
Controlled and cooperative updates of

XML documents in byzantine and failure

prone distributed systems

GIOVANNI MELLA

University of Milano,

Graal Informatica S.p.a.

ELENA FERRARI

University of Insubria

and

ELISA BERTINO and YUNHUA KOGLIN

Purdue University

This paper proposes an infrastructure and related algorithms for the controlled and cooperative
updates of XML documents. Key components of the proposed system are a set of XML-based
languages for specifying access control policies and the path that the document must follow during
its update. Such path can be fully specified before the update process begins or can be dynam-
ically modified by properly authorized subjects while being transmitted. Our approach is fully
distributed in that each party involved in the process can verify the correctness of the operations
performed till that point on the document without relying on a central authority. More impor-
tantly, the recovery procedure also does not need the participation of a central authority. Our
approach is based on the use of some special control information that is transmitted together
with the document and a suite of protocols. We formally specify the organization of such control
information and the protocols. We also analyze security and complexity of the proposed protocols.

Categories and Subject Descriptors: C.2.4 [Communication Networks]: Distributed appli-
cations; D.4.6 [Operating Systems]: Security and Protection—access control, authentication;
H.2.7 [Database Management]: Database Administration—security, integrity, and protection

General Terms: Access control, Management, Reliability, Security

Additional Key Words and Phrases: Byzantine problem, distributed systems, languages, updates,
XML documents

Author’s address: G. Mella, University of Milano, Graal Informatica S.p.a., Italy, email:
giovanni mella@jumpy.it; E. Ferrari, Dipartimento di Scienze della Cultura, Politiche e

dell’Informazione, University of Insubria, Como, Italy; email: elena.ferrari@uninsubria.it;
E. Bertino, CERIAS and Computer Science Department, Purdue University, USA, email:
bertino@cerias.purdue.edu; Y. Koglin, Computer Science Department, Purdue University, USA,
email: luy@cs.purdue.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0000-0000/2005/0000-0001 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005, Pages 1–32.

2 · Giovanni Mella et al.

1. INTRODUCTION

The Internet and the development of peer-to-peer systems and standard for work-
flow languages have made possible a wide spectrum of distributed cooperative ap-
plications in several areas, such as collaborative e-commerce [Thuraisingham et al.
2002], distance learning, telemedicine, and e-government. A requirement common
to many cooperative application environments is the need for secure document ex-
change. By secure exchange, we mean that document confidentiality and integrity
are ensured when documents flow among different parties within an organization
or within different organizations. Ensuring document confidentiality means that
document contents can only be disclosed to subjects authorized according to access
control policies agreed upon by the various parties. Ensuring document integrity
means that document contents must be correct with respect to a given application
domain and that they may be modified only by authorized subjects. Another key
requirement, besides ensuring document integrity and authenticity, is that docu-
ments be actually transmitted to parties according to a specified order, if required
by the application at hand. By a specified order, we mean that a specification is
associated with the transmitted document stating the order according to which the
document must be received by the involved parties. Such requirement is particu-
larly crucial for novel distributed applications, developed by combining web service
technology and workflow systems.

In this paper, we present an approach to the cooperative updates of XML docu-
ments particularly suited for byzantine and failure prone distributed systems. With
the term byzantine, we mean a party involved in the process that does not obey the
defined protocols. The basic idea is that the document originator (DO), that is,
the subject1 that generates the document to be updated and determines who can
modify it and according to which mode, sends the document to a given subject;
this subject operates on the document and then forwards it to a second subject and
so forth. Upon receiving the document from the DO or from the previous subject
along the path, each subject must be able to modify all and only those portions of
the document for which it has a proper authorization, according to the specified
access control policies. This goal is obtained through two main components. The
first is represented by two high level languages for the specification of flow policies
and flow modification rules, respectively. The language for flow policy specification
allows a subject, referred to as flow policy originator, possibly different from the
DO2, to specify a partial or total path that the document must follow. Further,
such a language allows the flow policy originator to directly specify in a flow pol-
icy whether a receiver can or cannot extend the flow policy. The language for flow
modification is used to specify a set of flow modification rules stating which subjects
can modify which portions of a flow policy and in which mode.

Based on such languages, we develop an enforcement mechanism able to prevent
subjects from executing illegal operations over the flow policies and/or document
contents. The mechanism is fully decentralized in that it does not rely on any
central authority. In particular, a subject knows which privileges it can exercise

1By subject we mean either a human user or a software application.
2For simplicity, in the paper, the DO is the flow policy originator.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 3

and over which portions of a flow policy or an XML document, because it receives
from the originator some certificates attesting the rights it possesses on the flow
policy and/or XML document. Upon a modification to a flow policy or to an
XML document, the subject has to generate some specialized control information
to make it possible for a subsequent subject to check the integrity of a flow policy
and of the corresponding received XML document. Control information together
with its corresponding flow policy form the so-called flow policy attachment (Fpa).
An XML document together with its corresponding control information forms a
document package.

We use XML to model both flow policy attachments and document packages,
according to a syntax we will explain in the paper. We are thus able to uniformly
handle both the XML documents to be protected and the related security and con-
trol information. Moreover, the characteristics of XML make it well suited to model
the semantics associated with such information, thus making data confidentiality
enforcement and data integrity checking more efficient.

The system proposed in this paper considerably extends a preliminary approach
developed by Bertino et al. [Bertino et al. 2005]. Such approach has several limi-
tations. It does not provide the languages for specifying the flow policies and the
flow policy modification rules. Therefore, it does not support dynamic changes to
the flow a document has to follow; this is a serious limitation for applications like
workflow systems which may require the path to be dynamically changed after a
few workflow tasks have been executed. It assumes that the document recovery is
always executed by the DO and does not thus support a distributed recovery. It
does not account for possible byzantine parties. The current approach addresses all
these drawbacks. In particular, here we introduce the possibility of specifying the
path that a document must follow and of modifying it during the update process.
We support such feature through flow paths and related policies for their specifica-
tion and modification. The key feature of the proposed system is that recovery is
fully distributed as the last correct version of a corrupted document is cooperatively
built by a set of subjects, called delegates. There are many situations under which
the DO cannot execute the recovery. For example, if there are separation of duty
policies, the DO may not be allowed to access the document until all modifications
to it have been completed. Furthermore, the current approach does not require
that all delegates be trusted. It may be extremely difficult to require all delegates
trusted, or available throughout the whole update process. Our approach is resilient
to byzantine delegates or to failure prone delegates. A byzantine delegate may not
follow the protocols (for example, it can build an incorrectly recovered document
or avoid sending a response to a request). A failure prone delegate simply is not
able to participate to the distributed protocols and does not execute any activity
until it joins the system again. To the best of our knowledge, the work reported in
this paper is the first to propose such a comprehensive approach to the problem of
cooperative updates of XML documents in byzantine and failure prone distributed
systems.

To summarize, our current approach achieves the following goals: 1) it allows a
subject to view only the document portions for which it has permissions; 2) it allows
an authorized subject to modify both the flow policy and the document content

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

4 · Giovanni Mella et al.

according to the corresponding flow modification rules and access control policies,
respectively; 3) it allows a subject to detect illegal operations executed over the
document content by a single byzantine party or by a set of colluding byzantine
parties; and 4) it supports the detection of illegal operations executed over the flow
policy by a subject and a fully decentralized recovery of corrupted documents.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 introduces a motivating example. Section 4 introduces the lan-
guages used to specify access control and flow policies. Control information used
in our protocols is presented in Section 5, whereas an overview of the approach is
presented in Section 6. Section 7 describes the protocols we have devised for man-
aging the distributed and cooperative update process. Section 8 presents formal
results, whereas 9 deals with recovery. Section 10 evaluates the performance of our
approach. Section 11 concludes the paper and outlines future work. Finally, the
appendix contains a full description of the protocols presented in Sections 7 and 9.

2. RELATED WORK

Several research groups from both academia and industry are currently investigating
problems related to security and XML. An overview of research work and commer-
cial products related to XML security can be found in [Pollmann 1999]. Most of
the proposals deal with confidentiality issues and do not consider the problem of
controlled document updates. Even though we are not aware of other proposals
to which our system can be directly compared, related work includes: proposals
concerning the update of XML documents [Tatarinov et al. 2001; Lim et al. 2003;
Kane et al. 2002]; group communication techniques and the fault tolerance problem
in distributed systems [Vitenberg et al. 1999; Reiter 1996; 1994]; and proposals to
manage the illegal behaviour of byzantine subjects [Lamport et al. 1982; Malkhi
and Reiter 1997; Malkhi et al. 1999; Malkhi et al. 2001a; Malkhi et al. 2001b].
In general, approaches dealing with updates of XML documents do not consider
security issues [Tatarinov et al. 2001; Kane et al. 2002], or rely on centralized ap-
proaches [Lim et al. 2003]. Therefore, they are not suitable for highly decentralized
environments, as the ones considered in this paper.

The distributed nature of the collaborative update of XML documents presented
in this paper implies, as a requirement, the use of group communication techniques.
A survey on these techniques are given in [Vitenberg et al. 1999]. Our protocols
take into account the fault tolerance problem inherent in the asynchronous and
failure-prone nature of distributed systems. Our design has been heavily influenced
by protocols proposed in [Reiter 1996; 1994]. The main difference between the
previous approaches [Vitenberg et al. 1999; Reiter 1996; 1994] and our is that these
approaches are based on the notion of views of a communicating group, according
to which messages must be exchanged only between members of the current view.
Thus, the communication is stopped whenever the view changes because of the
insertion of a new member or the exit of a current one. To overcome this limitation,
we adopt a different group management approach which requires to consider, at each
instant the initial entire communicating group chosen by the DO.

Another feature of our protocols is that they provide methods to mitigate mali-
cious behaviors of a limited number of byzantines. The byzantine problem has been

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 5

extensively investigated [Lamport et al. 1982; Malkhi and Reiter 1997; Malkhi et al.
1999; Malkhi et al. 2001a; Malkhi et al. 2001b]. Most of the approaches are based on
the specification of conditions according to which it is possible to detect malicious
behaviors of byzantines and to continue without affecting the global computation.
We borrow from the above mentioned proposals the idea of adding a number of
redundant subjects in a communicating group in order to prevent the supposed
number of byzantine subjects in the group from affecting the communication pro-
tocol with their behaviour. Moreover, we borrow the idea that when dealing with
a set of entities containing some byzantine ones, each entity must receive a number
of messages determined according to the estimated number of byzantines, to allow
the protocols to correctly progress.

3. MOTIVATING EXAMPLE

In this section, we provide an example that motivates the need for our infrastruc-
ture, cast in the domain of pharmaceutical surveys. In such surveys, doctors from
different hospitals are asked to give feedback on several drugs used for common
diseases. These drugs are manufactured by different companies. As the survey re-
sults will be made public later, these companies would like to see that the feedback
favors their drugs.

Participating hospitals are chosen based on an agreement with these compa-
nies. The survey document should be circulated among each of the participating
hospitals. The order of circulation is fixed before the survey starts. Doctors of
a participating hospital will answer the questions asked in the survey document
when they receive it. Doctors may also extend the circulation path by adding their
nurses, who may update certain sub-sections of the survey for their doctors. Nurses
however are not permitted to alter other sub-sections. Only doctors are allowed to
extend the circulation path; nurses should not do so.

In order to ensure that the survey is processed correctly, parties such as public
notaries are required. These parties are chosen based on the agreement with the
companies. If the survey document is corrupted by a malicious participant (for
example, in order to favor a certain company, a doctor/nurse may overwrite in-
formation on the survey without authorization), the notaries are responsible for
recovering the uncorrupted document. We would like to choose the fewest number
of notaries possible. However, it is extremely difficult to make all companies to
believe that one trusted notary exists which will execute the recovery correctly. In
fact, it is possible for a notary to damage the integrity of the survey quite easily.
For example, if a doctor extends the document circulation path by letting his nurse
fill in parts of it, and if the nurse fills information which does not favor a particu-
lar company which patronizes the notary, the notary could delete the information
filled by the nurse, as if the doctor did not extend the survey path. Therefore, it is
difficult to have a single trusted notary. However, among a number of notaries, we
could be confident that a certain number of them would be honest. For example,
assume that 80% of the time, any given notary behaves honestly. With 10 notaries
public, we expect 8 of them will behave honestly, even though at the beginning of
the survey, we are not sure which ones are honest. Also, in reality, some notaries
may not always be available for monitoring the process due to circumstances be-

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

6 · Giovanni Mella et al.

<Survey name = "Survey.xml" note="Drug Effects">
<Medicine name = "M1" company = "C1">

<Doctor name = "Tony" hospital = "H1">
<Positive> fill in <\Positive>

<Negative> fill in <\Negative>
<Num_of_use> N/A <\Num_of_use>
<Overall rate = ".." recommend=".."/>

<\Doctor>
<Doctor name = "Don" hospital = "H2">

....
<\Doctor>

...
<\Medicine>
<Medicine name = "M2" company = "C2">

....
<\Medicine>

....
<\Survey>

Fig. 1. An example of XML document

yond their control. Waiting until every notary becomes available may delay the
time for completing the survey, which in turn may delay the involved companies
from executing business operations which depends on the result of such surveys
(e.g., advertising campaigns).

