, converge to the orthogonal complement of
minJ (AT , C⊥) , which is maxJ (A, C) by (3.2.7). �
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3.2.3 Invariants and System Structure

Invariant subspaces define the structure of linear transformations, thus playing
an important role in linear dynamic system analysis.

Definition 3.2.1 (restriction of a linear map) Consider a linear map A :
X →X , X :=Fn, and an A-invariant subspace J ⊆X . The restriction of A to
J is the linear map ρ : J →J defined by

ρ(x) = A(x) ∀x ∈ J
The restriction of A to J is usually denoted by A|J .

Let h := dimJ : owing to Theorem 3.2.1, A|J is represented in a suitable
basis by an h×h matrix.

Definition 3.2.2 (induced map on a quotient space) Consider a linear map
A : X →X , X :=Fn, and an A-invariant subspace J ⊆X . The map induced
by A on the quotient space X /J is the map ϕ : X /J →X /J defined by

ϕ({x}+J ) = {A(x)} + J ∀ {x}+J ∈ X /J
The function induced by A on the quotient space X /J is usually denoted by
A|X/J .

Let n := dimX , h := dimJ : owing to Theorem 3.2.1, A|X/J is represented in
a suitable basis by an (n−h)× (n−h) matrix.

The following corollary is an immediate consequence of Theorem 3.2.1.

Corollary 3.2.1 Let A : X →X , X :=Fn, be a linear map and J ,K⊆X be
a pair of A-invariant subspaces such that J ⊕K=X . There exists a similarity
transformation T such that

A′ := T−1A T =

[

A′
11 O

O A′
22

]

(3.2.10)

where A′
11 is an h×h matrix with h := dimJ and A′

22 an (n−h)× (n−h)
matrix.

Any pair of A-invariants J ,K such that J ⊕K=X is said to decompose the
linear map A : X →X into two restrictions ρ1 : J →J and ρ2 : K→K, defined
by

ρ1(x) = A(x) ∀x ∈ J , ρ2(x) = A(x) ∀x ∈ K
Let h := dimJ , k := dimK: owing to Corollary 3.2.1 these restrictions are rep-
resented in a suitable basis by an h×h matrix and a k× k matrix respectively.
According to the previously considered notation, they can be denoted with sym-
bols A|J and A|K. Consider the projections P and Q introduced in Definition
A.2.16: the relation

ρ1(P (x)) + ρ2(Q(x)) = A(x) ∀x ∈ X
clarifies the origin of the expression “to decompose.”
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Definition 3.2.3 (complementability of an invariant) Let A : X →X ,
X :=Fn, be a linear map: an A-invariant J ⊆X is said to be complementable
if there exists an A-invariant K such that J ⊕K=X . If so, K is called a
complement of J .

Complementability of invariant subspaces is a very basic concept for system
theory applications of linear algebra, since it may be necessary for particular
subspaces of the state space to be complementable in order that some con-
trol problems have a solution. Necessary and sufficient conditions for comple-
mentability are stated in the next two theorems.

Theorem 3.2.2 Let A : X →X , X :=Fn, be a linear map and V be a basis
matrix of an A-invariant subspace J ⊆X , so that (3.2.4) holds with T := [V T2].
J is complementable if and only if the Sylvester equation in X

A′
11 X − X A′

22 = −A′
12 (3.2.11)

admits a solution.

Proof. Let J be complementable and denote by Jc a complement of J . In
the new reference system considered in the proof of Theorem 3.2.1

V ′ =

[

Ih

O

]

and V ′
c =

[

X
In−h

]

are basis matrices for J and Jc respectively. Assuming an identity submatrix
in the last n−h rows of the second basis matrix does not affect generality.
In fact, this submatrix must be nonsingular (since [V ′ V ′

c ] is nonsingular);
postmultiplying by its inverse the basis matrix again provides a basis matrix
with the structure of V ′

c . Equation (3.2.11) immediately derives from the well-
known condition (Property 3.2.1) that there exists an F such that

A′ V ′
c = V ′

c F �

In the old reference system a basis matrix for a complement Jc of J is given
by Vc =V X + T2, where X is a solution of (3.2.11).

Theorem 3.2.3 Let A : X →X , X :=Fn, be a linear map and T1 a basis
matrix of an A-invariant subspace J ⊆X , so that (3.2.4) holds with T := [T1 T2].
J is complementable if and only if the elementary divisors 2 of A′, hence of A,
are the union of those of A′

11 and A′
22.

2

Proof. Only if. Suppose A′
12 =O and apply a block diagonal similarity

transformation which takes both A′
11 and A′

22 into the Jordan canonical form.

2 Elementary divisors are defined in Subsection A.4.5 in connection with the Jordan
canonical form.
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The complete matrix is also in Jordan canonical form and its elementary divisors
are the union of those of the submatrices.

If. Apply a block upper-triangular similarity transformation that takes A′

into the Jordan canonical form: if the elementary divisors are separated, the
off-diagonal matrices are zero, hence J is complementable. �

3.2.4 Invariants and State Trajectories

Only linear time-invariant systems will be considered in what follows. To be
more concise in notation, a purely dynamic system like

ẋ(t) = A x(t) + B u(t) (3.2.12)

y(t) = C x(t) (3.2.13)

will be simply called the three-map system or the triple (A, B, C), while a
nonpurely dynamic system like

ẋ(t) = A x(t) + B u(t) (3.2.14)

y(t) = C x(t) + D u(t) (3.2.15)

will be called the four-map system or the quadruple (A, B, C, D).
For the sake of simplicity, most of the analysis that follows will be referred

to triples: its extension to quadruples is often straightforward.
In (3.2.12, 3.2.13) and (3.2.14, 3.2.15) u∈Rp, y ∈Rq, x∈X = Rn and

A, B, C, D denote properly dimensioned real matrices. We assume that input
function u(·) belongs to the class of piecewise continuous functions. A triple can
be represented with the block diagram shown in Fig. 3.1, where the algebraic
operators B and C, which provide respectively the forcing action f ∈X = Rn as
a function of u and the output y as a function of x are shown as separate from
the strictly dynamic part of the system. Matrices A, B, C are called respectively
the system matrix , the input distribution matrix , and the output distribution
matrix . Usually p <n and q <n, so that matrices B and C are nonsquare,
hence noninvertible: if B were square and invertible, the forcing action f and,
consequently, the state velocity ẋ could be arbitrarily assigned at any instant of
time by means of the input u, thus it could be possible to follow any arbitrary
continuous and continuously differentiable state trajectory. Similarly, if C were
square and invertible, the state x would be completely known at any instant of
time by simply observing the output y. In the geometric approach it is very im-

u
B

f
ẋ = Ax + f

x
C

y

Figure 3.1. A block diagram representation of a triple (A,B,C).

portant to state whether or not state trajectories exist that completely belong
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to given subsets of the state space, especially to subspaces. For this purpose we
present a useful lemma, which will be referred to very often thereafter.

Lemma 3.2.1 (the fundamental lemma of the geometric approach) Any state
trajectory x|[t0,t1] of (3.2.12) or (3.2.14) belongs to a subspace L⊆X if and only
if x(t0)∈L and ẋ(t)∈L almost everywhere in [t0, t1].

Proof. Recall that a Lebesgue measurable and integrable function is zero
almost everywhere in [t0, t1] if and only if its integral in any subinterval of
[t0, t1] is zero. Apply this property to function Y T ẋ(t), where Y denotes a basis
matrix of L⊥: the function is zero in [t0, t1] if and only if

Y T

∫ t

t0

ẋ(τ) dτ = Y T (x(t)−x(t0)) = 0 ∀ t∈ [t0, t1]

This clearly implies x(t)∈L for all t∈ [t0, t1]. �

Refer now to the free system

ẋ(t) = A x(t) (3.2.16)

Theorem 3.2.4 A subspace L⊆X is a locus of trajectories of system (3.2.16)
(i.e., it contains any trajectory that originates on it) if and only if it is an
A-invariant.

Proof. If. Let L be an A-invariant: at every x∈L the corresponding state
velocity A x belongs to L, so that, owing to the fundamental lemma, every
trajectory of system (3.2.16) which originates at a point of L completely belongs
to L.

Only if. Consider a trajectory x(·) of system (3.2.16), denote by L the
subspace of minimal dimension in which it is contained, and let k := dimL:
there exist k instants of time t1, . . . , tk such that {x(t1), . . . , x(tk)} is a basis of
L. Owing to the fundamental lemma it is necessary that

ẋ(ti) = A x(ti) ∈ L (i =1, . . . , k)

so that L is an A-invariant. �

3.2.5 Stability and Complementability

Still referring to the free system (3.2.16), we shall now introduce the concept
of stability of an invariant . We recall that system (3.2.16) is (asymptotically)3

stable if and only if all the eigenvalues of matrix A have negative real part. By
extension, in this case A is said to be a stable matrix .

3 From now on stability is always tacitly assumed to be strict or asymptotic.
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Since an A-invariant J ⊆X is a locus of trajectories, stability can be “split”
with respect to J . To clarify this concept, recall the change of basis in Corollary
3.2.1 and let x =Tz: in the new coordinate we obtain the system

[

ż1(t)
ż2(t)

]

=

[

A′
11 A′

12

O A′
22

] [

z1(t)
z2(t)

]

(3.2.17)

which is equivalent to (3.2.17). Consider an initial state x′
0 ∈J : the correspond-

ing transformed state z′0 =T−1x′
0 decomposes into (z′01, 0). The motion on J is

described by
ż1(t) = A′

11 z1(t) , z1(0) = z′01

while z2(t) remains identically zero. Therefore, the motion on J is stable if and
only if submatrix A′

11 is stable. This situation is represented by trajectory 1 in
Fig. 3.2.

x′′
0

2

1

x0
′

J

Figure 3.2. Internal and external stability of an invariant.

On the other hand, consider an initial state x′′
0 /∈J , so that z′′02 �=0; the time

evolution of the second component of the transformed state is described by

ż2(t) = A′
22 z2(t) , z2(0) = z′′02

This means that the projection of the state along J on any complement of J
has a stable behavior if and only if A′

22 is a stable matrix. In other words, in this
case the canonical projection of the state on the quotient space X /J tends to
the origin as t approaches infinity: this means that the linear variety parallel to
J , which contains the state, tends to coincide with J for t approaching infinity.
This situation is represented by trajectory 2 in Fig. 3.2.

Invariant J is said to be internally stable if submatrix A′
11 in (3.2.4) is stable

and externally stable if A′
22 is stable. A more formal, coordinate-free definition

is stated as follows.

Definition 3.2.4 (internally or externally stable invariant) Consider a linear
map A : X → X : an A-invariant J ⊆X is said to be internally stable if A|J
is stable, externally stable if A|X/J is stable.
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Owing to the Laplace expansion of determinants, from (3.2.4) it follows that

detA = detA′ = detA′
11 · detA′

22

hence a partition of the eigenvalues of A is associated to every A-invariant J :
the eigenvalues internal with respect to J (those of A′

11 or of A|J ) and the
eigenvalues external with respect to J (those of A′

22 or of A|X/J ).

Relative Stability. Internal and/or external stability of invariants can be
referred to other invariants: let J and Jc be A-invariants and define

J1 := J ∩ Jc (3.2.18)

J2 := J + Jc (3.2.19)

J1 and J2 are A-invariants too, as the intersection and the sum of A-invariants
respectively. Perform the change of basis defined by T := [T1 T2 T3 T4], with
imT1 =J1, im[T1 T2] =J , im[T1 T3] =Jc. From Theorem 3.2.1 it follows that

A′ := T−1A T =









A′
11 A′

12 A′
13 A′

14

O A′
22 O A′

24

O O A′
33 A′

34

O O O A′
44









(3.2.20)

Clearly J is internally stable (or, in coordinate-free notation, A|J is stable)
if and only if matrices A′

11 and A′
22 are stable; it is externally stable (i.e., A|X/J is

stable) if and only if matrices A′
33 and A′

44 are stable. Similarly, Jc is internally
stable if and only if matrices A′

11 and A′
33 are stable; it is externally stable if and

only if matrices A′
22 and A′

44 are stable. Structure (3.2.20) implies the following
properties:

1. the sum of two internally stable invariants is an internally stable invariant;

2. the intersection of two externally stable invariants is an externally stable
invariant;

3. the intersection of an internally stable invariant and any other invariant is
internally stable;

4. the sum of an externally stable invariant and any other invariant is externally
stable.

External stability of an invariant with respect to another invariant containing
it can be easily defined. For instance, J1 is externally stable with respect to J
if matrix A′

22 is stable (i.e., if A|J /J1 is stable), externally stable with respect
to Jc if A′

33 is stable (i.e., if A|Jc/J1
is stable), externally stable with respect to

J2 if both A′
22 and A′

33 are stable (i.e., if A|J2/J1
is stable).

The set of all internally stable invariants and that of all externally stable
(with respect to the whole space) invariants, possibly subject to the constraint
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of containing a given subspace B⊆X and/or of being contained in a given
subspace C ⊆X , are lattices with respect to ⊆, +, ∩ .

Relative Complementability. Let J1, J and J2 be A-invariants satisfying

J1 ⊆ J ⊆ J2 (3.2.21)

J is said to be complementable with respect to (J1,J2) if there exists at least
one invariant Jc that satisfies (3.2.18, 3.2.19). To search for such an invari-
ant, perform the change of basis defined by T := [T1 T2 T3 T4], with imT1 =J1,
im[T1 T2] =J , im[T1 T2 T3] =J2. It follows that

A′ := T−1A T =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

O O A′
33 A′

34

O O O A′
44









(3.2.22)

Note that the structure of (3.2.22) is different from (3.2.20) only because
submatrix A′

23 is in general nonzero; however it may happen that a suitable
choice of T3, performed within the above specified constraint, implies that
A′

23 =O. If such a matrix T ′
3 exists, J is complementable with respect to

(J1,J2) and a complement Jc of J is provided by

Jc := im[T1 T ′
3] (3.2.23)

Owing to Theorem 3.2.2, J is complementable if and only if the Sylvester
equation

A′
22 X − X A′

33 = −A′
23 (3.2.24)

admits at least one solution X. In such a case it is possible to assume in (3.2.24)
T ′

3 := T2 X +T3. In this way a complement Jc of J with respect to (J1,J2) is
determined.

3.3 Controllability and Observability

Refer to a triple (A, B, C). We shall again derive Property 2.6.8 geometrically.
The argument here presented will also be used in Section 4.1 to introduce the
concept of controlled invariance.

Theorem 3.3.1 For the triple (A, B, C) and any finite t1 the following holds:

R := R+
t1 = minJ (A,B) with B := imB (3.3.1)

Proof. It will be proved that not only the final state x(t1), but also all the
intermediate states x(t), t∈ [0, t1] of all the admissible trajectories starting at
the origin, belong to R: in fact, consider a generic point x1(ta) of trajectory
x1(·) corresponding to input function u1(·). The input function

u(t) :=

{

0 for 0 ≤ t < t0 − ta
u1(t− t1 + ta) for t1 − ta ≤ t ≤ t1
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corresponds to a trajectory that terminates in x1(ta), so that, by definition,
x1(ta) belongs to R. Let h := dimR and xi(·) (i = 1, . . . , h) be trajectories such
that vectors xi(t1) (i =1, . . . , h) are a basis of R: since motions are continuous
functions, there exists an ǫ> 0 such that states xi(t1 − ǫ) (i =1, . . . , h) are still
a basis for R. In these states all the admissible velocities must belong to R
because, if not, it would be possible to maintain the velocity out of R for
a finite time and reach points not belonging to R. This implies the inclusion
AR+B⊆R, which means that R is an A-invariant containing B. Furthermore,
R is the minimal A-invariant containing B because at no point of it is it possible
to impose velocities not belonging to it, hence to drive out the state. �

The dual result concerning observability, already stated as Property 2.6.11,
is geometrically approached as follows.

Corollary 3.3.1 For the triple (A, B, C) and any finite t1 the following holds:

Q := Q−
t1

= maxJ (A, C) with C := kerC (3.3.2)

Proof. The statement is an immediate consequence of Theorem 3.2.4. �

3.3.1 The Kalman Canonical Decomposition

Invariance in connection with controllability and observability properties plays
a key role in deriving the Kalman canonical decomposition, which provides a
relevant insight into linear time-invariant system structure.

Property 3.3.1 A generic quadruple (A, B, C, D) is equivalent to quadruple
(A′, B′, C ′, D), where matrices A′, B′, and C ′ have the structures

A′ =









A′
11 A′

12 A′
13 A′

14

O A′
22 O A′

24

O O A′
33 A′

34

O O O A′
44









B′ =









B′
1

B′
2

O
O









C ′ = [O C ′
2 O C ′

4 ]

(3.3.3)

Proof. Perform the change of basis x = T z, z =T−1 x, where submatrices of
T := [T1 T2 T3 T4] satisfy imT1 =R∩Q, im[T1 T2] =R, im[T1 T3] =Q. The struc-
ture of A′ :=T−1A T is due to R and Q being A-invariants, that of B′ :=T−1B
to inclusion B⊆R and that of C ′ :=C T to Q⊆C. �

Consider the system expressed in the new basis, i.e.

ż(t) = A′ z(t) + B′ u(t) (3.3.4)

y(t) = C ′ z(t) + D u(t) (3.3.5)
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Because of the particular structure of matrices A′, B′, C ′ the system can be
decomposed into one purely algebraic and four dynamic subsystems, intercon-
nected as shown in Fig. 3.3. The signal paths in the figure show that subsystems
1 and 2 are controllable by input u, while subsystems 1 and 3 are unobserv-
able from output y. Subsystems 2, 4 and D are all together a minimal form
of the given system. Subsystem 2 is the sole completely controllable and ob-

+

+ +
+

u

D

y
2

1 4

3

unobservable part

reachable part

Figure 3.3. The Kalman canonical decomposition.

servable, and the only one which, with memoryless system D, determines the
input-output correspondence, i.e., the zero-state response of the overall system.
In fact

W (t) = C eAt B = C ′ eA′t B′ = C ′
2 eA′

22t B′
2 (3.3.6)

The Kalman decomposition is an ISO representation of linear time-invariant
systems that provides complete information about controllability and observ-
ability: in particular, if the system is completely controllable and observable,
parts 1, 3, and 4 are not present (the corresponding matrices in (3.3.3) have
zero dimensions).4

An interesting application of the Kalman canonical decomposition is to
derive a minimal realization of an impulse response function W (t) or a transfer
matrix G(s). This problem was introduced in Subsection 2.4.1 and can be solved

4 Furthermore, the system is stabilizable and detectable (see Section 3.4) respectively if
and only if A′

33, A
′
44 are stable and if and only if A′

11, A
′
33 are stable.
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by means of the previously considered change of basis: in fact, subsystem 2 is
a minimal realization as a consequence of the following property.

Property 3.3.2 A triple (A, B, C) is a minimal realization if and only if it is
completely controllable and observable.

Proof. Only if. A system that is not completely controllable and observable
cannot be minimal since, clearly, only subsystem 2 of the Kalman canonical
decomposition influences its input-output behavior.

If. It will be proved that, given a system of order n completely controllable
and observable, no system of order n1 < n exists with the same transfer function
G(s), hence with the same impulse response W (t). In fact, suppose that the
considered system is controlled by a suitable input function segment u|[0,t1)

to an arbitrary state x1 ∈Rn at t1 and the output function, with zero input,
is observed in a subsequent finite time interval [t1, t2]; since the system is
completely observable, the state x(t1) and the response y[t1,t2] are related by
an isomorphism: this means that with respect to a suitable basis of the output
functions space (whose n elements are each a q-th of functions consisting of
modes and linear combinations of modes) the components of y[t1,t2] are equal to
those of state x(t1) with respect to the main basis of Rn. In other terms, the
zero-input output functions in [t1, t2] belong to an n-dimensional vector space,
which cannot be related to Rn1 by a similar isomorphism. �

A similar argument applies to prove the following property.

Property 3.3.3 Any two different minimal realizations (A, B, C) and
(A′, B′, C ′) of the same impulse response W (t) or of the same transfer ma-
trix G(s) are equivalent, i.e., there exists a nonsingular matrix T such that
A′ = T−1A T , B′ =T−1B, C ′ = C T .

How to Derive a Minimal Realization. In Subsection 2.4.1 a proce-
dure based on partial fraction expansion was introduced to derive the so-called
parallel realization of a transfer matrix. The derived realization consists of
several subsystems in parallel for each input; each subsystem corresponds to a
single pole, with multiplicity equal to the maximum multiplicity in all transfer
functions concerning the considered input (a column of the transfer matrix).
The parallel realization is completely controllable by construction, but may not
be completely observable, hence not minimal.

Matrices A, B of the parallel realization have numerous elements equal to
zero. In particular, A has a structure similar to the real Jordan form, and
therefore particularly suitable to emphasize the structural features of the con-
sidered system. We shall now describe a simple procedure to obtain a minimal
realization from it which preserves such a simple structure.

By means of Algorithm 3.2.2, derive a basis matrix Q of Q=minJ (A, C).
Let nq be the number of columns of Q and Π the set of indices of those
vectors among ei (i =1, . . . , n) (the columns of the identity matrix In), which
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are linearly independent of the columns of Q: these indices can be determined
by applying the Gram-Schmidt algorithm to the columns of [Q In]. The number
of elements of Π is clearly n−nq. Let P be the permutation matrix such that
P In has vectors ei, i∈Π as first columns. In matrix

P Q =

[

Q1

Q2

]

submatrix Q2 (nq ×nq) is nonsingular. In fact the first n columns of P [Q In] are
linearly independent so that matrix [PQ|I ′

n] (where I ′
n is defined as the matrix

formed by the first n−nq columns of In) is nonsingular, as well as [I ′
n|PQ]. PQ

is a basis matrix of Q with respect to a new basis obtained by applying the
above permutation to the vectors of the previous one, as is P Q Q−1

2 , having the
same image. It follows that by the transformation

T := P

[

In−nq
Q1 Q−1

2

O Inq

]

, whence T−1 =

[

In−nq
−Q1 Q−1

2

O Inq

]

P T

an equivalent system is obtained with the structure

A′ = T−1A T =

[

A′
11 O

A′
21 A′

22

]

B′ = T−1B =

[

B′
1

B′
2

]

C ′ = C T = [ C ′
1 O ]

Subsystem (B′
1, A

′
11, C

′
1) is a minimal realization. Since it has been obtained

from the parallel realization through transformation matrices with numerous
zero elements, it generally maintains a simple structure.

The following theorems on BIBS and BIBO stability, which are stated refer-
ring to the Kalman canonical form, complete the results of Subsection 2.5.2 on
the stability of linear time-invariant systems.

Theorem 3.3.2 A quadruple (A, B, C, D) is BIBS stable if and only if the
eigenvalues of its controllable part have negative real part or, in other terms, if
and only if R is an internally stable A-invariant.

Proof. If. Refer to the Kalman canonical decomposition and consider the
controllable part of the system, i.e., pair (A, B) with

A :=

[

A′
11 A′

12

O A′
22

]

B :=

[

B′
1

B′
2

]

(3.3.7)

which clearly is the only part to influence BIBS stability. We shall prove that
the necessary and sufficient condition

∫ t

0

‖eA(t−τ) B‖ dτ =

∫ t

0

‖eAτ B‖ dτ ≤ M < ∞ ∀ t ≥ 0 (3.3.8)

(stated by Theorem 2.5.3) holds if the eigenvalues of A have the real part
negative. Recall that a matrix norm is less than or equal to the sum of the
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absolute values of the matrix elements (Property A.6.2) which, in this case,
are linear combinations of modes, i.e., of functions of the types tr eσt and
tr eσt cos (ωt +ϕ) . But, for σ < 0

∫ ∞

0

|tr eσt cos (ωt +ϕ)| dt ≤
∫ ∞

0

tr eσt dt =
n!

(−σ)n+1
(3.3.9)

so that the preceding linear combinations are all less than or equal to sums of
positive finite terms and condition (3.2.11) holds. To prove the identity on the
right of (3.3.9), consider the family of integrals

Ir(t) =

∫ t

0

eστ τ r dτ with σ < 0

Denote the function under the integral sign as f(τ) ġ(τ), with f(τ) := τ r (so
that ḟ = r τ r−1), and ġ dτ := eστ dτ (so that g = (1/σ) eστ ). Integration by parts
yields the recursion formula

Ir(t) =
τ r eστ

σ

∣

∣

∣

τ=t

τ=0
− r

σ
Ir−1(t) with I0(t) =

eστ

σ

∣

∣

∣

τ=t

τ=0

from which (3.3.9) is derived as t approaches infinity.
Only if. We prove that for a particular bounded input, relation (3.3.8) does

not hold if at least one eigenvalue of A has nonnegative real part. Refer to
the real Jordan form and suppose that by a suitable bounded input function
segment u|[t0,t1), only one state component has been made different from zero
at t1 (this is possible because of the complete controllability assumption) and
that input is zero from t1 on, so that integral (3.3.8) is equal to

Q1 + k

∫ t

t1

∣

∣

∣

(

h
∑

k=0

τk

k!

)

eστ cos (ωτ +ϕ)
∣

∣

∣
dτ (3.3.10)

where Q1 denotes integral (3.3.8) restricted to [t0, t1) (a positive finite real
number), k a positive finite real number depending on the bound on input
and h an integer less or equal to m− 1, where m is the multiplicity of the
considered eigenvalue in the minimal polynomial of A. Denote by t2 any value
of time greater than t1 such that

h
∑

k=0

τk

k!
≥ 1

Since this sum is positive and monotonically increasing in time, the integral
on the right of (3.3.8) is equal to

k Q2 + k

∫ t

t2

|eστ cos (ωτ +ϕ)| dτ

where Q2 denotes the integral in (3.3.10) restricted to [t1, t2), again a positive
real number. The integral in the previous formula is clearly unbounded as t
approaches infinity if σ≥ 0. �
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Theorem 3.3.3 A quadruple (A, B, C, D) is BIBO stable if and only if the
eigenvalues of its controllable and observable part have negative real part or, in
other terms, if and only if R∩Q is an A-invariant externally stable with respect
to R (this means that the induced map A|R/Q∩R is stable).

Proof. (Hint) Refer to the Kalman canonical decomposition and consider the
controllable and observable part of the system, i.e., the triple (A, B, C) with
A := A′

22, B :=B′
22, C :=C ′

22, which is clearly the only part to influence BIBO
stability. A very slight modification of the argument used to prove Theorem
3.3.2 can be used to prove that the necessary and sufficient condition

∫ t

0

‖C eA(t−τ) B‖ dτ =

∫ t

0

‖C eAτ B‖ dτ ≤ M < ∞ ∀ t ≥ 0 (3.3.11)

(stated by Theorem 2.5.4) holds if and only if the eigenvalues of A have negative
real part. �

3.3.2 Referring to the Jordan Form

Since the Jordan form provides good information about the structural features
of linear dynamic systems, it may be convenient to consider complete control-
lability and observability with respect to this form.

Theorem 3.3.4 Given a triple (A, B, C) derive, by a suitable transformation
in the complex field, the equivalent system5

ż(t) = J z(t) + B′ u(t) (3.3.12)

y(t) = C ′ z(t) (3.3.13)

where J denotes an n×n matrix in Jordan form. Pair (A, B) is controllable if
and only if:

1. the rows of B′ corresponding to the last row of every Jordan block are
nonzero;

2. the above rows of B′ which, furthermore, correspond to Jordan blocks related
to the same eigenvalue, are linearly independent.

Pair (A, C) is observable if and only if:

1. the columns of C ′ corresponding to the first column of every Jordan block
are nonzero;

2. the above columns of C ′ which, furthermore, correspond to Jordan blocks
related to the same eigenvalue, are linearly independent.

5 The results stated in Theorem 3.3.4 can easily be extended to the real Jordan form,
which may be more convenient in many cases.
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Proof. Owing to Lemma 2.6.1 and Theorem 2.6.1, system (3.3.12, 3.3.13) is
completely controllable if and only if the rows of matrix

eJt B′ (3.3.14)

which are vectors of Cp functions of time, are linearly independent in any finite
time interval and, owing to Theorem 2.6.2, it is completely observable if and
only if the columns of matrix

C ′ eJt (3.3.15)

which are vectors of Cq functions of time, are linearly independent in any finite
time interval.

Conditions 1 are clearly necessary. To show that conditions 2 are necessary
and sufficient, note that, since functions

eλ1t, t eλ1t, . . . , tm1−1 eλ1t, . . . , eλht, t eλht, . . . , tmh−1 eλht

are linearly independent in any finite time interval, it is possible to have linearly
independent rows in matrix (3.3.14) or linearly independent columns in matrix
(3.3.15) only if two or more Jordan blocks correspond to the same eigenvalue.
Nevertheless, this possibility is clearly excluded if and only if conditions 2
hold. �

Controllability and Observability After Sampling. Theorem 3.3.4 can
be extended, in practice without any change, to the discrete triple (Ad, Bd, Cd).
If this is a model of a sampled continuous triple, i.e., the corresponding matrices
are related to each other as specified by (2.2.23–2.2.25), the question arises
whether controllability and observability are preserved after sampling. A very
basic sufficient condition is stated in the following theorem.6

Theorem 3.3.5 Suppose that the triple (A, B, C) is completely controllable
and/or observable and denote by λi =σi + jωi (i =1, . . . , h ) the distinct eigen-
values of A. The corresponding sampled triple (Ad, Bd, Cd) is completely con-
trollable and/or observable if

ωi − ωj �=
2 ν π

T
whenever σi = σj (3.3.16)

where ν stands for any integer, positive or negative.

Proof. We refer to the Jordan canonical form (3.3.12, 3.3.13). Recall that
A′

d := eJT has the structure displayed in (2.1.41, 2.1.42). Note that the struc-
ture of J is preserved in A′

d and distinct eigenvalues of A′
d correspond to distinct

eigenvalues of J if (3.3.16) holds. To be precise, A′
d is not in Jordan form, but

only in block-diagonal form, with all blocks upper-triangular. However, every

6 This result is due to Kalman, Ho, and Narendra [18].
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block can be transformed into Jordan form by using an upper-triangular trans-
formation matrix, which influences only the magnitudes of the corresponding
last row in B′ and the corresponding first column in C ′ (they are multiplied
by nonzero scalars in the transformation), thus preserving the linear indepen-
dence condition stated in Theorem 3.3.4. Hence (A′

d, B
′) or (Ad, B) is control-

lable and/or (A′
d, C

′) or (Ad, C) = (Ad, Cd) observable. Furthermore, again from
(2.1.41, 2.1.42), by taking the matrix integral it follows that

det f(J, T ) = det f(A, T ) =

h
∏

i=1

ρmi

i with ρi =

{

eλiT − 1
λi

if λi �=0

T if λi =0

where mi denotes the multiplicity of λi in the characteristic polynomial of A.
Thus, f(A, T ) is nonsingular. Since it commutes with Ad – see expansions
(2.2.36, 2.2.37) – it follows that

[Bd |AdBb | . . . |An−1
d Bd] = f(A, T ) [B |AdB | . . . |An−1

d B]

The controllability matrix on the left has maximal rank since that on the right
has. �

Note that loss of controllability and observability after sampling can be
avoided by choosing the sampling frequency 1/T sufficiently high.

3.3.3 SISO Canonical Forms and Realizations

First, we consider two canonical forms relative to input . Consider a controllable
pair (A, b), where A and b are respectively an n×n and an n× 1 real matrix.
We shall derive for A, b a canonical structure, called the controllability canonical
form. Assume the coordinate transformation matrix T1 := [p1 p2 . . . pn] with

p1 = b
p2 = Ab
. . .
pn = An−1b

(3.3.17)

Vectors pi (i = 1, . . . , n) are linearly independent because of the controllability
assumption. In other words, controllability in this case implies that the linear
map A is cyclic in X and b is a generating vector of X with respect to A. Denote
by (−α0,−α1, . . . ,−αn−1) the components of Anb with respect to this basis, i.e.

Anb = −
n
∑

i=1

αi−1pi = −
n−1
∑

i=0

αiA
ib

Matrix AT1, partitioned columnwise, can be written as

AT1 �= = [ Ap1 | Ap2 | . . . | Apn−1 | Apn ]

�= = [ p2 | p3 | . . . | pn | −
n
∑

i=1

αi−1 pi ]
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Since the columns of the transformed matrix A1 coincide with those of AT1 ex-
pressed in the new basis, and b is the first vector of the new basis, A1 :=T−1

1 A T2

and b1 := T−1
1 b have the structures

A1 =

















0 0 0 . . . 0 −α0

1 0 0 . . . 0 −α1

0 1 0 . . . 0 −α2
...

...
...

. . .
...

...
0 0 0 . . . 0 −αn−2

0 0 0 . . . 1 −αn−1

















b1 =

















1
0
0
...
0
0

















(3.3.18)

Let us now derive for A, b another structure related to the controllability
assumption, called the controller canonical form. Assume the coordinate trans-
formation matrix T2 := [q1 q2 . . . qn] with

qn = b
qn−1 = Aqn + αn−1qn = Ab + αn−1b
. . . . . .
q2 = Aq3 + α2qn = An−2b + αn−1A

n−3b + . . . + α2b
q1 = Aq2 + α1qn = An−1b + αn−1A

n−2b + . . . + α1b

(3.3.19)

This can be obtained from the previous one by means of the transformation
T2 = T1 Q, with

Q :=













α1 . . . αn−2 αn−1 1
α2 . . . αn−1 1 0
α3 . . . 1 0 0
...

. . .
...

...
...

1 . . . 0 0 0













(3.3.20)

which is clearly nonsingular (the absolute value of its determinant is equal to
one). Columns of Q express the components of basis T2 with respect to basis
T1. Since

Aq1 = Anb +
∑n−1

i=1 αiA
ib = −α0b = −α0qn

Aqi = qi−1 − αi−1qn (i = 2, . . . , n)

matrix AT2, partitioned columnwise, is

AT2 = [ −α0qn | q1 −α1qn | . . . | qn−2 −αn−2qn | qn−1 −αn−1qn ]

so that, in the new basis, A2 :=T−1
2 A T2 and b2 := T−1

2 b have the structures

A2 =

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−α0 −α1 −α2 . . . −αn−2 −αn−1

















b2 =

















0
0
0
...
0
1

















(3.3.21)
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Matrices A1 and A2 in (3.3.18) and (3.3.21) are said to be in companion form.
The controllability and the controller canonical form can easily be dualized, if
pair (A, c) is observable, to obtain the canonical forms relative to output , which
are the observability canonical form and the observer canonical form.

Four SISO Canonical Realizations. All the preceding canonical forms can
be used to derive SISO canonical realizations whose coefficients are directly
related to those of the corresponding transfer function. Refer to a SISO system
described by the transfer function

G(s) =
βnsn + βn−1s

n−1 + . . . + β0

sn + αn−1sn−1 + . . . + α0

(3.3.22)

and consider the problem of deriving a realization (A, b, c, d) with (A, b) con-
trollable. To simplify notation, assume n = 4. According to the above derived
controllability canonical form, the realization can be expressed as

ż(t) = A1 z(t) + b1 u(t)

y(t) = c1 z(t) + d u(t)

with

A1 =









0 0 0 −α0

1 0 0 −α1

0 1 0 −α2

0 0 1 −α3









b1 =









1
0
0
0









c1 = [ g0 g1 g2 g3 ] d = β4

(3.3.23)

u
1111 s−1s−1s−1s−1

z4

yd = β4

g0
g1 g2 g3

−α3

−α2

−α1

−α0

ż1 z1 ż2 z2 ż3 z3 ż4

Figure 3.4. The controllability canonical realization.

The realization is called controllability canonical realization. The corre-
sponding signal-flow graph is represented in Fig. 3.4. Coefficients gi are related
to αi, βi (i = 0, . . . , 3) by simple linear relations, as will be shown. By applying
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u
1111 s−1s−1s−1s−1

z1

yd = β4

β̄3
β̄2 β̄1 β̄0

−α3

−α2

−α1

−α0

ż4 z4 ż3 z3 ż2 z2 ż1

Figure 3.5. The controller canonical realization.

the similarity transformation A2 :=Q−1A1 Q, b2 :=Q−1b1, c2 := c1 Q, with

Q :=









α1 α2 α3 1
α2 α3 1 0
α3 1 0 0
1 0 0 0









(3.3.24)

we obtain the controller canonical realization, expressed by

ż(t) = A2 z(t) + b2 u(t)

y(t) = c2 z(t) + d u(t)

with

A2 =









0 1 0 0
0 0 1 0
0 0 0 1

−α0 −α1 −α2 −α3









b2 =









0
0
0
1









c2 = [ β̄0 β̄1 β̄2 β̄3 ] d = β4

(3.3.25)

The corresponding signal-flow graph is represented in Fig. 3.5. By using
the Mason’s formula it is shown that the components of c2 are related to
the coefficients on the right of (3.3.22) by β̄i = βi −β4αi (i = 0, . . . , 3). Thus,
coefficients gi (i =0, . . . , 3) of the controllability realization can be derived from
c1 = c2 Q−1.

The observability canonical realization and the observer canonical realiza-
tion, with (A, c) observable, are easily derived by duality (simply use AT , cT

instead of A, b in the first transformation and transpose the obtained matrices).
The former, whose signal-flow graph is represented in Fig. 3.6, is described by

ż(t) = A3 z(t) + b3 u(t)

y(t) = c3 z(t) + d u(t)
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y1 1 1 1s−1 s−1 s−1 s−1

ż4

u d = β4

f0
f1f2f3

−α3

−α2

−α1

−α0

z1ż1z2ż2z3ż3
z4

Figure 3.6. The observability canonical realization.

with

A3 =









0 1 0 0
0 0 1 0
0 0 0 1

−α0 −α1 −α2 −α3









b3 =









f0

f1

f2

f3









c3 = [ 1 0 0 0 ] d = β4

(3.3.26)

and the latter, whose signal-flow graph is represented in Fig. 3.7, is described

y1 1 1 1s−1 s−1 s−1 s−1

ż1

u d = β4

β̄3
β̄2β̄1β̄0

−α3

−α2

−α1

−α0

z4ż4z3ż3z2ż2z1

Figure 3.7. The observer canonical realization.

by

ż(t) = A4 z(t) + b4 u(t)

y(t) = c4 z(t) + d u(t)
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with

A4 =









0 0 0 −α0

1 0 0 −α1

0 1 0 −α2

0 0 1 −α3









b4 =









β̄0

β̄1

β̄2

β̄3









c4 = [ 0 0 0 1 ] d = β4

(3.3.27)

where β̄i = βi −β4αi (i = 0, . . . , 3) are the same as in the controller canonical
relization.

The identity of βi (i = 0, . . . , 3) (the components of b4) with the correspond-
ing βi’s on the left of (3.3.22) is proved again by using the Mason’s formula.
Coefficients fi (i =0, . . . , 3) of the observer realization are consequently derived
from b3 = Q−1b4.

3.3.4 Structural Indices and MIMO Canonical Forms

The concepts of controllability and controller canonical forms will now be ex-
tended to multi-input systems. Consider a controllable pair (A, B), where A
and B are assumed to be respectively n×n and n× p. We shall denote by
b1, . . . , bp the columns of B and by µ≤ p its rank. Vectors b1, . . . , bµ are as-
sumed to be linearly independent. This does not imply any loss of generality,
since, if not, inputs can be suitably renumbered. Consider the table

b1

A b1

A2 b1

. . .

b2 . . .
A b2 . . .

A2 b2 . . .

bµ

A bµ

A2 bµ
(3.3.28)

which is assumed to be constructed by rows: each column ends when a vector is
obtained that can be expressed as a linear combination of all the previous ones.
This vector is not included in the table and the corresponding column is not
continued because, as will be shown herein, also all subsequent vectors would
be linear combinations of the previous ones. By the controllability assumption,
a table with exactly n linearly independent elements is obtained. Denote by
ri (i =1, . . . , µ) the numbers of the elements of the i-th column: the above
criterion to end columns implies that vector Ari bi is a linear combination of all
previous ones, i.e.,

Ari bi = −
µ
∑

j=1

ri−1
∑

h=0

αijh Ah bj −
∑

j<i

αijri
Ari bj (i =1, . . . , µ) (3.3.29)

where the generic coefficient αijh is zero for h≥ rj. The following property
holds.

Property 3.3.4 If Ari bi is a linear combination of the previous vectors in table
(3.3.28), also Ari+k bi for all positive integers k, is a linear combination of the
previous vectors.
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Proof. For k =1 the property is proved by multiplying on the right by A both
members of the i-th of (3.3.29) and by eliminating, in the sums at the right
side member, all vectors that, according to (3.3.29), can be expressed as linear
combinations of the previous ones, in particular Ari bi. The proof is extended
by induction to the case k > 1. �

Another interesting property of table (3.3.28) is the following.

Property 3.3.5 The set {ri (i =1, . . . , µ)} does not depend on the ordering
assumed for columns of B in table (3.3.28).

Proof. The number of columns of table (3.3.28) with generic length i is equal
to the integer ∆ρi−1 − ∆ρi, with

∆ρi := ρ([B|A B| . . . |Ai B]) − ρ([B|A B| . . . |Ai−1 B])

which is clearly invariant with respect to permutations of columns of B. �

It is worth noting that, although the number of columns of table (3.3.28)
with generic length i is invariant under a permutation of columns of B, the
value of the ri’s corresponding to column bi may commute with each other.

Constants ri (i = 1, . . . , µ) are called the input structural indices and rep-
resent an important characterization of dynamic systems. The value of the
greatest input structural index is called the controllability index .

It is now possible to extend to multivariable systems the SISO canonical
forms and realizations described in Subsection 3.3.3. We shall consider only the
controllability and the controller form, since the others, related to observability,
can easily be derived by duality.

To maintain expounding at a reasonable level of simplicity we refer to a
particular case, corresponding to n =9, p =5, µ =3, in which table (3.3.28) is
assumed to be

b1

A b1

b2

A b2

A2 b2

A3 b2

b3

A b3

A2 b3
(3.3.30)

The input structural indices, presented in decreasing order, are in this case
4, 3, 2, and the controllability index is 4. Relations (3.3.29) can be written as

A2b1 = −α110b1 −α111Ab1 −α120b2 −α121Ab2 −α130b3 −α131Ab3

A4b2 = −α210b1 −α211Ab1 −α220b2 −α221Ab2 −α222A
2b2 −α223A

3b2 −
α230b3 −α231Ab3

A3b3 = −α310b1 −α311Ab1 −α320b2 −α321Ab2 −α322A
2b2 −α323A

3b2 −
α330b3 −α331Ab3 (3.3.31)
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The controllability canonical form is obtained through the coordinate trans-
formation defined by

T1 := [b1 |A b1 |A2 b1 | b2 |A b2 |A2 b2 |A3 b2 | b3 |A b3 |A2 b3]

Matrices A1 :=T−1
1 A T1 and B1 :=T−1

1 B have the structures shown in
(3.3.32, 3.3.33), as can easily be proved with arguments similar to the single-
input case. Note that the submatrices on the main diagonal of A1 are in com-
panion form. In matrix B1, ǫ11, ǫ21, ǫ31 and ǫ12, ǫ22, ǫ32 denote, respectively, the
components of b4 and b5 with respect to b1, b2, b3.

A1 =































0 −α110 0 0 0 −α210 0 0 −α310

1 −α111 0 0 0 −α211 0 0 −α311

0 −α120 0 0 0 −α220 0 0 −α320

0 −α121 1 0 0 −α221 0 0 −α321

0 0 0 1 0 −α222 0 0 −α322

0 0 0 0 1 −α223 0 0 −α323

0 −α130 0 0 0 −α230 0 0 −α330

0 −α131 0 0 0 −α231 1 0 −α331

0 0 0 0 0 −α232 0 1 −α332































(3.3.32)

B1 =







































1 0 0 ǫ11 ǫ12

0 0 0 0 0

0 1 0 ǫ21 ǫ22

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 ǫ31 ǫ32

0 0 0 0 0

0 0 0 0 0







































(3.3.33)

We shall now extend the controller form to multi-input systems. First, write
(3.3.29) as

Ari

(

bi +
∑

j<i

αijri
bj

)

= −
µ
∑

j=1

ri−1
∑

h=0

αijh Ah bj (i = 1, . . . , µ) (3.3.34)

By means of the assumption

b′i := bi +
∑

j<i

αijri
bj (i =1, . . . , µ)

relations (3.3.34) can be put in the form

Ari b′i = −
µ
∑

j=1

ri−1
∑

h=0

βijh Ah b′j (i =1, . . . , µ) (3.3.35)
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If vectors (3.3.28) are linearly independent, the vectors of the similar table
obtained from b′i (i = 1, . . . , µ) are also so, since each one of them is expressed
by the sum of a vector of (3.3.28) with a linear combination of the previous
ones. We assume vectors of the new table as a new basis. In the particular case
of (3.3.30) these are

b1, A b1, A2 b1, b2, A b2, A2 b2, A3 b2, b′3, A b′3, A2 b′3

with b′3 := b3 +α323b2. Matrices A′
1 and B′

1 that express A and B with respect
to the new basis are obtained as A′

1 = F−1
1 A1 F1, B′

1 = F−1
1 B1, with

F1 :=































1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 α323 0 0
0 0 0 1 0 0 0 α323 0
0 0 0 0 1 0 0 0 α323

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1































(3.3.36)

We obtain matrices having the structures

A′
1 =































0 −β110 0 0 0 −β210 0 0 −β310

1 −β111 0 0 0 −β211 0 0 −β311

0 −β120 0 0 0 −β220 0 0 −β320

0 −β121 1 0 0 −β221 0 0 −β321

0 0 0 1 0 −β222 0 0 −β322

0 0 0 0 1 −β223 0 0 0

0 −β130 0 0 0 −β230 0 0 −β330

0 −β131 0 0 0 −β231 1 0 −β331

0 0 0 0 0 −β232 0 1 −β332































(3.3.37)

B′
1 =







































1 0 0 ǫ′11 ǫ′12

0 0 0 0 0

0 1 −α323 ǫ′21 ǫ′22

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 ǫ′31 ǫ′32

0 0 0 0 0

0 0 0 0 0







































(3.3.38)
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In (3.3.38) ǫ′11, ǫ
′
21, ǫ

′
31 and ǫ′12, ǫ

′
22, ǫ

′
32 are the components of b4 and b5 with

respect to b′1, b
′
2, b

′
3. As the last step, express A and B with respect to the basis

q1 = A q2 + β111 q2 + β211 q6 + β311 q9

q2 = b′1 = b1

q3 = A q4 + β121 q2 + β221 q6 + β321 q9

q4 = A q5 + β222 q6 + β322 q9

q5 = A q6 + β223 q6 + β323 q9

q6 = b′2 = b3

q7 = A q8 + β131 q2 + β231 q6 + β331 q9

q8 = A q9 + β232 q6 + β332 q9

q9 = b′3

(3.3.39)

The corresponding transformation T2 and the new matrices A2 = T−1
2 A′

1 T2,
B2 = T−1

2 B′
1 are

T2 :=































β111 1 β211 0 0 0 β311 0 0
1 0 0 0 0 0 0 0 0

β121 0 β221 β222 β223 1 β321 β322 0
0 0 β222 β223 1 0 β322 0 0
0 0 β223 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

β131 0 β231 β232 0 0 β331 β332 1
0 0 β232 0 0 0 β332 0 0
0 0 0 0 0 0 1 0 0































(3.3.40)

A2 =






























0 1 0 0 0 0 0 0 0
−β110 −β111 −β120 −β121 0 0 −β130 −β131 0

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

−β210 −β211 −β220 −β221 −β222 −β223 −β230 −β231 −β232

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−β310 −β311 −β320 −β321 −β322 −β323 −β330 −β331 −β332































(3.3.41)



3.4. State Feedback and Output Injection 155

B2 =







































0 0 0 0 0

1 (−α214) (−α313) ǫ′11 ǫ′12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 −α323 ǫ′21 ǫ′22

0 0 0 0 0

0 0 0 0 0

0 0 1 ǫ′31 ǫ′32







































(3.3.42)

Vectors (3.3.39) are linearly independent since, considered in suitable order
(i.e., in the reverse order in each chain), they can be obtained as the sum of
a vector of table (3.3.30) with a linear combination of the previous ones. The
elements in round brackets in (3.3.42) vanish in this particular case, but could
be nonzero in the most general case.

The controllability canonical form and the controller canonical form are
canonical forms relative to input . By duality from pair (A, C) it is possible to
derive the observability canonical form and the observer canonical form, also
called the canonical forms relative to output . The output structural indices can
be derived likewise. The value of the greatest output structural index is called
the observability index of the system referred to.

3.4 State Feedback and Output Injection

The term feedback denotes an external connection through which the effects
are brought back to influence the corresponding causes. It is the main tool at
the disposal of designers to adapt system features to a given task, hence it is
basic for all synthesis procedures. In this section an important theorem con-
cerning eigenvalues assignability will be stated and discussed. It directly relates
controllability and observability with the possibility of arbitrarily assigning the
system eigenvalues through a suitable feedback connection.

Refer to the triple (A, B, C) whose structure is represented in Fig. 3.1. In
Fig. 3.8 two basic feedback connections are shown: the state-to-input feedback ,
often called simply state feedback , and the output-to-forcing action feedback ,
also called output injection. In the former, the state is brought to act on the
input u through a purely algebraic linear connection, represented by the p×n
real matrix F , while in the latter the output is brought to act on forcing action
f again through a purely algebraic linear connection, represented by the n× q
real matrix G. The part shown in the dashed box in figures is the original
three-map system Σ.

In actual physical systems neither connection is implementable, since neither
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Figure 3.8. State feedback and output injection.

is the state accessible for direct measurement nor is the forcing action accessible
for direct intervention. Nevertheless, these two schemes are useful to state some
basic properties that will be referred to in the synthesis of more complex, but
physically implementable, feedback connections, such as the output-to-input
dynamic feedback, which will be examined later in this section.

We shall first refer to the standard state feedback connection, which is
considered the basic one, since its properties are generally easily extensible
to the output injection by duality. The system represented in Fig. 3.8(a) has a
new input v∈Rp and is described by the equations

ẋ(t) = (A + B F ) x(t) + B v(t) (3.4.1)

y(t) = C x(t) (3.4.2)

in which matrix A has been replaced by A + BF . By a suitable choice of F
a new system (3.4.1, 3.4.2) can be obtained with features significantly different
from those of the original one. One of these features is the spectrum of matrix
A +BF , which can be completely assigned when pair (A, B) is controllable. The
eigenvalue assignability theorem will be presented in two steps: first in restricted
form for SISO systems, then in the most general case of MIMO systems.7

7 The theorem on eigenvalue assignability is due to Langenhop [25] in the SISO case and
Wonham [38] in the MIMO case.
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Theorem 3.4.1 (pole assignment: SISO systems) Refer to a SISO system
(A, b, c). Let σ = {λ1, . . . , λn} be an arbitrary set of n complex numbers such
that ρ∈σ implies ρ∗ ∈σ. There exists at least one row matrix f such that the
spectrum of A + bf coincides with σ if and only if (A, b) is controllable.

Proof. If. Let (A, b) be controllable. There exists a similarity transformation
T such that A′ := T−1 A T and b′ = T−1 b have the same structures as A2, b2 in
(3.3.25). Parameters αi (i =0, . . . , n− 1) are the coefficients of the characteristic
polynomial of A, which, in monic form, can in fact be written as

n−1
∑

i=0

αi λ
i + λn = 0

Let βi (i =0, . . . , n− 1) be the corresponding coefficients of the monic poly-
nomial having the assigned eigenvalues as zeros; they are defined through the
identity

n−1
∑

i=0

βi λ
i + λn =

n
∏

i=1

(λ − λi)

Clearly the row matrix

f ′ := [α0 −β0 |α1 −β1 | . . . |αn−1 −βn− 1]

is such that in the new basis A′ + b′f ′ has the elements of σ as eigenvalues.
The corresponding matrix in the main basis

A + b f with f := f ′ T−1

has the same eigenvalues, being similar to it.

Only if. See the only if part of the MIMO case (Theorem 3.4.2). �

Theorem 3.4.2 (pole assignment: MIMO systems) Refer to a MIMO system
(A, B, C). Let σ = {λ1, . . . , λn} be an arbitrary set of n complex numbers such
that ρ∈σ implies ρ∗ ∈σ. There exists at least one p×n matrix F such that the
spectrum of A +BF coincides with σ if and only if (A, B) is controllable.

Proof. If. For the sake of simplicity, a procedure for deriving a feedback matrix
F that solves the pole assignment problem will be presented in the particular
case where pair (A, B) is transformed by T := T2F1T1 into pair (A2, B2) whose
structure is shown in (3.3.41, 3.3.42). The involved successive similarity trans-
formations were derived in Subsection 3.3.4. We shall show that by a suitable
choice of the feedback matrix F it is possible to obtain for matrix B2FT , which
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represents BF in the new basis, the structure

B2 F T =







































0 0 0 0 0 0 0 0 0

× × × × × × × × ×
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

× × × × × × × × ×
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

× × × × × × × × ×







































(3.4.3)

where the elements denoted by × are arbitrary. Suppose, for a moment, that the
last two columns of (3.3.42) are not present, i.e., that the system has only three
inputs, corresponding to linearly independent forcing actions. It is possible to
decompose B2 as

B2 = M N (3.4.4)

with

M :=





























0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1





























N :=





1 (−α214) (−α313)
0 1 −α323

0 0 1





where the elements in round brackets could be nonzero in general, but vanish in
this particular case. Let W be the three-row matrix formed by the significant
elements in (3.4.3) (those denoted by ×). From

B2 F T = M W

and taking (3.4.4) into account, it follows that

F = N−1W T−1 (3.4.5)

This relation can be used to derive a feedback matrix F for any choice of
the significant elements in (3.4.3). In the general case in which B2 has some
columns linearly dependent on the others like the last two in (3.3.42), apply
the preceding procedure to the submatrix of B2 obtained by deleting these
columns, then insert in the obtained F zero rows in the same places as the
deleted columns. The eigenvalues coincide with those of matrix A2 +B2FT ,
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which has a structure equal to that of A2, but with all significant elements
(i.e., those of the second, third, and ninth row) arbitrarily assignable. It is now
easily shown that the eigenvalues are also arbitrarily assignable. In fact, it is
possible to set equal to zero all the elements external to the 2× 2, 4× 4, and
3× 3 submatrices on the main diagonal, so that the union of their eigenvalues
clearly coincides with the spectrum of the overall matrix. On the other hand,
the eigenvalues of these submatrices are easily assignable by a suitable choice
of the elements in the last rows (which are the coefficients, with sign changed,
of the corresponding characteristic polynomials in monic form).

Only if. Suppose that (A, B) is not controllable, so that the dimension of
R= minJ (A,B) is less than n. The coordinate transformation T = [T1 T2] with
imT1 =R yields

A′ := T−1A T =

[

A′
11 A′

12

O A′
22

]

B′ := T−1B =

[

B′
1

O

]

(3.4.6)

where, in particular, the structure of B′ depends on B being contained in R.
State feedback matrix F corresponds, in the new basis, to

F ′ := F T−1 = [F1 F2] (3.4.7)

This influences only submatrices on the first row of A′, so that the eigenvalues
of A′

22 cannot be varied. �

If there exists a state feedback matrix F such that A +BF is stable, the
pair (A, B) is said to be stabilizable. Owing to Theorem 3.4.2 a completely
controllable pair is always stabilizable. Nevertheless, the converse is not true:
complete controllability is not necessary for (A, B) to be stabilizable, as the
following corollary states.

Corollary 3.4.1 Pair (A, B) is stabilizable if and only if R :=minJ (A,B) is
externally stable.

Proof. Refer to relations (3.4.6, 3.4.7) in the only if part of the proof of
Theorem 3.4.2: since (A′

11, B
′
1) is controllable, by a suitable choice of F ′

1 it is
possible to obtain A′

11 + B′
1 F ′

1 having arbitrary eigenvalues, but it is impossible
to influence the second row of A′. Therefore, the stability of A′

22 is necessary
and sufficient to make A′ +B′F ′ (hence A +BF ) stable. �

Similar results concerning output injection are easily derived by duality.
Refer to the system represented in Fig. 3.8(b), described by

ẋ(t) = (A + G C) x(t) + B v(t) (3.4.8)

y(t) = C x(t) (3.4.9)

The more general result on pole assignment by state feedback (Theorem
3.4.2) is dualized as follows.
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Theorem 3.4.3 Refer to a MIMO system (A, B, C). Let σ = {λ1, . . . , λn} be
an arbitrary set of n complex numbers such that ρ∈σ implies ρ∗ ∈σ. There
exists at least one n× q matrix G such that the spectrum of A +GC coincides
with σ if and only if (A, C) is observable.

Proof. Since

maxJ (A, kerC) = {0} ⇔ minJ (AT , imCT ) = X

pair (A, C) is observable if and only if (AT , CT ) is controllable. In such a case,
owing to Theorem 3.4.2 there exists at least one q×n matrix GT such that
the spectrum of AT + CT GT coincides with the elements of σ. The statement
follows from the eigenvalues of any square matrix being equal to those of the
transpose matrix, which in this case is A + GC. �

If there exists an output injection matrix G such that A + GC is stable, pair
(A, C) is said to be detectable. Owing to Theorem 3.4.3 an observable pair is
always detectable. Nevertheless, the converse is not true: complete observability
is not necessary for (A, C) to be detectable, as stated by the following corollary,
which can easily be derived by duality from Corollary 3.4.1.

Corollary 3.4.2 Pair (A, C) is detectable if and only if Q := maxJ (A, C) is
internally stable.

State feedback and output injection through eigenvalue variation influence
stability. It is quite natural at this point to investigate whether they influence
other properties, as for instance controllability and observability themselves.
We note that:

1. minJ (A,B) =minJ (A +BF,B) (state feedback does not influence control-
lability);

2. maxJ (A, C) =maxJ (A +GC, C) (output injection does not influence ob-
servability).

These properties can be proved in several ways. Referring to the former
(the latter follows by duality), note that the feedback connection in Fig. 3.8(a)
does not influence the class of the possible input functions u(·) (which, with or
without feedback, is the class of all piecewise continuous functions with values
in Rp), hence the reachable set. Otherwise refer to Algorithm 3.2.1 and note
that it provides a sequence of subspaces that does not change if A is replaced by
A +BF . In fact, if this is the case, term BF Zi−1 is added on the right of the
definition formula of generic Zi: this term is contained in B, hence is already a
part of Zi.

On the other hand, state feedback can influence observability and output
injection can influence controllability. For instance, by state feedback the
greatest (A,B)-controlled invariant (see next section) contained in C can be



3.4. State Feedback and Output Injection 161

transformed into an (A +BF )-invariant. Since it is, in general, larger than Q,
the unobservability subspace is extended.

Furthermore, feedback can make the structures of matrices A +BF and
A +GC different from that of A, in the sense that the number and dimensions
of the Jordan blocks can be different. To investigate this point we shall refer
again to the canonical forms, in particular to the proof of Theorem 3.4.2. First,
consider the following lemma.

Lemma 3.4.1 A companion matrix has no linearly independent eigenvectors
corresponding to the same eigenvalue.

Proof. Consider the single-input controller form (A2, b2) defined in (3.3.20).
Let λ1 be an eigenvalue of A2 and x = (x1, . . . , xn) a corresponding eigenvector,
so that

(A2 − λ1I) x = 0

or, in detail

−λ1 x1 + x2 = 0

−λ1 x2 + x3 = 0

. . .

−λ1 xn−1 + xn = 0

−α0 x1 − α1 x2 − . . . − (αn−1 +λ1) xn = 0

These relations, considered as equations with x1, . . . , xn as unknowns, admit
a unique solution, which can be worked out, for instance, by setting x1 = 1 and
deriving x2, . . . , xn from the first n− 1 equations. The last equation has no
meaning because, by substitution of the previous ones, it becomes

(α0 + α1λ1 + . . . + αn−1λ
n
1 ) x1 = 0

which is an identity, since λ1 is a zero of the characteristic polynomial. �

This lemma is used to prove the following result, which points out the
connection between input structural indices and properties of the system matrix
in the presence of state feedback.

Theorem 3.4.4 Let (A, B) be controllable. A suitable choice of F allows,
besides the eigenvalues to be arbitrarily assigned, the degree of the minimal
polynomial of A +BF to be made equal, at least, to the controllability index
of (A, B).8

8 Recall that the controllability index is the minimal value of i such that
ρ([B|AB| . . . |Ai B])= n, while the observability index is the minimal value of j such that
ρ([CT |AT CT | . . . |(AT )j CT ])= n.
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Proof. The proof of Theorem 3.4.2 has shown that by a suitable choice of
the feedback matrix F a system matrix can be obtained in the block-companion
form, i.e., with companion matrices on the main diagonal and the remaining
elements equal to zero: the dimension of each matrix can be made equal
to but not less than the value of the corresponding input structural index.
The eigenvalues of these matrices can be arbitrarily assigned: if they are all
made equal to one another, owing to Lemma 3.4.1 a Jordan block of equal
dimension corresponds to every companion matrix. Since multiplicity of an
eigenvalue as a zero of the minimal polynomial coincides with the dimension of
the corresponding greatest Jordan block (see the proof of Theorem 2.5.5), the
multiplicity of the unique zero of the minimal polynomial is equal to the greatest
input structural index, i.e., to the controllability index. On the other hand, if
the assigned eigenvalues were not equal to each other, the degree of the minimal
polynomial, which has all the eigenvalues as zeros, could not be less, since the
eigenvalues of any companion matrix (hence of that with greatest dimension)
have a multiplicity at least equal to the dimension of the corresponding Jordan
block in this matrix, which is unique owing to Lemma 3.4.1. In other words, in
any case the degree of the minimal polynomial of a companion matrix is equal
to its dimension. �

The theorem just presented is very useful for synthesis as a complement
on “structure assignment” of Theorem 3.4.2 on pole assignment: in fact, it
states a lower bound on the eigenvalue multiplicity in the minimal polynomial.
For instance, in the case of discrete-time systems, by a suitable state feedback
(which sets all the eigenvalues to zero) the free motion can be made to converge
to zero in a finite time. The minimal achievable transient time is specified in
the following corollary.

Corollary 3.4.3 Let (A, B) be controllable. By a suitable choice of F , matrix
A +BF can be made nilpotent of order equal, at least, to the controllability
index of (A, B).

Proof. Apply the procedure described in the proof of Theorem 3.4.4 to obtain
an A +BF similar to a block companion matrix with all eigenvalues zero
and with blocks having dimensions equal to the values of the input structural
indices. This matrix coincides with the Jordan form: note that a Jordan
block corresponding to a zero eigenvalue is nilpotent of order equal to its
dimension. �

Theorem 3.4.4 and Corollary 3.4.3 are dualized as follows.

Theorem 3.4.5 Let (A, C) be observable. A suitable choice of G allows, besides
the eigenvalues to be arbitrarily assigned, the degree of the minimal polynomial
of A +GC to be made equal, at least, to the observability index of (A, C).
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Corollary 3.4.4 Let (A, C) be controllable. By a suitable choice of G, matrix
A +GC can be made nilpotent of order equal, at least, to the observability index
of (A, C).

3.4.1 Asymptotic State Observers

Special dynamic devices, called asymptotic observers, are used to solve nu-
merous synthesis problems.9 These are auxiliary linear time-invariant dynamic
systems that are connected to the input and output of the observed system
and provide an asymptotic estimate of its state, i.e., provide an output z that
asymptotically approaches the observed system state. In practice, after a cer-
tain settling time from the initial time (at which the observer is connected to
the system), z(t) will reproduce the time evolution of the system state x(t). The
asymptotic state observer theory is strictly connected to that of the eigenvalue
assignment presented earlier. In fact, for an asymptotic observer to be realized,
a matrix G must exist such that A + GC is stable, i.e., pair (A, C) must be
observable or, at least, detectable.

u ẋ = Ax + B u

y = C x

y

ż = Az + B u
z

Figure 3.9. State estimate obtained through a model.

Consider a triple (A, B, C). If A is asymptotically stable (has all the eigen-
values with negative real part), a state asymptotic estimate z(t) (state recon-
struction in real time) can be achieved by applying the same input signal to
a model of the system, i.e., another system, built “ad hoc,” with a state z(t)
whose time evolution is described by the same matrix differential equation, i.e.

ż(t) = A z(t) + B u(t) (3.4.10)

The corresponding connection is shown in Fig. 3.9. This solution has two main
drawbacks:

1. it is not feasible if the observed system is unstable;

2. it does not allow settling time to be influenced.

9 Although the word “observability” usually refers to the ability to derive the initial state,
following the literature trend we shall indifferently call “observer” or “estimator” a special
dynamic device that provides an asymptotic estimate of the current state of a system to whose
input and output it is permanently connected.
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In fact, let e be the estimate error , defined by

e(t) := z(t) − x(t) (3.4.11)

Subtracting the system equation

ẋ(t) = A x(t) + B u(t) (3.4.12)

from (3.4.10) yields
ė(t) = A e(t)

from which it follows that the estimate error has a time evolution depending
only on matrix A and converges to zero whatever its initial value is if and only
if all the eigenvalues of A have negative real part.

u ẋ = Ax + B u

y = C x

y

ż = (A + GC) z

+ B u − Gy

z

Figure 3.10. State estimate obtained through an asymptotic observer.

A more general asymptotic observer, where both the above drawbacks can be
eliminated, is shown in Fig. 3.10. It is named identity observer and is different
from that shown in Fig. 3.9 because it also derives information from the system
output. It is described by

ż(t) = (A + G C) z(t) + B u(t) − G y(t) (3.4.13)

Matrix G in (3.4.13) is arbitrary. The model of Fig. 3.9 can be derived as a
particular case by setting G =O. Subtracting (3.4.12) from (3.4.13) and using
(3.4.11) yields the differential equation

ė(t) = (A + G C) e(t) (3.4.14)

from which, owing to Corollary 3.4.2, it follows that if (A, C) is observable the
convergence of the estimate to the actual state can be made arbitrarily fast.
These considerations lead to the following statement.

Property 3.4.1 For any triple (A, B, C) with (A, C) observable there exists
a state observer whose estimate error evolves in time as the solution of a
linear, homogeneous, constant-coefficient differential equation of order n with
arbitrarily assignable eigenvalues.
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If (A, C) is not observable, a suitable choice of G can modify only
the eigenvalues of A that are not internal to the unobservability subspace
Q := maxJ (A, C): an asymptotic estimation of the state is possible if and only
if the system is detectable.

Asymptotic Observers and Complementability. We shall now show that,
under very general conditions, any stable dynamic system connected to the
output of a free system behaves as an asymptotic observer, because it provides
an asymptotic estimate of a linear function of the system state.10

Consider the free system

ẋ(t) = A x(t) (3.4.15)

y(t) = C x(t) (3.4.16)

and suppose a generic linear time-invariant dynamic system is connected to its
output. The time evolution of state z of this system is assumed to be described
by

ż(t) = N z(t) + M y(t) (3.4.17)

with N stable. The problem is to state conditions under which there exists a
matrix T such that

z(t) = T x(t) ∀ t > 0 (3.4.18)

if the initial conditions satisfy

z(0) = T x(0) (3.4.19)

From

ż(t) − T ẋ(t) = N z(t) + M C x(t) − T A x(t)

= (N T + M C − T A) x(t)

it follows that, because x(0) is generic, (3.4.18) holds if and only if
NT + MC −TA =0, i.e., if and only if T satisfies the Sylvester equation

N T − T A = −M C (3.4.20)

We recall that this equation has a unique solution T if and only if A and N
have no common eigenvalues (Theorem 2.5.10). If (3.4.20) holds it follows that

ż(t) − T ẋ(t) = N (z(t) − T x(t))

Hence
z(t) = T x(t) + eNt (z(0) − T x(0))

which means that, when initial condition (3.4.19) is not satisfied, (3.4.18) does
not hold identically in time, but tends to be satisfied as t approaches infinity.

10 The general theory of asymptotic observers, including these results, are due to Luenberger
[28, 29, 31].
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The obtained result is susceptible to geometric interpretation: by introduc-
ing an extended state x̂, equations (3.4.15) and (3.4.17) can be written together
as

˙̂x(t) = Âx̂(t)

where

x̂ :=

[

x
z

]

Â :=

[

A O
MC N

]

In the extended state space X̂ , the subspace

Ẑ := {x̂ : x = 0}

(the z coordinate hyperplane) is clearly an Â-invariant: it corresponds to an
asymptotic observer if and only if it is complementable.

If, instead of the free system (3.4.15, 3.4.16), we consider a system with
forcing action B u(t), the asymptotic estimation of the same linear function of
state can be obtained by applying a suitable linear function of input also to the
observer. In this case (3.4.17) is replaced by

ż(t) = N z(t) + M y(t) + T B u(t) (3.4.21)

It may appear at this point that the identity observer, where

N := A + G C M = −G

with arbitrary G, is a very particular case. This is not true because any observer
of order n providing a complete estimate of the state is equivalent to it (i.e.,
has a state isomorphic to its state). In fact, let T be the corresponding matrix
in (3.4.20) which, in this case, is nonsingular: from (3.4.20) it follows that

N = T A T−1 − M C T−1 = T (A − T−1M C)T−1 (3.4.22)

In the above arguments no assumption has been considered on system ob-
servability which, actually, is needed only as far as pole assignability of the
observer is concerned. Nevertheless, to obtain an asymptotic state estimate it
is necessary that the observed system be detectable, since Q⊆ kerT for all T
satisfying (3.4.20).

3.4.2 The Separation Property

At the beginning of this section state feedback has been presented as a means to
influence some linear system features, in particular eigenvalues, hence stability;
on the other hand it has been remarked that such feedback is often practically
unfeasible since usually state is not directly accessible for measurement.

It is quite natural to investigate whether it is possible to overcome this
drawback by using the state estimate provided by an identity observer instead of
the state itself. This corresponds to the feedback connection shown in Fig. 3.11,
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Figure 3.11. Using an asymptotic observer to realize state feedback.

which no longer refers to an algebraic state-to-input feedback, but to a dynamic
output-to-input one. This connection produces an overall system of order 2n
described by the equations

ẋ(t) = A x(t) + B F z(t) + B v(t) (3.4.23)

ż(t) = (A + B F + G C) z(t) − G C x(t) + B v(t) (3.4.24)

y(t) = C x(t) (3.4.25)

The following very basic result relates the eigenvalues of the overall system
to those of the system with the purely algebraic state feedback and those of the
observer.

Theorem 3.4.6 (the separation property) The eigenvalues of the overall sys-
tem corresponding to a state feedback connection through an observer are the
union with repetition of those of the system with the simple algebraic state feed-
back and those of the observer.

Proof. Let e(t) :=x(t)− z(t). By the transformation
[

x
e

]

= T

[

x
z

]

with T = T−1 =

[

In O
In −In

]

from (3.4.23, 3.4.24) we derive
[

ẋ(t)
ė(t)

]

=

[

A + B F −B F
O A + G C

] [

x(t)
e(t)

]

+

[

B
O

]

v(t) (3.4.26)

The spectrum of the system matrix in (3.4.26) is clearly σ(A +BF ) ⊎
σ(A +GC): it is equal to that of the original system (3.4.23, 3.4.24) from which
(3.4.26) has been obtained by means of a similarity transformation. �
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As a consequence of Theorems 3.4.2, 3.4.3, and 3.4.6, it follows that, if
the triple (A, B, C) is completely controllable and completely observable, the
eigenvalues of the overall system represented in Fig. 3.11 are all arbitrarily
assignable. In other words, any completely controllable and observable dynamic
system of order n is stabilizable with an output-to-input dynamic feedback (or,
simply, output dynamic feedback), i.e., through a suitable dynamic system, also
of order n.

The duality between control and observation, a characteristic feature of lin-
ear time-invariant systems, leads to the introduction of the so-called dual ob-
servers or dynamic precompensators, which are also very important to charac-
terize numerous control system synthesis procedures.

To introduce dynamic precompensators, it is convenient to refer to the block
diagram represented in Fig. 3.12(a), which, like that in Fig. 3.9, represents the
connection of the observed system with a model; here in the model the purely
algebraic operators have been represented as separated from the dynamic part,
pointing out the three-map structure. The identity observer represented in
Fig. 3.10 is obtained through the connections shown in Fig. 3.12(b), in which
signals obtained by applying the same linear transformation G to the outputs
of both the model and the system are added to and subtracted from the forcing
action. These signals, of course, have no effect if the observer is tracking
the system, but influence time behavior and convergence to zero of a possible
estimate error.

The identity dynamic precompensator is, on the contrary, obtained by exe-
cuting the connections shown in Fig. 3.12(c), from the model state to both the
model and system inputs. Also in this case, since contributions to inputs are
identical, if the system and model states are equal at the initial time, their sub-
sequent evolutions in time will also be equal. The overall system, represented
in Fig. 3.12(c), is described by the equations

ẋ(t) = A x(t) + B F z(t) + B v(t) (3.4.27)

ż(t) = (A + B F ) z(t) + B v(t) (3.4.28)

from which, by difference, it follows that

ė(t) = A e(t) (3.4.29)

If the triple (A, B, C) is asymptotically stable (this assumption is not very
restrictive because, as previously shown, under complete controllability and
observability assumption eigenvalues are arbitrarily assignable by means of a
dynamic feedback), once the transient due to the possible difference in the
initial states is finished, system and precompensator states will be identical at
every instant of time. If the considered system is completely controllable, the
dynamic behavior of the precompensator can be influenced through a suitable
choice of matrix F . For instance, an arbitrarily fast response can be obtained
by aptly assigning the eigenvalues of A +BF .
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Note that the dynamic feedback shown in Fig. 3.11 can be obtained by
performing both connections of Fig. 3.12(b) (G blocks) and of Fig. 3.12(c)
(F blocks): in the dynamic precompensator case it is equivalent to a purely
algebraic feedback G from the output difference η − y to forcing action ϕ.

Extension to Discrete Systems. All the previous results on pole assign-
ment, asymptotic state estimation, and the separation property can easily be
extended to discrete systems. A specific feature of these systems is the possibil-
ity to extinguish the free motion in a finite number of transitions by assigning
the value zero to all eigenvalues. This feature suggests alternative solutions to
some typical control problems. Two significant examples are reported in the
following.

Problem 3.4.1 (control to the origin from a known initial state) Refer to
a discrete pair (Ad, Bd), which is assumed to be controllable. Find a control
sequence u|[0,k] that causes the transition from an arbitrary initial state x(0) to
the origin in the minimal number of steps compatible with any initial state.11

Solution. Find a state feedback F such that Ad + BdF is nilpotent of order
equal to the controllability index of (Ad, Bd). This is possible owing to Corollary
3.4.3. Solution of the problem reduces to determination of the free motion of a
discrete free system, i.e., to a simple iterative computation. �

Problem 3.4.2 (control to the origin from an unknown initial state) Refer to
a discrete triple (Ad, Bd, Cd), which is assumed to be controllable and observable.
Determine a control sequence u|[0,k] whose elements can be functions of the
observed output, which causes the transition from an unknown initial state to
the origin.