Another concern is to ensure that the survey is unbiased. Doctors or nurses
may be influenced by the answers filled in by people from different hospitals. Thus
information provided by doctors or nurses of different hospitals should be kept
confidential. Additionally, a doctor or nurse may fill in some information that
violates the security and privacy policies of their hospital. Therefore, after they
finish answering the survey, the administrative staff of the hospital should check if
there are any such violations. If so, they should be able to remove them. However,
administrative staff should not access information provided by other hospitals.

4. SPECIFICATION LANGUAGES

Before presenting the specification languages we have developed to support the col-
laborative and distributed updates of XML document, we first describe the example
survey document that will be used throughout the paper.

Example 4.1. The survey document (Figure 1) is for drug effects. For simplicity,
the survey concerns drugs M1 to M10 which are manufactured by drug companies
C1 to C10, respectively. The subjects who update this document are doctors from
hospitals H1 to H50. The doctors should give the positive and negative effects for
each drug, the number of times they prescribed it, and the overall efficacy rating
of the drug. Doctors may also extend the document flow path by permitting their
nurses to update the document.

Access control policies are encoded using the X -sec language [Bertino et al. 2001].
The term Policy Base (PB) denotes the XML file encoding access control policies
that apply to the DO’s XML documents.3 The Policy Base is specified according
to the X -Sec Policy Base template shown in Figure 2(a). Note that currently, our

3We assume that each policy is uniquely identified by an identifier, generated by the system when
the policy is specified.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 7

<!DOCTYPE policy base[
<!ELEMENT policy base

(policy spec*)>
<!ELEMENT policy spec

EMPTY>
<!ATTLIST policy spec

pid ID
cred expr CDATA

#REQUIRED

target CDATA #REQUIRED
path CDATA #IMPLIED

priv (update attr
| delete attr
| delete elemt

| view
| navigate
| browse all)

#REQUIRED

prop (CASCADE
| FIRST LEVEL
| NO PROP)

#REQUIRED>
]>

(a)

<policy base>
<policy spec pid=‘P1’ cred expr=‘//Type[@Role=‘Admin’ AND

host=‘H1’]’
target=‘Survey.xml’ path=‘//Doctor[@host=’H1’]’
priv=‘browse all’ prop=‘CASCADE’/ >

<policy spec pid=‘P2’ cred expr=‘//Type[@Role=‘Doctor’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]’
priv=‘update’ prop=‘NO PROP’/ >

<policy spec pid=‘P3’ cred expr=‘//Type[@Role=‘Doctor’ AND
host=‘H2’]’ target=‘Survey.xml’
path=‘//Doctor[@host=‘H2’]’
priv=‘update’ prop=‘CASCADE’/ >

<policy spec pid=‘P4’ cred expr=‘//Type[@Role=‘Nurse’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]’ priv=‘update’
prop=‘CASCADE’/ >

<policy spec pid=‘P5’ cred expr=‘//Type[@Role=‘Admin’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]/Num of use’
priv=‘delete elemt’ prop=‘CASCADE’/ >

...
</policy base>

(b)

Fig. 2. (a) The X -Sec Policy Base template and (b) an example of Policy Base

<H_staff> <H_staff>

<Name> Ann </Name> <Name> Cathy </Name>
<Eid> 112 </Eid> <Eid> 235 </Eid>

<Type Role="Admin" host ="H1"\> <Type Role="Nurse" host = "H2"\>
<\H_staff> <\H_staff>

<H_staff> <H_staff>
<Name> Brian </Name> <Name> Don </Name>
<Eid> 110 </Eid> <Eid> 253 </Eid>

<Type Role="Doctor" host ="H1"\> <Type Role="Doctor" host = "H2"\>
<\H_staff> <\H_staff>

Fig. 3. Examples of X -Sec credentials

Policy Base template does not support add element and add attribute privileges,
because they require a centralized management (cfr. Section 5). We plan to include
them in a future version of our protocols.

Example 4.2. Figure 2(b) shows a PB referring to the XML document in Figure
1. According to the policies in Figure 2(b) administrative employees can browse
all information filled by doctors or nurses of their hospital. They can also delete
information contained in Num of use elements for security reason. A doctor or
nurse can only update information in the section referring to his/her hospital.

Subjects, to which an access control policy applies, are specified by means of
credentials, encoded in XML using X -Sec [Bertino et al. 2001]. Examples of X -Sec
credentials are presented in Figure 3.

A flow policy denotes the sequence of subjects that must receive the document.
This sequence can be fully specified at the beginning of the update process, or
partially specified when the process starts and then modified and extended by
authorized subjects. A flow policy contains some receiver specifications, that is,
properties that have to be verified by the receivers. Each receiver specification

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

8 · Giovanni Mella et al.

<Fpa ...>
<ReceiverSpec Id = "1">

<ReceiverProfile Id="2">
<CredSpec Id = "3">

//Type[@Role="Doctor" AND @host="H1"]
</CredSpec>
<ExtSpec Id="4">subpath</ExtSpec>

</ReceiverProfile>
</ReceiverSpec>

<ReceiverSpec Id = "5">
<ReceiverProfile Id="6">

<CredSpec Id = "7">
//Type[@Role="Admin" AND @host="H1"]

</CredSpec>

<ExtSpec Id="8">nosubpath</ExtSpec>
</ReceiverProfile>

</ReceiverSpec>
</ReceiverSpec>
<ReceiverSpec Id = "9">

<ReceiverProfile Id="10">
<CredSpec Id = "11">

//Type[@Role="Doctor" AND @host="H2"]
</CredSpec>

<ExtSpec Id="12">subpath</ExtSpec>
</ReceiverProfile>

</ReceiverSpec>

...
<\Fpa>

Fig. 4. An example of flow policy

contains one or more alternative receiver profiles. A receiver satisfies a receiver
specification if it satisfies at least one of the receiver profiles contained in that
specification. Receiver profiles consist of a credential expression, that is, a condition
specified against credentials by means of XPath [W3C 1999]. Our flow policy
specification language enables also an originator to grant a receiver the permission
to extend a flow policy by inserting a sub flow policy.

Example 4.3. Figure 4 shows a flow policy associated with the document in
Figure 1. It specifies that the first receiver must be a doctor in hospital ”H1” and
the second receiver must be the administrative employee of ”H1”. Only doctors
can extend the flow policy by inserting a new sub flow policy. Thus, a doctor may
let his/her nurses update the information.

Modifications to flow policies are governed by flow modification rules, which state
which subjects can modify a flow policy. Like credentials and access control policies,
flow modification rules are encoded using X -Sec. We denote with the term Rule
Base (RB) an XML file encoding a set of flow modification rules. This specification
language is very similar to that used to specify access control policies, thus we omit
the formal presentation of such a language.

5. CONTROL INFORMATION

In this section, we introduce the control information needed by subjects to check
document content integrity, and to correctly exercise their modification rights on
the document content. We do not present flow policy control information which is
required to allow delegates to check flow policy attachment integrity and to subjects
to correctly exercise their modification rights on the flow policy, because it is very

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 9

similar to the document control information and its use and modification follow the
same strategy described for document control information.

Before presenting document control information, we have to introduce some pre-
liminary concepts.

5.1 Preliminary Definitions

Our approach to ensure confidentiality is based on encryption techniques. All the
document portions to which the same policies apply are encrypted with the same
encryption key. Each subject that has an authorization over some portions of a
document receives all and only the keys needed to decrypt those portions. Further
details about this encryption method are available in [Bertino and Ferrari 2002].
In particular, the encryption of a document consists of two main phases: the first,
referred to as marking phase, marks all document portions with a label containing a
list of access control policy identifiers, whereas the second, referred to as encryption
phase, encrypts all document portions according to the strategy explained above.

This leads to the definition of document atomic element, which is the basic portion
of an XML document that is individually encrypted.

Definition 5.1. (Document Atomic Element). Let d be an XML document.
The set DocAE(d) of document atomic elements of d is defined as follows: 1) for
each element e in d, and for each attribute4 a in e: e.a ∈ DocAE(d);5 2) for each
element e in d, e.tags ∈ DocAE(d).

Note that the reason why we may encrypt the start and end tag of an element
with a different key wrt the one used for its content and attributes is that we
support attribute-level access control policies. Therefore, elements belonging to
an XML document d result in two or three non-contiguous atomic components in
the encrypted document, depending on their type. By contrast, an attribute always
corresponds to a single atomic element (that is, the attribute name and its value, or
only the value for data content). For this reason, each encrypted document atomic
element docae has associated a position information that specifies where docae’s
components are located in d.

Example 5.2. Examples of atomic elements in the XML document in Figure 1
are:

a) ‘name = ‘D1”: the first attribute of the Doctor element;
b) ‘N/A’: the data content of the Num of use element;
c) ‘<Overall’, ‘/ >’: the two components of the empty-element Overall;
d) ‘<Doctor’, ‘>’, ‘</Doctor>’: the three components of the start and end tag

of Doctor element.

The set of atomic elements encrypted with the same key is called a document
region. We assume that each document region is uniquely identified by an identifier.

The DO of an XML document and/or of a flow policy generates a set of signed
certificates, containing information concerning the privileges a subject can exercise

4For simplicity, we consider the data content associated with an element as an attribute, denoted
as “dc”.
5Here and in what follows we use the dot notation to denote a component of a given structure.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

10 · Giovanni Mella et al.

over the document and/or flow policy, according to its PB andRB. Certificates gen-
erated for XML documents are called document modification certificates, whereas
those for flow policies are called flow policy modification certificates. These certifi-
cates are used by a subject which has modified a document/flow policy portion, to
prove its right of modifying that portion to the subsequent receivers of the package.

We do not provide certifcates for add element and add attribute privileges
because new inserted nodes should be labeled according to the stated DO’s access
control policies, thus requiring an additional centralized marking phase.

Definition 5.3. (Document Modification Certificate). Let d be an XML
document managed by the DO and let PB be its policy base. Let Auth P (d) ⊆
PB be the set of authoring access control policies that apply to d, and let acp
be a policy in Auth P (d). Let Sbj PK(acp) be the set of public keys of subjects
authorized to modify d according to acp. A document modification certificate dmc,
generated according to acp, is a tuple (cert id, doc id, priv, sbj pk, obj, signature),
where: cert id is the certificate identifier that univocally identifies a document
modification certificate among those generated by the DO; doc id is the identifier
of d; priv is the privilege contained in acp; sbj pk ∈ Sbj PK(acp); obj is one or a set
of document regions where sbj has privilege priv over them according to the acp;
signature is the digital signature of DO over the certificate.

Example 5.4. Consider user Ann, an administrator belonging to the hospital H1.
Consider moreover the document in Figure 1 and the access control policies in Fig-
ure 2(b). Furthermore, we assume that: R1 is the identifier of the document region
corresponding to: //Doctor[hospital =‘‘H1"]/Num of use, whereas R2 is the re-
gion containing the document atomic elements corresponding to //Doctor[hospital
=‘‘H1’’]/Positive. Then, (10, Survey, delete attr, PKAnn, R1, signature)6

is a valid certificate. Since according to the DO’s access control policies, Ann is au-
thorized to delete the atomic elements belonging to R1. By contrast, (22, Survey,

delete attr, PKAnn, R2, signature) is not a valid certificate, since Ann can
only view the atomic elements belonging to R2.

We omit the description of the flow policy modification certificates, since they
are very similar to the document modification certificates.

5.2 Document Control Information

The update of the document requires the insertion in the flow policy attachment of
some modification declarations, having the structure reported in Table I. Moreover,
at the end of the document update, sc must insert in the document, for each
modification operation executed on the document, some control information. This
guarantees subsequent receivers that sc possesses the privilege required to execute
that operation, and, in case the privilege is update attr, it must compute a new
signature on the updated content.

Each document atomic element is marked with a label containing the set of
access control policies that apply to it. We can distinguish two main categories
of document atomic elements, according to the privileges of those policies: non-
deletable atomic elements and deletable atomic elements. Since a deletable element

6With the notation PKs we denote the public key associated with subject s.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 11

Table I. Modification declaration structure

Notation Structure Semantics
ReceiverSpec (..., DocDecl, ...) Single receiver specification information

inserted by the corresponding receiver

DocDecl (Doc-UpAttr-Decl, Modification declaration inserted by a
Doc-DelAttr-Decl, receiver when it modifies the document
Doc-DelEl-Decl)

Doc-UpAttr-Decl set of r id document region ids declared as updated

Doc-DelAttr-Decl set of (r id, del-docae) Declaration inserted by the receiver when it
deletes some attributes of region r id

del-docae set of docae id set of document atomic elements (attributes)
declared as deleted by the receiver

Doc-DelEl-Decl set of (doc-root id, del-reg) deletion declaration of some sub-trees
root at doc-root id

del-reg set of r id set of region ids involved in the deletion

Table II. Control data structures for document atomic elements

Name Notation Structure Semantics
Control structure NDAE LIST list of TNDAE , one Control information
for non-deletable for each non-deletable associated with the
document atomic document atomic element non-deletable document
elements of d belonging to a atomic elements of d belonging

particular region r id to a particular region r id

Control tuple for TNDAE (docae id, position, Information corresponding
non-deletable data) to a non deletable
document atomic atomic element docae
element of a document d

Control structure DAE LIST list of TDAE , one Control information
for deletable for each deletable associated with the
document atomic document atomic deletable document atomic
elements element of d belonging to elements of d belonging

a particular region r id to a particular region r id

Control tuple for TDAE (docae id, position, Information corresponding
deletable data, h docae) to a deletable document
document atomic atomic element docae
element of a document d

Table III. Components of the control data structures for document atomic elements
Component Semantics
docae id identifier of the document atomic element docae

position value that specifies where docae’s components are located in the document

data encrypted docae’s content

h docae hash value computed over the data component

requires the computation of additional control information wrt a non-deletable one,
in this way, we can minimize the amount of control information to be computed
and inserted in the document package. Examples of deletable atomic elements
are attributes to which at least an access control policy with the delete attr

privilege applies or attributes and tags to which at least an access control policy
with a delete elemt privilege applies. Table II shows control data structures
associated with both the categories, whereas Table III presents the components of
the structures introduced in Table II.

Similarly, document regions generated by the document marking can be divided

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

12 · Giovanni Mella et al.

Table IV. Control data structures for non-modifiable document regions

Name Notation Structure Semantics
Control structure for NMR list of TNMR, one for Information used by a subject to
non-modifiable each non-modifiable verify integrity of non-modifiable
document regions region of d document regions of d

Control tuple for TNMR (r id, NDAE LIST, Information corresponding
non-modifiable h nmr static) to a specific non-modifiable
document regions document region r id of d

Table V. Components of the control data structures for non-modifiable document regions

Component Semantics
r id identifier of a non-modifiable document region of a document d
h nmr static hash value computed over NDAE LIST

belonging to r id: H(
∑

∗

t∈NMR[r id].NDAE LIST
t.docae id ∗ t.position ∗ t.data)

Table VI. Modifiable region Classification

Sub-category Notation Privileges
Updatable regions UR {update attr}
Partially deletable regions PDR {delete attr}
Fully deletable regions FDR {delete elemt} or {delete elemt delete attr}
Partially deletable and updatable regions PDUR {update attr, delete attr}
Fully deletable and updatable regions FDUR {update attr, delete elemt} or

{update attr, delete elemt delete attr}

in non-modifiable and modifiable regions. A region is non-modifiable if all poli-
cies that apply to it contain only browsing privileges (i.e., view, navigate, and
browse all); a region is modifiable otherwise. Table IV presents the control data
structures for non-modifiable regions, whereas Table V illustrates the semantics
of components presented in Table IV. We use character (∗) to denote the string
concatenation operator, whereas we use the notation (

∑∗
x∈ListX x) to denote the

concatenation of all the elements belonging to ListX , in the order in which they
are listed. Modifiable regions can be further classified into five sub-categories, ac-
cording to the different authoring privileges contained in the access control policies
that apply to them. This distinction is made for efficiency purposes. Indeed, in
this way, we maximize the amount of content statically protected by specific control
information and we also reduce the total amount of control information needed to
make possible to check the integrity of a region, thus reducing the time required
for the integrity check procedure executed by the protocols.

Table VI presents these five sub-categories, giving for each sub-category the cor-
responding authoring privileges. For example, the set of authoring privileges con-
tained in the access control policies that apply to a region classified as PDUR must
be equal to {update attr, delete attr}.

Without lack of generality, in the following we focus only on fully deletable and
updatable regions (FDUR), because they are the modifiable regions on which the
whole set of authoring privileges supported by our model can be exercised. Thus,
they represent the most general and complex modifiable region sub-category. Ac-
cording to this assumption, Table VII presents control data structures for FDUR
regions only, whereas Table VIII presents the components of the introduced data
structures. With reference to Table VIII, the delete elmt cert component contains
the certificates with delete elemt privilege, inserted by subjects when they exercised
their modification rights, that apply to disjoint set of atomic elements, thus defined

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 13

Table VII. Control data structures for modifiable document regions

Name Notation Structure Semantics
Control structure for DMR (UR, PDR, FDR, Information used to
document modifiable PDUR, FDUR, verify correctness of
regions delete elmt cert) document modifiable regions

...

Control structure for FDUR list of TF DUR, one Information used by a
fully deletable and for each fully deletable subject to verify integrity of
updatable regions and updatable region FDUR regions

Control tuple for TF DUR (r id, DAE LIST, Information
fully deletable and h fdur static, sig fdudocae, corresponding to a
updatable regions update cert, specific FDUR

delete attr cert) region r id

Table VIII. Components of the control data structures for FDUR

Component Meaning and formal specification
delete elmt cert it contains non-overlapping authoring certificates, with delete elemt privilege

inserted by the subjects that have executed a deletion over document regions

r id identifier of a modifiable document region

h fdur static hash value computed by DO over docae id, position and h docae of the
document atomic elements that are tags and also over docae id and position
components of the document atomic elements that are attributes listed in

DAE LIST belonging to r id: H((
∑

∗

t∈FDUR[r id].DAE LIST ,type(t)=tags

t.docae id ∗ t.position ∗ t.h docae) ∗ (
∑

∗

t∈FDUR[r id].DAE LIST ,type(t)=attribute

t.docae id∗ t.position))

sig fdudocae digital signature computed over the h docae component of all the
document atomic elements that are attributes listed in DAE LIST
belonging to r id by the last subject (slast) that has modified the region and
whose modification declaration is contained in the receiver specification
identified by the information: (fpa-id, ver, rs-id, orig), where fpa-id is a fpa
identifier, ver is a fpa version, rs-id is a receiver specification identifier and
orig is a fpa originator

Sslast
((

∑
∗

t∈FDUR[r id].DAE LIST ,type(t)=attribute
t.h docae) ∗ fpa-id

∗ ver ∗ rs-id ∗ orig)

update cert it contains the authoring certificate with update attr privilege inserted in a
region r id by the last subject that has updated that region

delete attr cert it contains the authoring certificate with delete attr privilege inserted in a
region r id by the last subject that has deleted at least one attribute of that
region

non-overlapping certificates.
The signature generated by the last subject that has modified the content of

a modifiable region is computed on the components h docae associated with the
atomic elements belonging to that region and not on their content (data compo-
nent). Such signature is used to check the integrity of the region. That is, we
need to check the integrity of the components h docae and then check the corre-
spondence between each h docae component and the corresponding atomic element
content (component data), only for those elements not declared as deleted. The
same must be done for modification operations executed on the flow policy.

6. SYSTEM OVERVIEW

Parties involved in the collaborative update process are: a Cooperative Group,
denoted as CG, a Delegates Group, denoted as DG, and the DO. Subjects belonging
to CG are chosen by the DO at the beginning of the process. They are the only

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

14 · Giovanni Mella et al.

ones that can be chosen to be the receivers of the XML document. CG can contain
an unlimited number of byzantine subjects. DG is a set of subjects also chosen by
the DO at the beginning of the update process. They are responsible for checking
the flow policy integrity (Fpa-Checking) at each step of the process and, whenever
required by a subject in CG, to execute document recovery. The set of delegates
is partitioned into three subsets: the set of byzantine delegates (B, with |B| ≥ 0),
the set of operative delegates (OP , with |OP| ≥ 0), and the set of down delegates
(D, with |D| ≥ 0). More precisely, operative delegates obey the protocol and
are reachable by the subjects, whereas down delegates are unreachable. A down
delegate can become operative again, whereas an operative delegate goes down
whenever a failure occurs. Note that, for each delegate in DG, no one can tell
whether it belongs to B, D, or OP at the beginning of the update.

The DO is the subject which generates the XML document (DocDO) to be up-
dated and the associated flow policy attachment (FpaDO). This subject also spec-
ifies the set of access control policies that apply to DocDO and the set of flow
modification rules that apply to FpaDO. Before the update process starts, the DO
generates and distributes the corresponding document/flow policy modification cer-
tificates and document decryption keys to the proper subjects. Decryption keys are
needed because we use encryption for confidentiality purposes.

After that, the document generated by the DO is sent to a first chosen subject in
CG. Each subject sc (except the first one) in CG verifies the document integrity after
receiving it, according to the control information in the document it received from
the previous subject, and the Fpa it received from the delegates. Whenever an error
occurs to the document content, the subject contacts all delegates in DG to start
a recovery. At the end of this recovery, the subject obtains the last correct version
of the document and can thus update the document according to its modification
rights. During recovery, delegates interact with subjects in CG to obtain the last
correct version of the document and build the recovered document to be sent to
the requester.

After subject sc executes its operations on the document and/or Fpa according
to the privileges it possesses, it inserts certificates which can be verified by the later
subjects. sc then sends the Fpa to DG for Fpa Checking. That is, sc should have
Q signatures from delegates which approve the current version of Fpa (as sc may
modify the Fpa). Before sc sends the document to the next subject, it will make all
operative delegates’ states stable (this is called Change-Delegates-State). That is,
sc will send to all delegates the Fpa which is signed by at least Q delegates. Upon
receiving the message, each operative delegate will forward this message to other
delegates if the message is correct (Fpa is signed by at least Q delegates). Thus,
all operative delegates will have the same Fpa. Also, if sc requested recovery of
the document, it also needs to send the recovered document version which is signed
by at least Q delegates. The purpose of Change-Delegates-State is to ensure that
all operative delegates have the same information. That is, they have the same
Fpa, recovered document version, etc. Finally, sc sends the document to the next
subject according to the flow policy attachment content. All delegates will send
the approved Fpa to the next subject.

After the last subject in the Fpa sends the document to the DO, if the document

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 15

is correct, the DO sends a message to end the process. Otherwise, the DO requests
the DG to recover the document in order to get the last correct version of the
document.

Before describing our protocols in detail, we present our assumptions of the
system and how to set the parameters.

6.1 Assumptions

Our approach relies on a set of assumptions. First, we assume that the DO, each
delegate and each subject involved in the update process possesses a private key
and that all the other parties know or can retrieve the public key of each other.
The DO is in charge of informing, at the beginning, all subjects and delegates of
which users compose CG and DG. Moreover, we assume that there is a finite upper
bound on message transmission time. This means that if an honest party sends a
message to another honest and reachable party, the message is received by a fixed
amount of time (MTTIME). Each sent message is always signed by the sender for
integrity and authentication purposes. To avoid deadlocks caused by the malicious
behaviour of a byzantine subject sc, a Rollback procedure is executed to replace
sc with another subject after a fixed amount of time by the last change of state
executed by an operative delegate.7

6.2 Protocol Parameters Setting

At the beginning of the update process, the DO has to set two parameters: b and
d, that respectively represent the maximum number of byzantine delegates that do
not affect the protocol, and the maximum number of down delegates that do not
delay the protocol. Parameter b may be set by the system with the default vale of 0,
or may be set by the DO. Value d is set as dc · fe, where f is an estimated average
number of failures proposed by the system and c is the correction parameter set by
the DO, the default value of which is 1.

Another important parameter op, which is the number of operative delegates, is
strictly related to Quorum Q, which is the minimum number of delegates required
for making progress. The relationship between op and Q is:

op ≥ Q (constraint 1)
b + (op + d)/2 < Q (constraint 2)

Constraint 1 states that op must be greater than or equal to Q, because in case
byzantine delegates do not answer a request, only operative delegates will be able to
sign a message content for which the protocol requires at least Q valid signatures.

Constraint 2 enforces that a byzantine cannot obtain two sets of valid signatures
of cardinality at least equal to Q for two different messages of the same type, or
for two messages of the same priority, exchanged in the same step, when there is
the maximum number of byzantine delegates and no down delegate.8 The mini-
mum value of op that assures all the above requirements is (2b + d + 1) and the
corresponding value for Q is (2b + d + 1) too.

7In the protocols specified in this paper, we do not address this issue, that it is assumed to be a
parallel process auditing the delegate behaviour and starting its task when needed.
8More details about message types/priorities are presented in Section 7.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

16 · Giovanni Mella et al.

7. DISTRIBUTED AND COOPERATIVE UPDATE PROCESS PROTOCOLS

Our approach relies on a suite of protocols, namely: the protocol executed by
the DO (Document Originator Protocol); the protocol executed by the subjects in
CG (Subject Protocol); the protocol executed by the operative delegates (Delegate
Protocol); and, finally, the protocol executed by the down delegates (Down Delegate
Protocol). In this section we give an high-level description of the protocols, whereas
all the details are contained in the appendix (see Figures 9, 10, 11, and 12). Before
ilustrating the protocols, we explain some terminology and data structures used in
these protocols.