Solution. Realize an output-to-input dynamic feedback (through a state
observer) of the type shown in Fig. 3.11. From Theorem 3.4.6 and Corollaries
3.4.3 and 3.4.4 it follows that by a suitable choice of F and G the overall system
matrix can be made nilpotent of order equal to the sum of controllability and
observability indices, so that the number of steps necessary to reach the origin
is not greater than this sum. �

3.5 Some Geometric Aspects of Optimal Con-

trol

In this section we shall present a geometric framework for dynamic optimization
problems. Consider the linear time-varying system

ẋ(t) = A(t) x(t) + B(t) u(t) (3.5.1)

11 This problem was also solved in Subsection 2.6.2, but in the more general case of linear
time-varying discrete systems and with assigned control time.
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where A(·) and B(·) are known, piecewise continuous real matrices, functions of
time. The state space is R

n and the input space R
m. We shall denote by [t0, t1]

the optimal control time interval , i.e., the time interval to which the optimal
control problem is referred, by x0 := x(t0) the initial state and by x1 :=x(t1) the
final state, or the extreme point of the optimal trajectory .

In many optimal control problems the control function is assumed to be
bounded: for instance, it may be bounded in magnitude component by compo-
nent, through the constraints

|uj(t)| ≤ H (j =1, . . . , m) , t∈ [t0, t1] (3.5.2)

or, more generally, by
u(t) ∈ Ω , t∈ [t0, t1] (3.5.3)

where Ω denotes a convex, closed, and bounded subset of Rp containing the ori-
gin. Note that (3.3.2) expresses a constraint on the ∞-norm of control function
segment u[t0,t1]. Of course, different individual bounds on every control compo-
nent and unsymmetric bounds can be handled through suitable manipulations
of reference coordinates, such as translation of the origin and scaling.

In order to state an optimization problem a measure of control “goodness”
is needed: this is usually expressed by a functional to be minimized, called
the performance index . We shall here consider only two types of performance
indices: the linear function of the final state

Γ = 〈γ, x(t1)〉 (3.5.4)

where γ ∈Rn is a given vector, and the integral performance index

Γ =

∫ t1

t0

f(x(τ), u(τ), τ) dτ (3.5.5)

where f is a continuous function, in most cases convex. In (3.5.4) and (3.5.5)
symbol Γ stands for cost : optimization problems are usually formulated in terms
of achieving a minimum cost; of course, maximization problems are reduced to
minimization ones by simply changing the sign of the functional.

In addition to the performance index, optimal control problems require
definition of an initial state set X0, and a final state set X1 (which may reduce
to a single point or extend to the whole space). A typical dynamic optimization
problem consists of searching for an initial state x0 ∈X0 and an admissible
control function u(·) such that the corresponding terminal state satisfies x1 ∈X1

and the performance index is minimal (with respect to all the other admissible
choices of x0 and u(·)). The initial time t0 and/or the final time t1 are given a
priori or must also be optimally derived.

Fig. 3.13 shows a geometric interpretation of a dynamic optimization prob-
lem with the performance index of the former type and fixed control time inter-
val. W(t1) is the set of all states reachable at time t1 from event (x0, t0). Due
to the superposition property, it can be expressed as

W(t1) := Φ(t1, t0)X0 + R+(t0, t1, 0) (3.5.6)



172 Chapter 3. The Geometric Approach: Classic Foundations

isocost hyperplanes

X1

an admissible
trajectory

x1

an optimal
trajectory

x0

X0

W(t1)

γ

Figure 3.13. The geometric meaning of an optimization

problem with performance index defined as a linear function

of the final state.

where

R+(t0, t1, 0) :=
{

x1 : x1 =

∫ t1

t0

Φ(t1, τ) B(τ) u(τ) dτ , u(τ) ∈ Ω
}

(3.5.7)

is the reachable set from the origin with bounded control. Note the layout of
the isocost hyperplanes: the final state x1 of an optimal trajectory belongs to
the intersection of X1 and W(t1) and corresponds to a minimal cost.

3.5.1 Convex Sets and Convex Functions

In dealing with optimization in the presence of constraints, we need the concepts
and some properties of convex sets and convex functions.12

Refer to the vector space Rn with the standard euclidean norm induced by
the inner product. The concepts of subspace and linear variety are considered
in Appendix A; however, since in dealing with convexity special emphasis on
orthogonality and topological properties is called for, it is convenient to use a
slightly different notation, more suitable for the particular topic at hand.

Given an n× p matrix B having rank p, the set

M := {x : x = Bµ, µ ∈ R
p } (3.5.8)

12 Extended treatment of convexity is beyond the scope of this book, so we report only the
basic definitions and properties. Good references are the books by Eggleston [6] and Berge
[2].
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is a subspace or a through the origin, for which B is a basis matrix. In an inner
product space an alternative way of defining a subspace is

M := { x : Ax = 0 } (3.5.9)

where A is an (n− p)×n matrix such that BTA =O, i.e., a basis matrix for
kerBT = (imB)⊥.

Similarly, the “shifted” linear variety Ms := {x0}+M, parallel to M and
passing through x0, is defined as

Ms := {x : x = x0 + Bµ, µ ∈ R
p } (3.5.10)

or
Ms := {x : A(x−x0) = 0 } (3.5.11)

Relations (3.5.8, 3.5.10) are said to define linear varieties in parametric form,
(3.5.9, 3.5.11) in implicit form.

A particularization of (3.5.10) is the straight line through two points x0, x1:

L := { x : x = x0 + µ(x1 −x0), µ ∈ R } (3.5.12)

while a particularization of (3.5.11) is the hyperplane with normal a passing
through x0:

P := {x : 〈a, (x−x0)〉 = 0 } (3.5.13)

The hyperplane through n points x0, . . . , xn− 1 ∈Rn, such that
B := {x1 −x0, . . . , xn− 1 −x0} is a linearly independent set, is defined as

P := {x : x = x0 + Bµ, µ ∈ R
n−1 }

where B is the n× (n− 1) matrix having the elements of B as columns.
The line segment joining any two points x1, x2 ∈Rn is defined by

R(x1, x2) := {x : x = x1 + µ(x2 −x1), 0≤µ≤ 1 } (3.5.14)

The sets

H̄+(P) := {x : 〈a, (x−x0)〉 ≥ 0 } (3.5.15)

H̄−(P) := {x : 〈a, (x−x0)〉 ≤ 0 } (3.5.16)

are called closed half-spaces bounded by P, the hyperplane defined in (3.5.13),
while the corresponding sets without the equality sign in the definition are called
open half-spaces indexopen half-space bounded by P and denoted by H+(P),
H−(P).

Definition 3.5.1 (convex set) A set X ⊆Rn is said to be convex if for any
two points x1, x2 ∈X the straight line segment joining x1 and x2 is contained in
X . In formula, αx1 + (1−α)x2 ∈X for all x1, x2 ∈X and all α∈ [0, 1].
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The following properties of convex sets are easily derived:

1. the intersection of two convex sets is a convex set;

2. the sum or, more generally, any linear combination of two convex sets is a
convex set;13

3. the cartesian product of two convex sets is a convex set;

4. the image of a convex set in a linear map is a convex set.

Since Rn is metric with the norm induced by the inner product, it is possible
to divide the points of any given set X ⊆Rn into interior, limit, and isolated
points according to Definitions A.6.5, A.6.6, and A.6.7. Clearly, a convex set
cannot have any isolated point.

Definition 3.5.2 (dimension of a convex set) The dimension of a convex set X
is the largest integer m for which there exist m +1 points xi ∈X (i =0, . . . , m)
such that the m vectors x1 −x0, . . . , xm −x0 are linearly independent.

A convex set of dimension m is contained in the linear variety
M := {x0}+Bµ, µ∈Rn, whose basis matrix B has the above m vectors as
columns. A convex set whose interior is not empty has dimension n.

Given a convex set X of dimension m, with m <n, it is possible to define
the relative interior of X (denoted by rintX ) as the set of all interior points of
X considered in the linear variety M, i.e., referring to an m-dimensional vector
space.

Definition 3.5.3 (support hyperplane of a convex set) A hyperplane P that
intersects the closure of a convex set X and such that there are no points of X
in one of the open half-spaces bounded by P is called a support hyperplane of
X . In other words, let x0 be a frontier point of X : P defined in (3.5.13) is a
support hyperplane of X at x0 if X ⊆H+(P) or X ⊆H−(P), i.e.

〈a, (x−x0)〉 ≥ 0 or 〈a, (x−x0)〉 ≤ 0 ∀x∈X (3.5.17)

When considering a particular support hyperplane, it is customary to refer to
the outer normal, i.e., to take the sign of a in such a way that the latter of
(3.5.17) holds.

Property 3.5.1 Any convex set X admits at least one support hyperplane P
through every point x0 of its boundary. Conversely, if through every boundary
point of X there exists a support hyperplane of X , X is convex.

13 Given any two sets X ,Y ⊆Rn, their linear combination with coefficients α, β is defined
as

αX + βY :=
{

z : z = αx + βy, x∈X , y∈Y
}
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Hence, any convex set is the envelope of all its support hyperplanes.

Definition 3.5.4 (cone) A cone with vertex in the origin is a set C such that
for all x∈C the half-line or ray α x, α≥ 0, is contained in C. A cone with
vertex in x0 is a set C such that for all x∈C the ray x0 + α(x−x0), α≥ 0, is
contained in C.

Definition 3.5.5 (polar cone of a convex set) Let x0 be any point of the convex
set X . The polar cone of X at x0 (which will be denoted by Cp(X −x0)) is defined
as

Cp(X −x0) := { p : 〈p, (x−x0)〉 ≤ 0 ∀x∈X } (3.5.18)

If x0 is a boundary point of X , Cp(X −x0) is the locus of the outer normals
of all the support hyperplanes of X at x0. If dimX =n and x0 is an interior
point of X , Cp(X −x0) clearly reduces to the origin. It is easy to prove that
any polar cone of a convex set is convex.

Definition 3.5.6 (convex function) A function f : D→R, where D denotes
a convex subset of Rn, is said to be a convex function if for any two points
x1, x2 ∈D and any α∈ [0, 1]

f(αx1 + (1−α)x2) ≤ αf(x1) + (1−α)f(x2) (3.5.19)

If the preceding relation holds with the strict inequality sign, function f is
said to be strictly convex ; if f is a (strictly) convex function, −f is said to be
(strictly) concave.

f(x)

αf(x1) + (1 − α)f(x2)

f (αx1 + (1 − α)x2)

0 x1 x2 x

Figure 3.14. A convex function with D⊆R.

For example, in Fig. 3.14 the graph of a possible convex function with domain
in R is represented and the meaning of condition (3.5.19) is pointed out: note
that the function cannot be constant on any finite segment of its domain if the
value at some other point is less.

Property 3.5.2 The sum or, more generally, any linear combination with
nonnegative coefficients of two convex functions is a convex function.
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Proof. Let f, g be two convex functions with the same domain D and
ϕ :=βf + γg with β, γ ≥ 0 a linear combination of them. It follows that

ϕ(αx1 + (1−α)x2) = β f(αx1 + (1−α)x2) + γ g(αx1 + (1−α)x2)

≤ αβ f(x1) + (1−α)β f(x2) + αγ g(x1) + (1−α)γ g(x2)

= α ϕ(x1) + (1−α)ϕ(x2) �

It is easy to prove that a linear combination with positive coefficients of two
convex functions is strictly convex if at least one of them is so.

Property 3.5.3 Let f be a convex function with a sufficiently large domain
and k any real number. The set

X1 := { x : f(x) ≤ k }

is convex or empty.

Proof. Let x1, x2 ∈X1 and k1 := f(x1), k2 := f(x2). Then f(αx1 +
(1−α)x2)≤αf(x1) + (1−α)f(x2) =αk1 +(1−α)k2 ≤ k. �

Property 3.5.4 A positive semidefinite (positive definite) quadratic form is a
convex (strictly convex) function.

Proof. Let f(x) := 〈x, Ax〉: by assumption f(x) > 0 (f(x)≥ 0) for all x �= 0.
Hence

αf(x1) + (1−α)f(x2) = α〈x1, Ax1〉 + (1−α)〈x2, Ax2〉
f(αx1 + (1−α)x2) = α2〈x1, Ax1〉 + 2α(1−α)〈x1, Ax2〉 + (1−α)2〈x2, Ax2〉

By subtraction on the right one obtains

α(1−α)〈x1, Ax1〉 − 2α(1−α)〈x1, Ax2〉 + α(1−α)〈x2, Ax2〉
= α(1−α)〈(x1 −x2), A(x1 −x2)〉 > 0 (≥ 0) ∀x1, x2, x1 �= x2

Since the same inequality must hold for the difference of the left, the property
is proved. �

Property 3.5.5 Let f be a continuously differentiable function defined on a
convex domain and x0 any point of this domain. Denote by

g(x0) := gradf |x0

the gradient of f at x0. Then f is convex if and only if

f(x) ≥ f(x0) + 〈g(x0), (x−x0)〉 (3.5.20)

In other words, a function is convex if and only if it is greater than or equal to
all its local linear approximations.
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Proof. Only if. From

f(x0 + α(x−x0)) = f(αx + (1−α)x0) ≤ αf(x) + (1−α)f(x0) (3.5.21)

it follows that

f(x) ≥ f(x0) +
f(x0 + α(x−x0)) − f(x0)

α

which converges to (3.5.20) as α approaches zero from the right.
If. Consider any two points x1, x2 in the domain of f and for any α, 0≤α≤ 1,

define x0 := αx1 + (1−α)x2. Multiply relation (3.5.20) with x := x1 by α and
with x := x2 by 1−α and sum: it follows that

αf(x1) + (1−α)f(x2) ≥ f(x0) + 〈g(x0), (αx1 +(1−α)x2 −x0)〉
= f(αx1 + (1−α)x2) �

3.5.2 The Pontryagin Maximum Principle

The maximum principle is a contribution to the calculus of variations developed
by the Russian mathematician L.S. Pontryagin to solve variational problems in
the presence of constraints on the control effort.14 It can be simply and clearly
interpreted geometrically, especially in particular cases of linear systems with
performance index (3.5.4) or (3.5.5). We shall present it here referring only to
these cases.

Property 3.5.6 The reachable set R+(t0, t1, 0) of system (3.5.1) with control
function u(·) subject to constraint (3.5.3) is convex.

Proof. Let x1, x2 be any two terminal states belonging to R+(t0, t1, 0), cor-
responding to the admissible control functions u1(·), u2(·). Since u(t) is con-
strained to belong to a convex set for all t∈ [t0, t1], also αu1(·) + (1−α)u2(·) is
admissible, so that the corresponding terminal state αx1 +(1−α)x2 belongs to
R+(t0, t1, 0). �

Remark. Refer to Fig. 3.13: if the initial and final state sets X0,X1 are convex,
the set of all admissible x(t1) is still convex, it being obtained through linear
transformations, sums, and intersections of convex sets.

It is easily shown that for any finite control interval [t0, t1] the reachable set
R+(t0, t1, 0) is also closed, bounded, and symmetric with respect to the origin
if Ω is so.

Theorem 3.5.1 (the maximum principle, part I) Consider system (3.5.1) in
a given control interval [t0, t1] with initial state x0, constraint (3.5.3) on the
control effort, and performance index (3.5.4). A state trajectory x̄(·) with initial

14 See the basic book by Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko [33].
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state x̄(t0) =x0, corresponding to an admissible control function ū(·), is optimal
if and only if the solution p(t) of the adjoint system

ṗ(t) = −AT (t) p(t) (3.5.22)

with final condition p(t1) := − γ, satisfies the maximum condition15

〈p(t), B(t) (u− ū(t))〉 ≤ 0 ∀u ∈ Ω a.e. in [t0, t1] (3.5.23)

Variable p is usually called the adjoint variable.

Proof. If. Let u(·) be another admissible control function and x(·) the
corresponding state trajectory. By difference we derive

〈p(t1), (x(t1)− x̄(t1))〉 = 〈p(t1),

∫ t1

t0

Φ(t1, τ)B(τ)(u(τ)− ū(τ)) dτ〉

=

∫ t1

t0

〈ΦT (t1, τ) p(t1) , B(τ)(u(τ)− ū(τ))〉 dτ

=

∫ t1

t0

〈p(τ) , B(τ)(u(τ)− ū(τ))〉 dτ

Condition (3.5.23) implies that the inner product under the integral sign on
the right is nonpositive for all t∈ [t0, t1], so that the inner product on the left is
also nonpositive. Since p(t1) = − γ, any admissible variation of the trajectory
corresponds to a nonnegative variation of the cost, hence x̄(·) is optimal.

Only if. Suppose there exists a subset T ⊆ [t0, t1] with nonzero measure
such that (3.5.23) does not hold for all t∈T : then it is possible to choose an
admissible control function u(·) (possibly different from ū(·) only in T ) such
that the corresponding state trajectory x(·) satisfies 〈p(t1), (x(t1)− x̄(t1))〉> 0
or 〈γ, (x(t1)− x̄(t1))〉< 0, so that x̄(·) is nonoptimal. �

A Geometric Interpretation. The maximum principle can be interpreted in
strict geometric terms as a necessary and sufficient condition for a given vector
ϕ to belong to the polar cone of the reachable set at some boundary point x̄(t1).
It can be used to derive the reachable set as an envelope of hyperplanes (see
Example 3.5.1).

15 Some particular terms, which derive from the classical calculus of variations, are often
used in optimal control theory. Function H(p, x, u, t) := 〈p, (A(t)x+ B(t)u)〉 is called the
Hamiltonian function and the overall system (3.5.1, 3.5.22), consisting of the controlled system
and adjoint system equations, is called the Hamiltonian system. It can be derived in terms
of the Hamiltonian function as

ẋ(t) =
∂H

∂p
, ṗ(t) = −∂H

∂x

The maximum condition requires the Hamiltonian function to be maximal at the optimal
control ū(t) with respect to any other admissible control action u∈Ω at every instant of time.
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p(t0)

x̄(t0)= x0

p(t)

x̄(t)
δx(t)

BT (u − ū(t))

p(t1)= ϕ= − γ

x̄(t1)

δx(t1)

R

Figure 3.15. A geometric interpretation of the maximum

principle: case in which cost Γ is defined as a linear function

of the final state.

Refer to Fig. 3.15, where R denotes the (convex) reachable set of system
(3.5.1) from the initial state x0, in the time interval [t0, t1], with the control
effort constrained by (3.5.3). Recall that the inner product of a solution of the
free system

ẋ(t) = A(t) x(t) (3.5.24)

and a solution of the adjoint system (3.5.22) is a constant (Property 2.1.3):
since any variation δx(t) of trajectory x̄(·) at time t (due to an admissible
pulse variation of the control function) is translated at the final time t1 as
δx(t1) =Φ(t1, t) δx(t), the inner product 〈p(t1), δx(t1)〉 is nonpositive (so that
p(t1) is the outer normal of a support hyperplane of R at x̄(t1)) if and only if
p(t) belongs to the polar cone of B(t)(Ω − ū(t)) almost everywhere in [t0, t1].
These remarks lead to the following statement.

Corollary 3.5.1 Let R be the reachable set of system (3.5.1) under the con-
straints stated in Theorem 3.5.1. Denote by x̄(·), ū(·) an admissible state tra-
jectory and the corresponding control function. For any given vector ϕ∈Rn

relation
ϕ ∈ Cp(R− x̄(t1)) (3.5.25)

holds if and only if

p(t) ∈ Cp(B(t) (Ω − ū(t))) a.e. in [t0, t1] (3.5.26)

with
ṗ(t) = −AT (t) p(t) , p(t1) = ϕ (3.5.27)
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which is equivalent to the maximum condition expressed by (3.5.23).

Theorem 3.5.1 allows immediate solution of a class of optimization problems:
refer to system (3.5.1) with control function subject to constraints (3.5.2), the
initial state x0, and the control interval [t0, t1] given, the final state free and
performance index (3.5.4). Assume that the system is completely controllable.

Algorithm 3.5.1 An extremal trajectory of system (3.5.1) from initial state
x0 at a given time t0 with control action subject to saturation constraints (3.5.2),
corresponding to a minimum of cost (3.5.4) (where time t1 is given and the final
state is completely free), is determined as follows:

1. Solve the adjoint system (3.5.22) with p(t1) := − γ, i.e., compute
p(t) =ΦT (t1, t)p(t1), where Φ(·, ·) is the state transition matrix of homogeneous
system (3.5.24);

2. Determine the optimal control function by means of the maximum condition
as

uj(t) = H sign(BT p(t)) (j =1, . . . , m) , t∈ [t0, t1] (3.5.28)

Note that the control function is of the so-called bang-bang type: every
component switches from one to the other of its extremal values. If the argument
of function sign is zero for a finite time interval, the corresponding value of uj

is immaterial: the reachable set has more than one point in common with its
support hyperplane, so that the optimal trajectory is not unique.

Also note that both the adjoint system and the maximum condition are
homogeneous in p(·), so that scaling γ and p(·) by an arbitrary positive factor
does not change the solution of the optimal control problem.

We shall now derive the maximum principle for the case of integral perfor-
mance index (3.5.5). Let us extend the state space by adding to (3.5.1) the
nonlinear differential equation

ċ(t) = f(x(t), u(t), t) , c(t0) = 0 (3.5.29)

where f , the function appearing in (3.5.5), is assumed to be convex. Denote by
x̂ = (c, x) the extended state: by using this artifice we still have the performance
index expressed as a linear function of the (extended) terminal state, since
clearly

Γ = c(t1) = 〈ê0, x̂(t1)〉 (3.5.30)

where ê0 denotes the unit vector in the direction of c axis. Let R̂⊆Rn+1 be the
reachable set in the extended state space. The standard reachable set R⊆Rn

is related to it by

R = {x : (c, x) ∈ R̂} (3.5.31)

In order to extend the above stated maximum principle to the case at hand,
the following definition is needed.
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Definition 3.5.7 (directionally convex set) Let z be any vector of Rn. A
set X ⊆R

n is said to be z-directionally convex 16 if for any x1, x2 ∈X and any
α∈ [0, 1] there exists a β ≥ 0 such that αx1 + (1−α)x2 + βz ∈X . A point x0

is a z-directional boundary point of X if it is a boundary point of X and all
x0 +βz, β ≥ 0, do not belong to X . If set X is z-directionally convex, the set

Xs := {y : y = x − βz , x∈X , β ≥ 0} (3.5.32)

which is called z-shadow of X , is convex.

Property 3.5.7 R̂+(t0, t1, 0), the reachable set of the extended system
(3.5.29, 3.5.1) with control function u(·) subject to constraint (3.5.3), is (−ê0)-
directionally convex.

Proof. Let u1(·), u2(·) be any two admissible control functions and x̂1(·), x̂2(·)
the corresponding extended state trajectories. Apply the control function
u(·) :=αu1(·) + (1−α)u2(·): the corresponding trajectory x̂(·) is such that

c(t1) =

∫ t1

t0

f(αx1(τ)+ (1−α)x2(τ), αu1(τ)+ (1−α)u2(τ), τ) dτ

≤ α

∫ t1

t0

f(x1(τ), u1(τ), τ) dτ + (1−α)

∫ t1

t0

f(x2(τ), u2(τ), τ) dτ

= α c1(t1) + (1−α) c2(t1)

Hence
c(t1) = α c1(t1) + (1−α) c2(t1) − β , β ≥ 0 �

Theorem 3.5.2 (the maximum principle, part II) Consider system (3.5.1) in
a given control interval [t0, t1] with initial state x0, constraint (3.5.3) on the
control effort, and performance index (3.5.5), where function f is assumed to
be convex. A state trajectory x̄(·) with initial state x̄(t0) =x0 and a given final
state x̄(t1) strictly internal to the reachable set R is optimal if and only if for
any real constant ψ < 0 there exists a solution p(·) of the adjoint system

ṗ(t) = −AT (t) p(t) − ψ gradx f
∣

∣

∣ x̄(t)
ū(t)

(3.5.33)

which satisfies the maximum condition

〈p(t), B(t) (u− ū(t))〉 + ψ
(

f(x̄(t), u, t) − f(x̄(t), ū(t), t)
)

≤ 0

∀u ∈ Ω a.e. in [t0, t1] (3.5.34)

Proof. Only if. Apply Theorem 3.5.1 locally (in a small neighborhood
of trajectory c̄(·), x̄(·) in the extended state space). For a trajectory to be

16Directional convexity was introduced by Holtzmann and Halkin [12].
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c

R̂s

R̂ x̂(t1)

P̂

p(t1)

ψ(t1)
p̂(t1)

x

Figure 3.16. The reachable set in the extended state space:

case in which cost Γ is defined as the integral of a convex

functional of the state and control trajectories.

optimal the necessary conditions for the linear case must be satisfied for the first
variation: in fact, if not, there would exist a small, admissible control function
variation causing decrease in cost. The extended adjoint system corresponding
to local linearization of (3.5.29, 3.5.1) defines the extended adjoint variable
p̂ =(ψ, p), where ψ(·) satisfies the differential equation

ψ̇(t) = 0 (3.5.35)

and p(·) satisfies (3.5.33). In (3.5.35) the right side member is zero because
variable c does not appear in the Jacobian matrix of (3.5.29, 3.5.1). Equation
(3.5.35) implies that ψ(·) is constant over [t0, t1]. At an optimal terminal point
¯̂x(t1), which is a (−ê0)-directional boundary point of the extended reachable
set R̂ (see Fig. 3.16), a support hyperplane P̂ of R̂s has the outer normal with
negative component in the direction of axis c, so that constant ψ is negative:
furthermore, it is arbitrary because all conditions are homogeneous in p̂(·). The
“local” maximum condition

〈p(t), B(t) (u− ū(t))〉 + ψ 〈gradu f
∣

∣

∣ x̄(t)
ū(t)

, (u− ū(t))〉 ≤ 0

∀u ∈ Ω a.e. in [t0, t1] (3.5.36)

is equivalent to (3.5.34) by virtue of Property 3.5.5.
If. Due to convexity of f , any finite variation of the control function and

trajectory with respect to ū(·) and x̄(·) (with δx(t1) = 0 since the terminal state
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is given) will cause a nonnegative variation δc(t1) of the performance index.
Thus, if the stated conditions are satisfied, P̂ is a support hyperplane of R̂s. �

We consider now some computational aspects of dynamic optimization prob-
lems. Cases in which solution is achievable by direct computation, without any
trial-and-error search procedure, are relatively rare. Algorithm 3.5.1 refers to
one of these cases: direct solution is possible because the final state has been
assumed completely free. However, when the final state is given, as in the
case of Theorem 3.5.2, we have a typical two-point boundary value problem: it
is solved by assuming, for instance, ψ := − 1 and adjusting p(t0), both in di-
rection and magnitude, until the state trajectory, obtained by solving together
(3.5.1) and (3.5.33) with initial conditions x(t0) :=x0, p(t0) and with the control
function provided at every instant of time by the maximum condition (3.5.34)
or (3.5.36), reaches x1 at time t1. Two particular optimal control problems
that can be solved with this procedure are the minimum-time control and the
minimum-energy control , which are briefly discussed hereafter. In both cases
system (3.5.1) is assumed to be completely controllable in a sufficiently large
time interval starting at t0.

Problem 3.5.1 (minimum-time control) Consider system (3.5.1) with initial
state zero, initial time t0, final state x1 and constraint (3.5.3) on the control
action. Derive a control function u(·) which produces transition from the origin
to x1 in minimum time.

Solution. Denote, as before, by R+(t0, t1, 0) the reachable set of (3.5.1) under
constraint (3.5.3). Since Ω contains the origin

R+(t0, t1, 0) ⊆ R+(t0, t2, 0) for t1 < t2 (3.5.37)

In fact a generic point x′ of R+(t0, t1, 0), reachable at t1 by applying some
control function u′(·), can also be reached at t2 by

u′′(t) =

{

0 for 0 ≤ t < t2 − t1
u′(t + t2 − t1) for t2 − t1 ≤ t ≤ t2

(3.5.38)

In most cases (3.5.37) is a strict inclusion and, since R+(t0, t1, 0) is closed for
any finite control interval, all its boundary points are reachable at minimal
time t1. The boundary is called an isochronous surface (corresponding to
time t1). The problem is solved by searching (by a trial-and-error or steepest
descent procedure) for a value of p(t0) (only direction has to be varied, since
magnitude has no influence) such that the simultaneous solution of (3.5.1) and
(3.5.22) with control action u(t) chosen at every instant of time to maximize
〈p(t), B(t)u(t)〉 over Ω, provides a state trajectory passing through x1: the
corresponding time t1 is the minimal time. This means that x1 belongs to the
boundary of R+(t0, t1, 0) and the corresponding p(t1) is the outer normal of a
support hyperplane of R+(t0, t1, 0) at x1. The same procedure, based on trial-
and-error search for p(t0), can also be used for any given initial state x0 (not
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necessarily coinciding with the origin). If the control action is constrained by
(3.5.2) instead of (3.5.3), u(·) is of the bang-bang type and is given by (28) at
every instant of time as a function of p(t). �
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Figure 3.17. The reachable set R+(0, 2, 0) of system (3.5.39).

Example 3.5.1 Consider the linear time-invariant system corresponding to

A :=

[

0 1
0 0

]

B :=

[

0
1

]

(3.5.39)

in the control interval [0, 2] and with the control effort constrained by
−1≤u≤ 1. The boundary of R+(0, 2, 1), i.e., the isochronous curve for t1 = 2,
is represented in Fig. 3-19: it has been obtained by connecting 50 terminal
points, each of which has been computed by applying Algorithm 3.5.1 to one of
50 equally angularly spaced unit vectors pi(t1) :=ϕi (i =1, . . . , 50). The corre-
sponding control actions, of the bang-bang type, are

ui(t) = sign (BT pi(t)) with pi(t) = eAT t ϕi (i =1, . . . , 50) (3.5.40)

Fig. 3.18 shows four different isochronous curves obtained with this procedure.

Problem 3.5.2 (minimum energy control) Consider system (3.5.1) with ini-
tial state x0, initial time t0, final state x1, and control interval [t0, t1]. Derive
a control function u(·) that produces transition from x0 to x1 with minimum
energy. Energy is defined as

e =

(
∫ t1

t0

‖u(τ)‖2
2 dτ

)

1
2

(3.5.41)

i.e., as the euclidean norm of control function segment u|[t0,t1].
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Figure 3.18. Four isochronous curves of system (3.5.39),

corresponding to the final times .5, 1, 1.5, 2.

Solution. By virtue of Property 3.5.4 functional (3.5.41) is convex and the
problem can be solved by applying Theorem 3.5.2 with Γ := e2/2. First, note
that adjoint system (3.5.33) coincides with (3.5.22) since in this case function
f does not depend on x and the maximum condition (3.5.36) requires that
function

〈p(t), B(t) u(t)〉 − 1

2
〈u(t), u(t)〉 (3.5.42)

is maximized with respect to u(t). This leads to

u(t) = BT (t) p(t) (3.5.43)

The initial condition p(t0) has to be chosen (both in direction and magnitude)
in such a way that the corresponding state trajectory (starting from x0 at time
t0) with the control function provided by (3.5.43) reaches x1 at time t1. This is
still a two-point boundary value problem, but easily solvable because the overall
system is linear. In fact it is described by the homogeneous matrix differential
equation

[

ẋ(t)
ṗ(t)

]

=

[

A(t) B(t) BT (t)
O −AT (t)

] [

x(t)
p(t)

]

(3.5.44)

and in terms of the overall state transition matrix, accordingly partitioned, we
have

[

x(t1)
p(t1)

]

=

[

Φ(t1, t0) M
O Φ−T (t1, t0)

] [

x(t0)
p(t0)

]

(3.5.45)
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with Φ−T := (ΦT )−1 and

M :=

∫ t1

t0

Φ(t1, τ) B(τ) BT (τ) Φ−T (τ, t0) dτ (3.5.46)

which is nonsingular because of the controllability assumption: in fact matrix
P (t0, t1) defined by (2.6.6) is related to it by

P (t0, t1) = M Φ−T (t0, t1) = M ΦT (t1, t0) (3.5.47)

From (3.5.45) we obtain

p(t0) = M−1 x2 with x2 := x1 − Φ(t1, t0) x0 (3.5.48)

and substitution into (3.5.43) yields the solution in the form

u(t) = BT (t)Φ−T (t, t0) M−1 x2 = BT (t)ΦT (t0, t) M−1 x2 , t∈ [t0, t1] �

(3.5.49)

Control law (3.5.49) coincides with (2.6.9).17 Hence (2.6.9) solves the problem
of controlling the state from x0 to x1 with the minimum amount of energy.

Remark. If in Problem 3.5.2 the control action is constrained by (3.5.2), the
maximum principle gives

uj(t) =







H for u◦
j(t) ≥ H

u◦
j(t) for |u◦

j(t)| < H
−H for u◦

j(t) ≤ −H
(j =1, . . . , p) , u◦(t) := BT (t) p(t)

(3.5.50)
However in this case, (3.5.50) being nonlinear, p(t0) is not directly obtainable
as a linear function of x0, x1.

Problem 3.5.3 (the reachable set with bounded energy)18 Determine the
reachable set of system (3.5.1) from the origin in time interval [t0, t1] under
the control energy constraint

(
∫ t1

t0

‖u(τ)‖2
2 dτ

)

1
2

≤ H (3.5.51)

17This is proved by:

u(t) ns = BT (t)Φ−T (t, t0)M−1 x2

ns = BT (t)Φ−T (t, t0)Φ−T (t0, t1)P−1(t0, t1)x2

ns = BT (t)ΦT (t1, t)P−1(t0, t1)x2

18The geometry of the reachable set with a bound on the generic p-norm of the control
function was investigated in the early 1960s by Kreindler [23] and Kranc and Sarachik [22].
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Solution. Denote by R+(t0, t1, 0, H) the reachable set of system (3.5.1) with
constraint (3.5.51). The functional on the left of (3.5.51) is the euclidean
norm of function segment u|[t0,t1] and, like any other norm, satisfies the triangle
inequality

‖α u1(·) + (1−α) u2(·)‖ ≤ α ‖u1(·)‖ + (1−α) ‖u2(·)‖

This means that (3.5.51) defines a convex set in the functional space of all
piecewise continuous control functions u|t0,t1]. Hence R+(t0, t1, 0, H) is convex
as the image of a convex set in a linear map. Furthermore, in the extended
state space with cost defined by

ċ(t) =
1

2
〈u(t), u(t)〉 , c(t0) = 0

from R̂+(t0, t1, 0) being (−ê0)-directionally convex it follows that

R+(t0, t1, 0, H1) ⊆ R+(t0, t1, 0, H2) for H1 < H2 (3.5.52)

(note that a generic R+(t0, t1, 0, H) is obtained by intersecting R̂+(t0, t1, 0) with
a hyperplane orthogonal to the cost axis, called an isocost hyperplane). It is
also clear that relation (3.5.51) holds with the equality sign at every boundary
point of R+(t0, t1, 0, H). By virtue of the maximum principle, a given vector ϕ
is the outer normal of a support hyperplane of R+(t0, t1, 0, H) if and only if

u(t) = k BT (t) ΦT (t1, t) ϕ (3.5.53)

where constant k has to be chosen to satisfy (3.5.51). This requirement leads
to

u(t) =
H BT (t) ΦT (t1, t) ϕ
√

〈ϕ, P (t0, t1) ϕ〉
(3.5.54)

The boundary of R+(t0, t1, 0, H) is the hyperellypsoid defined by

〈x1, P
−1(t0, t1) x1〉 = H2 (3.5.55)

This can easily be checked by direct substitution of

x1 =

∫ t1

t0

Φ(t1, τ) B(τ) u(τ) dτ =
H P (t0, t1) ϕ

√

〈ϕ, P (t0, t1) ϕ〉
�

Example 3.5.2 Consider again the linear time-invariant system corresponding
to matrices (3.5.39) in the control interval [0, 2] and with the energy bound
H := 1.6. The reachable set R+(t0, t1, 0, E) is shown in Fig. 3.19: also in this
case it has been obtained by connecting 50 terminal points, each of which
has been computed by considering one of 50 equally angularly spaced unit
vectors pi(t1) :=ϕi (i = 1, . . . , 50). The corresponding control actions have been
computed by means of (3.5.54) with ϕ :=ϕi.
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Figure 3.19. The reachable set R+(0, 2, 0, 1.6) of system

(3.5.39) with energy constraint (3.5.51).

3.5.3 The Linear-Quadratic Regulator

The linear-quadratic regulator problem, also called the LQR problem or the
Kalman regulator , can be considered as an extension of the minimum-energy
control problem considered in the previous subsection.19

Problem 3.5.4 (the LQE problem) Consider system (3.5.1) with initial state
x0, initial time t0, final state x1 and control interval [t0, t1]. Derive a control
function u(·) which produces transition from x0 to x1 while minimizing the
performance index

Γ =
1

2

∫ t1

t0

(〈x(τ), Q(τ) x(τ)〉 + 〈u(τ), R(τ) u(τ)〉)dτ (3.5.56)

where matrices Q(τ) and R(τ) are respectively symmetric positive semidefinite
and symmetric positive definite for all τ ∈ [t0, t1].

Solution. By virtue of Property 3.5.4 functional (3.5.56) is convex and the
problem can be solved by applying Theorem 3.5.2. Assume ψ := −1: the adjoint
system (3.5.33) in this case can be written as

ṗ(t) = −AT (t) p(t) + Q(t) x(t) (3.5.57)

and the maximum condition (3.5.36) requires that

〈p(t), B(t) u(t)〉 − 1

2
(〈x(t), Q(t) x(t)〉 + 〈u(t), R(t) u(t)〉) (3.5.58)

19Most of the results on the linear-quadratic regulator are due to Kalman [13, 14].
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is maximized with respect to u(t). This yields

u(t) = R−1(t) BT (t) p(t) (3.5.59)

The Hamiltonian system is
[

ẋ(t)
ṗ(t)

]

=

[

A(t) B(t) R−1(t) BT (t)
Q(t) −AT (t)

] [

x(t)
p(t)

]

(3.5.60)

Denote by Â (t) the overall system matrix in (3.5.60): in terms of the corre-
sponding state transition matrix Φ̂(t1, t0), accordingly partitioned, we have

[

x(t1)
p(t1)

]

=

[

Φ1(t1, t0) Φ2(t1, t0)
Φ3(t1, t0) Φ4(t1, t0)

] [

x(t0)
p(t0)

]

(3.5.61)

It can be proved that under the assumption that system (3.5.1) is completely
controllable in time interval [t0, t1], matrix Φ2(t1, t0) is nonsingular, so that the
problem can be solved by deriving

p(t0) = Φ−1
2 (t1, t0) (x1 − Φ1(t1, t0) x0) (3.5.62)

then using (3.5.60) with initial condition x0, p(t0). �

Remark. In Problem 3.5.4 both the initial and the final state are given. It
is possible, however, to formulate the LQR problem also with the final state
completely free. Since R̂, the extended reachable set from (0, x0) in [t0, t1],
is (−e0)-directionally convex, it presents a (−e0)-directional boundary point
corresponding to a globally minimum cost. At this point R̂s has a support
hyperplane P̂ (see Fig. 3.16) orthogonal to the c axis. The corresponding
globally optimal final state is detected by condition p(t1) = 0 on the final value
of the adjoint variable, which leads to

p(t0) = −Φ−1
4 (t1, t0) Φ3(t1, t0) x0 (3.5.63)

to be used instead of (3.5.62) to solve the problem.

3.5.4 The Time-Invariant LQR Problem

The time-invariant LQR problem is a particular case of the previous LQR
problem. It refers to the time-invariant system

ẋ(t) = A x(t) + B u(t) (3.5.64)

with initial state x0 given, the final state completely free, the infinite optimal
control interval [0,∞] and performance index

Γ =
1

2

∫ ∞

0

(〈x(τ), Q x(τ)〉 + 〈u(τ), R u(τ)〉) dτ (3.5.65)

where matrices Q and R are assumed to be respectively (symmetric) positive
semidefinite and positive definite. It is remarkable that in this case control u(t)
is a linear function of state x(t) for all t≥ 0.
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Theorem 3.5.3 (Kalman) Consider system (3.5.64) in control interval [0,∞],
with initial state x0, final state free, and performance index (3.5.65). Assume
that (A, B) is controllable and that Q can be expressed as CT C with (A, C)
observable. The optimal control is given by

u(t) = F x(t) with F := −R−1 BT P (3.5.66)

where P is the unique (symmetric) positive definite solution of the algebraic
Riccati equation

P A + AT P − P B R−1 BT P + Q = O (3.5.67)

Proof. First of all, note that if a matrix P satisfies (3.5.67), so does P T , so that
we can assume that P is symmetric without any loss of generality. Consider
the Hamiltonian system

[

ẋ(t)
ṗ(t)

]

=

[

A BR−1BT

Q −AT

] [

x(t)
p(t)

]

(3.5.68)

and denote by AH the corresponding system matrix (called the Hamiltonian
matrix ). We shall prove that if λ is an eigenvalue of AH , −λ also is. Define
S :=BR−1BT and consider the equalities

det(

[

A−λIn S
Q −AT −λIn

]

) = det(

[

AT −λIn Q
S −A− λIn

]

)

= det(

[

−Q −AT + λIn

−A−λIn S

]

) = det(

[

A + λIn S
Q −AT + λIn

]

)

which prove the above assertion. The first follows from M and MT having the
same eigenvalues for any square real M , while the interchanges of rows and
columns and related changes of signs in the other equalities have been obtained
by multiplying on the right and on the left by L1L2, with

L1 :=

[

O In

In O

]

and L2 :=

[

−In O
O In

]

whose determinants are both 1 if n is even and both −1 if it is odd. Due to
the controllability assumption, the state can be controlled to the origin in finite
time and, due to the observability assumption, equilibrium at the origin is the
only motion corresponding to zero differential cost. Hence the solution of the
optimal control problem converges to the origin: this implies that n eigenvalues
of the Hamiltonian matrix have strictly negative real parts while the remaining
n have strictly positive real parts. Relation (3.5.63) shows that in any LQR
problem with the final state free p(t0) depends on both the initial state x0 and
the control interval [t0, t1] (in this case on the control time T ). Since T is infinity,
p0 is related only to x0: in other words there exists a matrix P such that

p(t0) = −P x0 (3.5.69)



3.5. Some Geometric Aspects of Optimal Control 191

and, provided solution of the control problem cannot depend on the initial time
because the system is time-invariant, it follows that the same equality holds at
any time, i.e.

p(t) = −P x(t) ∀ t ≥ 0 (3.5.70)

This means that the subspace

JH := im(

[

In

−P

]

) (3.5.71)

is an AH-invariant, so that in the product
[

In O
P In

] [

A BR−1R
Q −AT

] [

In O
−P In

]

=

[

A−BR−1BT P BR−1BT

PA−PBR−1BT P +Q +AT P PBR−1BT −AT

]

(3.5.72)

the first submatrix in the second row must be zero. This is expressed by equation
(3.5.67). Since the final state is zero, JH must coincide with the subspace
of the stable modes of AH which, due to the previously shown property of
the eigenvalues, has dimension n and, since the problem admits a solution for
any initial state by the controllability assumption, JH projects into the whole
controlled system state space. The internal eigenvalues of JH are those of the
first submatrix in the first row of (3.5.72), so that

A + B F = A − B R−1 BT P (3.5.73)

is a stable matrix. Define

M := Q + F T R F with F := −R−1 BT P (3.5.74)

and consider Lemma 2.5.1: it is easily seen that Liapunov equation (2.5.27)
with A +BF instead of A coincides with Riccati equation (3.5.67), so that
P is, at least, positive semidefinite, M being positive semidefinite. Actually,
it is positive definite, since the differential cost is maintained at zero only at
the origin. Any other solution P of the Riccati equation is related to an AH-
invariant of type (3.5.71) which is internally unstable [matrix A + BF with F
defined as in (3.5.74) is unstable] and cannot be positive semidefinite or positive
definite. In fact, due to unstability, any state x1 such that V1 := 〈x1, Px1〉
is positive and arbitrarily large would be reached from states x(t) such that
V (t) := 〈x(t), Px(t)〉 is less than V1 by an overall system trajectory on JH with
V̇ (t) = − 〈x(t), M x(t)〉 nonpositive at every instant of time, which is clearly a
contradiction. �

Corollary 3.5.2 If in the above Theorem 3.5.3 assumptions are relaxed to
(A, B) being stabilizable and (A, C) detectable, the statement remains valid, but
with P being possibly positive semidefinite instead of positive definite.
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Proof. Only minor changes in the above proof of Theorem 3.5.3 are nec-
essary. Since the uncontrollable modes are stable and the arcs of trajectory
corresponding to zero differential cost (hence to zero control function) belong
to the unobservability subspace (hence converge to the origin), the optimal con-
trol problem still admits a solution converging to the origin, the Hamiltonian
matrix has n eigenvalues with strictly negative real parts and A +BF is strictly
stable. However in this case there are nonzero initial states (all the unobserv-
able ones) which correspond to optimal trajectories with zero differential cost,
so that in this case matrix P is positive semidefinite. �

Corollary 3.5.3 For any given initial state x0 the optimal value of perfor-
mance index (3.5.65) is

Γ0 =
1

2
〈x0, P x0〉

where P denotes, as before, the positive semidefinite or positive definite solution
of Riccati equation (3.5.67).

Proof. Consider Lemma 2.5.1 with A +BF instead of A and M defined as
in (3.5.74). �

Remark. Solution P =O is not excluded. For instance, if A is stable and Q is
zero (minimum-energy control to the origin) this is the only positive semidefinite
solution of the Riccati equation. In fact, in this case the most convenient control
policy to reach the origin in infinite time is clearly not to apply any control,
i.e., to choose u(·) =0, which corresponds to zero energy.

We shall now briefly consider computational aspects of the Riccati equation.
The most direct method derives from the above proof of Theorem 3.5-3: assume
that AH has distinct eigenvalues (hence linearly independent eigenvectors) and
let

[

T1

T2

]

be the 2n×n matrix having as columns the eigenvectors corresponding to sta-
ble eigenvalues. From (3.5.71) P = − T2T

−1
1 directly follows. This procedure

has two (minor) drawbacks: it requires computations in the complex field and
is not applicable when the eigenvalues of AH are not distinct, since standard
computational routines for eigenvalues and eigenvectors in general do not pro-
vide generalized eigenvectors. On the other hand, note that, due to genericity,
this case is relatively rare.

An alternative, completely different computational procedure, based on it-
erative solution of a Liapunov equation, is set in the following algorithm, which,
due to good convergence, is quite interesting in computational practice.
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Algorithm 3.5.2 (Kleinman)20 The positive semidefinite or positive definite
solution of Riccati equation (3.5.67) can be computed through the following steps:

1. choose any F0 such that A0 :=A + BF0 is stable;

2. perform the recursive computations:

AT
i Pi + Pi Ai + Q + F T

i R Fi = O (i = 0, 1, . . . )

where
Fi+1 := −R−1 BT Pi , Ai+1 := A + B Fi+1 (3.5.75)

and stop when the difference in norm between two consecutive Pi is less than a
small real number (for instance 100 ǫ, where ǫ denotes the machine zero).

Proof. Owing to Lemma 2.5.1

Pk =

∫ ∞

0

eAT
k

τ (Q + F T
k R Fk) eAkτ dτ (3.5.76)

is positive semidefinite or positive definite if Ak is stable. Let X1, X2 be any two
positive semidefinite or positive definite symmetric matrices. We understand
that the inequality X1 ≥X2 means that 〈x, X1x〉≥ 〈x, X2x〉 for all x. Let S be
any positive definite symmetric matrix, so that

(X1 − X2) S (X1 − X2) ≥ O (3.5.77)

The same inequality can also be written

X1 S X1 ≥ X1 S X2 + X2 S X1 − X2 S X2 (3.5.78)

or
X1 S X1 = X1 S X2 + X2 S X1 − X2 S X2 + M (3.5.79)

with M ≥O. The equality holds in (3.5.78) or M =O in (3.5.79) if X1 =X2.
The recursion formula (3.5.75) can be put in the form

AT
i Pi + Pi Ai + Q + Pi−1 S Pi−1 = O with S := BR−1BT (3.5.80)

or, by using (3.5.79) with X1 := Pi−1 and X2 := Pi ,

AT
i Pi + Pi Ai + Q + Pi−1 S Pi + Pi S Pi−1 − Pi S Pi + M = O

and, being Ai+1 :=A−SPi =Ai + SPi−1 −SPi ,

AT
i+1 Pi + Pi Ai+1 + Q + Pi S P1 + M = O

20A very complete and formal treatment of this algorithm was presented by Kleinman
[20, 21] and Vit [35].
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The use of this and the subsequent recursion formula

AT
i+1 Pi+1 + Pi+1 Ai+1 + Q + Pi S Pi = O

in integral (3.5.76) yields the desired result. Let Pi = P with P satisfying
Riccati equation (3.5.67): it is easily shown that in this case Pi+1 = Pi and the
recursion Liapunov equation (3.5.80) coincides with Riccati equation (3.5.67).
Furthermore, Pi > P for any Pi that does not satisfy the Riccati equation. This
is proved by using the above argument with Pi, P instead of Pi, Pi+1. Hence,
the limit of sequence {Pi} is P . �

Problem 3.5.5 (the infinite-time reachable set with bounded quadratic cost)
Consider system (3.5.64) with matrix A strictly stable. Determine the reachable
set from the origin under the constraint

∫ ∞

0

(〈x(τ), Q x(τ)〉 + 〈u(τ), R u(τ)〉) dτ ≤ H2 (3.5.81)

where matrices Q and R are assumed to be respectively (symmetric) positive
semidefinite and positive definite.

Solution. We shall show that the reachable set is bounded by the hyperel-
lypsoid

〈x1, (−P ) x1〉 = H2 (3.5.82)

where P is the unique (symmetric) negative definite solution of Riccati equation
(3.5.67). The proof closely follows that of Theorem 3.5.3: in fact the problem
can be reduced to the same optimization problem, but with modified extremal
conditions. Let x1 be a boundary point of the reachable set, which is convex:
then, there exists an infinite-time state trajectory x(·) from the origin to x1

such that cost (3.5.65) is minimal (with respect to the other trajectories from
the origin to x1) and its value is precisely H2/2. Refer to Hamiltonian system
(3.5.68): along this trajectory relation (3.5.70) is still valid since the control
interval is infinite and at every instant of time the control effort depends only on
the current state. This implies that the trajectory belongs to an AH-invariant,
which in this case coincides with the subspace of the unstable modes of AH

(any trajectory, considered backward in time, tends to the origin). It is proved
to be, at least, negative semidefinite by an argument similar to that presented
in the proof of Theorem 3.5.3 (which uses Lemma 2.5.1), considering matrix
−A−BF (which is strictly antistable) instead of A +BF . As for Corollary
3.5.1, the same argument proves that the quadratic form on the left of (3.5.82)
is the related cost: since the differential cost corresponding to a finite arc of
trajectory from the origin cannot be zero due to strict stability, P cannot be
negative semidefinite, but strictly negative definite. Relation (3.5.82) follows
from the reachable set being bounded by an isocost surface. �
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Problem 3.5.6 (the infinite-time reachable set with bounded energy) Con-
sider system (3.5.64) with matrix A strictly stable. Determine the reachable set
from the origin under the constraint

∫ ∞

0

‖u(τ)‖2
2 dτ ≤ H2 (3.5.83)

Solution. This problem is a particular case of the previous one. However in
this case it is not necessary to solve an algebraic Riccati equation to derive P ,
but only a Liapunov equation whose solution is unique. Consider (3.5.67) and
assume R := Im, Q :=O; by multiplying on the left and right by P−1 we obtain

A P−1 + P−1 AT − B BT = O (3.5.84)

The boundary of the reachable set in this case is still provided by (3.5.82),
but with P (negative definite) obtainable through equation (3.5.84). A remark
is in order: recall Problem 3.5.3, which refers to the finite-time case and, in
particular, relation (3.5.55). By comparison, it follows that the infinite-time
Gramian

P (0,∞) :=

∫ ∞

0

eAt B BT eAT t dt (3.5.85)

satisfies
A P (0,∞) + P (0,∞) AT + B BT = O � (3.5.86)

Example 3.5.3 Consider the asymptotically stable linear time-invariant sys-
tem with matrices

A :=

[

−.5 2
−2 −.5

]

B :=

[

0
1

]

(3.5.87)

in the control interval [0, T ], under the control energy constraint

∫ T

0

‖u(τ)‖2
2 dτ ≤ H2 with H = 3 (3.5.88)

The boundary of the reachable set R+(0, T, 0, H) is

〈x1, P
−1(0, T ) x1〉 = H2

To compute P (0, T ), if T is finite, consider the Hamiltonian matrix

AH :=

[

A B BT

O −AT

]

and denote by M the submatrix of eAHT corresponding to the first two rows
and the last two columns: then P (0, T ) =M eAT T . If T is infinite, use (3.5.86).
Some reachable sets referring to finite values of T and that corresponding to
T =∞ are shown in Fig. 3.20.
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Figure 3.20. The reachable set R+(0, T, 0, 3) of system

(3.5.87) with energy constraint (3.5.88) (T = .2, .4, . . . , 3,

T =∞).
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Chapter 4

The Geometric Approach:

Analysis

4.1 Controlled and Conditioned Invariants

The extensions of invariance, namely controlled and conditioned invariance,
provide means for further developments of linear system analysis: in this chap-
ter properties like constrained controllability and observability, unknown-input
observability, system left and right invertibility, and the concept of transmission
zero, are easily handled with these new mathematical tools.

Consider a three-map system (A, B, C). It has been proved that in the
absence of control action (i.e., when function u(·) is identically zero) a subspace
of the state space X is a locus of trajectories if and only if it is an A-invariant
(Theorem 3.2.4). The extension of this property to the case in which the control
is present and suitably used to steer the state along a convenient trajectory
leads to the concept of (A,B)-controlled invariant and to the following formal
definition.

Definition 4.1.1 (controlled invariant) Consider a pair (A, B). A subspace
V ⊆X is said to be an (A, B)-controlled invariant1 if

AV ⊆ V + B with B := imB (4.1.1)

The dual of the controlled invariant is the conditioned invariant, which is
defined as follows.

Definition 4.1.2 (conditioned invariant) Consider a pair (A, C). A subspace
S ⊆X is said to be an (A, C)-conditioned invariant if

A (S ∩ C) ⊆ S with C := kerC (4.1.2)

Note that any A-invariant is also an (A,B)-controlled invariant for any B
and an (A, C)-conditioned invariant for any C: in particular, the origin {0} and
the whole space X are so. Furthermore, the (A, {0})-controlled invariants and
(A,X )-conditioned invariants are, in particular, A-invariants.

1 The concepts of controlled invariance and related computational algorithms were in-
troduced by Basile and Marro [4], Wonham and Morse [44]. The concept of conditioned
invariance was contemporarily introduced in [4].
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Figure 4.1. The geometric meaning of controlled and condi-

tioned invariants.

The geometric meaning of controlled and conditioned invariants is illus-
trated by the examples shown in Fig. 4.1. In Fig. 4.1(a) the subspace V is an
(A,B)-controlled invariant since, if imA and B are disposed as shown, clearly
AV ⊆V +B; however, it is not a controlled invariant with respect to (A,B′). In
Fig. 4.1(b) the subspace S is an (A, C)-conditioned invariant since, if A (S ∩C)
is disposed as shown, it follows that A (S ∩C)⊆S; however, it is not an (A, C′)-
conditioned invariant, because of the different layout of A (S ∩C′) with respect
to S.

The following properties are easily proved by direct check.

Property 4.1.1 The sum of any two (A,B)-controlled invariants is an (A,B)-
controlled invariant.
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Property 4.1.2 The intersection of any two (A, C)-conditioned invariants is
an (A, C)-conditioned invariant.

In general, however, the intersection of two controlled invariants is not a con-
trolled invariant and the sum of two conditioned invariants is not a conditioned
invariant.

As a consequence of Property 4.1.1 the set of all (A,B)-controlled invariants
contained in a given subspace E ⊆X is an upper semilattice with respect to
⊆, +, hence it admits a supremum, the maximal (A,B)-controlled invariant
contained in E , which will be denoted by maxV(A,B, E). Similarly, Property
4.1.2 implies that the set of all (A, C)-conditioned invariants containing a given
subspace D⊆X is a lower semilattice with respect to ⊆, ∩, hence it admits
an infimum, the minimal (A, C)-conditioned invariant containing D, which will
be denoted by minS(A, C,D). Algorithms to compute maxV(A,B, E) and
minS(A, C,D) will be presented in Subsection 4.1.1. Duality between controlled
and conditioned invariants is stated in precise terms by the following property.

Property 4.1.3 The orthogonal complement of an (A,L)-controlled (condi-
tioned) invariant is an (AT ,L⊥)-conditioned (controlled) invariant.

Proof. By Property 3.1.2 it follows that

AV ⊆ V + L ⇔ AT (V + L)⊥ ⊆ V⊥

A (S ∩ L) ⊆ S ⇔ AT S⊥ ⊆ (S ∩ L)⊥

and, by (3.1.9, 3.1.10)

AV ⊆ V + L ⇔ AT (V⊥ ∩ L⊥) ⊆ V⊥

A (S ∩ L) ⊆ S ⇔ AT S⊥ ⊆ S⊥ + L⊥
�

The following theorem is basic: it establishes the connection between con-
trolled invariants and dynamic systems.

Theorem 4.1.1 Consider a pair (A, B). A subspace V ⊆X is a locus of con-
trolled trajectories of (A, B) if and only if it is an (A,B)-controlled invariant.

Proof. If. Let V be an (A,B)-controlled invariant: owing to (4.1.1), for any
x∈V there exists at least one value of control u such that Ax +Bu∈V: this
means that at any point of V the state velocity can be maintained on V by
a suitable control action, hence, by virtue of the fundamental lemma (Lemma
3.2.1), for any initial state x0 in V there exists an admissible state trajectory
starting at x0 and completely belonging to V.

Only if. Consider a state trajectory x(·) of (A, B) and denote by V the
subspace of minimal dimension in which it is contained. Let h := dimV: there
exist h values of time t1, . . . , th such that {x(t1), . . . , x(th)} is a basis of V. The
fundamental lemma implies

ẋ(ti) = A x(ti) + B u(ti) ∈ V (i = 1, . . . , h)



202 Chapter 4. The Geometric Approach: Analysis

hence AV ⊆V +B. �

A matrix characterization that extends Property 3.2.1 of simple invariants
is the following.

Property 4.1.4 A subspace V with basis matrix V is an (A,B)-controlled in-
variant if and only if there exist matrices X, U such that

A V = V X + B U (4.1.3)

Proof. Let vi (i = 1, . . . , r) be the columns of V : V is an (A,B)-controlled
invariant if and only if each transformed column is a linear combination
of columns of V and B, i.e., if and only if there exist vectors xi, ui such
that A vi = V xi +B ui (i =1, . . . , r): relation (4.1.3) is the same in compact
form. �

To show that controlled invariance is a coordinate-free concept, consider the
change of basis corresponding to the nonsingular transformation T . Matrices
A′ := T−1A T , B′ := T−1B and W :=T−1V correspond to matrices A, B, V in
the new basis. Relation (4.1.3) can be written as

T−1A T (T−1V ) = (T−1V ) X + T−1B U or A′ W = W X + B′ U

Controlled and conditioned invariants are very important in connection with
synthesis problems because of their feedback properties: in fact a controlled
invariant can be transformed into a simple invariant by means of a suitable
state feedback, just as a conditioned invariant can be transformed into a simple
invariant by means of a suitable output injection.

Theorem 4.1.2 A subspace V ⊆X is an (A,B)-controlled invariant if and only
if there exists at least one matrix F such that (A +BF )V ⊆V.

Proof. Only if. Consider Property 4.1.4, in particular relation (4.1.3), and
assume

F := −U (V T V )−1 V T (4.1.4)

Simple manipulations yield

(A + BF ) V = V X

hence, by Property 3.2.1, V is an (A +BF )-invariant.
If. Suppose that (4.1.1) does not hold: then, there exists at least one vector

x0 ∈V such that A x0 cannot be expressed as the sum of two vectors x′
0 ∈V and

B u0 ∈B, hence no F exists such that (A +BF )x0 ∈V. �

Theorem 4.1.3 A subspace S ⊆X is an (A, C)-conditioned invariant if and
only if there exists at least one matrix G such that (A +GC)S ⊆S.
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Proof. The statement is derived, by duality, from Theorem 4.1.2. In fact, by
virtue of Property 4.1.1, the defining relation (4.1.2) is equivalent to

AT S⊥ ⊆ S⊥ + C⊥ = S⊥ + imCT

By Theorem 4.1.2 this is a necessary and sufficient condition for the exis-
tence of a matrix G such that (AT + CT GT )S⊥ ⊆S⊥ or, by Property 3.1.2,
(A +GC)S ⊆S. �

The question now arises whether two or more controlled invariants can be
transformed into simple invariants by the same state feedback. An answer is
contained in the following property.

Property 4.1.5 Let V1,V2 be (A,B)-controlled invariants. There exists a ma-
trix F such that (A +BF )Vi ⊆Vi (i =1, 2) if and only if V :=V1 ∩V2 is an
(A,B)-controlled invariant.

Proof. If. This part can be proved in the same way as the only if part of
Theorem 4.1.2. Let V1 be a basis matrix of V, [V1 V2] a basis matrix of V1, [V1 V3]
a basis matrix of V2, so that [V1 V2 V3] is a basis matrix of V1 +V2. Denote
by U1, U2, U3 the corresponding matrices in relation (4.1.3). It is easy to check
that matrix F defined as in (4.1.4) with U := [U1 U2 U3] and V := [V1 V2 V3], is
such that (A +BF )Vi ⊆Vi (i =1, 2) and (A +BF )V ⊆V.

Only if. If V is not an (A,B)-controlled invariant, owing to Theorem 4.1.2 no
F exists such that (A +BF )V ⊆V, hence (A +BF )Vi ⊆Vi (i =1, 2), provided
the intersection of two invariants is an invariant. �

This result is dualized as follows.

Property 4.1.6 Let S1,S2 be two (A, C)-conditioned invariants. There exists
a matrix G such that (A + GC)Si ⊆Si (i =1, 2) if and only if S :=S1 +S2 is an
(A, C)-conditioned invariant.

4.1.1 Some Specific Computational Algorithms

Subspaces minS(A, C,D) and maxV(A,B, E), which are respectively the infi-
mum of the semilattice of all (A, C)-conditioned invariants containing a given
subspace D and the supremum of the semilattice of all (A,B)-controlled in-
variants contained in a given subspace E , can be determined with algorithms
that extend those presented for simple invariants in Subsection 3.2.2. The basic
algorithm is the following.

Algorithm 4.1.1 (minimal (A, kerC)-conditioned invariant containing imD)
Subspace minS(A, C,D) coincides with the last term of the sequence

Z0 = D (4.1.5)

Zi = D + A (Zi−1 ∩ C) (i = 1, . . . , k) (4.1.6)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.
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Proof. First, note that Zi ⊇Zi−1 (i =1, . . . , k). In fact, instead of (4.1.6),
consider the recursion expression

Z ′
i := Z ′

i−1 + A (Z ′
i−1 ∩ C) (i =1, . . . , k)

with Z ′
0 :=D, which defines a sequence such that Z ′

i ⊇Z ′
i−1 (i =1, . . . , k),

hence A (Z ′
i ∩C)⊇A (Z ′

i−1 ∩C) (i =1, . . . , k). This sequence is equal
to (4.1.6): by induction, note that if Z ′

j =Zj (j =1, . . . , i− 1), also
Z ′

i =D+A (Zi−2 ∩C) + A (Zi−1 ∩C) =Zi (since A (Zi−2 ∩C)⊆A (Zi−1 ∩C) ).
If Zk+1 =Zk, also Zj =Zk for all j > k + 1 and Zk is an (A, C)-conditioned

invariant containing D. In fact, in such a case Zk =D+A (Zk ∩C), hence
D⊆Zk, A (Zk ∩C)⊆Zk. Since two subsequent subspaces are equal if and only
if they have equal dimensions and the dimension of the first subspace is at least
one, an (A, C)-conditioned invariant is obtained in at most n− 1 steps.

The last subspace of the sequence is the minimal (A, C)-conditioned invariant
containing C, as can be again proved by induction. Let S be another (A, C)-
conditioned invariant containing D: if S ⊇Zi−1, it follows that S ⊇Zi. In fact,
S ⊇D+A (S ∩ C)⊇D+A (Zi−1 ∩C) =Zi. �

From Property 4.1.1 and from

E ⊇ V ⇔ E⊥ ⊆ V⊥ (4.1.7)

one can derive

maxV(A,B, E) = (minS(AT ,B⊥, E⊥))⊥ (4.1.8)

which brings determination of maxV(A,B, E) back to that of minS(A, C,D).
From relation (4.1.8) it is possible to derive also the following algorithm,

dual of Algorithm 4.1.1.

Algorithm 4.1.2 (maximal (A, imB)-controlled invariant contained in kerE)
Subspace maxV(A,B, E) coincides with the last term of the sequence

Z0 = E (4.1.9)

Zi = E ∩ A−1 (Zi−1 + B) (i =1, . . . , k) (4.1.10)

where the value of k≤n− 1 is determined by the condition Zk+1 =Zk.

Proof. Sequence (4.1.9, 4.1.10) is equivalent to

Z⊥
0 = E⊥

Z⊥
i = (E ∩ A−1 (Zi−1 + B))⊥ = E⊥ + AT (Z⊥

i−1 ∩ B⊥)

which, owing to Algorithm 4.1.1, converges to the orthogonal complement of
minS(AT ,B⊥, E⊥), which is maxV(A,B, E) by (4.1.8). �
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Algorithm 4.1.3 (computation of the state feedback matrix F ) Let V
be an (A,B)-controlled invariant. We search for a matrix F such that
(A +BF )V ⊆V. The rank of B is assumed to be maximal: if not, delete lin-
early dependent columns to obtain matrix B1, then derive F by adding to the
corresponding F1 an equal number of zero rows in the same places as the deleted
columns of B. Let X1, X2, X3, X4 be basis matrices of subspaces B∩V, V, B, X ;
in particular, we can assume X4 := In. Orthonormalize matrix [X1 X2 X3 X4]
(by the Gram-Schmidt process provided with a linear dependency test) and de-
note by [M1 M2 M3 M4] the orthonormal matrix obtained, in which the sub-
matrices shown are not necessarily all present. The coordinate transformation
T := [B M2 M4] yields

A′ := T−1A T =





A′
11 A′

12 A′
13

A′
21 A′

22 A′
23

O O A′
33



 B′ := T−1B =





Ip

O
O



 (4.1.11)

The state feedback matrix

F ′ := [−A′
11 −A′

12 O ] (4.1.12)

is such that A′ + B′F ′ transforms, in the new basis, vectors of B+V into vectors
of V, hence fits our needs. The corresponding matrix in the old reference is
F :=F ′T−1. Note that kerF = (B+V)⊥.

4.1.2 Self-Bounded Controlled Invariants and their Du-

als

Self-bounded controlled invariants are a particular class of controlled invariants
that has interesting properties, the most important of which is to be a lattice
instead of a semilattice, hence to admit both a supremum and an infimum. They
are introduced through the following argument: given any subspace E ⊆X ,
define

V∗ := maxV(A,B, E) (4.1.13)

(the maximal (A,B)-controlled invariant contained in E): it is well known
(Theorem 4.1.1) that a trajectory of the pair (A, B) can be controlled on E
if and only if its initial state belongs to a controlled invariant contained in E ,
hence in V∗. In general, for any initial state belonging to a controlled invariant
V, it is possible not only to continuously maintain the state on V by means of a
suitable control action, but also to leave V with a trajectory on E (hence on V∗)
and to pass to some other controlled invariant contained in E (hence in V∗). On
the other hand there exist controlled invariants that are closed with respect to
the control, i.e., that cannot be exited by means of any trajectory on E : these
will be called self-bounded with respect to E .

The following lemma will be used to introduce a characterizing property of
self-bounded controlled invariants.
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Lemma 4.1.1 Consider three subspaces X ,Y ,Z such that X ⊆Y +Z. For
any vector x0 ∈X all possible decompositions x0 = y + z, y ∈Y, z ∈Z, are ob-
tainable from any one of them, say x0 = y0 + z0, by summing to y0 and subtract-
ing from z0 all vectors of Y ∩Z.

Proof. Let x0 = y1 + z1 be another decomposition of x0: by difference,
0 = (y0 − y1) + (z0 − z1), i.e. (y0 − y1) = − (z0 − z1): since in this equality the
first vector belongs to Y and the second to Z, both must belong to Y ∩Z. On
the other hand, if a vector belonging to Y ∩Z is summed to y0 and subtracted
from z0, two vectors belonging respectively to Y and Z are obtained whose sum
is x0: a decomposition of x0 is thus derived. �

Definition 4.1.3 (self-bounded controlled invariant) Let V be an (A,B)-
controlled invariant contained in a subspace E ⊆X : V is said to be self-bounded
with respect to E if

V∗ ∩ B ⊆ V (4.1.14)

where V∗ is the subspace defined by (4.1.13).

It is easily shown that the above definition implies that V is closed with respect
to trajectories lying on E . Let F be a matrix such that (A + BF )V ⊆V: given
any state x∈V, owing to Lemma 4.1.1 the set of all admissible velocities on V∗

is the linear variety

T (x) = (A + B F ) x + V∗ ∩ B
On the other hand the fundamental lemma implies that trajectories belonging
to E , hence to V∗, cannot leave V if and only if

T (x) ⊆ V ∀x ∈ V

hence if and only if V∗ ∩B⊆V.
To show that the set of all controlled invariants self-bounded with respect

to E is a lattice, let us first introduce the following characterizing properties.

Property 4.1.7 Let F be a matrix such that (A +BF )V∗⊆V∗. Any controlled
invariant V self-bounded with respect to E satisfies (A +BF )V ⊆V.

Proof. By definition V satisfies the inclusions

AV ⊆ V + B , V ⊆ V∗ , V ⊇ V∗ ∩ B (4.1.15)

and F is such that

(A + B F )V∗ ⊆ V∗ (4.1.16)

The second of (4.1.15) and (4.1.16) lead to

(A + B F )V ⊆ V∗ (4.1.17)
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while the trivial inclusion BFV ⊆B and the first of (4.1.15) imply

(A + B F )V ⊆ V + B (4.1.18)

Intersecting both members of (4.1.17, 4.1.18) finally yields

(A + B F )V ⊆ (V + B) ∩ V∗ = V + B ∩ V∗ = V �

Property 4.1.8 The intersection of any two (A,B)-controlled invariants self-
bounded with respect to E is an (A,B)-controlled invariant self-bounded with
respect to E .

Proof. By virtue of Property 4.1.7 above, a matrix F such that
(A +BF )V∗⊆V∗ also satisfies (A +BF )Vi ⊆Vi (i = 1, 2). Define V :=V1 ∩V2:
then (A +BF )V ⊆V (since the intersection of two (A +BF )-invariants is an
(A +BF )-invariant). Therefore by Theorem 4.1.2, V is an (A,B)-controlled
invariant. V is self-bounded with respect to E since from Vi ⊆E , Vi ⊇V∗ ∩B
(i = 1, 2) it follows that V ⊆E , V ⊇V∗ ∩B. �

Owing to this property, the set of all (A,B)-controlled invariants self-
bounded with respect to E is closed with respect to the intersection. Being
closed also with respect to the sum by Property 4.1.1, it is a lattice (nondis-
tributive) with respect to ⊆, +,∩; it will be denoted by Φ(B,E). Its definition
formula is

Φ(B,E) := {V : AV ⊆ V + B , V ⊆ E , V ⊇ V∗ ∩ B} (4.1.19)

The supremum of Φ(B,E) is V∗, the maximal (A,B)-controlled invariant contained
in E , which is clearly self-bounded (it contains V∗ ∩B), while its infimum will
be determined below.

The following theorem defines the infimum of Φ(B,E). It is remarkable that
it is expressed as the intersection of the supremum, which can be determined
by means of Algorithm 4.1.2, with the infimum of a particular semilattice of
conditioned invariants, which can be determined by means of Algorithm 4.1.1.
Since these algorithms are equivalent to each other by duality, in practice just
one computational procedure is sufficient to determine both limits of Φ(B,E).

Theorem 4.1.4 The infimum of Φ(B,E) is2

V∗ ∩ S∗
2 with S∗

2 := minS(A, E ,B) (4.1.20)

Proof. Let
S̄∗

2 := minS(A,V∗,B) (4.1.21)

The proof will be developed in three steps:

2 Note the symmetry in (4.1.20), which defines the reachable set on E as the intersection of
the maximal (A,B)-controlled invariant contained in E with the minimal (A, E)-conditioned
invariant containing B. Relation (4.1.20) was first derived by Morse [33].
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1. Any element of Φ(B,E) contains V∗ ∩ S̄∗
2 ;

2. V∗ ∩ S̄∗
2 is an element of Φ(B,E) ;

3. V∗ ∩ S̄∗
2 is equal to V∗ ∩S∗

2 .

Step 1. Consider the sequence that defines S̄∗
2 :

Z ′
0 = B

Z ′
i = B + A (Z ′

i−1 ∩ V∗) (i =1, . . .)

Let V be a generic element of Φ(B,E), so that

AV ⊆ V + B , V ⊇ V∗ ∩ B

We proceed by induction: clearly

Z ′
0 ∩ V∗ ⊆ V

and from
Z ′

i−1 ∩ V∗ ⊆ V
it follows that

A (Z ′
i−1 ∩ V∗) ⊆ V + B (4.1.22)

since V is an (A,B)-controlled invariant. Summing B to both members of
(4.1.22) yields

B + A (Z ′
i−1 ∩ V∗) ⊆ V + B

and, by intersection with V∗,

Z ′
i ∩ V∗ ⊆ V

which completes the induction argument and the proof of step 1.

Step 2. From

AV∗ ⊆ V∗ + B
A (S̄∗

2 ∩ V∗) ⊆ S̄∗
2

which simply express V∗ to be an (A,B)-controlled invariant and S̄∗
2 to be an

(A,V∗)-conditioned invariant, by intersection it follows that

A (S̄∗
2 ∩ V∗) ⊆ A S̄∗

2 ∩ AV∗ ⊆ S̄∗
2 ∩ (V∗ + B) = S̄∗

2 ∩ V∗ + B

thus S̄∗
2 ∩V∗ is an (A,B)-controlled invariant. It is self-bounded, since S̄∗

2 ⊇ B,
hence V∗ ∩ S̄∗

2 ⊇V∗ ∩B.

Step 3. It will be proved that the following holds:

S̄∗
2 = S∗

2 ∩ V∗ + B (4.1.23)
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from which our thesis V∗ ∩ S̄∗
2 =V∗ ∩S∗

2 follows.
Equality (4.1.23) can be proved by considering the sequences

Z ′
0 = B

Z ′
i = B + A (Z ′

i−1 ∩ V∗)

Z0 = B
Zi = B + A (Zi−1 ∩ E) (i =1, . . . )

which converge respectively to S̄∗
2 and to S∗

2 . It can be shown by induction that

Z ′
i = Zi ∩ (V∗ + B) = Zi ∩ V∗ + B (since B⊆Zi)

if
Z ′

i−1 = Zi−1 ∩ (V∗ + B)

In fact

Z ′
i = B + A (Zi−1 ∩ (V∗ +B) ∩ V∗) = B + A (Zi−1 ∩ V∗)

= B + A (Zi−1 ∩ (E ∩ A−1 (V∗ + B))) = B + A (Zi−1 ∩ E) ∩ (V∗ + B)

= Zi ∩ (V∗ + B)

In previous manipulations relation V∗ = E ∩A−1 (V∗ +B) (which expresses the
limit of the sequence of Algorithm 4.1.2) and the identity A(X ∩A−1 Y) =AX∩
Y have been used. Since

Z ′
0 = Z0 ∩ (V∗ + B)

the proof by induction of (4.1.23) is complete. �

The following corollary, whose proof is contained in the argument just pre-
sented for Theorem 4.1.4, provides an alternative expression for the infimum of
Φ(B,E).