7.1 Terminology and structures

We call Statex
dl the state associated with a delegate dl ∈ OP at step x of the

process. We call step all the operations/interactions executed by a subject sc ∈ CG
and delegates, from the reception of the document and flow policy attachment by
sc, to the delivery of the updated document to the next receiver (snext ∈ CG).
The complete cooperative and distributed update process thus consists of a set
of steps. Statex

dl which is stored in the local storage of dl, contains the following
components that can be possibly updated step by step: a Document (Doc), a flow
policy attachment (Fpa), a structure containing the invalid modification document
declarations (IMDD), a structure used during the recovery that indicates when
the last recovery occurred for each region (LSRR), a vector of progressive numbers
used to protect against replay attacks (NIP , where IP = CG ∪ DG ∪ {DO}). For
a delegate dl ∈ OP , a step x ends and the subsequent one (x + 1) begins when dl
makes Statex+1

dl stable, that is, the values of modifiable information contained in
Statex

dl are replaced with the new ones, according to the information contained in
the last correct message sent by sc to all delegates.

Next, we explain some data structures used by a delegate in more details.

—IMDD (Invalid Modification Document Declarations). This structure contains
invalid declarations inserted during each recovery (see Example 7.1). The seman-
tics of this structure is presented in Table IX. Invalid declarations are stored in
IMDD according to the subject that has inserted them in Fpa, and according
to the type of operation associated with it (update attr/delete attr/delete elmt
privilege). A subject is identified in IMDD through the information that speci-
fies its position in Fpa at the time of insertion of that declaration in Fpa itself.

—LSRR (Last Saved Region Recovery). This structure is used by a delegate during
the recovery. It stores, for each modifiable region, the information that identifies
the subject in Fpa that has generated the last detected as corrupted version
of the document wrt that region. During a recovery, only subjects that have
declared some modifications on a region to be recovered and that appear in
Fpa in a position greater than the one stored in LSRR for that region, will
be contacted to obtain the most recent correct region content. Since previous
recovery has stored the most recent correct region content wrt the declarations
in Fpa inserted by subjects in a position less than that stored in LSRR for that
region, the recovery process will use it to recover the region if it does not receive
a more recent correct region content by the contacted subjects.

—NIP . This structure is a vector of progressive numbers, initially sets to all

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 17

zeros, one for each party involved in the process. It is used to keep track of
the number of steps a subject or the DO has taken part in, and how many
times a delegate has requested information in order to be operative.Whenever
a subject/DO participates in a step, the corresponding progressive number is
increased. The indication of the receiver in the messages sent by a delegate,
together with the insertion of the value stored in NIP , which corresponds to that
receiver, prevents byzantine subjects and/or byzantine delegates from replaying
messages exchanged in a step x during a step y, with y > x.

—state. This variable contains a string which indicates the state in which the
delegate is. For example, the value norec for this variable indicates that the
delegate has not yet requested a recovery or it is completing a step without the
need of a recovery.

—requests. This variable is an integer, indicates the number of processed re-
quests wrt the value of variable state. If no recovery has been requested, variable
requests reaches at most value 1, whereas it reaches value 2 in presence of re-
covery. Variable state and requests are used to avoid replay attacks within the
same step.

—Queue. This structure stores all the received messages. During a generic step x,
a delegate needs a strategy to choose among all the received messages the next
one to process. This strategy is called received messages scheduling policy and it
is applied each time a message has been completely processed or when the time
assigned to a process that processes a message ends. This policy collects among
all the messages in Queue only the messages valid according to Statex, and the
values of the previous introduced variables. Then, it selects from this set the
messages with higher priority and in case of more than one message, the message
received first.

Example 7.1. Suppose that user Don does not extend the survey path to his nurse
Cathy. However, Cathy maliciously modifies the rate attribute filled by Don and
insertes in the document control information and Fpa her modification declarations.
When the document passes to Lynn, who is a member of the administrative staff of
the hospital, she finds the document corrupted. Lynn askes notaries to recover the
correct version of the document. Notaries will recover the document by undoing
Cathy’s modifications, and put Cathy’s modification declarations into IMDD.

The Subject Protocol also makes use of variable state to represent the action the
subject is executing or has just executed. A subject also use a structure NCG which
is similar to NIP , to keep track of the number of steps all subjects have taken part
in. Whenever a subject s sends a message, this message contains the progressive
number associated with s (NCG [s]). This information is used by a receiver to discard
old messages.

Parties involved in a cooperative and distributed update process communicate by
exchanging messages. Table X gives more details about the exchanged messages.
In the table, messages are presented in terms of type, sender, receiver(s), and
their complete structure and semantics. Only messages received by a delegate have
associated a priority. This is because only Down Delegate and Delegate Protocols
use this information to choose the next message to process. Figure 5 shows the

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

18 · Giovanni Mella et al.

Table IX. IMDD’s components

Notation Structure Semantics
IMDD (doc-id, doc-version, doc-orig, structure containing all the invalidate

sbj-inv-decl) declarations inserted in the flow policy

sbj-inv-decl set of (fpa-id, fpa-version, fpa-orig, set of invalid declarations
rs-id, Up-Attr, Del-Attr, Del-Elmt)

Up-Attr set of r-id invalid declaration concerning an update
operation over region r-id

Del-Attr set of r-id invalid declaration concerning a delete
attribute operation over region r-id

Del-Elmt set of doc-root-id invalid declaration concerning a delete
operation over the sub-tree root at
doc-root-id

message exchanged between the involved parties.

7.2 DO Protocol

The DO chooses CG and DG (line 9.10), and distributes to all delegates information
(DocDO , FpaDO, CG, DG) (line 9.12).9 Then, it distributes the decryption keys and
document/flow policy modification certificates (lines 9.13-15) to the corresponding
subjects in CG. Finally, the DO sends to the first subject the DO’s version of
the document to be updated (DocDO) and the DO’s version of the associated flow
policy attachment (FpaDO) (line 9.16).

At the end of update, the DO receives from the last receiver subject (sbj) in Fpa
a message m containing the document (Docsbj) and a message signed by (2b+d+1)
delegates containing Fpa and IMDD (line 9.17). It checks the document integrity
and, if an error occurs, it sends to all delegates an error message for recovery
(line 9.21). Each delegate dl ∈ DG generates a document recovery version by
contacting subjects in CG and then sends a message containing its version to the
DO. The DO accepts the first (b + 1) messages from the delegates (line 9.23)
and then composes them to obtain the last correct document version (line 9.24).10

The original document is thus replaced by this new document (line 9.29). At this
point, the DO sends a message (end, d id) to all delegates and subjects, to end the
cooperative update process concerning document with identifier equal to d id (line
9.28).

7.3 Subject Protocol

When subject sc ∈ CG receives a message m from a subject sbj ∈ CG, and at least
b + 1 messages from different delegates such that the structure of Fpa and IMDD
are all the same from these messages of the delegates (line 10.07), it can check if
m contains a corrupted document according to the received IMDD and Fpa. As
we will see in the delegate protocol, an operative delegate will not send Fpa and
IMDD to a subject unless at least (2b + d + 1) delegates approves this Fpa and
IMDD.

9Here and in the following we reference the lines of the algorithms contained in the Appendix for
those readers interested in the details.
10More details about the recovery functionality are presented in Section 9.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 19

Table X. Messages

P Type Sender Rcvr(s) Content and Semantics
- init-dg DO DG (init-dg, d id, DocDO , FpaDO , CG, DG):

sent by DO to all delegates containing
the original version of the document,
the initial Fpa and the set of delegates
and subjects involved in the process

- init-cg DO CG (init-cg, d id, regkeyss , docmodcerts,
fpmodcerts, CG,DG): sent by DO
to each subject s containing
s’s decryption keys, certificates and the
set of subjects and delegates

0 agreement dl ∈ D DG (agreement): sent by a down delegate to all
delegates to receive information needed to
reach the same state of the operative delegates

- agreement-resp DG dl ∈ D (agreement-resp, history, hpm, agreements,
dl, NIP [dl]) : sent by delegates to a down
delegate containing the history of all previous
steps (history), their last processed message
(hpm), all the received but not still processed
agreement messages (agreements) and
information required to prevent other delegates
to replay this message (a progressive number
and the public key of the down delegate receiver)

1 err sc ∈ DG (err, m, Ssbj(m), MReg, NCG [sc]): sent by the
CG | DO current subject/DO to all delegates when an

error occurs to the document content to
collect (b + 1) recovery versions

- rec DG sc ∈ (rec, IMDDdlc , MReg, Docdlc , sbj, nsbj):
CG | DO sent by delegates to the current subject/DO

containing the result of their recovery: a Doc
and the updated IMDD structure

2 fw-rec sc ∈ CG DG (fw-rec, {m, Sdl(m)}dl∈D): sent by the
current subject to all delegates to receive the
last correct document version wrt its accessible
modifiable regions, obtained unifying the (b + 1)
forwarded recovery versions

- rec-merge DG sc ∈ CG (rec-merge, IMDDdlc , MReg, Docdlc , sbj, nsbj)
sent by delegates to the current subject containing
a Doc and the IMDD structure,
according to the (b + 1) received recoveries

3 new-fpa-nr sc ∈ CG DG (new-fpa-nr,Fpasc
): sent by the current

subject to all delegates to propose a new Fpa,
in absence of recovery

- signed-fpa-nr DG sc ∈ CG (signed-fpa-nr, Fpa): sent by delegates to the
current subject if the proposed Fpa is correct,
in absence of recovery

3 new-fpa-ar sc ∈ CG DG (new-fpa-ar,Fpasc
): sent by the current

subject to all delegates to propose a new Fpa,
after a recovery

- signed-fpa-ar DG sc ∈ CG (signed-fpa-ar, Fpa): sent by delegates to the
current subject if the proposed Fpa is correct,
after a recovery

4 fw-signed-fpa-nr sc ∈ DG (fw-signed-fpa-nr, m, {Sdl(m)}dl∈Q): sent by
CG | DG the current subject to all delegates and then

forwarded by delegates to each other delegate

4 fw-signed-fpa-ar sc ∈ DG (fw-signed-fpa-ar, m, {Sdl(m)}
dl∈Q

, m̂, {Sdl(m̂)}
dl∈Q̂

)

CG | DG sent by the current subject to all delegates and
then forwarded by delegates to each other

5 end DO DG ∪ CG (end, d id): end the update process

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

20 · Giovanni Mella et al.

Recovery sub-phase

(err, Doc, MReg , NCG[sc])

),,,Re,,(sbjdldl nsbjDocgMIMDDrec
cc

))}(,{,(Ddldl mSmrec-fw Î

),,Doc MReg,,IMDDmerge,-rec(
cc

dldl sbjnsbj

sc

dl1

dl2

dl|DG|

...

time

Fpa-Checking sub-phase time

sc

dl1

dl2

dl|DG|

...

),(),(
cc ss Fpa ar-fpa-new| Fpa nr-fpa-new

),(),(
cc ss Fpa ar-fpa-signed| Fpa nr-fpa-signed

Change-Delegates-State sub-phase time

sc

dl1

dl2

dl|DG|

...

))}ˆ({,ˆ,)}({,,(

|))}({,(

ˆQdldlQdldl

Qdldl

mSmmSmarfpasignedfw

mS m, nrfpasignedfw

ÎÎ

Î

))}ˆ({,ˆ,)}({,,(

|))}({,(

ˆQdldlQdldl

Qdldl

mSmmSmarfpasignedfw

mS m, nrfpasignedfw

ÎÎ

Î

Down-Delegate-agreement sub-phase time

dl2

dl|DG|-1

...

dl1

dldown

state down MTTIME (agreement)

(agreement- resp, history, hpm, agreements, dl, N IP[dl])

Fig. 5. messages exchange

If there is no error in m, sc executes the operation on the document (line 10.21).
Otherwise (line 10.09), it sends to all delegates a recovery message (line 10.12) to
obtain the last correct document version wrt the set of regions it can access.

sc accepts the recovery reply messages from (b + 1) delegates (line 10.14) and
then puts these messages in a message m and sends m to all delegates (line 10.16).
Next, sc waits to receive recovery messages from at least (2b+d+1) delegates. The
recovery results from these (2b + d + 1) delegates must be the same (line 10.18).
Then this finishes the recovery and sc can start operations on the correct document

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 21

version.
After executing the operation on the document and/or Fpa (line 10.21-22), sc

has to send its updated Fpa to all delegates in order to be checked and signed
(This is called Fpa Checking). If no recovery has been requested by sc during the
step, sc sends a message (new-fpa-nr,Fpasc

) to all delegates (line 10.25); a message
(new-fpa-ar,Fpasc

) is sent otherwise (line 10.28). sc has to send to each delegate
a message whose type depends on whether it has requested a recovery or not in
the step. A delegate verifies if the updated Fpa is correct, that is, if sc has the
certificates which authorize it to update the Fpa and it inserted these certificates
in the Fpa. If so, the delegate signs the message containing the Fpa and sends it
back.

Example 7.2. When Don extends the flow path by letting his nurse Cathy to
update the survey, he should get enough signatures (at least of Q delegates) by
requesting Fpa Checking for the new proposed flow path. Fpa Checking is also
important to prevent byzantine delegates from damaging the integrity of the up-
dates. As previously mentioned in Section 3, if a byzantine delegate deletes what
Cathy filled in because the information does not favor the drug company he favors,
he must have a message from Don who proposed the flow path without extension.
However, he could not get such message from Don since it contradicts Don opera-
tions.

When sc receives (2b+d+1) such signatures from delegates, it is ready to change
delegate state. That is, before sending the document to the next subject, sc has
to notify all delegates the document recovery version and corresponding IMDD
structure generated during the recovery, if any, and the correct Fpa proposed. sc

does this by sending a message m̃ to all delegate. If no recovery happened in the
step, m̃ is of type fw-signed-fpa-nr (line 10.31) and it contains the new Fpa and
(2b+d+1) signatures of it from delegates. Otherwise, m̃ is of type of fw-signed-fpa-
ar (line 10.37) and it contains: 1) message m of type fw-signed-fpa-ar (line 10.35)
containing the new Fpa; 2) (2b + d + 1) delegate signatures on m; 3) message m̂
of type rec-merge containing the document recovery version and associated IMDD
structure; 4) (2b + d + 1) delegate signatures computed on m̂.

After sc sends m̃, it sends the document to the next subject according to the
Fpa (line 10.40-43). sc needs to wait until receiving a message from the DO (line
10.44) indicating that the update process ends. Before the update process end,
some delegates may contact sc for recovering the document.

As we will see in the delegate protocol, a subject cannot generate a valid message
of type fw-signed-fpa-nr and another valid message of type fw-signed-fpa-ar in the
same step, because the protocols prevent this subject from collecting Q signatures
for a message of type new-fpa-nr and Q signatures for a message of type new-fpa-
ar. Indeed, in the same step, a delegate does not accept messages with the same
priority.

Example 7.3. After Don extends the path and gets Fpa Checking, the document
is passed to Cathy. Cathy fills in parts of the survey, according to the specified
access control policies. Later, a byzantine delegate cannot undo Cathy’s update,
even by colluding with Don, since at least Q delegates should sign Fpa when Don

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

22 · Giovanni Mella et al.

first proposed it. Don cannot get Q delegates to sign a different Fpa indicating
that he did not extend the path, since an operative delegate does not sign different
messages of the same priority (in this case, two different Fpas) in one step.

7.4 Delegate Protocol

The initial state of a delegate is norec. When an operative delegate receives a
message of type agreement from a down delegate (line 11.06), it replies with a
response message m̃ which contains the information from which the down delegate
can reach the same state of the operative delegates (see Section 7.5).

If a delegate dl receives a recovery message (line 11.11) from sbj who is in CG,
dl checks the following before doing any recovery: 1) according to the Fpa stored
in the current state, sbj should be the subject doing the update process now. As
we will show later, all operative delegates always have the same and correct Fpa at
each step, due to the State consistancy; 2) the request associated with the current
step is 0; 3) current state variable is norec; 4) the document contained in the
recovery message is signed by a previous subject who is before sbj in the Fpa; 5)
this is not a replay attack, according to the information stored in NIP . If there is
any error, dl just ignores the message. Otherwise, it generates a document recovery
version and the corresponding IMDD updated structure by contacting subjects in
CG and then sends to sbj a message containing the generated information.

If dl receives from sbj a message m of type fw-rec (line 11.16), it will check
the following: 1) variable state is rec; 2) sbj ∈ CG; 3) variable requests is 0; 4)
according to the Fpa, sbj is the current subject who is updating the document;
5) there are (b + 1) recovery messages signed by different delegates. If there is no
error, dl sets requests = 1 and m as the hpm; then it generates a merge version of
Doc and IMDD (line 11.18) and sends it to sbj (line 11.20).

When dl receives a message m from sbj ∈ CG for Fpa Checking (line 11.21 for
no recovery situation and line 11.26 for recovery situation), it checks the following.
If the message m is of type new-fpa-nr, state variable must be norec and requests
must be equal to 0, as this is the first request from sbj in this step. If the message
m is of type new-fpa-ar, state variable must be rec and requests must be equal to 1.
Also, from the Fpa stored in dl’s State, sbj should be the current subject requesting
for Fpa Checking. If all above are satisfied, dl increases the variable requests by 1
and set m as the hpm. dl then checks the integrity of the proposed Fpa from sbj.
If no error in the proposed Fpa, dl sends a signed message of type signed-fpa-nr
(line 11.24) or type signed-fpa-nr (line 11.29) to sbj, depending whether a recovery
happened or not in this step.

When dl receives a message m of type fw-signed-fpa-nr or fw-signed-fpa-ar from
sbj for commit the step (line 11.31), it checks the following. 1) In the case that
m is of type fw-signed-fpa-nr, them m must contain a message m of type signed-
fpa-nr and (2b + d + 1) delegate signatures on m. This indicates that at least
(2b+d+1) delegates agree with the Fpa proposed in m. 2) In the case that m is of
type fw-signed-fpa-ar, them m must contain a message m of type signed-fpa-ar and
(2b + d + 1) delegate signatures on m. Also, m must contain a message m̃ of type
rec-merge which contains a recovered version of document and the corresponding
IMDD, and (2b + d + 1) delegate signatures on m̃. If the above are satisfied and
the message is not a replay attack according to the information stored in NIP , dl

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 23

updates the components of State (line 11.32), that is, it sets the variable state as
norec, requests = 0, hpm = m and puts m into history. dl also sends the received
message m to other delegates (line 11.33), in case sbj did not send m to them. So
all the operative delegates will have the same state. That is, in case m of type
fw-signed-fpa-ar, all operative delegates set components of their State, such as the
current document version, IMDD, LSRR etc. according to the one contained in
m̃. dl thus finishes a step, and State is stable. It then sends a message containing
Fpa and IMDD to the next subject in the path (line 11.39).

The designed protocols assure that each operative delegate signs only once such
information at each step, thus preventing byzantine subjects from obtaining two
different contents signed by at least Q distinct delegates and forcing different
delegates, such as dli, dlj ∈ OP , to make stable Statex+1

dli
and Statex+1

dlj
with

Statex+1
dli
6= Statex+1

dlj
.

7.5 Down Delegate Protocol

A down delegate dldown that wakes up at time t in step x, waits for a time equal
to MTTIME (line 12.04) before sending a message (agreement) to all delegates.
This allows messages sent before t and not received by dldown to be received by all
operative delegates. This method assures that the lost messages will be inserted in
the responses sent by operative delegates to dldown.

An operative delegate sends a response message m = (agreement-resp, history,
hpm, agreements,dldown, NIP [dldown]), where: history contains all the messages of
type fw-signed-fpa-nr or fw-signed-fpa-ar received by an operative delegate from the
beginning of the process, hpm is the last accepted and processed highest priority
message, agreements contains all the received and not yet processed messages of
type agreement. m.dldown and m.NIP [dldown] are information used to avoid a
replay attack. dldown accepts the first (b + 1) received responses coming exactly
from (b + 1) distinct delegates (line 12.08). After that, dldown processes all valid
messages in the (b + 1) received history components, and makes stable the most
recent state which is the same with at least one delegate whose response has been
accepted by dldown. That is, dldown processes messages of type fw-signed-fpa-nr or
fw-signed-fpa-ar until structure Queue contains no more messages of these types,
making stable in sequence all states made stable by the operative delegates after the
delivery of their responses. Then, dldown processes the message in Queue chosen
according to the received message scheduling policy, here applied with the variant
of no taking into account variables state and requests.

After that, the Down Delegate protocol ends and dldown becomes operative.

8. FORMAL RESULTS

We are now ready to present some formal results regarding our protocols.
The following lemma and the subsequent theorem states that our protocols as-

sure that the state made stable by two different operative delegates is the same,
regardless the malicious behavior of at most b byzantine delegates and the presence
of some down delegates.

Lemma 8.1. (Message Execution Uniqueness) Let dl ∈ OP. The Delegate
and Down Delegate protocols assure the following properties:

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

24 · Giovanni Mella et al.

a) If dl processes a message with priority p in a step x, with x ≥ 0, then in the
same step, it will not process messages with priority less than or equal to p and
type different from agreement;
b) If the following conditions hold: 1) dl processes at a step x, with x ≥ 0, a
message m with content c and priority p, such that m is the highest priority message
processed at step x by dl; 2) after that dl fails; and 3) all operative delegates are at
the same step x, until dl becomes once again operative; then dl will not process, at
step x, messages of type different by agreement with: a) priority less than p or b)
priority equal to p and content different from c.

Proof. (Sketch). a): To prove this property, we analyze all the sub-steps of the
Delegate Protocol and show that after the execution of each sub-step, only higher
priority messages (except agreement messages) are executed. We do not analyze
the sub-step that processes message of type init-dg, because it is executed only once
at step 0 and no more enabled (variable state is always different by value initial).
Neither do we analyze the sub-step that processes message of type end, because it
is executed only once at the end of the update process and it terminates the process
itself.
(sub-step lines 11.06-10): This sub-step processes a message of type agreement
and with priority equal to 0. Since 0 is the lowest priority and messages of type
agreement are the only ones associated with this priority, the property holds.
(sub-step lines 11.11-15): This sub-step processes a message of type err and with
priority equal to 1. Variable state is set to rec and variable request has value 0. En-
abled sub-steps are those that process messages of types and priorities: (agreement,
0), (fw-rec, 2), (fw-signed-fpa-nr, 4), (fw-signed-fpa-ar, 4), and (end, 5). Thus, the
property holds.
(sub-step lines 11.16-20): This sub-step processes a message of type fw-rec and with
priority equal to 2. Variable state has value rec and variable requestes is set to
value 1. Enabled sub-steps are those that process messages of types and priorities:
(agreement, 0), (new-fpa-ar, 3), (fw-signed-fpa-nr, 4), (fw-signed-fpa-ar, 4), and
(end, 5). Thus, the property holds.
(sub-step lines 11.21-25): This sub-step processes a message of type new-fpa-nr and
with priority equal to 3. Variable state has value norec and variable requests is
set to value 1. Enabled sub-steps are those that process messages of types and
priorities: (agreement, 0), (fw-signed-fpa-nr, 4), (fw-signed-fpa-ar, 4), and (end,
5). Thus, the property holds.
(sub-step lines 11.26-30): This sub-step processes a message of type new-fpa-ar and
priority equal to 3. Variable state has value rec and variable requests is set to
value 2. Enabled sub-steps are those that process messages of types and priorities:
(agreement, 0), (fw-signed-fpa-nr, 4), (fw-signed-fpa-ar, 4), and (end, 5). Thus, the
property holds.
(sub-step lines 11.21-25): This sub-step processes messages of type fw-signed-fpa-nr
or fw-signed-fpa-ar and with priority equal to 4. Variable state is set to norec and
variable requests is set to 0. Since the execution of this sub-step causes a change
of step, from x to x + 1, the property holds.

b): To prove this property, we assume that in a generic step x, x ≥ 0, hpm stores
the higher priority message processed by dl ∈ OP before going down, and then we

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 25

analyze the Down Delegate Protocol. Since, by hypothesis, all operative delegates
are in step x until dl becomes operative once again, the history components con-
tained in the received messages of type agreement-resp, do not contain any valid
message of type fw-signed-fpa-nr or fw-signed-fpa-ar. Condition in line 12.16 is then
satisfied and also that of line 12.17. By the For statement in lines 12.18-20, all re-
ceived messages with priority equal to that of hpm are removed from Queue. hpm
is surely valid, since the step is the same and the validity is determined regardless
the values of variables state and requests. At line 12.21 message hpm is inserted
in Queue, whereas line 12.22 selects the valid message in Queue with the highest
priority. This implies that message m processed at line 12.23 has a priority greater
than that associated with hpm, or m = hpm. After that, dl becomes operative and
thus messages chosen to be processed in step x satisfy property (a). Property (b)
is thus satisfied.

The next theorem indicates that all operative delegates keep the same state.

Theorem 8.2. (Delegate State Uniqueness) Let dl, dlg ∈ OP. If dl makes
Statex

dl stable, and dlg makes Statex
dlg stable, then Statex

dl = Statex
dlg, for x ≥ 0.