Corollary 4.1.1 The infimum of Φ(B,E) is V∗ ∩ S̄∗
2 , with V∗ and S̄∗

2 defined by
(4.1.13, 4.1.21).

The preceding results will be extended to conditioned invariants by duality.
The duals of the self-bounded controlled invariants are the self-hidden condi-
tioned invariants: their characterizing property is the possibility to become all
unobservable by means of an output injection of the type shown in Fig. 3.8(b).

In the following, the subspace

S∗ := minS(A, C,D) (4.1.24)

will be referred to frequently. According to our standard notation, it represents
the minimal (A, C)-conditioned invariant containing D.

Definition 4.1.4 (self-hidden conditioned invariant) Let S be an (A, C)-
conditioned invariant containing a subspace D⊆X : S is said to be self-hidden
with respect to D if

S ⊆ S∗ + C (4.1.25)

where S∗ is the subspace defined by (4.1.24).
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Property 4.1.9 Let G be a matrix such that (A +GC)S∗⊆S∗. Any condi-
tioned invariant S self-hidden with respect to D satisfies (A +GC)S ⊆S.

Property 4.1.10 The sum of any two (A, C)-conditioned invariants self-hidden
with respect to D is an (A, C)-conditioned invariant self-hidden with respect to D.

Refer now to the set

Ψ(C,D) := {S : A (S ∩ C) ⊆ S , S ⊇ D , S ⊆ S∗ + C} (4.1.26)

which is the lattice of all (A, C)-conditioned invariants self-hidden with respect
to D. Ψ(C,D) is a nondistributive lattice with respect to ⊆, +,∩ whose infimum
is S∗. Its supremum is defined by the following theorem, dual of Theorem 4.1.4.

Theorem 4.1.5 The supremum of Ψ(C,D) is

S∗ + V∗
2 with V∗

2 := maxV(A,D, C) (4.1.27)

As for the infimum of the lattice of self-bounded controlled invariants, it is also
possible to give an alternative expression for the supremum of that of self-hidden
conditioned invariants. It is stated by the following corollary, dual of Corollary
4.1.1.

Corollary 4.1.2 The supremum of Ψ(C,D) is S∗ +V∗
2 , with

V∗
2 := maxV(A,S∗, C) (4.1.28)

4.1.3 Constrained Controllability and Observability

Controlled invariants are subspaces such that, from any initial state belonging
to them, at least one state trajectory can be maintained on them by means of a
suitable control action. In general, however, it is not possible to reach any point
of a controlled invariant from any other point (in particular, from the origin)
by a trajectory completely belonging to it. In other words, given a subspace
E ⊆ X , by leaving the origin with trajectories belonging to E , hence to V∗ (the
maximal (A,B)-controlled invariant contained in E), it is not possible to reach
any point of V∗, but only a subspace of V∗, which is called the reachable set on
E (or on V∗) and denoted by RE (or RV∗). The following theorem holds.

Theorem 4.1.6 RE , the reachable set on E , coincides with the minimal (A,B)-
controlled invariant self-bounded with respect to E .

Proof. Consider a state feedback F such that (A +BF )V∗⊆V∗. The set of
all admissible state velocities at a generic state x∈V∗ is

T (x) = (A + B F ) x + V∗ ∩ B
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and does not depend on F . In fact, for a different choice of F , denoted here by
F1, it becomes

T1(x) = (A + B F1) x + V∗ ∩ B
with both (A + BF )x and (A +BF1)x belonging to V∗ ; by differ-
ence, B (F −F1)x∈V∗. But, because of the premultiplication by B,
B (F −F1)x∈V∗ ∩B, so that T (x) =T1(x). Owing to Theorem 3.3.1 it follows
that

RE = RV∗ = minJ (A +BF,V∗ ∩B) (4.1.29)

which together with Theorem 4.1.2 and Definition 4.1.3 prove the state-
ment. �

A more elegant expression for RE , not depending on matrix F , which is not
unique, is

RE = RV∗ = V∗ ∩ S∗
2 with S∗

2 := minS(A, E ,B) (4.1.30)

which directly derives from Theorem 4.1.4.
By duality, given a subspace D⊆X , it is possible to define the unobservable

set containing D, in symbols QD, as the maximum unobservability subspace
with a dynamic pole-assignable observer in the presence of an unknown forcing
action belonging to D (see Section 4.2 for details on this type of observer). The
following is the dual of Theorem 4.1.6.

Theorem 4.1.7 QD, the unobservable set containing D, coincides with the
maximal (A, C)-conditioned invariant self-hidden with respect to D. Let S∗

be the minimal (A, C)-conditioned invariant containing D. The following two
expressions for QD are the duals of (4.1.29, 4.1.30):

QD = QS∗ = max I(A + GC,S∗ + C) (4.1.31)

where G denotes any matrix such that (A +GC)S∗ ⊆S∗, and

QD = QS∗ = S∗ + V∗
2 with V∗

2 := maxV(A,D, C) (4.1.32)

4.1.4 Stabilizability and Complementability

The concepts of internal and external stabilizability and complementability
of A-invariants, introduced and discussed in Subsection 3.2.5 referring to the
asymptotic behavior of trajectories of linear free dynamic systems, will be ex-
tended now to controlled and conditioned invariants. In the particular case of
self-bounded controlled and self-hidden conditioned invariants the extension is
immediate; in fact, it will be shown that in this case a proper similarity trans-
formation reduces controlled and conditioned invariants to simple invariants.

Definition 4.1.5 (internally stabilizable controlled invariant) An (A,B)-
controlled invariant V is said to be internally stabilizable if for any x(0)∈V
there exists at least one admissible trajectory of the pair (A, B) belonging to V
and converging to the origin.
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Because of linearity, the sum of any two internally stabilizable controlled in-
variants is clearly internally stabilizable. Therefore, the set of all internally sta-
bilizable controlled invariants, possibly constrained to be contained in a given
subspace E and to contain a given subspace D⊆V∗, is an upper semilattice
with respect to ⊆, + .

As in the case of simple invariants, the internal stabilizability of a controlled
invariant V will be checked by means of a simple change of basis. Consider RV ,
the reachable set on V, which can be expressed as RV =V ∩S ′, with

S ′ := minS(A,V,B) (4.1.33)

and perform suitable changes of basis in the state and input spaces: define the
similarity transformations T := [T1 T2 T3 T4], with imT1 =RV , im[T1 T2] =V,
im[T1 T3] =S ′, and U := [U1 U2 U3], with im(BU1) = RV ∩B = V ∩B,
im(BU2) = S ′ ∩B, im(BU) =B. Matrices A′ := T−1A T and B′ := T−1B U ,
corresponding to A and B in the new bases and accordingly partitioned, have
the structures

A′ =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

A′
31 A′

32 A′
33 A′

34

O O A′
43 A′

44









B′ =









B′
11 O B′

13

O O O
O B′

32 B′
33

O O O









(4.1.34)

The structure of B′ depends on B being contained in S ′. The first submatrix
in the second row of A′ is zero because of the particular structure of B′ and
because RV is an (A +BF )-invariant for all F such that (A +BF )V ⊆V. Also
the zero submatrices in the fourth row are due to the invariance of V with
respect to A +BF .

Let r := dimRV , k := dimV. Denote by z :=T−1x and α :=U−1u the state
and the control in the new bases, accordingly partitioned. For all initial states
on V (so that z3(0) = z4(0) = 0), at every instant of time it is possible to maintain
ż3(t) = ż4(t) = 0 by means of a suitable control action α2(t). Different choices
of α2(t) clearly do not influence the set of all admissible velocities on V, which
can be influenced only by α1(t). Since (A′, B′) is controllable, it is possible to
obtain a trajectory on V converging to the origin if and only if A′

22 is stable.
The k− r eigenvalues of this matrix do not depend on the particular basis since
both stability and controllability are coordinate-free properties. They will be
called the unassignable internal eigenvalues of V and clearly coincide with the
elements of σ((A +BF )|V/RV

), where F is any matrix such that (A + BF )V ⊆V.
This leads to the following property.

Property 4.1.11 A controlled invariant V is internally stabilizable if and only
if all its unassignable internal eigenvalues are stable.

In the literature, internal stability of controlled invariants is often defined
referring to state feedback. The following property makes the two definitions
equivalent.
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Property 4.1.12 A controlled invariant V is internally stabilizable if and
only if there exists at least one real matrix F such that (A +BF )V ⊆V with
(A +BF )|V stable.

Proof. Consider a matrix F , expressed in the same basis as (4.1.34) and
accordingly partitioned, with the structure

F ′ := U−1F T =





F ′
11 O O O

F ′
21 F ′

22 F ′
23 F ′

24

F ′
31 F ′

32 F ′
33 F ′

34



 (4.1.35)

First, define F ′
ij (i =2, 3; j = 1, 2) such that the first two elements of the

third row in A′ +B′F ′ are nulled. Since (A′
11, B

′
11) is controllable and con-

trollability is not influenced by state feedback, F ′
11 can be chosen such that

(A′
11 +B′

13F
′
31) +B′

11F
′
11 is stable (with arbitrary eigenvalues). The submatri-

ces F ′
ij (i =2, 3; j = 3, 4) have not been used. However, if the pair (A, B) is

controllable they can be defined in such a way the submatrix corresponding
to the third and fourth row and column of A′ + B′F ′ is stable (with arbitrary
eigenvalues) – see Property 4.1.13 below. The F ′ obtained is such that A′ +B′F ′

is stable if and only if A′
22 is stable. �

A similar approach is used for external stabilizability of controlled invariants.

Definition 4.1.6 (externally stabilizable controlled invariant) An (A,B)-
controlled invariant V is said to be externally stabilizable if for any x(0)∈X
there exists at least one admissible trajectory of the pair (A, B) converging to V.

Property 4.1.13 Denote with R the reachable set of the pair (A, B). A con-
trolled invariant V is externally stabilizable if and only if subspace V +R, which
is an A-invariant, is externally stable, i.e., if and only if A|X/(V+R) is stable.

Proof. Only if. Perform the changes of basis in the state and input spaces
corresponding to the similarity transformations T := [T1 T2 T3], with imT1 =V,
im[T1 T2] =V +R, and U := [U1 U2], with im(BU1) =V ∩B, im(BU) =B.

Matrices A′ :=T−1A T and B′ := T−1B U can be accordingly partitioned as

A′ =





A′
11 A′

12 A′
13

A′
21 A′

22 A′
23

O O A′
33



 B′ =





B′
11 B′

12

O B′
22

O O



 (4.1.36)

The structure of B′ depends on B being contained in R, while the first two
submatrices in the third row of A′ are zero because R is an A-invariant. If A′

33

were not stable, there would be noncontrollable trajectories external to V and
not converging to V.

If. Consider a state feedback matrix F such that

F ′ := U−1F T =

[

O O O
F ′

21 F ′
22 O

]

(4.1.37)
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It is possible to choose F ′
21 such that B′

22F
′
21 = − A′

21: since this particular as-
sumption, like any state feedback, does not influence controllability, the pair
(A′

22, B
′
22) must be controllable, so that A′

22 + B′
22F

′
22 has the eigenvalues com-

pletely assignable by a suitable choice of F ′
22. �

It follows that the sum of two controlled invariants is externally stabilizable if
any one of them is. The preceding argument also proves the following property.

Property 4.1.14 A controlled invariant V is externally stabilizable if and
only if there exists at least one real matrix F such that (A +BF )V ⊆V with
(A +BF )|X/V stable.

Since the changes of basis introduced in the proofs of Properties 4.1.12 and
4.1.13 are congruent (in the sense that they could coexist in a finer partition of
the basis vectors) and correspond to the same partition of the forcing action,
it can easily be checked that internal and external stabilization of a controlled
invariant are independent of each other. Thus, the following statement holds.

Property 4.1.15 A controlled invariant V is both internally and externally
stabilizable if and only if there exists at least one real matrix F such that
(A +BF )V ⊆V with A +BF stable.

External stabilizability of controlled invariants is often tacitly assumed, it
being assured under general conditions on the controlled system referred to.
Regarding this, consider the following property.

Property 4.1.16 If the pair (A, B) is stabilizable, all the (A,B)-controlled
invariants are externally stabilizable.

Proof. We recall that (A, B) is stabilizable if R, which is an A-invariant, is
externally stable. Let V be any (A,B)-controlled invariant: all the more reason
for V +R, which is an A-invariant containing R, being externally stable. �

All the previous definitions and properties can be extended to conditioned
invariants by duality. For the sake of simplicity, instead of Definitions 4.1.5 and
4.1.6, which refer to state trajectories and are not directly dualizable, we shall
assume as definitions the duals of Properties 4.1.12 and 4.1.13.

Definition 4.1.7 (externally stabilizable conditioned invariant) A conditioned
invariant S is said to be externally stabilizable if there exists at least one real
matrix G such that (A +GC)S ⊆S with (A + GC)|X/S stable.

The intersection of any two externally stabilizable conditioned invariants is
an externally stabilizable conditioned invariant. Therefore, the set of all exter-
nally stabilizable conditioned invariants, possibly constrained to be contained in
a given subspace E ⊇S∗ and to contain a given subspace D, is a lower semilattice
with respect to ⊆,∩.
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Any (A, C)-conditioned invariant S is externally stabilizable if and only if
S⊥ is internally stabilizable as an (AT , C⊥)-controlled invariant.

The unassignable external eigenvalues of S can be defined by referring to a
change of basis for matrices (A, C) dual to (4.1.34). They are the elements of
σ((A +GC)|QS/S), with G being any matrix such that (A +GC)S ⊆S and coin-
cide with the unassignable internal eigenvalues of S⊥ as an (AT , C⊥)-controlled
invariant. A conditioned invariant is externally stabilizable if and only if all its
unassignable external eigenvalues are stable.

Definition 4.1.8 (internally stabilizable conditioned invariant) A conditioned
invariant S is said to be internally stabilizable if there exists at least one real
matrix G such that (A +GC)S ⊆S with (A + GC)|S stable.

Property 4.1.17 Denote with Q the unobservable set of the pair (A, C). A
conditioned invariant S is internally stabilizable if and only if subspace S ∩Q,
which is an A-invariant, is internally stable, i.e., if and only if A|S∩Q is stable.

It follows that the intersection of two conditioned invariants is internally
stabilizable if any one of them is.

Property 4.1.18 A conditioned invariant S is both internally and externally
stabilizable if and only if there exists at least one real matrix G such that
(A +GC)S ⊆S with A +GC stable.

Property 4.1.19 If the pair (A, C) is detectable, all the (A, C)-conditioned
invariants are internally stabilizable.

Let V be an (A,B)-controlled invariant. Fig. 4.2(a) specifies the eigenval-
ues assignability of A +BF subject to the constraint (A +BF )V ⊆V. For in-
stance, spectrum σ((A +BF )|X/(V+R)) is fixed, while σ((A +BF )|(V+R)/V) is
assignable, and so on. Fig. 4.2(b) concerns the similar diagram for matrix
A +GC such that (A +GC)S ⊆S, where S is an (A, C)-conditioned invariant.

Self-bounded controlled and self-hidden conditioned invariants have partic-
ular stabilizability features. Refer to the triple (A, B, C) and consider the fun-
damental lattices

Φ(B,C) := {V : AV ⊆ V + B , V ⊆ C , V ⊇ V∗
0 ∩ B} (4.1.38)

Ψ(C,B) := {S : A (S ∩ C) ⊆ S , S ⊇ B , S ⊆ S∗
0 + C} (4.1.39)

with

V∗
0 := maxV(A,B, C) (4.1.40)

S∗
0 := minS(A, C,B) (4.1.41)

Structure and stabilizability properties of these lattices will be pointed
out through a change of basis. Consider the similarity transformation
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XX

V + R QS

V S

RV S ∩Q

{0}{0}

free

free

free

free

free

fixed

fixed

fixed

(a) (b)

Figure 4.2. Assignability of the spectrum of A+ BF in

connection with the controlled invariant V and of A+ GC

in connection with the conditioned invariant S.

T := [T1 T2 T3 T4], with imT1 =V∗
0 ∩S∗

0 , im[T1 T2] =V∗
0 , im[T1 T3] =S∗

0 . Matrices
A′ := T−1A T , B′ := T−1B and C ′ :=C T have the structures

A′ =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

A′
31 A′

32 A′
33 A′

34

O O A′
43 A′

44









B′ =









B′
1

O
B′

3

O









C ′ := [O O C ′
3 C ′

4 ]

(4.1.42)

The zero submatrices in B′ and C ′ depend on S∗
0 containing B, and V∗

0 being
contained in C, while the zero submatrix in the second row of A′ is due to the
particular structure of B′ and to V∗

0 ∩S∗
0 being a controlled invariant (it is the

reachable set on V∗
0 ), those in the fourth row to the whole V∗

0 being a controlled
invariant.

Furthermore, V∗
0 being a controlled invariant, submatrices A′

31 and A′
32

can be zeroed by means of a suitable state feedback F ′; similarly, S∗
0 being

a conditioned invariant, A′
23 and A′

43 can be zeroed by means of a suitable
output injection G′. Clearly these feedbacks cause V∗

0 to be an (A +BF )-
invariant, with F := F ′T and S∗

0 an (A + GC)-invariant, with G :=T−1G′. It is
known (Properties 4.1.7 and 4.1.9) that these feedbacks transform any element
of Φ(B,C) into an (A + BF )-invariant and any element of Ψ(C,B) into an (A +GC)-
invariant.
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The unassignable internal eigenvalues of V∗
0 are those of A′

22: since they
clearly coincide with the unassignable external eigenvalues of S∗

0 , the following
property holds.

Property 4.1.20 V∗
0 is internally stabilizable if and only if S∗

0 is externally
stabilizable.

The preceding argument reveals the existence of two interesting one-to-one
correspondences between the elements of the lattices Φ(B,C) and Ψ(C,B) and the in-
variants of the linear transformation corresponding to A′

22 (which, as remarked,
expresses (A + BF )|V∗

0/(V∗
0∩S

∗
0 ) or (A +GC)|(V∗

0+S∗
0 )/S∗

0
). More precisely, the two

one-to-one correspondences are set as follows: let r := dim(V∗
0 ∩S∗

0 ), k := dimS∗
0 ,

and X ′ be a basis matrix of a generic A′
22-invariant. The subspaces

V := im
(

T









Ir O
O X ′

O O
O O









)

S := im
(

T









Ir O O
O X ′ O
O O Ik−r

O O O









)

(4.1.43)

are generic elements of Φ(B, C) and Ψ (C,B) respectively.
We shall now consider the extension of the concept of complementability,

introduced for simple invariants in (Subsection 3.2.5), to controlled and condi-
tioned invariants.

Definition 4.1.9 (complementable controlled invariant) Let V, V1, and V2 be
three controlled invariants such that V1 ⊆V ⊆V2. V is said to be complementable
with respect to (V1,V2) if there exists at least one controlled invariant Vc such
that

V ∩ Vc = V1

V + Vc = V2

Definition 4.1.10 (complementable conditioned invariant) Let S, S1, and S2

be three conditioned invariants such that S1 ⊆S ⊆S2. S is said to be comple-
mentable with respect to (S1,S2) if there exists at least one conditioned invariant
Sc such that

S ∩ Sc = S1

S + Sc = S2

In the particular case of self-bounded controlled and self-hidden conditioned
invariants, the complementability condition can still be checked by means of
the Sylvester equation. In fact, they correspond to simple A′

22-invariants in
structure (4.1.42).

The Sylvester equation can also be used in the general case. It is worth
noting that the complementability condition can be influenced by the feedback
matrices which transform controlled and conditioned invariants into simple
(A +BF )-invariants or (A +GC)-invariants.
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The one-to-one correspondences between the elements of suitable lattices
of self-bounded controlled and self-hidden conditioned invariants and the in-
variants of related linear transformations are the basis to derive constructive
solutions in the framework of the geometric approach, for the most important
compensator and regulator synthesis problems.

4.2 Disturbance Localization and Unknown-

input State Estimation

The disturbance localization problem is one of the first examples of synthesis
through the geometric approach3. It is presented in this chapter, which concerns
analysis problems, because it is very elementary and completes, by introducing
a well-defined structural constraint, the pole assignability problem with state
feedback, previously considered. Furthermore, it can be considered as a basic
preliminary approach to numerous more sophisticated regulation problems.

u
ẋ = Ax +

B u + D d

d
x

E
e

F

Figure 4.3. The unaccessible disturbance localization problem.

Consider the system

ẋ(t) = A x(t) + B u(t) + D d(t) (4.2.1)

e(t) = E x(t) (4.2.2)

where u denotes the manipulable input, d the nonmanipulable input, which at
the moment is assumed to be also completely unaccessible for measurement,
and set the problem of realizing, if possible, a state feedback of the type shown
in Fig. 4.3 such that, starting at the zero state, e(·) = 0 results for all admissible
d(·). This is called the unaccessible disturbance localization problem. The system
with state feedback is described by

ẋ(t) = (A + B F ) x(t) + D d(t) (4.2.3)

e(t) = E x(t) , (4.2.4)

and presents the requested behavior if and only if its reachable set by d, i.e. the
minimal (A +B F )-invariant containing D := im D, is contained in E := ker E.
Since, owing to Theorem 4.1.2, any (A +B F )-invariant is an (A,B)-controlled

3 See Basile and Marro [6], and Wonham and Morse [44].
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invariant, the unaccessible disturbance localization problem admits a solution
if and only if the following structural condition holds:

D ⊆ V∗ (4.2.5)

where V∗ := max V(A,B, E) is the same as defined in (4.1.13).
Checking disturbance localization feasibility for a system whose matrices

A, B, D, E are known, reduces to few subspace computations: determination of
V∗ by means of Algorithm 4.1.2 and checking (4.2.5) by using the algorithms
described at the end of Subsection 3.1.1 and implemented in Appendix B.
For instance, a simple dimensionality check on basis matrices can prove the
equalities V∗ +D=V∗ and V∗ ∩D=D, clearly equivalent to (4.2.5). A matrix
F which makes V∗ to be an (A +BF )-invariant can be determined by means
of the algorithm described in Subsection 4.1.1. On the other hand it is worth
noting that:

1. state-to-input feedback in practice is not feasible since in most cases state
is not completely accessible for measurement;

2. for the problem to be technically sound it is also necessary to impose the
stability requirement, i.e. that matrix F , besides disturbance localization,
achieves stability of the overall system matrix A +BF .

Point 1 will be overcome in the next chapter, where the more general prob-
lem of disturbance localization by dynamic output-to-input feedback will be
considered. Point 2 leads to the unaccessible disturbance localization problem
with stability , which will be solved later.

+

+

u
ẋ = Ax +

B u + D d

d
x

E
e

F

S

Figure 4.4. The accessible disturbance localization problem.

We now consider the disturbance localization problem with d accessible:
our aim is to make e insensitive to disturbance d by using a linear algebraic
regulator that determines control u as a function of state x and disturbance d
itself, as shown in Fig. 4.4. In this case (4.2.5) is replaced by the less restrictive
structural condition

D ⊆ V∗ + B (4.2.6)
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which implies the existence of an (A,B)-controlled invariant V contained in E
and such that D⊆V +B (nonconstructive necessary and sufficient structural
condition). Let V be a basis matrix of V ; the linear algebraic equation

V α − B u = D d (4.2.7)

admits at least one solution in α, u for all d. Express a solution with respect
to u as u =S d : it is clear that the total forcing action due to the disturbance,
which is (D + BS)d belongs to V, and its effect can be maintained on V, hence
on E , by a state feedback F such that (A +BF )V ⊆V. In order to take into
account the stability requirement, consider the lattice Φ(B+D,E) of all (A,B+D)-
controlled invariants self-bounded with respect to E . The following properties
hold.

Property 4.2.1 Let V∗ :=maxV(A,B, E). If D⊆V∗ or D⊆V∗ +B, the sub-
space maxV(A,B+D, E) coincides with V∗.

Proof. Apply Algorithm 4.1.2 with B+D instead of B and note that the
inclusion D⊆Zi +B holds for all terms of the sequence, which clearly does not
change if B is replaced with B+D. �

Property 4.2.2 If D⊆V∗ (D⊆V∗ +B) any element of Φ(B+D,E) satisfies
D⊆V (D⊆V +B).

Proof. By the self-boundedness property V∗ ∩ (B+D)⊆V. If D⊆V∗, the
intersection is distributive with respect to the sum, so that V∗ ∩B+D⊆V,
hence D⊆V. If D⊆V∗ +B, add B to both members, thus obtaining (V∗ +B)∩
(B+D) ⊆ V +B and note that D is contained in both terms of the intersection
on the left. �

Denote by

Vm := V∗ ∩ S∗
1 with S∗

1 := minS(A, E ,B+D) (4.2.8)

the infimum of Φ(B+D,E). By Property 4.2.2 it satisfies D⊆Vm if (4.2.5) holds
or D⊆Vm +B if (4.2.6) holds. The following lemma is basic to derive a con-
structive solution to numerous problems with stability.4

Lemma 4.2.1 Let D⊆V∗ (D⊆V∗ +B). If Vm, the minimal (A,B+D)-
controlled invariant self-bounded with respect to E is not internally stabilizable,
no internally stabilizable (A,B)-controlled invariant V exists that satisfies both
V ⊆E and D⊆V (D⊆V +B).

4 See Basile and Marro [8] and Schumacher [39].
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Proof. Let V be any (A,B)-controlled invariant satisfying all requirements in
the statement. Consider the subspace

V̄ := V + RV∗ (4.2.9)

which is a controlled invariant as the sum of two controlled invariants and satis-
fies the inclusions D⊆ V̄ (D⊆ V̄ +B) and V∗ ∩B⊆ V̄ since D⊆V (D⊆V +B)
and V∗ ∩B⊆RV∗ ; by summing B to both members of the former inclusion we
obtain B+D⊆ V̄ +B. By intersecting with V∗ it follows that V∗ ∩ (B+D)⊆V̄,
hence V̄ ∈Φ(B+D, E). Furthermore, V̄ is internally stabilizable, being the sum
of two internally stabilizable controlled invariants (in particular, the internal
eigenvalues of RV∗ are actually all assignable). Then, there exists an F such that
V̄ is an internally stable (A +BF )-invariant: all the elements of Φ(B+D, E)
contained in V̄, in particular Vm, are internally stable (A +BF )-invariants,
hence internally stabilizable (A,B)-controlled invariants. �

We also state, obviously without proof, the dual lemma. Refer to lat-
tice Ψ(C∩E,D), whose infimum is S∗ :=minS(A, C,B), provided that E ⊇S∗ or
E ⊇S∗ ∩C, and whose supremum is

SM := S∗ + V∗
1 with V∗

1 := maxV(A,D, C ∩ E) (4.2.10)

If one of the preceding inclusions regarding S∗ holds, any element S of Ψ(C∩E,D)

satisfies the similar inclusion E ⊇S or E ⊇S ∩C.

Lemma 4.2.2 Let E ⊇S∗ (E ⊇S∗ ∩C). If SM , the maximal (A, C ∩E)-
conditioned invariant self-hidden with respect to D, is not externally stabilizable,
no externally stabilizable (A, C)-conditioned invariant S exists that satisfies both
D⊇S and E ⊇S (E ⊇S ∩C).

These results are basic to solving both the unaccessible and accessible dis-
turbance localization problem with stability.

Theorem 4.2.1 (unaccessible disturbance localization) Consider the system
(4.2.1, 4.2.2) and assume that (A, B) is stabilizable. The unaccessible distur-
bance localization problem with stability has a solution if and only if

1. D ⊆ V∗ ; (4.2.11)

2. Vm is internally stabilizable. (4.2.12)

Proof. Only if. Suppose that the problem has a solution, so that there exists
an F such that A +BF is stable and V := minJ (A +BF,D) is contained in E .
Hence V is an (A,B)-controlled invariant both internally and externally stabi-
lizable. Condition (4.2.11) follows from V being contained in E and containing
D. In turn, (4.2.11) implies that the supremum of Φ(B+D, E) is V∗ and all
elements contain D (Properties 4.2.1 and 4.2.2). External stabilizability of V
does not correspond to any particular condition, since stabilizability of (A, B)



222 Chapter 4. The Geometric Approach: Analysis

involves external stabilizability of all controlled invariants (Property 4.1.16).
Internal stabilizability implies (4.2.12) owing to Lemma 4.2.1.

If. If (4.2.11, 4.2.12) hold, there exists an F such that A +BF is stable and
(A +BF )Vm ⊆Vm, so that the problem admits a solution. �

Note that the necessary and sufficient conditions stated in Theorem 4.2.1 are
constructive, in the sense that they provide a procedure to solve the problem.
In general, in the geometric approach to synthesis problems it is possible to
state nonconstructive necessary and sufficient conditions, simple and intuitive,
and constructive conditions, more involved, but easily checkable with standard
algorithms. For the problem considered here, the nonconstructive structural
condition consists simply of the existence of a controlled invariant contained in
E and containing D, while the condition with stability requires moreover that
this controlled invariant is internally stabilizable. The structural constructive
condition is expressed by (4.2.5), that with stability by (4.2.11, 4.2.12).

For the accessible disturbance localization problem with stability, the non-
constructive condition differs from the structural one only in the requirement
that V is internally stabilizable, while the constructive one is stated as follows.

Theorem 4.2.2 (accessible disturbance localization) Consider the system
(4.2.1, 4.2.2) and assume that (A, B) is stabilizable. The accessible disturbance
localization problem with stability has a solution if and only if

1. D ⊆ V∗ + B ; (4.2.13)

2. Vm is internally stabilizable. (4.2.14)

Proof. The statement is proved similarly to Theorem 4.2.1, by again using
Lemma 4.2.1. �

We shall now consider the dual problem, which is the asymptotic estimation
of a linear function of the state (possibly the whole state) in the presence of an
unaccessible disturbance input.5

Consider the behavior of an identity observer when the observed system
has, besides the accessible input u, an unaccessible input d; referring to the
manipulations reported in Subsection 3.4.1, subtract (4.2.1) from

ż(t) = (A + GC) z(t) + B u(t) − G y(t)

thus obtaining the differential equation

ǫ̇(t) = (A + G C) ǫ(t) − D d(t) (4.2.15)

which shows that the estimate error does not converge asymptotically to zero,
even if A +GC is a stable matrix, but converges asymptotically to the subspace
minJ (A +GC,D), i.e., to the reachable set of the system (4.2.15). It follows

5 See Marro [26] and Bhattacharyya [13].
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that, in order to obtain the maximal state estimate, it is convenient to choose
G to make this subspace of minimal dimension: since it is an (A, C)-conditioned
invariant by Theorem 4.1.3, the best choice of G corresponds to transforming
into an (A +GC)-invariant the minimal (A, C)-conditioned invariant containing
D (this is the structural requirement, which refers to the possibility of estimating
the state if initial states of both system and observer are congruent) or the
minimal externally stabilizable (A, C)-conditioned invariant containing D (this
is the stability requirement, which guarantees the convergence of estimate to
actual state even if the initial states are not congruent). In the latter case the
internal stabilizability of the conditioned invariant is implied on the assumption
that (A, C) is detectable (Property 4.1.19), which is clearly necessary if a full-
order or identity observer is considered.

Let S be the minimal (A +GC)-invariant containing D and assume that
A +GC is stable. The observer provides an asymptotic estimate of the state
“modulo” S or, in more precise terms, an asymptotic estimate of the state
canonical projection on X /S (similarly, the direct use of output without any
dynamic observer would provide knowledge of state modulo C, or its canonical
projection on X /C). This incomplete estimate may be fully satisfactory if, for
instance, it is not necessary to know the whole state, but only a given linear
function of it: in this case the asymptotic estimate of this function is complete
if and only if S is contained in its kernel.

These arguments lead to the following statement of the problem of asymp-
totic estimation of a linear function of state in the presence of an unaccessible
input: given the time-invariant linear system

ẋ(t) = A x(t) + D d(t) (4.2.16)

y(t) = C x(t) (4.2.17)

determine an identity observer linear system which, by using y as input, provides
an asymptotic estimate of the linear function

e(t) = E x(t) (4.2.18)

For the sake of simplicity, the accessible input u has not been considered in
(4.2.16): in fact, if present, it can be applied also to the asymptotic observer.
Connections to the system, in cases of both a purely dynamic and a nonpurely
dynamic asymptotic observer, are shown respectively in Fig. 4.5 and 4.6.

In conclusion, in geometric terms the synthesis of an asymptotically stable,
full-order, purely dynamic state observer reduces to deriving an externally
stabilizable (A, C)-conditioned invariant S such that D⊆S and S ⊆E while,
if the estimator is allowed to be nonpurely dynamic, the last condition is
replaced by S ∩ C ⊆E . The pair (A, C) is assumed to be detectable so S is
internally stabilizable and the full-order observer can be stabilized. However, it
is not required if only the state coordinates corresponding to the state canonical
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Figure 4.5. Unaccessible input asymptotic state estimation:

purely dynamic asymptotic observer.
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Figure 4.6. Unaccessible input asymptotic state estimation:

non-purely dynamic asymptotic observer.

projection on X /S are reproduced in the observer (see change of basis (4.3.9)
in the following Subsection 4.3.1).

To solve the problem we refer to the following results, which can be derived
by duality from Theorems 4.2.1 and 4.2.2.

Theorem 4.2.3 (unknown-input purely dynamic asymptotic observer) Con-
sider the system (4.2.16, 4.2.17) and assume that (A, C) is detectable. The prob-
lem of asymptotically estimating the linear function (4.2.18) in the presence of
the unknown input d with a full-order purely dynamic observer has a solution if
and only if

1. E ⊇ S∗ ; (4.2.19)

2. SM is externally stabilizable. (4.2.20)

Theorem 4.2.4 (unknown-input nonpurely dynamic asymptotic observer)
Consider the system (4.2.16, 4.2.17) and assume that (A, C) is detectable. The
problem of asymptotically estimating linear function (4.2.18) in the presence of
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the unknown input d with a full-order nonpurely dynamic observer has a solution
if and only if

1. E ⊇ S∗ ∩ C ; (4.2.21)

2. SM is externally stabilizable. (4.2.22)

In (4.2.19, 4.2.21) S∗ is the subspace defined by (4.1.24), whereas in
(4.2.20, 4.2.22) SM is the subspace defined by (4.2.10), which is the maximal
(A, C ∩E)-conditioned invariant self-hidden with respect to D provided (4.2.19)
or (4.2.21) holds.

When E = {0}, i.e., when an estimate of the whole state is sought, (4.2.20)
cannot hold (of course, the trivial case D= {0} is excluded), so a nonpurely
dynamic observer must be used. This is possible if the conditions stated in the
following corollary, immediately deductable from Theorem 4.2.4, are satisfied.

Corollary 4.2.1 Consider the system (4.2.16, 4.2.17) and suppose that (A, C)
is detectable. The problem of asymptotically estimating the whole state in the
presence of the unknown input d has a solution with a nonpurely dynamic
observer if and only if

1. S∗ ∩ C = {0} ; (4.2.23)

2. S∗ is externally stabilizable. (4.2.24)

Computational “recipes” for matrices G, K, L of the observers represented
in Fig. 4.5 and 4.6 will be considered in the next chapter (Subsection 5.1.2).

4.3 Unknown-Input Reconstructability, In-

vertibility, and Functional Controllability

The problem of observing the state in the presence of unaccessible inputs
by means of a suitable asymptotically stable dynamic system (the estimator
or dynamic observer) has been considered in the previous section as a basic
application of conditioned invariance. In this section the same problem will
be considered in a more extended way and it will be shown that to obtain
the maximal information on state in the presence of unaccessible inputs it is
necessary to use differentiators, so the most general observers are not included
in the class of dynamic systems. In other words, the mathematical problem of
obtaining final state from input and output functions when some of the inputs
are unknown has solvability conditions more extended than the problem of
estimating the state through a dynamic observer.

The need to use differentiators, which are linear operators, but not belonging
to the class of linear dynamic systems considered in the first two chapters of this
book and not susceptible to any ISO representation, is pointed out by a simple
example. Consider a dynamic system consisting of n cascaded integrators, with
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input u to the first and output y from the last: it can be represented by a
triple (A, b, c), but its state (which consists of the integrator outputs) can be
determined only by means of n− 1 cascaded differentiators connected to output
y. The technique described in the previous section, which uses a dynamic
system, clearly cannot be applied in this case.

From a strictly mathematical viewpoint, unknown-input observability is
introduced as follows. It is well known that the response of the triple (A, B, C)
is related to initial state x(0) and control function u(·) by

y(t) = C eAt x(0) + C

∫ t

0

eA(t−τ) B u(τ) dτ (4.3.1)

where the first term on the right is the free response and the second is the
forced response. In order to simplify notation, refer to a fixed time interval
[0, T ]. Hence

y|[0,T ] = γ(x(0), u|[0,T ]) = γ1(x(0)) + γ2(u|[0,T ]) (4.3.2)

We recall that (A, C) is observable or reconstructable (in the continuous-time
case these properties are equivalent) if γ1 is invertible, i.e., kerγ1 = {0}. In this
case it is possible to derive the initial or the final state from input and output
functions. The following definitions extend the reconstructability concept to the
case where the input function is unknown and introduce the concept of system
invertibility , which will be proved to be equivalent to it (Theorem 4.3.1).

Definition 4.3.1 The triple (A, B, C) is said to be unknown-state, unknown-
input reconstructable or unknown-state, unknown-input invertible indexinvert-
ibility unknown-state, unknown-input if γ is invertible, i.e., kerγ = {0}.
Definition 4.3.2 The triple (A, B, C) is said to be zero-state, unknown-input
reconstructable or zero-state, unknown-input invertible if γ2 is invertible, i.e.,
kerγ2 = {0}.

When (A, C) is not observable or reconstructable, the initial or final state
can be determined modulo the subspace

ker γ1 = Q := maxJ (A, C) (4.3.3)

which is called the unobservability subspace or the unreconstructability subspace.
This means that the state canonical projection on X /Q can be determined from
the output function. Q is the locus of the free motions corresponding to the
output function identically zero.

Unknown-input reconstructability in the cases of the above definitions is
approached in a similar way: by linearity, when reconstructability is not com-
plete, only the canonical projection of the final state on X /Q1 or on X /Q2 can
be determined, where Q1 is called the unknown-state, unknown-input unrecon-
structability subspace and Q2 the zero-state, unknown-input unreconstructability
subspace. Clearly Q2 ⊆Q1. Geometric expressions for these subspaces are pro-
vided in the following properties.
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Property 4.3.1 Refer to the triple (A, B, C). The unknown-state, unknown-
input unreconstructability subspace is

Q1 = V∗
0 := maxV(A,B, C) (4.3.4)

Proof. The statement is an immediate consequence of Theorem 4.1.1. �

Property 4.3.2 Refer to the triple (A, B, C). The zero-state, unknown-input
unreconstructability subspace is

Q2 = RV∗
0

= V∗
0 ∩ S∗

0 with S∗
0 := minS(A, C,B) (4.3.5)

Proof. The statement is an immediate consequence of Theorem 4.1.6. �

4.3.1 A General Unknown-Input Reconstructor

We shall here describe how to implement a general unknown-input state recon-
structor. First, we show that the current state is derivable modulo Q1 by means
of an algebraic system with differentiators connected only to the system output.
The starting point is the relation

y(t) = C x(t) (4.3.6)

which, to emphasize the iterative character of the procedure, is written as

q0(t) = Y0 x(t) (4.3.7)

where q0 := y is a known continuous function in [0, T ] and Y0 :=C is a known
constant matrix. The state modulo kerY0 can be derived from (4.3.7). Differ-
entiating (4.3.7) and using the system equation ẋ(t) =A x(t) +B u(t) yields

q̇0(t) − Y0 B u(t) = Y0 A x(t)

Let P0 be a projection matrix along im(Y0B), so that im(Y0B) =kerP0 and

P0 q̇0(t) = P0 Y0 A x(t) (4.3.8)

Equations (4.3.7, 4.3.8) can be written together as

q1(t) = Y1 x(t)

where q1 denotes a known linear function of the output and its first derivative,
and

Y1 :=

[

Y0

P0 Y0 A

]
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Simple manipulations provide

kerY1 = kerY0 ∩ ker(P0 Y0 A)

= kerY0 ∩ A−1Y −1
0 kerP0

= kerY0 ∩ A−1Y −1
0 Y0 imB

= kerY0 ∩ A−1(kerY0 + imB)

Iterating k times the procedure yields

qk(t) = Yk x(t)

where qk denotes a known linear function of the output and its derivatives up
to the k-th, and Yk a matrix such that

kerYk = kerYk−1 ∩ A−1(kerYk−1 + imB)

= kerY0 ∩ A−1(kerYk−1 + imB)

where the last equality can be derived with an argument similar to that used
in the proof of Algorithm 4.1.1. Sequence kerYk (k =0, 1, . . .) converges to
V∗

0 , since it coincides with the sequence provided by Algorithm 4.1.2 to derive
maxV(A,B, C).

Note that the length of the observation interval [0, T ] has not been con-
sidered in the preceding argument: since the described technique is based on
differentiators, it is only required to be nonzero: functions qk(·) are continuous,
hence differentiable, because each of them is obtained by projecting the previous
one along its possible discontinuity directions. Furthermore, from the argument
it follows that the maximum order of the involved derivatives is n− 1.

We shall now prove that a dynamic device exists which, connected to the
system output and with initial state suitably set as a linear function of the
system state (which is assumed to be known), provides tracking of the system
state modulo S∗

0 . This device is quite similar to the unknown-input asymptotic
estimators considered in the previous section, but it is not necessarily stable.
Consider the identity observer shown in Fig. 3.10 and choose matrix G such
that (A +GC)S∗

0 ⊆S∗
0 . The observer equations, expressed in the new basis

corresponding to the similarity transformation T := [T1 T2], with imT1 =S∗
0 , are

[

η̇1(t)
η̇2(t)

]

=

[

A′
11 A′

12

O A′
22

] [

η1(t)
η2(t)

]

+

[

B′
1

O

]

u(t) +

[

G′
1

G′
2

]

y(t) (4.3.9)

In (4.3.9), η denotes the new state, related to z by z = Tη. Zero submatrices
are due to S∗

0 being an (A + GC)-invariant containing B.
Note that only the second matrix differential equation of (4.3.9) (that cor-

responding to η̇2(t) at the left), has to be reproduced in the observer, since η2

is not influenced by η1 or u. If the observer initial state is set according to
η(0) =T−1x(0), through

z2(t) = T2 η2(t) (4.3.10)
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z1

ẋ = Ax + B u

y = C x

u y algebraic
reconstructor

(with differentiators)

zdynamic tracking
device

ẋ = M z1 + N z2

(x(0))

z2

Figure 4.7. The general block diagram of an unknown-input

state reconstructor.

a state estimate modulo S∗
0 is derived.

The estimator scheme shown in Fig. 4.7 is based on both of the preceding
techniques: the algebraic reconstructor with differentiators provides as output
z1 a state estimate modulo Q1 and works if neither the initial state nor the
input function is known, while the dynamic tracking device provides as z2 a
state estimate modulo S∗

0 , but requires the initial state to be known. A state
estimate modulo Q2 is obtained as a linear function of the outputs of both
devices. Note that the enlarged knowledge of the state obtained by algebraic
reconstructor with differentiators is not useful in the dynamic device since if
S∗

0 is replaced by minS(A,V∗
0 ,B), the intersection in equation (4.3.5) does not

change owing to Corollary 4.1.1. The following properties, concerning complete
unknown-input reconstructability, are particular cases of previous Properties
4.3.1 and 4.3.2.

Property 4.3.3 The triple (A, B, C) is unknown-state, unknown-input com-
pletely reconstructable in any finite time interval [0, T ] if and only if

V∗
0 := maxV(A,B, C) = {0} (4.3.11)

Note that, if the triple (A, B, C) is unknown-state, unknown-input com-
pletely reconstructable, the pair (A, C) is observable because of the inclusion
maxJ (A, C)⊆maxV(A,B, C).

Property 4.3.4 The triple (A, B, C) is zero-state, unknown-input completely
reconstructable in any finite time interval [0, T ] if and only if

V∗
0 ∩ B = {0} (4.3.12)

Proof. An alternative expression for Q2 =RV∗ defined in (4.3.5) is
Q2 =minJ (A +BF,V∗ ∩B), with F any matrix such that (A + BF )V∗⊆V∗.
Therefore Q2 = {0} if and only if (4.3.12) holds. �
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The state reconstructor shown in Fig. 4.7 provides the maximal information
on the system state when the input function is unknown and the initial state
known, by observing the output in any nonzero time interval [0, T ]. The same
scheme can also be used to provide an asymptotic state estimate when the initial
state is unknown, provided S∗

0 is externally stabilizable. Since in this case matrix
A′

22 in (4.3.9) can be made stable by a suitable choice of G, function z2(t) in
(4.3.10) asymptotically converges to a state estimate modulo S∗

0 also if the initial
state of the dynamic tracking device is not congruent with that of the system.
Necessary and sufficient conditions for complete state asymptotic estimation by
means of a device including differentiators are stated in the following property.

Property 4.3.5 The triple (A, B, C) is unknown-state, unknown-input com-
pletely asymptotically observable if and only if

1. V∗
0 ∩ B = {0} ; (4.3.13)

2. S∗
0 is externally stabilizable. (4.3.14)

Proof. Recall Corollary 4.2.1 and note that processing the output through
the algebraic reconstructor with differentiators provides the state modulo V∗

0

instead of modulo C. Hence (4.3.13) follows from (4.2.21) and from the proof
of Property 4.3.4. �

Point 2 of Property 4.3.5 can also be expressed in terms of invariant ze-
ros. The external unassignable eigenvalues of S∗

0 or the internal unassignable
eigenvalues of V∗

0 , which are equal to each other owing to Property 4.1.20, are
called the invariant zeros of the triple (A, B, C) (see next section). Therefore, a
general unknown-state, unknown-input asymptotic estimator exists if and only
if V∗

0 ∩B reduces to the origin and all invariant zeros of the system are stable.

4.3.2 System Invertibility and Functional Controllability

Refer to a triple (A, B, C). The term system invertibility denotes the possibility
of reconstructing the input from the output function. Although for the sake
of precision it is possible to define both the unknown-state, unknown-input
invertibility and the zero-state, unknown-input invertibility (see Definitions
4.3.1 and 4.3.2, the term invertibility “tout court” is referred to the latter,
i.e., to the invertibility of map γ2 in (4.3.2).

The term functional controllability denotes the possibility of imposing any
sufficiently smooth output function by a suitable input function, starting at
the zero state. Here “sufficiently smooth” means piecewise differentiable at
least n times. It is often also called right invertibility , from the identity
y(·) =γ2(u(·)) ◦ γ−1

2 (y(·)), while simple invertibility is also called left invertibil-
ity , from u(·) = γ−1

2 (y(·)) ◦ γ2(u(·)).
Theorem 4.3.1 The triple (A, B, C), with B having maximal rank, is
unknown-state (zero-state) invertible if and only if it is unknown-state,
unknown-input (zero-state, unknown-input) completely reconstructable.
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Proof. If. From the system differential equation ẋ(t) =A x(t) +B u(t) it
follows that

u(t) = (BT B)−1 BT (ẋ(t) − A x(t)) (4.3.15)

which provides u(t) almost everywhere in [0, T ] if from y|[0,T ] (and x(0)) it is
possible to derive x|[0,T ], hence ẋ|[0,T ] almost everywhere.

Only if. Let the considered system be invertible, i.e., from the output
function y|[0,T ] it is possible to derive input u|[0,T ]. By subtracting the forced
response from the total response we derive the free response, i.e., the output
function of the free system

ẋ(t) = A x(t)

y(t) = C x(t)

whose current state x(t) can be determined by repeatedly differentiating the
output function if the initial state is unknown (recall that in this case complete
reconstructability implies complete observability) or by an identity observer if
known. �

From now on, the term “invertibility” will be strictly referred to zero-state
invertibility. The following statement is immediately derived from Theorem
4.3.1 and Property 4.3.4.

Property 4.3.6 (left invertibility of a triple) The triple (A, B, C) is invertible
(left-invertible) if and only if (4.3.12) holds.

The device whose block diagram is represented in Fig. 4.7 can easily be
extended so as to be a realization of the inverse system of the triple (A, B, C):
connect a further differentiator stage on output z1 (the time derivative of z2 can
be directly computed as a linear function of z2 and y): a linear algebraic block
implementing (4.3.15) will provide input u.

Owing to Property 4.3.5 and related discussion, the inverse system is asymp-
totically stable if and only if all the invariant zeros of (A, B, C) are stable (or,
equivalently, V∗

0 is internally stabilizable or S∗
0 is externally stabilizable).

We shall now consider the dual concept and prove a theorem that is dual to
Property 4.3.6.

Theorem 4.3.2 (functional controllability of a triple) The triple (A, B, C) is
functionally output controllable (or right-invertible) if and only if

S∗
0 + C = X (4.3.16)

Proof. Consider the linear operator γ2 in (4.3.2), which is left invertible if and
only if (4.3.12) holds. Its adjoint operator

u|[0,T ] = γT
2 (u|[0,T ])
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is defined by

u(t) = BT

∫ t

0

eAT (t−τ) CT y(τ) dτ t ∈ [0, T ]

From
(γT

2 )−1 ◦ γT
2 = i

where i denotes the identity operator, by taking the adjoint of both members
it follows that

γ2 ◦ γ−1
2 = i

Hence γ2 admits a right inverse if and only if γT
2 admits a left inverse, i.e., if

and only if
maxV(AT , imCT , kerBT ) ∩ imCT = {0}

from which (4.3.16) follows by orthogonal complementation. �

The functional controller indexfunctional controller is realizable in exactly
the same way as the inverse system, i.e., by a state reconstructor of the type
shown in Fig. 4.3 completed with a further differentiator stage and an algebraic
part. Its dynamic part is asymptotically stable if and only if all the invariant
zeros of (A, B, C) are stable (or, equivalently, S∗

0 is externally stabilizable or V∗
0

is internally stabilizable). However, since in this case the system is not necessar-
ily invertible, input function u(·) corresponding to the desired output function
is not in general unique. On the other hand, the difference between any two ad-
missible input functions corresponds to a zero-state motion on RV∗

0
which does

not affect the output function, so that the functional controller can be realized
to provide any one of the admissible input functions, for instance by setting
to zero input components which, expressed in a suitable basis, correspond to
forcing actions belonging to V∗

0 ∩B.

4.4 Invariant Zeros and the Invariant Zero

Structure

Consider a triple (A, B, C). The concept of “zero,” which is a natural coun-
terpart to the concept of “pole” in IO descriptions, is introduced in geometric
approach terms through the following definition.6

6 In the literature concerning the matrix polynomial approach, the transmission zeros

are defined as the zeros of the Smith-Macmillan form of the transfer matrix, while those
introduced in Definition 4.4-1 are usually named invariant zeros . These definitions of zeros are
equivalent to each other if (A, B, C) is minimal (i.e., completely controllable and observable).
In this case transmission or invariant zeros have a precise physical meaning, i.e., they “block”
transmission of certain frequencies from input to output. Definition 4.4-1 is implicit in an
early work by Morse [33] and specifically investigated by Molinari [31]. Extensive reviews on
definitions and meanings of multivariable zeros are reported by Francis and Wonham [19],
MacFarlane and Karcanias [25], and Schrader and Sain [36].
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Definition 4.4.1 (invariant zeros) The invariant zeros of the triple (A, B, C)
are the internal unassignable eigenvalues of V∗

0 := maxV(A,B, C) or, equiva-
lently by virtue of Property 4.1.20, the external unassignable eigenvalues of
S∗

0 := minS(A, C,B).

Note that a system whose state or forcing action is completely accessible,
i.e., with B=X or C = {0}, has no invariant zeros. Invariant zeros are easily
computable by using the specific geometric approach algorithms.

A more complete definition, which includes the previous one as a particular
case, refers to the internal unassignable eigenstructure of V∗

0 or the external
unassignable eigenstructure of S∗

0 . The eigenstructure of a linear transformation
is complete information on its real or complex Jordan form (eigenvalues, number
and dimensions of the corresponding Jordan blocks, or orders of corresponding
elementary divisors). As for the unassignable eigenvalues, matrix A′

22 in (4.1.34)
is referred to for the eigenstructures here considered.

Definition 4.4.2 (invariant zero structure) The invariant zero struc-
ture of the triple (A, B, C) is the internal unassignable eigenstructure of
V∗

0 :=maxV(A,B, C) or, equivalently, the external unassignable eigenstructure
of S∗

0 :=minS(A, C,B).

A quite common physical justification of the word “zero” is related to the
property to block frequencies. It is worth discussing this property by referring
to a suitable extension of the frequency response.

4.4.1 The Generalized Frequency Response

Refer to the block diagram in Fig. 2.4, which represents the quadruple
(A, B, C, D), cascaded to an exosystem, described by the equations

v̇(t) = W v(t) (4.4.1)

u(t) = L v(t) (4.4.2)

We temporarily assume that A is asymptotically stable, while W , the exosystem
matrix, is assumed to have all the eigenvalues with the real parts zero or positive.
For instance, the exosystem output could be one of those represented in Fig. 2.5)
or any linear combinations of unstable modes.

The exosystem output is

u(t) = L eWt v0 (4.4.3)

Our aim is to search for conditions that ensure that the state evolution of the
system, when the possible transient condition is finished, can be expressed as
a function of the sole exogenous modes or, in other words, conditions for the
existence of a matrix X such that

lim
t→∞

x(t) = X eWt v0
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for any exosystem initial state v0. Function

xs(t) := X eWt v0 (4.4.4)

where xs is the state in the steady condition, is necessarily a solution of the
overall system differential equation and can be defined also when the system
matrix A is unstable. By substituting it in the system differential equation
ẋ(t) =A x(t) +B u(t) and taking into account (4.4.3) we get

X W eWt v0 = A X eWt v0 + B L eWt v0

Since v0 is arbitrary and the matrix exponential nonsingular, it follows that

A X − X W = −B L (4.4.5)

Matrix X is called state generalized frequency response. In general it is a
function of matrices W, L of the exosystem.

Relation (4.4.5) is a Sylvester equation: if for a given W it admits no
solution, the system is said to present a resonance at W ; owing to Theorem [2.5-
10] this can occur only if the system and exosystem have common eigenvalues.
Let

x(t) = xt(t) + xs(t)

Component xt is the state in the transient condition; since both x(t) and xs(t)
satisfy the system differential equation, by difference we obtain

ẋt(t) = A xt(t)

whence
xt(t) = eAt x0t = eAt (x0 − x0s) (4.4.6)

where, according to (4.4.4), x0s = X v0 is the particular value of the initial
condition that makes the transient motion vanish, i.e., such that the equality
x(t) = xs(t) holds identically in time, not only as t approaches infinity.

As far as the output is concerned, by substituting (4.4.3) and (4.4.4) in the
output equation y(t) =C x(t) + D u(t) it follows that

ys(t) = (C X + D L) eWt v0 = Y eWt v0 (4.4.7)

where
Y := C X + D L (4.4.8)

is called the output generalized frequency response, which is also a function of
matrices W, L of the exosystem.

Particular, interesting cases are those of an exosystem with a single real
eigenvalue ρ and of an exosystem with a pair of complex conjugate eigenvalues
σ± jω, i.e.

W := ρ W :=

[

σ ω
−ω σ

]

(4.4.9)
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or, to consider multiple eigenvalues, the corresponding real Jordan blocks of
order k. For instance, in the cases of a double real eigenvalue and a pair of
complex conjugate eigenvalues with multiplicity two, we assume respectively

W :=

[

ρ 1
0 ρ

]

W :=







σ ω
−ω σ

I2

O
σ ω
−ω σ






(4.4.10)

In these cases matrix L is p× k or p× 2k and produces the distribution on
the system inputs of the exogenous modes corresponding to the considered
eigenvalues or Jordan blocks.

Referring to the generalized frequency response, it is possible to introduce
the concepts of blocking zero and blocking structure as follows.

Definition 4.4.3 (blocking zero and blocking structure) A blocking zero of
the quadruple (A, B, C, D) is a value of ρ or σ± jω such that for W defined as
in (4.4.9) there exists at least one input distribution matrix L corresponding to
a state generalized frequency response X such that the pair (W, X) is observable
and the output generalized frequency response is zero. A blocking structure is
defined by extending the above to the case of an arbitrary W in real Jordan
form.

In other words, a blocking zero or a blocking structure is an exosystem
matrix W such that there exists at least one zero-output state trajectory that
is a function of all the corresponding modes. Hence, for such a W there exist
matrices X, L with (W, X) observable such that

A X − X W = −B L (4.4.11)

C X + D L = O (4.4.12)

Equations (4.4.11, 4.4.12) are linear in X, L for any W . In the case of a purely
dynamic system (i.e., for D =O) blocking zeros or blocking structures are not
affected by state feedback or output injection. In fact, X0, W0, and L0 satisfy
(4.4.11, 4.4.12) with D = O. Then

(A + B F ) X0 − X0 W0 = −B L1 , with L1 := L0 − F X0

(A + G C) X0 − X0 W0 = −B L0 , since C X0 = O

Invariant zeros and the invariant zero structure are related to blocking zeros
and blocking structures, as the following properties state.

Property 4.4.1 Consider a triple (A, B, C). Its invariant zeros and the in-
variant zero structure are also blocking zeros and a blocking structure.

Proof. Let F be such that (A +BF )V∗
0 ⊆V∗

0 : among all possible state feedback
matrices, this corresponds to the maximal unobservability subspace, since V∗

0

is the maximal controlled invariant contained in C. Furthermore, it allows



236 Chapter 4. The Geometric Approach: Analysis

all the eigenvalues to be arbitrarily assigned, except the internal unassignable
eigenvalues of V∗

0 , so we can assume that no other eigenvalue of A +BF is equal
to them. On this assumption RV∗

0
as an (A +BF )-invariant is complementable

with respect to ({0},V∗
0 ): this means that there exists a V such that

RV∗
0
⊕ V = V∗

0

(A + B F )V ⊆ V

Consider the change of basis defined by transformation T := [T1 T2 T3], with
imT1 =RV∗

0
, imT2 =V. Thus

T−1(A +BF ) T =





A′
11 O A′

13

O A′
22 A′

23

O O A′
33



 (4.4.13)

clearly the invariant zeros are the eigenvalues of A′
22 (the invariant zero structure

is the eigenstructure of A′
22). The statement follows by assuming

W := A′
22 X := T2 L := F T2 (4.4.14)

In fact, it will be shown that the above matrices are such that

i) (X, W ) is observable;

ii) C X = O ;

iii) A X − X W = −B L .

Property i is due to the rank of X being maximal and equal to the dimension
of W , relation ii follows from imX =V ⊆V∗

0 , while iii is equivalent to

A T2 − T2 A′
22 = −B F T2

i.e.
(A + B F ) T2 = T2 A′

22

which directly follows from (4.4.13). �

Property 4.4.2 Let the triple (A, B, C) be completely controllable and (left)
invertible. Its blocking zeros and blocking structures are invariant zeros and
parts of the invariant zero structure.

Proof. Let (W, X) be the Jordan block and the state frequency response
corresponding to a blocking zero, so that

A X − X W = −B L (4.4.15)

C X = O (4.4.16)
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This means that the extended free system

˙̂x(t) = Â x̂(t) with Â :=

[

A BL
O W

]

admits solutions of the type

x(t) = X eWt v0 with imX ⊆ V∗
0 ⊆ C

Let F be a state feedback matrix such that (A +BF )V∗
0 ⊆V∗

0 ; by adding BFX
to both members of (4.4.15) it follows that

(A +BF ) X − X W = −B L + B F X

The image of the matrix on the right must belong to V∗
0 since those of both

matrices on the left do. On the other hand, provided V∗
0 ∩B= {0} owing to the

invertibility assumption, matrix on the right is zero. Hence

(A +BF ) X − X W = O

and, consequently
x(t) = e(A+BF )t X v0 = X eWt v0

The pair (W, X) is observable by assumption. Since the modes corresponding
to both matrix exponentials in the preceding relations must be identical in
function x(t), there exists a Jordan block in A +BF internal to V∗

0 (in this case
nonassignable, like all the eigenvalues internal to V∗

0 ), equal to W . �

Note that, while Definitions 4.4.1 and 4.4.2 (invariant zero and invariant
zero structure) refer to a quadruple, Definition 4.4.3 refers to a triple. On the
other hand, its extension to quadruples can be achieved by using an artifice,
i.e., by cascading to the system a stage of integrators, which does not present
either invariant or blocking zeros, so that the invariant zeros and the invariant
zero structure of the quadruple can be assumed to be equal to those of the
augmented system. This topic will be reconsidered in the next section.

4.4.2 The Role of Zeros in Feedback Systems

The concept of zero is of paramount importance in connection with stabilizabil-
ity of feedback systems. It is well known from the automatic control systems
analysis, which is normally developed by using transfer functions, that the pres-
ence of zeros in the right-half s plane, i.e., the nonminimum phase condition,
generally causes serious stabilizability problems. The preceding multivariable
extension of the concept of zero strictly developed in the framework of the ge-
ometric approach is similarly connected with stabilizability in the presence of
feedback and plays a basic role in synthesis problems.

To clarify this by means of an example, we shall show here that the stabi-
lizability condition for the disturbance localization problem and its dual (see
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Section 4.2) is susceptible to a quite simple and elegant reformulation in terms
of invariant zeros.

Referring to the system (4.2.1, 4.2.2), denote by Z(u ; e) the set of all in-
variant zeros between input u and output e, and by Z(u, d ; e) that between
inputs u, d (considered as a whole), and output e. The basic result is set in the
following theorem.

Theorem 4.4.1 Let D⊆V∗ or D⊆V∗ +B, with V∗ := maxV(A,B, E). Then
Vm :=V∗ ∩S∗

1 , with S∗
1 :=minS(A, E ,B+D), is internally stabilizable if and

only if all the elements of Z(u ; e) −̇ Z(u, d ; e) are stable (recall that −̇ denotes
difference with repetition count).

Proof. It has been proved in Section 4.2 that the assumption regarding D
implies maxV(A,B, E) =maxV(A,B+D, E), so that the reachable set on E by
the only input u is RE :=V∗ ∩minS(A, E ,B), while the reachable set by both
inputs u, d used together is Vm :=V∗ ∩minS(A, E ,B+D).

Assume a coordinate transformation T := [T1 T2 T3 T4] with imT1 =RE ,
im[T1 T2] =Vm, im[T1 T2 T3] =V∗, im[T1 T4]⊇B, im[T1 T2 T4]⊇S∗

1 ⊇D. Matri-
ces A′ := T−1A T , B′ :=T−1B and D′ := T−1D have the structures

A′ =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

O O A′
33 A′

34

A′
41 A′

42 A′
43 A′

44









B′ =









B′
1

O
O
B′

4









D′ =









D′
1

D′
2

O
D′

4









where the zero submatrices of A′ are due to RE and Vm being respectively an
(A,B)- and an (A,B+D)-controlled invariant and to the structures of B′ and
D′. The elements of Z(u ; e) are the union of the eigenvalues of A′

22 and A′
33,

while those of Z(u, d ; e) are the eigenvalues of A′
33. �

The main results of disturbance localization and unknown-input asymptotic
state estimation can be reformulated as follows.

Corollary 4.4.1 (unaccessible disturbance localization) Consider the system
(4.2.1, 4.2.2) and assume that (A, B) is stabilizable. The unaccessible distur-
bance localization problem with stability has a solution if and only if

1. D ⊆ V∗ ; (4.4.17)

2. Z(u ; e) −̇ Z(u, d ; e) has all its elements stable. (4.4.18)

Corollary 4.4.2 (accessible disturbance localization) Consider the system
(4.2.1, 4.2.2) and assume that (A, B) is stabilizable. The accessible disturbance
localization problem with stability has a solution if and only if

1. D ⊆ V∗ + B ; (4.4.19)

2. Z(u ; e) −̇ Z(u, d ; e) has all its elements stable. (4.4.20)
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The dual results are stated as follows. Consider the system (4.2.16–4.2.18)
and denote by Z(d ; e) the set of all invariant zeros between input u and output
e and by Z(d ; y, e) that between input d and outputs y, e (considered as a
whole).

Theorem 4.4.2 Let E ⊇S∗ or D⊇S∗ ∩C, with S∗ :=minS(A, C,D). Then
SM :=S∗ +maxV(A,D, C ∩E) is externally stabilizable if and only if all the
elements of Z(d ; y) −̇ Z(d ; y, e) are stable.

Corollary 4.4.3 (unknown-input purely dynamic asymptotic observer) Con-
sider the system (4.2.16, 4.2.17) and assume that (A, C) is detectable. The prob-
lem of asymptotically estimating the linear function e(t) =E x(t) in the presence
of the unknown input d with a full-order purely dynamic observer, has a solution
if and only if

1. E ⊇ S∗ ; (4.4.21)

2. Z(d ; y) −̇ Z(d ; y, e) has all its elements stable. (4.4.22)

Corollary 4.4.4 (unknown-input nonpurely dynamic asymptotic observer)
Consider the system (4.2.16, 4.2.17) and assume that (A, C) is detectable. The
problem of asymptotically estimating the linear function e(t) = E x(t) in the
presence of the unknown input d with a full-order purely dynamic observer has
a solution if and only if

1. E ⊇ S∗ ∩ C ; (4.4.23)

2. Z(d ; y) −̇ Z(d ; y, e) has all its elements stable. (4.4.24)

4.5 Extensions to Quadruples

Most of the previously considered problems were referred to purely dynamic
systems of the type (A, B, C) instead of nonpurely dynamic systems of the type
(A, B, C, D), which are more general. There are good reasons for this: triples are
quite frequent in practice, referring to triples greatly simplifies arguments, and
extension to quadruples can often be achieved by using some simple, standard
artifices.

A very common artifice that can be adopted for many analysis problems is to
connect an integrator stage in cascade to the considered quadruple, at the input
or at the output: in this way an extended system is obtained that is modeled
by a triple. Problems in which smoothness of the input or output function
is a standard assumption, like unknown-input reconstructability, invertibility,
functional controllability, introduction of the concepts of transmission zero
and zero structure, can thus be extended to quadruples without any loss of
generality.
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y

u̇ = v
v u ẋ = Ax + B u

y = C x + D u

y

ẋ = Ax + B u

y = C x + D u
ż = y

u z

(a)

(b)

Figure 4.8. Artifices to reduce a quadruple to a triple.

Consider the connections shown in Fig. 4.8: in the case of Fig. 4.8,a the
overall system is modeled by

˙̂x(t) = Â x̂(t) + B̂ v(t) (4.5.1)

y(t) = Ĉ x̂(t) (4.5.2)

with

x̂ :=

[

x
u

]

Â :=

[

A B
O O

]

B̂ :=

[

O
Ip

]

Ĉ := [ C D ] (4.5.3)

while in the case of Fig. 4.8(b) the system is described by

˙̂x(t) = Â x̂(t) + B̂ u(t) (4.5.4)

z(t) = Ĉ x̂(t) (4.5.5)

with

x̂ :=

[

x
z

]

Â :=

[

A O
C O

]

B̂ :=

[

B
D

]

Ĉ := [O Iq ] (4.5.6)

To approach unknown-input reconstructability and system invertibility it is
quite natural to refer to the extended system shown in Fig. 4.8(a), while for
functional controllability, that of Fig. 4.8(b) is preferable. For invariant zeros
and the invariant zero structure, any one of the extended systems can be used,
since in both cases the integrator stage has no influence on zeros.

We shall now consider in greater detail the extension of the concept of zero,
referring to (4.5.4–4.5.6). A controlled invariant contained in Ĉ := kerĈ can be
expressed as

V̂ =

{[

x
z

]

: x ∈ V , z = 0

}

(4.5.7)

because of the particular structure of Ĉ. The definition property

ÂV̂ ⊆ V̂ + B̂ (4.5.8)
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implies

AV ⊆ V + B (4.5.9)

C V ⊆ imD (4.5.10)

From (4.5.9) it follows that V is an (A,B)-controlled invariant. Since any motion
on the “extended” controlled invariant V̂ satisfies z(·) = 0, then y(·) =0, any
state feedback matrix such that (Â + B̂F̂ )V̂ ⊆ V̂ has the structure F̂ = [F O]
with

(A + B F )V ⊆ V V ⊆ ker (C + DF ) (4.5.11)

Relations (4.5.7, 4.5.8) and (4.5.11) can be considered respectively the defi-
nition and main property of a geometric tool similar to the controlled invariant,
which is called in the literature output-nulling controlled invariant .7

Of course, being an extension of the regular controlled invariant, it satisfies
all its properties, including the semilattice structure. A special algorithm to
derive the maximal output-nulling controlled invariant is not needed, since it
is possible to use the standard algorithm for the maximal controlled invariant
referring to the extended system (4.5.4–4.5.6).

The dual object, the input-containing conditioned invariant can also be
defined, referring to (4.5.1–4.5.3) instead of (4.5.4–4.5.6).

A conditioned invariant of the extended system containing B̂ := imB̂ can be
expressed as

Ŝ =

{[

x
u

]

: x ∈ S , u ∈ R
p

}

(4.5.12)

because of the particular structure of B̂. Relation

Â (Ŝ ∩ Ĉ) ⊆ Ŝ (4.5.13)

together with (4.5.12) implies

A (S ∩C) ⊆ S (4.5.14)

B−1 S ⊇ kerD (4.5.15)

It follows that a conditioned invariant S is input-containing if and only if there
exists an extended output injection ĜT = [GT O] such that

(A + G C)S ⊆ S S ⊇ im (B + GD) (4.5.16)

The minimal input-containing conditioned invariant is the minimal
zero-state unknown-input unreconstructability subspace of the quadruple
(A, B, C, D) by means of a device of the type shown in Fig. 4.7.

7 The output-nulling (controlled) invariants were introduced and investigated by Anderson
[2,3]. Deep analysis of their properties, definition of their duals, and a complete bibliography
are due to Aling and Schumacher [1].
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The maximal output-nulling controlled invariant and the minimal input-
containing conditioned invariant can be determined by means of the standard al-
gorithms referring respectively to the extended system (4.5.4–4.5.6) and (4.5.1–
4.5.3). Denote them by V∗

0 and S∗
0 : it can easily be checked that the reachable

set on V∗
0 is V∗

0 ∩S∗
0 and the unobservable set containing S∗

0 is V∗
0 +S∗

0 . The
invariant zeros of (A, B, C, D) are the elements of σ((A +BF )|V∗

0/(V∗
0∩S

∗
0 )) or

those of σ((A +GC)|(V∗
0+S∗

0 )/S∗
0
): it is easy to show that these two spectra are

identical. The invariant zero structure of (A, B, C, D) coincides with any of the
eigenstructures of the corresponding induced maps.

+

_

u

ẋ = Ax + B u

y = C x + D u

u

D

y

ẋ = Ax + B u

y = C x + D u

y1

u̇ = v
v y

y1 ≡ u

(a)

(b)

Figure 4.9. Other artifices to deal with quadruples.

Feedback Connections. When a quadruple, which is a nonpurely dynamic
system and hence has an algebraic signal path directly from input to output,
is subject to nonpurely dynamic or simply algebraic feedback, like state feed-
back and output injection, an algebraic closed loop is present and the stability
problem cannot be properly approached. In these cases, in general, the as-
sumed mathematical model is not correct for the problem concerned and some
neglected dynamics have to be considered.

Nevertheless, there exist artifices that allow standard feedback connections
approached for triples to be extended to quadruples. One of these is shown
in Fig. 4.9(a): signal Du is subtracted from the output, thus obtaining a new
output y1 which can be used for a possible feedback connection. In this way,
for instance, the quadruple (A, B, C, D) can be stabilized through an observer
exactly in the same way as the triple (A, B, C).

A drawback of this procedure is that the system feature of being purely
dynamic is not robust with respect to uncertainty in D, so that it is often
preferable to use one of the artifices shown in Fig. 4.8 again, but providing the
maximal observability in the first case and the maximal controllability in the
second. For instance, in the first case this is obtained as shown in Fig. 4.9(b),
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i.e., by including also the auxiliary state variables, which are accessible, in the
output distribution matrix Ĉ, which becomes

Ĉ :=

[

C D
O Ip

]

4.5.1 On Zero Assignment

In some multivariable synthesis problems it is necessary to assign invariant zeros
through a convenient choice of the system matrices. Refer to a controllable pair
(A, B) and consider the problem of deriving suitable matrices C, D such that
the quadruple (A, B, C, D) has as many as possible zeros arbitrarily assigned,
or, by duality, given the observable pair (A, C) derive B, D such that again
(A, B, C, D) has as many as possible zeros arbitrarily assigned. These problems
are both reduced to standard pole assignment by state feedback. Denote by
p and q respectively the number of the inputs and that of the outputs of the
quadruple to be synthesized.

Algorithm 4.5.1 (zero assignment for a quadruple) Let (A, B) be controllable
and p≤ q. It is possible to assign n invariant zeros of the quadruple (A, B, C, D)
by the following procedure:

1. Choose D arbitrary of maximal rank;

2. Derive F such that A +BF has the zeros to be assigned as eigenvalues;

3. Assume C := − DF .

Proof. Refer to the extended system (4.5.6) and assume

V̂∗ := kerĈ =

[

In

O

]

(4.5.17)

Being p≤ q and D of maximal rank, clearly

V̂∗ ∩ B̂ = {0} (4.5.18)

Due to the particular choice of C, F̂ := [F O] is such that

Â + B̂ F̂ =

[

A + BF O
O O

]

This means that V̂∗ is an (Â + B̂F̂ )-invariant (hence the maximal (Â, B̂)-
controlled invariant contained in kerĈ) and its internal eigenvalues are those
of A +BF . Due to (4.5.18) all these eigenvalues are unassignable, hence they
coincide with the invariant zeros of (A, B, C, D). �

If p≥ q, the preceding algorithm can be used to derive B, D instead of C, D,
provided that (A, C) is observable. In fact, the invariant zeros of (A, B, C, D)
coincide with those of (AT , CT , BT , DT ).
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Chapter 5

The Geometric Approach:

Synthesis

5.1 The Five-Map System

In this chapter the features of the most general feedback connection, the output-
to-input feedback through a dynamic system (or, simply, the output dynamic
feedback) are investigated and discussed. Two particular problems are presented
as basic applications of output dynamic feedback, namely the disturbance lo-
calization problem by means of a dynamic compensator and the regulator prob-
lem, which is the most interesting and complete application of the geometric
approach.

For either problem, a five-map system (A, B, C, D, E) is needed, modeled by

ẋ(t) = A x(t) + B u(t) + D d(t) (5.1.1)

y(t) = C x(t) (5.1.2)

e(t) = E x(t) (5.1.3)

It is called the controlled system and is connected as shown in Fig. 5.1 to a
controller (compensator or regulator) described by

ż(t) = N z(t) + M y(t) + R r(t) (5.1.4)

u(t) = L z(t) + K y(t) + S r(t) (5.1.5)

The compensator is a device that influences the structural features of the
controlled system to which it is connected, while the regulator influences both
the system structural features and asymptotic behavior. The manipulable input
u is separate from the nonmanipulable input d, and the informative output y
is separate from the regulated output e. When d is completely unaccessible
for measurement, it is also called disturbance. Therefore, two distinct input
distribution matrices, B and D, and two distinct output distribution matrices,
C and E, are considered. The compensator or regulator is a nonpurely dynamic
system with an input y (which coincides with the informative output of the
controlled system), a reference input r, which provides information on the
control tasks and possibly includes a part of d (when the nonmanipulable input

247
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y

r

ẋ = Ax + B u + D d

y = C x

e = E x

d e

u

ẋ = N z + M y + R r

u = L z + K y + S r

Figure 5.1. Controlled system and controller.

is accessible for measurement). In the overall system there are two separate
state vectors, x∈X := Rn, the controlled system state, and z ∈Z := Rm, the
controller state.

The overall system considered is very general and versatile: by setting equal
to zero some of its matrices it can reproduce in practice all control situations:
with dynamic or algebraic output feedback, with dynamic or algebraic precom-
pensation (feedforward), or with mixed feedback and feedforward.

The overall system inputs d and r are assumed to be completely general,
i.e., to belong to the class of piecewise continuous functions. In solving con-
trol system synthesis problems such a generality may be superfluous and too
restrictive: it may be convenient, for instance, to assume that all these inputs
or a part of them are generated by a linear time-invariant exosystem. Since in
synthesis the exosystem features directly influence some of the obtained regu-
lator features (for instance order and structure), it is convenient to embed the
exosystem matrix in that of the controlled system. The controlled system state
will be partitioned as

x =

[

x1

x2

]

(5.1.6)

where x1 denotes the state of the plant and x2 that of the exosystem. Matrices
A, B, C, D, E are accordingly partitioned as

A =

[

A1 A3

O A2

]

B =

[

B1

O

]

D =

[

D1

O

]

C = [ C1 C2 ] E = [ E1 E2 ]
(5.1.7)

Note that the exosystem cannot be influenced by either input, but directly
influences both outputs. The controlled system structure is shown in Fig. 5.2.
The system is not completely controllable, since inputs act only on the plant,
but it is assumed to be completely observable (or, at least, reconstructable)
through the informative output. In fact the regulator must receive information,
direct or indirect, on all the exogenous modes to counterbalance their effects on
the regulated output.
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u y

ẋ2 = A2 x2

ẋ1 = A1 x1 + A3 x2 +

B1 u + D1 d

y = C1 x1 + C2 x2

e = E1 x1 + E2 x2

x2

d e

Figure 5.2. Controlled system including an exosystem.

Summing up, the following assumptions are introduced:

1. the pair (A1, B1) is stabilizable

2. yje pair (A, C) is detectable

Note that the plant is a well-defined geometric object, namely the A-invariant
defined by

P := {x : x2 = 0} (5.1.8)

The overall system represented in Fig. 5.1 is purely dynamic with two inputs,
d and r, and one output, e. In fact, by denoting with

x̂ :=

[

x
z

]

(5.1.9)

the extended state (controlled system and regulator state), the overall system
equations can be written in compact form as

˙̂x(t) = Â x̂(t) + D̂ d(t) + R̂ r(t) (5.1.10)

e(t) = Ê x̂(t) (5.1.11)

where

Â :=

[

A +BKC BL
MC N

]

D̂ :=

[

D
O

]

R̂ :=

[

BS
R

]

Ê := [ E O ]

(5.1.12)

Note that, while the quintuple (A, B, C, D, E) that defines the controlled
system is given, the order m of the regulator and matrices K, L, M, N, R, S are
a priori unknown: the object of synthesis is precisely to derive them. Thus, the
overall system matrices Â, R̂ are also a priori unknown.

In some important synthesis problems, like the disturbance localization by
dynamic compensator, and the regulator problem (which will both be stated in
the next section), input r is not present, so that the reference block diagram
simplifies as in Fig. 5.3.
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y

ẋ = Ax + B u + D d

y = C x

e = E x

d e

u

ẋ = N z + M y

u = L z + K y

Figure 5.3. Reference block diagram for the disturbance

localization problem by dynamic compensator, and the reg-

ulator problem.

5.1.1 Some Properties of the Extended State Space

We shall now show that geometric properties referring to Â-invariants in the
extended state space reflect into properties of (A,B)-controlled and (A, C)-
conditioned invariants, regarding the controlled system alone. This makes it
possible to state necessary and sufficient conditions for solvability of the most
important synthesis problems in terms of the given quintuple (A, B, C, D, E).

The following property, concerning algebraic output-to-input feedback, is
useful to derive the basic necessary structural condition for dynamic compen-
sator and regulator design.1

Property 5.1.1 Refer to the triple (A, B, C). There exists a matrix K such
that a given subspace V is an (A +BKC)-invariant if and only if V is both an
(A,B)-controlled and an (A, C)-conditioned invariant.

Proof. Only if. This part of the proof is trivial because if there exists a
matrix K such that (A +BKC)V ⊆V clearly there exist matrices F :=KC and
G :=BK such that V is both an (A +BF )-invariant and an (A +GC)-invariant,
hence an (A,B)-controlled and an (A, C)-conditioned invariant.

If. Consider a nonsingular matrix T := [T1 T2 T3 T4], with imT1 =V ∩C,
im [T1 T2] =V, im [T1 T3] = C, and set the following equation in K:

K C [T2 T4] = F [T2 T4] (5.1.13)

Assume that C has maximal rank (if not, it is possible to ignore some output
variables to meet this requirement and insert corresponding zero columns in the
derived matrix). On this assumption C [T2 T4] is clearly a nonsingular square

1 See Basile and Marro [4.6], Hamano and Furuta [18].
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matrix, so that the equation (5.1.13) admits a solution K for all F . Since V is
an (A, C)-conditioned invariant

(A + B K C) imT1 = A (V ∩ C) ⊆ V

On the other hand, with KCT2 =FT2 owing to (5.1.13), it follows that

(A + B K C) imT2 = (A + B F ) imT2 ⊆ (A + B F )V ⊆ V �

+
+

+

+

y

ẋ = Ax + B u + D d

y = C x

e = E x

d e

u

K

M

ẋ = v

w = z

v w

N

L

Figure 5.4. Artifice to transform a dynamic output-to-input

feedback into an algebraic one.

It is now convenient to introduce a new formulation of the problem, where
the synthesis of a dynamic regulator is precisely reduced to the derivation of an
algebraic output feedback for a new extended system, still of order n + m.2

The overall system of Fig. 5.3 is equivalent to that shown in Fig. 5.4, where
the extended system

˙̂x(t) = Â0 x̂(t) + B̂0 û(t) + D̂ d(t) (5.1.14)

ŷ(t) = Ĉ0 x̂(t) (5.1.15)

e(t) = Ê x̂(t) (5.1.16)

2 This artifice is due to Willems and Commault [37].
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with state, input, and output defined as

x̂ :=

[

x
z

]

û :=

[

u
v

]

ŷ :=

[

y
w

]

(5.1.17)

and matrices

Â0 :=

[

A O
O O

]

B̂0 :=

[

B O
O Im

]

D̂ :=

[

D
O

]

Ĉ0 :=

[

C O
O Im

]

Ê := [ E O ]

(5.1.18)

is subject to the algebraic output feedback

K̂ :=

[

K L
M N

]

(5.1.19)

Note that in (5.1.18) D̂ and Ê are defined as in (5.1.12).
The equivalence between the block diagrams of Fig. 5.3 and 5.4 and Property

5.1.1 immediately leads to the following statement.

Property 5.1.2 Any extended subspace Ŵ that is an Â-invariant is both an
(Â0, B̂0)-controlled and an (Â0, Ĉ0)-conditioned invariant.

Consider the following subspaces of X (the controlled system state space):

P (Ŵ) :=

{

x :

[

x
z

]

∈ Ŵ
}

(5.1.20)

I(Ŵ) :=

{

x :

[

x
0

]

∈ Ŵ
}

(5.1.21)

which are called, respectively, the projection of Ŵ on X and the intersection of
Ŵ with X . They are effective tools to deal with extended systems.

In the extended state space the controlled system and controller state spaces
are respectively

X̂ :=

{[

x
z

]

: z = 0

}

Ẑ :=

{[

x
z

]

: x = 0

}

(5.1.22)

They are orthogonal to each other and satisfy the following, easily derivable
relations:

P (Ŵ) ns = I(Ŵ + Ẑ) (5.1.23)

I(Ŵ) ns = P (Ŵ ∩ X̂ ) (5.1.24)

I((Ŵ ∩ X̂ )⊥) ns = P ((Ŵ ∩ X̂ )⊥) = I(Ŵ)⊥ (5.1.25)

P ((Ŵ + Ẑ)⊥) ns = I((Ŵ + Ẑ)⊥) = P (Ŵ)⊥ (5.1.26)
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Property 5.1.3 The projection of the orthogonal complement of any extended
subspace is equal to the orthogonal complement of its intersection:

P (Ŵ⊥) = I(Ŵ)⊥ (5.1.27)

Proof. Equalities (5.1.23) and (5.1.25) lead to

P (Ŵ⊥) = I(Ŵ⊥ + Ẑ) = I((Ŵ ∩ X̂ )⊥) = I(Ŵ)⊥ �

Consider now the following lemma, which will be used in the next section
to prove the nonconstructive necessary and sufficient conditions.

Lemma 5.1.1 Subspace V̂ is an internally and/or externally stabilizable
(Â0, B̂0)-controlled invariant if and only if P (V̂) is an internally and/or ex-
ternally stabilizable (A,B)-controlled invariant.

Proof. Only if. This part of the proof is an immediate consequence of
Definitions 4.1.5 and 4.1.6 (internal and external stabilizability of a controlled
invariant).

If. Let V := P (V̂) : it is easily seen that V̂ can be expressed as

V̂ :=

{[

x
z

]

: x ∈ V , z = W x + η , η ∈ L
}

(5.1.28)

where W denotes a suitable m×n matrix and L a suitable subspace of the regu-
lator state space Z. From (5.1.28) it clearly follows that dimV̂ =dimV +dimL.
Assume a basis matrix V̂ of V̂ and, if necessary, reorder its columns in such a
way that in the partition

V̂ =

[

V1 V2

V3 V4

]

V1 is a basis matrix of V. Since all columns of V2 are linear combinations of
those of V1, by subtracting these linear combinations a new basis matrix of V̂
can be obtained with the structure

V̂ ′ =

[

V1 O
V3 V ′

4

]

where V1 and V ′
4 have maximal rank. Any x̂∈ V̂ can be expressed as

x̂ =

[

V1 O
V3 V ′

4

] [

α1

α2

]

with α1, α2 properly dimensioned arbitrary real vectors, i.e., as

x = V1 α1

z = V3 α1 + V ′
4 α2
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By eliminating α1 we finally obtain

z = V3 (V T
1 V1)

−1V T
1 x + V ′

4 α2

which proves (5.1.28). Since V is an internally and/or externally stabilizable
(A,B)-controlled invariant, there exists at least one matrix F such that V is an
internally and/or externally stable (A +BF )-invariant. We choose the following
state feedback matrix for the extended system:

F̂ :=

[

F O
W (A +BF ) +W −Im

]

so that

Â0 + B̂0 F̂ =

[

A + BF O
W (A +BF ) +W −Im

]

Referring to the new state coordinates ρ, η corresponding to the transformation

T̂ :=

[

In O
W Im

]

one obtains

T̂−1(Â0 + B̂0F̂ ) T̂ =

[

A +BF O
O −Im

]

and

V̂ =

{[

ρ
η

]

: ρ ∈ V , η ∈ L
}

The above change of coordinates clarifies that V̂ is an internally and/or exter-
nally stabilizable (Â0 + B̂0F̂ )-invariant, hence an internally and/or externally
stabilizable (Â0, B̂0)-controlled invariant. �

Lemma 5.1.2 Subspace Ŝ is an externally and/or internally stabilizable
(Â0, Ĉ0)-conditioned invariant if and only if I(Ŝ) is an externally and/or in-
ternally stabilizable (A, C)-conditioned invariant.

Proof. Recall that any (A, C)-conditioned invariant is externally and/or in-
ternally stabilizable if its orthogonal complement, as an (AT , C⊥)-controlled
invariant, is internally and/or externally stabilizable. Therefore, Ŝ is externally
and/or internally stabilizable if and only if Ŝ⊥, as an (ÂT

0 , imĈT
0 )-controlled in-

variant, is internally and/or externally stabilizable or, owing to Lemma 5.1.1, if
and only if P (Ŝ⊥), as an (AT , imCT )-controlled invariant, is internally and/or
externally stabilizable. Hence, the statement directly follows from Property
5.1.3. �
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5.1.2 Some Computational Aspects

The synthesis procedures that will be presented and used in the next section can
be considered extensions of dynamic systems stabilization by means of observers
and dual observers, already discussed in Section 3.4.

In general, as a first step it is necessary to derive a matrix F such that a given
internally and externally stabilizable controlled invariant V is an (A +BF )-
invariant with A + BF stable or a matrix G such that a given externally and
internally stabilizable conditioned invariant S is an (A +GC)-invariant with
A +GC stable. The structure requirement can be imposed independently of the
stability requirement: for instance, as far as matrix F is concerned, first derive
an F1 such that (A +BF1)V ⊆V by means of Algorithm 4.1-3, then express
matrices A + BF1 and B in a basis whose vectors span RV ,V,X (which are
(A +BF1)-invariants). Then apply an eigenvalue assignment procedure to the
controllable pairs of submatrices (A′

ij, B
′
i) corresponding to RV and X /V, which

are respectively controllable by construction and stabilizable by assumption. In
this way a matrix F2 is determined which, added to F1, solves the problem.
This procedure can be dualized for matrix G in connection with conditioned
invariants.

Refer to the block diagram of Fig. 3.11, where an identity observer is used
to indirectly perform state feedback: the purely algebraic block F can be
considered as connected between output z of the asymptotic observer shown
in Fig. 3.12(b) and the system input u. Note that the same result is obtained
referring to the dual observer of Fig. 3.12(c): a purely algebraic block G is
connected between a summing junction providing the difference η − y (of the
model and the system outputs) and the model forcing action ϕ.

In the former case, information on the system state to perform state feedback
is completely derived from the asymptotic observer, and the direct partial
information provided by the system output is not taken into account. A more
general way to realize state feedback, which includes the complete direct state
feedback (which would be possible if C were square and nonsingular) and
the complete indirect feedback through the observer as particular cases, is
that shown in Fig. 5.4(a). Information on state is there derived as a linear
combination of both the system output and the observer state (algebraic blocks
L1 and L2 and summing junction), then applied to the system input through
the algebraic block F .

Let L1 and L2 satisfy
L1 C + L2 = In (5.1.29)

and apply to the extended system
[

ẋ(t)
ż(t)

]

=

[

A +BFL1C BFL2

BFL1C −GC A +GC +BFL2

] [

x(t)
z(t)

]

+

[

D
O

]

d(t) (5.1.30)

the coordinate transformation expressed by
[

x
z

]

=

[

In O
In −In

] [

ρ
η

]

(5.1.31)
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Figure 5.5. Controllers based respectively on the identity

observer and the identity dual observer.
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i.e., ρ := x, η := x− z. The equivalent system

[

ρ̇(t)
η̇(t)

]

=

[

A +BF −BFL2

O A +GC

] [

ρ(t)
η(t)

]

+

[

D
D

]

d(t) (5.1.32)

is obtained. Note, in particular, that the separation property expressed by
Theorem 3.4.6 still holds.

Fig. 5.5(b) shows the dual connection: difference η− y is processed through
the algebraic block G, then applied both to the system input and the dual
observer forcing action through the algebraic blocks L1 and L2 and summing
junctions.

Let
B L1 + L2 = In (5.1.33)

From the extended system, described by

[

ẋ(t)
ż(t)

]

=

[

A +BL1GC BF −BL1GC
−L2GC A +BF +L2GC

] [

x(t)
z(t)

]

+

[

D
O

]

d(t) (5.1.34)

through the coordinate transformation

[

x
z

]

=

[

−In In

O In

] [

ρ
η

]

(5.1.35)

i.e., ρ := x− z, η := z, the equivalent system

[

ρ̇(t)
η̇(t)

]

=

[

A +GC O
L2GC A + BF

] [

ρ(t)
η(t)

]

+

[

−D
O

]

d(t) (5.1.36)

is obtained. The separation property also clearly holds in this case.
The crucial point of these procedures is the choice of matrices L1 and L2: in

fact, while respecting the constraints expressed by (5.1.29) and (5.1.33), it may
be possible to impose further conditions that imply special structural properties
for the overall system. The following lemmas provide a useful link between
geometric-type conditions and computational support for this problem.

Lemma 5.1.3 Let C be any q×n matrix and L a subspace of X such that
L∩C = {0}, with C := kerC. There exist two matrices L1, L2 such that

L1 C + L2 = In kerL2 = L (5.1.37)

Proof. Let Lc be any subspace that satisfies

L ⊕ Lc = X Lc ⊇ C (5.1.38)

Define L2 as the projecting matrix on Lc along L, so that In −L2 is the
complementary projecting matrix and ker (In −L2) =Lc. Hence, the equation

L1 C = In − L2
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is solvable in L1 owing to the second of (5.1.38). In fact, recall that the
generic linear system AX = B or XT AT = BT is solvable in X if imA⊇ imB or
kerAT ⊆ kerBT . �

Note that this proof is constructive, i.e., it provides a procedure to derive
L1, L2. The dual result, which is useful for synthesis based on the dual observer,
is stated without proof as follows.

Lemma 5.1.4 Let B be any n× p matrix and L a subspace of X such that
L+B=X , with B := imB. There exist two matrices L1, L2 such that

B L1 + L2 = In imL2 = L (5.1.39)

Two Simple Applications. To show how the preceding lemmas can be used
in synthesis procedures, we shall look at two simple computational problems.
First, consider again the unknown-input asymptotic observers whose block
diagrams are shown in Fig. 4.5 and 4.6 or, in more compact form, in Fig. 5.6.

ẽ

ẋ = Ax + D d

y = C x

e = E x

d

e

y

ẋ = N z + M y

ẽ = L z + K y

Figure 5.6. Unknown-input nonpurely dynamic asymptotic observer.

Let S be our resolvent , i.e., an internally and externally stabilizable (A, C)-
conditioned invariant such that S ⊇D and S ∩C ⊆E . First, determine a ma-
trix G such that (A + GC)S ⊆S with A +GC stable. Assume N :=A + GC,
M := −G, and K = O in the case of a purely dynamic observer. Our aim is to
derive L in the purely dynamic case (it may be different from E if a reduced or-
der device is sought) and K, L in the other case. To this end, derive a subspace
L that satisfies L⊕S ∩C = S (or L+S ∩C =S and L∩ (S ∩C) = {0}), i.e., a
complement of S ∩C to S. Clearly C ∩L= {0}. Owing to Lemma 5.1.3 there
exist two matrices L1, L2 such that L1C +L2 = In, kerL2 =L. Premultiplying
by E yields EL1 C + EL2 = E, which, by assuming K :=EL1, L := EL2, can
also be written as

K C + L = E with kerL ⊇ S (5.1.40)

To compute L1, L2, first derive a matrix X := [X1 X2] such that imX1 =S ∩C,
im[X1 X2] =S, and assume L := imX2: clearly L∩C = {0}, L+S ∩C =S.
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Then apply the constructive procedure outlined in the proof of Lemma 5.1.3.
The inclusion on the right of (5.1.40) follows from both subspaces, whose direct
sum is S, being contained in kerL: in fact kerL2 =L by construction (so that
kerL⊇L) and from S ∩C ⊆E (a property of S which can also be written as
E(S ∩C) = {0}), and KC(S ∩C) = {0} (by definition of C), owing to (5.1.40) it
follows that L(S ∩C) = {0}.

Furthermore, the observer order can be reduced to n− dimS and the stabil-
ity requirement restricted to S being externally stabilizable. For this, perform
in the observer state space the change of basis corresponding to T := [T1 T2]
with imT1 =S: in practice the first group of coordinates is not needed since it
corresponds to an (A +GC)-invariant contained in kerE or in kerL so that it
does not influence the other coordinates and the observer output. Let

Q =

[

Q1

Q2

]

:= T−1

For the purely dynamic observer, we set the equations

ż(t) = N1 z(t) + M1 y(t) ẽ(t) = E1 z(t)

with N1 := Q2(A + GC)T2, M1 := − Q2G, E1 := ET2, while for the nonpurely
dynamic one we derive

ż(t) = N1 z(t) + M1 y(t) ẽ(t) = L1 z(t) + K y(t)

with N1 :=Q2(A +GC)T2, M1 := − Q2G, L1 := LT2.

ẋ = Ax + B u + D d

e = E x

d
e

u

ż = N z + R d

u = L z + S d

Figure 5.7. Dynamic accessible disturbance localizing unit.

We shall now consider the dual problem, i.e., the synthesis of a dynamic
pre-compensator or dual observer which realizes localization of an accessi-
ble input according to the block diagram shown in Fig. 5.7. The geometric
starting point for solution is to have again a resolvent, which in this case
is an internally and externally stabilizable (A,B)-controlled invariant V such
that V ⊆E and V +B⊇D; hence it is possible to determine a matrix F such
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that (A +BF )V ⊆V with A +BF stable. Assume N := |A +BF and L := F .
Then, determine a subspace L that satisfies L∩V +B=V and L+(V +B) =X .
Clearly B+L=X . Owing to Lemma 5.1.3 there exist two matrices L1, L2 such
that BL1 + L2 = In, imL2 =L. Postmultiplying by D yields BL1 D + L2 D = D
which, by assuming S := − L1 D, R :=L2 D, can also be written as

−BS + R = D with imR ⊆ V (5.1.41)

The last condition follows from both subspaces whose intersection is S con-
taining imR: in fact imL2 =L by construction (so that imR⊆L) and from
V +B⊇D (a property of V which can also be written as D−1(V +B) =X ),
and (BS)−1(V +B) =X (by definition of B), owing to (5.1.41) it follows that
R−1(V +B) =X or V +B⊇ imR.

Furthermore, the dual observer order can be reduced to dimV and the
stability requirement restricted to V being internally stabilizable. For this,
perform in the dual observer state space the change of basis corresponding to
T := [T1 T2] with imT1 =V: in practice the second group of coordinates is not
needed since all the zero-state admissible trajectories are restricted to the first
group, which is an (A +BF )-invariant containing imR so that it coincides with
the reachable subspace of the dual observer. The recipe for the localizing unit
is stated as follows: let

Q =

[

Q1

Q2

]

:= T−1

and set the equations

ż(t) = N1 z(t) + R1 d(t) y(t) = L1 z(t) + S d(t)

with N :=Q1(A +BF )T1, R1 := Q1R, L1 :=FT1.

5.1.3 The Dual-Lattice Structures

Theorems 4.1.4 and 4.1.5 point out an interesting connection between con-
trolled and conditioned invariants, which no longer appear as separate objects,
connected only by duality relations, but as elements that are both necessary to
derive remarkably simple and elegant algebraic expressions: see, for instance,
expressions (4.1.30, 4.1.32), which provide the constrained reachable set and its
dual.

In this subsection the algebraic basic structures of lattices Φ(∗,∗) and Ψ(∗,∗),
introduced in Section 4.1, are presented and investigated as a convenient back-
ground to their use in solving synthesis problems. Structures will be graphically
represented by means of Hasse diagrams referring to the inclusion, which allow
a simple representation of relations between the elements that contribute to
problem solution, some a priori known and some available through suitable
algorithms.

First, we refer to the triple (A, B, C) and consider the fundamental lattices
Φ(B,C) and Ψ(C,B), with B := imB, C := kerC. This particular case will be used
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as a reference to derive more complex structures, like those that are used in
connection with quintuple (A, B, C, D, E) to solve synthesis problems. The
basic property that sets a one-to-one correspondence between the lattice of all
(A,B)-controlled invariants self-bounded with respect to C and that of (A, C)-
conditioned invariants self-hidden with respect to B, is stated as follows.

Property 5.1.4 Let V be any (A,B)-controlled invariant contained in C, and
S any (A, C)-conditioned invariant containing B: then

1. V ∩S is an (A,B)-controlled invariant;

2. V +S is an (A, C)-conditioned invariant.

Proof. From

A (S ∩ C) ⊆ S S ⊇ B (5.1.42)

AV ⊆ V + B V ⊆ C (5.1.43)

it follows that

A (V ∩S) = A (V ∩S ∩C) ⊆ AV ∩ A (S ∩C) ⊆ (V +B) ∩ S = V ∩S + B

A ((V +S) ∩ C) = A (V +S ∩C) = AV + A (S ∩C) ⊆ V +B+S = V +S �

The fundamental lattices are defined as

Φ(B,C) := {V : AV ⊆ V + B , V ⊆ C , V ⊇ V∗
0 ∩ B} (5.1.44)

Ψ(C,B) := {S : A (S ∩ C) ⊆ S , S ⊇ B , S ⊆ S∗
0 + C} (5.1.45)

with

V∗
0 := maxV(A,B, C) (5.1.46)

S∗
0 := minS(A, C,B) (5.1.47)

Referring to these elements, we can state the following basic theorem.

Theorem 5.1.1 Relations

S = V + S∗
0 (5.1.48)

V = S ∩ V∗
0 (5.1.49)

state a one-to-one function and its inverse between Φ(B, C) and Ψ (C,B). Sums
and intersections are preserved in these functions.

Proof. V +S∗
0 is an (A, C)-conditioned invariant owing to Property 5.1.4, self-

hidden with respect to B since it is contained in S∗
0 + C. Furthermore

(V + S∗
0 ) ∩ V∗

0 = V + S∗
0 ∩ V∗

0 = V
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because V, being self-bounded with respect to C, contains the infimum of
Φ(B, C), V∗

0 ∩S∗
0 . By duality, S ∩V∗

0 is an (A,B)-controlled invariant again
by Property 5.1.4, self-bounded with respect to E because it contains V∗

0 ∩B.
Furthermore

(S ∩ V∗
0 ) + S∗

0 = S ∩ V∗
0 + S∗

0 = S
because S, being self-hidden with respect to B, is contained in the supremum
of Ψ (B, C), V∗

0 +S∗
0 . Functions defined +by (5.1.48, 5.1.49) are one-to-one be-

cause, as just proved, their product is the identity in Φ(B,C) and their inverse
product is the identity in Ψ(C,B). Since (5.1.48) preserves sums and (5.1.49)
intersections and both are one-to-one, sums and intersections are preserved in
both functions. �

XX

C C +S∗
0

V∗
0

QB = QS∗
0

=

V∗
0 + S∗

0

B ∩ V∗
0 B

{0}{0}

free

free

fixed:
Z (u; y)

fixed:
Z (u; y)

Φ(B,C)

S∗
0

Ψ(C,B)

RC = RV∗

0
=

V∗
0 ∩ S∗

0

S∗
0

free
if (A, C) is
observable

free
if (A, C) is
controllable

∩V∗
0

Figure 5.8. The fundamental lattices Φ(B,C) and Ψ(C,B).

Figure Fig. 5.8 shows the Hasse diagrams of the subspace sets that are
referred to in the definitions of the fundamental lattices. Thicker lines denote
the parts of the diagrams corresponding to lattices. Note that the eigenvalue
assignability is also pointed out and the “zones” corresponding to invariant
zeros of the triple (A, B, C) are specified in both lattices.

We shall now show that the above one-to-one correspondence can be ex-
tended to other lattices, which are more directly connected with the search
for resolvents for synthesis problems, which usually concerns the quintuple
(A, B, C, D, E). Let D := imD, E := kerE, and assume

D ⊆ V∗ (5.1.50)
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E E +S∗
2 =

E + S∗
i

V∗ +S∗
1 =

V∗ + S∗
2

V∗

Vm := V∗ ∩ S∗
1

S∗
2

{0} {0}

Ψ(E,B+D)

Z(u, d; e)+S∗
2

RE = RV∗ =
V∗ ∩ S∗

2

S∗
1

Φ(B,E)

Z(u; e)

Φ(B+D,E)

Z(u, d; e)

Ψ(E,B)

Z(u; e)
∩V∗

Figure 5.9. Lattices Φ(B,E) and Φ(B+D,E) (on the left) and

their auxiliary duals.

By Property 4.2.1, on this assumption

V∗ :=maxV(A,B, E) =maxV(A,B+D, E) (5.1.51)

Consider the lattices
Φ(B,E) and Φ(B+D,E) (5.1.52)

which, the latter being a part of the former (see Property 4.4.2), can be rep-
resented in the same Hasse diagram, as shown in Fig. 5.9 In the figure the
following notations have been introduced:

S∗
1 := minS(A, E ,B+D) (5.1.53)

S∗
2 := minS(A, E ,B) (5.1.54)

Their auxiliary dual lattices are

Ψ(E,B) and Ψ(E,B+D) (5.1.55)

i.e., the lattices of all (A, E)-conditioned invariants self-hidden with respect
to B and B+D, which can also be represented in the same Hasse diagram.
Note that the elements of the second auxiliary lattice can be obtained by
summing S∗

2 instead of S∗
1 to the corresponding controlled invariants, since all
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XX

QD = QS∗ =
S∗ + V∗

2

V∗
2

V∗
1

S∗

DD ∩ V∗
2 =

D ∩ V∗
1

Ψ(C,D)

Z(d; y)+S∗

S∗ ∩ V∗
2 =

S∗ ∩ V∗
1

SM := S∗ +V∗
1

Φ(D,C∩E)

Z(d; y, e)

Φ(D,C)

Z(d; y)

Ψ(C∩E,D)

Z(d; y, e)
∩V∗

2

Figure 5.10. Lattices Ψ(C,D) and Ψ(C∩E,D) (on the right) and

their auxiliary duals.

these controlled invariants contain D. The dual-lattice diagram represented in
Fig. 5.9 is obtained from the fundamental one simply by replacing B with B+D
and C with E . Also note that invariant zeros are related to lattices, being the
unassignable internal or external eigenvalues of suitable well-defined sublattices
of controlled or conditioned invariants.

All of the preceding is dualized as follows. Let

S∗ ⊇ E (5.1.56)

By the dual of Property 4.2.1, on this assumption

S∗ := minS(A, C,D) =minS(A, C ∩E ,D) (5.1.57)

Consider the lattices
Ψ(C,D) and Ψ(C∩E,D) (5.1.58)

which, the latter being a part of the former (see Property 4.4.2), can be rep-
resented in the same Hasse diagram, as shown in Fig. 5.10. In the figure, the
following notations have been introduced:

V∗
1 := maxV(A,D, C ∩E) (5.1.59)

V∗
2 := maxV(A,D, C) (5.1.60)
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Their auxiliary dual lattices are

Φ(D,C) and Φ(D,C∩E) (5.1.61)

i.e., the lattices of all (A,D)-controlled invariants self-bounded with respect to
C and C ∩E , which can also be represented in the same Hasse diagram.

The search for resolvents in connection with the most important synthesis
problems concerns the elements of lattices Φ(B+D,E) and Ψ(C∩E,D) (the lattice on
the left in Fig. 5.9 and that on the right in Fig. 5.10): in fact, resolvents are, in
general, an (A,B)-controlled invariant and an (A, C)-conditioned invariant both
contained in E and containing D. It will be proved that restricting the choice of
resolvents to self-bounded controlled and self-hidden conditioned invariants does
not prejudice generality. A question now arises: is it possible to set a one-to-one
correspondence directly between these lattices, so that stabilizability features
can be comparatively considered ? The answer is affirmative: it can be induced
by a one-to-one correspondence between subsets of the auxiliary lattices, which
are themselves lattices.

The elements of auxiliary lattices Φ(D,C∩E) and Ψ(E,B+D) are respectively
(A,D)-controlled invariants contained in C ∩E and (A, E)-conditioned invariants
containing B+D. On the other hand, note that

AV ⊆ V + D ⇒ AV ⊆ V + B + D (5.1.62)

A (S ∩ E) ⊆ S ⇒ A (S ∩ C ∩ E) ⊆ S (5.1.63)

i.e., any (A,D)-controlled invariant is also an (A,B+D)-controlled invariant
and any (A, E)-conditioned invariant is also an (A, C ∩E)-conditioned invari-
ant. Unfortunately, not all the elements of Φ(D, C ∩E) are self-bounded with
respect to C ∩ E as (A,B+D)-controlled invariants, and not all the elements
of Ψ (E ,B+D) are self-hidden with respect to B+D as (A, C ∩E)-conditioned
invariants; the elements that meet this requirement belong to the sublattices

sub(Φ(B+D,C∩E)) := {V : V ∈ Φ(D,C∩E) , V ⊇ V∗
1 ∩ (B+D)} (5.1.64)

sub(Ψ(C∩E,B+D)) := {S : S ∈ Ψ(E,B+D) , S ⊆ S∗
1 + (C ∩E)} (5.1.65)

to which Theorem 5.1.1 can still be applied. Owing to Theorems 4.1.4 and
4.1.5, the previous lattices can also be defined by the relations

sub(Φ(B+D,C∩E)) := {V : V ∈ Φ(D,C∩E) , V ⊇ V∗
1 ∩ S∗

1} (5.1.66)

sub(Ψ(C∩E,B+D)) := {S : S ∈ Ψ(E,B+D) , S ⊆ V∗
1 + S∗

1} (5.1.67)

which point out the new infimum and supremum, which are different from those
of Φ(D,C∩E) and Ψ(E,B+D).

The sublattices of Φ(B+D,E) and Ψ(C∩E,D) defined by the one-to-one correspon-
dences shown in Fig. 5.9 and 5.10 with the auxiliary sublattices (5.1.67, 5.1.66)
are defined by

ΦR := {V : V ∈ Φ(B+D,E) , Vm ⊆ V ⊆ VM} (5.1.68)

ΨR := {S : S ∈ Ψ(C ∩ E ,D) , Sm ⊆ S ⊆ SM} (5.1.69)
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AV ⊆V +B
D⊆V ⊆E

V ⊆E (dashed line)

A(S ∩E)⊆S

S ⊇B+D

S ⊇B (dashed line)

AV ⊆V +D

V ⊆C (dashed line)

V ⊆C ∩E

A(S ∩C)⊆S

S ⊇D (dashed line)

D⊆S ⊆E

V∗ V∗ +S∗
1 =

V∗ +S∗
2

V∗
2

QD = QS∗ =
S∗ +V∗

2

VM := V∗

∩ (V∗
1 +S∗

1 )

←Φ(D,C)

Ψ(C,D)→

Z(d; y)

V∗
1V∗

1 +S∗
1

SM := S∗ +V∗
1

ΦR

+S∗
2

←Φ(B,E)

Ψ(E,B)→

Z(u; e)

←Φ(B+D,E)

Ψ(E,B+D)→

Z(u, d; e)

←Φ(D,C∩E)

Ψ(C∩E,D)→

Z(d; y, e)

∩V∗
1

+S∗
1 ∩V∗

2

+S∗

∩V∗
ΨR

Vm := V∗ ∩S∗
1 S∗

1 V∗
1 ∩S∗

1
Sm := S∗ +

(V∗
1 ∩S∗

1 )

RE = RV∗ =

(V∗ ∩S∗
2 ) S∗

2
V∗

1 ∩S∗ =

V∗
2 ∩S∗

S∗

+Vm

∩SM

Figure 5.11. Induced one-to-one correspondence between

suitable sublattices of Φ(B+D,E) and Ψ(C∩E,D) (which are de-

noted by ΦR and ΨR).

with

Vm := V∗ ∩ S∗
1 (5.1.70)

VM := V∗ ∩ (V∗
1 + S∗

1 ) = V∗ ∩ S∗
1 + V∗

1 (5.1.71)

Sm := S∗ + V∗
1 ∩ S∗

1 = (S∗ + V∗
1 ) ∩ S∗

1 (5.1.72)

SM := S∗ + V∗
1 (5.1.73)

The overall dual-lattice layout is represented in Fig. 5.11. The identities
expressed in (5.1.71, 5.1.72) follow from V∗

1 ⊆V∗ and S∗
1 ⊇S∗. The former

derives from

V∗
1 :=maxV(A,D, C ∩E)⊆maxV(A,B+D, C ∩E)⊆maxV(A,B+D, E) =V∗

where the first inclusion is related to the procedure for the computation of
maxV(∗, ∗) and the last equality from D⊆V∗. Relation S∗

1 ⊇S∗ can be proved
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by duality. The one-to-one correspondences between sublattices (5.1.68, 5.1.69)
are defined by

S = ((V +S∗
1 ) ∩ V∗

1 ) + S∗ = (V +S∗
1 ) ∩ (V∗

1 +S∗) = (V +S∗
1 ) ∩ SM

V = ((S ∩V∗
1 ) + S∗

1 ) ∩ V∗ = (S ∩V∗
1 ) + (S∗

1 +V∗) = (S ∩V∗
1 ) + Vm

Note, in particular, that Vm and VM are (A,B)-controlled invariants self-
bounded with respect to E , and that Sm and SM are (A, C)-conditioned in-
variants self-hidden with respect to D. These particular elements of Φ(B,E) and
Ψ(C,D) are very useful in the regulator and compensator synthesis procedures,
which will be approached and thoroughly investigated in the next section.

5.2 The Dynamic Disturbance Localization

and the Regulator Problem

The solution of two basic problems, where the power of the geometric approach
is particularly stressed, will now be discussed. They are the disturbance localiza-
tion by dynamic compensator and the regulator problem. First, nonconstructive
but very simple and intuitive necessary and sufficient conditions, will be derived.
Then constructive necessary and sufficient conditions that directly provide re-
solvents - and so can be directly used for synthesis - will be stated for the
solvability of both problems.

For the disturbance localization by dynamic compensator we refer to the
block diagram of Fig. 5.3 and assume that the controlled system consists only
of the plant, without any exosystem; thus it is completely stabilizable and
detectable.

Problem 5.2.1 (disturbance localization by dynamic compensator) Refer to
the block diagram of Fig. 5.3 and assume that (A, B) is stabilizable and (A, C)
detectable. Determine, if possible, a feedback compensator of the type shown in
the figure such that:

1. e(t) = 0, t≥ 0, for all admissible d(·) and for x(0) = 0, z(0) = 0 ;

2. lim t→∞ x(t) = 0 , lim t→∞ z(t) = 0 for all x(0), z(0) and for d(·) = 0 .

Condition 1 is the structure requirement and 2 the stability requirement .
Problem 5.2.1 can be stated also in geometric terms referring to the extended
system (5.1.9–5.1.12), obviously with R̂ = O.

Problem 5.2.2 (geometric formulation of Problem 5.2.1) Refer to the block
diagram of Fig. 5.3 and assume that (A, B) is stabilizable and (A, C) detectable.
Determine, if possible, a feedback dynamic compensator of the type shown in the
figure such that:

1. the overall system has an Â-invariant Ŵ that satisfies

D̂ ⊆ Ŵ ⊆ Ê with D̂ := imD̂ , Ê := kerÊ ;
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2. Â is stable.

Necessary and sufficient conditions for the solvability of Problem 5.2.1 are
given in the following theorem in geometric terms regarding (A, B, C, D, E).3

Theorem 5.2.1 The disturbance localization problem by a dynamic compen-
sator admits a solution if and only if there exist both an (A,B)-controlled in-
variant V and an (A, C)-conditioned invariant S such that:

1. D ⊆ S ⊆ V ⊆ E ; (5.2.1)

2. S is externally stabilizable; (5.2.2)

3. V is internally stabilizable; (5.2.3)

Conditions stated in Theorem 5.2.1 are nonconstructive, since they refer to
a resolvent pair (S,V) which is not defined. Equivalent constructive conditions
are stated as follows. They are formulated in terms of subspaces S∗,V∗,SM ,
and VM defined in (5.1.57, 5.1.51, 5.1.73, 5.1.71).4

Theorem 5.2.2 The disturbance localization problem by a dynamic compen-
sator admits a solution if and only if:

1. S∗ ⊆ V∗ ; (5.2.4)

2. SM is externally stabilizable; (5.2.5)

3. VM is internally stabilizable. (5.2.6)

We shall now consider the regulator problem. The formulation herein pre-
sented is very general and includes all feedback connections examined so far as
particular cases (disturbance localization, unknown-input asymptotic estima-
tion, the above dynamic compensator). Moreover, it will be used as a reference
for further developments of the theory, like approach to reduced-order devices
and robust regulation. We still refer to the block diagram of Fig. 5.3, assuming
in this case that an exosystem is included as part of the controlled system, as
in Fig. 5.2.5

Problem 5.2.3 (the regulator problem) Refer to the block diagram of Fig. 5.3,
where the controlled system is assumed to have the structure of Fig. 5.2 with
(A11, B1) stabilizable and (A, C) detectable. Determine, if possible, a feedback
regulator of the type shown in Fig. 5.3 such that:

3 This theorem is due to Willems and Commault [37].
4 These constructive conditions without eigenspaces have been introduced by Basile,

Marro, and Piazzi [6].
5 The regulator problem has been the object of very intensive research. The most im-

portant contributions to its solution in the framework of the geometric approach are due to
Wonham [39] (problem without the stability requirement), Wonham and Pearson [40], and
Francis [17] (problem with the stability requirement). The statement reported here, which
includes disturbance localization as a particular case, is due to Schumacher [31]. Theorem
5.2.3, where the plant is explicitly introduced as a geometric object, is due to Basile, Marro,
and Piazzi [8], as well as Theorem 5.2.4, where the stability requirement is handled without
any use of eigenspaces [9].
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1. e(t) = 0, t≥ 0, for all admissible d(·) and for x1(0) = 0, x2(0) = 0, z(0) = 0 ;

2. lim t→∞ e(t) = 0 for all x1(0), x2(0), z(0) and for d(·) =0 ;

3. lim t→∞ x1(t) = 0 , lim t→∞ z(t) = 0 for all x1(0), z(0) and for x2(0) = 0,
d(·) =0 .

Condition 1 is the structure requirement , 2 the regulation requirement , and 3
the stability requirement . Problem 5.2.3 can also be stated in geometric terms:
first, define the extended plant as the Â-invariant

P̂ :=











x1

x2

z



 : x2 = 0







(5.2.7)

and refer again to the extended system (5.1.9–5.1.12) with R̂ =O. The three
points in the statement of Problem 5.2.3 can be reformulated as follows:

1. There exists an Â-invariant Ŵ1 such that D̂ ⊆ Ŵ1 ⊆ Ê ;

2. There exists an externally stable Â-invariant Ŵ2 such that Ŵ2 ⊆ Ê ;

3. P̂ , as an Â-invariant, is internally stable.

Note that Ŵ := Ŵ1 + Ŵ2 is an externally stable Â-invariant as the sum of
two Â-invariants, one of which is externally stable, so that P̂ is internally stable
if and only if Ŵ ∩ P̂ is so. In fact, if P̂ is internally stable, the invariant Ŵ ∩ P̂ is
also internally stable, being contained in P̂ . To prove the converse, consider the
similarity transformation T̂ := [T1 T2 T3 T4] with imT1 = Ŵ ∩ P̂ , im [T1 T2] = P̂,
im [T1 T3] = Ŵ , which leads to

T̂−1Â T̂ =









A′
11 A′

12 A′
13 A′

14

O A′
22 O A′

24

O O A′
33 A′

34

O O O A′
44









Submatrix A′
11 is stable since Ŵ ∩ P̂ is internally stable, A′

22 and A′
44 are stable

since Ŵ is externally stable, so that P̂ is internally stable as a consequence of
A′

11 and A′
22 being stable. Now Problem 5.2.3 can be stated in geometric terms

as follows.

Problem 5.2.4 (geometric formulation of Problem 5.2.3
Refer to the block diagram of Fig. 5.3, where the controlled system is assumed

to have the structure of Fig. 5.2 with (A1, B1) stabilizable and (A, C) detectable.
Determine, if possible, a feedback regulator of the type shown in Fig. 5.3 such
that:

1. the overall system has an Â-invariant Ŵ that satisfies

D̂ ⊆ Ŵ ⊆ Ê , with D̂ := imD̂ , Ê := kerÊ ;
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2. Ŵ is externally stable;

3. Ŵ ∩ P̂ (which is an Â-invariant) is internally stable.

Necessary and sufficient conditions for solvability of the regulator problem
are stated in the following theorem, which can be considered as an extension of
Theorem 5.2.1.

Theorem 5.2.3 The regulator problem admits a solution if and only if there
exist both an (A,B)-controlled invariant V and an (A, C)-conditioned invariant
S such that:6

1. D ⊆ S ⊆ V ⊆ E ; (5.2.8)

2. S is externally stabilizable; (5.2.9)

3. V is externally stabilizable; (5.2.10)

3. V ∩P is internally stabilizable. (5.2.11)

The corresponding constructive conditions are stated in the following theo-
rem, which extends Theorem 5.2.2.

Theorem 5.2.4 Let all the exogenous modes be unstable. The regulator prob-
lem admits a solution if and only if:

1. S∗ ⊆ V∗ ; (5.2.12)

2. V∗ is externally stabilizable; (5.2.13)

3. SM is externally stabilizable; (5.2.14)

4. VM ∩P is internally stabilizable; (5.2.15)

5. VM +V∗ ∩P is complementable with respect to (VM ,V∗) . (5.2.16)

On stabilizability and complementability of controlled invariants, see Sub-
section 4.1.4. The assumption that all the exogenous modes are unstable in
practice does not affect generality. In fact, any possible asymptotically stable
exogenous mode can be eliminated in the mathematical model as it does not in-
fluence the asymptotic behavior of the overall system, since the extended plant
is required to be asymptotically stable.

5.2.1 Proof of the Nonconstructive Conditions

This subsection reports the proofs of Theorems 5.2.1 and 5.2.3. Of course, they
are related to each other, since the second theorem extends the first.

Proof of Theorem 5.2.1. Only if. Assume that conditions 1 and 2 stated
in Problem 5.2.2 are satisfied. Hence, Ŵ is an Â-invariant, so that, by virtue

6 Note that V∩P is an (A,B)-controlled invariant as the intersection of an (A,B)-controlled
invariant and an A-invariant containing B. In fact, A(V ∩P) ⊆ AV ∩AP ⊆ (V +B)∩P =
V ∩P +B.
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of Property 5.1.1, it is also an (Â0, B̂0)-controlled and an (Â0, Ĉ0)-conditioned
invariant, both internally and externally stabilizable since Ŵ is both an inter-
nally and externally stable Â-invariant. Thus, by Lemma 5.1.1 V := P (Ŵ) is an
internally and externally stabilizable (A,B)-controlled invariant, and by Lemma
5.1.2 S := I(Ŵ) is an internally and externally stabilizable (A, C)-conditioned
invariant. Inclusions (5.2.1) follow from

I(Ŵ) ⊆ P (Ŵ) for all Ŵ
D = I(D̂) = P (D̂)

E = P (Ê) = I(Ê)

If. Assume that the conditions reported in the statement are satisfied.
Recall that, if the pair (A, B) is stabilizable, any (A,B)-controlled invariant
is externally stabilizable and, if (A, C) is detectable, any (A, C)-conditioned
invariant is internally stabilizable. In the compensator synthesis assume m =n
and

Ŵ :=

{[

x
z

]

: x ∈ V , z = x − η , η ∈ S
}

(5.2.17)

so that, clearly, P (Ŵ) =V and I(Ŵ) =S; hence, by Lemmas 5.1.1 and 5.1.2, Ŵ
is both an internally and externally stabilizable (Â0, B̂0)-controlled invariant and
an internally and externally stabilizable (Â0, Ĉ0)-conditioned invariant. Note
that the internal and external stabilizability of any Ŵ as an (Â0, B̂0)-controlled
and an (Â0, Ĉ0)-conditioned invariant in general is not sufficient for the existence
of an algebraic output-to-input feedback such that Ŵ is an Â-invariant inter-
nally and externally stable, i.e., Property 5.1.1 cannot be extended to include
the stability requirement. However, in the particular case of (5.2.17) it will be
proved by a direct check that such an input-to-output feedback exists. Define
matrices L1 and L2 which satisfy

L1 C + L2 = In with kerL2 = L (5.2.18)

and L such that
L ⊕ S ∩ C = S (5.2.19)

These matrices exist owing to Lemma 5.1.3. It follows that, L being contained
in S but having zero intersection with S ∩C

L ∩ C = {0} (5.2.20)

Also, derive F and G such that

(A + B F )V ⊆ V (5.2.21)

(A + G C)S ⊆ S (5.2.22)

with both A +BF and A +GC stable. The extended system (5.1.30) solves the
problem. In fact, consider the equivalent system (5.1.32): in terms of the new
coordinates (ρ, η) Ŵ is expressed as

Ŵ =

{[

ρ
η

]

: ρ ∈ V , η ∈ S
}

(5.2.23)
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and from (5.2.18) it follows that

(A + B F (L1C + L2)) (S ∩ C) = (A + B F ) (S ∩ C) ⊆ V

From A(S ∩C)⊆S (S is an (A, C)-conditioned invariant) and BFL1C(S ∩C) =
{0} (by definition of C) we derive

B F L2 (S ∩ C) ⊆ V

As BFL2L= {0}, (5.2.19) yields

B F L2 S ⊆ V

so that Ŵ is an Â-invariant. Clearly D̂ ⊆ Ŵ ⊆ Ê and matrix Â is stable owing
to its particular structure in the new basis. �

Proof of Theorem 5.2.3. Only if. Refer to Problem 5.2.4. Owing to Property
5.1.1, Ŵ is both an (Â0, B̂0)-controlled and an (Â0, Ĉ0)-conditioned invariant.
Ŵ is externally stabilizable, both as a controlled invariant and as a conditioned
invariant because, as an Â-invariant it is externally stable (recall that Â can
be expressed as Â0 + B̂K̂Ĉ). Furthermore, Ŵ ∩ P̂ as an internally stable Â-
invariant is an internally stabilizable (Â0, B̂0)-controlled invariant. Consider the
subspaces V := P (Ŵ), S := I(Ŵ): inclusions (5.2.8) are proved as in Theorem
5.2.1, while, by virtue of Lemmas 5.1.1 and 5.1.2, V and S are externally
stabilizable and P (Ŵ ∩ P̂) is internally stabilizable. Since

P (Ŵ ∩ P̂) = P (Ŵ) ∩ P (P̂)

because P̂ ⊇ Ẑ ,7 and
P (P̂) = P

it follows that V ∩ P is internally stabilizable. Note that by means of a similar
argument it would be possible to prove that

I(Ŵ ∩ P̂) = I(Ŵ) ∩ I(P̂) = S ∩ P

is an internally stabilizable (A, C)-conditioned invariant. Nevertheless, this
property is implied by the detectability of the plant, since the intersection of
any two conditioned invariants is internally stabilizable if any one of them is.

If. Assume that all the conditions reported in the statement are met;
define matrices L1 and L2 satisfying (5.2.18, 5.2.19), a matrix F such that
(5.2.21) holds with both (A +BF )|RV

and (A + BF )|X/V stable, and a matrix

7 In fact, the following equalities hold:

P (Ŵ ∩ P̂) = I(Ŵ ∩ P̂ + Ẑ) = I
(

(Ŵ + Ẑ) ∩ (P̂ + Ẑ)
)

= I(Ŵ + Ẑ) ∩ I(P̂ + Ẑ) = P (Ŵ) ∩ P (P̂)
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G such that (5.2.22) holds with A + GC stable: this is possible since S is
externally stabilizable and the controlled system is detectable. It is easily
proved that this choice of F also makes (A + BF )|P stable. In fact, consider the
similarity transformation T := [T1 T2 T3 T4], with imT1 =V ∩P, im [T1 T2] =V,
im [T1 T3] =P. Matrix A + BF in the new basis has the structure

T−1(A + B F ) T =









A′
11 A′

12 A′
13 A′

14

O A′
22 O A′

24

O O A′
33 A′

34

O O O A′
44









(5.2.24)

due to both V and P being (A +BF )-invariants. V ∩P is internally stable,
being internally stabilizable by assumption and having, as constrained reachable
set, RV , which has been stabilized by the particular choice of F : hence A′

11 is
stable. On the other hand, A′

33 and A′
44 are stable because V is externally stable:

it follows that P is internally stable. Having determined matrices L1, L2, F , and
G, the regulator synthesis can be performed as in the previous proof. Define
again Ŵ as in (5.2.23): it is immediately verified that Ŵ is an Â-invariant and
satisfies D̂ ⊆ Ŵ ⊆ Ê .

It still has to be proved that the regulation and plant stability requirements
are met, i.e., in geometric terms, that Ŵ is externally and P̂ internally stable.
Regarding the first requirement, let us make the change of basis (5.1.31) a little
finer by defining new coordinates (ρ′, η′) according to

[

ρ
η

]

=

[

P O
O Q

] [

ρ′

η′

]

with P := [P1 P2], imP1 =V and Q := [Q1 Q2], imQ1 =S. In this new basis the
system matrix (5.1.32) assumes the structure









× × × ×
O S O ×
O O S ×
O O O S









where × denotes a generic and S a stable submatrix. Stability of the subma-
trices on the main diagonal depends on V being internally stable and A + GC
stable. In the new basis

Ŵ = im
(









I1 O
O O
O I2

O O









)

where I1, I2 denote properly dimensioned identity matrices: it is immediately
verified that Ŵ is externally stable. To prove that P̂ is internally stable, note
that all the extended system eigenvalues, the exogenous excepted, are stable,
because maps (A +BF )|P and A + GC are stable. Their eigenvalues are all and
only those internal of P̂ . �
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5.2.2 Proof of the Constructive Conditions

The constructive conditions stated in Theorems 5.2.2 and 5.2.4 are expressed
in terms of the subspaces defined and analyzed in the previous section. First
of all, note that the previously proved necessary and sufficient structural con-
ditions (5.2.1) and (5.2.8) clearly imply the necessity of (5.2.4) and (5.2.12);
then, since D⊆V∗, V∗, the maximal (A,B)-controlled invariant contained in E
coincides with the maximal (A,B+D)-controlled invariant contained in E and,
dually, since S∗ ⊇E , S∗, the minimal (A, C)-conditioned invariant containing
D coincides with the minimal (A, C ∩E)-conditioned invariant containing D.
Also recall that Vm denotes the infimum of lattice Φ(B+D,E) of all (A,B+D)-
controlled invariants self-bounded with respect to E , SM the supremum of the
lattice Ψ(C∩E,D) of all (A, C ∩E)-conditioned invariants self-hidden with respect
to D. VM and Sm denote respectively the supremum and the infimum of re-
stricted lattices ΦR and ΨR. If the necessary inclusion S∗ ⊆V∗ is satisfied, the
latter subspaces (which in the general case are defined by (5.1.71) and (5.1.72))
can be expressed as functions of Vm and SM by

VM = Vm + SM (5.2.25)

Sm = Vm ∩ SM (5.2.26)

which are proved by the following manipulations:

VM =Vm+SM =(V∗∩S∗
1 )+(S∗+V∗

1 )=((V∗+S∗)∩S∗
1)+V∗

1 =(V∗∩S∗
1 )+V∗

1

Sm =SM∩Vm =(S∗+V∗
1 )∩(V∗∩S∗

1 )=((S∗∩V∗)+V∗
1)∩S∗

1 =(S∗+V∗
1 )∩S∗

1

In the expression of VM the third equality derives from the distributivity of the
sum with S∗ with respect to the intersection V∗ ∩S∗

1 and the subsequent one
from inclusion S∗⊆V∗. The equalities in the expression of Sm can be proved
by duality.

The proof of the constructive conditions will be developed by using the non-
constructive ones as a starting point. In particular, for necessity it will be
proved that the existence of a resolvent pair (S,V), i.e., of a pair of subspaces
satisfying the conditions stated in Theorems 5.2.2 and 5.2.3, implies the ex-
istence of a resolvent pair with the conditioned invariant self-hidden and the
controlled invariant self-bounded. This property leads to conditions for the
bounds of suitable sublattices of Ψ(C∩E,D) and Φ(B+D,E) to which the elements of
this second resolvent pair must belong.

Proof of Theorem 5.2.2. Only if. Assume that the problem has a solution;
hence, owing to Theorem 5.2.1 there exists a resolvent pair (S,V), where S
is an externally stabilizable (A, C)-conditioned invariant and V an internally
stabilizable (A,B)-controlled invariant satisfying the inclusions D⊆S ⊆V ⊆E .
Then, as already pointed out, the structural property S∗ ⊆V∗ holds. First
we prove that in this case there also exists an externally stabilizable (A, C)-
conditioned invariant S̄, self-hidden with respect to D, such that

Sm ⊆ S̄ ⊆ SM (5.2.27)
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and an internally stabilizable (A,B)-controlled invariant V̄ , self-bounded with
respect to E , such that

Vm ⊆ V̄ ⊆ VM (5.2.28)

which satisfy the same inclusions that, since D⊆ S̄ and V̄ ⊆ E , reduce to

S̄ ⊆ V̄ (5.2.29)

Assume

S̄ := (S +Sm) ∩ SM = S ∩SM + Sm (5.2.30)

V̄ := V ∩VM + SM = (V +Vm) ∩ VM (5.2.31)

Note that, owing to Lemmas 4.2.1 and 4.2.2 Vm is internally stabilizable and SM

externally stabilizable. S ∩SM is externally stabilizable and self-hidden with
respect to D, i.e., it belongs to Ψ (C ∩E ,D), so that S̄, as the sum of two elements
of Ψ (C ∩E ,D) one of which is externally stabilizable, is externally stabilizable
and belongs to Ψ (C ∩E ,D). The dual argument proves that V̄ is internally
stabilizable and belongs to Φ(B+D, E). Relations (5.2.30) and (5.2.31) are
equivalent to S̄ ∈ Ψ̄R and V̄ ∈ Φ̄R. Inclusion (5.2.29) follows from

S ∩ SM ⊆ S ⊆ V ⊆ V + Vm

S ∩ SM ⊆ SM ⊆ SM + Vm = VM

Sm = SM ∩ Vm ⊆ Vm ⊆ V + Vm

Sm = SM ∩ Vm ⊆ Vm ⊆ VM

We now introduce a change of basis that will lead to the proof. This type
of approach has already been used in Subsection 4.1.3 to point out connections
between stabilizability features of self-bounded controlled invariants and related
self-hidden conditioned invariants. Let us assume the similarity transformation
T := [T1 T2 T3 T4], with imT1 = Sm =SM ∩Vm, im [T1 T2] = Vm and im [T1 T3] =
SM . Since SM ⊆ S∗ + C ⊆ Sm + C, it is possible to choose T3 in such a way that

imT3 ⊆ C (5.2.32)

By duality, since Vm ⊇V∗ ∩B⊇Vm ∩B, matrix T4 can be chosen in such a way
that

im [T1 T2 T4] ⊇ B (5.2.33)

In the new basis matrices A′ := T−1A T , B′ :=T−1B and C ′ := C T are expressed
as

A′ =









A′
11 A′

12 A′
13 A′

14

A′
21 A′

22 O A′
24

O O A′
33 A′

34

A′
41 A′

42 O A′
44









B′ =









B′
1

B′
2

O
B′

4









C ′ = [ C ′
1 C ′

2 O C ′
4 ]

(5.2.34)
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Conditions (5.2.32) and (5.2.33) imply the particular structures of matrices
B′ and C ′. As far as the structure of A′ is concerned, note that the zero
submatrices in the third row are due to the particular structure of B′ and to
Vm being an (A,B)-controlled invariant, while those in the third column are
due to the particular structure of C ′ and to SM being an (A, C)-conditioned
invariant. If the structural zeros in A′, B′, and C ′ are taken into account, from
(5.2.27, 5.2.28) it follows that all the possible pairs S̄, V̄ can be expressed as

S̄ = Sm + im (T3XS) and V̄ = Vm + im (T3XV ) (5.2.35)

where XS, XV are basis matrices of an externally stable and an internally
stable A′

33-invariant subspace respectively. These stability properties follow
from S̄ being externally stabilizable and V̄ internally stabilizable. Condition
(5.2.29) clearly implies imXS ⊆ imXV , so that A′

33 is stable. Since, as has
been previously pointed out, SM is externally stabilizable and Vm internally
stabilizable, the stability of A′

33 implies the external stabilizability of Sm and
the internal stabilizability of VM .8

If. The problem admits a solution owing to Theorem 5.2.1 with S :=SM

and V :=VM . �

Proof of Theorem 5.2.4. Only if. We shall first present some general
properties and remarks on which the proof will be based.

(a) The existence of a resolvent pair (S,V) induces the existence of a second
pair (S̄, V̄) whose elements, respectively self-hidden and self-bounded, satisfy
S̄ ∈ΨR and V̄ ∈ΦE , with ΨR defined by (5.1.69) and

ΦE := {V : Vm ⊆ V ⊆ V∗} (5.2.36)

Assume

S̄ := (S +Sm) ∩ SM = S ∩SM + Sm (5.2.37)

V̄ := V + Vm (5.2.38)

Note that S ∩SM is externally stabilizable since S and SM are, respectively by
assumption and owing to Lemma 4.2.1, so that S̄ is externally stabilizable as
the sum of two self-hidden conditioned invariants, one of which is externally
stabilizable. V ∩P contains D and is internally stabilizable by assumption and
Vm is internally stabilizable owing to Lemma 4.2.1. Furthermore, Vm ⊆P: in
fact, refer to the defining expression of Vm - (5.1.70) - and note that

S∗
1 := minS(A, E ,B+D) ⊆ minJ (A,B+D) ⊆ P

The intersection V̄ ∩P =V ∩P +Vm is internally stabilizable since both con-
trolled invariants on the right are. On the other hand, V being externally
stabilizable implies that also V̄ is so because of the inclusion V ⊆ V̄.

8 External stabilizability of Sm, which is more restrictive than that of SM , is not considered
in the statement, since it is a consequence of the other conditions.
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To emphasize some interesting properties of lattices ΨR, ΦR, and ΦE,
let us now introduce a suitable change of basis, which extends that in-
troduced in the proof of Theorem 5.2.2: consider the similarity trans-
formation T := [T1 T2 T3 T4 T5], with imT1 =Sm =SM ∩Vm, im [T1 T2] =Vm,
im [T1 T3] =SM and im [T1 T2 T3 T4] =V∗. Furthermore, we can choose T3 and
T5 in such a way that the further conditions

imT3 ⊆ C (5.2.39)

im [T1 T2 T5] ⊇ B (5.2.40)

are satisfied. This is possible since, SM being self-hidden and Vm self-
bounded, the inclusions SM ⊆S∗ + C ⊆Sm + C and Vm ⊇V∗ ∩B hold. From
VM =SM +Vm it follows that im [T1 T2 T3] =Vm. In this basis the structures of
matrices A′ := T−1A T , B′ :=T−1B, and C ′ :=C T , partitioned accordingly, are

A′ =















× × × × ×
× × O × ×
O O P R ×
O O O Q ×
× × O × ×















B′ =















×
×
O
O

×















C ′ =
[

× × O × ×
]

(5.2.41)

The zeros in B′ and C ′ are due respectively to inclusions (5.2.40) and
(5.2.39), those in the first and second column of A′ are due to Vm being a
controlled invariant and to the particular structure of B′, those in the third
column to SM being a conditioned invariant and the structure of C ′. Note
that the zero in the third column and fourth row also depends on VM being a
controlled invariant. The displayed subpartitioning of matrices (5.2.41) stresses
the particular submatrix

V :=

[

P R
O Q

]

(5.2.42)

which will play a key role in the search for resolvents. This change of basis
emphasizes a particular structure of matrices A′, B′, and C ′, which immediately
leads to the following statements.

(b) Any element S of ΨR can be expressed as

S = Sm + im (T3XS) (5.2.43)

where XS is the basis matrix of a P -invariant. On the assumption that SM

is externally stabilizable, this invariant is externally stable if and only if S is
externally stabilizable.

(c) Any element V of ΦR can be expressed as

V = Vm + im (T3XV ) (5.2.44)
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where XV is the basis matrix of a P -invariant. On the assumption that Vm

is internally stabilizable, this invariant is internally stable if and only if V is
internally stabilizable.

On the ground of b and c, if S ∈ΨR and V ∈ΦR are such that S ⊆V, clearly
also imXS ⊆ imXV . In other words, inclusions involving elements of ΨR and ΦR

imply inclusions of the corresponding P -invariants. In the sequel, we will refer
also to the lattice of self-bounded controlled invariants

ΦL := {V : VM ⊆ V ⊆ V∗} (5.2.45)

which enjoy the following feature, similar to c.

(d) Any element V of ΦL can be expressed as

V = VM + im (T4Xq) (5.2.46)

where Xq is the basis matrix of a Q-invariant.

Other useful statements are the following:

(e) Let V be an (A,B)-controlled invariant, self-bounded with respect to V∗.
The internal unassignable eigenvalues in between V ∩P and V are all exogenous.

( f ) Let R := minJ (A,B) be the reachable set of the controlled system and V
any controlled invariant. The following assertions are equivalent:

V is externally stabilizable ;

V +R (which is an A-invariant) is externally stabilizable ;

V +P (which is an A-invariant) is externally stabilizable .

To prove e, consider a change of basis defined by the transformation matrix
T = [T1 T2 T3 T4], with imT1 =V ∩P, im[T1 T2] =V, im[T1 T3] =P. We obtain
the following structures of matrices A′ := T−1A T and B′ :=T−1B:

A′ =









× × × ×
O A′

22 O A′
24

× × × ×
O O O A′

44









B′ =









B′
1

O
B′

3

O









the eigenvalues referred to in the statement are those of A′
22. The zeros in B′

are due to P ⊇B, whereas those in A′ are due to the invariance of P and the
controlled invariance of V. The eigenvalues external with respect to P (the
exogenous ones) are those of

[

A′
22 A′

24

O A′
44

]

hence the eigenvalues of A′
22 are all exogenous. Also, f is easily proved by means

of an appropriate change of basis, taking into account the external stability of
R with respect to P.
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We shall now review all the points in the statement, and prove the neces-
sity of the given conditions. Condition (5.2.12) is implied by Theorem 5.2.2,
in particular by the existence of a resolvent pair which satisfies D⊆S ⊆V ⊆E .
Let V be a resolvent, i.e., an externally stabilizable (A,B)-controlled invariant:
owing to Property 4.1.13 V +R is externally stable; since V ⊆V∗, V∗ +R is
also externally stable, hence V∗ is externally stabilizable and (5.2.13) holds. If
there exists a resolvent S, i.e., an (A, C)-conditioned invariant contained in E ,
containing D and externally stabilizable, SM is externally stabilizable owing to
Lemma 4.2.2. Thus, the necessity of (5.2.14) is proved. To prove the necessity
of (5.2.15), consider a resolvent pair (S̄, V̄) with S̄ ∈ΨR and V̄ ∈ΦE , whose ex-
istence has been previously proved in point a. Clearly, VL := V̄ ∩P belongs to
ΦR. On the other hand, S̄ ∩P, which is a conditioned invariant as the inter-
section of two conditioned invariants, belongs to ΨR (remember that Sm ⊆Vm

and Vm ⊆P); furthermore, subspaces VL ∩P and VM ∩P clearly belong to ΦR.
From S̄ ⊆ V̄ it follows that S̄ ∩P ⊆VL ∩P; moreover, clearly VL ∩P ⊆VM ∩P.
Owing to points b and c, S̄ ∩P, VL ∩P, VM ∩P, S̄, correspond to invariants
J1,J2,J3,J4 of matrix P such that

J1 ⊆ J2 ⊆ J3 and J1 ⊆ J4

S̄ being externally stabilizable J4 and, consequently, J3 +J4, is externally
stable. Therefore, considering that all the eigenvalues external to J3 are the
unassignable ones between VM ∩P and VM , J3 +J4 must be the whole space
upon which the linear transformation expressed by P is defined. This feature
can also be pointed out with the relation

VM ∩ P + S̄ = VM

Matrix P is similar to








P ′
11 × × ×
O P ′

22 × O
O O P ′

33 O
O O O P ′

44









where the partitioning is inferred by a change of coordinates such that the first
group corresponds to J1, the first and second to J2, the first three to J3 and
the first and fourth to J4. The external stabilizability of S̄ implies the stability
of P ′

22 and P ′
33, while the internal stabilizability of VL ∩P implies the stability

of P ′
11 and P ′

22: hence J3 is internally stable, that is to say, VM ∩P is internally
stabilizable. A first step toward the proof of complementability condition
(5.2.16) is to show that any resolvent V̄ ∈ΦE is such that Vp := V̄ +VM ∩P is
also a resolvent and contains VM . Indeed, Vp is externally stabilizable because
of the external stabilizability of V̄; furthermore Vp ∩P is internally stabilizable
since

(V̄ + VM ∩P) ∩ P = V̄ ∩P + Vm ∩P
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From S̄ ⊆ V̄ and (5.2.46) it follows that

VM = S̄ + VM ∩P ⊆ V̄ + VM ∩P

Owing to point f , considering that all the exogenous modes are unstable, and
Vp and V∗ are externally stabilizable, it follows that

Vp + P = V∗ + P = X

where X denotes the whole state space of the controlled system, hence

Vp + V∗ ∩ P = V∗ (5.2.47)

Owing to d , the controlled invariants VM +Vp ∩P, VM +V∗ ∩P and Vp corre-
spond to Q-invariants K1,K2,K3, such that K1 ⊆K2, K1 ⊆K3. Note also that,
owing to (5.2.47), K2 +K3 is the whole space on which the linear transformation
expressed by Q is defined. Therefore, matrix Q is similar to





Q′
11 × Q′

13

O × O
O O Q′

33





where the partitioning is inferred by a change of coordinates such that the first
group corresponds to K1, the first and second to K2, the first and third to K3.
Submatrix Q′

11 is stable since its eigenvalues are the unassignable ones internal
to Vp ∩P, while Q′

33 has all its eigenvalues unstable since, by the above point
e, they correspond to the unassignable ones between V∗ ∩P and V∗. Therefore,
K1 is complementable with respect to ({0},K3); this clearly implies that K2

is complementable with respect to ({0},K2 +K3), hence (5.2.16) holds for the
corresponding controlled invariants.

If. Owing to the complementability condition (5.2.16), there exists a con-
trolled invariant Vc satisfying

Vc ∩ (VM + V∗ ∩P) = VM (5.2.48)

Vc + (VM + V∗ ∩P) = V∗ (5.2.49)

We will show that (SM ,Vc) is a resolvent pair. Indeed, by (5.2.49) VM ⊆Vc, and
by (5.2.12) and (5.2.49) D⊆SM ⊆Vc ⊆E , since SM ⊆VM . Adding P to both
members of (5.2.48) yields Vc +P =V∗ +P: owing to f , (5.2.13) implies the
external stabilizability of Vc. By intersecting both members of (5.2.48) with P
and considering that Vc ⊆V∗, it follows that Vc ∩P =VM ∩P, hence by (5.2.15)
Vc ∩P is internally stabilizable. �

5.2.3 General Remarks and Computational Recipes

The preceding results are the most general state-space formulations on the
regulation of multivariable linear systems. Their statements are quite simple
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and elegant, completely in coordinate-free form. The constructive conditions
make an automatic feasibility analysis possible by means of a computer, having
the five matrices of the controlled system as the only data for both problems
considered (disturbance localization by means of a dynamic output feedback
and asymptotic regulation). This automatic check is particularly interesting in
the multivariable case, where loss of structural features for implementability of a
given control action may arise from parameter or structure changes (a structure
change may be due, for instance, to interruption of communication channels in
the overall system).

However, a completely automatic synthesis procedure based on the afore-
mentioned constructive conditions is not in general satisfactory for the following
reasons:

1. When the existence conditions are met, in general the problem admits several
solutions, which are not equivalent to each other; for instance, if the plant
is stable, regulation can be obtained both by means of a feedforward or a
feedback controller since either device satisfies the conditions of Problem
5.1.2 but, in general, feedback is preferable since it is more robust against
parameter variation or uncertainty;

2. The order of the regulator derived in the constructive proofs of Theorems
5.2.2 and 5.2.4 is quite high (the plant plus the exosystem order); however,
it is worth noting that this is the maximal order that may be needed, since
the regulator has both the asymptotic tracking and stabilization functions,
and is actually needed only if the controlled plant is strongly intrinsically
unstable.

Both points 1 and 2 will be reconsidered in the next chapter, where a new
formulation and solution for the regulator problem will be presented. It is
a particular case of that discussed in this chapter, but specifically oriented
toward the achievement of robustness and order reduction, hence more similar to
the formulations of synthesis problems for standard single-input, single-output
automatic control systems.

An Example. To illustrate these arguments, a simple example is in order.
Consider the single time constant plant with input u and output c described by

G(s) =
K1

1 + τ1 s
(5.2.50)

and suppose that a controller is to be designed such that the output of the plant
asymptotically tracks a reference signal r consisting of an arbitrary step plus an
arbitrary ramp. Thus, the exosystem is modeled by two integrators in cascade
having arbitrary initial conditions, and the tracking error, which is required to
converge to zero as t approaches infinity, is defined as

e(t) = r(t) − c(t) (5.2.51)
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The controlled system (plant plus exosystem) is described by the equations
(5.1.1–5.1.3) with

A :=





− 1
τ1

0 0
0 0 0
0 1 0



 B :=





K1
τ1
0
0



 D :=





0
0
0





C :=

[

1 0 0
0 0 1

]

E := [−1 0 1 ]

+
_

i.c.i.c. i.c.

1
s2

r e 1 + T s
s2

u K1

1 + r1 s

exosystem regulator plant

e

Figure 5.12. A typical feedback control.

i.c.i.c. i.c.

1
s2

r
1 + T s

Kr(1 + r2 s)

u K1

1 + r1 s

exosystem regulator plant

e

Figure 5.13. A typical feedforward control.

We assume c and r as the outputs of the overall system. Two possible
solutions are represented in Figs. 5.12 and 5.13. The first is a typical feedback
control system and is susceptible to the state-space representation shown in
Fig. 5.3 with

N :=

[

0 0
1 0

]

M :=

[

−1 1
0 0

]

L := [T 1 ] K := [ 0 0 ]

In this case, the only requirement to achieve the prescribed behavior is the
stability condition

T >τ1 (5.2.52)
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The solution presented in Fig. 5.13 is a typical feedforward control system
and corresponds to

N :=
1

τ2

M :=
[

−1 1
τ2

]

L :=
1

Kv

(

1 − T

τ2

)

K :=
[

0 T
Kr τ2

]

In this case, to achieve the prescribed behavior the structural conditions

Kr = K1 and T = τ1 + τ2 (5.2.53)

must be satisfied. Note that (5.2.52) is expressed by an inequality so that, if
the choice of T is sufficiently conservative, it continues to be satisfied also in
the presence of small parameter changes, and the feedback scheme maintains
the regulation property or is robust with respect to parameter variation or
uncertainty. On the other hand, the strict equalities in (5.2.53) are both
necessary for the regulation requirement to be met, so that the feedforward
scheme is not robust. In the feedback case robustness is achieved through two
significant, basic features: the controlled variable e (i.e., the tracking error
which must be asymptotically nulled) is measured or computed without any
error (the summing junction is assumed to be perfect), and an internal model
of the exosystem is embodied in the regulator (the double pole at the origin).
In this way a replica of the signal to be asymptotically tracked is internally
generated in the extended plant and “automatically trimmed” in the presence
of stability of the overall system to null the effects of any parameter variation
on the asymptotic behavior of e and exactly track the reference input r. In
both schemes the regulator has a relatively low order (two in the feedback
case, one in feedforward), but the plant is per se stable. Of course, a purely
feedforward control cannot be implemented when the plant is unstable: in this
case a dynamic feedback must be added to it, at least to achieve stability,
independently of regulation.