Proof. (Sketch). The theorem could be proved by induction. The base case is
when x = 0. In this case, all operative delegates that receive an init-dg message
make stable the same state State0, because we have assumed that the DO is trusted.
Assuming that all delegates have made stable the same state Statex, we prove that
two generic operative delegates, dl, dlg ∈ OP make stable the same state, Statex+1.
By contradiction, we assume that dl makes stable Statex+1

dl , whereas dlg makes
stable Statex+1

dlg such that Statex+1
dl 6= Statex+1

dlg . This assumption implies that dl
has processed a message of type fw-signed-fpa-nr and dlg has processed a message
of type fw-signed-fpa-ar or viceversa; or they have both processed messages of type
fw-signed-fpa-nr or fw-signed-fpa-ar but with different content. Each message of
type fw-signed-fpa-nr/fw-signed-fpa-ar must contain (2b+ d+1) distinct signatures
computed on the same message of type signed-fpa-nr/signed-fpa-ar. Assume that all
b byzantine delegates have signed both message of type signed-fpa-nr and message
of type signed-fpa-ar, there are still left (b+d+1) distinct signatures for message of
type signed-fpa-nr and (b+d+1) distinct signatures for message of type signed-fpa-
ar computed by other delegates. Assume there is no down delegates, then there is at
least one operative delegate who has processed two messages with the same priority,
but different content, thus contradicting Lemma 2. Thus, the thesis holds.

The following propositions respectively state that our protocols are not delayed
by the presence of a number of down delegates less than or equal to d, that is,
regardless of the presence of delegates not reachable or not enabled to accomplish
their tasks, the system continues the execution without delay. They also state that
the system is able to make progress also in presence of a number of down delegates
less than or equal to (b + 2d), assuring the liveness of the update process also in
this adversary condition.

Proposition 8.3. (Delay freeness) The maximum number of down delegates
that do not delay the system is d.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

26 · Giovanni Mella et al.

Proof. (Sketch). According to the protocols, after sending a request to the del-
egates, a subject waits for a particular number of responses from distinct delegates,
that differs according to the request type. In particular, the maximum number of
responses from distinct delegates that a subject has to wait for is Q, when it sends
a message of type fw-rec, new-fpa-nr or new-fpa-ar. In presence of at most d down
delegates there are however Q operative delegates that can send a response. This
number is enough also in the case in which there are exactly b byzantine delegates
and they send no response. Thus, in presence of at most d down delegates, the
system goes on with no delay caused by the number of down delegates.

Proposition 8.4. (System survivability) The system survives, that is, it is
able to perform each required sub-phase, according to the protocols, in presence of
a number of down delegates less than or equal to (b+2d).

Proof. (Sketch). According to the Down Delegate Protocol, a down delegate,
after sending a message of type agreement, waits for (b + 1) responses of type
agreement-resp from exactly (b + 1) distinct delegates. This number of responses
is enough for a down delegate to reach the state common to the other operative
delegates and to become operative. According to this situation a down delegate is
able to become operative if there are at most (b+2d) down delegates, because, also
in the case in which there are b byzantine delegates that send no response, there
are at least (b + 1) operative delegates that send the required response.

9. RECOVERY

The goal of recovery is to retrieve the last correct version of the regions accessible by
sc. It accomplishes this task by contacting subjects in CG that have received till that
point at least a document package and that have executed at least a modification
operation on at least one region accessible by sc. Also, it is desirable to limit as
much as possible the number of subjects to be contacted. Correctness of a region is
determined according to the set of valid modification declarations inserted in Fpa.

A declaration of deletion of a document sub-tree is valid if: 1) a certificate cor-
responding to this declaration exists, or 2) a certificate corresponding to a deletion
declaration of a document sub-tree that includes the deleted sub-tree exists.

A delete attr modification declaration is valid if the subject that has inserted
this declaration in Fpa has also inserted in the document control information of the
currently analyzed document version a corresponding certificate. A delete attr

modification declaration is also valid if it is not evaluated as invalid till that point
and another valid subsequent delete attr declaration exists in Fpa. That is, a
delete attr declaration is considered valid if a subsequent subject s will correctly
exercise the delete attr privilege on the same region. The same strategy applies
to update attr and delete elemt modification declarations. Even more, a valid
declaration for the deletion of a sub-tree a, and its corresponding certificate, makes
other not yet evaluated deletions of a sub-tree b such that b ⊆ a, valid. This implies
that a recovery is done from backwards.

Example 9.1. When Don receives the survey document, he first performs the
integrity checking of the received document. He finds that the rate attribute of
the Doctor element which he should fill in has been illegally updated by Paul, who

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 27

also inserted update attr declaration in the document control information without
a valid certificate. Don could simply update the attribute without requesting any
recovery. Later on, when Cathy needs to update the survey document (as Don
extended the flow path) and finds that the survey document is corrupted by someone
during the document transmission, she requests a recovery. In this case, Paul’s
modification is considered valid. Since Don’s valid update overwrote Paul’s invalid
update. It does not affect the integrity of the survey.

An update attr declaration is valid in presence of a proper certificate and when
the content of h docae components associated with elements of the modified region
are correct wrt the signature computed by the subject who generated the declara-
tion. Moreover, content of atomic elements not declared as deleted must be correct
wrt the corresponding h docae component.

Next, we give a high level description of the recovery presented in the Appendix
(Figures 13 and 14). This algorithm is used by a delegate to generate a document
recovery version and the corresponding IMDD structure.

Initially, the algorithm replaces all non-modifiable information in the document
to be recovered (Doc), with those in the stable version of the document (Docst).
Then function Rec-MDD-Collection collects in the MDD data structure all mod-
ification declarations not yet inserted in the stable version of IMDD and associ-
ated with at least a region in MReg. Each delete attr/update attr declaration,
among the previous selected ones, is collected if it is present in a position of Fpa
greater than the position stored in LSRR corresponding to the region with which
the modification declaration is associated. Each delete attr modification decla-
ration (dad) in MDD associated with a region r contains: 1) r’s identifier, 2) the
cumulative set of elements declared as deleted, that is, the union of the sets of ele-
ments declared as deleted by all the delete attr declarations, for r, in MDD that
precede dad in Fpa and the set of elements specified in dad, and 3) the public key
of the subject that has generated dad. For each region in MReg, the most recent
valid update attr/delete attr declarations determined during the last recovery
is inserted in MDD.

The algorithm considers the position in Fpa corresponding to the subject (sbj(Doc))
that has generated the corrupted document to be recovered as the initial recovery
position. Component set-del-docae will contain all the elements declared as deleted
in valid delete elemt/delete attr declarations. Algorithm 1 analyzes declara-
tions in MDD until the set is empty and when required it contacts a subject to
obtain a document version against which to evaluate the declarations in MDD.
Algorithm 1 starts by the document version to be recovered and then, if required,
other document versions are obtained in reverse order wrt the order associated with
receiver specifications in Fpa.

When the algorithm analyzes certificates associated with delete elemt privi-
leges, it removes all certificates that are not correct, or that are not associated
with a delete elemt declaration, or that are contained in another certificate.
Delete elemt declarations are considered valid according to the strategy we de-
scribed at the beginning of this section. Elements declared as deleted in these valid
declarations are saved in set-del-docae component.

Similarly, the algorithm analyzes each region for which there exists a delete attr

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

28 · Giovanni Mella et al.

declaration in MDD. It determines the most recent delete attr declaration in
MDD for a region r (dad). If its position is less than or equal to that stored in
LSRR for r, then there are no valid delete attr declarations after the last recovery.
Therefore, the certificate inserted in Doc is copied by Docst, also inserting in set-
del-docae the set of elements declared as deleted associated with dad in MDD.
If there is a corresponding correct certificate in the currently analyzed document
version, then it inserts in Doc this certificate, saves all elements declared as deleted
in set-del-docae, and removes from MDD all delete attr declarations associated
with r. At point 5, the algorithm analyzes update attr declarations. Next, at
point 7 all declarations with position in the Fpa equal to that of the currently
analyzed document version are removed from MDD, since no other subsequently
required document version can make them valid. They are inserted in IMDD.

Then, the algorithm determines the set decl set which contains the declarations
of the subject who is at the highest position in the Fpa among the subjects who
made declarations in MDD. If at least one declaration is at a position greater than
the one stored in LSRR for the corresponding region, then a request is sent to the
subject that has generated this set of declarations to obtain its last stored document
version, if this subject has not been contacted up to that point. If the subject is
unreachable, the algorithm removes decl set from MDD and inserts decl set in
IMDD, then it determines the new value of decl set according to the content of
MDD. When decl set does not contain anymore delete elemt declarations and
delete attr/update attr declarations with position greater than the one stored
in LSRR for the corresponding region, the algorithm removes decl set from MDD
and for each declaration in decl set it copies content and certificate (in case of
update attr declarations) or only certificate (in case of delete attr declarations)
in Doc from the stable document version Docst.

Finally, when MDD is empty, the algorithm sets to null all elements of Doc
saved in set-del-docae. The algorithm ends returning Doc, the produced document
recovery version, and the corresponding updated IMDD structure.

The correctness of the algorithm can be found in [Mella 2004]. Given (b + 1)
document recovery versions, all delegates perform the same merge operation. That
is, they first check the integrity of the received versions and delete these invalid
ones. Then, from these valid versions, for each modifiable region, they find the
most recent (according to the Fpa) update as the final version for this region.
Therefore, all operative delegates will generate the same version at the end. They
sign such one and send it to the requester. A recovery responses merge algorithm
can be found in [Mella 2004]).

10. PERFORMANCE EVALUATION

This section evaluates the performance of our approach. We compare it with the
case that only one party (trusted) is involved for flow path integrity checking and
document recovery.

10.1 Experimental Setup

We measure the time to complete one step. Both delegates (or the trusted party)
and subjects ran on identical Solaris workstations. These workstations have 450MHz
CPUs and 2GB of memory. The network bandwidth is 100MB/s. Point-to-point

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 29

20 30 40 50 60 70 80 90 100
360

370

380

390

400

410

420

430

440

450

Updating time by subject

T
im

e
One−Party
Byzantine

Fig. 6. Time (no recovery)

20 30 40 50 60 70 80 90 100
600

650

700

750

800

850

900

950

1000

1050

1100

Updating time by subject

T
im

e

One−Party
Byzantine

Fig. 7. Time (with recovery)

communications is implemented using TCP. RSA of 1024-bit modulus is used for
digital signatures. To ensure the confidentiality of the document, AES with a key
size of 256 bit is used for encryption.

We performed the experiment with 1 byzantine delegate and 0 down delegates.
Totally, there are 4 delegates, 3 of them operative. Fpa is about 5KB and the
document is 100KB.

10.2 Results

Figure 6 reports the time complexity when no recovery is requested. In this case,
our approach does not have much more delay than the one-party approach. The
overhead introduced in our approach results from the time spent on the change-
delegate-state sub-phase. This sub-phase requires the subject to collect 3 signatures
on the proposed Fpa and then to broadcast them to all delegates, which takes less
than 10ms. This low overhead is due to the fact that the subject does not need to
perform any encryption or generate any signature; it only needs to verify at most 4
signatures. Compared to the overall time (362ms) of the one-party case when the
operation time is 20ms, this overhead is only 3%. When operation time increases,
this overhead decreases.

Next, we measured the time complexity when recovery is requested. Figure 7
reports the results when only one subject needs to be contacted by delegates (or
one-party) for recovery of the document regions which is of size 0.5KB. As we can
see, the overall time increases for both approaches. Even for the one-party case,
the time is almost double that the time with no recovery. This is due to the fact
that the party needs to decrypt the document, and then to find the subjects to
be contacted in order to recover the document. Encryption/decryption are needed
for the communication between the subjects and the delegates (one-party). This
process also requires the signatures computation and verification, and transferring
the recovered version to the requested subject. Thus, recovery almost doubles
the time needed for both approaches. However, the byzantine approach has more
overhead than the one-party case. For example, when the operation time is 20 ms,
the byzantine approach needs 991ms while one party needs 647ms. The overhead
is almost 35%.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

30 · Giovanni Mella et al.

20 30 40 50 60 70 80 90 100
600

650

700

750

800

850

900

Updating time by subject

T
im

e

One−Party
Byzantine

Fig. 8. Time (with recovery)

This overhead is mainly due to the encryption and decryption of recovered ver-
sions for recovery-merge operations and also to the time required to delegates to
send back the merged version. Furthermore, the subject needs to make delegates
states stable by sending the merged version and signatures on it. We optimized
the performance by reducing the size of messages for recovery merge. If the first
b + 1 recovered versions are the same, only one copy is sent to the delegates, along
with all the digital signatures of the version. Similarly, a delegate only needs to
send back the digital signature on the version that it approves. Figure 8 shows the
results. The overhead is now reduced to only 18%.

11. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach supporting cooperative updates in
byzantine and failure prone distributed systems. The protocols we have developed
are resistant to a number of colluding byzantine subjects, and they are not af-
fected by a maximum number of failures specified at the beginning. We have also
developed a language and an infrastructure to specify dynamic paths, called flow
policies, stating which subjects have to receive the document. In particular, we
provide the possibility of modifying the specification of these flow policies during
the update process, according to the stated modifications rules. Another important
feature is the recovery process provided as part of our approach. Indeed, recovery
is distributed, that is, the last correct version of the document content is built by
a set of subjects, called delegates, using the document versions received by the
contacted subjects in CG.