We shall now consider compensator and regulator synthesis in greater detail
and show that the synthesis procedures presented to prove sufficiency of the
conditions stated in Theorems 5.2.1 and 5.2.3 can be framed in a more general
context, which will be used in the next section for complete treatment of
reduced-order observers, compensators, and regulators.

The procedures used in the proofs of the preceding theorems lead to synthesis
of compensators and regulators called full-order since their state dimension
coincides with that of the controlled system (including the exosystem) and
observer-based since they are realized according to the scheme of Fig. 5.5(a),
in which state feedback is obtained through an observer. They are exactly
dualizable: thus full-order compensators and regulators dual observer-based
are obtained. These are realized according to the scheme of Fig. 5.5(b), in
which output injection is obtained through a dual observer. We shall now
briefly present the algebraic manipulations concerning this dualization.
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Dualizing the Constructive Synthesis Procedures. Instead of
(5.2.18, 5.2.19) we use

B L1 + L2 = In with imL2 = L (5.2.54)

and L such that
L ∩ (V + B) = V L + B = X (5.2.55)

and show that in this case
L2 G CS ⊆ V (5.2.56)

In fact
(A + (BL1 + L2) G C)S = (A + G C)S ⊆ V ⊆ V +B

and, from AS ⊆AV ⊆V +B (since S ⊆V and V is a controlled invariant) and
BL1GCS ⊆B⊆V +B (by definition of B), it follows that

L2 G C S ⊆ V + B
On the other hand, since L2GCS ⊆L, (5.2.54) implies (5.2.56). The extended
subspace

Ŵ :=

{[

x
z

]

: z ∈ V , x = x − ρ , ρ ∈ S
}

(5.2.57)

which, in the coordinates (ρ, η) of the system (5.1.36), is expressed by

Ŵ =

{[

ρ
η

]

: ρ ∈ S , η ∈ V
}

(5.2.58)

is clearly an Â-invariant. It is easy to verify that it satisfies all the structure
and stability requirements stated in Problems 5.2.2 and 5.2.4

We now consider recipes to derive solutions to the compensator and regulator
problems. The computational aspects on which they are based have already
been considered in Subsection 5.1.2 (see the two simple applications therein
presented), so that they will be reported here in a very schematic way.

Observer-Based Full-Order Compensator. Given the resolvent pair
(S,V), determine L1, L2, F, G such that

1. L1C + L2 = In , kerL2 =L , with L∩C = {0} ,

L+S ∩C =S ; (5.2.59)

2. (A + B F )V ⊆ V , A +BF is stable; (5.2.60)

3. (A + G C)S ⊆ S , A +GC is stable; (5.2.61)

then realize the compensator according to

N := A + G C + B F L2 (5.2.62)

M := B F L1 − G (5.2.63)

L := F L2 (5.2.64)

K := F L1 (5.2.65)
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Dual Observer-Based Full-Order Compensator. Given the resolvent
pair (S,V), determine L1, L2, F, G such that

1. BL1 +L2 = In , imL2 =L , with L+B=X ,

L∩ (V +B) =V ; (5.2.66)

2. (A + B F )V ⊆ V , A +BF is stable; (5.2.67)

3. (A + G C)S ⊆ S , A + GC is stable; (5.2.68)

then realize the compensator according to

N := A + B F + L2 G C (5.2.69)

M := −L2 G (5.2.70)

L := F + L1 G C (5.2.71)

K := L1 G (5.2.72)

Observer-Based Full-Order Regulator. Given the resolvent pair (S,V),
determine L1, L2 still according to (5.2.59) while, as the second group of condi-
tions (those regarding F ), instead of (5.2.60) consider:

2. (A + B F )V ⊆ V , (A +BF )|RV
is stable, (A + BF )|X/V is stable;

(5.2.73)
and derive G still according to (5.2.61). The regulator is defined by (5.2.62–
5.2.65). v2 Dual Observer-Based Full-Order Regulator. Given the
resolvent pair (S,V), determine L1, L2 still according to (5.2.66), F according
to (5.2.73), and G according to (5.2.68). The regulator is defined by (5.2.69–
5.2.72).

5.2.4 Sufficient Conditions in Terms of Zeros

We can easily derive conditions expressed in terms of invariant zeros which
imply the stabilizability conditions of Theorems 5.2.2 and 5.2.4; hence, joined
to the structural condition, they are sufficient for the solvability of the corre-
sponding problems. They are straightforward extensions of the necessary and
sufficient conditions in terms of invariant zeros considered in Subsection 4.4.2 for
disturbance localization and unknown-input asymptotic observation problems.9

Corollary 5.2.1 The disturbance localization problem by a dynamic compen-
sator admits a solution if:

1. S∗ ⊆ V∗ ; (5.2.74)

2. Z(d ; y) −̇ Z(d ; y, e) has all its elements stable; (5.2.75)

3. Z(u ; e) −̇ Z(u, d ; e) has all its elements stable; (5.2.76)

4. Z(u, d ; e)∩Z(d ; y, e) has all its elements stable. (5.2.77)

9 For a more extended treatment of this topic, see Piazzi and Marro [29].
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Proof. (hint) Condition (5.2.75) is equivalent to the external stabilizability
of SM , (5.2.76) to the internal stabilizability of Vm, while (5.2.77) implies that
the internal unassignable eigenvalues between Vm and VM (those corresponding
to lattices ΦR or ΨR in Fig. 5.11) are stable. �

Corollary 5.2.2 Let all the exogenous modes be unstable. The regulator prob-
lem admits a solution if:

1. S∗ ⊆ V∗ ; (5.2.78)

2. Z(d ; y) −̇ Z(d ; y, e) has all its elements stable; (5.2.79)

3. Z(u ; e) −̇ Z(u, d ; e) has all its elements stable; (5.2.80)

4. ZP (u, d ; e)∩Z(d ; y, e) has all its elements stable; (5.2.81)

5. Z(u ; e) contains all the eigenvalues of the exosystem; (5.2.82)

6. ZP (u ; e) has no element equal to an eigenvalue

of the exosystem. (5.2.83)

In (5.2.81) and (5.2.83) ZP (∗ ; ∗) denotes a set of invariant zeros referred only
to the plant, i.e., to the triple (A1, B1, E1).

Proof. (hint) Relation (5.2.79) insures that SM is externally stabilizable,
(5.2.80) and (5.2.81) that VM ∩P is internally stabilizable, and (5.2.82, 5.2.83)
that V∗ is externally stabilizable and VM +V∗ ∩P complementable with respect
to (VM ,V∗). �

5.3 Reduced-Order Devices

In this section we shall state and prove a general theorem for order reduction,
which allows unitary treatment of all reduced-order devices (observers, compen-
sators, and regulators).

We refer to the triple (A, B, C) with the aim of investigating correlation
between structural features and eigenvalue assignability. In reduced form, this
problem has already been approached in Subsection 4.1.3, where two basic prob-
lems for synthesis have been considered: pole assignability with state feedback
under the constraint that feedback also transforms a given controlled invariant
into a simple invariant and its dual, pole assignability by output injection and
contemporary transformation of a conditioned invariant into a simple invariant.
The results of these approaches to pole assignability under structural constraints
are presented in schematic form in Fig. 4.2 and will now be extended by the
following theorem.

Theorem 5.3.1 (the basic theorem for order reduction) Given an (A, C)-
conditioned invariant S, there exist both an (A, C)-conditioned invariant S1
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and an output injection matrix G such that the following structural features
are satisfied:10

1. C ⊕ S1 = X ; (5.3.1)

2. S = S ∩C ⊕ S ∩S1 ; (5.3.2)

3. (A + G C)S1 ⊆ S1 ; (5.3.3)

4. (A + G C)S ⊆ S ; (5.3.4)

The corresponding spectra assignability are specified by:

5. σ((A +GC)|Q∩S) is fixed; (5.3.5)

6. σ((A +GC)|S/(Q∩S)) is free; (5.3.6)

7. σ((A +GC)|QS/S) is fixed; (5.3.7)

8. σ((A +GC)|X/QS
) is free. (5.3.8)

Theorem 5.3.1 is dualized as follows.

Theorem 5.3.2 (the dual basic theorem for order reduction) Given an (A,B)-
controlled invariant V, there exist both an (A,B)-controlled invariant V1 and a
state feedback matrix F such that the following structural features are satisfied:

1. B ⊕ V1 = X ; (5.3.9)

2. V = V ∩B ⊕ V ∩V1 ; (5.3.10)

3. (A + B F )V1 ⊆ V1 ; (5.3.11)

4. (A + B F )V ⊆ V ; (5.3.12)

The corresponding spectra assignability are specified by:

5. σ((A +BF )|RV
) is free; (5.3.13)

6. σ((A +BF )|V/RV
) is fixed; (5.3.14)

7. σ((A +BF )|(V+R)/V) is free; (5.3.15)

8. σ((A +BF )|X/(V+R)) is fixed. (5.3.16)

Proof of Theorem 5.3.2. Perform the change of basis corresponding to
x = Tz, with T := [T1 T2 T3 T4 T5 T6] such that

imT1 = V ∩ B
im [T1 T2] = RV = V ∩ minS(A,V,B)

im [T1 T2 T3] = V
im [T1 T4] = B
im [T1 T2 T3 T4 T5] = V + R

10 Theorem 5.3.1 and its dual, Theorem 5.3.2, are due to Piazzi [27].
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in the new basis matrices A′ :=T−1A T and B′ := T−1B present the structures

A′ =

















A′
11 A′

12 A′
13 A′

14 A′
15 A′

16

A′
21 A′

22 A′
23 A′

24 A′
25 A′

26

O O A′
33 A′

34 A′
35 A′

36

A′
41 A′

42 A′
43 A′

44 A′
45 A′

46

O O O A′
54 A′

55 A′
56

O O O O O A′
66

















B′ =

















B′
1

O
O
B′

4

O
O

















The structural zeros in A′ are due to V +R being an invariant and RV , V
controlled invariants. Then, perform in the input space the change of basis
defined by u =Nv with

N :=

[

B′
1

B′
4

]−1

which transforms the input distribution matrix as follows:

B′′ := B′ N =

















I1 O
O O
O O
O I4

O O
O O

















with identity matrices I1 and I4 having dimensions dim(B∩V) and
dim((V +B)/V) respectively. Note that, due to the properties of RV and R,
the pairs

([

A′
11 A′

12

A′
21 A′

22

]

,

[

I1

O

]) ([

A′
44 A′

45

A′
54 A′

55

]

,

[

I4

O

])

are controllable; owing to the particular structure of the input distribu-
tion matrices, the pairs (A′

22, A
′
21) and (A′

55, A
′
54) are also controllable; hence

there exist matrices F ′
12 and F ′

45 which allow arbitrary assignment of spectra
σ(A′

22 +A′
21F

′
12) and σ(A′

55 +A′
54F

′
45). We now perform in the state space the

further change of basis defined by z = T̃ z̃ with

T̃ :=

















I1 F ′
12 O O O O

O I2 O O O O
O O I3 O O O
O O O I4 F ′

45 O
O O O O I5 O
O O O O O I6

















Thus, the system matrix Ã := T̃−1A′ T̃ and input distribution matrix
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B̃ := T̃−1B′′ assume the structures

Ã =

















Ã11 Ã12 Ã13 Ã14 Ã15 Ã16

A′
21 A′

22 + A′
21F

′
12 A′

23 A′
24 Ã25 A′

26

O O A′
33 A′

34 Ã35 A′
36

A′
41 Ã42 A′

43 Ã44 Ã45 Ã46

O O O A′
54 A′

55 + A′
54F

′
45 A′

56

O O O O O A′
66

















B̃ =

















I1 O
O O
O O
O I4

O O
O O

















In the actual state and input bases (i.e., in the coordinates z̃ and v) define
subspace V1 and state feedback matrix F̃ as

V1 := im
(

















O O O O
I2 O O O
O I3 O O
O O O O
O O I5 O
O O O I6

















)

F̃ :=

[

−Ã11 + P −Ã12 −Ã13 R −Ã15 −Ã16

−A′
41 −Ã42 −A′

43 −Ã44 + Q −Ã45 −Ã46

]

where P and Q are free matrices with arbitrary eigenvalues and R is a further
free matrix. In the new basis, checking all stated conditions is quite easy.
Structural conditions (5.3.9, 5.3.10) are clear; to verify the other ones, consider
the matrix

Ã + B̃F̃ =

















P O O Ã14 + R O O
A′

24 A′
22 +A′

21F
′
12 A′

23 A′
24 Ã25 A′

26

O O A′
33 A′

34 Ã35 A′
36

O O O Q O O
O O O A′

54 A′
55 +A′

54F
′
45 A′

56

O O O O O A′
66

















(5.3.17)
The structural zeros in (5.3.17) prove that V1 and V are (A +BF )-invariants
[relations (5.3.11, 5.3.12)]. The remaining stated relations derive from the fol-
lowing properties of the spectra of some submatrices of (5.3.17):

σ((A + B F )|RV
) = σ(P ) ⊎ σ(A′

22 + A′
21F

′
12)

σ((A + B F )|V/RV
) = σ(A′

33)

σ((A + B F )|(V+R)/V) = σ(Q) ⊎ σ(A′
55 +A′

54F
′
45)

σ((A + B F )|X/(V+R)) = σ(A′
66)
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Some straightforward manipulations enable the controlled invariant V1 and
the state feedback matrix F to be expressed in the originary basis, i.e., with
respect to coordinates x, u. They lead to:

V1 = im [T1 |F ′
12 +T2 | T3 | T4 |F ′

45 + T5 | T6]

F = N F̃ T̃−1T−1

where Ti (i =1, . . . , 6) are the submatrices of T defined at the beginning of this
proof. �

5.3.1 Reduced-Order Observers

Consider a triple (A, B, C). The following properties hold.11

Property 5.3.1 If (A, C) is detectable there exists an (A, C)-conditioned in-
variant S1 such that:

1. C ⊕ S1 = X ; (5.3.18)

2. S1 is externally stabilizable. (5.3.19)

Property 5.3.2 If (A, B) is stabilizable there exists an (A,B)-controlled in-
variant V1 such that:

1. B ⊕ V1 = X ; (5.3.20)

2. V1 is internally stabilizable. (5.3.21)

Proof of Property 5.3.2. Apply Theorem 5.3.2 with V :=X : relations (5.3.9)
and (5.3.10) are both equivalent to (5.3.20), while (5.3.11) and (5.3.13) together
with the assumption on stabilizability of (A, B) guarantee the existence of
F and V1 such that (A +BF )V1 ⊆V1 with A +BF stable (since the internal
eigenvalues of R := minJ (A,B) =minJ (A +BF,B) are assignable, while the
external ones are stable by assumption). Hence, V1 is an internally stabilizable
(A,B)-controlled invariant. �

Properties 5.3.1 and 5.3.2 can be used to derive reduced-order observers and
dual observers, i.e., asymptotic state observers of order n− q, where q denotes
the number of linearly independent output variables, and stable precompen-
sators of order n− p, where p denotes the number of linearly independent input
variables.

The Synthesis Procedure. Consider the block diagram of Fig. 5.5(a) and
suppose that block F is not present and that input u is applied from the outside:
the remainder of the device, up to the summing junction where the signals from
L1 and L2 converge, is a whole state asymptotic observer which derives the state

11 Property 5.3.1 and its dual, Property 5.3.2, are due to Wonham [38].
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estimate in part from the system output. From this observer, which is still full-
order, we can derive a reduced-order one by using a computational procedure
similar to that described at the end of Subsection 5.1.2

According to Property 5.3.1, choose matrix G so that (A +GC)S1 ⊆S1 and
A +GC is stable. In this way the matrix of the dynamic part of the device,
corresponding to the differential equation

ż(t) = (A + G C) z(t) − G y(t) + B u(t) (5.3.22)

has an externally stable invariant, i.e., if the state is expressed in a suitable basis
some components do not influence the remaining ones: by eliminating them a
stable system is obtained which provides a state estimate modulo S1. Owing to
(5.3.18) it is possible to determine L1, L2 in such a way that the corresponding
linear combination of the output and this partial estimate is a complete estimate
x̃ of state x. We shall now give a complete recipe for the reduced-order observer:

ẋ = Ax + B u

y = C x

u
y

x̃η̇1 = N η1 + M y + R u

x̃ = L η1 + K y

Figure 5.14. Reduced-order observer.

first of all apply Lemma 5.1.3 with L :=S1 and derive L1 and L2 by means
of the constructive procedure used in the proof. Then, compute a similarity
transformation matrix T := [T1 T2] with imT1 = C, imT2 =S1and assume

Q =

[

Q1

Q2

]

:= T−1

In the new coordinate η defined by z = Tη the equation (5.3.22) becomes
[

η̇1(t)
η̇2(t)

]

=

[

Q1(A +GC)T1 O
Q2(A +CG)T1 Q2(A +GC)T2

] [

η1(t)
η2(t)

]

−
[

Q1 G
Q2 G

]

y(t) +

[

Q1 B
Q2 B

]

u(t)

Implement the observer as in the block diagram of Fig. 5.14 with:

N := Q1 (A + G C) T1 (5.3.23)
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M := −Q1 G (5.3.24)

R := Q1 B (5.3.25)

L := L2 T1 (5.3.26)

K := L1 (5.3.27)

Perfectly dual arguments can be developed for dynamic precompensators.
Refer to the block diagram of Fig. 5.5(b) and suppose that block G is not
present: the remainder of the device is a dynamic precompensator (or dual
observer) where the control action, applied to L1 and L2 in parallel, is suitably
distributed to the inputs of the controlled system and precompensator itself.
By applying Property 5.3.2, the precompensator order can be reduced to n− p
while preserving stability.

5.3.2 Reduced-Order Compensators and Regulators

Consider a triple (A, B, C). The following properties hold.12

Property 5.3.3 Let (A, C) be detectable. Given any externally stabilizable
(A, C)-conditioned invariant S, there exists another (A, C)-conditioned invariant
S1 such that:

1. C ⊕ S1 = X ; (5.3.28)

2. S = S ∩S1 ⊕ S ∩C ; (5.3.29)

3. S +S1 is an (A, C)-conditioned invariant; (5.3.30)

4. S1 is externally stabilizable. (5.3.31)

Property 5.3.4 Let (A, B) be stabilizable. Given any internally stabilizable
(A,B)-controlled invariant V, there exists another (A,B)-controlled invariant
V1 such that:

1. B ⊕ V1 = X ; (5.3.32)

2. V = V ∩V1 ⊕ V ∩B ; (5.3.33)

3. V ∩V1 is an (A,B)-controlled invariant; (5.3.34)

4. V1 is internally stabilizable. (5.3.35)

Proof of Property 5.3.4. Also this property is reconducted to Theorem
5.3.2. The existence of a state feedback matrix F such that (A +BF )V1 ⊆V1

and (A +BF )V ⊆V owing to Property 4.1.5 is equivalent to (5.3.34), while
conditions on spectra assignability, added to the assumptions that V is inter-
nally stabilizable and (A, B) stabilizable, imply the possibility of A + BF being
stable, hence V1 internally stabilizable. �

12 Property 5.3.3 and its dual, Property 5.3.4, are due to Imai and Akashi [19].
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It is now possible to state recipes for reduced-order compensators, assuming
as the starting point those for full-order compensators presented in the previous
section. The only difference in computations is that, when deriving matrices
L1, L2 satisfying (5.2.18) in the case of the observer-based compensator or
(5.2.54) in that of the dual observer-based compensator, it is assumed that
L :=S1 or L :=V1 (S1 and V1 are defined in Properties 5.3.3 and 5.3.4 and G,
F are determined in such a way that (A +GC)S1 ⊆S1, (A +GC)S ⊆S and
A +GC is stable in the former case, (A + BF )V1 ⊆V1, (A +BF )V ⊆V and
A +BF is stable in the latter. In the proofs of the synthesis procedures only a
few changes are needed: relations (5.2.19, 5.2.20) are replaced by (5.3.29, 5.3.28)
above in the direct case, and (5.2.55) by (5.3.33, 5.3.32) in the dual one. Suitable
changes of basis, like that presented in the previous section for the reduced-
order observer, allow elimination of n− q equations in the direct case and n− p
equations in the dual one.

Observer-Based Reduced-Order Compensator. Given the resolvent
pair (S,V), determine L1, L2, F, G such that

1. L1C + L2 = In , kerL2 =S1 ; (5.3.36)

2. (A + B F )V ⊆ V , A +BF is stable; (5.3.37)

3. (A + G C)S1 ⊆ S1 , (A + G C)S ⊆ S , A +GC is stable; (5.3.38)

then derive T1 and Q1 from T := [T1 T2], imT1 = C, imT2 =S1 and

Q =

[

Q1

Q2

]

:= T−1

and realize the compensator according to

N := Q1 (A + G C + B F L2) T1 (5.3.39)

M := Q1 (B F L1 − G) (5.3.40)

L := F L2 T1 (5.3.41)

K := F L1 (5.3.42)

Dual Observer-Based Reduced-Order Compensator. Given the
resolvent pair (S,V), determine L1, L2, F, G such that

1. BL1 + L2 = In , imL2 =V1 ; (5.3.43)

2. (A + B F )V1 ⊆ V1 , (A + B F )V ⊆ V , A +BF is stable; (5.3.44)

3. (A + G C)S ⊆ S , A +GC is stable. (5.3.45)

Then, derive T1 and Q1 from T := [T1 T2], imT1 =V1, imT2 =B, and

Q =

[

Q1

Q2

]

:= T−1
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and realize the compensator according to

N := Q1 (A + B F + L2 G C) T1 (5.3.46)

M := −Q1 L2 G (5.3.47)

L := (F + L1 G C) T1 (5.3.48)

K := L1 G (5.3.49)

We shall now consider the synthesis of reduced-order regulators. The only
difference with respect to the compensators is that the pair (A, B) is not
stabilizable; hence Theorem 5.3.2 is considered in its most general form through
the following corollary.

Corollary 5.3.1 Consider a generic pair (A, B). Given an internally stable A-
invariant P and an (A,B)-controlled invariant V such that V ∩P is internally
stabilizable, there exist both another (A,B)-controlled invariant V1 and a matrix
F such that:

1. B ⊕ V1 = X ; (5.3.50)

2. V = V ∩V1 ⊕ V ∩B ; (5.3.51)

3. (A + BF )V1 ⊆ V1 ; (5.3.52)

4. (A + BF )V ⊆ V ; (5.3.53)

5. (A +BF )|P is stable; (5.3.54)

6. (A +BF )|X/V is stable. (5.3.55)

Proof. Consider Theorem [3.5.2] and determine V1 and F in such a way that
(5.3.50–5.3.53) hold and all the free spectra are stabilized. Relation (5.3.55)
holds since, V being externally stabilizable, V +R is externally stable both as
an A-invariant and an (A +BF )-invariant. V ∩P is an (A,B)-controlled in-
variant (as the intersection of an (A,B)-controlled invariant and an A-invariant
containing B), self-bounded with respect to V since V ∩B⊆V ∩P (as B⊆P).
Restriction (A +BF )|(V∩P)/RV

is stable because V ∩P is internally stabilizable
and restriction (A +BF )|RV

is stable because of the above choice of F ; hence
(A +BF )|V∩P is stable. Since V is externally stable as an (A + BF )-invariant,
it follows that (A + BF )|P is stable. �

We now present the recipes for regulators.

Observer-Based Reduced-Order Regulator. Given the resolvent pair
(S,V), determine L1, L2 still according to (5.3.36), while for F instead of (5.3.37)
consider the conditions:

2. (A + B F )V ⊆ V , (A +BF )|P is stable, (A +BF )|X/V is stable;
(5.3.56)

and derive G still according to (5.3.38). Definitions of T1 and Q1 are the same
as in the compensator case. The regulator is defined again by (5.3.39–5.3.42).
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Dual Observer-Based Reduced-Order Regulator. Given the resolvent
pair (S,V), determine L1, L2 still according to (5.3.43), while for F , instead of
(5.3.44), consider the conditions:

2. (A + B F )V1 ⊆ V1 , (A + B F )V ⊆ V , (A +BF )|P is stable,

(A +BF )|X/V is stable; (5.3.57)

and derive G still according to (5.3.45). Definitions of T1 and Q1 are the same
as in the compensator case. The regulator is defined again by (5.3.46–5.3.49).

5.4 Accessible Disturbance Localization and

Model-Following Control

We go back to the disturbance localization problem by dynamic compensator,
already treated in Section 5.2, to give it a more general formulation. Refer to
the block diagram of Fig. 5.15, where disturbances (or nonmanipulable inputs)
entering the controlled plant are two: an unaccessible disturbance d, and an
accessible disturbance d1.

y

d

ẋ = Ax + B u + D d + D1 d1

y = C x

e = E x

d1 e

u

ẋ = N z + M y + R d1

u = L z + K y + S d1

Figure 5.15. Disturbance localization by dynamic compen-

sation: disturbances in part accessible.

The overall system, with extended state x̂ := (x, z), is described by

˙̂x(t) = Âx̂(t) + D̂ d(t) + R̂ d1(t) (5.4.1)

e(t) = Êx̂(t) (5.4.2)

with

Â :=

[

A + BKC BL
MC N

]

D̂ :=

[

D
O

]

R̂ :=

[

D1 + BS
R

]

Ê := [E O ]

(5.4.3)
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Recalling the results of Section 4.2 on unaccessible disturbance localization
by dynamic output feedback and those of Section 5.2 on accessible disturbance
localization by algebraic state feedback, we can give the problem the following
geometric formulation.

Problem 5.4.1 (general disturbance localization by dynamic feedback) Refer
to the block diagram of Fig. 5.15 and assume that (A, B) is stabilizable and
(A, C) detectable. Determine, if possible, a feedback compensator of the type
shown in the figure such that:

1. the overall system has an Â-invariant Ŵ that satisfies

D̂ ⊆ Ŵ ⊆ Ê , R̂ ⊆ Ŵ (with R̂ := imR̂ )

2. Â is stable.

Theorems 5.2.1 (nonconstructive conditions) and 5.2.2 (constructive condi-
tions) can be extended to solve this more general problem. In the following the
notation D1 := imD1 will be used.

Theorem 5.4.1 The disturbance localization problem by a dynamic compen-
sator with disturbance in part accessible admits a solution if and only if there
exist both an (A,B)-controlled invariant V and an (A, C)-conditioned invariant
S such that:

1. D ⊆ S ⊆ V ⊆ E ; (5.4.4)

2. D1 ⊆ V + B ; (5.4.5)

3. S is externally stabilizable; (5.4.6)

4. V is internally stabilizable. (5.4.7)

Theorem 5.4.2 The disturbance localization problem by a dynamic compen-
sator with disturbance in part accessible admits a solution if and only if

1. S∗ ⊆ V∗ ; (5.4.8)

2. D1 ⊆ V∗ + B ; (5.4.9)

3. SM is externally stabilizable; (5.4.10)

4. VM is internally stabilizable; (5.4.11)

5. V ′
m := V∗ ∩ minS(A, E ,B+D1) is internally stabilizable. (5.4.12)

Subspaces S∗,V∗,SM ,VM are defined by (5.1.57, 5.1.51, 5.1.73, 5.1.71).

Proof of Both Theorems. (hint) Necessity of (5.4.4–5.4.7) is proved as
for Theorem 5.2.1, by projection of the conditions stated in the geometric
formulation of the problem (in this case Problem 5.4.1); sufficiency of (5.4.4)
and (5.4.6, 5.4.7) still as for Theorem 5.2.1, while sufficiency of (5.4.5) is proved
as follows: determine a dynamic compensator that realizes the unaccessible
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disturbance localization and denote by Ŵ the corresponding extended invariant.
Since

D̂1 ⊆ Ŵ + B̂0 with D̂1 :=

[

D1

O

]

and B̂0 :=

[

B O
O Im

]

(5.4.13)

where, of course, D̂1 := imD̂1, B̂0 := imB̂0, is clearly possible to derive matrices R
and S such that the corresponding R̂, defined in (5.4.3), satisfies the requirement
stated in Problem 5.4.1. As far as (5.4.12) is concerned, necessity follows
from Property 4.1.5, while sufficiency is reduced to Theorem 5.4.1 by assuming
S :=SM , V :=VM +V ′

m as a resolvent pair. �

We shall now show that another well-known problem of control theory, the
model-following control , can be formally reduced to the accessible disturbance
localization problem.13

This problem is stated in the following terms: refer to a completely control-
lable and observable three-map system, described by

ẋs(t) = As xs(t) + Bs us(t) (5.4.14)

ys(t) = Cs(t) xs(t) (5.4.15)

and suppose that a model , completely controllable, observable, and stable, is
given as

ẋm(t) = Am xm(t) + Bm um(t) (5.4.16)

ym(t) = Cm(t) xm(t) (5.4.17)

The dimensions of the system and model output spaces are assumed to be equal.

A control device is sought which, connected to the system and model as
shown in Fig. 5.16, corresponds to a stable overall system and realizes the
tracking of the model output, i.e., is such that, starting at the zero state and for
all admissible input functions um(·), automatically provides a control function
us(·) which realizes equality ys(·) = ym(·).

This problem can be reduced to accessible disturbance localization by dy-
namic feedback and solved according to the block diagram shown in Fig. 5.15.
To this end, assume

x :=

[

xs

xm

]

u := us d1 := um (5.4.18)

and, for matrices

A :=

[

As O
O Am

]

B :=

[

Bs

O

]

C := [ Cs O ]

D :=

[

O
O

]

D1 :=

[

O
Bm

]

E := [ Cs −Cm ]

(5.4.19)

13 Model-following systems were geometrically approached first by Morse [23].
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ym

dynamic
compensator

ẋs = As xs + Bs us

ys = Cs xs

us ys

um ẋm = Am xm + Bm um

ym = Cm xm

Figure 5.16. Model-following compensator.

5.5 Noninteracting Controllers

Consider the block diagram of Fig. 5.1 and assume that the controlled system is
stabilizable and detectable (i.e., that it coincides with the plant alone, without
any exosystem). It is a five-map system (A, B, C, D, E), described by the
equations:

ẋ(t) = A x(t) + B u(t) + D d(t) (5.5.1)

y(t) = C x(t) (5.5.2)

e(t) = E x(t) (5.5.3)

Suppose that a partition in k blocks of the controlled output e is given so that
by applying a suitable reordering of these components if needed, it is possible
to set e =(e1, . . . , ek); denote by E1, . . . , Ek the corresponding submatrices of
E. A noninteracting controller is defined as follows.14

Definition 5.5.1 (noninteracting controller) The control apparatus of Fig. 5.1
is said to be noninteracting with respect to partition (e1, . . . , ek) of output e if
there exists a corresponding partition (r1, . . . , rk) of the reference input r such
that, starting at the zero state, by acting on a single input ri (with all the other
inputs, d included, identically zero) only the corresponding output ei is changed,
while the others remain identically zero.

The existence of a noninteracting controller for a given output partition is
strictly related to the system structure: in fact, noninteraction may involve
loss of controllability if the system structure is not favorable. Noninteraction

14 The first geometric approaches to noninteracting controllers are due to Wonham and
Morse [4.44, 24], and Basile and Marro [3]. We shall report here this latter treatment, which
is less general but more elementary and tutorial.
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is clearly related to the concept of constrained controllability, introduced and
discussed in Subsection 4.1.3. Let

Ei :=
⋂

j =i

kerEi (i =1, . . . , k) (5.5.4)

It is clear that the reachable set on Ei, i.e.

REi
= V∗

i ∩ minS(A, Ei,B) (i =1, . . . , k) (5.5.5)

with
V∗

i := maxV(A, B, Ei) (i =1, . . . , k) (5.5.6)

is the maximal subspace on which, starting at the origin, state trajectories can
be obtained that affect only output ei, without influencing the other outputs,
which remain identically zero.15

Therefore, conditions

Ei REi
= imEi (i =1, . . . , k) (5.5.7)

are necessary to perform a complete noninteracting control. They clearly de-
pend on the system structure, hence are necessary whatever the type of con-
troller used (for instance a nonlinear one). Necessary and sufficient conditions
for the existence of a noninteracting control device implemented according to
the block diagram of Fig. 5.1 are stated in the following theorem.

Theorem 5.5.1 Refer to a quintuple (A, B, C, D, E) with (A, B) stabilizable
and (A, C) detectable. Given a partition (e1, . . . , ek) of the controlled output
variables, there exists a noninteracting control device of the type shown in
Fig. 5.1 if and only if conditions (5.5.7) hold.

Proof. Only if. This part of the proof is directly implied by the concept of
constrained controllability.

If. Consider the extended mathematical model

˙̂x(t) = Â x̂(t) + D̂ d(t) + R̂ r(t) (5.5.8)

e(t) = Ê x̂(t) (5.5.9)

where matrices are the same as in (5.1.12). Owing to Theorem 3.3.1 on con-
trollability, system (5.5.8–5.5.9) is noninteracting if and only if:

R̂∗
i ⊆

⋂

j =i

kerÊj (i = 1, . . . , k) (5.5.10)

Êi R̂∗
i = imEi (i = 1, . . . , k) (5.5.11)

15 It is possible that, for one or more of the groups of output components required to be
noninteracting, something more than simple controllability is preferred, for instance functional
controllability. If so, it is sufficient to replace REi

with FEi
, the functional controllability

subspace on Ei, which can be computed by a suitable extension of the arguments presented
in Subsection 4.3.2. For specific treatment, see Basile and Marro [4].
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where R̂∗
i := minJ (Â, imR̂i) and R̂i, Êi denote the submatrices of R̂ and Ê

corresponding, respectively by columns and rows, to the above-mentioned par-
titions of r and e. To prove sufficiency, we shall perform the synthesis of a linear
compensator satisfying (5.5.10, 5.5.11) and such that matrix Â is stable.

+

+

+

+

u1 u er1

r2

rk

u2

uk

ẋ1 = N1 z1 + R1 r1

u1 = L1 z1 + S1 r1

ẋ2 = N2 z2 + R2 r2

u2 = L2 z2 + S2 r2

ẋk = Nk zk + Rk rk

uk = Lk zk + Sk rk

ẋ = Ax + B u

e = E x

Figure 5.17. Realizing a noninteracting controller by means

of k dynamic precompensators.

For this, refer to the simplified scheme of Fig. 5.17 (where d and y have been
temporarily ignored) and suppose, for a moment, that A is a stable matrix:
this assumption will be removed later. For each ei (i = 1, . . . , k) realize an
identity dynamic precompensator of the type shown in Fig. 3.12(c) and express
its state in the basis defined by similarity transformation Ti := [Ti,1 Ti,2] with
imTi,1 =REi

, and input in the basis defined by transformation Ui := [Ui,1 Ui,2]
with im(BUi,1) =V∗

i ∩B, im(BUi) =B. The system equations become

A′
i := T−1

i A Ti =

[

A′
i,11 A′

i,12

A′
i,21 A′

i,22

]

B′
i := T−1

i B Ui =

[

B′
i,11 O
O B′

i,22

]

(5.5.12)

with (A′
i,11, B

′
i,11) controllable. Hence, there exists at least one matrix

F ′
i :=

[

F ′
i,11 O

F ′
i,21 O

]

(5.5.13)

such that A′
i,11 +B′

i,11F
′
i,11 is stable and A′

i,21 +B′
i,22F

′
i,21 a zero matrix. In the

new basis the identity dynamic precompensator is described by the equations

[

żi,1(t)
żi,2(t)

]

=

[

A′
i,11 +B′

i,11F
′
i,11 A′

i,12

O A′
i,22

] [

zi,1(t)
zi,2(t)

]

+

[

B′
i,11 O
O B′

i,22

] [

ri,1(t)
ri,2(t)

]

(5.5.14)
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Note that the components of zi,2 belong to kerF ′
i and that to obtain nonin-

teraction it is in any case necessary to assume ri,2(·) =0, so that it is possible
to ignore these components in the actual realization of the device. Hence, we
assume zi := zi,1, ri := ri,1 and

Ni := A′
i,11 + B′

i,11 F ′
i,11 (5.5.15)

Ri := B′
i,11 (5.5.16)

Li := Ui,1 F ′
i,11 (5.5.17)

Si := Ui,1 (5.5.18)

The order of the obtained precompensator is clearly equal to dimREi
.

+
+

y

v2

ẋ = Ax + B u + D d

y = C x

e = E x

d e

v1

ż = N z + M y + v2

u = L z + K y

u

Figure 5.18. Stabilizing the plant.

We shall now remove the assumption that matrix A is stable. Should A not
be stable, there would exist a dynamic feedback of the type shown in Fig. 5.18
so that the corresponding extended system is stable. This is described by

˙̂x(t) = (Â0 + B̂0K̂Ĉ0) x̂(t) + B̂0 û(t) + D̂ d(t) (5.5.19)

ŷ(t) = Ĉ0 x̂(t) (5.5.20)

e(t) = Ê x̂(t) (5.5.21)

where

û :=

[

v1

v2

]

and Â0, B̂0, Ĉ0, D̂, Ê, K̂ are the same as in (5.1.18, 5.1.19).
Owing to Lemma 5.1.1, subspaces

V̂∗
i :=

{[

x
z

]

: x ∈ V∗
i , z = T x

}

(i = 1, . . . , k) (5.5.22)

where T denotes an arbitrary suitably dimensioned matrix, are (Â0, B̂0)-
controlled invariants, hence (Â0 + B̂0K̂Ĉ0, B̂0)-controlled invariants, since feed-
back through input does not influence controlled invariance (the arbitrariness
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of T depends on the forcing action of the stabilizing unit being completely
accessible). The reachable sets on them are

R̂Êi
=

{[

x
z

]

: x ∈ REi
, z = T x

}

(i =1, . . . , k) (5.5.23)

and clearly have the same dimensions as the reachable sets REi
(i =1, . . . , k) in

the nonextended state space.
Therefore, this procedure can be applied referring to the extended system

(controlled system and stabilizing feedback unit), without any change in the
state dimensions of the dynamic precompensators. A straightforward check
shows that the extended system (5.5.8, 5.5.8), which is clearly stable, satisfies
the noninteraction conditions (5.5.10, 5.5.11). �

Obtaining Stability, Disturbance Localization, and Noninteraction

Simultaneously. Disturbance d has not been considered in the previous
proof. Indeed, due to linearity and superposition property, it can be handled
completely independently of noninteraction: if the necessary and sufficient con-
ditions stated in Theorems 5.2.1 and 5.2.2 (when disturbance is completely
unaccessible), or in Theorems 5.4.1 and 5.4.2 (when disturbance is in part ac-
cessible), are satisfied, a stabilizing dynamic unit of the type shown in Fig. 5.18
can be used to provide also disturbance localization. Since controlled invariants
of the extended system are preserved in the presence of any through-input feed-
back, the possibility of simultaneously achieving noninteraction is not affected
by the actual values of the dynamic compensator matrices K, L, M, N .

The solution to the noninteracting control problem presented in the proof of
Theorem 5.5.1 is completely exhaustive, since it realizes noninteraction when-
ever all the necessary and sufficient conditions are met. However it is not
claimed here to be the most convenient with respect to robustness in the pres-
ence of parameter changes and/or uncertainty, and the minimal with respect to
the regulator order. On the contrary, its order appears to be relatively high in
comparison with other regulation problems (where the order of the controller
coincides, at most, with that of the controlled system). This happens because
the intersections of controlled invariants REi

in general are not controlled invari-
ants themselves, so that it is not possible to achieve noninteraction by means
of state feedback through a unique asymptotic state observer.
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Chapter 6

The Robust Regulator

6.1 The Single-Variable Feedback Regulation

Scheme

In this chapter the robust multivariable regulator will be investigated by us-
ing the geometric approach techniques presented in Chapters 3, 4, and 5. A
regulator is said to be robust if it preserves the regulation property and satis-
factory dynamic behavior also in the presence of variations of the parameters
of the plant in well-defined neighborhoods of their nominal values, called un-
certainty domains . These parameter variations are assumed to be “slow” with
respect to the most significant time constants of the controlled plant, so that
their influence on the controlled output is negligible if the regulation property
is maintained for all the parameter values.

Many basic concepts of the standard single-variable regulator design tech-
niques will be revisited with a different language and extended to the multi-
variable case. For better understanding and framing of this connection in light
of the traditional approach, in this first section the most important terms and
concepts of automatic control theory will be briefly recalled and a short sketch
of the standard synthesis philosophy will be discussed.

Refer to the block diagram of Fig. 6.1. It is well known that in standard
single-variable systems robustness is achieved by using feedback, i.e., by feeding
back to the controller a measurement of the controlled output (which must
be as accurate as possible) or, more exactly, through very accurate direct
determination of the tracking error variable, which is a known, simple function
of the controlled output.

The meanings of the symbols in the figure are:

r: reference input

e: error variable

m: manipulable input

d: disturbance input

c: controlled output

y1, y2: informative outputs

The informative outputs are in general stabilizing signals: a typical example
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is the tachymetric feedback in position control systems.

+
_

+

+

exosystem 1

R(s)
r e

Gc(s)
m

G(s)

D(s)

regulator plant

d
e

exosystem 2

y1 y2

Figure 6.1. A feedback control system.

We shall now consider the particular case

G(s) :=
1

(s + a) (s + b) (s + c)
R(s) =

1

s2
D(s) =

1

s
(6.1.1)

The displayed functions are “generalized transfer functions”: in the case of
the exosystems the inputs are understood to be identically zero, so that the
corresponding outputs are affected only by the initial conditions. Our aim is
to determine a Gc(s) such that the extended plant (i.e., the plant plus the
regulator) is (asymptotically) stable and the overall system (i.e., the extended
plant plus the exosystems) satisfies the regulation condition limt→∞ e(t) = 0.
Note that the exosystems are (asymptotically) unstable and introduce into the
extended plant signals of the general type

µ + ν t

whose coefficients µ and ν depend on the initial conditions of the exosystems.
This problem can be reformulated in the state space. Consider the signal-

flow graph of Fig. 6.2(a), derive the equivalent graph of Fig. 6.2(b) (where
the second exosystem, which is not independently observable from output e, is
embedded in the first), and define a state variable for every integrator as shown
in the figure: we derive the state space representation

A =













−a 0 0 0 0
1 −b 0 0 0
0 1 −c 0 0
0 0 0 0 1
0 0 0 0 0













B =













1
0
0
0
0













D =













0
0
0
0
0













C = E = [ 0 0 −1 −k 1 ]

(6.1.2)
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1

1

1

111

1

1111

s−1s−1

s−1s−1s−1

s−1s−1

s−1

s−1s−1s−1

− a

− a

− b

− b − c

− c

m ≡ u

m ≡ u

k

k

c

e

e

plant

plant

−1

−1

exosystem 2

exosystem 1

exosystem

x1 ẋ2 x2 ẋ3 x3 ≡ c

ẋ5

x5 ≡ d ẋ4 x4 ≡ r

ẋ1

(a)

(b)

Figure 6.2. Signal-flow graph representations of a controlled system.

Note that in this case the informative and controlled outputs coincide.
A traditional design is developed according to the following steps: since the
exosystem introduces observable unstable modes, the regulator must generate
identical modes so that the steady state error is zero. In other words, a model of
the exosystem must be contained in the regulator. This expresses the so-called
internal model principle, which corresponds to a design expedient that is well
known in the single-variable case: to achieve zero steady state error in the step
response, the regulator must have a pole at the origin, like the exosystem that
generates the step, while the same requirement for the ramp response implies a
double pole at the origin, and so on. For the sake of generality we assume

Gc(s) :=
γ (s + α) (s + β)

s2
(6.1.3)

In this way the maximum number of zeros compatible with the physical realiz-
ability or causality condition (the degree of the numerator must be less than,
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or equal to that of the denominator) is inserted into the regulator: the values of
parameters α, β, γ are free and can be chosen to achieve stability and improve
the transient behavior of the loop, if possible. If stability is not achievable or
the transient behavior cannot be made completely satisfactory, significant im-
provements can be generally obtained by inserting some further pole-zero pairs
into the regulator.

A realization of the regulator described by transfer function (6.1.3) is rep-
resented in Fig. 6.3. From the signal-flow graph one immediately derives the
quadruple

K := γ L := [β α ] M :=

[

γ
γ

]

N :=

[

0 α
0 0

]

(6.1.4)

which completes the state space representation of the type shown in Fig. 5.3.

11

1 s−1s−1γ

ẋ2 x2 m ≡ uẋ1 x1

α β

e

Figure 6.3. Signal-flow graph representation of a possible

feedback regulator.

The state-space solution of the multivariable regulator problem will be de-
scribed in the next section. Let us now list and explain the most significant
steps of the traditional synthesis by assuming the previous example as reference
but trying to derive general results, which will be extended to the multivariable
case.

Robust Stability. In the case of the previous example, the typical situa-
tion that can be referred to when coefficients a, b, c are nonnegative and α, β, γ
positive is illustrated by the root locus shown in Fig. 6.4: the system is surely
stable for a proper choice of the gain γ if the absolute values of a, b, c are large
with respect to those of α, β.

If all the exosystem poles are located at the origin (as in the most common
cases) this condition is met if sufficiently small α and β are chosen; however, by
so doing, the poles that originate from the exosystem are maintained very close
to the origin, and this causes a very slow transient. In any case it is convenient
to translate the poles of the plant toward the left by inserting in the regulator
some pole-zero pairs or by means of feedback connections using the informative
outputs: since the plant is completely controllable and observable, its poles are
all arbitrarily assignable, at least with a proper state observer with arbitrary
poles. If the plant is minimum-phase, i.e., has all the poles and zeros with the
real parts negative, a robust stability is always possible. If the plant has some
poles and zeros with the real parts positive it is still pole assignable, hence
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x x x x
x

ω

− b

− a − c −α −β 0 σ

Figure 6.4. Root locus of system (6.1.1) and regulator (6.1.3).

stabilizable, by means of a suitable dynamic feedback connection, but the root
locus corresponding to this feedback, which originates and terminates in the
right half-plane is, in general, very sensitive to parameter changes in its stable
portion and remains in the left half-plane for a very short gain interval, so that
robust stability is very difficult to achieve.

Observability and the Internal Model. In the preceding example the
mode generated by the second exosystem (a step) is a part of those generated
by the first one (a step and a ramp), so that it is not necessary to reproduce
both exosystems in the regulator; in fact a double pole at the origin allows
steady state compensation of any set of disturbances consisting of a linear
combination of a step and a ramp, independently of the points where they
are introduced in the regulation loop. The reason it is possible to use a single
internal model in this case is that the exosystems that generate the disturbances
are not all separately observable from the controlled output e, so that it is
sufficient to reproduce in the regulator only the eigenstructures corresponding
to the observable exogenous modes. In the single-variable case it is generally
convenient to assume in the mathematical model a single exosystem which is
completely observable [as was obtained by replacing the signal-flow graph of
Fig. 6.2(a) with that of Fig. 6.2(b), but this may not apply to the multivariable
case where a single exosystem that influences several regulated outputs cannot
be compensated by a single internal model if coefficients of influence are subject
to changes, resulting in lack of robustness. This point, which represents an
important difference between the single-variable and the multivariable case,
will be thoroughly investigated in the Section 6.3.

Robust Regulation. In the single-variable case, regulation is robust
versus parameter variations provided the plant remains stable and the internal
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model is preserved when coefficients change. As previously mentioned, if the
plant pole-zero configuration is favorable, the plant stability requirement can
be robustly satisfied by suitable placement of the free poles and zeros. It is not
difficult to build a robust internal model if the exogenous eigenvalues are all zero:
fortunately this case is very frequent in practice since specifications on regulator
asymptotic behavior usually refer to test signals consisting of steps, ramps,
parabolas, and so on. However, in the multivariable case it is further necessary
that individual asymptotic controllability of regulated outputs from the plant
inputs is maintained in the presence of parameter variations. This structural
requirement is another important point that distinguishes the multivariable
from the single-variable case.

6.2 The Autonomous Regulator: A General

Synthesis Procedure

In the regulator problem formulated in Section 5.2, two types of input functions
were considered: an input function d(·) belonging to a very general class (that
of bounded and piecewise continuous functions), representing a nonmanipulable
input to be identically localized, i.e., to be made noninfluencing of the controlled
output at any time through a suitable change of structure, and an input func-
tion x2(·), generated by an exosystem, of a more particular class (that of the
linear combinations of all possible modes of a linear time-invariant system),
representing a nonmanipulable input to be asymptotically localized. This for-
mulation of the problem has the advantage of being very general: for instance,
it extends in the most natural way a classic geometric approach problem, i.e.,
disturbance localization through state feedback.

When robustness is a required regulator feature, “rigid” solutions like the
standard structural disturbance localization are not acceptable since, in gen-
eral, they lose efficiency in the presence of parametric variations; therefore it
is necessary to have to resort to “elastic” solutions like the asymptotic insen-
sitivity to disturbances modeled by an exosystem. Note that if the controlled
output dynamics is sufficiently fast (or even arbitrarily fast, i.e., with arbitrar-
ily assignable modes), this approach is almost equivalent to rigid localization
since the localization error corresponding to a disturbance signal with limited
bandwidth can be made arbitrarily small.

In light of these considerations we shall first of all see how the statements
of Theorems 5.2.2 and 5.2.4 simplify on the assumption that D =O, i.e., when
an autonomous regulator is considered. In this case the overall system is not
subject to any external signal, since the only considered perturbations are those
of the initial states (of the plant, exosystem, and regulator): it is required
that for any set of initial states the regulation condition limt→∞ e(t) = 0 is
met. This formulation is the direct extension of that presented in the previous
section for single-variable systems. It is worth pointing out that the robustness
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requirement will not be considered in this section. The conditions that are
derived as particular cases of those considered in Section 5.2 are necessary
and sufficient for the existence of a generic, stable autonomous regulator, but
do not guarantee the existence of an autonomous regulator of the feedback
type (it may be feedforward). Hence, they are only necessary to extend to
multivariable systems the synthesis procedure for robust regulators (based on
feedback through an internal model of the exosystem) illustrated in the previous
section for the single-variable case.

u

y

ẋ2 = A2 x2

ẋ1 = A1 x1 + A3 x2 + B1 u

e = E1 x1 + E2 x2

y = C1 x1 + C2 x2

x2

controlled system

e

ẋ = N z + M y

u = L z + K y
regulated plant

exosystem

regulator

plant

Figure 6.5. The general multivariable autonomous regulator.

For the sake of clarity and to make this chapter self-contained, it appears
convenient to report first a specific formulation of the autonomous regulator
problem. Consider the overall system represented in Fig. 6.5, whose state
evolution is described by the homogeneous matrix differential equation





ẋ1(t)
ẋ2(t)
ż(t)



 =





A1 +B1KC1 A3 +B1KC2 B1L
O A2 O

MC1 MC2 N









x1(t)
x2(t)
z(t)



 (6.2.1)

which, according to the notation introduced in Section 5.1, can also be written,
together with the output equation, in the compact form

˙̂x(t) = Â x̂(t)

e(t) = Ê x̂(t)
with Â :=

[

Â1Â3

Â4Â2

]

and Ê := [Ê1 O] (6.2.2)
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i.e., as a unique extended system with the submatrices of Â and Ê defined by

Â1 :=

[

A1 + B1KC1 A3 + B1KC2

O A2

]

Â3 :=

[

B1L
O

]

Â4 := [ MC1 MC2 ] Â2 := N Ê1 := E = [E1 E2 ]

(6.2.3)

The part of the overall system driven by the exosystem is called the regulated
plant (the plant plus the regulator): it has x2 as the only input and e as the
only output and is a nonpurely dynamic system represented by the quadruple
(Ap, Bp, Cp, Dd) with

Ap :=

[

A1 + B1KC1 B1L
MC1 N

]

Bp :=

[

A3 + B1KC2

MC2

]

Cp := [E1 O ] Dp := [E2 ]

(6.2.4)

As the last step of this review of the new and old notations, recall the four
remaining matrices of the five-map controlled system, which are the only data
provided to solve our regulation problem:

A :=

[

A1 A3

O A2

]

B :=

[

B1

O

]

C := [ C1 C2 ] E := [E1 E2 ] (6.2.5)

We shall denote with n1 the state dimension of the plant, with n2 that of the
exosystem, and with m that of the regulator; the plant , and the extended plant
defined by (5.1.8) and (5.2.7) are respectively an A-invariant and an Â-invariant
which in the above considered coordinate systems can be expressed as

P = imP with P :=

[

In1

O

]

(6.2.6)

and

P̂ = imP̂ with P̂ :=





In1 O
O O
O Im



 (6.2.7)

In the autonomous regulator case the plant stability condition simply means
that the regulated plant must be stable, i.e., that Ap must be a stable matrix or

that P̂ must be internally stable as an Â-invariant, and the regulation condition
means that there exists an externally stable Â-invariant contained in kerÊ.
Geometrically the autonomous regulator problem is stated in the following
terms, as a particular case of Problem 5.2.4.

Problem 6.2.1 Refer to the block diagram of Fig. 6.5 and assume that (A1, B1)
is stabilizable and (A, C) detectable. Determine, if possible, a feedback regulator
of the type shown in the figure such that:

1. the overall system has an Â-invariant Ŵ that satisfies

Ŵ ⊆ Ê with Ê := kerÊ ;
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2. Ŵ is externally stable;

3. Ŵ ∩ P̂ (which is an Â-invariant) is internally stable.

The elimination of input D significantly simplifies the necessary and suffi-
cient conditions stated in Chapter 5. In fact, from D := imD = {0} it follows
that S∗ =Sm =SM = {0}; hence

Vm = VM = V∗ ∩ minS(A, E ,B) = RV∗ = RE (6.2.8)

so that from Theorems 5.2.2 and 5.2.4 the following corollaries are immediately
derived.

Corollary 6.2.1 The autonomous regulator problem has a solution if and only
if there exists an (A,B)-controlled invariant V such that:

1. V ⊆ E ; (6.2.9)

2. V is externally stabilizable; (6.2.10)

3. V ∩P is internally stabilizable. (6.2.11)

Corollary 6.2.2 Let all the exogenous modes be unstable. The autonomous
regulator problem has a solution if and only if:

1. V∗ is externally stabilizable; (6.2.12)

2. V∗ ∩P is complementable with respect to (RV∗ ,V∗) . (6.2.13)

At this point some remarks are in order.

1. Due to the particular structure of matrix A, the assumption that (A, C) is
detectable clearly implies that (A1, C1) also is.

2. Let all the exogenous modes be unstable. For the regulator problem to
have a solution, as a clear consequence of (6.2.12) it is necessary that

imE2 ⊆ imE1 (6.2.14)

3. Condition (6.2.12 ) can be reformulated in the very strict geometric way

V∗ + P = X (6.2.15)

In fact it has been previously proved (point e of the proof of Theorem 5.2.4)
that if V is any (A,B)-controlled invariant self-bounded with respect to V∗ the
internal unassignable eigenvalues in between V ∩P and V are all exogenous.
This property, applied to V∗ itself, clearly implies (6.2.15).

These conditions hold also in the general case considered in Chapter 5, but
have not been mentioned before, since they are straightforward consequences of
the assumptions or of the derived geometric conditions.

We shall now derive an important theorem (Theorem 6.2.1) which sets
a further, significant simplification of the necessary and sufficient conditions
(6.2.15, 6.2.13) and provides a basic means to approach structural robustness in
the multivariable regulator case. First, we state a property that geometrically
characterizes any solution of the problem.
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Property 6.2.1 Let all the exogenous modes be unstable. The regulator corre-
sponding to the overall system matrices Â, Ê satisfies both plant stability and the
regulation condition if and only if there exists an externally stable Â-invariant
Ŵ such that:

1. Ŵ ⊆ Ê with Ê := kerÊ; (6.2.16)

2. Ŵ ⊕ P̂ = X̂ . (6.2.17)

Proof. Only if. The plant stability condition means that P̂ is internally stable
as an Â-invariant and the regulation condition holds if and only if there exists
an externally stable Â-invariant contained in Ê . Denote this by Ŵ1. Since
the eigenvalues of A2, i.e., the eigenvalues of the exosystem (which have been
assumed to be unstable) are a part of those of Â, they must be internal eigen-
values of Ŵ1. By reason of dimensionality the other eigenvalues of Â coincide
with those of Ap so that the Â-invariant Ŵ1 ∩ P̂ is internally stable and P̂ is

complementable with respect to (Ŵ1 ∩ P̂, Ŵ1). Assume the similarity transfor-
mation T := [T1 T2 T3], with imT1 = Ŵ1 ∩ P̂ , im [T1 T2] = Ŵ1, im [T1 T3] = P̂ . In
the new basis, Â′ := T−1ÂT and Ê ′ := ÊT have the structures

Â′ =





A′
11 A′

12 A′
13

O A′
22 O

O O A′
33



 Ê ′ = [ O O E ′
3 ] (6.2.18)

Matrices A′
11 and A′

33 are stable while A′
22 is unstable, so that the Sylvester

equation

A′
11 X − X A′

22 = −A′
12 (6.2.19)

admits a unique solution X. Define Ŵ as the image of T1X +T2. Clearly it
satisfies both the conditions in the statement.

If. The regulation condition is satisfied since Ŵ attracts all the external
motions. Furthermore, Ŵ has the eigenvalues of A2 as the only internal eigen-
values and those of the regulated plant as the only external ones, so that the
plant stability condition is satisfied. �

For those who like immediate translation of geometric conditions into matrix
equations, we can state the following corollary.

Corollary 6.2.3 Let all the exogenous modes be unstable and suppose that the
regulated plant is stable. The regulation condition is satisfied if and only if the
equations

Ap Xp − Xp A2 = −Bp (6.2.20)

Cp Xp + Dp = O (6.2.21)

have a solution in Xp.
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Proof. The complementability condition implies the possibility of assuming

Ŵ := im
(





X1

In2

Z





)

with

[

X1

Z

]

= Xp (6.2.22)

From Property 3.2.1 it follows that the equations (6.2.20, 6.2.21) are satisfied if
and only if Ŵ is an Â-invariant contained in Ê. �

As in the case of the general regulator problem approached in Chapter 5,
necessary and sufficient conditions referring to the overall system and expressed
in terms of invariants, reflect in necessary and sufficient conditions referring to
the sole controlled system and expressed in terms of controlled and/or condi-
tioned invariants. These conditions are directly usable for feasibility checks and
for constructive synthesis procedures. The basic result is stated in the following
theorem whose proof, although contained in that of Theorem 5.2.4, is developed
here in a completely self-contained way.

Theorem 6.2.1 (the fundamental theorem on the autonomous regulator) Let
all the exogenous modes be unstable. The autonomous regulator problem admits
a solution if and only if there exists an (A,B)-controlled invariant V such that

1. V ⊆ E ; (6.2.23)

2. V ⊕ P = X . (6.2.24)

Proof. Only if. Consider the Â-invariant Ŵ defined by (6.2.22) and denote
by Ŵ the corresponding basis matrix, also shown in (6.2.22): by Property 3.2.1
there exists a matrix X such that ÂŴ = Ŵ X. Straightforward manipulations
show that this equation implies the existence of a matrix U such that

A

[

X1

In2

]

= X

[

X1

In2

]

+ B U

Hence

V :=

[

X1

In2

]

is an (A,B)-controlled invariant by Property 4.1.4. It clearly satisfies both the
stated conditions.

If. We prove that the conditions in the statement imply those of Corollary
6.2.1. Condition (6.2.9) holds by assumption. Condition (6.2.10) is proved
as follows: the A-invariant V +P, which covers the whole space, is externally
stable [hence, in particular, externally stabilizable as an (A,B)-invariant], so
that V is externally stabilizable (see point f of the proof of Theorem 5.2.4).
Finally, (6.2.11) is implied by V ∩P = {0}. �

This proof of the fundamental theorem is the most direct in connection with
the previously developed theory. Another proof, which has the advantage of
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being completely constructive, can be based on Algorithm 6.2.1 (for the only if
part) and Algorithm 6.2.3 (for the if part).

Note that the controlled invariant V considered in the statement has the
dimension equal to that of the exosystem, so that its unique internal eigen-
values (clearly unassignable) coincide with those of the exosystem. Since any
resolvent must have the eigenvalues of the exosystem as internal, since it must
be externally stabilizable, V is a minimal-dimension resolvent . It will be shown
in Section 6.4 that having a minimal-dimension resolvent is a basic step for the
synthesis of a particular multivariable robust feedback regulator that is also
minimal-dimension.

Given the data of our problem, i.e., matrices A, B, C, E, the conditions of
Corollary 6.2.1 can be checked in a completely automatic way through the
computation of V∗ and RV∗ =V∗ ∩S∗ with S∗ :=minS(A, E ,B). To check
complementability and, if possible, to derive a complement of V∗ that satisfies
(6.2.23, 6.2.23) the following algorithm can be used.

Algorithm 6.2.1 (complementation of the maximal controlled invariant) Let
V∗ +P =X . A controlled invariant V such that V ⊕P =X and V ⊆E can
be derived as follows. Consider the similarity transformation defined by
T := [T1 T2 T3 T4], with imT1 =RV∗, im [T1 T2] =V∗ ∩P, im [T1 T2 T3] =V∗, and
T4 = [T ′

4 T ′′
4 ] with im [T1 T ′

4] =S∗, im [T1 T2 T4] =P. The system matrices ex-
pressed in the new basis, i.e., A′ := T−1A T , B′ :=T−1B, and E ′ := E T , have
the structures

A′ =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

O O A′
33 O

A′
41 A′

42 A′
43 A′

44









B′ =









B′
1

O
O
B′

4









(6.2.25)

E ′ = [ O O O E ′
4 ] (6.2.26)

Note that S∗, being the minimal (A, E)-conditioned invariant containing B,
is contained in the reachable set, which is the minimal A-invariant containing B,
hence in P, which is an A-invariant containing B. The structure of B′ follows
from B⊆S∗, the zero submatrix in the second row of A′ is due to RV∗ being a
controlled invariant, the first two in the first row to gV ∗ ∩P being a controlled
invariant, and the third to P being an A-invariant. The structure of E ′ is due
to V∗⊆E . Let F1 be such that the eigenvalues of A′′

11 :=A′
11 +B′

1F1 are different
from those of A′

33 [this is possible since (A′
11, B

′
1) is controllable]. A complement

of V∗ ∩P with respect to (RV∗,V∗) exists if and only if the Sylvester equation

Ax X − X A′
33 = −Ay with Ax :=

[

A′′
11 A′

12

O A′
22

]

, Ay :=

[

A′
13

A′
23

]

(6.2.27)

admits a solution in X. If so, a V satisfying (6.2.23, 6.2.24) is defined by
V := im([T1 T2] X + T3).
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This change of basis allows immediate derivation of another interesting
result, a sufficient condition that turns out to be very useful for a quick check
of the complementability condition.

Theorem 6.2.2 (a sufficient condition in terms of invariant zeros) Let all the
exogenous modes be unstable. The autonomous regulator problem has a solution
if:

1. V∗ + P = X ; (6.2.28)

2. no invariant zero of the plant, i.e., of the triple (A1, B1, E1)

coincide with an eigenvalue of the exosystem . (6.2.29)

Proof. The maximal controlled invariant contained in V∗ and in P is V∗ ∩ P
itself, so that the invariant zeros referred to in the statement are clearly the
eigenvalues of A′

22. Since the eigenvalues of the exosystem are those of A′
33,

condition (6.2.29) implies the solvability of (6.2.27). �

Another algorithm that is used in the regulator synthesis provides a suitable
state feedback matrix to make V an invariant and stabilize the plant. It can be
set as an extension of Algorithm 4.1-3 in the following terms.

Algorithm 6.2.2 (computation of the state feedback matrix) Assume that B
has maximal rank. Given V such that V ⊕P =X and V ⊆E , a state feedback
matrix F = [F1 F2] partitioned according to (6.2.5) such that (A +BF )V ⊆V
and A1 + B1F1 is stable, can be derived as follows. Consider the similarity
transformation defined by T := [T1 T2 T3], with imT1 =B, im [T1 T2] =P, and
imT3 =V, so that matrices A′ := T−1A T , B′ :=T−1B, and E ′ := E T have the
structures

A′ =





A′
11 A′

12 A′
13

A′
21 A′

22 O
O O A′

33



 B′ =





Ip

O
O



 (6.2.30)

E ′ = [ E ′
1 E ′

2 O ] (6.2.31)

The zero submatrix in the second row of A′ is due to V being a controlled
invariant, those in the third row to P being an invariant, while the zero in E ′

is due to V being contained in E . The particular structure of B′ follows from B
being the image of the first part of the transformation matrix. Assume, in the
new basis, a matrix F ′ = [F ′

1 F ′
2 F ′

3], accordingly partitioned, with F ′
3 := − A′

13

and F ′
1, F

′
2 such that

[

A′
11 A′

12

A′
21 A′

22

]

+

[

F ′
1 F ′

2

O O

]

is stable: this is possible because (A1, B1) has been assumed to be stabilizable.
Then compute F := F ′T−1.

We can now set an algorithm for the regulator synthesis. The order of the
regulator is n, so that an overall system of order 2n is obtained. Although the



320 Chapter 6. The Robust Regulator

procedure is a particularization of the recipe for the observer-based full-order
regulator reported in Subsection 5.2.3 (with L1 := O, L2 := In), in order to keep
the contents of this chapter self-contained, it will be proved again.

Algorithm 6.2.3 (the autonomous regulator synthesis algorithm) Given V
such that V ⊕P =X and V ⊆E , determine F such that (A +BF )V ⊆V and
A1 + B1F1 is stable, G such that A +GC is stable and assume

N := A + B F + G C M := −G L := F K := O (6.2.32)

Proof. The extended system matrices Â and Ê are partitioned as

Â =









A1 A3 B1F1 B1F2

O A2 O O
−G1C1 −G1C2 A1+B1F1+G1C1 A3+B1F2+G1C2

−G2C1 −G2C2 G2C1 A2+G2C2









(6.2.33)

Ê = [ E1 E2 O O ] (6.2.34)

By means of the similarity transformation

T = T−1 :=









In1 O O O
O In2 O O
In1 O −In1 O
O In2 O −In2









we derive as Â′ :=T−1ÂT and Ê ′ := ÊT the matrices

Â′ =









A1 + B1F1 A3 +B1F2 −B1F1 −B1F2

O A2 O O
O O A1 + G1C1 A3 +G1C2

O O G2C1 A2 +G2C2









(6.2.35)

Ê ′ = [E1 E2 O O ] (6.2.36)

Let X1 be such that

V = im(

[

X1

In2

]

) (6.2.37)

From (6.2.35, 6.2.36) it is immediately seen that the regulated plant is stable
and that the Â-invariant defined by

Ŵ := im
(









X1

In2

X1

In2









)

= im
(

T









X1

In2

O
O









)

(6.2.38)

is externally stable and contained in Ê := kerÊ. �
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6.2.1 On the Separation Property of Regulation

Refer again to the overall system shown in Fig. 6.5 and suppose that the matrices
M, N, L, K of the regulator have been determined with Algorithm 6.2.3. Note
that the plant stabilizing feedback matrix F1 has been computed independently
of matrix F2, which causes a change of structure such that V becomes an
(A +BF )-invariant. In other words, feedback through F1 has a stabilizing task,
while regulation is due to feedback through F2.

The block diagram shown in Fig. 6.6 is equivalent, but the regulator has
been split into two separate units: a stabilizing unit and a strict regulator . The
matrices shown in the figure are easily derived from (6.2.33) as

N11 := A1 + B1 F1 + G1 C1

N12 := A3 + B1 F2 + G1 C2

N21 := G2 C1

N22 := A2 + G2 C2

M1 := −G1

M2 := −G2

L1 := F1

L2 := F2

The interesting question now arises whether or not a preliminary stabilization
of the plant compromises solvability of the regulation problem.

Note that, the state of the stabilizing unit being clearly completely accessible
both for control and observation, the interconnection of the exosystem, the
plant, and the stabilizing unit is defined by the matrices

Âs :=

[

A BL1

M1C N11

]

B̂s :=

[

B O
O In1

]

Ĉs :=

[

C O
O In1

]

Ês := [ E O ]

Clearly, the pair (Âs, B̂s) is stabilizable if and only if (A1, B1) is, and the
pair (Âs, Ĉs) is detectable if and only if (A, C) is. Owing to Lemma 5.1.1
the subspace

V̂ := im
(

[

V
O

]

)

with V :=

[

X1

In2

]

and with X1 defined as in (6.2.37), is an externally stabilizable (Âs, B̂s)-
controlled invariant if and only if V is an externally stabilizable (A,B)-controlled
invariant. It clearly satisfies

V̂ ⊕ P̂s = X̂s with P̂s :=
(

[

P O
O In1

]

)
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+ +
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+
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u

y1

ẋ2 = A2 x2

e2 = E2 x2

y2 = C2 x2

ẋ1 = A1 x1 + A3 x2 + B1 u

e1 = E1 x1

y1 = C1 x1

x2

e2

e

ẋ1 = N11 z1 + N12 z2 + M1 y

u1 = L1 z1

ẋ2 = N21 z1 + N22 z2 + M2 y

u2 = L2 z2

y

exosystem

stabilizing unit

plant

u2
u1

e1 y2

y

z2

z1

y

strict regulator

Figure 6.6. Separating regulation and stabilization.

and with P defined as in (6.2.6). Also the sufficient condition regarding zeros
stated by Theorem 6.2.2 still holds since the interconnection of the plant and
the stabilizing unit has the same invariant zeros as the plant. Summing up, the
following property has been proved.

Property 6.2.2 (the separation property of regulation) Interconnecting the
plant with any dynamic feedback device having the state completely accessible for
control and measurement does not influence solvability of the regulation problem.

It is worth pointing out that the name “stabilizing unit” used earlier is not
rigorous. In fact, although the overall system has been stabilized (and all the
assignable poles have been arbitrarily defined) by the synthesis algorithm, it is
not guaranteed that the interconnection of the plant and the stabilizing unit is
stable if the strict regulator is disconnected. However, in many “regular” cases
(plant open-loop stable and minimum phase) this usually happens, particularly
if the free closed-loop poles have been assigned in a conservative way.
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6.2.2 The Internal Model Principle

We shall now consider the generalization of the internal model principle for
the multivariable case.1 Refer to the autonomous regulator shown in Fig. 6.7,
whose informative output coincides with the regulated one, hence described by
the triple (A, B, E). In this case the overall system is still described by the

u

ẋ2 = A2 x2

ẋ1 = A1 x1 + A3 x2 + B1 u

e = E1 x1 + E2 x2

x2

controlled system

e

ẋ = N z + M e

u = L z + K e
regulated plant

exosystem

regulator

plant

Figure 6.7. The multivariable autonomous regulator with C = E.

equations (6.2.1–6.2.3), but with the pair (C1, C2) replaced by (E1, E2). This
causes an internal model of the exosystem to be included in the regulator, as is
stated in the following theorem.

Theorem 6.2.3 (the internal model principle) Refer to the system shown in
Fig. 6.7. Assume that (A1, B1) is stabilizable, (A, E) is detectable, and all the
eigenvalues of A2 are unstable. In any possible solution of the autonomous
regulator problem the eigenstructure of A2 is repeated in N , i.e., the Jordan
blocks (or the elementary divisors) of A2 are a subset of those of N .

Proof. If the regulator problem is solved by the quadruple (N, M, L, K),
i.e., if limt→∞ e(t) = 0 for all the initial states, there exists an Â-invariant Ŵ
contained in Ê := kerÊ. Assume any initial state (x01, x02, z0) belonging to Ŵ;
the corresponding trajectory x̂(t) = (x1(t), x2(t), z(t)) identically belongs to Ŵ,

1 The extension of the internal model principle to multivariable systems is due to Francis,
Sebakhy, and Wonham [13, 14].
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i.e., is such that

e(t) = E1 x1(t) + E2 x2(t) = 0 ∀ t≥ 0 (6.2.39)

and satisfies the matrix differential equation





ẋ1(t)
ẋ2(t)
ż(t)



 =





A1 A3 B1L
O A2 O
O O N









x1(t)
x2(t)
z(t)





which is derived from (6.2.1) (with E1, E2 instead of C1, C2) taking into account
(6.2.39). Relation (6.2.39) can also be written as

e(t) = [E1 E2] e
At

[

x′
01

x02

]

+ [E1 O] eNet

[

x′′
01

z0

]

= 0 (6.2.40)

where

Ne :=

[

A1 B1L
O N

]

(6.2.41)

and x′
01, x

′′
01 denote any two vectors such that x01 =x′

01 + x′′
01. Since (A, E) is

detectable, the time function

[ E1 E2 ] eAt

[

x′
01

x02

]

(6.2.42)

contains all the unstable modes of A. Then from (6.2.40) it follows that all the
unstable modes of A are also modes of Ne; this means that the eigenstructure
of A2 is repeated in N . �

The application of the internal model principle is the basic tool to orient the
autonomous regulator synthesis procedures towards feedback, hence to achieve
robustness. In fact feedback controllers, relying on an accurate measurement
of the controlled variable, directly neutralize any possible parametric change,
if some structure and stability requirements are satisfied, while feedforward,
being based on a model of the controlled system, is remarkably influenced by
parameter changes and, in general, is not robust.

6.3 The Robust Regulator: Some Synthesis

Procedures

Refer to the overall system represented in Fig. 6.7 (in which the informative
output coincides with the regulated one) and assume that some of the matrices
of the plant and regulator are subject to parametric changes, i.e., that their
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elements are functions of a parameter vector q∈Q.2 Matrices that are allowed
to change are A1, A3, B1, E, M, L, K, while A2 and N are not varied, since
the exosystem is a mathematical abstraction and the internal model principle
is a necessary condition for regulation in this case. Here, as in all the most
elementary approaches to robustness, particular dependence on parameters is
not considered, but simply all the elements or all the nonzero elements of the
above matrices are assumed to change independently of each other in given
neighborhoods of their nominal values. In order to avoid heavy notation, we
shall use the symbols A◦

1, . . . instead of A1(q), . . . ∀ q ∈Q. Our aim is to derive
a regulator that works at A◦

1, A
◦
3, B

◦
1 , E

◦, M◦, L◦, K◦.
Clearly, an autonomous regulator is robust if and only if the Â◦-invariant

P̂ is internally stable and there exists an externally stable Â◦-invariant Ŵ◦

contained in Ê◦ := kerÊ◦. Hence, a robust version of Property 6.2.1 can be
immediately derived in the following terms.

Property 6.3.1 Let all the exogenous modes be unstable. The regulator cor-
responding to the overall system matrices Â◦, Ê◦ is robust if and only if there
exists an externally stable Â◦-invariant Ŵ◦ such that:

1. Ŵ◦ ⊆ Ê◦ with Ê◦ := kerÊ◦ ; (6.3.1)

2. Ŵ◦ ⊕ P̂ = X̂ . (6.3.2)

The fundamental theorem applies to the robust case as a necessary condition
stated as follows.

Property 6.3.2 Let all the exogenous modes be unstable. The autonomous
regulator problem admits a robust solution only if there exists an (A◦,B◦)-
controlled invariant V◦ such that

1. V◦ ⊆ E◦ ; (6.3.3)

2. V◦ ⊕ P = X . (6.3.4)

If the considered system is invertible, from the complementation algorithm
it follows that if a V◦ exists it is unique. The above necessary conditions are
guaranteed by the following property, which is a consequence of Theorem 6.2.2.

Property 6.3.3 Conditions (6.3.3, 6.3.4) are satisfied if:

1. V∗◦ + P = X ; (6.3.5)

2. no invariant zero of the plant, i.e., of the triple (A◦
1, B

◦
1 , E

◦
1) ,

coincides with an eigenvalue of the exosystem . (6.3.6)

2 Multivariable robust regulation was the object of very deep and competitive investiga-
tions in the mid-1970s. The most significant contributions are those of Davison [4], with
Ferguson [5], Goldemberg [6], with Scherzinger [7], and Francis [12, 5.17], with Sebakhy and
Wonham [13, 14]. A different approach is presented by Pearson, Shields, and Staats [27]. The
results reported in this section are similar to those of Francis, but presented in a simplified
and less rigorous way. The above references are a good basis for a deeper insight into the
mathematical implications of robust regulation.
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Clearly, condition (6.3.5) is in any case necessary for (6.3.4) to hold. If
generic robustness is considered (i.e., with all the elements of the system matri-
ces varying anyhow) it is satisfied if and only if E◦ +B◦ =X (with V∗◦ := E◦).
This implies that the input components are not less than the regulated output
components.

f

1

1

1

11

111

1

s−1

s−1 s−1

s−1s−1

exosystem

regulator

plant
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Figure 6.8. A multivariable controlled system.

Example 6.3.1 Consider the controlled system defined by

A1 :=





−.4 −4.04 0
1 0 0
0 0 −1



 A3 :=





0 0
.2 0
0 .3



 B1 :=





2 0
.4 1
0 1.5



 (6.3.7)

E1 :=

[

0 −1 0
0 0 −1

]

E2 :=

[

1 0
0 1

]

A2 :=

[

0 1
0 0

]

(6.3.8)

whose signal-flow graph is shown in Fig. 3.6.
The philosophy that underlies the multivariable robust regulator design and

distinguishes it from the single-variable case is pointed out by the following
remarks.

1. A single exosystem that influences several controlled outputs cannot be ro-
bustly neutralized by a single internal model. In fact, if some of the influence
coefficients are subject to independent variations, the coefficients of the corre-
sponding compensating actions should also vary accordingly so that regulation
is maintained, and this, of course, is not possible. This drawback may be over-
come by associating a different exosystem to every controlled output. In the
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case on hand, regulated output e1 is influenced by a linear combination of a
step and a ramp, while e2 is affected by a step: in the mathematical model we
can consider two different exosystems: a second-order one to generate the ex-
ogenous signals affecting e1 and a first-order one for those affecting e2, as shown
in Fig. 6.9, where a further state variable x6 has been introduced to this end.
Since the design algorithm implies separate reproduction of each exosystem in
the internal model, in this way the solution provided by the synthesis algorithm
will be forced to have two independent internal models, one for each exosystem.

1
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1

1
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111

1

s−1 s−1
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exosystem 1
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plant

ẋ5 x5 ẋ4 x4
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ẋ1 x1

ẋ2
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e2
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ẋ3 x3

− .4
− 4.04

− 1

− 1

− 1

− 1.5

.4

2

.3
exosystem 2

ẋ7 x7 ẋ6
x6

Figure 6.9. Achieving robustness by means of a multiple

internal model.

2. Unfortunately, in general this is not enough. In fact, a ramp introduced at
input u1 to compensate for the action of exosystem 1 on e1 may also appear
at e2 because of interaction (nominal or due to parametric changes in A1 and
B1). Since a regulator designed by using Algorithm 6.2-3 tends to distribute the
internal model actions on all the input variables, a ramp signal generated by
the internal model corresponding to exosystem 1 might appear at u2, hence at
e2, in consequence of a possible variation of matrix L. Note, incidentally, that
in the particular case of this example a design of the multivariable regulator as
two single-variable regulators based on exosystems 1 and 2 respectively could be
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satisfactory, if only the nonzero elements of the involved matrices are subject
to change. In general, however, in order to make the regulator robust it is
necessary to make the internal model corresponding to exosystem 2 capable of
generating ramps as well: this is obtained simply by adding to exosystem 2 a
further state variable x7, as shown in the figure by dashed lines. If referred
to the overall system of Fig. 6.9 with this completion, the regulator provided
by Algorithm 6.2.3 is robust with respect to variations of all the elements of
matrices (not necessarily only the nonzero ones).

Taking into account these changes, the matrices of the controlled system are
written as:

A1 :=





−.4 −4.04 0
1 0 0
0 0 −1



 A3 :=





0 0 0 0
.2 0 0 0
0 0 .3 0



 B1 :=





2 0
.4 1
0 1.5





(6.3.9)

E1 :=

[

0 −1 0
0 0 −1

]

E2 :=

[

1 0 0 0
0 0 1 0

]

A2 :=

[

J1 O
O J1

]

(6.3.10)

with

J1 :=

[

0 1
0 0

]

� (6.3.11)

We shall now translate the preceding considerations into a general recipe to
achieve robustness in multivariable regulators designed by means of Algorithm
6.2.3, simply by using the expedient of replicating a significant part of the
exosystem in the mathematical model of the controlled system. We assume
that the pair (A1, E1) is observable.

1. Suppose at the moment that the exosystem has only one eigenvalue (for
instance zero, as in the previous example) and that matrix A2 is in real Jordan
form (as in the example). For every regulated output consider the observable
part of the exosystem and determine the dimension of its maximal Jordan block
(or, if preferred, the degree of its minimal polynomial). Assign to the considered
regulated output a new individual exosystem with the dimension of this Jordan
block (so that the observability condition is certainly met). In the single-variable
case of Fig. 6.2, this step has been accomplished by replacing the first signal-flow
graph shown in the figure with the second one.

2. Extend backwards the Jordan blocks assigned to each individual regulated
output to obtain the same dimension for all.

3. If no part of the original exosystem is observable from a particular controlled
output, first check if this unobservability property is robustly maintained (for
instance, this is very likely to happen if only the nonzero elements of the involved
matrices are subject to vary). If so, do nothing. If not, associate also to
this output an exosystem of the same type as the others and create for it an
observability path as follows: consider any nonzero element in the corresponding
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row of matrix E1 (for instance the element having the maximal absolute value)
and denote by k its column index; then assume as the new part of matrix
A3 (that which distributes the action of the new exosystem on the plant state
variables) one with all elements equal to zero, except that in the first column
and k-th row, which can be set equal to one.

4. If the original exosystem has several distinct eigenvalues, repeat the outlined
procedure for each of them.

Note that to achieve robustness, an overall exosystem that is in general of
greater dimension than the original one is finally obtained. This is formally cor-
rect, because the original autonomous regulator problem has been changed into
another one, in which the class of the exogenous signals that are allowable for
every path from the exosystem has been extended and unified. Also note that,
as in the single-variable case, the particular points where the exogenous and in-
ternal model signals input the plant, are immaterial provided the observability
assumption is satisfied for both.

These remarks are formalized in the following algorithm.

Algorithm 6.3.1 (the autonomous robust regulator synthesis) Redefine, if
necessary, the mathematical model of the controlled system in such a way that
an independent replica of a unique type of exosystem is observable from every
regulated output. Then synthesize the nominal regulator by means of Algorithm
6.2.3 (of course, with C = E).

Proof. Consider the robustness-oriented version of (6.2.33, 6.2.34):

Â◦ =









A◦
1 A◦

3 B◦
1F

◦
1 B◦

1F
◦
2

O A2 O O
−G◦

1E
◦
1 −G◦

1E
◦
2 A1 + B1F1 + G1E1 A3 +B1F2 +G1E2

−G◦
2E

◦
1 −G◦

2E
◦
2 G2E1 A2 + G2E2









(6.3.12)

Ê◦ = [ E◦
1 E◦

2 O O ] (6.3.13)

or, in more compact form

Â◦ =





A◦
1 A◦

3 B◦
1L

◦

O A2 O
M◦E◦

1 M◦E◦
2 N



 (6.3.14)

Ê◦ = [ E◦
1 E◦

2 O ] (6.3.15)

with

N :=

[

A1 +B1F1 +G1E1 A3 + B1F2 + G1E2

G2E1 A2 +G2E2

]

M◦ :=

[

−G◦
1

−G◦
2

]

L◦ := [F ◦
1 F ◦

2 ]

(6.3.16)
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Recall that at the nominal values of the parameters there exists an (A,B)-
controlled invariant V ⊆E , which complements P (i.e., having the eigenvalues
of A2 as the only internal ones), and whose basis matrix can be expressed as in
(6.2.37). It is an (A +BF )-invariant by construction, so that

(A1 + B1 F1) X1 + A3 + B1 F2 = X1 A2

and, since V ⊆E (or E1X1 +E2 = O), it is also an N -invariant, again having
the eigenvalues of A2 as the only internal ones. Note the structure of the Â-
invariant defined by (6.2.38): a motion starting from a point of V (corresponding
to a generic initial condition x20 of the exosystem and X1x20 of the plant) can
be maintained on V (in the regulated system state space) if and only if the
regulator is given the same initial condition: this corresponds to a “steady
state” or “limit” trajectory of the overall system. The feedback connection that
causes the state to be maintained on V (hence on E) is derived from the regulator
instead of the exosystem. Since the exosystem is completely observable from e,
to ensure that all its modes do not appear in e, the internal model also must
be completely observable from e (with the exosystem disconnected): this is
automatically guaranteed by the construction procedure of matrix F . In fact,
since F is such that V is an (A +BF )-invariant, it provides for the exosystem
modes a path B1F through the input which cancels their influence at the
regulated output through the dynamic connection (A1, A3, E1) and the algebraic
connection E2. In other words, while the pair

(

[

A1 A3

O A2

]

, [E1 E2])

is observable by assumption, the pair

(

[

A1 B1F
O A2

]

, [E1 O])

is observable by construction, and its observability is implied by that of the
former pair. Define the matrices of the regulated plant (the particularization of
(6.2.4) for the case on hand) as

A◦
p :=

[

A◦
1 B◦

1L
◦

M◦E◦
1 N

]

B◦
p :=

[

A◦
3

M◦E◦
2

]

C◦
p := [ E◦

1 O ] D◦
p := [E◦

2 ]

(6.3.17)

and consider the “nominal” overall system invariant Ŵ defined by (6.2.38) to
which the steady state trajectories belong at the nominal value of the parame-
ters. It can be derived by means of the Sylvester equation (6.2.20) with matrices
(6.3.17) at their nominal values: by uniqueness (recall that Ap is stable and A2

unstable) the solution must be

Xp =





X1

X1

In2



 (6.3.18)
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Let us now consider robustness: how does solution (6.3.18) modify when param-
eters change? As long as A◦

p remains stable, the solution of the corresponding
robustness oriented equation

A◦
p X◦

p − X◦
p A2 = −B◦

p (6.3.19)

remains unique. If the nonnominal solution

X◦
p =





X◦
1

X◦
2

X◦
3



 (6.3.20)

is such that the Â◦-invariant

Ŵ◦ :=









X◦
1

In2

X◦
2

X◦
3









(6.3.21)

is contained in kerÊ◦, the regulation property still holds. If for any initial
condition x20 of the exosystem there exist corresponding initial conditions of the
plant and regulator such that e remains zero, by unicity they are respectively
X◦

1x20 and [X◦
2 X◦

3 ]T x20. We claim that (6.3.20) is of the general type

X◦
p =





X◦
1

X1S
◦

S◦



 (6.3.22)

with X◦
1 and X1 defined by

V◦ = im(

[

X◦
1

In2

]

) and, as before, V = im(

[

X1

In2

]

) (6.3.23)

(V◦ is the new complement of the plant – see Property 6.3.2) and S◦ denotes a
matrix commuting with A2, i.e., such that

A2 S◦ = S◦A2 (6.3.24)

It is easily checked that (6.3.22) is a solution of (6.3.19) if (6.3.24) holds. In
connection with (6.3.22) it is possible to define the Â◦-invariant

Ŵ◦ := im
(









X◦
1

In2

X1S
◦

S◦









)

(6.3.25)

which is clearly externally stable (it is a complement of the regulated plant,
which is a stable Â◦-invariant) and contained in Ê◦. Since observability is locally
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preserved in the presence of parameter variations, both the exosystem and the
internal model remain independently observable from e. However, in this case
the initial conditions corresponding to a limit trajectory (on V◦ for the controlled
system and on V for the regulator) are not equal, but related by matrix S◦,
having (6.3.24) as the only constraint. Condition (6.3.24), on the other hand,
provides a class of matrices depending on a large number of parameters and
allows independent tuning of every mode generated by the internal model. For
instance, in the particular case of (6.3.9–6.3.11) we have3

S◦ =









α β γ δ
0 α 0 γ
ǫ η λ µ
0 ǫ 0 λ









and eA2tS◦ =









α β + αt γ δ + γt
0 α 0 γ
ǫ η + ǫt λ µ +λt
0 ǫ 0 λ









(6.3.26)

If the exosystem were not replicated, i.e., if synthesis were based on (6.3.7, 6.3.8)
instead of (6.3.9–6.3.11), we would have

S◦ =

[

α β
0 α

]

and eA2tS◦ =

[

α β +αt
0 α

]

(6.3.27)

and the number of parameters clearly would not be sufficient to guarantee neu-
tralization of an arbitrary step plus an arbitrary ramp at both regulated out-
puts. On the other hand, if the exosystem is suitably replicated and reproduced
in the internal model, an overall state trajectory that does not affect e exists
for all the initial conditions of the exosystem: structure (6.3.22) for the solu-
tion of the Sylvester equation and (6.3.25) for the corresponding Ŵ◦ follow by
uniqueness. �

A question now arises: what happens, in mathematical terms, if the ex-
osystem is not replicated for every regulated output? The Sylvester equation
(6.3.19) still admits a unique solution, which corresponds to the externally sta-
ble Â◦-invariant Ŵ◦ defined by (6.3.21), but this is not contained in Ê◦, so that
the regulation requirement is not met. In this case the regulator in general
is not robust because there does not exist any externally stable Â◦-invariant
contained in Ê◦ or, in other words, the maximal Â◦-invariant contained in Ê◦ is
externally unstable.

A more elegant formalization of this procedure, which, in practice, is equiv-
alent to it, but only points out the extension of the internal model (not of the
class of the admissible exogenous modes by replicas of a unified exosystem), is
set in the following algorithm.

Algorithm 6.3.2 (the Francis robust regulator synthesis) Let h be the number
of distinct eigenvalues of the exosystem and denote by J1, J2, . . . , Jh the corre-
sponding maximal real Jordan blocks. Define the eigenstructure to be replicated

3 An extended treatment of matrix equations of the general types AX = XA and AX =XB
with discussion of their solutions in terms of parameters is developed in Gantmacher’s book
[A.8], Chapter 8.
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in the internal model as

J :=









J1 O . . . O
O J2 . . . O
...

...
. . .

...
O O . . . Jh









(6.3.28)

and assume as the matrix of the internal model

A2e :=









J O . . . O
O J . . . O
...

...
. . .

...
O O . . . J









(6.3.29)

where J is replicated as many times as there are regulated output components.
Let ne be the dimension of A2e. Then define the extension of the controlled
system

Ae :=

[

A1 A3e

O A2e

]

Be :=

[

B1

O

]

Ee := [ E1 O ] Pe :=

[

In1

O

] (6.3.30)

where A3e is simply chosen in such a way that (A2e, A3e) is observable and
(Ae, Ee) detectable (see the previously outlined procedure to create, if necessary,
an observability path for every Jordan block of the internal model). Note that
the existence of a V◦ ⊆E such that V◦ ⊕P =X means simply that B1 is such
that every steady state influence of the exosystem on the regulated output (from
which the exosystem is completely observable) can be cancelled by a suitable feed-
back from the state of the exosystem itself. Since this is an intrinsic property
of (A1, B1, E1), it is also valid for the new system (6.3.30) i.e., V∗ +P =X im-
plies V∗

e +Pe =Xe with V∗
e := maxV(Ae,Be, Ee) (Ee := kerEe). Furthermore, the

complementation algorithm shows that V∗
e is complementable if V∗ is. Let Ve be

such that Ve ⊕Pe =Xe. Determine Fe = [F1 F2e] such that (Ae +BeFe)Ve ⊆Ve

and A1 +B1F1 is stable, Ge such that Ae + GeEe is stable, and assume

N := Ae + Be Fe + Ge Ee M := −Ge L := Fe K := O (6.3.31)

Proof. The extended system matrices Â and Ê can be partitioned as

Â =









A1 A3 B1F1 B1F2e

O A2 O O
−G1eE1 −G1eE2 A1 +B1F1 +G1eE1 A3e +B1F2e

−G2eE1 −G2eE2 G2eE1 A2e









(6.3.32)

Ê = [ E1 E2 O O ] (6.3.33)
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By means of the similarity transformation

T = T−1 :=









In1 O O O
O In2 O O
In1 O −In1 O
O O O −Ine









we derive as Â′ :=T−1ÂT and Ê ′ := ÊT the matrices

Â′ =









A1 +B1F1 A3 −B1F1 −B1F2e

O A2 O O
O A3 + G1eE2 A1 + G1eE1 A3e

O G2eE2 G2eE1 A2e









(6.3.34)

Ê ′ = [E1 E2 O O ] (6.3.35)

Let V be such that V ⊕P =X and define X1, X1e through

V = im(

[

X1

In2

]

) Ve = im(

[

X1e

Ine

]

) (6.3.36)

From (6.3.34) it is immediately seen that the regulated plant is stable. By an
argument similar to that already used to illustrate the internal model operation
in connection with Algorithm 6.3.1, it can be shown that at the nominal values
of the parameters there exists a matrix S satisfying

A2e S = S A2 (6.3.37)

such that the subspace

Ŵ := im
(









X1

In2

X1eS
S









)

(6.3.38)

is an Â-invariant. If so, it is clearly externally stable and contained in Ê := kerÊ.
Matrix S can easily be derived by means of a Sylvester equation of type (6.3.19).
Again, since the number of the free parameters in a generic S satisfying (6.3.37)
is large enough to compensate for any influence of the exosystem at the regulated
output, there exists at least one S that causes the regulated output to be
maintained at zero. By uniqueness, the solution of the Sylvester equation must
have the structure

Xp =





X1

X1eS
S



 (6.3.39)

which reflects into structure (6.3.38) for Ŵ. For instance, in the particular case
of (6.3.7, 6.3.8) we have

S =









α β
0 α
γ δ
0 γ









and eA2tS =









α β +αt
0 α
γ δ + γt
0 γ









(6.3.40)
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The robustness-oriented version of (6.3.32, 6.3.33) is

Â◦ =









A◦
1 A◦

3 B◦
1F

◦
1 B◦

1F
◦
2e

O A2 O O
−G◦

1eE
◦
1 −G◦

1eE
◦
2 A1 + B1F1 +G1eE1 A3e + B1F2e

−G◦
2eE

◦
1 −G◦

2eE
◦
2 G2eE1 A2e









(6.3.41)

Ê◦ = [ E◦
1 E◦

2 O O ] (6.3.42)

Let V◦ be such that V◦⊕P =X and denote by X◦
1 the corresponding matrix

defined as in the first of (6.3.36). Robustness is related to the existence of a S◦

satisfying (6.3.37), i.e., such that the subspace

Ŵ◦ := im
(









X◦
1

In2

X1eS
◦

S◦









)

(6.3.43)

is an Â◦-invariant. If so, it is clearly externally stable and contained in
Ê◦ := kerÊ◦. In the case of Example 6.3.1 S◦ has the same structure as S
in (6.3.40), hence includes as many parameters as needed to reproduce a step
of arbitrary amplitude and a ramp of arbitrary slope at both the regulated out-
puts. The Â◦-invariant (6.3.43) can easily be derived by means of a Sylvester
equation of type (6.3.18). �

6.4 The Minimal-Order Robust Regulator

Algorithms 6.3.1 and 6.3.2 result in regulator designs with a very large number
of poles assignable in the overall nominal system. If in particular the plant, i.e.,
the triple (A1, B1, E1), is completely controllable and observable, all the poles
of the regulated plant (2n1 +n2 in the first case and 2n1 + n2e in the second)
are arbitrarily assignable, and the dynamics of e(t) can be made arbitrarily fast.
Structural robustness is achieved by multiple replicas of the exosystem in the
internal model, while robustness with respect to stability, not considered so far,
is ensured at least locally because the eigenvalues are continuous functions of
the parameters. Unfortunately, contrary to what may appear at first glance,
pole placement in the far left half-plane is not conservative since it results in
wider spreading when parameters vary, hence in less robust design with respect
to preservation of both standard behavior and stability.

We shall now present a completely different design philosophy: to assign
zeros instead of poles. This is a more direct extension to multivariable systems
of the standard single-variable design technique briefly recalled in Section 6.1.
The number of zeros that are freely assignable is equal to the order of the
internal model. We shall refer to a plant that is open-loop stable, but this does
not imply any loss of generality since stability or arbitrary pole assignment
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Figure 6.10. The structure of a minimal-order regulator.

has been shown to be obtainable, where possible, independently of regulation.
This can be done by means of a suitable dynamic unit, connected as shown in
Fig. 6.10, which may be considered as a part of the plant in the regulator design
(separation property).

Refer to the block diagram of Fig. 6.7. A synthesis procedure that assigns as
many zeros as needed to match the order of the internal model is set as follows.
Note that it is not completely automatic, but may be assumed as a guideline
for trial and error or CAD design.

Algorithm 6.4.1 (the minimal-order robust regulator synthesis) Assume that
A1 is stable and define matrix K of the regulator as

K := (E1 A−1
1 B1)

+ (6.4.1)

(the pseudoinverse of the static gain of the plant). This has been proved to be
a good choice in most practical cases. However, K can be assumed simply of
maximal rank and such that A +B1KE1 is stable or the K provided by (6.4.1)
can be varied if needed to satisfy these requirements. Define

Ae :=

[

A1 + B1KE1 A3e

O A2e

]

Be :=

[

B1

O

]

Ee := [E1 O ] Pe :=

[

In1

O

] (6.4.2)

with A2e given by (6.3.24) and A3e chosen to establish an observability path
at the regulated output for the complete internal model. Denote by Xe the
corresponding state space and proceed as in Algorithm 6.3.2: let Ve be such that
Ve ⊕Pe =Xe, F2e such that (Ae +BeFe)Ve ⊆Ve, with Fe := [KE1 F2e]. Then
by Algorithm 4.5.1 determine Ge such that quadruple (A2e, Ge, F2e, K) has the
desired invariant zeros and assume

N := A2e M := Ge L := Fe (6.4.3)

The overall system matrices are, in this case

Â◦ =





A◦
1 +B′

1
◦K◦E◦

1 A◦
3 B′

1
◦F ◦

2e

O A2 O
G◦

eE
◦
1 G◦

eE
◦
2 A2e



 (6.4.4)
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Ê◦ = [ E◦
1 E◦

2 O ] (6.4.5)

Note that matrix A3e does not appear in (6.4.4): however, it has been useful in
computing F2e to provide a suitable signal path from the internal model to the
regulated output. Matrix B′

1
◦ in (6.4.4) is defined as

B′
1
◦

:= k B1
◦ (6.4.6)

where k, real positive, is the gain constant of the loop. The design consists of
the following steps:

1. Consider the initial pole-zero layout of the plant and internal model and
choose suitable locations for the invariant zeros of the regulator.

2. Design the regulator by the previously outlined procedure.

3. Trace out the multivariable root locus (the locus of the eigenvalues of (6.4.4)
versus k) and determine a value of k corresponding to a satisfactory pole lo-
cation; if this is not possible, go back to step 1 and choose a different set of
invariant zeros. When stability is not achievable for any choice of zero loca-
tions, it is possible to augment the number of arbitrary zeros as explained in
step 4.

4. Add any number of arbitrary stable poles in matrix A2e (as diagonal elements
or real Jordan blocks, single or chained anyhow, in conservative left half-plane
locations) and make them observable from all the regulated outputs through a
suitable choice of the nonzero elements in the corresponding rows of matrix
A3e; then go back to step 1 with as many more arbitrarily assignable zeros as
the added poles. This procedure extends the well-known pole-zero cancellation
technique to the multivariable case, a technique widely used in single-variable
design to shift stable poles toward the left.

It is worth noting that if the plant is open-loop stable with a sufficient
stability margin and the exosystem has all the eigenvalues at zero (this is the
standard situation in technical applications), the regulation problem in a strict
sense can be solved by choosing all the invariant zeros in the left half-plane
and very close to the origin. Thus, they attract the root locus branches from
the exosystem poles while the other branches (those originating from the plant
open-loop poles) remain in the stability region. Stability is easily achievable
by this technique, in particular if the dimensions of the Jordan blocks of the
exosystem is not excessive: recall that for every Jordan block the corresponding
branches of the locus leave the origin in directions that are angularly equally
spaced so that some branches may lie on the right half-plane for small values of
k and cross the imaginary axis for finite values of k. However, a solution of this
type is not in general the best due to the relatively long regulation transient
caused by poles having small real parts.
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6.5 The Robust Controlled Invariant

Previously in this chapter a regulator has been considered robust if its behavior
is good for a significantly large class of regulated systems or when parameters of
a controlled plant vary “slowly” in time. A question now arises: what happens
if parameters vary quickly or even are discontinuous in time like, for instance,
when the plant can be “switched” from one configuration to another ? The
regulator can be robust in the sense that it behaves satisfactorily for all the
allowable parameter configurations, but in general sudden change of structure
or fast parameter variation causes a significant transient at the regulated output:
if it is at steady state value (zero), in general it is subject to a pulse variation,
then gradually returns to zero. In many applications it is desirable to eliminate
this transient, particularly when the instants of time when configuration changes
can be communicated to the regulator (for instance, action on flaps or gear of
an airplane may be communicated to the autopilot to avoid any transient in
the airplane attitude). If a regulator is robust also in this sense, i.e., with
respect to very fast parameter variations or changes of structure, it is said to
be hyper-robust .

To deal with hyper-robustness some new geometric concepts will be intro-
duced, in particular the robust controlled invariant and the robust self-bounded
controlled invariant .4 Refer to the controlled system

ẋ(t) = A(q) x(t) + B(q) u(t) (6.5.1)

where q∈Q denotes a parameter subject to variation in time. The following
definitions and properties extend the concept of controlled invariance to take
into account “strong” or “fast” parameter variation.

Definition 6.5.1 (robust controlled invariant) Let B(p) := imB(p). A sub-
space V ⊆X is called a robust (A(q),B(q))-controlled invariant relative to Q
if

A(q)V ⊆ V + B(q) ∀ q∈Q (6.5.2)

Property 6.5.1 Given a subspace V ∈X and any two instants of time t0, t1
with T1 >t0, for any initial state x(t0)∈V and any q∈Q there exists at least
one control function u|[t0,t1] such that the corresponding state trajectory x|[t0,t1]

of system (6.5.1) completely belongs to V if and only if V is a robust controlled
invariant.

Property 6.5.2 Given a subspace V ∈X , for any q∈Q there exists at least
one state feedback matrix F (q) such that

(A(q) + B(q) F (q))V ⊆ V (6.5.3)

if and only if V is a robust controlled invariant.

4 The robust controlled invariant and the robust self-bounded controlled invariant were
introduced by Basile and Marro [1]. Algorithm 6.5.1 is due to Conte, Perdon, and Marro [3].
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It is easy to check that the sum of any two robust (A(q),B(q))-controlled
invariants is a robust (A(q),B(q))-controlled invariant, so that the set of all
robust controlled invariants contained in a given subspace E is a semilattice
with respect to +,⊆ . Denote its supremum by maxVR(A(q),B(q), E) (maximal
robust (A(q),B(q))-controlled invariant contained in E). Algorithm 4.1.2 for
computation of maxV(A,B, E) (the maximal (A,B)-controlled invariant con-
tained in E) can be extended as follows to compute the supremum of the new
semilattice with robustness.

Algorithm 6.5.1 (the maximal robust controlled invariant) For simpler nota-
tion, given a family W(q) of subspaces of X depending on the parameter q∈Q,
we shall denote with W(q) the intersection of all members of the family, i.e.

W(q) :=
⋂

q∈Q

W(q)

Subspace maxVR(A(q),B(q), E) coincides with the last term of the sequence

Z0 := E (6.5.4)

Zi := E ∩ A−1(q) (Zi−1 + B(q)) (i =1, . . . , k) (6.5.5)

where the value of k≤n− 1 is determined by condition Zk+1 =Zk.

Proof. First note that Zi ⊆Zi−1 (i =1, . . . , k). In fact, instead of (6.5.5),
consider the recursion expression

Z ′
i := Z ′

i−1 ∩ A−1(q) (Z ′
i−1 + B(q)) (i =1, . . . , k) (6.5.6)

with Z ′
0 := E , which defines a sequence such that Z ′

i ⊆Z ′
i−1 (i =1, . . . , k); hence

A−1(q) (Z ′
i + B(q)) ⊆ A−1(q) (Z ′

i−1 + B(q)) (i = 1, . . . , k)

This sequence is equal to (6.5.5): by induction, note that if Z ′
j =Zi

(j =1, . . . , i− 1), also

Z ′
i := E ∩ A−1(q) (Zi−2 + B(q)) ∩ A−1(q) (Zi−1 + B(q)) = Zi

being
A−1(q) (Zi−2 + B(q)) ⊇ A−1(q) (Zi−1 + B(q))

If Zk+1 =Zk, also Zj =Zk for all j > k + 1 and Zk is a robust controlled invariant
contained in E . In fact, in such a case

Zk = E ∩ A−1(q) (Zk + B(q))

hence Zk ⊆E , A(q)Zk ⊆Zk +B(q) for all q∈Q. Since two subsequent subspaces
are equal if and only if they have equal dimensions and the dimension of the
first subspace is at most n− 1, a robust controlled invariant is obtained in at
most n− 1 steps.
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The last term of the sequence is the maximal robust (A(q),B(q))-controlled
invariant contained in E , as can again be proved by induction. Let V be another
robust controlled invariant contained in E : if V ⊆Zi−1, it follows that V ⊆Zi.
In fact

V ⊆ E ∩ A−1(q) (V + B(q))

⊆ E ∩ A−1(q) (Zi−1 + B(q)) = Zi �

If Q is a finite set, the above algorithm can be applied without any difficulty,
since it reduces to a sequence of standard manipulations of subspaces (sum,
inverse linear transformation, intersection). On the other hand, if Q is a
compact set and A(q), B(q) continuous functions of q (for instance, polynomial
matrices in q), the most difficult step to overcome (and the only one that requires
special procedures) is to compute the intersection of all the elements of a family
of subspaces depending on parameter q. For this the following algorithm can
be profitably used.

Algorithm 6.5.2 (the intersection algorithm – Conte and Perdon) A sequence
of subspaces {W(ij)} converging to

A−1(q) (Zi−1 + B(q))

is computed as follows:

step 0: choose q′ ∈Q and set Wi0 := A−1(q′) (Zi−1 + B(q′)) ;

step j: denote respectively by Wi(j−1) and Z two matrices whose columns span
Wi,j−1 and Zi−1, and consider

rj(q) := ρ([A(q) Wi(j−1) |Z |B(q)]) − ρ([Z |B(q)])

(ρ(M) is the rank of matrix M), then:
if rj(q) =0 for all q ∈Q, stop;
if rj(q

′′) �=0 for some q′′ ∈Q, set Wij := A−1(q′′) (Zi−1 + B(q′′)) .

Proof. The sequence is decreasing, therefore it converges in a finite number of
steps. If rj(q) = 0 for all q ∈Q, then clearly A(q)Wi,j−1 ⊆ (Zi−1 +B(q)) for all
q ∈Q and

Wi,j−1 = A−1(q) (Zi−1 + B(q)) �

The problem of computing the maximal robust controlled invariant is thus
reduced to that of checking whether rj(q) = 0 for all q ∈Q. One of the possible
procedures is to discretize Q. Unfortunately, in this case lack of dimension may
occur only at some isolated points of Q, which may not have been considered
in the discretization, thus going undetected. However, because of rounding
errors, in implementing the algorithm for intersection on digital computers it is
necessary to introduce a suitable threshold in the linear dependence test that
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provides the sequence stop: this causes linear dependence, although occurring
only at isolated points of Q, to be detected also in small neighborhoods of these
points. Hence, it is sufficient to discretize Q over a grid fine enough to guarantee
detection of any lack of rank.

The assumption that E is constant is not particularly restrictive in practice:
if E depends on q but has a constant dimension ke, it is possible to refer matrices
A(q) and B(q) to a basis with ke elements belonging to E(q): with respect to
this basis subspace E and the robust controlled invariant provided by Algorithm
6.5.1 are clearly constant, although they would depend on q in the original basis.

Also, self-bounded controlled invariants, defined in Subsection 4.1.2 and
basic to deal with stabilizability in synthesis problems, can be extended for
hyper-robust regulation.

Definition 6.5.2 (robust self-bounded controlled invariant) Let V∗
R :=

maxVR(A(q),B(q), E). A robust controlled invariant V contained in E (hence in
V∗

R) is said to be self-bounded with respect to E if for all initial states belonging
to V and all admissible values of q any state trajectory that completely belongs
to E (hence to V∗

R) lies on V.

The following properties are straightforward extensions of similar ones con-
cerning the nonrobust case.

Property 6.5.3 A robust controlled invariant V is self-bounded with respect to
E if and only if

V ⊇ V∗
R ∩ B(p) ∀ q ∈ Q

Property 6.5.4 The set of all robust controlled invariants self-bounded with
respect to a given subspace E is a lattice with respect to ⊆, +, ∩ .

Proof. Let V1, V2 be any two elements of the set referred to in the statement.
Their sum is an element of the set since it is a robust controlled invariant and
contains V∗

R ∩B(p); it will be shown that their intersection is also an element
of the set. Let V :=V1 ∩V2 and denote by F (q) any matrix function of q such
that (A(q) +B(q)F (q))V∗

R ⊆V∗
R, which exists by virtue of Property 6.5.2: since

V1 and V2 are self-bounded, they must be invariant under A(q) +B(q)F (q), i.e.,
they satisfy

(A(q) + B(q)F (q))V1 ⊆ V1 , V1 ⊇ V∗
R ∩ B(q) ∀ q ∈ Q

(A(q) + B(q)F (q))V2 ⊆ V2 , V2 ⊇ V∗
R ∩ B(q) ∀ q ∈ Q

From these relations, it follows that

(A(q) + B(q)F (q))V ⊆ V , V ⊇ V∗
R ∩ B(q) ∀ q ∈ Q

so that V is a robust controlled invariant, again by Property 6.5.2, and self-
bounded with respect to E by Property 6.5.3. �
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The supremum of the lattice of all robust controlled invariants self-bounded
with respect to E is clearly V∗

R. The following algorithm sets a numerical proce-
dure for computation of the infimum of the lattice. It is a generalization of the
well-known algorithm for computation of controllability subspaces [4.43]: this
is consistent with the property, stated by Theorem 4.1.6 for constant systems,
that the controllability subspace on a given controlled invariant coincides with
the minimum self-bounded controlled invariant contained in it. For the sake
of completeness, we shall refer to the more general case in which the lattice of
all robust controlled invariants self-bounded with respect to E is constrained
to contain a given subspace D which, of course, must be contained in V∗

R for
the lattice to be nonempty. D can be assumed to be the origin when such a
constraint does not exist.

Algorithm 6.5.3 (the minimal robust self-bounded controlled invariant) Let
D⊆V∗

R, with V∗
R := maxVR(A(q),B(q), E). Consider the sequence of subspaces

Z0 =
∑

q∈Q

V∗
R ∩ (B(q) + D) (6.5.7)

Zi =
∑

q∈Q

V∗
R ∩ (A(q)Zi−1 + B(q) + D) (i =1, . . . , k) (6.5.8)

When Zi+1 =Zi, stop. The last term of the sequence is RR, the infimum of
the lattice of all robust controlled invariants self-bounded with respect to E and
containing D.

Proof. Sequence (6.5.7, 6.5.8) converges in at most n− 1 steps by reason of
dimensionality because each term contains the previous one or is equal to it,
and in case of equality the sequence is constant. Let

Bt(p) := B(q) + D ∀ q ∈ Q

so that
V∗

R ∩ Bt(q) = V∗
R ∩ B(q) + D ∀ q ∈ Q

since the intersection is distributive with respect to the sum because D⊆V∗
R.

At the limit we have

RR =
∑

q∈Q

V∗
R ∩ (A(q)RR + Bt(q)) (6.5.9)

First we prove that RR is a robust controlled invariant. Since it is contained in
the robust controlled invariant V∗

R, it follows that

A(q)RR ⊆ V∗
R + Bt(q) ∀ q ∈ Q

Intersection with the trivial inclusion

A(q)RR ⊆ A(q)RR + Bt(q) ∀ q ∈ Q
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yields

A(q)RR ⊆ (V∗
R + Bt(q)) ∩ (A(q)RR + Bt(q))

= V∗
R ∩ (A(q)RR + Bt(q)) + Bt(q) ∀ q ∈ Q

The last equality follows from the intersection with the second sum being
distributive with respect to the former (which contains Bt(q) ) and from Bt(q)
being contained in the second sum. By suitably adding terms on the right, we
can set the further relation

A(q)RR ⊆
∑

q∈Q

V∗
R ∩ (A(q)RR + Bt(q)) + Bt(q) ∀ q ∈ Q

which, by virtue of equality (6.5.9), proves that RR is a robust (A(q),Bt(q))-
controlled invariant, hence a robust (A(q),B(q))-controlled invariant, provided
it contains D. It is self-bounded too, since it contains V∗

R ∩Bt(q), hence
V∗

R ∩B(q) for all admissible q.
It remains to prove that RR is the minimum robust self-bounded controlled
invariant contained in E and containing D, i.e., it is contained in any other
element V of the lattice. Such a V satisfies

A(q)V ⊆ V + Bt(q) and V ⊇ V∗
R ∩ Bt(q) ∀ q ∈ Q

Refer again to sequence (6.5.7, 6.5.8). Clearly Z0 ⊆V; by induction, suppose
that Zi−1 ⊆V, so that

A(q)Zi−1 ⊆ V + Bt(q) ∀ q ∈ Q

or
A(q)Zi−1 + Bt(q) ⊆ V + Bt(q) ∀ q ∈ Q

By intersecting both members with V∗
R, we obtain

V∗
R ∩ (A(q)Zi−1 + Bt(q)) ⊆ V∗

R ∩ (V + Bt(q)) = V + V∗
R ∩ Bt(q) = V ∀ q ∈ Q

and, by summing over q, Zi ⊆V. �

6.5.1 The Hyper-Robust Disturbance Localization Prob-

lem

A typical application of the “robust” tools of the geometric approach is the
hyper-robust disturbance localization problem by state feedback, which is a
straightforward extension of the classic disturbance localization problem con-
sidered in Section 4.2. Now refer to the disturbed linear system

ẋ(t) = A(q) x(t) + B(q) u(t) + D(q) d(t) (6.5.10)

e(t) = E(q) x(t) (6.5.11)
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and consider the problem of making the controlled output e insensitive to the
disturbance input d for any admissible value of q by means of a suitable action
on the control input u. Note that both d and q are nonmanipulable inputs
but, while d is inaccessible, so that it cannot be used as an input for the
controller, q is assumed to be completely accessible, possibly through a suitable
identification process. Other information available to the controller is the state
vector, possibly through an observer, so that u may be considered a function of
both x and q.

The hyper-robust disturbance localization problem is said to have a solution
if there exists at least one function u(x, q) such that the zero-state response
e(·) of system (6.5.10, 6.5.11) corresponding to any disturbance function d(·) is
identically zero. As a consequence of the following Theorem 6.5.1 and Property
6.5.2, if the problem admits a solution, function u(x, q) can be assumed to be
linear in the state without any loss of generality. Let

D(q) := imD(q) and E(q) := kerE(q) (6.5.12)

and assume that dimD(q) and dimE(q) are constant with respect to any pa-
rameter change, i.e.

dimD(q) = kd , dimE(q) = ke ∀ q ∈ Q (6.5.13)

It being clearly necessary that

D(q) ⊆ E(q) ∀ q ∈ Q (6.5.14)

assuming that D and E are constant does not cause any loss of generality. In
fact, if they are not, consider a new basis in the state space with kd elements
belonging to D(q), ke − kd elements belonging to E(q), and the remaining ele-
ments chosen to be linearly independent of the previous ones: clearly, in this
new basis D and E are constant. Our result is then stated as follows.

Theorem 6.5.1 Consider system (6.5.10, 6.5.11) with D and E not depending
on parameter q. The hyper-robust disturbance localization problem has a solution
if and only if

D ⊆ V∗
R with V∗

R := maxVR(A(q),B(q), E) (6.5.15)

Proof. Only if. Recall that the state trajectory of a constant system can be
controlled on a subspace starting at any initial state belonging to it only if it is
a controlled invariant (Theorem 4.1.1). Clearly, the state trajectory of a system
subject to parameter changes can be controlled on a subspace starting at any
initial state belonging to it and for any admissible value of the parameter only
if it is a robust controlled invariant. For any (fixed) value of the parameter,
in order to obtain insensitivity to a general disturbance function d(·), the
corresponding state trajectory must be kept on a subspace of E which necessarily
has to be a controlled invariant containing D. Since this controllability feature
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must also be preserved at any state when the parameter changes, the above
controlled invariant must be robust, hence (6.5.15) is necessary.

If. By virtue of (6.5.2) at any state on a robust controlled invariant V
there exists a control function u(x, q) such that the corresponding state velocity
belongs to V. If (6.5.15) holds, such a control action derived in connection with
V∗

R clearly solves the problem. �

Note that the “if ” part of the proof suggests a practical implementation
of the hyper-robust disturbance decoupling controller. However, if condition
(6.5.12) holds, it is convenient, for every value of q, to use the minimum self-
bounded (A(q),B(q))-controlled invariant contained in E and containing D,
which has a maximal stabilizability feature.

6.5.2 Some Remarks on Hyper-Robust Regulation

We recall that hyper-robust regulation is a robust regulation such that the
steady state condition (regulated output at zero) is maintained also when pa-
rameters are subject to fast variations or the structure of the plant is suddenly
changed. A necessary condition is stated by the following theorem.

Theorem 6.5.2 Consider the autonomous regulator of Fig. 6.7 and assume
that A1, A3, and B1 depend on a parameter q∈Q and subspace E is constant.
The hyper-robust autonomous regulation problem admits a solution only if

V∗
R + P(q) = X ∀ q ∈ Q (6.5.16)

where V∗
R denotes the maximal (A(q),B(q))-controlled invariant robust with

respect to Q and contained in E .

Proof. By contradiction, let q̄∈Q be a value of the parameter such that
(6.5.16) does not hold. Hence

maxV(A(q̄),B(q̄), E) + P(q̄) ⊂ X

(note the strict inclusion) and necessary condition (6.2.15) is not satisfied
at q̄. �
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Appendix A

Sets, Relations, Functions

The aim of this appendix is to provide a quick reference to standard mathe-
matical background material for system and control theory and to trace out a
suggested program for a preliminary study or an introductory course.

A.1 Sets, Relations, Functions

In this section some basic concepts of algebra are briefly recalled. They include
the standard tools for finite-state system analysis, such as binary operations
and transformations of sets and partitions.

The word set denotes a collection of objects, called elements or members of
the set. Unless a different notation is expressly introduced, sets will be denoted
by capital “calligraphic” letters (X , Y , . . . ), elements of sets or vectors by lower
case italic letters (x, y, . . . ), numbers and scalars by lower case Greek or italic
letters (α, β, . . . ; a, b, . . . ), linear functions and matrices by capital italic letters
(A, B, . . . ).

Symbol ∈ denotes belonging, i.e., x∈X indicates that x is an element of the
set X . Symbol /∈ denotes nonbelonging. Particular sets, which will be referred
to frequently, are Z, R and C, the sets of all integer, real and complex numbers.

A set is said to be finite if the number of its elements is finite. The following
definition, called extension axiom, provides a connection between the concepts
of belonging and equality of sets.

Definition A.1.1 (different sets) For any two sets X and Y, X is equal to
Y (X =Y) if every element of X also belongs to Y and vice versa; if not, the
considered sets are said to be different.

Notation X := {x1, x2, . . . , x5} is used to state that a particular set X is
composed of the elements x1, x2, . . . , x5. A set can be specified also by stating
a certain number of properties for its elements; in this case the word “class”
is often used instead of “set.” The corresponding notation is X := { x :
p1(x), p2(x), . . . } and is read “X is the set” (or the class) of all elements x
such that statements p1(x), p2(x), . . . are true. For instance

X := {x : x =2 y , y∈Z , 0≤x≤ 10}

349



350 Appendix A. Mathematical Background

denotes the set of all the even numbers between 0 and 10.
To represent intervals defined in the set of real numbers, the shorter nota-

tions

[α, β] := {x : α ≤ x ≤ β}
(α, β] := {x : α < x ≤ β}
[α, β) := {x : α ≤ x < β}
(α, β) := {x : α < x < β}

are used for the sake of brevity; the first is a closed interval, the second and the
third are half-closed intervals, the fourth is an open interval.

In general, symbols ∀ (for all), ∃ (there exists), ∋ (such that) are often used.
To denote that the two assertions p1(x) and p2(x) are equivalent, i.e., imply
each other, notation p1(x)⇔ p2(x) is used, while to denote that p1(x) implies
p2(x) we shall write p1(x)⇒ p2(x).

Definition A.1.2 (subset) Given two sets X and Y, X is said to be a subset
of Y if every element of X is also an element of Y.

In such a case X is said to be contained in Y or Y to contain X , in symbols
X ⊆Y or Y ⊇X if equality is not excluded. If, on the contrary, equality is
excluded, X is said to be strictly contained in Y or Y to contain strictly X , in
symbols X ⊂Y or Y ⊃X .

The set that contains no elements is said to be the empty set and denoted
by ∅: ∅⊆X for all X , i.e., the empty set is a subset of every set.

Definition A.1.3 (union of sets) Given two sets X and Y, the union of X
and Y (in symbols X ∪Y) is the set of all elements belonging to X or to Y, i.e.

X ∪ Y := {z : z ∈X or z ∈Y}

Definition A.1.4 (intersection of sets) Given two sets X and Y, the intersec-
tion of X and Y (in symbols X ∩Y) is the set of all elements belonging to X
and to Y, i.e.

X ∩ Y := {z : z ∈X , z ∈Y }

Definition A.1.5 (difference of sets) Given two sets X and Y, the difference
of X and Y (in symbols X −Y) is the set of all elements of X not belonging to
Y, i.e.

X − Y := {z : z ∈X , z /∈Y }

Two sets X and Y are said to be disjoint if X ∩Y = ∅. The complement of
X with respect to a given set E containing X is X̄ := E −X .

A simple and intuitive way of illustrating these concepts is the use of the
Venn diagrams, shown in Fig. A.1 which refer to sets whose elements are points
of a plane, hence susceptible to an immediate graphical representation.
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Figure A.1. Union, intersection, difference and complemen-

tation of sets.

The identities

X ⊆ Y and Y ⊆ X ⇔ X = Y (A.1.1)

X ⊆ Y and Y ⊆ Z ⇒ X ⊆ Z (A.1.2)

X ⊆ Y ⇔ X ∪ Y = Y (A.1.3)

X ⊆ Y ⇔ X ∩ Y = X (A.1.4)

and the following properties of sets and operations with sets are easily proved
by direct check using Venn diagrams:

1. The commutative laws for union and intersection:

X ∪ Y = Y ∪ X (A.1.5)

X ∩ Y = Y ∩ X (A.1.6)

2. The associative laws for union and intersection:

X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z (A.1.7)

X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z (A.1.8)
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3. The distributivity of union with respect to intersection and intersection with
respect to union:

X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z) (A.1.9)

X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z) (A.1.10)

4. The De Morgan laws:

X ∪ Y = X̄ ∩ Ȳ (A.1.11)

X ∩ Y = X̄ ∪ Ȳ (A.1.12)

and, in the end,
X ⊆ Y ⇔ X̄ ⊇ Ȳ (A.1.13)

Owing to the associative law, union and intersection can be defined also for
a number of sets greater than two: given the sets X1,X2, . . . ,Xn, their union
and their intersection are denoted by

n
⋃

i=1

Xi and
n
⋂

i=1

Xi

More generally, let J be a set such that Xi is a well-defined set for all i∈J :
it follows that

⋃

i∈J

Xi := {x : ∃ i∈J ∋ x∈Xi} (A.1.14)

⋂

i∈J

Xi := {x : x∈Xi ∀ i∈J } (A.1.15)

Relations (A.1.9–A.1.12) can be generalized as follows:

X ∪
(

⋂

i∈J

Xi

)

=
⋂

i∈J

(X ∪ Xi) (A.1.16)

X ∩
(

⋃

i∈J

Xi

)

=
⋃

i∈J

(X ∩ Xi) (A.1.17)

⋃

i∈J

Xi =
⋂

i∈J

X̄i (A.1.18)

⋂

i∈J

Xi =
⋃

i∈J

X̄i (A.1.19)

Definition A.1.6 (ordered pair) An ordered pair is a set of the type

(x, y) := {{x}, {x, y}}

where elements x, y are called respectively first coordinate and second coordinate.
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Definition A.1.7 (cartesian product of sets) Given two nonvoid sets X and
Y, the cartesian product of X and Y (in symbols X ×Y) is the set of all ordered
pairs whose first coordinate belongs to X , and the second to Y, i.e.

X × Y := { (x, y) : x∈X , y ∈Y }

The cartesian product is distributive with respect to union, intersection, and
difference: in other words, referring to the sole union for the sake of simplicity,
the following relations hold:

X × (Y ∪ Z) = (X × Y) ∪ (X × Z)

(X ∪ Y) × Z = (X × Z) ∪ (Y × Z)

The cartesian product can be extended to involve a number of sets greater
than two: X ×Y ×Z denotes, for instance, the set of ordered triples whose
elements belong respectively to X , Y , and Z. The sets in the product may be
equal: X ×X or X 2 means the set of all ordered pairs of elements of X , even
repeated.

Definition A.1.8 (relation) Given two nonvoid sets X and Y, any subset r
of X ×Y is called a (binary) relation from X to Y. If Y =X , the relation is a
subset of X ×X and is called relation in X .

Example A.1.1 In a set of people X , relationship is a relation defined by

r := {(xi, xj) : xi is relative of xj} (A.1.20)

The domain of a relation r from X to Y is the set

D(r) := {x : ∃ y ∋ (x, y)∈ r}

while its codomain or range is

C(r) := {y : ∃ x ∋ (x, y)∈ r}

and the inverse of a relation r (denoted by r−1) is defined as

r−1 := {(y, x) : (x, y)∈ r}

Clearly, D(r−1) = C(r) , C(r−1) =D(r) .

The identity relation on a set X is

i := {(x, x) : x∈X}

Given two relations r and s, the former from X to Y , the latter from Y to
Z, their composition or product s ◦ r is

s ◦ r := {(x, z) : ∃ y ∋ (x, y)∈ r, (y, z)∈ s} (A.1.21)
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Figure A.2. Graph and adjacency matrix of a relation from X to Y.

A relation can be defined in several ways. Given the sets
X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4}, any relation from X to Y can
be specified through a graph, i.e., a collection of nodes or vertexes joined to each
other by branches or edges that single out the pairs belonging to the relation
(see Fig. A.2(a), or through a matrix R, called adjacency matrix , with as many
rows as there are elements of X and as many columns as there are elements of
Y and such that the generic element rij is 1 if (xj , yi)∈ r, 0 if (xj , yi) /∈ r (see
Fig. A.2)(b)].

A relation in X can be represented by means of an oriented graph (i.e., a
graph whose branches are given a direction by means of an arrow) having as
many nodes as there are elements of X , instead of a double number. Such a
graph and the corresponding adjacency matrix are shown in Fig. A.3.

Definition A.1.9 (function, map, transformation, operator) Given two non-
void sets X and Y, a function (or map, transformation, operator) is a relation
f from X to Y such that

1. D(f) =X
2. there are no elements of f with the same first coordinate, i.e.,
(x, yi)∈ f, (x, yj)∈ f ⇒ yi = yj.

Example A.1.2 The relation represented in Fig. A.2(a) is not a function,
since x4 /∈D(f) and it contains pairs (x2, y1) and (x2, y2), which have the first
coordinates equal and the second different.

If (x, y)∈ f , y is said to be the image of x in f or the value of f at x and
notation y = f(x) is used, while function as a correspondence between sets is
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Figure A.3. Graph and adjacency matrix of a relation in X .

denoted by

f : X → Y or X f→ Y

Referring to the representations shown in Fig. A.2, it can be argued that a
relation is a function if and only if no more than one branch leaves any node xi

of the graph or, equivalently, if and only if each column of the adjacency matrix
has no more than one element different from zero: this indeed happens in the
case referred to in Fig. A.4.

A simpler representation is the so-called function table or correspondence
table shown in Fig. A.4(a). For a function z = f(x, y) whose domain is the
cartesian product of two sets X and Y , a table of the type shown in Fig. A.5(b)
can be used.

For any function f : X →Y by definition D(f) =X . Given any subset
Z ∈X , the image of Z in f is

f(Z) := {y : y = f(x), x∈Z }

The image of the function, imf , is f(X ), i.e., the image of its domain. In
general f(X )⊆Y and f is called a function from X into Y [see Fig. A-6(a)]; if
f(X ) =Y , f is called a map of X onto Y or a surjection (see Fig. A.6(b)).

A function f : X →Y is said to be one-to-one or an injection if f(x) = f(z)
implies x = z for all pairs (x, z)∈X (see Fig. A.6(c)).

A function f : X →Y that is onto and one-to-one is called invertible. In
fact, it is possible to define its inverse map f−1 as the unique function such
that y = f(f−1(y)) for all y∈Y .
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Figure A.4. Graph and matrix of a function from X to Y.
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Figure A.5. Tables of functions.

Given two functions f and g, their composed function g ◦ f is defined as the
composed relation (A.1.21). If y = f(x), z = g(y), notation z = g(f(x)) is used.
The composed function is invertible if and only if both f and g are invertible.

Given any subset Z ⊆ f(X ), the inverse image of Z in the map f is

f−1(Z) := {x : y = f(x), y ∈Z }

Note that in order to define the inverse image of a set in a map, the map need
not be invertible.

The following relations hold.

f(X1 ∪ X2) = f(X1) ∪ f(X2) (A.1.22)

f(X1 ∩ X2) ⊆ f(X1) ∩ f(X2) (A.1.23)

f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2) (A.1.24)

f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2) (A.1.25)
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Figure A.6. Graphs of functions: from X into Y, from X
onto Y, and one-to-one.

A.1.1 Equivalence Relations and Partitions

Definition A.1.10 (equivalence relation) Given a set X , a relation r in X is
an equivalence relation if

1. it is reflexive, i.e. (x, x)∈ r for all x∈X ;

2. it is symmetric, i.e. (x, y)∈ r ⇔ (y, x)∈ r ;

3. it is transitive, i.e. (x, y)∈ r, (y, z)∈ r ⇒ (x, z)∈ r .

Example A.1.3 The relationship in Example A.1.1 is an equivalence relation.

An equivalence relation is often denoted by the symbol ≡. Thus, instead of
(x, y)∈ r, notation x≡ y is used. The oriented graph of an equivalence relation
has the particular shape shown in Fig. A.7(a), where

1. every node is joined to itself by a branch, i.e., every node has a self-loop;

2. the presence of any branch implies that of an opposite branch between the
same nodes;

3. any two nodes joined to each other must be connected to all nodes connected
to them.

Hence, the graph presents disjoint sets of nodes whose elements are con-
nected to each other in all possible ways.

The matrix also has a particular shape. In fact:
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Figure A.7. Graph and matrix of an equivalence relation.

1. rii = 1 for all i (all the main diagonal elements are 1);

2. rij = rji for all i, j (matrix is symmetric);

3. rij = rjk implies rik = rij (or rik = rjk)) for all i, j, k.

By a proper ordering of rows and columns, the matrix of any equivalence
relation can be given the structure shown in Fig. A.7(b).

Definition A.1.11 (partition) Given a set X , a partition P in X is a set of
nonvoid subsets X1,X2, . . . of X such that

1. Xi ∩Xj = ∅ for i �= j ;

2.
⋃

i

Xi = X .

The sets X1,X2, . . . are called the blocks of partition P .

Theorem A.1.1 To any equivalence relation in a given nonvoid set X there
corresponds a partition of X and vice versa.

Proof. By considering properties of the graph shown in Fig. A.7(a), it is clear
that any equivalence relation defines a partition. On the other hand, given any
partition P = {X1,X2, . . . ,Xn}, relation

r = {(x, y) : ∃ i ∋ x, y ∈ Xi}
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is reflexive, symmetric, and transitive, hence an equivalence relation. �

The blocks of the partition induced by an equivalence relation are called
equivalence classes. An equivalence class is singled out by specifying any ele-
ment belonging to it.

Graphs of the type shown in Fig. A.7 are not used for equivalence relations
since it is sufficient to specify their node partitions (i.e., the equivalence classes).
Notation P = {x1, x2, x3; x4, x5; x6} is more convenient.

A.1.2 Partial Orderings and Lattices

Definition A.1.12 (partial ordering) Given a set X , a relation r in X is a
partial ordering if

1. it is reflexive, i.e. (x, x)∈ r for all x∈X ;

2. it is antisymmetric, i.e. (x, y)∈ r, x �= y ⇒ (y, x) /∈ r ;

3. it is transitive, i.e. (x, y)∈ r, (y, z)∈ r ⇒ (x, z)∈ r .

A partial ordering is usually denoted by symbols ≤, ≥.Thus, instead of
(x, y)∈ r, notation x≤ y or x≥ y is used. A set with a partial ordering is called
a partially ordered set .

x1

x2

x3

Figure A.8. Partially ordered sets.

Example A.1.4 In a set of people X , descend is a partial ordering.

Example A.1.5 Consider a set S of subsets of a given set X : inclusion rela-
tion ⊆ is a partial ordering in S. Referring to Fig. A.8, we have (x1, x2)∈ r,
i.e., x1 ≤x2, (x2, x1) /∈ r, (x1, x3) /∈ r, (x3, x1) /∈ r, (x2, x3) /∈ r, (x3, x2) /∈ r.

The oriented graph of a partial ordering has the particular shape shown in
Fig. A.9)(a), where

1. every node has a self-loop;

2. the presence of any branch excludes that of an opposite branch between the
same nodes;
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Figure A.9. Graph, Hasse diagram, and matrix of a partial ordering.

3. any two nodes joined to each other by a path (sequence of oriented branches)
are also directly connected by a single branch having the same orientation.

A partial ordering relation is susceptible to a simpler representation through
a Hasse diagram, where self-loops and connections implied by other connections
are not shown and node xi is represented below xj if xi ≤xj . The Hasse diagram
represented in Fig. A.9(b) corresponds to the graph shown in Fig. A.9(a).

The matrix of a partial ordering relation (see Fig. A.9(c)) also has a partic-
ular shape. In fact:

1. rii = 1 for all i;

P1

P2 P3 P4

P5

Figure A.10. Hasse diagram of partitions of a set with three elements.
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2. rij =1 implies rji =0 for all i, j;

3. rij = rjk =1 implies rik = rij (or rik = rjk) for all i, j, k.

Example A.1.6 Given a set X , in the set of all partition of P1, P2, . . . of X
a partial ordering can be defined by stating that Pi ≤Pj if every block of Pi is
contained in a block of Pj. In particular, let X = {x1, x2, x3}: the partitions
of X are P1 = {x1; x2; x3}, P2 = {x1, x2; x3}, P3 = {x1; x2, x3}, P4 = {x1, x3; x2},
P5 = {x1, x2, x3},and their Hasse diagram is shown in Fig. A.10.

Definition A.1.13 (lattice) A lattice L is a partially ordered set in which for
any pair x, y∈L there exists a least upper bound (l.u.b.), i.e., an η ∈L such
that η≥x, η ≥ y and z ≥ η for all z ∈L such that z≥x, z ≥ y, and a greatest
lower bound (g.l.b.), i.e., an ǫ∈L such that ǫ≤x, ǫ≤ y and z≤ ǫ for all z ∈L
such that z ≤x, z≤ y.

{x1}

{x1, x2}

{x1, x2, x3}

{x2, x3}

{x3}

∅

{x1, x3}

{x2}

Figure A.11. The lattice of all subsets of a set with three elements.

Example A.1.7 The set of all subsets of a given set X , with the partial order-
ing relation induced by inclusion ⊆, is a lattice. Its Hasse diagram in the case
of a set with three elements is shown in Fig. A.11.

Example A.1.8 The set of all partitions P1, P2, . . . of a given set X , with the
above specified partial ordering, is a lattice.

In a lattice, two binary operations, which will be called addition and mul-
tiplication and denoted with symbols + and · , can be defined through the
relations x + y = η and x ·y = ǫ, i.e., as the operations that associate to any pair
of elements their g.l.b. and l.u.b. It is easily shown that + and · satisfy
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1. idempotency:

x + x = x ∀x ∈ L
x · x = x ∀x ∈ L

2. commutative laws:

x + y = y + x ∀x, y ∈ L
x · y = y · x ∀x, y ∈ L

3. associative laws:

x + (y + z) = (x + y) + z ∀x, y, z ∈ L
x · (y · z) = (x · y) · z ∀x, y, z ∈ L

4. absorption laws:

x + (x · y) = x ∀x, y ∈ L
x · (x + y) = x ∀x, y ∈ L

A lattice is called distributive if distributive laws hold, i.e.

x + (y · z) = (x + y) · (x + z) ∀x, y, z ∈ L
x · (y + z) = (x · y) + (x · z) ∀x, y, z ∈ L

Since + and · are associative, any finite subset of a lattice has a least upper
bound and a greatest lower bound; in particular, any finite lattice has a universal
upper bound or, briefly, a supremum I (the sum of all its elements) and an
universal lower bound or, briefly, an infimum O (the product of all its elements),
which satisfy

I + x = I , O + x = x ∀x∈L
I · x = x , O · x = O ∀x∈L

Also a nonfinite lattice may admit universal bounds. In the case of Example
A.1.7 the binary operations are union and intersection and the universal bounds
are X and ∅. In Example A.1.8 the operations are the sum of partitions, de-
fined as the maximal partition (i.e., the partition with the maximum number of
blocks) whose blocks are unions of blocks of all partitions to be summed, and
the product of partitions, defined as the minimal partition whose blocks are
intersections of blocks of all partitions to be multiplied; the lattice is nondis-
tributive and the universal bounds are partition PM (with X as the only block)
and Pm (with all elements of X as blocks), called the maximal partition and the
minimal partition respectively.
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A.2 Fields, Vector Spaces, Linear Functions

The material presented in this section and in the following one is a selection of
topics of linear algebra in which the most important concepts and the formal-
ism needed in general system theory are particularly stressed: vector spaces,
subspaces, linear transformations, and matrices.

Definition A.2.1 (field) A field F is a set, whose elements are called scalars,
with two binary operations + (addition) and · (multiplication) characterized by
the following properties:

1. commutative laws:

α + β = β + α ∀α, β ∈ F
α · β = β · α ∀α, β ∈ F

2. associative laws:

α + (β + γ) = (α + β) + γ ∀α, β, γ ∈ F
α · (β · γ) = (α · β) · γ ∀α, β, γ ∈ F

3. distributivity of multiplication with respect to addition:

α · (β + γ) = α · β + α · γ ∀α, β, γ ∈ F

4. the existence of a neutral element for addition, i.e., of a unique scalar
0∈F (called zero) such that

α + 0 = α ∀α ∈ F

5. the existence of the opposite of any element: for all α∈F there exists a
unique scalar −α∈F such that

α + (−α) = 0

6. the existence of a neutral element for multiplication, i.e., of a unique
scalar 1∈F (called one) such that

α · 1 = α ∀α ∈ F

7. the existence of the inverse of any element: for all α∈F , α �=0 there
exists a unique scalar α−1 ∈F such that α · α−1 = 1.

Example A.2.1 The set of all real numbers is a field, which is denoted by R.

Example A.2.2 The set of all complex numbers is a field, which is denoted
by C.
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Figure A.12. Operations in B.

Example A.2.3 The set B := {0, 1}, with + and · defined as in the tables shown
in Fig. A.12, is also a field, which will be denoted by B.

Definition A.2.2 (vector space) A vector space V over a field F is a set,
whose elements are called vectors, with two binary operations + (addition) and
· (multiplication by scalars or external product) characterized by the following
properties:

1. commutative law of addition:

x + y = y + x ∀x, y ∈ V

2. associative law of addition:

x + (y + z) = (x + y) + z ∀x, y, z ∈ V

3. the existence of a neutral element for addition, i.e., of a unique vector 0
(called the origin) such that

x + 0 = x ∀x ∈ V

4. the existence of the opposite of any element: ∀x∈V there exists a unique
element −x∈V such that

x +(−x) = 0

5. associative law of multiplication by scalars:

α · (β · x) = (α · β) · x ∀α, β ∈ F , ∀x ∈ V

6. the neutrality of the scalar 1 in multiplication by scalars:

1 · x = x ∀x ∈ V

7. distributive law of multiplication by scalars with respect to vector addition:

α · (x + y) = α · x + α · y ∀α ∈ F , ∀x, y ∈ V
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8. distributive law of multiplication by scalars with respect to scalar addition:

(α + β) · x = α · x + β · x ∀α, β ∈ F ∀x ∈ V

Example A.2.4 The set of all ordered n-tuples (α1, . . . , αn) of elements of a
field F is a vector space over F . It is denoted by Fn. The sum of vectors and
product by a scalar are defined as1

(α1, . . . , αn) + (β1, . . . , βn) = (α1 + β1, . . . , αn + βn)

α (β1, . . . , βn) = (α β1, . . . , α βn)

The origin is the n-tuple of all zeros. Referring to the examples of fields
previously given, we may conclude that Rn, Cn, and Bn are vector spaces.

Example A.2.5 The set of all functions f [t0, t1] or f : [t0, t1] → Fn, piecewise
continuous, i.e., with a finite number of discontinuities in [t0, t1], is a vector
space over F .

Example A.2.6 The set of all the solutions of the homogeneous differential
equation

d3x

dt3
+ 6

d2x

dt2
+ 11

dx

dt
= 0

which can be expressed as

x(t) = k1 e−t + k2 e−2t + k3 e−3t (k1, k2, k3) ∈ R
3 (A.2.1)

is a vector space over R.

Example A.2.7 For any positive integer n, the set of all polynomials having
degree equal or less than n− 1 and coefficients belonging to R, C, or B, is a
vector space over R, C, or B in which the operations are the usual polynomial
addition and multiplication by a scalar. The origin is the polynomial with all
coefficients equal to zero.

Definition A.2.3 (subspace) Given a vector space V over a field F , a subset
X of V is a subspace of V if

αx + βy ∈ X ∀α, β ∈ F , ∀x, y ∈ X

Note that any subspace of V is a vector space over F . The origin is a
subspace of V that is contained in all other subspaces of V; it will be denoted
by O.

Definition A.2.4 (sum of subspaces) The sum of two subspaces X ,Y ∈V is
the set

X + Y := { z : z = x + y, x ∈ X , y ∈ Y }
1 Here and in the following the “dot” symbol is understood, as in standard algebraic

notation.
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Property A.2.1 The sum of two subspaces of V is a subspace of V.

Proof. Let p, q ∈ X +Y : by definition there exist two pairs of vectors
x, z ∈ X and y, v ∈ Y such that p =x + y, q = z + v. Since αp + βq =
(αx +βz) + (αy + βv) ∀α, β ∈ F , and αx +βz ∈ X , αy +βv ∈ Y because
X and Y are subspaces, it follows that αp +βq ∈ X +Y , hence X +Y is a
subspace. �

Definition A.2.5 (intersection of subspaces) The intersection of two sub-
spaces X ,Y ∈V is the set

X ∩ Y := { z : z ∈ X , z ∈ Y }

Property A.2.2 The intersection of two subspaces of V is a subspace of V.

Proof. Let p, q ∈ X ∩Y , i.e., p, q ∈ X and p, q ∈ Y . Since X and Y are
subspaces, αp+βq ∈ X and αp+βq ∈ Y ∀α, β ∈ F . Thus, αp +βq ∈ X ∩Y ,
hence X ∩Y is a subspace. �

Definition A.2.6 (direct sum of subspaces) Let X ,Y ⊆Z be subspaces of a
vector space V which satisfy

X + Y = Z (A.2.2)

X ∩ Y = O (A.2.3)

In such a case Z is called the direct sum of X and Y. The direct sum is denoted
by the symbol ⊕ ; hence the notation X ⊕Y =Z is equivalent to (A.2.2,A.2.3).

Property A.2.3 Let Z =X ⊕Y. Any vector z ∈Z can be expressed in a
unique way as the sum of a vector x∈X and a vector y ∈Y.

Proof. The existence of two vectors x and y such that z = x + y is a con-
sequence of Definition A.2-4. In order to prove uniqueness, assume that
z =x + y = x1 + y1; by difference we obtain (x−x1)+ (y− y1) = 0 or (x−x1) =
−(y− y1). Since X ∩Y = O, the only vector belonging to both subspaces is
the origin. Hence (x− x1) = (y− y1) = 0, i.e., x =x1, y = y1. �

Corollary A.2.1 Let Z =X +Y. All decompositions of any vector z ∈Z in
the sum of two vectors belonging respectively to X and Y are obtained from
any one of them, say z =x1 + y1, by summing each vector of X ∩Y to x1 and
subtracting it from y1.

Proof. The proof is contained in that of Property A.2.3. �
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Definition A.2.7 (linear variety or manifold) Let x0 be any vector belonging
to a vector space V, X any subspace of V. The set2

L = { z : z =x0 +x, x∈X } = {x0} + X

is called a linear variety or linear manifold contained in V.

Definition A.2.8 (quotient space) Let X be a subspace of a vector space V
over a field F : the set of all linear varieties

L = {x} + X , x ∈ V

is called the quotient space of V over X and denoted by V/X .

A quotient space is a vector space over F . Any two elements of a quotient
space L1 = {x1}+X , L2 = {x2}+X are equal if x1 −x2 ∈ X . The sum of L1

and L2 is defined as

L1 + L2 := {x1 +x2} + X
The external product of L = {x} + X by a scalar α∈F is defined as

αL := {αx} + X

A.2.1 Bases, Isomorphisms, Linearity

Definition A.2.9 (linearly independent set) A set of vectors {x1, . . . , xh}
belonging to a vector space V over a field F is linearly independent if

h
∑

i=1

αi xi = 0 , αi ∈ F (i = 1, . . . , h) (A.2.4)

implies that all αi are zero. If, on the other hand, (A.2.4) holds with some of
the αi different from zero, the set is linearly dependent.

Note that a set in which at least one of the elements is the origin is linearly
dependent. If a set is linearly dependent, at least one of the vectors can be
expressed as a linear combination of the remaining ones. In fact, suppose that
(A.2.4) holds with one of the coefficients, for instance α1, different from zero.
Hence

x1 = −
h
∑

i=2

αi

α1
xi

2 Note that the sum of subspaces, as introduced in Definition A.2.4, can be extended to
general subsets of a vector space. Of course, the sum of general subsets in general is not a
subspace and does not contain the origin, unless both the addends do.
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Definition A.2.10 (span of a set of vectors) Let {x1, . . . , xh} be any set of
vectors belonging to a vector space V over a field F . The span of {x1, . . . , xh}
(denoted by sp{x1, . . . , xh}) is the subspace of X

sp{x1, . . . , xh} := {x : x =

h
∑

i=1

αi xi , αi ∈ F (i = 1, . . . , h) }

Definition A.2.11 (basis) A set of vectors {x1, . . . , xh} belonging to a vec-
tor space V over a field F is a basis of V if it is linearly independent and
sp{x1, . . . , xh} = V.

Theorem A.2.1 Let (b1, . . . , bn) be a basis of a vector space V over a field F ;
for any x∈V there exists a unique n-tuple of scalars (α1, . . . , αn) such that

x =

n
∑

i=1

αi bi

Proof. Existence of (α1, . . . , αn) is a consequence of Definition A.2.11, unique-
ness is proved by contradiction. Let (α1, . . . , αn), (β1, . . . , βn) be two ordered
n-tuples of scalars such that

x =
n
∑

i=1

αi bi =
n
∑

i=1

βi bi

Hence, by difference

0 =

n
∑

i=1

(αi − βi) bi

since the set {b1, . . . , bn} is linearly independent, it follows that
αi = βi (i = 1, . . . , n). �

The scalars (α1, . . . , αn) are called the components of x in the basis
(b1, . . . , bn).

Example A.2.8 A basis for Fn is the set of vectors

e1 := (1, 0, . . . , 0)
e2 := (0, 1, . . . , 0)

. . . . . . . . .
en := (0, 0, . . . , 1)

(A.2.5)

It is called the main basis of Fn. Let x =(x1, . . . , xn) be any element of Fn:
the i-th component of x with respect to the main basis is clearly xi.

Example A.2.9 A basis for the vector space (A.2.1), defined in Example
A.2.6, is

b1 := e−t , b2 := e−2t , b3 := e−3t
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Example A.2.10 For the vector space of all piecewise continuous functions
f [t0, t1] it is not possible to define any basis with a finite number of elements.

Theorem A.2.2 The number of elements in any basis of a vector space V is
the same as in any other basis of V.

Proof. Let {b1, . . . , bn} and {c1, . . . , cm} (m≥n) be any two bases of V. Clearly

V = sp{cn, b1, . . . , bn} (A.2.6)

Since cn ∈V it can be expressed as

cn =
∑

i∈J1

α1i bi , J1 := {1, 2, . . . , n}

At least one of the α1i (i∈J1) is different from zero, cn being different from
the origin. Let α1j �=0, so that bj can be expressed as a linear combination of
{cn, b1, . . . , bj − i, bj +1, . . . , bn} and can be deleted on the right of (A.2.6). By
insertion of the new vector cn− 1 in the set, it follows that

V = sp{cn− 1, cn, b1, . . . , bj − 1, bj + 1, . . . , bn} (A.2.7)

Since cn− 1 ∈V and V is the span of the other vectors on the right of (A.2.7),

cn− 1 = β2n cn +
∑

i∈J2

α2i bi , J2 := {1, . . . , j − 1, j +1, . . . , n}

At least one of the α2i (i∈J2) is different from zero, cn− 1 being different from
the origin and linearly independent of cn. Again, on the right of (A.2.7) it is
possible to delete one of the bi (i∈J2). By iteration of the same argument, it
follows that

V = sp{c1, . . . , cn}
Since set {c1, . . . , cn} is linearly independent, we conclude that it is a basis of
V, hence m =n. �

A vector space V whose bases contain n elements is called an n-dimensional
vector space. The integer n is called the dimension of V, n =dimV in short
notation. Example A.2.10 above refers to an infinite-dimensional vector space.