We plan to extend the work presented in this paper in several directions. First,
we want to develop protocols to manage rollback. Second, we plan to extend
our work with mechanisms supporting receiver anonymity, and add element and
add attribute privileges. Third, we will investigate an efficient key mamagement
for encryption/decryption documents. We also plan to relax the constraint that
subjects in CG cannot be changed once the update starts, which is currently a
limitation of our approach. Finally, we will deal with how to allow different subjects

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 31

to concurrently update disjoint XML document portions in a parallel distributed
setting [Koglin et al. 2005], giving the possibility of generating independent flow
policies to be used on these portions.

REFERENCES

Bertino, E., Castano, S., and Ferrari, E. 2001. On specifying security policies for web doc-
uments with an xml-based language. In Proceedings of the 1st ACM Symposium on Access
Control Models and Technologies. ACM, Chantilly, VA, USA, 49–59.

Bertino, E. and Ferrari, E. 2002. Secure and selective dissemination of xml documents. ACM
Transactions on Information and System Security (TISSEC) 5, 3, 290–331.

Bertino, E., Ferrari, E., and Mella, G. 2005. An approach to cooperative updates of xml
documents in distributed systems. Journal of Computer Security 13, 2, 191–242.

Kane, B., Su, H., and Rundensteiner, E. 2002. Consistently updating xml documents using
incremental constraint check queries. In Proceedings of the 4th ACM CIKM International
Workshop on Web Information and Data Management (WIDM’02). ACM, Virginia, USA,
1–8.

Koglin, Y., Mella, G., Bertino, E., and Ferrari, E. 2005. An update protocol for xml
documents in distributed and cooperative systems. In Proceedings of the 25th International
Conference on Distributed Computing Systems. ACM, Ohio, USA, 49–59.

Lamport, L., Shostak, R., and Pease, M. 1982. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 3, 382–401.

Lim, C., Park, S., and Son, S. 2003. Access control of xml documents considering update
operations. In Proceedings of the ACM Workshop on XML Security. ACM, Virginia, USA,
49–59.

Malkhi, D., Mansour, Y., and Reiter, M. K. 1999. On diffusing updates in a byzantine
environment. In Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems.
EEE Computer Society, Lausanne, Switzerland, 134–143.

Malkhi, D. and Reiter, M. K. 1997. Byzantine quorum systems. In Proceedings of the 29th
ACM Symposium on Theory of Computing. ACM, El Paso, Texas, 569–578.

Malkhi, D., Reiter, M. K., Rodeh, O., and Sella, Y. 2001a. Efficient update diffusion in
byzantine environments. In Proceedings of the 20th IEEE Symposium on Reliable Distributed
Systems. IEEE Computer Society, New Orleans, USA, 90–98.

Malkhi, D., Reiter, M. K., Wool, A., and Wright, R. N. 2001b. Probabilistic quorum systems.
The Information and Computation Journal 170, 2, 184–206.

Mella, G. 2004. Distributed and cooperative updates of xml documents. Ph.D.
thesis, University of Milano, DICO Department, Milano, Italy. Availabe at:
http://homes.dico.unimi.it/dbandsec/mellagiovanni.

Pollmann, C. G. 1999. The xml security page. Availabe at: http://www.nue.et-inf.uni-
siegen.de/g̃euer-pollmann/xml security.html.

Reiter, M. K. 1994. Secure agreement protocols: Reliable and atomic group multicast in rampart.
In Proceedings of the 2nd ACM Conference on Computer and Communications Security. ACM,
Fairfax, Virginia, USA, 68–80.

Reiter, M. K. 1996. A secure group membership protocol. IEEE Transactions on Software
Engineering 22, 1, 31–42.

Tatarinov, I., Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2001. Updating xml. In Pro-

ceedings of the 2001 ACM SIGMOD International Conference on Management of Data. ACM,
California, USA, 413–424.

Thuraisingham, B., Gupta, A., Bertino, E., and Ferrari, E. 2002. Collaborative commerce
and knowledge management. Knowledge and Process Management 9, 1, 43–53.

Vitenberg, R., Keidar, I., Chockler, G., and Dolev, D. 1999. Group communication spec-
ifications: A comprehensive study. In Tech. report CS9931. Comp. Sci. Inst., The Hebrew
University of Jerusalem and MIT Technical Report MIT-LCS-TR-790.

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

32 · Giovanni Mella et al.

W3C. 1999. XML Path Language (Xpath) 1.0. Availabe at: http://www.w3.org/TR/1999/REC-

xpath-19991116.

APPENDIX

Protocols presented informally in Section 7 are presented formally in Figures 9, 10
11, 12 in this appendix. To better understand protocols we first introduce details
about the semantics of some notations. The boolean function rcvd() used in the
algorithms returns true, if the message specified as its argument has been received
by the subject that executes the protocol, false otherwise. In some cases, it is also
required the specification of the sender as function parameter, that is, the function
returns true if the specified message has been received by the specified sender. The
semantics for:

repeat

[]C1 : A1

[]C2 : A2

. . .

[]Cn : An

is that the following procedure is repeated: all the conditions are evaluated and
among the conditions that are evaluated as true, if there are more than one, the
condition Ck which is chosen is the one that takes into account the message with the
highest priority. Accordingly Ak is executed and a new evaluation of the condition
is performed at the end of the execution of Ak or when the time assigned to the
process that execute Ak expires. If a condition Ci different by Ck is chosen and the
process that executes Ak has not terminated its execution, a new process is started
to execute Ai and the process associated with Ak is killed. By contrast if Ck is again
chosen for the same previous message the process associated with Ak continues its
execution. Evaluating conditions and executing statements are repeated until the
repeat statement is terminated with a terminate repeat statement. A termi-
nate repeat statement terminates only the closest repeat statement. Symbol (←)
denotes the assignment operator. A single assignment assumes the following form:
a ← va, where va is the value to be assigned to variable a. A multiple assignment
assumes the following form: (a, b) ← (va, vb), where va is the value to be assigned
to variable a, and vb is the value to be assigned to variable b.

Table XI summarizes the functions invoked in the protocols.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 33

Table XI. Functions

Function Semantics
Full return true if Fpa has been completed (there is no free element), else false

Last rcv return the public key of the subject that has proposed Fpa as current
version (last subject registered in Fpa).

Ass flow return the identifier of Fpa associated with Doc

Id return the identifier associated with Doc or Fpa

Check check the document (Doc) integrity according to IMDD structure and wrt
the set of non-modifiable (NMReg) and modifiable (MReg) regions

Rec-Resp-Merge insert in Doc the last correct version of regions in MReg, using region
versions and invalid declarations produced by (b+1) delegates

Last next find the public key of the subject chosen by the last receiver to be
the next receiver

Update-Doc subject modifies Doc according to the rights it possesses

Update-Fpa subject modifies Fpa according to the rights it possesses, insert its
information in Fpa, and choose the next receiver (snext)

MDR / NMDR extract modifiable/ non-modifiable regions from a document or
a structure containing regions and keys

Recovery it collects last correct modifiable regions content asking to the subjects,
that has modified these regions, their last generated region versions

Rcvrs return the number of receivers that has already received Fpa

Check-Fpa check the integrity of Fpa

Stable replace previous state at step x (Statex) with the subsequent state (Statex+1)

Clock return the value of the internal clock

Extract-msg insert in Queue messages of type fw-signed-fpa-nr or fw-signed-fpa-ar
contained in history structures received during an agreement phase

Received-msg add to Queue messages received after the last execution of this function

Higher-priority find in structure Queue the message with higher priority that satisfies a
delegate condition statement, regardless the values for state and requests

Valid return true if the analyzed message satisfies at least one delegate condition
statement, regardless the values for state and requests, false otherwise

Priority return the priority of message according to the priorities specified
in Tables X

Type return the type of the message according to types specified in Tables X

Execute execute the statements associated with the delegate condition statement
satisfied by the analyzed message and its signature, regardless the
values for state and requests; if it receives an empty message it sets:
state ← norec, requests ← 0

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

34 · Giovanni Mella et al.

(9.01) state ← initial
(9.02) Let DocDO be the document to be updated and FpaDO the associated flow policy at-
tachment

both chosen by the DO
(9.03) Let NMReg and MReg be the set of non-modifiable/modifiable regions associated

with DocDO

(9.04) Let d id be the identifier of DocDO

(9.05) repeat
(9.06) [] state = initial:
(9.07) Generation of the package to be sent to the first chosen subject, P ←
(s1, DocDO , FpaDO)
(9.08) Set parameters b and d to the value chosen by the document originator (DO)
(9.09) Choice of subjects in CG and delegates in DG.
(9.10) m← (init-dg, d id, DocDO , FpaDO , CG, DG)
(9.11) send (〈m, SDO(m)〉) to DG
(9.12) For each s ∈ CG:
(9.13) m← (init-cg, d id, regkeyss , docmodcerts, fpmodcerts, CG,DG, s)
(9.14) send (〈m, SDO(m)〉) to s
(9.15) send (〈P, SDO(P)〉) to s1

(9.16) state ← final
(9.17) [] state = final∧ ∃ sbj ∈ CG(rcvd(sbj, 〈m, Ssbj(m)〉) ∧m = (Docsbj , nsbj) ∧ ∃ Q ⊂ DG

(rcvd(〈m, {Sdlg(m)}dlg∈Q〉)∧m = (Fpa, IMDD, n)∧ |Q| = 2b+d+1)∧ (n = nsbj)∧
Full(Fpa) ∧ (Last rcv(Fpa) = sbj) ∧ (Ass flow(Docsbj) = Id(Fpa)) ∧ (Id(Docsbj) =

d id):
(9.18) If (Check(Docsbj , NMReg, MReg, IMDD) = ERR):
(9.19) state ← recovery
(9.20) m← (err, m, Ssbj(m), MReg, 0)
(9.21) send (〈m, SDO(m)〉) to DG
(9.22) else state ← end
(9.23) [] state = recovery ∧ ∃D ⊂ DG(∀dl ∈ D(rcvd(〈m, Sdl(m)〉)∧ (Id(Docdl) = d id) ∧

m = (rec, IMDDdl, MReg, Docdl, DO, 0) ∧ |D| = b + 1)):
(9.24) (Doc, IMDD) ← Rec-Resp-Union({(IMDDdl, Docdl)}dl∈D, MReg, DocDO)
(9.25) state ← end
(9.26) [] state = end:
(9.27) m← (end, d id)
(9.28) send (〈m, SDO(m)〉) to (CG ∪DG)
(9.29) Replace DocDO with Doc in the DO XML source
(9.30) terminate repeat

Fig. 9. Document Originator Protocol

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 35

(10.01) (state, first)← (initial, 0)
(10.02) repeat
(10.03) [] state = initial∧ rcvd(sbj, 〈m, Ssbj(m)〉)∧

m = (init-cg, d id, rksc , docmodcertsc , fpmodcertsc , CG,DG, sc):
(10.04) (state, MReg, NMReg, NCG , DO)← (wait, MDR(rksc), NMDR(rksc), [0 . . . 0]CG , sbj)
(10.05) [] state = wait∧ rcvd(〈m, Ssbj(m)〉) ∧ sbj = DO ∧m = (sc, Doc, Fpa)∧

(first = 0)∧ (Id(Doc) = d id):
(10.06) (state, first)← (update, 1)
(10.07) [] state = wait∧ ∃ sbj ∈ CG(rcvd(〈m, Ssbj(m)〉) ∧m = (Doc, nsbj)) ∧

∃D ⊂ DG(∀dl ∈ D(rcvd(〈m, Sdl(m)〉) ∧m = (Fpa, IMDD, nsbj)) ∧ |D| = b + 1) ∧
(NCG [sbj] ≤ nsbj) ∧ (Last rcv(Fpa) = sbj) ∧ (Last next(Fpa) = sc)∧
(Ass flow(Doc) = Id(Fpa))∧ (Id(Doc) = d id):

(10.08) NCG [sbj] ← (nsbj + 1)
(10.09) If (Check(Doc, NMReg, MReg, IMDD) = ERR):
(10.10) state ← recovery
(10.11) m← (err, m, Ssbj(m), MReg, NCG [sc])
(10.12) send (〈m, SDO(m)〉) to DG
(10.13) else state ← update
(10.14) [] state = recovery ∧ ∃D ⊂ DG(∀dl ∈ D(rcvd(〈m, Sdl(m)〉)∧ (Id(Docdl) = d id))

∧ m = (rec, IMDDdl, MReg, Docdl, sc, NCG [sc])) ∧ |D| = b + 1):
(10.15) m = (fw-rec, {m, Sdl(m)}dl∈D)
(10.16) send(〈m, Ssc (m)〉) to DG
(10.17) state ← fw-rec
(10.18) [] state = fw-rec ∧

∃Q ⊂ DG(∀dl ∈ Q(rcvd(〈m, Sdl(m)〉)∧ (Id(Doc) = d id) ∧
m = (rec-merge, IMDD, MReg, Doc, sc, NCG [sc])) ∧ |Q| = 2b + d + 1):

(10.19) state ← update-ar
(10.20) [] (state = update ∨ state = update-ar):
(10.21) Docsc ← Update-Doc(Doc)
(10.22) (Fpasc