Definition A.2.12 (isomorphic vector spaces) Two vector spaces V and W
over the same field F are isomorphic if there exists a one-to-one correspondence
t : V →W which preserves all linear combinations, i.e.

t(αx + βy) = α t(x) + β t(y) ∀α, β ∈ F , ∀x, y ∈ V (A.2.8)

To denote that V and W are isomorphic, notation V ≡W is used.
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Function t is called an isomorphism. In order to be isomorphic, V and W
must have the same dimension; in fact, by virtue of (A.2.8) a basis in one of the
vector spaces corresponds to a basis in the other. As a consequence of Theorem
A.2.2, any n-dimensional vector space V over F is isomorphic to Fn, hence for
any subspace X ⊆V, dimX ≤ dimV.

Corollary A.2.2 Let {b1, . . . , bn} be a basis of a vector space V and
{c1, . . . , cm} a basis of a subspace X ∈V. It is possible to extend the set
{c1, . . . , cm} to a new basis of V by inserting in it a proper choice of n−m
of the elements of the old basis {b1, . . . , bn}.

Proof. The argument developed for the proof of Theorem A.2.2 can be applied
in order to substitute m elements of the basis {b1, . . . , bn} with {c1, . . . , cm}. �

Corollary A.2.3 Let X be a subspace of a vector space V, with dimX =m,
dimV =n. The dimension of the quotient space V/X is n−m.

Proof. Apply Corollary A.2.2: if {b1, . . . , bn} is a basis of V such that
{b1, . . . , bm} is a basis of X , the linear varieties

{bi} + X (i = m +1, . . . , n)

are clearly a basis of V/X . �

Definition A.2.13 (linear function or linear map) A function A : V →W,
where V and W are vector spaces over the same field F , is a linear function or
linear map or linear transformation if

A(αx + βy) = α A(x) + β A(y) ∀α, β ∈ F , ∀x, y ∈ V

In other words, a linear function is one that preserves all linear combinations.
For instance, according to (A.2.8) an isomorphism is a linear function. The
particular linear function I : V →V such that I(x) = x for all x∈V is called
the identity function.

Example A.2.11 Let V be the vector space of all piecewise continuous func-
tions x(·) : [t0, t1]→R. The relation

z =

∫ t1

t0

e−(t1−τ) x(τ) dτ

defines a linear function A : V →R.

Definition A.2.14 (image of a linear function) Let A : V →W be a linear
function. The set

imA := { z : z = A(x), x∈V }
is called the image or range of A. The dimension of imA is called the rank of
A and denoted by ρ(A).
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Definition A.2.15 (kernel or null space of a linear function) Let A : V →W
be a linear function. The set

kerA := {x : x∈V, A(x) = 0 }

is called the kernel or null space of A. The dimension of kerA is called the
nullity of A and denoted by ν(A).

Property A.2.4 Both imA and kerA are subspaces (of W and V respectively).

Proof. Let z, u∈ imA, so that there exist two vectors x, y∈V such that
z =A(x), u =A(y). A being linear

α z + β u = α A(x) +β A(y) = A(α x + β y) ∀α, β ∈ F

therefore, provided α x + β y ∈ V, it follows that α z +β u ∈ imA. Let
x, y ∈ kerA, so that A(x) = A(y) =0. Therefore

A(α x + β y) = α A(x) + β A(y) = 0 ∀α, β ∈ F

hence, α x +β y ∈ kerA. �

Property A.2.5 Let A : V →W be a linear function and dimV =n. The
following equality holds:

ρ(A) + ν(A) = n

Proof. Let {b1, . . . , bn} be a basis of V and {b1, . . . , bh}, h≤n, a basis of kerA
(see Corollary A.2.2). Clearly

sp{A(b1), . . . , A(bn)} = sp{A(bh+1), . . . , A(bn)} = imA

thus, in order to prove the property it is sufficient to show that
{A(bh+1), . . . , A(bn)} is a linearly independent set. In fact, the equality

n
∑

i=h+1

αi A(bi) = A
(

n
∑

i=h+1

αi bi

)

= 0

i.e.
n
∑

i=h+1

αi bi ∈ kerA

implies αi = 0 (i =h +1, . . . , n), because the last n−h components (with re-
spect to the assumed basis) of all vectors belonging to kerA must be zero. �

Property A.2.6 A linear function A : V →W is one-to-one if and only if
kerA = O.



372 Appendix A. Mathematical Background

Proof. If. Let kerA =O: for every pair x, y ∈V, x �= y, it follows that
A(x− y) �=0, i.e., A(x) �= A(y).

Only if. By contradiction, suppose kerA �=O and consider a vector x such
that x ∈ kerA, x �=0. Since A(x) = 0, A(0) = 0, A is not one-to-one. �

Property A.2.7 A linear function A : V →W is one-to-one if and only if it
maps linearly independent sets into linearly independent sets.

Proof. If. Let {x1, . . . , xh} be a linearly independent set. Suppose, by
contradiction, that {A(x1), . . . , A(xh)} is linearly dependent, so that there exist
h scalars α1, . . . , αh not all zero such that α1 A(x1) + . . . + αh A(xh) = 0, hence
α1 x1 + . . . +αh xh ∈ kerA. Thus, A is not one-to-one by Property A.2.6.

Only if. Owing to Property A.2.6, kerA �=O if A is not one-to-one; hence,
there exists at least one nonzero vector x∈V such that A(x) = 0. Any
linear independent set that includes x is transformed into a set that is linearly
dependent because it includes the origin. �

A.2.2 Projections, Matrices, Similarity

Definition A.2.16 (projection) Let X , Y be any pair of subspaces of a vector
space V such that X ⊕Y =V. Owing to Property A.2.3, for all z ∈V there exists
a unique pair (x, y) such that z = x + y, x∈X , y ∈Y. The linear functions
P : V →X and Q : V →Y defined by

P (z) = x , Q(z) = y ∀ z ∈ V
are called, respectively, the projection on X along Y and the projection on Y
along X .

Note that imP =X , kerP =Y , imQ =Y , kerQ =X .

Definition A.2.17 (canonical projection) Let X be any subspace of a vector
space V. The linear function P : V→V/X defined by P (x) = {x}+X is called
the canonical projection of V on V/X .

Note that imP =V/X , kerP =X .

Definition A.2.18 (invariant subspace) Let V be a vector space and A : V →V
a linear map. A subspace X ⊆V is said to be an invariant under A, or an A-
invariant, if

A(X ) ⊆ X
It is easy to prove that the sum and the intersection of two or more A-

invariants are A-invariants; hence any subset of the set of all A-invariants
contained in V, closed with respect to sum and intersection, is a lattice with
respect to ⊆, +,∩ .

The following theorem states a very important connection between linear
maps and matrices.
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Theorem A.2.3 Let V and W be finite-dimensional vector spaces over the
same field F and {b1, . . . , bn}, {c1, . . . , cm} bases of V and W respectively.
Denote by ξi (i =1, . . . , n) and ηi (i =1, . . . , m) the components of vectors x∈V
and y ∈W with respect to these bases. Any linear function A : V →W can be
expressed as

ηj =

n
∑

i=1

aji ξi (j = 1, . . . , m) (A.2.9)

Proof. By definition of linear function, the following equalities hold:

y = A(x) = A
(

n
∑

i=1

ξi bi

)

=

n
∑

i=1

ξi A(bi)

For each value of i, denote by aji (j = 1, . . . , m) the components of A(bi) with
respect to the basis {c1, . . . , cm}, i.e.

A(bi) =

m
∑

j=1

aji cj

By substitution, it follows that

y =

n
∑

i=1

ξi

(

m
∑

j=1

aji cj

)

=

m
∑

j=1

(

n
∑

i=1

aji ξi

)

cj

which is clearly equivalent to (A.2.9). �

Relation (A.2.9) can be written in a more compact form as

η = A x (A.2.10)

where η, A, and ξ are matrices defined as

η :=





η1
...

ηm



 A :=





a11 . . . a1n
...

. . .
...

am1 . . . amn



 ξ :=





ξ1
...

ξm





The following corollaries are direct consequences of the argument developed
in the proof of Theorem A.2.3.

Corollary A.2.4 Let A : V →W be a linear function represented by the matrix
A with respect to the bases {b1, . . . , bn} of V and {c1, . . . , cm} of W. The columns
of A are the components of A(b1), . . . , A(bn) in the basis {c1, . . . , cm}.

Corollary A.2.5 Let A : V→V be a linear function represented by the ma-
trix A with respect to the basis {b1, . . . , bn} of V. The columns of A are the
components of A(b1), . . . , A(bn) in this basis.
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Theorem A.2.3 states that a linear function A : V→W, where V and W
are finite-dimensional vector spaces over the same field F , is given by defining
a basis for V, a basis for W, and a matrix with elements in F . The special case
V =Fn, W =Fm may be a source of confusion: in fact, in this case vectors are
m-tuples and n-tuples of scalars, so that apparently only a matrix with elements
in F is needed in order to represent a linear function. This does not contradict
Theorem A.2.3, because vectors can be understood to be referred respectively
to the main bases of Fn and Fm so that components coincide with elements of
vectors. In this case it is customary to write (A.2.10) directly as

z = A x (A.2.11)

and call “vectors” the n× 1 and m× 1 matrices representing the n-tuple x and
the m-tuple z, so that (A.2.11) means “vector z is equal to the product of
vector x by matrix A.” For the sake of simplicity, in this case a linear function
and its representing matrix are denoted with the same symbol; hence, notation
A : Fn →Fm means “the linear function from Fn into Fm which is represented
by the m×n matrix A with respect to the main bases.” Similarly, notations
imA, kerA, ρ(A), ν(A), A-invariant are referred both to functions and matrices.

Definition A.2.19 (basis matrix) Any subspace X ⊆Fn can be represented by
a matrix X whose columns are a basis of X , so that X = imX. Such a matrix
is called a basis matrix of X .

Property A.2.8 Let V be an n-dimensional vector space over a field F (F = R

or F = C) and denote by u, v∈Fn the components of any vector x∈V with
respect to the bases {b1, . . . , bn}, {c1, . . . , cn}. These components are related by

u = Tv

where T is the n×n matrix having as columns the components of vectors
{c1, . . . , cn} with respect to the basis {b1, . . . , bn}.

Proof. Apply Corollary A.2.5 to the identity function I. �

Since the representation of any vector with respect to any basis is unique,
matrix T is invertible, so that

v = T−1u

where T−1, owing to Corollary A.2.5, is the matrix having as columns the
components of vectors {b1, . . . , bn} with respect to the basis {c1, . . . , cn}.

Changes of basis are very often used in order to study properties of linear
transformations by analyzing the structures of their representing matrices with
respect to some properly selected bases. Therefore, it is worth knowing how
matrices representing the same linear function with respect to different bases
are related to each other.
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Property A.2.9 Let A : V →W be a linear function represented by the m×n
matrix A with respect to the bases {b1, . . . , bn}, {c1, . . . , cm}. If new bases
{p1, . . . , pn}, {q1, . . . , qm} are assumed for V and W, A is represented by the
new matrix

B = Q−1AP

where P and Q are the n×n and the m×m matrices whose columns are the
components of the new bases with respect to the old ones.

Proof. Denote by u, v∈Fn and r, s∈Fm the old and the new components
of any two vectors x∈V and y ∈W such that y is the image of x in the linear
transformation A: owing to Property A.2.8

u = P v , r = Q s

By substitution into r = Au, we obtain

s = Q−1APv

which directly proves the property. �

In the particular case of a function whose domain and codomain are the
same vector space, we may restate the preceding result as follows.

Corollary A.2.6 Let A : V →V be a linear function represented by the n×n
matrix A with respect to the basis {b1, . . . , bn}. In the new basis {c1, . . . , cn}
function A is represented by the new matrix

B = T−1AT (A.2.12)

where T is the n×n matrix whose columns are the components of the new basis
with respect to the old one.

Let A and B be any two n×n matrices; if there exists a matrix T such that
equality (A.2.12) holds, A and B are called similar matrices and T a similarity
transformation or an automorphism, i.e., an isomorphism of a vector space with
itself.

Note that the same similarity transformations relate powers of B and A: in
fact, B2 = T−1AT T−1AT = T−1A2T and so on.

Theorem A.2.4 Let X , Y be subspaces of Fn such that X ⊕Y =Fn and X,
Y basis matrices of X , Y. Projecting matrices on X along Y and on Y along
X , i.e., matrices that realize the projections introduced as linear functions in
Definition A.2.16, are

P = [ X O ] [ X Y ]−1 (A.2.13)

Q = [ O Y ] [ X Y ]−1 (A.2.14)

Proof. Since the direct sum of X and Y is Fn, matrix [X Y ] is nonsingular;
therefore, the image of [X Y ]−1 is Fn, so that imP = X , imQ = Y . Since
P + Q = I, for any z ∈Fn x :=Pz, y := Qz is the unique pair x∈X , y ∈Y such
that z =x + y. �
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A.2.3 A Brief Survey of Matrix Algebra

In the previous section, matrices were introduced as a means of representing
linear maps between finite-dimensional vector spaces. Operations on linear
functions, such as addition, multiplication by a scalar, composition, reflect on
operations on the corresponding matrices. In the sequel, we will consider only
real matrices and complex matrices, i.e., matrices whose elements are real or
complex numbers. A matrix having as many rows as columns is called a square
matrix . A matrix having only one row is called a row matrix and a matrix
having only one column is called a column matrix . The symbol (A)ij denotes
the element of the matrix A belonging to the i-th row and the j-th column and
[aij ] the matrix whose general element is aij .

The main operations on matrices are:

1. addition of matrices: given two matrices A and B, both m×n, their sum
C =A +B is the m×n matrix whose elements are the sums of the correspond-
ing elements of A and B, i.e., cij = aij + bij (i =1, . . . , m ; j = 1, . . . , n) ;

2. multiplication of a matrix by a scalar : given a scalar α and an m×n
matrix A, the product P = α A is the m×n matrix whose elements are the
products by α of the elements of A, i.e., pij =α aij (i = 1, . . . , m ; j =1, . . . , n) ;

3. multiplication of two matrices:3 given an m×n matrix A and a n× p
matrix B, the product C = A B is the m× p matrix whose elements are defined
as

cij =

n
∑

k=1

aik bkj (i =1, . . . , m ; j = 1, . . . , p)

These operations enjoy the following properties:

1. commutative law of addition:4

A + B = B + A

2. associative laws:

(A + B) + C = A + (B + C)

(α A) B = α (A B)

A (B C) = (A B) C

3. distributive laws:

(α + β) A = α A + β A

α (A + B) = α A + α B

(A + B) C = A C + B C

A (B + C) = A B + A C

3 Of course, the same rules hold for the product c =Ab, where the “vectors” b and c are
simply n× 1 and m× 1 column matrices.

4 It is worth noting that in general the multiplication of matrices is not commutative, i.e.,
in general AB �=BA. Hence, instead of saying “multiply A by B,” it is necessary to state
“multiply A by B on the left (right)” or “premultiply (postmultiply) A by B.”
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A null matrix O is a matrix with all elements equal to zero.

An identity matrix I is a square matrix with all elements on the main
diagonal equal to one and all other elements equal to zero. In particular, the
symbol In is used for the n×n identity matrix.

A square matrix A is called idempotent if A2 =A, nilpotent of index q if
Aq−1 �= O, Aq = O.

For any real m×n matrix A, the symbol AT denotes the transpose of A, i.e.,
the matrix obtained from A by interchanging rows and columns. Its elements
are defined by

(AT )ji := (A)ij (i = 1, . . . , m; j =1, . . . , n)

In the complex field, A∗ denotes the conjugate transpose of A, whose ele-
ments are defined by

(A∗)ji := (A)∗ij (i = 1, . . . , m ; j =1, . . . , n)

A real matrix A such that AT = A is called symmetric, while a complex
matrix A such that A∗ = A is called hermitian.

A square matrix A is said to be invertible if it represents an invertible linear
function; in such a case A−1 denotes the inverse matrix of A. If A is invertible,
the relations C = A B and B = A−1 C are equivalent. An invertible matrix and
its inverse matrix commute, i.e., A−1A =AA−1 = I.

In the real field the transpose and the inverse matrices satisfy the following
relations:

(AT )T = A (A.2.15)

(A + B)T = AT + BT (A.2.16)

(A B)T = BT AT (A.2.17)

(A−1)−1 = A (A.2.18)

(A B)−1 = B−1 A−1 (A.2.19)

(A−1)T = (AT )−1 (A.2.20)

Note that (A.2.17) implies that for any A the matrices A AT and AT A are
symmetric. In the complex field, relations (A.2.15−−A.2.17,A.2.20) hold for
conjugate transpose instead of transpose matrices.

The trace of a square matrix A, denoted by trA, is the sum of all the elements
on the main diagonal, i.e.

trA :=
n
∑

i=1

aii (A.2.21)

Let A be a 2× 2 matrix: the determinant of A, denoted by detA, is defined
as

detA := a11a22 − a12a21
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If A is an n×n matrix, its determinant is defined by any one of the recursion
relations

detA :=

n
∑

i=1

aij Aij (j = 1, . . . , n)

= =
n
∑

j=1

aij Aij (i = 1, . . . , n) (A.2.22)

where Aij denotes the cofactor of aij, which is defined as (−1)i+j times the
determinant of the (n− 1)× (n− 1) matrix obtained by deleting the i-th row
and the j-th column of A.

The transpose (or conjugate transpose) of the matrix of cofactors [Aij ]
T (or

[Aij ]
∗) is called the adjoint matrix of A and denoted by adjA.

Any square matrix A such that detA =0 is called singular ; in the opposite
case it is called nonsingular .

The main properties of determinants are:

1. in the real field, detA = detAT ; in the complex field, detA = detA∗;

2. let B be a matrix obtained from A by interchanging any two rows or columns:
detB = −detA ;

3. if any two rows or columns of A are equal, detA = 0 ;

4. let B be a matrix obtained from A by adding one row or column multiplied
by a scalar α to another row or column: detB = detA ;

5. if any row or column of A is a linear combination of other rows or columns,
detA = 0 ;

6. let A, B be square matrices having equal dimensions: det(A B) =
detA detB .

Theorem A.2.5 Let A be a nonsingular matrix. Its inverse matrix A−1 is
given by

A−1 =
adjA

detA
(A.2.23)

Proof. Denote by B the matrix on the right of (A.2.23): owing to property 3
of the determinants

n
∑

k=1

aik Ajk =

{

detA if i = j
0 if i �= j

Then, for any element of the matrix P :=AB

pij =
1

detA

n
∑

k=1

aik Ajk =

{

1 if i = j
0 if i �= j
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Hence, P = I, so that B = A−1. �

As a consequence of Theorem A.2.5, we may conclude that a square matrix
is invertible if and only if it is nonsingular.

Partitioned Matrices. A partitioned matrix is one whose elements are ma-
trices, called submatrices of the original nonpartitioned matrix. It is easily
seen that, if partitioning is congruent, addition and multiplication can be per-
formed by considering each of the submatrices as a single element. To show
how partitioning is used, let us consider some examples:

[

n1 n2

m1 A B
m2 C D

]

+

[

n1 n2

m1 E F
m2 G H

]

=

[

n1 n2

m1 A + E B + F
m2 C + G D + H

]

[

n1 n2

m1 A B
m2 C D

]

·
[

p1 p2

n1 E F
n2 G H

]

=

[

p1 p2

m1 AE + BG AF + BH
m2 CE + DG CF + DH

]

[

n1 n2

m1 A B
m2 C D

]

·
[

p

n1 E
n2 F

]

=

[

p

m1 AE + BF
m2 CE + DF

]

Consider a square matrix partitioned into four submatrices as follows:

A =

[

B C
D E

]

(A.2.24)

and assume that B and E are square matrices. It is easy to prove by induction
that if one of the off-diagonal matrices C and D is null, the following holds:

detA = detB detE (A.2.25)

If detB is different from zero, so that B is invertible, by subtracting from
the second row of (A.2.24 ) the first multiplied on the left by DB−1, we obtain
the matrix

[

B C
O E − DB−1C

]

whose determinant is equal to detA owing to the preceding property 4 of the
determinants, so that

detA = detB det(E −DB−1C) (A.2.26)

Similarly, if detE �=0, by subtracting from the first row of (A.2.24) the second
multiplied on the left by CE−1, we obtain

detA = detE det(B −CE−1D) (A.2.27)
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A.3 Inner Product, Orthogonality

Providing a vector space with an inner product is a source of some substan-
tial advantages, particularly when the maximum universality and abstractness
of approach is not called for. The most significant of these advantages are: a
deeper insight into the geometric meaning of many conditions and properties, a
straightforward way to consider and possibly avoid ill-conditioning in computa-
tions, a valid foundation for setting duality arguments (depending on properties
of adjoint transformations, hence on the introduction of an inner product).

Definition A.3.1 (inner Product) Let V be a vector space defined over the
field R of real numbers. An inner product or scalar product is a function
〈· , ·〉 : V ×V →F that satisfies

1. commutativity:
〈x, y〉 = 〈y, x〉 ∀x, y ∈ V

2. linearity with respect to a left-hand factor:

〈αx +βy , z〉 = α 〈x, z〉 + β 〈y, z〉 ∀α, β ∈ R, ∀x, y, z ∈ V

3. positiveness:

〈x, x〉 ≥ 0 ∀x ∈ V
〈x, x〉 = 0 ⇔ x = 0

If V is defined over the field C of the complex numbers, the preceding property
3 still holds, while 1 and 2 are replaced respectively by

1. conjugate commutativity:

〈x, y〉 = 〈y, x〉∗ ∀x, y ∈ V

2. conjugate linearity with respect to a left-hand factor:

〈αx +βy , z〉 = α∗〈x, z〉 + β∗〈y, z〉 ∀α, β ∈ C , ∀x, y, z ∈ V

A vector space with an inner product is called an inner product space.
Note that in the real field, commutativity and linearity with respect to a left-

hand factor imply linearity with respect to a right-hand one, hence bilinearity,
while in the complex field conjugate commutativity and conjugate linearity with
respect to a left-hand factor imply linearity with respect to a right-hand factor.
In fact:

〈x , αy + βz〉 = 〈αy +βz , x〉∗
= (α∗〈y, x〉+ β∗〈z, x〉)∗
= α〈x, y〉 + β〈x, z〉
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Example A.3.1 In Rn an inner product is

〈x, y〉 :=

n
∑

i=1

xiyi (A.3.1)

and in Cn

〈x, y〉 :=
n
∑

i=1

x∗
i yi (A.3.2)

Note that in Rn and Cn, vectors can be considered as n× 1 matrices, so that
the notations xT y and x∗y may be used instead of 〈x, y〉.

Example A.3.2 In any finite-dimensional vector space over R or C an inner
product is defined as in (A.3.1) or (A.3.2), where (x1, . . . , xn) and (y1, . . . , yn)
denote components of vectors with respect to given bases.

Example A.3.3 In the vector space of all piecewise continuous time functions
f(·) : [t0, t1] → Fn (with F = R or F = C) an inner product is

〈x, y〉 :=

∫ t1

t0

〈x(t) y(t)〉 dt

Definition A.3.2 (euclidean morm) Let V be an inner product space and x
any vector belonging to V. The real nonnegative number

‖x‖ :=
√

〈x, x〉 (A.3.3)

is called the euclidean norm of x.

The euclidean norm is a measure of the “length” of x, i.e., of the distance
of x from the origin.

Definition A.3.3 (orthogonal vectors) A pair of vectors x, y belonging to an
inner product space are said to be orthogonal if 〈x, y〉 = 0.

Definition A.3.4 (orthonormal set of vectors) A set of vectors {u1, . . . , un}
belonging to an inner product space is orthonormal if

〈ui, uj〉 = 0 (i = 1, . . . , n ; j = 1, . . . , i− 1, i +1, . . . , n)

〈ui, ui〉 = 1 (i = 1, . . . , n)

From
n
∑

i=1

αiui = 0

through the left inner product of both members by u1, . . . , un, we obtain
α1 = 0, . . . , αn =0, so we may conclude that an orthonormal set is a linearly
independent set.
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Definition A.3.5 (orthogonal matrix and unitary matrix) An n×n real ma-
trix is orthogonal if its rows (columns) are orthonormal sets. In the complex
field, such a matrix is called unitary.

It is easy to check that a necessary and sufficient condition for a square
matrix U to be orthogonal (unitary) is

UT U = U UT = I ( U∗U = U U∗ = I )

Therefore, the inverse of an orthogonal (unitary) matrix can be determined by
simply interchanging rows and columns.

Orthogonal (unitary) matrices have the interesting feature of preserving
orthogonality of vectors and values of inner products. The product of two
or more orthogonal (unitary) matrices is an orthogonal (unitary) matrix. In
fact, if A, B are orthogonal:

(AB)T (AB) = BT (AT A)B = BT B = I

Similar manipulations can be set for unitary matrices.

Property A.3.1 Let V be a finite-dimensional inner product space. The com-
ponents (ξ1, . . . , ξn) of any vector x∈V with respect to an orthonormal basis
(u1, . . . , un) are provided by

ξi = 〈ui, x〉 (i = 1, . . . , n) (A.3.4)

Proof. Consider the relation

x =

n
∑

i=1

ξiui

and take the left inner product of both members by the orthonormal set
(u1, . . . , un). �

It is possible to derive an orthonormal basis for any finite-dimensional vector
space or subspace through the Gram-Schmidt orthonormalization process (see
Algorithm B.2.1).

Definition A.3.6 (adjoint of a linear map) A linear map B is called adjoint to
a linear map A if for any two vectors x, y belonging respectively to the domains
of A and B the following identity holds:

〈Ax, y〉 = 〈x, By〉
Property A.3.2 Let A be an m×n real matrix. The inner product (A.3.1)
satisfies the identity

〈Ax, y〉 = 〈x, AT y〉 ∀x ∈ R
n, ∀ y ∈ R

m (A.3.5)

while, if A is complex and the inner product is defined as in (A.3.2)

〈Ax, y〉 = 〈x, A∗y〉 ∀x ∈ C
n, ∀ y ∈ C

m (A.3.6)
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Proof. Equalities (A.3.5,A.3.6) follow from matrix identity (A x)T y = xT AT y,
which is a consequence of (A.2.17), and (A x)∗y = x∗A∗y. �

It follows that if a linear map is represented by a real (a complex) matrix
with respect to an orthonormal basis, its adjoint map is represented by the
transpose (the conjugate transpose) matrix with respect to the same basis.

Definition A.3.7 (orthogonal complement of a subspace Let V be an inner
product space and X any subspace of V. The set

X⊥ = { y : 〈x, y〉 = 0, x ∈ X } (A.3.7)

is called the orthogonal complement of X .

It is easily seen that X⊥ is a subspace of V.

Property A.3.3 Let V be an inner product space and X any finite-dimensional
subspace of V.5 Then

V = X ⊕ X⊥

Proof. First note that X ∩X⊥ = {0} because 〈x, x〉=0 implies x =0. Let
{u1, . . . , uh} be an orthonormal basis of X . For any z ∈V consider the decom-
position z = x + y defined by

x =

h
∑

i=1

ξiui , ξi = 〈ui, z〉

y = z − x = z −
h
∑

i=1

ξiui

Clearly, x∈X . Since 〈ui, y〉=0 (i =1, . . . , h), y ∈X⊥. �

All statements reported hereafter in this section will refer to real matrices;
their extension to complex matrices simply requires the substitution of transpose
matrices with conjugate transpose.

Property A.3.4 For any real matrix A

kerAT = (imA)⊥ (A.3.8)

Proof. Let y ∈ (imA)⊥, so that 〈y, A ATy〉 = 0 (in fact clearly A AT y ∈ imA),
i.e. 〈ATy, ATy〉 = 0, hence AT y = 0, y ∈ kerAT . On the other hand, if y ∈ kerAT ,
〈AT y, x〉 = 0 for all x, i.e. 〈y, Ax〉 = 0, hence y ∈ (imA)⊥. �

5 The finiteness of the dimensions of X is a more restrictive than necessary assumption:
Property A.3.3 applies also in the more general case where X is any subspace of an infinite-
dimensional Hilbert space.
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Property A.3.5 For any real matrix A

ρ(A) = ρ(AT ) (A.3.9)

Proof. Let A be m×n : owing to Properties A.3.3 and A.3.4, it is pos-
sible to derive a basis of Rm whose elements belong to kerAT and (imA)⊥:
it follows that ν(AT ) + ρ(A) = m ; on the other hand, from Property A.2.5,
ρ(AT ) + ν(AT ) =m. �

Hence, if A is not a square matrix, ν(A) �= ν(AT ).

Property A.3.6 For any real matrix A

imA = im(A AT )

Proof. Let A be m×n ; take a basis of Rn whose elements are in part a basis
of imAT and in part a basis of kerA. The vectors of this basis transformed by A
span imA by definition. Since vectors in kerA are transformed into the origin,
it follows that a basis of imAT is transformed into a basis of imA. �

A.3.1 Orthogonal Projections, Pseudoinverse of a Linear

Map

Definition A.3.8 (orthogonal projection) Let V be a finite-dimensional inner
product space and X any subspace of V. The orthogonal projection on X is the
projection on X along X⊥.

Corollary A.3.1 Let X be any subspace of Rn (Cn) and U an orthonormal
(unitary) basis matrix of X . The orthogonal projection matrices on X and X⊥

are

P = U UT (P = U U∗) (A.3.10)

Q = I − U UT (Q = I − U U∗) (A.3.11)

Proof. The proof is contained in that of Property A.3.3. �

Lemma A.3.1 Let V be an inner product vector space and x, y ∈V orthogonal
vectors. Then

‖x + y‖2 = ‖x‖2 + ‖y‖2

Proof.

‖x + y‖2 = 〈(x + y), (x + y)〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= 〈x, x〉 + 〈y, y〉 = ‖x‖2 + ‖y‖2

�
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Theorem A.3.1 Let X be any subspace of an inner product space V and P the
orthogonal projection on X . Then

‖x − P x‖ ≤ ‖x − y‖ ∀x ∈ V , ∀ y ∈ X

Proof. Since (x−Px)∈X⊥, (Px− y)∈X , from Lemma A.3.1 it follows that

‖x − y‖2 = ‖x − P x + P x − y‖2 = ‖x − P x‖2 + ‖P x − y‖2
�

Theorem A.3.1 is called the orthogonal projection theorem and states that in
an inner product space the orthogonal projection of any vector on a subspace
is the vector of this subspace whose distance (in the sense of euclidean norm)
from the projected vector is minimal.

Theorem A.3.2 Let X be any subspace of Rn and X a basis matrix of X .
Orthogonal projection matrices on X and X⊥ are:

P = X(XTX)−1XT (A.3.12)

Q = I − X(XT X)−1XT (A.3.13)

Proof. Let h := dimX ; note that the n×n matrix XT X is nonsingular since
ρ(XT X) = ρ(XT ) owing to Property A.3.6 and ρ(XT ) = ρ(X) =h by Property
A.3.5. Any x∈X can be expressed as x =Xa, a∈Rh, so it is easily checked
that Px =x. On the other hand, any y ∈X⊥, so that XT y =0, clearly satisfies
Py = 0. �

Note that (A.3.10,A.3.11) perform the same operations as (A.3.12,A.3.13);
however, in the latter case the basis referred to has not been assumed to be
orthonormal.

Theorem A.3.2 suggests an interesting analysis in geometric terms of some
intrinsic properties of linear maps. Consider a linear function A : Rn →Rm: as
an example, consider the particular case reported in Fig. A.13, where m =n = 3,
ρ(A) = 2.

Any vector w∈Rn can be expressed as w = x + y, x∈ imAT , y ∈ kerA, so
that Aw =A(x + y) =Ax = r. Hence, the linear function A can be considered
as the composition of the orthogonal projection on imAT and the linear function
A1 : imAT → imA defined as A1(x) =A(x) for all x∈ imAT , which is invertible
because any basis of imAT is transformed by A into a basis of imA (Property
A.3.6).

In order to extend the concept of invertibility of a linear map it is possible
to introduce its pseudoinverse A+ : Rm →Rn which works in a similar way: to
any vector z ∈Rm it associates the unique vector x∈ imAT which corresponds
in A−1

1 to the orthogonal projection r of z on imA. Note that A+ is unique and
that (A+)+ = A.
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R
n

kerA kerAT

R
m

y w

A+

A

z s

A−1
1

A1

x= A+ z =A+ r

r = Aw = Ax

imAT

imA

Figure A.13. Characteristic subspaces of a linear map.

Theorem A.3.3 Let A be any m×n real matrix. The pseudoinverse of A is

A+ = AT X(XT A AT X)−1XT (A.3.14)

where X denotes an arbitrary basis matrix of imA.

Proof. From Property A.3.6 it follows that AT X is a basis matrix of imAT , so
that according to (A.3.12), AT X(XT A AT X)−1XT A is the matrix that performs
the orthogonal projection from Rn on imAT . The corresponding linear map can
be considered as the composition of A : Rn → imA and A−1

1 : imA→ imAT , the
inverse of one-to-one map A1 previously defined. Matrix (A.3.14) represents A−1

1

with respect to the main bases of R
n and R

m. In fact, let h := ρ(A) = ρ(AT );
AT Xa, a∈Rh, is a generic vector belonging to imAT , and A AT Xa is its image
in A or in A1. By direct substitution

A+A AT X a = AT X(XT A AT X)−1XT A AT X a = AT X a

Hence, (A.3.14) expresses A−1
1 when applied to vectors belonging to imA. Fur-

thermore, it maps vectors of kerAT into the origin, being XT x =0 for all
x∈ kerAT . �

It is worth investigating the meaning of the pseudoinverse in connection with
the matrix linear equation

A x = b (A.3.15)

If (A.3.15) admits at least one solution in x, i.e., if b∈ imA, x := A+b is the
solution with the least euclidean norm, i.e., the only solution belonging to imAT .
The set of all solutions is the linear variety

X := {A+b} + kerA (A.3.16)

If, on the other hand, b /∈ imA, equation (A.3.15) has no solution; in this
case the pseudosolution x := A+b is the vector having the least euclidean norm
transformed by A into a vector whose distance from b is a minimum.
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When matrix A has maximum rank, i.e., when its rows or columns are a
linearly independent set, the expression of A+ can be simplified, as stated in
the following corollary.

Corollary A.3.2 Let A be an m×n real matrix. If m≤n, ρ(A) =m, the
pseudoinverse of A is

A+ := AT (A AT )−1 (A.3.17)

If, on the other hand, m≥n, ρ(A) =n, the pseudoinverse of A is

A+ := (AT A)−1AT (A.3.18)

Proof. Referring first to (A.3.18), note that AT (A AT )−1A is the orthogonal
projection matrix from Rn onto imAT . Since in this case imA = Rm, there
exists for any z at least one w such that z = Aw, then AT (A AT )−1z is the
orthogonal projection of w on imAT . In order to prove (A.3.18), note that
A(AT A)−1AT is the orthogonal projection matrix from Rm onto imA. Since in
this case kerA = {0}, for any z note that w := (AT A)−1AT z is the unique vector
such that Aw coincides with the orthogonal projection of z on imA. �

When the pseudoinverse of A can be defined as in (A.3.17), its product on
the left by A is clearly the m×m identity matrix, i.e., A A+ = Im, while in the
case where (A.3.18) holds, the product on the right of the pseudoinverse by A
is the n×n identity matrix, i.e., A+A = In. Hence (A.3.17) and (A.3.18) are
called the right inverse and the left inverse of matrix A and, in these cases, A
is said respectively to be right-invertible and left-invertible.

Note that relation (A.3.18) embodies the least squares method of linear
regression, whose geometrical meaning is clarified by the projection theorem;
hence, the general pseudoinverse can be advantageously used when a least
squares problem admits of more than one solution.

A.4 Eigenvalues, Eigenvectors

Eigenvalues and eigenvectors represent a useful summary of information about
the features of linear transformations and are the basic instruments for deriv-
ing simplified (canonical) forms of general matrices through similarity trans-
formations. The most important of these forms, the Jordan canonical form, is
a powerful means for investigating and classifying linear systems according to
their structure. Furthermore, eigenvalues are the protagonists of the paramount
problem of control theory, i.e., stability analysis of linear time-invariant systems.

Given any real or complex n×n matrix A, consider, in the complex field,
the equation

A x = λ x

which can also be written
(λI − A) x = 0 (A.4.1)
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This equation admits nonzero solutions in x if and only if (λI −A) is singular,
i.e.,

det(λI − A) = 0 (A.4.2)

The left side of equation (A.4.2) is a polynomial p(λ) of degree n in λ, which
is called the characteristic polynomial of A: it has real coefficients if A is real.
Equation (A.4.2) is called the characteristic equation of A and admits n roots
λ1, . . . , λn, in general complex, which are called the eigenvalues or characteristic
values of A. If A is real, complex eigenvalues are conjugate in pairs. The set of
all eigenvalues of A is called the spectrum of A.

To each eigenvalue λi (i =1, . . . , n) there corresponds at least one nonzero
real or complex vector xi which satisfies equation (A.4.1); this is called an
eigenvector or characteristic vector of A. Since for any eigenvector xi, α xi,
α∈R, is also an eigenvector, it is convenient to use normalized eigenvectors,
i.e., eigenvectors with unitary euclidean norm.

Note that, if A is real:

1. the eigenvectors corresponding to complex eigenvalues are complex: in
fact A x = λ x cannot be satisfied for λ complex and x real;

2. if λ, x are a complex eigenvalue and a corresponding eigenvector, x∗ is an
eigenvector corresponding to λ∗: in fact, A x∗ is the conjugate of A x, λ∗x∗ the
conjugate of λ x.

Theorem A.4.1 Let A be an n×n real or complex matrix. If the eigenvalues
of A are distinct, the corresponding eigenvectors are a linearly independent set.

Proof. Assume, by contradiction, that eigenvectors x1, . . . , xh, h < n, are
linearly independent, while xh+1, . . . , xn are linearly dependent on them, so
that

xj =
n
∑

i=1

αijxj (j = h + 1, . . . , n)

Since xi is an eigenvector, it follows that

Axj = λjxj =
h
∑

i=1

αijxi ( j = h +1, . . . , n)

Axj = A
(

h
∑

i=1

αijxi

)

=
h
∑

i=1

αij A xi

=
h
∑

i=1

αijλixi ( j = h +1, . . . , n)

By difference, we obtain in the end

0 =

n
∑

i=1

αij(λj − λi)xi ( j = h +1, . . . , n)
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Since the scalars αij cannot all be zero and the set {x1, . . . , xh} is linearly
independent, it follows that λi =λj for at least one pair of indexes i, j. �

Similarity transformations of matrices were introduced in Subsection A.2.2.
A fundamental property of similar matrices is the following.

Property A.4.1 Similar matrices have the same eigenvalues.

Proof. Let A, B be similar, so that B = T−1A T . Hence

det(λI − T−1A T ) = det(λT−1I T − T−1A T )

= det(T−1(λI − A) T )

= detT−1 det(λI − A) detT

Since detT−1 and detT are different from zero, any λ such that det(λI −A) = 0
also satisfies det(λI −B) = 0. �

Any n×n real or complex matrix A is called diagonalizable if it is similar
to a diagonal matrix Λ, i.e., if there exists a similarity transformation T such
that Λ = T−1A T . In such a case, Λ is called the diagonal form of A.

Theorem A.4.2 An n×n real or complex matrix A is diagonalizable if and
only if it admits a linearly independent set of n eigenvectors.

Proof. If. Let {t1, . . . , tn} be a linearly independent set of eigenvectors, so
that

A ti = λi ti (i = 1, . . . , n) (A.4.3)

Note that in (A.4.3) λ1, . . . , λn are not necessarily distinct. Equation (A.4.3)
can be compacted as

A T = T Λ (A.4.4)

where T is nonsingular and Λ is diagonal.
Only if. If A is diagonalizable, there exists a diagonal matrix Λ and a

nonsingular matrix T such that (A.4.4) and, consequently, (A.4.3) hold. Hence,
the columns of T must be eigenvectors of A. �

Note that owing to Theorem A.4.2 any square matrix A whose eigenvalues
are distinct admits a diagonal form in which the elements on the main diagonal
are the eigenvalues of A. On the other hand, if A has multiple eigenvalues, it
is still diagonalizable only if every multiple eigenvalue corresponds to as many
linearly independent eigenvectors as its degree of multiplicity.

In general, the diagonal form is complex also when A is real; this is a difficulty
in computations, so that it may be preferable, when A is diagonalizable, to
derive a real matrix, similar to A, having a 2× 2 submatrix on the main diagonal
for each pair of conjugate complex eigenvalues. The corresponding similarity
transformation is a consequence of the following lemma.
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Lemma A.4.1 Let {u1 + jv1, . . . , uh + jvh, u1 − jv1, . . . , uh − jvh} be a lin-
early independent set in the complex field. Then the set {u1, . . . , uh, v1, . . . , vh}
is linearly independent in the real field.

Proof. Consider the identity

h
∑

i=1

(αi + jβi)(ui + jvi) +
h
∑

i=1

(γi + jδi)(ui − jvi)

=

h
∑

i=1

((αi + γi)ui + (δi −βi)vi) +

j

h
∑

i=1

((δi +βi)ui + (αi − γi)vi) (A.4.5)

By contradiction: since, for each value of i, (αi + γi), (αi − γi), (δi +βi), (δi −βi)
are four arbitrary numbers, if set {u1, . . . , uh} is linearly dependent it is possible
to null the linear combination (A.4.5) with coefficients αi, βi, γi, δi (i =1, . . . , n)
not all zero. �

Theorem A.4.3 Let A be a diagonalizable real matrix, λi (i = i, . . . , h) its
real eigenvalues, σi + jωi, σi − jωi (i =1, . . . , k), k = (n−h)/2, its complex
eigenvalues. There exists a similarity transformation T such that

B = T−1A T

=































λ1 0 . . . 0 0 0 . . . 0 0
0 λ2 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . λh 0 0 . . . 0 0
0 0 . . . 0 σ1 ω1 . . . 0 0
0 0 . . . 0 −ω1 σ1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . σk ωk

0 0 . . . 0 0 0 . . . −ωk σk































(A.4.6)

Proof. Since A is diagonalizable, it admits a set of n linearly independent
eigenvectors: let T be the matrix whose columns are the real eigenvectors and
the real and imaginary part of each pair of complex eigenvectors. For a general
pair of conjugate complex eigenvalues σ± jω and the corresponding eigenvectors
u± jv, relation (A.4.1) becomes

Au ± jAv = σu − ωv ± j(σv + ωu)

or, by splitting the real and imaginary parts

A u = σu − ωv

A v = ωu + σv
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which imply for B the structure shown in (A.4.6), since u and v are columns of
the transformation matrix T . �

Unfortunately, not all square matrices are diagonalizable, so that we are
faced with the problem of defining a canonical form6 which is as close as possible
to the diagonal form and similar to any n×n matrix. This is the Jordan form,
of paramount importance for getting a deep insight into the structure of linear
transformations. On the other hand, unfortunately the Jordan form turns out
to be rather critical from the computational standpoint, since the transformed
matrix may be ill-conditioned and very sensitive to small parameter variations
and rounding errors.

A.4.1 The Schur Decomposition

A much less critical similarity transformation, which can be used for any real
or complex square matrix, is considered in the following theorem.

Theorem A.4.4 (the Schur decomposition) Let A be any real or complex
n×n matrix. There exists a unitary similarity transformation U that takes A
into the upper-triangular form

B = U∗A U =









λ1 b12 . . . b1n

0 λ2 . . . b2n
...

...
. . .

...
0 0 . . . λn









(A.4.7)

Proof. The argument is by induction. First assume n = 2 and denote by λ1

and λ2 the eigenvalues of A; by u1 a normalized eigenvector corresponding to
λ1; by u2 any vector orthogonal to u1 with unitary euclidean norm. Define W
as the 2× 2 matrix having u1, u2 as columns so that, provided A u1 = λ1 u1

W ∗A W =

[

〈u1, A u1〉 〈u1, A u2〉
〈u2, A u1〉 〈u2, A u2〉

]

=

[

λ1 b12

0 b22

]

=

[

λ1 b12

0 λ2

]

where the last equality is a consequence of Property A.4.1.
Assume that the theorem is true for (n− 1)× (n− 1) matrices. Let λ1 be

an eigenvalue of A, u1 a corresponding normalized eigenvector, and u2, . . . , un

any orthonormal set orthogonal to u1. By a procedure similar to the previous
one, it is proved that the unitary matrix W whose columns are u1, . . . , un is

6 In a given class of matrices (e.g., general real or complex matrices, or square matrices
or idempotent matrices) a canonical form is one that induces a partition under the property
of similarity, in the sense that in every subclass only one matrix is in canonical form.
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such that

W ∗A W =









λ1 b12 . . . b1n

0 b22 . . . b2n
...

...
. . .

...
0 bn2 . . . bnn









=

[

λ1 b0

O B1

]

where b0 denotes a 1× (n− 1) matrix and B1 an (n− 1)× (n− 1) matrix. By
the induction hypothesis, there exists an (n− 1)× (n− 1) unitary matrix U1

such that U∗
1 B1U1 is an upper-triangular matrix. Let

V :=

[

1 O
O U1

]

It follows that

V ∗(W ∗A W ) V =

[

1 O
O U∗

1

] [

λ1 b0

O B1

] [

1 O
O U1

]

=

[

λ1 b
O U∗

1 B1U1

]

�

A.4.2 The Jordan Canonical Form. Part I

An important role in deriving the Jordan canonical form is played by the
properties of nilpotent linear maps.

Lemma A.4.2 A linear map A : Fn →Fn is nilpotent of index q≤n if and
only if all its eigenvalues are zero.

Proof. Only if. Let A be nilpotent of order q. Assume that λ is a
nonzero eigenvalue, x a corresponding eigenvector. From Ax = λx, it fol-
lows that A2x =λAx, . . . , Aqx = λAq− 1x. Since λ is nonzero, Aqx =0 implies
Aq − 1x = Aq− 2x = . . . = Ax =0, hence x =0, which contradicts the assumption
that x is an eigenvector.

If. Let B be an upper-triangular form of A. If all the eigenvalues of A are
zero, the main diagonal of B is zero. It is easily seen that in B2, B3, . . .
successive diagonals above the main diagonal vanish, so that at most Bn, and
consequently An, is a null matrix. �

Theorem A.4.5 Let A : Fn →Fn be a linear map nilpotent of index q. There
exists a similarity transformation T that takes A into the canonical form:

B = T−1A T =









B1 O . . . O
O B2 . . . O
...

...
. . .

...
O O . . . Br









(A.4.8)
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where the Bi (i =1, . . . , r) denote mi ×mi matrices with m1 = q and mi ≤mi− 1

(i = 2, . . . , r) having the following structure:

Bi =













0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0













(i = 1, . . . , r)

Described in words, the nilpotent canonical form is a form in which every
element that is not on the diagonal just above the main diagonal is zero and
the elements of this diagonal are sets of 1’s separated by single 0’s.

Proof. Consider the sequence of subspaces

X0 = {0}
Xi = kerAi (i = 1, . . . , q)

which can be obtained by means of the recursion algorithm:

X0 = {0}
Xi = A−1Xi− 1 (i = 1, . . . , q)

Clearly, Xi− 1 = AXi (i =1, . . . , q) and X0 ⊂X1 ⊂X2 ⊂ . . . ⊂Xq, Xq =Fn.
Note that dimXi = n− dimYi, where Yi := imAi (Property A.2.5). Since, for
any subspace Y ,

dim(AY) = dimY − dim(Y ∩ kerA)

it follows that
dimYi − dimYi− 1 = −dim(Yi− 1 ∩ kerA)

so that, denoting the variation of dimension at each step by

δi := dimXi − dimXi− 1 = dimYi− 1 − dimYi (i = 0, . . . , q)

it follows that δ1 ≥ δ2 ≥ . . . ≥ δq. To show how the canonical form is derived,
consider a particular case in which q =7 and in the sequence X0, . . . ,X7 the
dimensional variations δ1, . . . , δ7 are (3, 3, 2, 2, 1, 1, 1). Since X0 =0, X7 =Fn,
their sum must be n, hence n =13. Take any vector x belonging to X7 but not
to X6, so that Aqx =0, Aq−1x �=0. Note that Ax belongs to X6 but not to X5

(because Aq−1Ax = 0, Aq−2Ax �=0) and is linearly independent of x since x does
not belong to X6; by iteration, A2x belongs to X5 but not to X4 and is linearly
independent of {x, Ax} because {x, Ax} does not belong to X5, A3x belongs to
X4 but not to X3 and is linearly independent of {x, Ax, A2x}; since δ4 =2, it is
possible to take another vector y in X4, linearly independent of A3x and which
does not belong to X3, so that {x, Ax, A2x, A3x, y} is a linearly independent
set; A4x and Ay belong to X3 but not to X2, are linearly independent of the
previous set, which does not belong to X3 and are a linearly independent pair
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since δ3 =dimX3 − dimX2 =2. For the same reason the transformed vectors
A5x, A2y, which belong to X2 but not to X1, form a linearly independent
set with the previously considered vectors and, in addition, a further linearly
independent vector z can be selected on X2 since δ2 = 3. By a similar argument
it may be stated that A6x, A3y and Az are a linearly independent set and are
also linearly independent of the previously considered vectors. In conclusion,
the chains

x, A x, A2x, . . . , A6x
y, A y, A2y, A3y
z, A z

(A.4.9)

are a basis for Fn. In order to obtain the canonical structure (A.4.8) this basis
must be rearranged as

p1 = A6x, p2 = A5x, . . . , p7 = x

p8 = A3y, p9 = A2y, . . . , p11 = y

p12 = Az, p13 = z

The 1’s in the canonical form are due to the fact that, while the first vectors of
the above sequences (p1, p8 and p12) are transformed by A into the origin (i.e.,
into the subspace X0 of the previously considered sequence), and are therefore
eigenvectors of A, subsequent vectors are each transformed in the previous
one. �

Corollary A.4.1 All vectors (A.4.9) are a linearly independent set if the last
vectors of the chains are linearly independent.

Proof. Denote the last vectors of the chains (A.4.9) by v1, v2, v3 and the last
vectors but one by u1, u2, u3. Assume

α1u1 + α2u2 + α3u3 + β1v1 + β2v2 + β3v3 = 0 (A.4.10)

by multiplying both members by A, it follows that

α1v1 + α2v2 + α3v3 = 0

hence, v1, v2, v3 being a linearly independent set, α1 =α2 = α3 =0. By substi-
tuting in (A.4.10), the equality

β1v1 + β2v2 + β3v3 = 0

is obtained, which implies β1 = β2 = β3 =0, hence vectors in (A.4.10) are a
linearly independent set. This argument can be easily extended to prove that
all vectors (A.4.9) are a linearly independent set: by multiplying a linear
combination of them by A6, then by A5 and so on it is proved that the linear
combination is equal to zero only if all the coefficients are zero. �
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Theorem A.4.6 Let A : Fn →Fn be a linear map. There exists a pair of A-
invariant subspaces X ,Y such that X ⊕Y =Fn and, moreover, A|X is nilpotent,
A|Y invertible.

Proof. Let Xi := kerAi, so that, as in the proof of the previous theorem,

X0 ⊂X1 ⊂X2 ⊂ . . . ⊂Xq

where q is the least integer such that kerAq = kerAq − 1.
Assume X := kerAq, Y := imAq. By Property A.2.5, dimX +dimY = n so that
in order to prove that X ⊕Y =Fn it is sufficient to prove that X ∩Y = {0}.
Assume, by contradiction, x∈X , x∈Y , x �=0. From x∈X it follows that
Aqx = 0, from x∈Y it follows that there exists a vector y �= 0 such that x =Aqy.
Consequently A2qy =0, hence y ∈ kerA2q: since kerA2q = kerAq, it follows that
y ∈ kerAq, so that x =Aqy = 0.
A|X is nilpotent of index q because Aqx = 0 for all x∈X , while Aq− 1x is different
from zero for some x∈X since kerAq − 1 ⊂X .
A|Y is invertible because Ax = 0, x∈Y implies x = 0. In fact, let x∈Y and
x = Aqy for some y. Since Ax =Aq + 1y, Ax = 0 implies y ∈ kerAq +1; from
kerAq + 1 =kerAq it follows that y ∈ kerAq, hence x =Aqy = 0. �

Theorem A.4.7 (the Jordan canonical form) Let A : Fn →Fn be a linear
map. There exists a similarity transformation T which takes A into the canon-
ical form, called Jordan form:

J = T−1A T =









B1 O . . . O
O B2 . . . O
...

...
. . .

...
O O . . . Bh









(A.4.11)

where matrices Bi (i =1, . . . , h) are as many as the number of distinct eigen-
values of A, and are block-diagonal:

Bi =









Bi1 O . . . O
O Bi2 . . . O
...

...
. . .

...
O O . . . Bi,ki









(i = 1, . . . , h)

while matrices Bij, which are called Jordan blocks, have the following structure:

Bij =













λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 . . . λi













(i = 1, . . . , h; j = 1, . . . , ki)
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Described in words, the Jordan canonical form is a block-diagonal form such
that in every block all elements on the main diagonal are equal to one of the
distinct eigenvalues of A, the elements on the diagonal just above the main
diagonal are sets of 1’s separated by single 0’s and all other elements are zero.
The dimension of each block is equal to the multiplicity of the corresponding
eigenvalue as a root of the characteristic equation.

Proof. Consider the matrix (A−λ1I). Owing to Theorem A.4.6 there exists
a pair of (A−λ1I)-invariants X and Y such that X ⊕Y =Fn and (A−λ1I)|X
is nilpotent, while (A−λ1I)|Y is invertible. Furthermore, X =ker(A−λ1I)m1 ,
where m1 is the least integer such that ker(A−λ1I)m1 = ker(A−λ1I)m1 + 1.
Note that X and Y are not only (A−λ1I)-invariants, but also A-invariants
because (A−λ1I)x∈X for all x∈X implies Ax∈X for all x∈X , since clearly
λ1x∈X .
Because of Theorems A.4.5, A.4.6, there exists a similarity transformation T1

such that

C1 = T−1
1 (A − λ1I) T1 =















C11 O . . . O
O C12 . . . O
...

...
. . .

...
O O . . . C1,k1

O

O D1















C1j =













0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0













(j = 1, . . . , k1)

where D1 is nonsingular. Since T−1
1 (λ1I)T1 = λ1I, it follows that

B1 = T−1
1 A T1 =

















B11 O . . . O
O B12 . . . O
...

...
. . .

...
O O . . . B1,k1

O

O D1 + λ1I

















where matrices B1j (j = 1, . . . , k1) are defined as in the statement. Since λ1

cannot be an eigenvalue of D1 + λ1I, the sum of the dimensions of the Jordan
blocks B1i (i = i, . . . , k1) is equal to n1, the multiplicity of λ1 in the characteristic
polynomial.
The same procedure can be applied to A|Y in connection with eigenvalue λ2

and so on, until the canonical form (A.4.11) is obtained. �
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A.4.3 Some Properties of Polynomials

The characteristic polynomial of a matrix represents a significant link between
polynomials and matrices; indeed, many important properties of matrices and
their functions are related to eigenvalues and eigenvectors.

A deeper insight into the structure of a general linear map can be achieved
by studying properties of the minimal polynomial of the corresponding matrix,
which will be defined in the next section.

First of all, we briefly recall some general properties of polynomials. Al-
though we are mostly interested in real polynomials, for the sake of generality
we will refer to complex polynomials, which can arise from factorizations of real
ones in some computational procedures.

A polynomial p(λ) is called monic if the coefficient of the highest power of
λ is one. Note that the characteristic polynomial of a square matrix, as defined
at the beginning of this section, is monic.

Given any two polynomials p(λ) and ψ(λ) with degrees n and m, m≤n, it
is well known that there exist two polynomials q(λ) with degree n−m and r(λ)
with degree ≤ m− 1 such that

p(λ) = ψ(λ) q(λ) + r(λ) (A.4.12)

q(λ) and r(λ) are called the quotient and the remainder of the division of p(λ)
by ψ(λ): their computation is straightforward, according to the polynomial
division algorithm, which can be easily performed by means of a tableau and
implemented on computers. Note that when p(λ) and ψ(λ) are monic, q(λ) is
monic but r(λ) in general is not.

When in (A.4.12) r(λ) is equal to zero, p(λ) is said to be divisible by ψ(λ)
and ψ(λ) to divide p(λ) or be a divisor of p(λ). When, on the other hand, p(λ) is
not divisible by ψ(λ), p(λ) and ψ(λ) admit a greatest common divisor (g.c.d.)
which can be computed by means of the euclidean process of the successive
divisions: consider the iteration scheme

p(λ) = ψ(λ) q1(λ) + r1(λ)
ψ(λ) = r1(λ) q2(λ) + r2(λ)
r1(λ) = r2(λ) q3(λ) + r3(λ)

. . . . . .
rk− 2(λ) = rk− 1(λ) qk(λ) + rk(λ)

(A.4.13)

which converges to a division with zero remainder. In fact, the degrees of
the remainders are reduced by at least one at every step. The last nonzero
remainder is the g.c.d. of p(λ) and ψ(λ). In fact, let rk(λ) be the last nonzero
remainder, which divides rk− 1(λ) because in the next relation of the sequence
the remainder is zero: for the last of (A.3.13), it also divides rk− 2(λ), owing
to the previous one, it divides rk− 3(λ), and repeating throughout it is inferred
that it also divides ψ(λ) and p(λ). Hence, rk(λ) is a common divisor of p(λ)
and ψ(λ): it still has to be proved that it is the greatest common divisor, i.e.,
that p(λ)/rk(λ) and ψ(λ)/rk(λ) have no common divisor other than a constant.
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Divide all (A.3.13) by rk(λ): it is clear that any other common divisor is also a
divisor of r1(λ)/rk(λ), r2(λ)/rk(λ), . . ., rk(λ)/rk(λ) = 1, so it is a constant.

This procedure can be extended to computation of the g.c.d. of any finite
number of polynomials. Let p1(λ), . . . , ph(λ) be the given polynomials, ordered
by nonincreasing degrees: first compute the g.c.d. of p1(λ) and p2(λ) and denote
it by α1(λ): then, compute the g.c.d. of α1(λ) and p3(λ) and denote it by α2(λ),
and so on. At the last step the g.c.d. of all polynomials is obtained as αh− 1(λ).

Two polynomials whose g.c.d. is a constant are called coprime.

Lemma A.4.3 Let p(λ), ψ(λ) be coprime polynomials. There exist two poly-
nomials α(λ) and β(λ) such that

α(λ) p(λ) + β(λ) ψ(λ) = 1 (A.4.14)

Proof. Derive r1(λ) from the first of (A.4.13), then substitute it in the second,
derive r2(λ) from the second and substitute in the third, and so on, until the
g.c.d. rk(λ) is derived as

rk(λ) = µ(λ) p(λ) + ν(λ) ψ(λ)

By dividing both members by rk(λ), which is a constant since p(λ) and ψ(λ)
are coprime, (A.4.14) follows. �

A straightforward extension of Lemma A.4.3 is formulated as follows: let
p1(λ), . . . , ph(λ) be any finite number of pairwise coprime polynomials. Then
there exist polynomials ψ1(λ), . . . , ψh(λ) such that

ψ1(λ) p1(λ) + . . . + ψh(λ) ph(λ) = 1 (A.4.15)

Computation of the least common multiple (l.c.m.) of two polynomials p(λ)
and ψ(λ) reduces to that of their g.c.d. In fact, let α(λ) be the g.c.d. of p(λ)
and ψ(λ), so that p(λ) = α(λ) γ(λ) and ψ(λ) = α(λ) δ(λ), where γ(λ), δ(λ) are
coprime. The l.c.m. β(λ) is expressed by

β(λ) = α(λ) γ(λ) δ(λ) = (p(λ) ψ(λ))/α(λ) (A.4.16)

Computation of the l.c.m. of any finite number of polynomials can be per-
formed by steps, like the computation of the g.c.d. described earlier.

A.4.4 Cyclic Invariant Subspaces, Minimal Polynomial

Let us now consider the definition of the minimal polynomial of a linear map.
First, we define the minimal polynomial of a vector with respect to a linear
map.

Let A : Fn →Fn be a linear map and x any vector in Fn. Consider the
sequence of vectors

x, A x, A2x, . . . , Akx, . . . : (A.4.17)
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there exists an integer k such that vectors {x, Ax, . . . , Ak− 1x} are a linearly
independent set, while Akx can be expressed as a linear combination of them,
i.e.

Ak x = −
k−1
∑

i=0

αi A
i x (A.4.18)

The span of vectors (A.4.17) is clearly an A-invariant subspace; it is called a
cyclic invariant subspace of A generated by x . Let p(λ) be the monic polynomial

p(λ) := λk + αk− 1 λk− 1 + . . . + α0

so that (A.4.18) can be written as

p(A) x = 0

p(A) is called the minimal annihilating polynomial of x (with respect to A). It
is easily seen that every annihilating polynomial of x, i.e., any polynomial ψ(λ)
such that ψ(A) x =0, is divisible by p(λ): from

ψ(λ) = p(λ) q(λ) + r(λ)

or
ψ(A) x = p(A) q(A) x + r(A) x

with ψ(A) = 0 by assumption and p(A) x = 0 since p(λ) is the minimal annihi-
lating polynomial of x, it follows that r(A) x =0, which is clearly a contradiction
because r(λ) has a lower degree than the minimal annihilating polynomial p(λ).

Let p(λ) and ψ(λ) be the minimal annihilating polynomials of any two
vectors x and y: it follows that the l.c.m. of p(λ) and ψ(λ) is the minimal
polynomial that annihilates all the linear combinations of x and y.

The minimal polynomial of the linear map A is the minimal polynomial
which annihilates any vector x∈Fn and can be obtained as the l.c.m. of the
minimal annihilating polynomials of the vectors {e1, . . . , en} of any basis of
Fn (for instance the main basis). Hence, the minimal polynomial m(A) is the
minimal annihilating polynomial of the whole space, i.e., the polynomial with
minimal degree such that

ker(m(A)) = Fn (A.4.19)

Lemma A.4.4 For any polynomial p(λ), ker(p(A)) is an A-invariant subspace.

Proof. Let x∈ ker(p(A)), so that p(A) x = 0. Since A and p(A) commute, it
follows that p(A) A x =A p(A) x =0, so that A x∈ ker(p(A)). �

Theorem A.4.8 Let m(λ) be the minimal polynomial of A and p(λ), ψ(λ) co-
prime polynomials that factorize m(λ), i.e., such that m(λ) = p(λ) ψ(λ); define
X := ker(p(A)), Y := ker(ψ(A)). Then

X ⊕ Y = Fn

and p(λ), ψ(λ) are the minimal polynomials of the restrictions A|X and A|Y .
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Proof. Since p(λ) and ψ(λ) are coprime, owing to Lemma A.4.3 there exist
two polynomials α(λ), β(λ) such that

α(λ) p(λ) + β(λ) ψ(λ) = 1

hence
α(A) p(A) z + β(A) ψ(A) z = z ∀ z ∈ Fn (A.4.20)

Relation (A.4.20) can be rewritten as z =x + y, with x := β(A) ψ(A) z,
y := α(A) p(A) z. It is easily seen that x∈X , y ∈Y , since
p(A) x =β(A) m(A) z =0, ψ(A) y = α(A) m(A) z = 0. Let z be any vector
belonging both to X and Y , so that p(A) z =ψ(A) z = 0: in (A.4.20) the right
side member is zero, hence z = 0.

In order to prove that p(λ) is the minimal polynomial for the restriction of A
to X , let µ(λ) be any annihilating polynomial of this restriction; in the relation

µ(A) ψ(A) z = ψ(A) µ(A) x + µ(A) ψ(A) y

the first term on the right side is zero because µ(A) annihilates x, the second
term is zero because ψ(A) y =0, hence µ(A) ψ(A) z = 0 and, since z is arbitrary,
µ(λ) ψ(λ) is divisible by the minimal polynomial m(λ) = p(λ) ψ(λ), so that µ(λ)
is divisible by p(λ). It follows that p(λ) is an annihilating polynomial of the
restriction of A to X which divides any other annihilating polynomial, hence it
is the minimal polynomial of this restriction. By a similar argument we may
conclude that ψ(λ) is the minimal polynomial of the restriction of A to Y . �

Theorem A.4.8 can be extended to any factorization of the minimal polyno-
mial m(λ) into a product of pairwise coprime polynomials. Let λ1, . . . , λh be
the roots of m(λ), m1, . . . , mh their multiplicities, so that

m(λ) = (λ−λ1)
m1 (λ−λ2)

m2 . . . (λ−λh)
mh : (A.4.21)

the linear map A can be decomposed according to the direct sum of A-invariants

X1 ⊕X2 ⊕ . . . ⊕ Xh = Fn (A.4.22)

defined by
Xi := ker(A − λiI)mi (i = 1, . . . , h) (A.4.23)

Furthermore, the minimal polynomial of the restriction A|Xi
is

(λ − λi)
mi (i = i, . . . , h)

The A-invariant Xi is called the eigenspace corresponding to the eigenvalue λi.
Clearly, the concept of eigenspace is an extension of that of eigenvector.

Corollary A.4.2 The minimal polynomial m(λ) of a linear map A has the
same roots as its characteristic polynomial p(λ), each with nongreater multi-
plicity, so that m(λ) is a divisor of p(λ).
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Proof. Since the minimal polynomial of A|Xi
is (λ−λi)

mi and Xi is a (A−λiI)-
invariant, the restriction (A−λiI)|Xi

is nilpotent of index mi, so that owing to
Lemma A.4.2 all its eigenvalues are zero and consequently the only eigenvalue
of A|Xi

is λi. Since any decomposition of a linear map induces a partition of the
roots of its characteristic polynomial, it follows that dimXi = ni (the multiplicity
of λi in the characteristic polynomial of A) and the characteristic polynomial
of A|Xi

is (λ−λi)
ni. �

As a consequence of Corollary A.4.2, we immediately derive the Cayley-
Hamilton theorem: the characteristic polynomial p(λ) of any linear map A is
an annihilator for the whole space, i.e., p(A) =O.

A.4.5 The Jordan Canonical Form. Part II

Theorem A.4.7 is the most important result concerning linear maps, so that,
besides the proof reported in Subsection A.4.2, which is essentially of a “geomet-
ric” type, it is interesting to consider also a proof based on the aforementioned
properties of polynomials.

Proof of Theorem A.4.7. Consider the decomposition (A.4.22,A.4.23). Since
the restriction (A−λiI)|Xi

is nilpotent of index mi, according to Theorem A.4.5
for every root λi of the minimal polynomial there exist ki chains of vectors

x1, (A−λi)x1, (A−λi)
2x1, . . . , (A−λi)

mi1−1x1

x2, (A−λi)x2, (A−λi)
2x2, . . . , (A−λi)

mi2−1x2

. . . . . . . . .

which form a basis for Xi. The length of the first chain is mi1 = mi,
the multiplicity of λi as a root of the minimal polynomial. Let vijℓ

(i = 1, . . . , h; j =1, . . . , ki; ℓ =1, . . . , mij) be the vectors of the above chains con-
sidered in reverse order, so that

vij,ℓ−1 = (A−λiI) vijℓ hence A vijℓ = λi vijℓ + vijℓ−1

(i =1, . . . , h; j = 1, . . . , ki; ℓ =2, . . . , mij)

(A−λiI) vij1 = 0 hence A vij1 = λi vij1

(i =1, . . . , h; j = 1, . . . , ki)

(A.4.24)

The Jordan canonical form is obtained as follows: first, by means of decompo-
sition (A.4.22,A.4.23), obtain a block diagonal matrix such that each block has
one eigenvalue of A as its only eigenvalue: since the product of all character-
istic polynomials is equal to the characteristic polynomial of A, the dimension
of each block is equal to the multiplicity of the corresponding eigenvalue as a
root of the characteristic equation of A; then, for each block, consider a further
change of coordinates, assuming the set of vectors defined previously as the new
basis: it is easily seen that every chain corresponds to a Jordan block, so that
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for each eigenvalue the maximal dimension of the corresponding Jordan blocks
is equal to its multiplicity as a root of the minimal polynomial of A. �

Chains (A.4.24), which terminate with an eigenvector, are called chains
of generalized eigenvectors (corresponding to the eigenvalue λi) and generate
cyclic invariant subspaces that are called cyclic eigenspaces (corresponding to
the eigenvalue λi). They satisfy the following property, which is an immediate
consequence of Corollary A.4.1.

Property A.4.2 Chains of generalized eigenvectors corresponding to the same
eigenvalue are a linearly independent set if their last elements are a linearly
independent set.

The characteristic polynomial of a general Jordan block Bij can be written
as

(λ − λi)
mij (i = 1, . . . , h; j = 1, . . . , ki) (A.4.25)

It is called an elementary divisor of A and clearly coincides with the minimal
polynomial of Bij . The product of all the elementary divisors of A is the
characteristic polynomial of A, while the product of all the elementary divisors
of maximal degree among those corresponding to the same eigenvalue is the
minimal polynomial of A.

A.4.6 The Real Jordan Form

As the diagonal form, the Jordan canonical form may be complex also when A
is real, but we may derive a “real” Jordan form by a procedure similar to that
developed in the proof of Theorem A.4.3 for the diagonal form, based on the
fact that the generalized eigenvectors of a real matrix are conjugate by pairs as
the eigenvectors.

In order to briefly describe the procedure, consider a particular case:
suppose that λ =σ + jω, λ∗ =σ− jω are a pair of complex eigenvalues,
pi =ui + jvi, p∗i =ui − jvi (i =1, . . . , 4) a pair of chains of generalized eigen-
vectors corresponding to a pair of 4× 4 complex Jordan blocks. Assume
the set (u1, v1, u2, v2, u3, v3, u4, v4) instead of (p1, p2, p3, p4, p∗1, p∗2, p∗3, p∗4) as
columns of the transforming matrix T .

Instead of a pair of complex conjugate Jordan blocks a single “real” Jordan
block, but with double dimension, is obtained, since structures of blocks change
as follows:























λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

O

O

λ∗ 1 0 0
0 λ∗ 1 0
0 0 λ∗ 1
0 0 0 λ∗























→
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σ ω
−ω σ

1 0
0 1

O O

O
σ ω
−ω σ

1 0
0 1

O

O O
σ ω
−ω σ

1 0
0 1

O O O
σ ω
−ω σ























(A.4.26)

In fact, from

A p1 = λ p1

A pi = pi− 1 + λ pi (i = 2, 3, 4)

A p∗1 = λ∗ p∗1
A p∗i = p∗i− 1 + λ∗ p∗i (i = 2, 3, 4)

which imply the particular structure of the former matrix, by substitution it is
possible to derive the equivalent relations

A u1 = σ u1 − ω v1

A v1 = ω u1 + σ v1

A ui = ui− 1 + σ ui − ω vi (i = 2, 3, 4)

A vi = vi− 1 + ω ui + σ vi (i = 2, 3, 4)

which imply the structure of the latter matrix.

A.4.7 Computation of the Characteristic and Minimal

Polynomial

Computer-oriented methods to derive the coefficients of the characteristic and
minimal polynomial can provide very useful hints in connection with structure
and stability analysis of linear systems. Although some specific algorithms to
directly compute the eigenvalues of generic square matrices are more accurate,
when matrices are sparse (as happens in most system theory problems) it may be
more convenient to derive first the coefficients of the characteristic polynomial
and then use the standard software for the roots of polynomial equations.

Consider the characteristic polynomial of an n×n real matrix in the form

p(λ) = λn + a1λ
n− 1 + . . . + an− 1λ + an := det(λI − A) (A.4.27)

where coefficients ai (i =1, . . . , n) are functions of matrix A. Recall the well
known relations between the coefficients and the roots of a polynomial equation

−a1 =
∑

i

λi

a2 =
∑

i=j

λi λj

. . . . . . . . .

(−1)nan = λ1 λ2 . . . λn

(A.4.28)
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On the other hand, by expanding the determinant on the right of (A.4.27)
it immediately turns out that

a1 = −trA = −(a11 + a22 + . . . + ann) (A.4.29)

while setting λ =0 yields

an = det(−A) = (−1)n detA (A.4.30)

The elements of matrix λI −A are polynomials in λ with real coefficients.
Theorem A.2.5 allows us to set the equality

(λI − A)−1 =
adj(λI − A)

det(λI − A)

=
λn− 1B0 + λn− 2B1 + . . . + λBn− 2 + Bn− 1

det(λI − A)
(A.4.31)

where Bi (i = 0, . . . , n− 1) denote real n×n matrices. It follows from (A.4.31)
that the inverse of λI −A is an n×n matrix whose elements are ratios of
polynomials in λ with real coefficients such that the degree of the numerator is,
at most, n− 1 and that of the denominator n.

Algorithm A.4.1 (Souriau-Leverrier) Joint computation of matrices Bi

(i = 0, . . . , n− 1) of relation (A.4.31) and coefficients ai (i =1, . . . , n) of the
characteristic polynomial (A.4.27) is performed by means of the recursion for-
mulae:7

B0 = I

B1 = A B0 + a1I

. . .

Bi = A Bi− 1 + aiI

. . .

Bn− 1 = A Bn− 2 + an− 1I

O = A Bn− 1 + anI

a1 = −trA

a2 = −(1/2) tr(A B1)

. . .

ai+1 = −(1/(i + 1)) tr(A Bi)

. . .

an = −(1/n) tr(A Bn− 1)

(A.4.32)

Proof. From (A.4.27,A.4.31) it follows that

(λI − A) (λn− 1B0 + . . . + λBn− 2 + Bn− 1)

= (λn + a1λ
n− 1 + . . . + an)I (A.4.33)

Formulae for the Bi’s are immediately derived by equating the corresponding
coefficients on the left and right sides of (A.4.33).

7 The last formula on the left of (A.4.32) is not strictly necessary and can be used simply
as a check of computational precision.
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Let si be the sum of the i-th powers of the roots of the characteristic
equation; consider the following well known Newton formulae:

a1 = −s1

2 a2 = −(s2 + a1s1)
3 a3 = −(s3 + a1s2 + a2s1)

. . . . . . . . .
n an = −(sn + a1sn− 1 + . . . + an− 1s1)

(A.4.34)

From (A.4.29) it follows that s1 =trA. Since the eigenvalues of Ai are the i-th
powers of the eigenvalues of A, clearly

si = trAi (i = 1, . . . , n)

so that the i-th of (A.4.34) can be written as

i ai = −tr(Ai + a1A
i− 1 + . . . + ai− 1A) (i = 1, . . . , n) (A.4.35)

On the other hand, matrices Bi provided by the algorithm are such that

Bi− 1 = Ai− 1 + a1A
i− 2 + . . . + ai− 2A + ai− 1I (i = 1, . . . , n) (A.4.36)

Formulae (A.4.32) for the ai’s are immediately derived from
(A.4.35,A.4.36). �

The Souriau-Leverrier algorithm allows us to develop arguments to prove
the main properties of the characteristic and minimal polynomial alternative
to those presented in Subsection A.4.4. For instance, the Cayley-Hamilton
theorem, already derived as a consequence of Corollary A.4.2, can be stated
and proved as follows.

Theorem A.4.9 (Cayley-Hamilton) Every square matrix satisfies its charac-
teristic equation.

Proof. By eliminating matrices Bn− 1, Bn− 2, . . . , B0 one after the other, pro-
ceeding from the last to the first of the formulae on the left of (A.4.32), it follows
that

O = An + a1A
n− 1 + . . . + anI �

We recall that the minimal polynomial of A is the polynomial m(λ) with
minimal degree such that m(A) =O. Of course, to assume the minimal poly-
nomial to be monic does not affect the generality. The minimal polynomial
is unique: in fact, the difference of any two monic polynomials with the same
degree that are annihilated by A, is also annihilated by A and its degree is
less by at least one. Furthermore, the minimal polynomial is a divisor of every
polynomial p(λ) such that p(A) =O: in fact, by the division rule of polynomials

p(λ) = m(λ) + r(λ)
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where it is known that the degree of the remainder r(λ) is always at least one less
than that of the divisor m(λ), equalities p(A) = O, m(A) =O imply r(A) =O,
which contradicts the minimality of m(λ) unless r(λ) is zero. An algorithm to
derive the minimal polynomial is provided by the following theorem.

Theorem A.4.10 The minimal polynomial of an n×n matrix A can be derived
as

m(λ) =
det(λI − A)

b(λ)

where b(λ) denotes the greatest common divisor monic of all the minors of order
n− 1 of matrix λI −A, i.e., of the elements of adj(λI −A).

Proof. By definition, b(λ) satisfies the relation

adj(λI − A) = b(λ) B(λ)

where B(λ) is a polynomial matrix whose elements are coprime (i.e., have a
greatest common divisor monic equal to one). Let p(λ) :=det(λI −A): from
(A.4.31) it follows that

p(λ) I = b(λ) (λI − A) B(λ) (A.4.37)

which means that b(λ) is a divisor of p(λ). Let

ϕ(λ) :=
p(λ)

b(λ)

so that (A.4.37) can be written as

ϕ(λ) = (λI − A) B(λ) (A.4.38)

which, by an argument similar to that developed in the proof of Theorem A.4.9
implies ϕ(A) =O. Hence, the minimal polynomial m(λ) must be a divisor of
ϕ(λ), so there exists a polynomial ψ(λ) such that

ϕ(λ) = m(λ) ψ(λ) (A.4.39)

Since

λiI − Ai = (λI − A) (λi− 1I − λi− 2A + . . . + Ai− 1)

by simple manipulations we obtain

m(λI) − m(A) = (λI − A) C(λ)

where C(λ) denotes a proper polynomial matrix and, since m(A) =O

m(λ) I = (λI − A) C(λ)
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From the preceding relation it follows that

ϕ(λ) I = m(λ) ψ(λ) I = ψ(λ) (λI − A) C(λ)

hence, by (A.4.38)
B(λ) = ψ(λ) C(λ)

Since the g.c.d. of the elements of B(λ) is a constant, ψ(λ) must be a constant,
say k. Relation (A.4.39) becomes ϕ(λ) = k m(λ); recalling that ϕ(λ) and m(λ)
are monic, we finally get ϕ(λ) =m(λ) . �

A.5 Hermitian Matrices, Quadratic Forms

It will be shown in this section that the eigenvalues and the eigenvectors of real
symmetric or, more generally, hermitian matrices, have special features that
result in much easier computability.

Theorem A.5.1 The eigenvalues of any hermitian matrix are real.

Proof. Let A be a hermitian square matrix, λ an eigenvalue of A, and x a
corresponding normalized eigenvector, so that

A x = λ x

Taking the left inner product by x yields

〈x, Ax〉 = 〈x, λx〉 = λ 〈x, x〉 = λ

On the other hand, since A is hermitian, it follows that
〈x, Ax〉= 〈Ax, x〉= 〈x, Ax〉∗, i.e., the right side of the relation is real,
hence λ is real. �

Property A.5.1 Any hermitian matrix is diagonalizable by means of a unitary
transformation.

Proof. Consider the Schur decomposition

A = U R U∗

From A =A∗ it follows that URU∗ =UR∗U∗, hence R =R∗ so that R, as a
hermitian upper triangular matrix, must be diagonal. �

The following corollaries are consequences of previous statements.

Corollary A.5.1 Any real symmetric matrix is diagonalizable by means of an
orthogonal transformation.
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Corollary A.5.2 Any hermitian matrix admits a set of n orthonormal eigen-
vectors.

Symmetric and hermitian matrices are often used in connection with
quadratic forms, which are defined as follows.

Definition A.5.1 (quadratic form) A quadratic form is a function q : Rn →R

or q : Cn →R expressed by

q(x) = 〈x, Ax〉 = xT A x =
n
∑

i=1

n
∑

j=1

aijxixj (A.5.1)

or

q(x) = 〈x, Ax〉 = x∗A x =
n
∑

i=1

n
∑

j=1

aijx
∗
i xj (A.5.2)

with A symmetric in (A.5.1) and hermitian in (A.5.2).

A quadratic form is said to be positive (negative) definite if 〈x, Ax〉 > 0
(< 0) for all x �= 0, positive (negative) semidefinite if 〈x, Ax〉 ≥ 0 (≤ 0) for all
x �= 0.

In the proofs of the following theorems we will consider only the more general
case of A being hermitian. When A is symmetric, unitary transformations are
replaced with orthogonal transformations.

Theorem A.5.2 A quadratic form 〈x, Ax〉 is positive (negative) definite if and
only if all the eigenvalues of A are positive (negative); it is positive (negative)
semidefinite if and only if all the eigenvalues of A are nonnegative (nonpositive).

Proof. Owing to Property A.5.1, the following equalities can be set:

〈x, Ax〉 = 〈x, UΛ U∗x〉 = 〈U∗x, Λ U∗x〉

Let z := U∗x, so that

〈x, Ax〉 = 〈z, Λz〉 =

n
∑

i=1

λiz
2
i

which proves both the if and the only if parts of the statement, since the
correspondence between x and z is one-to-one. �

By extension, a symmetric or hermitian matrix is said to be positive (neg-
ative) definite if all its eigenvalues are positive (negative), positive (negative)
semidefinite if all its eigenvalues are nonnegative (nonpositive). The following
theorem states a useful criterion, called the Sylvester criterion, to test positive
definiteness without any eigenvalue computation.
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Theorem A.5.3 (the Sylvester criterion) Let A be a symmetric matrix and
Ai (i = 1, . . . , n) be the successive leading principal submatrices of A, i.e., sub-
matrices on the main diagonal of A whose elements belong to the first i rows
and i columns of A. The quadratic form 〈x, Ax〉 is positive definite if and only
if detAi > 0 (i =1, . . . , n), i.e., if and only if the n successive leading principal
minors of A are positive.

Proof. Only if. Note that detA is positive since all the eigenvalues of A are
positive owing to Theorem A.5.2. Positive definite “reduced” quadratic forms
are clearly obtained by setting one or more of the variables xi equal to zero:
since their matrices coincide with principal submatrices of A, all the principal
minors, in particular those considered in the statement, are positive.

If. By induction, we suppose that 〈x, Ak−1x〉 is positive definite and that
detAk−1 > 0, detAk > 0 (2≤ k≤n) and we prove that 〈x, Akx〉 is positive defi-
nite. The stated property clearly holds for k =1. Consider

Ak =

[

Ak−1 a
aT akk

]

Owing to relation (A.2.26) it follows that

detAk = detAk−1 · (akk − 〈a, A−1
k−1a〉)

hence, akk −〈a, A−1
k−1a〉> 0.

Consider the quadratic form 〈x, Akx〉 and assume x =Pz, where P is the non-
singular matrix defined by

P :=

[

I −A−1
k−1

O 1

]

Clearly, 〈x, Akx〉= 〈z, P TAkPz〉 is positive definite, since

P TAkP =

[

Ak−1 O
O akk −〈a, A−1

k−1a〉

]

�

Corollary A.5.3 The quadratic form 〈x, Ax〉 is negative definite if and only
if (−1)i detAi > 0 (i =1, . . . , n), i.e., if and only if the n successive leading
principal minors of A are alternatively negative and positive.

Proof. Apply Theorem A.5.3 to the quadratic form 〈x,−Ax〉, which clearly is
definite positive. �

The Sylvester criterion allows the positive (negative) definiteness of a
quadratic form to be checked by considering the determinants of n symmet-
ric matrices, each obtained by bordering the previous one. On the other hand,
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it is easily shown that a quadratic form is positive (negative) semidefinite if and
only if all its principal minors are nonnegative (nonpositive).8

Theorem A.5.4 Let the quadratic form 〈x, Ax〉 be positive (negative) semidef-
inite. Then

〈x1, Ax1〉 = 0 ⇔ x1 ∈ kerA

Proof. Since kerA =ker(−A), we can assume that A is positive semidefi-
nite without any loss of generality. By Property A.5.1 and Theorem A.5.2,
A = UΛ U∗, where Λ is a diagonal matrix of nonnegative real numbers (the
eigenvalues of A). Let B := U

√
ΛU∗: clearly A =BB, with B symmetric,

positive semidefinite and such that imB = im(BB) = imA (owing to Property
A.3.6); hence, kerB = kerA. Therefore, the expression 〈x1, Ax1〉=0 is equiva-
lent to 〈Bx1, Bx1〉=0, which implies x1 ∈ kerB, or x1 ∈ kerA. �

A.6 Metric and Normed Spaces, Norms

The introduction of a metric in a vector space becomes necessary when ap-
proaching problems requiring a quantitative characterization of the elements of
such spaces. In connection with dynamic system analysis, the need of a metric
in the state space arises when convergence of trajectories must be considered,
as, for instance, in the study of stability from the most general standpoint. In
this section, besides introducing basic concepts relating to metrics and norms,
a constructive proof is presented of the main existence and uniqueness theorem
of differential equations solutions, which is very important in connection with
the definition itself and analysis of the basic properties of dynamic systems.

The concept of metric space is as primitive and general as the concept of set,
or rather is one of the simplest specializations of the concept of set: a metric
space is a set with a criterion for evaluating distances. In axiomatic form it is
defined as follows.

Definition A.6.1 (metric space, metric) A metric space is a set M with a
function δ( · , · ) : M×M→R, called metric, which satisfies

1. positiveness:

δ(x, y) ≥ 0 ∀x, y ∈ M
δ(x, y) = 0 ⇔ x = y

8 Swamy [19] reports the following example. The eigenvalues of matrix

A :=





1 1 1
1 1 1
1 1 0





are 0, 1 +
√

3, 1−
√

3 so that A is not positive semidefinite, even if its three successive principal
minors are nonnegative (1, 0, 0).
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2. symmetry:
δ(x, y) = δ(y, x) ∀x, y ∈ M

3. triangle inequality:

δ(x, z) ≤ δ(x, y) + δ(y, z) ∀x, y, z ∈ M

In Section A.3 the euclidean norm has been defined as a consequence of the
inner product. The following axiomatic definition of a norm is not related to
an inner product and leads to a concept of normed space that is completely
independent of that of inner product space.

Definition A.6.2 (normed space, norm) A vector space V over a field F (with
F = R or F = C) is called a normed space if there exists a function ‖ · ‖ : V→R,
called norm, which satisfies

1. positiveness:

‖x‖ ≥ 0 ∀x ∈ V
‖x‖ = 0 ⇔ x = 0

2. commutativity with product by scalars:

‖αx‖ = |α| ‖x‖ ∀α ∈ F , ∀x ∈ V

3. triangle inequality:

‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V

Note that in the field of scalars F , a norm is represented by the “absolute
value” or “modulus.” Every normed space is also a metric space: in fact it is
possible to assume δ(x, y) := ‖x− y‖. In the sequel, only the symbol ‖x− y‖
will be used to denote a distance, i.e., only metrics induced by norms will be
considered, since greater generality is not necessary.

More than one norm can be defined in the same vector space, as the following
examples clarify.

Example A.6.1 In Rn or Cn the following norms are used:

‖x‖1 :=

n
∑

i=1

|xi| (A.6.1)

‖x‖2 :=

√

√

√

√

n
∑

i=1

|xi|2 (A.6.2)

‖x‖∞ := sup
1≤i≤n

|xi| (A.6.3)

Their geometrical meaning in space R2 is illustrated in Fig. A.14, where the
shapes of some constant-norm loci are represented.
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x2 {x : ‖x‖∞ = 1}
{x : ‖x‖2 = 1}
{x : ‖x‖1 = 1}

x1

Figure A.14. Constant norm loci in R
2.

Example A.6.2 In the vector space of infinite sequences s( · ) : Z→Rn or
s( · ) : Z→Cn norms similar to the previous ones are defined as:

‖s( · )‖1 :=

∞
∑

i=1

‖s(i)‖1 (A.6.4)

‖s( · )‖2 :=

√

√

√

√

∞
∑

i=1

‖s(i)‖2
2 (A.6.5)

‖s( · )‖∞ := sup
1≤i<∞

‖s(i)‖∞ (A.6.6)

Example A.6.3 In the vector space of functions f( · ) : T →Rn or s( · ) :
T →Cn, where T denotes the set of all nonnegative real numbers, the most
common norms are:

‖f( · )‖1 :=

∫ ∞

0

‖f(t)‖1 dt (A.6.7)

‖f( · )‖2 :=

√

∫ ∞

0

‖f(t)‖2
2 dt (A.6.8)

‖f( · )‖∞ := sup
t∈T

‖f(t)‖∞ (A.6.9)

The norm ‖x‖2 is the euclidean norm already introduced in Section A.3 as
that induced by the inner product; in the sequel the symbol ‖ · ‖, without any
subscript, will be referred to a generic norm.

Clearly, all the previously defined norms satisfy axioms 1 and 2 of Definition
A.6.2. In the case of euclidean norms the triangle inequality is directly related
to the following result.

Theorem A.6.1 Let V be an inner product space. The euclidean norm satisfies
the Schwarz inequality:

|〈x, y〉| ≤ ‖x‖2 ‖y‖2 ∀x, y ∈ V (A.6.10)
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Proof. From

0 ≤ 〈x +αy, x +αy〉 = 〈x, x〉 + α〈x, y〉 + α∗〈y, x〉 + α α∗〈y, y〉
assuming y �= 0 (if y is zero (A.6.10) clearly holds) and α := −〈y, x〉/〈x, x〉, it
follows that

〈x, x〉〈y, y〉 ≥ 〈x, y〉〈y, x〉 = |〈x, y〉|2

which leads to (A.6.10) by extraction of the square root. �

In order to prove that euclidean norms satisfy triangle inequality, consider
the following manipulations:

‖x + y‖2
2 = 〈x + y, x + y〉

= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
≤ ‖x‖2

2 + 2 |〈x, y〉|+ ‖y‖2
2

then use (A.6.10) to obtain

‖x + y‖2
2 ≤ ‖x‖2

2 + 2 ‖x‖2 ‖y‖2 + ‖y‖2
2 = (‖x‖2 + ‖y‖2)

2

which is the square of the triangle inequality.
The norms considered in the previous examples are particular cases of the

more general norms, called p-norms

‖x‖p :=

(

n
∑

i=1

|xi|p
)

1
p

(1 ≤ p ≤ ∞) (A.6.11)

‖s( · )‖p :=

(

∞
∑

i=1

‖s(i)‖p
p

)
1
p

(1 ≤ p ≤ ∞) (A.6.12)

‖f( · )‖p :=

(
∫ ∞

0

‖f(t)‖p
p dt

)
1
p

(1 ≤ p ≤ ∞) (A.6.13)

in particular, the norms subscripted with ∞ are the limits of (A.6.11–A.6.13)
as p approaches infinity.

It is customary to denote with lp the space of sequences s( · ) measurable
according to the norm (A.6.12), i.e., such that the corresponding infinite series
converges, and with lp(n) the spaces of sequences of n terms; clearly lp is infinite-
dimensional, while lp(n) is finite-dimensional.

Similarly, Lp denotes the space of functions f( · ) measurable according
to (A.6.13), i.e., such that the corresponding improper integral exists, while
Lp[t0, t1] denotes the space of functions defined in the finite interval [t0, t1], for
which, in norm (A.6.13), the integration interval is changed accordingly.

For the most general norms the proof of the triangle inequality is based on
the following Hölder inequalities:

n
∑

i=1

|xi yi| ≤
(

n
∑

i=1

|xi|p
)

1
p
(

n
∑

i=1

|yi|q
)

1
q (

1

p
+

1

q
=1

)

(A.6.14)
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∫ b

a

|x(t) y(t)| dt ≤
(
∫ b

a

|x(t)|p dt

)

1
p
(
∫ b

a

|y(t)|q dt

)

1
q

(

1

p
+

1

q
= 1

)

(A.6.15)

which generalize Schwarz inequality (A.6.10). The proofs of Hölder inequali-
ties and consequent triangle inequality are omitted here. Also without proof
we report the following property, which clearly holds in the particular cases
considered in Fig. A.14.

Property A.6.1 Norms (A.6.11–A.6.13) satisfy the inequalities

‖ · ‖i ≥ ‖ · ‖j for i ≤ j (A.6.16)

Norms of transformations are often used in conjunction with norms of vectors
to characterize the “maximum variation of length” of the image of a vector with
respect to the vector itself. In the particular case of a linear transformation,
the norm is defined as follows.

A.6.1 Matrix Norms

Definition A.6.3 (norm of a linear map) Let V and W be two normed vector
spaces over the same field F and L the set of all the linear maps from V to W.
A norm of the linear map A∈L is a function ‖ · ‖ : L→R which satisfies

‖A‖ ≥ sup
‖x‖=1

‖A x‖ (A.6.17)

‖α A‖ = |α|‖A‖ (A.6.18)

If V =Fn and W =Fm, the linear map is represented by an m×n matrix
and the same definition applies for the norm of the matrix A.

For the sake of simplicity, only norms of matrices will be considered in the
sequel. From (A.6.17) and (A.6.18) it follows that

‖A x‖ ≤ ‖A‖ ‖x‖ ∀x ∈ V (A.6.19)

Norms of matrices satisfy the following fundamental properties, called the
triangle inequality and the submultiplicative property

‖A + B‖ ≤ ‖A‖ + ‖B‖ (A.6.20)

‖A B‖ ≤ ‖A‖ ‖B‖ (A.6.21)

which are consequences of the manipulations

‖(A + B)x‖ ≤ ‖Ax‖ + ‖Bx‖
≤ ‖A‖‖x‖ + ‖B‖‖x‖ = (‖A‖ + ‖B‖)‖x‖

‖A B x‖ ≤ ‖A‖ ‖B x‖ ≤ ‖A‖ ‖B‖ ‖x‖
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The most frequently used matrix norms are defined as consequences of the
corresponding vector norms, simply by taking the equality sign in relation
(A.6.17). Referring to the vector norms defined by (A.6.1–A.6.3), the corre-
sponding norms of an m×n matrix A are

‖A‖1 = sup
1≤j≤n

m
∑

i=1

|aij| (A.6.22)

‖A‖2 =
√

λM (A.6.23)

‖A‖∞ = sup
1≤i≤m

n
∑

j=1

|aij| (A.6.24)

In (A.6.23) λM denotes the greatest eigenvalue of AT A if A is real, or A∗A if A
is complex.

In all three cases relation (A.6.19) holds with equality sign for at least one
vector x having unitary norm. This property can easily be checked in the
cases of norms (A.6.22) and (A.6.24), while for (A.6.23) it is proved by solving
the problem of maximizing the quadratic form 〈Ax, Ax〉 under the constraint
〈x, x〉=1. Recall that the quadratic form can be written also 〈x, AT Ax〉 if A is
real, or 〈x, A∗Ax〉 if A is complex.

Refer to the case of A being real and take into account the constraint by
means of a Lagrange multiplier λ: the problem is solved by equating to zero
the partial derivatives with respect to the components of x of the function

f(x) = 〈x, AT Ax〉 − λ(〈x, x〉 − 1)

i.e.,
grad f(x) = 2AT Ax − 2λx = 2 (ATA − λI) x = 0

It follows that at a maximum of ‖Ax‖2 vector x is an eigenvector of AT A. On
the other hand, if x is an eigenvector of AT A

‖y‖2 =
√

〈Ax, Ax〉 =
√

λ〈x, x〉 =
√

λ

hence the eigenvector that solves the maximization problem corresponds to the
greatest eigenvalue of AT A and norm ‖A‖2 is its square root. The preceding
argument extends to the case of A being complex by simply substituting AT

with A∗.
Another interesting matrix norm is the Frobenius norm

‖A‖F :=

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2 (A.6.25)

Property A.6.2 Norms of matrices (A.6.22–A.6.25) satisfy the inequality

‖A‖ ≤
m
∑

i=1

n
∑

j=1

|aij | (A.6.26)
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Proof. In the cases of norms (A.6.22) and (A.6.24) the validity of (A.6.26) is
clear, while for (A.6.23) it is proved as follows: let x0 be a normalized eigenvector
of AT A or A∗A corresponding to the greatest eigenvalue λM ; the components
of x0 have absolute value less than or equal to one, hence the components of
the transformed vector y :=A x0 are such that

|yi| ≤
n
∑

j=1

|aij| (i = 1, . . . , m)

This relation, joined to

‖A‖2 = ‖y‖2 =

√

√

√

√

m
∑

i=1

|yi|2 ≤
m
∑

i=1

|yi|

proves (A.6.26). The inequality in the latter relation is due to the square of a
sum of nonnegative numbers being greater than or equal to the sum of their
squares (in fact the expansion of the square also includes the double-products).
In the case of norm (A.6.25) this inequality directly proves the result. �

Property A.6.3 The 2-norm (A.6.23) and the F-norm (A.6.25) are invariant
under orthogonal transformations (in the real field) or unitary transformations
(in the complex field).

Proof. Refer to the real case and let U (m×m) and V (n×n) be orthogonal
matrices. Assume B := UT A V : since

BT B − λI = V T AT A V − λI = V T (AT A − λI) V

BT B and AT A have the same eigenvalues. Hence, the 2-norm and the F-norm,
which are related to these eigenvalues by

‖A‖2 =
√

sup
i

λi ‖A‖F =
√

tr (AT A) =

√

√

√

√

n
∑

i=1

λi

are clearly equal. �

Expressing the 2-norm and the F-norm in terms of the eigenvalues of AT A
immediately yields

‖A‖2 ≤ ‖A‖F ≤ √
n ‖A‖2

The following definitions are specific of metric spaces.

Definition A.6.4 (sphere) Let V be a normed space. Given x0 ∈V, r∈R, the
set

O(x0, r) = {x : ‖x − x0‖ < r }
is called an open sphere with center at x0 and radius r. If equality is allowed,
i.e., ‖x−x0‖≤ r, the set is a closed sphere.
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The open sphere O(x0, ǫ) is also called an ǫ-neighborhood of x0.

Definition A.6.5 (interior point of a set) Let X be a set in a normed space
V. A vector x∈X is called an interior point of X if there exists a real number
ǫ> 0 such that O(x, ǫ)⊂X .

Definition A.6.6 (limit point of a set) Let X be a set in a normed space V. A
vector x not necessarily belonging to X is called a limit point or accumulation
point of X if for any real ǫ> 0 there exists an y ∈X such that y ∈O(x, ǫ).

Definition A.6.7 (isolated point of a set) Let X be a set in a normed space
V. A vector x∈X is called an isolated point of X if there exists an ǫ> 0 such
that O(x, ǫ) does not contain any other point of X .

The set of all interior points of X is called the interior of X and denoted by
intX , the set of all limit points is called the closure of X and denoted by cloX .
Since in every neighborhood of a point of X there is a point of X (the point
itself), any set X is contained in its closure. A boundary point of X is a point
of cloX which is not an interior point of X ; the set of all boundary points of X
is called the boundary of X .

An open set is a set whose points are all interior, a closed set is a set that
contains all its boundary points or that coincides with its closure.

A typical use of norms is related to the concept of convergence and limit.

Definition A.6.8 (limit of a sequence of vectors) A sequence of vectors {xi}
(i = 1, 2, . . . ) belonging to a normed space V is said to converge to x0 if for
any real ǫ> 0 there exists a natural number Nǫ such that ‖xn −x0‖<ǫ for all
n≥Nǫ; x0 is called the limit of {xi}.

The convergence defined previously clearly depends on the particular norm
referred to. However, it is possible to prove that when X is finite-dimensional
all norms are equivalent , in the sense that convergence with respect to any norm
implies convergence with respect to all the other norms and that the limit of
any converging sequence is unique.

Theorem A.6.2 A set X in a normed space V is closed if and only if the limit
of any converging sequence with elements in X belongs to X .

Proof. If. Owing to Definition A.6.8, if the limit belongs to X , it is necessarily
a limit point of X .

Only if. Suppose that X is not closed and that x0 is a limit point of X not
belonging to X . Again owing to Definition A.6-8 for any value of the integer i
it is possible to select in X a vector xi ∈O(x0, 1/i) and in this way to obtain a
sequence converging to x0. �
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A.6.2 Banach and Hilbert Spaces

Definition A.6.9 (continuous map) Let V and W be normed spaces. A map
T : V →W is said to be continuous at x0 ∈V if for any real ǫ> 0 there exists a
real δ > 0 such that

‖x − x0‖ < δ ⇒ ‖T (x) − T (x0)‖ < ǫ

In other words T is continuous at x0 if for any ǫ> 0 there exists a δ > 0 such
that the image of O(x0, δ) is contained in O(T (x0), ǫ).

Theorem A.6.3 A map T : V →W is continuous at x0 ∈V if and only if

lim
i→∞

xi = x0 ⇒ lim
i→∞

T (xi) = T (x0)

Proof. If. Suppose that there exists in V a sequence converging to x0 that is
transformed by T into a sequence belonging to W that does not converge to
T (x0); then clearly T cannot be continuous according to Definition A.6.9.

Only if. Suppose that T is noncontinuous, so that there exists a real ǫ> 0
such that for any δ > 0, O(x0, δ) contains vectors whose images do not all belong
to O(T (x0), ǫ). Hence, it is possible to select in every O(x0, 1/n) a vector xn

such that T (x0) /∈O(T (x0), ǫ), so that

lim
n→∞

xn = x0

while {T (xn)} does not converge. �

An important criterion for testing convergence of a sequence without any
knowledge of its limit is based on Cauchy sequences, which are defined as follows.

Definition A.6.10 (Cauchy sequence) A sequence of vectors {xi} belonging
to a normed space V is said to be a fundamental sequence or a Cauchy sequence
if for any real ǫ> 0 there exists an Nǫ such that

‖xn − xm‖ < ǫ ∀m, n ≥ Nǫ

It is well known that in the field R of reals every converging sequence is
a Cauchy sequence and, conversely, every Cauchy sequence converges. This
property does not hold in all normed spaces, since every converging sequence is
a Cauchy sequence but, in general, the contrary is not true. The direct assertion
is a consequence of the triangle inequality: in fact, let {xi} converge to x0, so
that for any real ǫ> 0 there exists an Nǫ such that ‖xk −x0‖<ǫ/2 for all k≥Nǫ,
hence ‖xn −xm‖≤‖xm −x0‖+ ‖xn −x0‖<ǫ for all m, n ≥ Nǫ.

The following definition is basic for most functional analysis developments.

Definition A.6.11 (Banach and Hilbert spaces) A normed space V is said to
be complete if every Cauchy sequence with elements in V converges to a limit
belonging to V. A complete normed space is also called a Banach space. An
inner product space that is complete with respect to the norm induced by the
inner product is called a Hilbert space.
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Example A.6.4 As an example of a noncomplete normed space, consider the
space of real-valued continuous functions defined in the interval [0, 2], with the
norm

‖x( · )‖1 :=

∫ 2

0

|x(t)| dt (A.6.27)

In this space the sequence

xi(t) =

{

ti for 0≤ t < 1
1 for 1≤ t≤ 2

(i = 1, 2, . . . ) (A.6.28)

(some elements of which are shown in Fig. A.15) is a Cauchy sequence with

xi(t)

0 1 2 t

i =1
i =2
i =3
i =5
i =10
i =20

Figure A.15. Continuous functions converging to a discon-

tinuous function.

respect to the norm (A.6.27) since for any real ǫ> 0 it is possible to select an
Nǫ such that

‖xn( · ) − xm( · )‖1 =
1

n + 1
− 1

m + 1
< ǫ ∀m, n ≥ Nǫ

but converges to the function

x(t) =

{

0 for 0≤ t < 1
1 for 1≤ t≤ 2

which does not belong to the considered space since it is not continuous.

Example A.6.5 R is a Banach space, since every Cauchy sequence of real
numbers converges.

Example A.6.6 Rn and Cn are Banach spaces.

In fact, suppose that {xi} (i = 1, 2, . . . ) is a Cauchy sequence, so that for
any ǫ> 0 there exists an Nǫ such that

‖xp − xq‖ ≤ ǫ ∀ p, q ≥ Nǫ
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Denote by xpi, xqi the i-th elements of xp, xq: owing to Property A.6.1 it follows
that

|xpi − xqi| ≤ ‖xp − xq‖∞ ≤ ‖xp − xq‖ < ǫ (i =1, . . . , n)

hence {xpi} (i = 1, 2, . . . ) is a Cauchy sequence of real numbers. Let

x̄i := lim
p→∞

{xpi} (i = 1, . . . , n)

and
x̄ := (x̄1, . . . , x̄n)

Clearly
lim
p→∞

xp = x̄ , with x̄∈R
n or x̄∈C

n

Example A.6.7 The space C[t0, t1] of real-valued continuous functions, with
the norm

‖x( · )‖∞ = sup
t0≤t≤t1

|x(t)| (A.6.29)

is a Banach space.

In fact, let {xi( · )} (i =1, 2, . . . ) be a Cauchy sequence in C[t0, t1], so that
for any ǫ> 0 there exists an Nǫ such that

sup
t0≤t≤t1

|xn(t) − xm(t)| < ǫ ∀m, n ≥ Nǫ

hence
|xn(t) − xm(t)| < ǫ ∀m, n ≥ Nǫ , ∀ t ∈ [t0, t1]

Therefore {xi(t)} (i =1, 2, . . . ) is a Cauchy sequence of real numbers for all
t∈ [t0, t1]. Let

x̄(t) := lim
i→∞

xi(t) ∀ t ∈ [t0, t1]

It will be proved that the function so defined is the limit in C[t0, t1], i.e., with
respect to the norm (A.6.29), of the sequence {xi} and that x̄( · )∈C[t0, t1]. For
any ǫ> 0 there exists an Nǫ such that

|xn(t) − x̄(t)| <
ǫ

2
∀n ≥ Nǫ , ∀ t ∈ [t0, t1]

i.e.,
sup

t0≤t≤t1

|xn(t) − x̄(t)| < ǫ ∀n ≥ Nǫ

Clearly this means that
lim
i→∞

xi( · ) = x̄( · )

Owing to the triangle inequality, it follows that

|x̄(t) − x̄(τ)| ≤ |x̄(t) − xn(τ)| + |xn(τ) − xn(t)| + |xn(t) − x̄(τ)|
∀n , ∀ t, τ ∈ [t0, t1]
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since it has been proved that convergence of {xi(t)} (i =1, 2, . . . ) to x̄(t) is
uniform with respect to t, for any ǫ> 0 there exists an Nǫ such that for n≥Nǫ

the first and the third terms on the right side of the above relation are less than
ǫ/3, so that

|x̄(t) − x̄(τ)| ≤ 2ǫ

3
+ |xn(τ) − xn(t)| ∀n ≥ Nǫ , ∀ t, τ ∈ [t0, t1]

Since xn( · ) is a continuous function, there exists a real δ > 0 such that

|τ − t| < δ ⇒ |xn(τ) − xn(t)| <
ǫ

2

hence
|x̄(τ) − x̄(t)| < ǫ

This means that x̄( · ) is continuous at t; since t is arbitrary, it is continuous in
[t0, t1]. It is remarkable that sequence (A.6.28), which is Cauchy with respect
to the norm (A.6.27), is not Cauchy with respect to (A.6.29).

Example A.6.8 The space lp (1≤ p≤∞) is a Banach space.

Example A.6.9 The space Lp[a, b] is a Banach space.

A.6.3 The Main Existence and Uniqueness Theorem

Proof of existence and uniqueness of solutions of differential equations is a
typical application of normed spaces. Consider the vector differential equation

ẋ(t) = f(t, x(t)) (A.6.30)

with the aim of determining a class of functions f : R×Fn →Fn such that
(A.6.30) has a unique solution for any given initial state and initial instant of
time, i.e., there exists a unique function x( · ) satisfying (A.6.30) and such that
x(t0) = x0 for any x0 ∈Fn and for any real t0. Here, as before, F := R or
F := C. Only a set of sufficient conditions is sought, so that it is important
that this class is large enough to include all cases of practical interest.

Theorem A.6.4 The differential equation (A.6.30 ) admits a unique solution
x( · ) which satisfies the initial condition x(t0) =x0 for any given real t0 and any
given x0 ∈Fn if

1. for all x∈Fn function f( · , x) is piecewise continuous for t≥ t0;

2. for all t≥ t0 which are not discontinuity points of f( · , x) and for any pair
of vectors u, v∈Fn the following Lipschitz condition9 is satisfied:

‖f(t, u) − f(t, v)‖ ≤ k(t)‖u − v‖ (A.6.31)

9 Note that set Mk of all functions that satisfy the Lipschitz condition at t is closed, it
being the closure of the set of all differentiable functions that satisfy ‖gradx f(t, x)‖≤ k(t),
where

gradx f(t, x) :=

(

∂f(t, x)

∂x1
, . . . ,

∂f(t, x)

∂xn

)
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where k(t) is a bounded and piecewise continuous real-valued function, ‖ · ‖ any
norm in Fn.

Proof. Existence. By using the Peano-Picard successive approximations
method, set the sequence of functions

x0(t) := x0

xi(t) := x0 +
∫ t

t0
f(τ, xi−1(τ)) dτ (i = 1, 2, . . . )

(A.6.32)

It will be proved that this sequence, for t∈ [t0, t1] with t1 arbitrary, converges
uniformly to a function x(t), which is an integral of (A.6.30). In fact, by taking
the limit of the sequence under the integral sign, it follows that

x(t) = x0 +

∫ t

t0

f(τ, x(τ)) dτ

In order to prove the uniform convergence of (A.6.32), consider the series

s(t) :=

∞
∑

i=1

(xi(t) − xi−1(t))

and note that its n-th partial sum is

sn(t) =
n
∑

i=1

(xi(t) − xi−1(t)) = xn(t) − x0(t)

Therefore, the series converges uniformly if and only if the sequence converges
uniformly. The series converges uniformly in norm in the interval [t0, t1] if the
series with scalar elements

σ(t) :=
∞
∑

i=1

‖xi(t) − xi−1(t)‖ (A.6.33)

converges uniformly in [t0, t1]; in fact the sum of σ(t) is clearly greater than or
equal to the norm of the sum of s(t).

From (A.6.32) it follows that

xi+1(t) − xi(t) =

∫ t

t0

(

f(τ, xi(τ)) − f(τ, xi−1(τ))
)

dτ

hence

‖xi+1(t) − xi(t)‖ ≤
∫ t

t0

‖f(τ, xi(τ)) − f(τ, xi−1(τ))‖ dτ

Owing to hypothesis 2 in the statement

‖xi+1(t) − xi(t)‖ ≤ k1

∫ t

t0

‖xi(τ) − xi−1(τ)‖ dτ
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where
k1 := sup

t0≤t≤t1

k(t)

Since, in particular

‖x1(t) − x0(t)‖ ≤
∫ t

t0

‖f(τ, x0(τ))‖ dτ ≤ k1 ‖x0‖ (t − t0)

by recursive substitution it follows that

‖xi(t) − xi−1(t)‖ ≤ ‖x0‖
ki

1(t− t0)
i

i !
(i = 1, 2, . . . )

which assures uniform convergence of series (A.6.33) by the comparison test: in
fact, the right side of the above relation is the general element of the exponential
series which converges uniformly to

‖x0‖ ek1(t− t0)

Uniqueness. Let y(t) be another solution of differential equation (A.6.30)
with the same initial condition, so that

y(t) = x0 +

∫ t

t0

f(τ, y(τ)) dτ

By subtracting (A.6.32), it follows that

y(t) − xi(t) =

∫ t

t0

(

f(τ, y(τ)) − f(τ, xi−1(τ))
)

dτ (i = 1, 2, . . . )

hence, by condition 2 of the statement

‖y(t) − xi(t)‖ ≤
∫ t

t0

k(τ) ‖y(τ) − xi−1(τ)‖ dτ

since
‖y(t) − x0‖ ≤ ‖y(t)‖ + ‖x0‖ ≤ k2 + ‖x0‖

where
k2 := sup

t0≤t≤t1

‖y(t)‖

by recursive substitution we obtain

‖y(t) − xi(t)‖ ≤ (k2 + ‖x0‖)
ki

1(t− t0)
i

i !
(i = 1, 2, . . . )

This shows that {xi(t)} converges uniformly in norm to y(t). �

Note that condition (A.6.31) implies the continuity of function f with respect
to x for all t that are not discontinuity points while, on the contrary, continuity



424 Appendix A. Mathematical Background

of f with respect to x does not imply (A.6.31). For example, the differential
equation

ẋ(t) = 2
√

x(t)

with the initial condition x(0) = 0, admits two solutions: x(t) = 0 and x(t) = t2;
in this case the function at the right side is continuous but does not meet the
Lipschitz condition at x = 0.

Corollary A.6.1 Any solution of differential equation (A.6.30) is continuous.

Proof. Clearly all functions of sequence (A.6.32) are continuous. It has been
proved that this sequence converges with respect to the norm ‖ · ‖∞ for vector-
valued functions, so that single components of the elements of sequence converge
with respect to the norm ‖ · ‖∞ for real-valued functions, hence are Cauchy
sequences. Since C[t0, t1] is a complete space (see Example A.6.7 of discussion
on Banach spaces), the limits of these sequences are continuous functions. �

References

1. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.

2. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, Macmillan, New
York, 1965.

3. Boullion, T.L., and Odell, P.L., Generalized Inverse Matrices, Wiley-
Interscience, New York, 1971.

4. Coddington, E.A., and Levinson, N., Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1955.

5. Desoer, C.A., Notes for a Second Course on Linear Systems, Van Nostrand
Reinhold, New York, 1970.

6. Durand, E., Solutions Numériques des Équations Algébriques, Tome I et II ,
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Appendix B

Computational Background

In this appendix some widely used algorithms, particularly suitable to set a
computational support for practical implementation of the geometric approach
techniques, are briefly presented from a strictly didactic standpoint.

B.1 Gauss-Jordan Elimination and LU Factor-

ization

In its most diffused form, the Gauss-Jordan elimination method is used to in-
vert nonsingular square matrices and is derived from the Gaussian elimination
(pivotal condensation) method, which provides the solution of a set of n linear
algebraic equations in n unknowns by subtracting multiples of the first equation
from the others in order to eliminate the first unknown from them, and so on.
In this way the last equation will be in a single unknown, which is immediately
determined, while the others are subsequently derived by backward recursive
substitution of the previously determined unknowns in the other reduced equa-
tions. The Gauss-Jordan method is presented herein in a general form that
is oriented toward numerical handling of subspaces rather than strict matrix
inversion.1

Definition B.1.1 (elementary row and column operations) The following op-
erations on matrices are called elementary row (column) operations:

1. permutation of row (column) i with row (column) j;

2. multiplication of row (column) i by a scalar α;

3. addition of row (column) j multiplied by scalar α to row (column) i.

The elementary row operations can be performed by premultiplying the
considered matrix by matrices P1, P2, P3, obtained by executing the same

1 This extension is due to Desoer [A,5].
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operations on the identity matrix, i.e.

P1 =











i j

1
1

i 0 1
1

j 1 0
1











, P2 =











i
1

1
1

i α
1

1











P3 =











i j

1
1

i 1 α
1

j 1
1











(B.1.1)

where all the omitted elements are understood to be zero. Similarly, the ele-
mentary column operations can be performed by postmultiplying by matrices
Q1, Q2, Q3, obtained by means of the same operations on the identity matrix.
Note that the matrices that perform the elementary row (column) operations
are nonsingular since, clearly, detP1 = −1, detP2 = α, detP3 = 1. Further-
more, note that P1 P T

1 = I (in fact P1 is orthogonal) and that Q1 = P T
1 , hence

P1 Q1 = Q1 P1 = I.
The elementary row and column operations are very useful for matrix com-

putations by means of digital computers. For instance, they are used in the
following basic algorithm which, for a general matrix A, allows us to derive
ρ(A) and ν(A), basis matrices for imA and kerA and the inverse matrix A−1 if
A is invertible.

Algorithm B.1.1 (Gauss-Jordan) Let A be an m×n matrix; denote by B
the matrix, also m×n, on which the operations of the algorithm are from time
to time performed and by i the current iteration number of the algorithm:

1. Initialize: i← 1, B ←A ;

2. Consider the elements of B with row and column indices equal to or
greater than i and select that (or any of those) having the greatest absolute
value. If all the considered elements are zero, stop;

3. Let bpq be the element selected at the previous step: interchange rows i
and p, columns i and q, so that bii �=0:

bik ↔ bpk (k =1, . . . , n) , bki ↔ bkq (k =1, . . . , m)

4. Add row i multiplied by −bji/bii to every row j with j �= i:

bjk ← bjk − bik
bji

bii
(k = 1, . . . , n ; j =1, . . . , i− 1, i +1, . . . , m)
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5. Multiply row i by 1/bii:

bik ← bik

bii

(k = 1, . . . , n)

6. Increment i: i← i +1; then, if i < m +1, i <n + 1 go to step 2. If i =m + 1
or i = n +1, stop.

The element of greatest absolute value selected at step 2 and brought to the po-
sition corresponding to bii at step 3 is called the pivot for the i-th iteration. �

As an example, consider a 5× 8 matrix A and suppose ρ(A) = 3. By using
the above algorithm we obtain a matrix B with the following structure:

B =













1 0 0 b14 b15 b16 b17 b18

0 1 0 b24 b25 b26 b27 b28

0 0 1 b34 b35 b36 b37 b38

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0













= P A Q (B.1.2)

in which the elements bij (i =1, . . . , 3; j = 4, . . . , 8) are in general different from
zero; in (B.1.2) P and Q denote the products of the matrices corresponding to
the elementary row and column operations performed during application of the
algorithm. Matrix B can also be represented in partitioned form as

B =

[

Ir B12

O O

]

(B.1.3)

in which the zero rows are present only if the algorithm stops at step 2 rather
than step 6.

At step 2 we are faced with the problem of setting a threshold for machine
zeros. It is very common to assume a small real number, related to a matrix
norm and to the numerical precision of the digital processor: denoting by ǫ the
“machine zero” (for instance, ǫ =10−16), a possible expression for threshold is

t = k ǫ ‖A‖F (B.1.4)

where k denotes a suitable power of 10 (for instance 100 or 1000), introduced in
order to get a certain distance from machine zeros so that results of numerical
computations still have significance.

The Gauss-Jordan Algorithm, provided with the preceding linear indepen-
dence test based on a threshold, solves the following standard computations of
matrix analysis, related to numerical handling of subspaces.

Rank and Nullity. The rank of A is equal to r, the number of nonzero
rows of B. In fact, owing to Property A.2.7 ρ(A) = ρ(PAQ), P and Q being
nonsingular; hence ρ(A) = ρ(B), which, due to the particular structure of B, is
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equal to the number of its nonzero rows. Owing to Property A.2.5, the nullity
of A, ν(A), is immediately derived as n− r.

Image. A basis matrix R for imA is provided by the first r columns of matrix
AQ. In fact, since Q is nonsingular, imA = im(AQ). Let R be the matrix
formed by the first r columns of AQ; clearly imR⊆ imA, but, the columns
of PR being the first r columns of the m×m identity matrix, it follows that
ρ(R) = r, hence, imR = imA.2

Kernel. A basis matrix N for kerA is given by N = QX, where X is the
n× (n− r) matrix

X :=

[

−B12

In− r

]

In fact, since ν(B) = n− r, matrix X, whose columns are clearly a linearly
independent set such that BX =O, is a basis matrix for kerB. Hence, BX =
PAQX = PAN = O: since P is nonsingular, AN = O, so that imN ⊆ kerA.
But ρ(N) = n− r because of the nonsingularity of Q and, since ν(A) = n− r
too, it follows that imN = kerA.

Inverse. If A is square nonsingular, its inverse A−1 is QP , where Q and P are
the matrices obtained by applying Algorithm B.1-1 to A. In fact, in this case
relation (B.1.4) becomes

I = PAQ

or
P = (AQ)−1 = Q−1A−1

(we recall that Q is orthogonal); then

A−1 = QP

Hence, A−1 can be computed by performing the same elementary row oper-
ations on the identity matrix I as were performed on B while applying Algo-
rithm B.1.1 and then executing in reverse order the permutations, to which the
columns of B had been subjected, on rows of the obtained matrix.

The following well-known result is easily derived as a consequence of the
Gauss-Jordan algorithm.

Theorem B.1.1 (LU factorization) Let A be a nonsingular n×n real or
complex matrix. There exist both a lower triangular matrix L and an upper
triangular matrix U such that A =LU .

Proof. Applying Algorithm B.1.1 without steps 2 and 3 and executing the
summation in step 4 only for j > i we obtain a matrix B such that

B = P A
2 Note that Algorithm B.1.1 realizes the direct selection of a linearly independent subset

with the maximum number of elements among the vectors of any set given in Fn: in fact
the columns of matrix R are related to those of A in this way, since Q performs only column
permutations.



B.2. Gram-Schmidt Orthonormalization and QR Factorization 431

which is upper triangular with ones on the main diagonal; on the other hand, P
is lower triangular, being the product of elementary row operation matrices of
types P2 and P3 in (B.1.1), which are respectively diagonal and lower triangular
in this case. Assume U := B. L =P−1 is lower triangular as the inverse of a
lower triangular matrix. The easily derivable recursion relations

ℓii = 1
pii

(i = 1, . . . , n)

ℓji = −ℓii

∑j
k=i+1 pkiℓjk (i =n− 1, . . . , 1 ; j = n, . . . , i +1)

(B.1.5)

can be used to compute its nonzero elements. �

B.2 Gram-Schmidt Orthonormalization and

QR Factorization

An algorithm that turns out to be very useful in numerical computations related
to the geometric approach is the Gram-Schmidt orthonormalization process. In
its basic formulation it solves the following problem: given a linearly indepen-
dent set in an inner product space, determine an orthonormal set with the
same span. The corresponding computational algorithm can be provided with
a linear independence test in order to process a general set of vectors (not nec-
essarily linearly independent) and in this modified version it becomes the basic
algorithm to perform all the fundamental operations on subspaces such as sum,
intersection, orthogonal complementation, direct and inverse linear transforma-
tions, and so on.

Algorithm B.2.1 (Gram-Schmidt) Let V be an inner product space and
{a1, . . . , ah} a linearly independent set in V. An orthonormal set {q1, . . . , qh}
such that sp(q1, . . . , qh) = sp(a1, . . . , ah) is determined by the following process:

1. Initialize:
v1 ← a1

q1 ← ‖v1‖−1v1
(B.2.1)

2. Apply the recursion relations:

vi ← ai −
i−1
∑

j=1

〈qj, ai〉 qj

qi ← ‖vi‖−1vi (i = 2, . . . , h) �

(B.2.2)

Proof. By means of an induction argument it is easy to check that 〈qj , vi〉=0
(j =1, . . . , i− 1), hence 〈qj , qi〉=0 (j =1, . . . , i− 1). Thus, every vector deter-
mined by applying the process, whose euclidean norm is clearly one, is orthog-
onal to all the previous ones. Furthermore, sp(q1, . . . , qh) = sp(a1, . . . , ah), since
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v2

q2

a2

q1

〈q1, q2〉
a1 ≡ v1

Figure B.1. The Gram-Schmidt process in R
2.

{q1, . . . , qh} is a linearly independent set whose elements are linear combinations
of those of {a1, . . . , ah}. �

As an example, Fig. B.1 shows the elements of the Gram-Schmidt process in
R2. The geometric meaning of the process is the following: at the i-th iteration
the orthogonal projection of vector ai on the span of the previous vectors is
subtracted from ai itself, thus obtaining a vector vi that is orthogonal to all
the previous ones (in fact it is the orthogonal projection on the orthogonal
complement of their span); then qi is obtained by simply normalizing vi. Note
that, in order to apply the Gram-Schmidt orthonormalization process, V need
not be finite dimensional.

As a direct consequence of the Gram-Schmidt orthonormalization process,
we derive the following theorem.

Theorem B.2.1 (the QR Factorization) Let A be a nonsingular n×n real or
complex matrix. There exist both an orthogonal or unitary matrix Q and an
upper triangular matrix R such that A =QR.

Proof. Denote by (a1, . . . , an) the ordered set of all columns of A, which is
linearly independent by assumption. Similarly, denote by Q the n×n matrix
with vectors (q1, . . . , qn) as columns, obtained by applying the orthonormal-
ization process to (a1, . . . , an). From (B.2.1,B.2.2) we can easily derive the
equalities

a1 = ‖v1‖ q1

ai = ‖vi‖ qi +

i−1
∑

j=1

〈qj , ai〉 qj (i = 2, . . . , n)
(B.2.3)

which can be written in compact form as

A = Q R (B.2.4)

where R is the n×n upper triangular matrix whose nonzero elements are

rii = ‖vi‖ (i = 1, . . . , n)
rij = 〈qi, aj〉 (i = 1, . . . , n; j = i +1, . . . , n) � (B.2.5)
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Note that, according to (B.2.5), a matrix R is derived with all the main
diagonal elements positive. However, this property is not guaranteed in all
the QR factorization algorithms available for computers but, if not satisfied, it
is possible to change the sign of all elements in the rows of R corresponding
to negative diagonal elements and in the corresponding columns of Q: this is
equivalent to postmultiplying Q and premultiplying R by the same diagonal
matrix composed of 1’s and −1’s, which is clearly orthogonal.

Matrix R can be derived while executing the computations of Algorithm
B.1-1 or, at the end of such computations, by using

U = QT A (U = A∗A) (B.2.6)

In particular, at the i-th step, the nonzero subvector of ui (i.e., the column
vector containing the first i elements of ui) is provided by

u′
i = QT

i ai (u′
i = Q∗

i ai)

where Qi denotes the submatrix composed of the first i columns of Q. Moreover,
since |detQ|=1, it follows that

|detA| = |detR| =

n
∏

i=1

|rii| (B.2.7)

i.e., the absolute value of detA is equal to the product of the euclidean norms of
the orthogonal projections of columns (rows) of A on the orthogonal complement
of the subspace spanned by the previous columns (rows).

B.2.1 QR Factorization for Singular Matrices

Consider an m×n real or complex matrix A and apply Algorithm B.1.1 to
its columns in sequence: if vi =0 for a certain i, ai can be expressed as a
linear combination of a1, . . . , ai− 1 and is omitted. At the end of the process
an orthonormal set {q1, . . . , qh} is obtained whose span is equal to that of the
original set.

A very significant drawback of this procedure when it is practically imple-
mented on a digital computer is that, due to the rounding errors, machine zeros
appear instead of true zeros when, with a reasonable approximation, ai is lin-
early dependent on the previous vectors, so it is necessary to decide whether
to include it or not according to an appropriate selection criterion. Usually a
threshold t similar to (B.1.4) section is introduced for selection in order to avoid
loss of orthogonality of the computed vectors. Furthermore, a significant im-
provement in precision of the linear dependence test is obtained if at each step
the vector with projection having maximal euclidean norm is processed first.

These considerations lead to the following result, which extends Theorem
B.2.1 to generic matrices.
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Theorem B.2.2 (extended QR factorization) Let A be an m×n real or com-
plex matrix. There exist an m×m orthogonal or unitary matrix Q, an m×n
upper triangular matrix R with nonnegative nonincreasing diagonal elements,
and an n×n permutation matrix P such that

A P = Q R (B.2.8)

To be more precise, let r := rankA; matrix R has the form

R =

[

R11 R12

O O

]

(B.2.9)

where R11 is r× r upper triangular with positive nonincreasing diagonal ele-
ments.

Proof. By applying the Gram-Schmidt algorithm, determine an m× r matrix
Q1, an r× r matrix R11, and a permutation matrix P such that columns of
Q1R11 are equal to the first r columns of AP . Let [M1 M2] := AP , with M1, M2

respectively m× r and m× (n− r). Thus, Q1R1 =M1. Since columns of M2

are linear combinations of those of M1, hence of Q1, a matrix R12 exists such
that M2 = Q1R12, or R12 =QT

1 M2 (R12 =Q∗
1M2). Then determine Q2 such that

Q := [Q1 Q2] is orthogonal or unitary. It follows that

A P = [M1 M2] = [Q1 Q2]

[

R11 R12

O O

]

� (B.2.10)

The extended QR factorization solves the following standard computations
of matrix analysis, related to numerical handling of subspaces.

Rank and Nullity. The rank of A, ρ(A), is equal to r, the number of nonzero
diagonal elements of R and the nullity of A, ν(A), is equal to n− r.

Image. A basis matrix for imA is Q1, formed by the first r columns of Q.

Kernel. A basis matrix for kerA is

P

[

−R−1
11 R12

In−r

]

as can easily be checked by using (B.2.10).

Inverse. If A is square nonsingular, its inverse is

P R−1 QT (P R−1 Q∗)

Note that, R being upper triangular, its inverse is easily computed by means
of relations dual to (B.1.5), reported herein for the sake of completeness. Let
U := R−1: then

uii =
1

rii
(i = 1, . . . , n)

uij = −uii

∑j
k=i+1 rikukj (i =n− 1, . . . , 1 ; j = n, . . . , i +1)

(B.2.11)
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In conclusion, the Gram-Schmidt orthonormalization process when used for
numerical handling of subspaces solves the same problems as the Gauss-Jordan
algorithm. The advantages of the Gauss-Jordan method are simpler and faster
computations and preservation of the span of any subset of the given vectors,
while the advantages of the Gram-Schmidt method are continuous correction of
possible ill-conditioning effects through reorthonormalization of basis matrices
and a more efficient linear independence test.

B.3 The Singular Value Decomposition

The singular value decomposition (SVD) is a very efficient tool to perform
matrix computations and to handle, in particular, singular matrices. The
singular values of a general m×n real or complex matrix A are defined as
the square roots of the eigenvalues of AT A in the real case or A∗A in the
complex case. In the real case they have an interesting geometric meaning,
being the euclidean norms of the principal axes of the ellipsoid in Rm into
which the unitary sphere in Rn is transformed by A. The existence of the SVD
is constructively proved in the following theorem.

Theorem B.3.1 (singular value decomposition) Let A be an m×n real or
complex matrix. There exists an m×m orthogonal or unitary matrix U , an
m×n diagonal matrix S with nonnegative nonincreasing elements, and an n×n
orthogonal or unitary matrix P such that

A = U S V T (A = U S V ∗) (B.3.12)

Proof. Only the real case is considered in the proof since the extension to the
complex case is straightforward. Apply the Schur decomposition to AT A:

AT A = V Σ V T

Since AT A is symmetric semidefinite positive, Σ is diagonal with nonnegative
elements, which can be assumed to be nonincreasing without any loss of gener-
ality: in fact, if not, consider a permutation matrix P such that Σp := P TΣP
has this feature, and redefine V ← V P , Σ ←Σp.

Let r be the number of nonzero elements of Σ: clearly r≤ inf(m, n); denote
by V1 the n× r matrix formed by the first r columns of V and by Σ1 the r× r
diagonal matrix made with the nonzero elements of Σ. Then

AT A = V1 Σ1 V T
1 (B.3.13)

Let S1 :=
√

Σ1 and define the m× r matrix U1 as

U1 := A V1 S−1
1 (B.3.14)

It is easy to check that columns of U1 are an orthogonal set. In fact

UT
1 U1 = S−1

1 V T
1 AT A V1 S−1

1 = Ir
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since, from (B.3.13)
Σ1 = S2

1 = V T
1 AT A V1

The SVD “in reduced form” directly follows from (B.3.14):

A = U1 S1 V T
1

To obtain the standard SVD, let U := [U1 U2], V := [V1 V2], with U2, V2 such
that U, V are orthogonal, and define the m×n matrix S as

S :=

[

S1 O
O O

]

�

All the standard computations of matrix analysis considered in the previous
sections are easily performed with the SVD.

Rank and Nullity. The rank of A, ρ(A), is equal to r (the number of nonzero
elements of S) and the nullity of A, ν(A), is equal to n− r.

Image. A basis matrix for imA is U1, formed by the first r columns of U .

Kernel. A basis matrix for kerA is V2, formed by the last n− r columns of V .

Pseudoinverse. Let A be a general m×n real matrix; then

A+ = V1 S−1
1 UT

1 or A+ = V S+ UT

where S+ is the n×m matrix defined by

S+ :=

[

S−1
1 O
O O

]

In fact, consider relation (A.3.14) and assume X := U1. It follows that

A+ = AT X(XT A AT X)−1XT

= V1 S1 UT
1 U1 (UT

1 U1 S1 V T
1 V1 S1 S1 UT

1 U1)
−1 UT

1

= V1 S1 S−2
1 UT

1 = V1 S−1
1 UT

1

Condition number. Let A be an n×n real or complex matrix. The condition
number of A is a “demerit figure” about the nonsingularity of A, and is defined
as the ratio s1/sn (the greatest over the smallest singular value of A). It ranges
from one to infinity: it is very high when A is badly conditioned, infinity if it
is singular, and one for orthogonal and unitary matrices.

B.4 Computational Support with Matlab

This section reports the lists of Matlab3 subroutines (m-files) for the most com-
mon computational problems of the geometric approach, based on the extended

3 Matlab is a package known worldwide for matrix computations developed by The Math-
Works Inc., 21 Eliot Street, South Natick, MA 01760.
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QR decomposition. The first and second of them (ima and ortco) are the ba-
sic tools: they provide respectively orthonormal bases for imA and (imA)⊥. A
flag is provided in ima in order to avoid random permutation of already com-
puted orthonormal vectors when it is used in recursion algorithms. The sub-
routines require both the general “\matlab” and the specific “\matlab\control”
computational environment and may be located in the special subdirectory
“\matlab\ga”. A comment at the beginning of each routine briefly explains its
aim and features: it can be displayed by means of Matlab’s “help” command.
The basic geometric approach routines are:

Q = ima(A,p) Orthonormalization.
Q = ortco(A) Complementary orthogonalization.
Q = sums(A,B) Sum of subspaces.
Q = ints(A,B) Intersection of subspaces.
Q = invt(A,X) Inverse transform of a subspace.
Q = ker(A) Kernel of a matrix.
Q = mininv(A,B) Minimal A-invariant containing imB.
Q = maxinv(A,X) Maximal A-invariant contained in imX.
[P,Q] = stabi(A,X) Matrices for the internal and external stability of the
A-invariant imX.
Q = miinco(A,C,X) Minimal (A, C)-conditioned invariant containing imX.
Q = mainco(A,B,X) Maximal (A, B)-controlled invariant contained in imX.
[P,Q] = stabv(A,B,X) Matrices for the internal and external stabilizability
of the (A, B)-controlled invariant imX.
F = effe(A,B,X) State feedback matrix such that the (A, B)-controlled
invariant imX is an (A +BF )-invariant.
F = effest(A,B,X,Pv,Pe) State feedback matrix such that the (A, B)-
controlled invariant imX is an (A +BF )-invariant and all the assignable
eigenvalues are set to arbitrary values.
z = gazero(A,B,C,[D]) Invariant zeros of (A, B, C) or (A, B, C, D).
z = reldeg(A,B,C,[D]) Relative degree of (A, B, C) or (A, B, C, D).
Q = miincos(A,C,B,D) Minimal input-containing conditioned invariant of
quadruple (A, B, C, D).
Q = maincos(A,B,C,D) Maximal output-nulling controlled invariant of
quadruple (A, B, C, D).
z = robcoin(A,B,E) Maximal robust controlled invariant.

The above Matlab functions are freely dowwnloadable from the web site:

http://www.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm
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accessible disturbance 295
localization by dynamic feed-

back 295
accumulation point 417
adjacency matrix 354
adjoint map 382
adjoint system 60, 62, 178
adjoint variable 178
algebraic

feedback 167
Riccati equation 190

algorithm
for state feedback matrix 205
for the maximal controlled in-

variant 204
for the maximal robust con-

trolled invariant 339
for the minimal conditioned in-

variant 203
for the minimal robust self-

bounded controlled invari-
ant 342

asymptotic estimation in presence of
disturbances 222

asymptotic estimator
unknown-input, non-purely dy-

namic 223
unknown-input, purely dynamic

223, 239
asymptotic observer 163
asymptotic stability of linear sys-

tems 101
automaton 35
automorphism 375
autonomous regulator 312

backward rectangular approxima-
tion 88

Banach space 418
basis 368
basis matrix 112, 374
BIBO stability of linear systems 103
BIBS stability of linear systems 102
binary powering method 73
binary relation 353
block-companion form 96, 162
blocking structure 235
blocking zero 235
bound in magnitude 171
boundary of a set 417
boundary point 417
branch 26, 354

canonical forms
MIMO 150
SISO 145
relative to input 145, 155
relative to output 147, 155

canonical projection 372
canonical realizations 145
cascade connection 28
Cauchy sequence 418
causality 15
cause 2
Cayley-Hamilton theorem 401
change of basis 128
characteristic

equation 388
polynomial 388
value 388
vector 388

class 349
closed half-space 173
closed set 417
closed sphere 416
closure of a set 417

439
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codomain of a relation 353
cofactor 378
companion form 147
compensator

dual observer-based 283
full-order 283
full-order, dual observer-based

285
full-order, observer-based 284
observed-based 283
reduced-order 292
reduced-order, dual observer-

based 293
reduced-order, observer-based

293
complement

of a set 350
of an invariant 132

complementability of an invariant
132

complete space 418
completely controllable system 120
completely observable system 122
component 368
composition 15

of two relations 353
concave function 175
condition number 436
conditioned invariant 199

complementable 217
input-containing 241
maximal self-hidden 210
self-hidden 209

cone 175
connection

closed-loop 34
feedback 34
feedforward 32
open-loop 32

consistency 15
continouos systems 87
continuous map 418
control

between two given states 23, 41,

114
closed-loop 34
error 34
feedback 282
feedforward 283
for a given output function 24
for a given output sequence 42
input synthesis 42
open-loop 32
optimal 34
self-tuning 35
to a given output 24, 42
to the origin from a known ini-

tial state 170
to the origin from an unknown

initial state 170
tracking 34

controllability 20, 137
after sampling 144
canonical form 145
canonical realization 147
index 151
of linear discrete systems 117,

122
referring to the Jordan form 143
set 120
subspace 120

controllable pair 120
controllable set 21

to the origin 111
controlled invariant 199

complementable 217
externally stabilizable 213
internally stabilizable 211
minimal self-bounded 207
output-nulling 241
self-bounded 206

controlled output 307
controlled system 247
controller 31, 247

canonical form 146
canonical realization 148

convex function 175
convex set 173
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convolution integral 78
correspondence table 355
cost 171
cover 53
cyclic eigenspace 402
cyclic invariant subspace 399
cyclic map 145

De Morgan 352
detectability 160
diagnosis 23, 24, 46
diagonal form 389
differentiators 225
dimension of a convex set 174
dimension of a vector space 369
Dirac impulse 78
directionally convex set 181
discrete systems 87
disturbance 3, 33, 247
disturbance input 307
disturbance localization

by dynamic compensator 267
with d unaccessible 218, 238
with stability 219

divisible polynomials 397
domain of a relation 353
dual observer 168
dual-lattices 260
dynamic feedback 167
dynamic precompensator 168

edge 354
effect 2
eigenspace 400
eigenvalue 388
eigenvalues of hermitian matrices

407
eigenvalues of symmetric matrices

407
eigenvector 388

generalized 402
electric circuit 3
electric motor 5
elementary divisor 402
empty set 350

environment 2
equilibrium point 18
equilibrium state 18

temporary 18
equivalence

classes 359
partition 44
relation 357

equivalent norms 417
error variable 307
estimate error 164
euclidean norm 381
euclidean process 397
event 15
exogenous modes 82
exogenous variable 3
exosystem 82, 248
experiment

adaptive 47, 49
multiple 47
preset 47, 49
simple 47

extended plant 269, 308, 314
extended state 82
extended system 314
extension axiom 349

feedback 155
connection 29

field 363
final state set 171
finite-state

set 171
machine 35
system 35

first-order hold approximation 88
five-map system 247
forced motion 20
forced response 20
forcing action 133

subspace 120
forward rectangular approximation

88
four-map system (A, B, C, D) 133
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Francis robust synthesis algorithm
332

free motion 20
free response 20
frequency response generalized 233
Frobenius norm 415
function 354

admissible 11
composed 356
of a matrix 62
table 355
value 354

functional controllability 230
functional controller stable 232
fundamental lattices 260
fundamental lemma of the geometric

approach 134
fundamental sequence 418
fundamental theorem on the au-

tonomous regulator 317

gain 26
constant 337

Gauss-Jordan elimination method
427

generalized frequency response of
the output 234

generalized frequency response of
the state 234

generating vector 145
Gram-Schmidt orthonormalization

process 431
Gramian matrix 112
graph 354

oriented 354
greatest common divisor 397

Hamiltonian function 178
Hamiltonian matrix 190
Hamiltonian system 178
Hasse diagram 360
Hilbert space 418
hold device 29, 87
Hölder inequalities 413
homing 24, 49

hyperplane 173
hyper-robust regulation 340, 345
hyper-robustness 338

identifiability analysis 32
identificatyion 33
identity function 370
identity observer 164
identity relation 353
image of a function 355
image of a set in a function 355
image 354, 370
impulse response 78

of a discrete-time system 79
inaccessible states subspace 122
induced map on a quotient space 131
infimum 362
informative output 34, 247, 307
initial state set 171
injection 355
inner product 380

space 380
input 2
input distribution matrix 133
input function set 10
input function 3
input set 10
input signal 3
input structural indices 151
input-output model 79
input-output representation 89

of a continuous-time system 89
of a discrete-time system 90

input-state-output model 79
integral depending on a parameter 4
integrator 98
interconnected systems 24
interior of a set 417
interior point 417
internal model 283

principle 309, 321
internal modes 82
interpolating polynomial method 63,

68, 74
intersection 350
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in the extended state space 252
of two controlled invariants 203
of two self-bounded controlled

invariants 207
of two subspaces 126, 128

invariant 128, 372
complementable 132
externally stable 135
internally stable 135
zero structure 233

invariant zeros 92, 230, 232, 285
inverse image of a set 356
inverse linear transformation of a

subspace 126, 128
inverse map 355
inverse of a relation 353
inverse system 231

stable 231
invertibility 230

zero-state, unknown-input 226
invertible function 355
IO model 79
IO representation 89
ISO model 79
isochronous surface 183
isocost hyperplane 187
isolated point 417
isomorphism 370

Jordan form 65, 67, 73, 392, 401
Jordan realization 96

Kalman canonical decomposition
138

regulator 188
kernel 371

of a convolution integral 78
Kleinman algorithm 192

lattice 361
distributive 362
of invariants 129
of self-bounded controlled in-

variants 207
Liapunov equation 107
Liapunov function 107

limit of a sequence 417
limit point 417
line segment 173
linear combination 367
linear dependence 367
linear function 370
linear independence 367
linear manifold 367
linear map 370
linear transformation 370

of a subspace 125, 127
linear variety 173, 367
Lipschitz condition 421
loop 27
LQR problem 188
LU factorization 430

main basis 368
Maclaurin expansion 65
manipulable input 33, 247, 307
map 354
Mason formula 27
mathematical model 1
matrix

adjoint 378
column 376
complex 376
conjugate transpose 377
diagonalizable 389
exponential integral 81, 84
exponential 66
hermitian 377
idempotent 377
identity 377
inverse 377
invertible 377
left-invertible 387
nilpotent 377
nonsingular 378
null 377
orthogonal 382
partitioned 379
pseudoinverse 385
real 376
right-invertible 387
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row 376
singular 378
square 376
stable 134
symmetric 377
transpose 377
unitary 382

maximal (A,B)-controlled invariant
contained in E 201

maximal A-invariant contained in C
130

maximum condition 178
Mealy model 36
measurable attribute 1
memory of a finite-state system 52
metric 410
metric space 410
minimal (A, C)-conditioned invari-

ant containing D 201
minimal A-invariant containing B

129
minimal polynomial 399
minimal realization 139
minimal realization 94
minimal-dimension resolvent 318
minimal-order robust synthesis algo-

rithm 336
minimum-energy control 184
minimum-phase system 310
minimum-time control 183
model 163
model-following control 297
modeling 32
modes 69, 75
Moore model 36
motion 15

analysis 32

next-state function 10, 11
Newton formulae 405
nilpotent canonical form 392
node 26, 354

dependent 26
independent 26
input 26

noninteracting controller 298
nonmanipulable input 33, 247
nontouching loops 27
nontouching paths 27
norm 411
norm of a linear map 414
norm of a matrix 414
normed space 411
null space 371
nullity 371

observability 22, 137
after sampling 144
analysis 32
canonical form 147
canonical realization 148
index 155
of linear discrete systems 117,

122
referring to the Jordan form 143

observable pair 122
observation 33

problem 48
of the initial state 116

observer
canonical form 147
canonical realization 148
reduced-order 290

open set 417
open sphere 416
operations on subspaces 125
operations with sets 351
operator 354
order of an input-output representa-

tion 89
ordered pair 352
oriented branch 26
orthogonal complement 383

of a subspace 127
orthogonal complementation of a

subspace 126
orthogonal projection 384
orthogonal projection matrix 384,

385
orthogonal projection theorem 385
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orthogonal vectors 381
orthonormal set 381
output 2, 33

distribution matrix 133
dynamic feedback 168
function 3, 4, 10, 11
injection 155
map 11
set 11
signal 3
structural indices 155
table 37
trajectory 17

overall system 308, 313

p-norm 413
pairwise diagnosis experiment 45
parallel connection 28
parallel realization 100, 140
partial ordering 359
partialization 49
partition 358

maximal 362
minimal 362

path 27, 360
Peano-Baker sequence 60
Peano-Picard successive approxima-

tions method 422
performance index 33, 171
physical realizability condition 91
plant 248, 314
polar cone of a convex set 175
pole 91

assignment MIMO systems 157
assignment SISO systems 157

polynomial monic 397
polynomials divisible 397
Pontryagin maximum principle 177
power of a matrix 73
product of two relations 353
projection 372
projection in the extended state

space 252
pseudoinverse 385

QR factorization 432
extended 434

quadratic form 408
quadruple 239
quadruple (A, B, C, D) 133
quantizer 29
quotient space 367

range 370
of a relation 353

rank 370
reachable set 20

from the origin 111
in infinite time with bounded en-

ergy 195
in infinite time with bounded

quadratic cost 194
on a given subspace 210
with bounded energy 186

realization problem 94
reconstructability 22

unknown-state, unknown-input
226

zero-state, unknown-input 226
reduction 53
reduction to the minimal form 43
reference input 32, 247, 307
regulated output 34, 247
regulated plant 314
regulation requirement 269
regulator 31

dual observer-based 283
full-order 283
full-order, dual observer-based

285
full-order, observer-based 285
observer-based 283
problem 267
reduced-order 292
reduced-order, dual observer-

based 295
reduced-order, observer-based

294
relative complementability of an in-

variant 137
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relative interior 174
relative stability of an invariant 136
resolvent pair 274
response 3

analysis 32
response function 4, 16, 77

zero-input 20
zero-state 20

restriction of a linear map 131
Riccati equation 190
robust controlled invariant 338
robust regulator 307

synthesis algorithm 327
robust self-bounded controlled in-

variant 341
robustness 281

sampled data 8
sampler 29
scalar product 380
scalar 363
Schur decomposition 110, 391
Schur form 68, 74
Schwarz inequality 412
search for resolvents 262
self-bounded controlled invariants

205
self-loop 27, 357
separation property 167
sequence detector 38
sequence of samples 81
set 349

finite 349
partially-ordered 359

sets
disjoint 350
equal 349

shifted input function 18
signal exogenous 3
signal-flow graph 24
similar matrices 375
similarity transformation 375
singular value decomposition 435
singular values 435
sinusoid 83

Souriau-Leverrier algorithm 404
span 368
spectrum 388
stability 100

analysis 32
BIBO 143
BIBS 141
in the sense of Liapunov 101
of an invariant 134
of linear systems 101
of linear time-invariant discrete

systems 106
requirement 267, 269

stabilizability 159
stabilizing unit 325
state 3, 14
state feedback 155
state observation 24, 46
state observer 51
state reconstruction 24, 49, 50
state set 11, 14
state transition function 4, 15, 76

zero-input 20
zero-state 20

state transition matrix 58, 76
state velocity function 4
state-to-input feedback 155
states equivalent 17, 44
states indistinguishable 17

in k steps 43
steady condition of the state 234
stimulus 3
straight line 173
strict regulator 321
strictly convex function 175
structure requirement 267, 269
submatrix 379
submultiplicative property 414
subset 350
subspace 173, 365
subspaces intersection of 366
subspaces sum of 365
sum of two conditioned invariants

203
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sum of two self-hidden conditioned
invariants 210

sum of two subspaces 125, 127
summing junction 25
superposition of the effects 19
support hyperplane 174
supremum 362
surge tank installation 6
surjection 355
Sylvester criterion 408
Sylvester equation 108, 110, 132
synchronizing event 35
synthesis

of a state observer 32
of an automatic control appara-

tus 32
of an identifier 32
problems 30

system 1
autonomous 3
causal 14
completely observable 23
completely reconstructable 23
connected 22
constant 12
continuous-time 11
discrete-time 8, 11
distributed-parameter 7
dynamic 3
electromechanical 5
finite-dimensional 15
finite-memory 51
finite-state 9, 15
forced 3
free 3
hydraulic 6
in minimal form 17, 44
infinite-dimensional 15
invertibility 226
invertible 226
linear 12
matrix 133
memoryless 2, 11, 36
minimal 17, 44

nonanticipative 14
nonlinear 12
observable by a suitable experi-

ment 23
oriented 2
purely algebraic 2, 11, 36
purely combinatorial 36
purely dynamic 6, 11
reconstructable by a suitable ex-

periment 23
sampled data 8
theory 2
time-invariant 12
time-varying 12
with memory 3
equivalent 18

test signal 312
three-map system (A, B, C) 133
time orientation 15
time-invariant LQR problem 189
time set 10
time-shifting of causes and effects 18
trace 59, 377
trajectory 15
transfer function 90
transfer matrix 91
transformation 354
transient condition of the state 234
transition graph 37
transition table 37
transmission zeros 232
trasmittance 26

of a loop 27
of a path 27

trapezoidal approximation 88
triangle inequality 414
triple (A, B, C) 133
two-point boundary value problem

183

unaccessible disturbance 295
unassignable external eigenvalues of

a conditioned invariant 215
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unassignable internal eigenvalues of
a controlled invariant 212

uncertainty domain 307
union 350
unit delay 36, 98
unit ramp 83
unit step 83
universal bound 362
unobservability set 122
unobservability subspace 122, 226
unreconstructability subspace 226
upper-triangular form 391

value admissible 11
variable 2

exogenous 3
manipulable 3
nonmanipulable 3

vector 364
vector space 364
Venn diagrams 350
vertex 354
vertex of a cone 175

zero 91
zero assignment 243
zero-order hold approximation 88