, snext)← Update-Fpa(Fpa)

(10.23) If (state = update):
(10.24) m← (new-fpa-nr,Fpasc

)

(10.25) send(〈m, Ssc (m)〉) to DG
(10.26) state ← sent-fpa-nr
(10.27) else m← (new-fpa-ar,Fpasc

)

(10.28) send(〈m, Ssc (m)〉) to DG
(10.29) state ← sent-fpa-ar
(10.30) [] state = sent-fpa-nr ∧

∃Q ⊂ DG(∀dl ∈ Q(rcvd(〈m, Sdl(m)〉)∧m = (signed-fpa-nr, Fpasc))∧ |Q| = 2b+d+1):

(10.31) m̃← (fw-signed-fpa-nr, m, {Sdl(m)}dl∈Q)

(10.32) send(〈m̃, Ssc (m̃)〉) to DG
(10.33) state ← doc-delivery
(10.34) [] state = sent-fpa-ar ∧

∃Q ⊂ DG(∀dl ∈ Q(rcvd(〈m, Sdl(m)〉)∧m = (signed-fpa-ar, Fpasc))∧ |Q| = 2b+d+1):
(10.35) m← (signed-fpa-ar, Fpa)

(10.36) m̂← (rec-merge, IMDD, MReg, Doc, sc, NCG [sc])

(10.37) m̃← (fw-signed-fpa-ar, m, {Sdl(m)}
dl∈Q

, m̂, {Sdl(m̂)}
dl∈Q̂

)

(10.38) send(〈m̃, Ssc (m̃)〉) to DG
(10.39) state ← doc-delivery
(10.40) [] state = doc-delivery:
(10.41) m← (Docsc , NCG [sc])
(10.42) send(〈m, Ssc (m)〉) to snext

(10.43) (NCG [sc], state) ← ((NCG [sc] + 1), wait)
(10.44) [] state = wait∧ rcvd(〈m, Ssbj(m)〉) ∧m = (end, d id) ∧sbj = DO:
(10.45) terminate repeat

Fig. 10. Subject Protocol

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

36 · Giovanni Mella et al.

(11.01) (state, requests, IMDDst, history)← (initial, 0, ∅, ∅)
(11.02) repeat
(11.03) [] state = initial∧ rcvd(sbj, 〈m, Ssbj(m)〉)∧

m = (init-dg, d id, Docst, Fpast, CG, DG) ∧ (dlc ∈ DG):
(11.04) (state, IP, NIP , DO)← (norec, CG ∪ DG ∪ {DO}, [0 . . . 0]IP , sbj)
(11.05) LSRR ← [(Id(Fpast), 0) . . . (Id(Fpast), 0)]MDR(Docst)

(11.06) [] (state = norec ∨ state = rec)∧ ∃ dl ∈ DG(rcvd(〈m, Sdl(m)〉) ∧ m = (agreement):
(11.07) Let agreements be the set of not still processed messages of type agreement

present in Queue

(11.08) m̃← (agreement-resp, history, hpm, agreements, dl, NIP [dl])

(11.09) send(〈m̃, Sdlc (m̃)〉) to dl
(11.10) NIP [dl]← NIP [dl] + 1

(11.11) [] state = norec∧ ∃ sbj, ŝbj ∈ CG(rcvd(〈m, Ssbj(m)〉)∧

m = (err, m̂, S
ŝbj

(m̂), MReg, nsbj)) ∧ (Last next(Fpast) = sbj) ∧ (NIP [sbj] = nsbj)

∧ m̂ = (Doc, n
ŝbj

) ∧ ŝbj = Last rcv(Fpa) ∧ NIP [ŝbj] = n
ŝbj
∧ (requests = 0):

(11.12) (state, hpm, IMDDrec)← (rec, 〈m, Ssbj(m)〉, IMDDst)
(11.13) (Docdlc , IMDDdlc) ← Recovery(Doc,MReg, IMDDrec , Docst, LSRR)
(11.14) m← (rec, IMDDdlc , MReg, Docdlc , sbj, nsbj)
(11.15) send(〈m, Sdlc (m)〉) to sbj
(11.16) [] (state = rec)∧ ∃ sbj ∈ CG, D ⊂ DG(rcvd(〈m, Ssbj(m)〉) ∧ |D| = (b + 1)∧

m = (fw-rec, {m, Sdl(m)}dl∈D)) ∧ m = (rec, IMDDdl, MReg, Docdl, sbj, nsbj)
∧ (Last next(Fpast) = sbj) ∧ (NIP [sbj] = nsbj)∧ (requests = 0):

(11.17) (requests, state, Rec-Doc, hpm) ← (1, rec, Docst, 〈m, Ssbj(m)〉)
(11.18) (Docdlc , IMDDdlc) ← Rec-Resp-Merge({(IMDDdl, Docdl)}dl∈D, MReg, RecDoc)
(11.19) m← (rec-merge, IMDDdlc , MReg, Docdlc , sbj, nsbj)
(11.20) send(〈m, Sdlc (m)〉) to sbj
(11.21) [] state = norec∧ ∃ sbj ∈ CG(rcvd(〈m, Ssbj(m)〉) ∧m = (new-fpa-nr, Fpa)) ∧

(Last next(Fpast) = sbj)∧ (Rcvrs(Fpa) = Rcvrs(Fpast) + 1)
(requests = 0):

(11.22) (requests, hpm, state) ← (1, 〈m, Ssbj(m)〉, norec)
(11.23) If (Check-Fpa(Fpa)) 6= ERR):
(11.24) m← (signed-fpa-nr, Fpa)
(11.25) send(〈m, Sdlc (m)〉) to sbj
(11.26) [] state = rec∧ ∃ sbj ∈ CG(rcvd(〈m, Ssbj(m)〉) ∧m = (new-fpa-ar, Fpa)) ∧

(Last next(Fpast) = sbj)∧ (Rcvrs(Fpa) = Rcvrs(Fpast) + 1)
(requests = 1):

(11.27) (requests, hpm, state) ← (2, 〈m, Ssbj(m)〉, rec)
(11.28) If (Check-Fpa(Fpa)) 6= ERR):
(11.29) m← (signed-fpa-ar, Fpa)
(11.30) send(〈m, Sdlc (m)〉) to sbj
(11.31) [] (state = norec ∨ state = rec) ∧ (∃ sbj ∈ CG, Q ⊂ DG(rcvd(〈m, Ssbj(m)〉) ∧

|Q| = (2b + d + 1) ∧ m = (fw-signed-fpa-nr, m, {Sdlg(m)}dlg∈Q) ∧
m = (signed-fpa-nr, Fpa) ∧ (Rcvrs(Fpa) = Rcvrs(Fpast) + 1)) ∨
∃ sbj ∈ CG, Q1, Q2 ⊂ DG(rcvd(〈m, Ssbj(m)〉)∧ |Q1| = |Q2| = (2b + d + 1) ∧

m = (fw-signed-fpa-ar, m, {Sd1
(m)}d1∈Q1

, m̃, {Sd2
(m̃)}d2∈Q2

) ∧

m = (signed-fpa-ar, Fpa) ∧ m̃ = (rec-merge, IMDD, MReg, Doc, sbj, nsbj) ∧
(Rcvrs(Fpa) = Rcvrs(Fpast) + 1)) ∧ (NIP [sbj] = nsbj) ∧ (requests ≤ 2):

(11.32) (requests, state, hpm, history) ← (0, norec, 〈m, Ssbj(m)〉, history ∪
{〈m, Ssbj(m)〉})
(11.33) send(〈m, Ssbj(m)〉) to DG
(11.34) If (m = (fw-signed-fpa-nr, m, {Sdlg(m)}dlg∈Q)):
(11.35) (Fpast, NIP [Last rcv(Fpa)])← (Fpa, NIP [Last rcv(Fpa)] + 1)
(11.36) else
(11.37) (Fpast, Docst, IMDDst,LSRR, NIP)← Stable(Fpa, Doc, IMDD, NIP , MReg)
(11.38) m = (Fpast, IMDDst, (NIP [Last rcv(Fpast)] − 1))
(11.39) send(〈m, Sdlc (m)〉) to Last next(Fpast)
(11.40) [] (state = norec ∨ state = rec)∧ rcvd(〈m, SDO(m)〉) ∧m = (end, d id):
(11.41) terminate repeat

Fig. 11. Delegate Protocol

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 37

(12.01) state ← down
(12.02) t← Clock()
(12.03) repeat
(12.04) [] state = down ∧ (Clock() − t = MTTIME):
(12.05) m← (agreement)
(12.06) send(〈m, Sdlc (m)〉) to DG
(12.07) state ← sent-agreement-req
(12.08) [] state = sent-first-agreement-req ∧ ∃ D ⊂ DG(∀dl ∈ D (rcvd(dl, 〈m, Sdl(m)〉)

∧ m = (agreement-resp, history, hpm, agreements, dlg, n)) ∧ |D| = b + 1 ∧(n ≥
NIP [dlc])∧ (dlg = dlc):

(12.09) NIP [dlc]← NIP [dlc] + 1
(12.10) Queue ← Extract-msg({history}dl∈D) ∪ {hpm}dl∈D ∪ {agreements}dl∈D

(12.11) new-state ← 0
(12.12) repeat
(12.13) [] true:
(12.14) Queue ← Queue ∪ Received-msg()
(12.15) m ← Higher-priority(Queue)
(12.16) If ([(Type(m) 6= fw-signed-fpa-nr) ∧ (Type(m) 6= fw-signed-fpa-ar)] ∨ (m = ∅)):
(12.17) If (new-state = 0):
(12.18) For each m ∈ Queue:
(12.19) If (Valid(hpm) ∧ Priority(m) = Priority(hpm)):
(12.20) Queue ← Queue \ {m}
(12.21) Queue ← Queue ∪ {hpm}
(12.22) m ← Higher-priority(Queue)
(12.23) Execute(m)
(12.24) terminate repeat
(12.25) else new-state ← 1
(12.26) Execute(m)
(12.27) terminate repeatFig. 12. Down Delegate Protocol

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

38 · Giovanni Mella et al.

Algorithm 1. The recovery algorithm (Recovery)

INPUT: Doc: document version to be recovered
MReg: set of modifiable regions to be recovered
MDD structure containing all the Modification Document Declarations
IMDD: Invalid Modification Document Declaration structure
Docst: Stable Document (document containing the last recovere d contents)
LSRR: LastSaved–RegionRecovery structure

OUTPUT: (Doc, IMDD): the recovered document and the set of invalid modification document
declarations

METHOD:

(1) * replacement of the non modifiable information in the corrupted received package *
Replace all non-modifiable information (also those in the modifiable regions)
within Doc with those stored in Docst

(2) * collection of modification declarations and initialization of algorithm parameters *
MDD ← Rec-MDD-Collection(MDD, IMDD, MRe g, LSRR)
set-del-docae ← ∅ * set of elements declared as deleted *
Sbj ← {sbj(Doc)} * set of subjects from which it has been already received a document

version, initialized to the subject that generated doc ument version Doc *
Rec-Position ← document-position(Doc) * position o f sbj(Doc) in the Fpa *
D ← Docst

(3) * declarations validity check and last correct document contents search *
While (MDD 6= ∅):

Doc.//.delete elmt cert ← Doc.//.delete elmt cert ∪ D.//.delete elmt cert
For each c ∈ Doc.//.delete elmt cert such that (c.obj.reg{r id} ∩MReg 6= ∅):

If (DKUDO
(c.signature) 6= H(c \ c.signature) ∨ c.doc id 6= doc-id):

Doc.//.delete elmt cert ← Doc.//.delete elmt cert \ {c}

else If (¬∃ dd ∈ MDD.Del-Elmt: (c.obj.root id = dd.doc-root id) ∧ (c.sbj pk = dd.p key)):
Doc.//.delete elmt cert ← Doc.//.delete elmt cert \ {c}

For each c ∈ delete elmt cert such that (c.obj.reg{r id} ∩MReg 6= ∅):
If (∃c̄ ∈ delete elmt cert : ītc 6= c ∧ ∀r ∈ c.obj.reg{r id} :

c.obj.reg[r].set-docae ⊆ c̄.obj.reg[r].set-docae):
Doc.//.delete elmt cert ← Doc.//.delete elmt cert \ {c}

(4) * check that all delete element declarations have associated a certificate containing the
delete elmt privilege and saving in set-del-docae component the set of declared deleted elements

For each del-decl ∈ MDD.Del-Elmt:
If ((∃c ∈ Doc.//.delete elmt cert: c.obj.root id = del-decl.doc-root id) ∨

(∃c ∈ Doc.//.delete elmt cert, dd ∈ MDD.Del-Elmt: c.obj.root id = dd.doc-root id ∧
∃r ∈ c.obj.reg{r id} : del-decl.doc-root id ∈ c.obj.reg[r].set docae)):

MDD.Del-Elmt ← MDD.Del-Elmt \ {del-decl}
For each r ∈ (c.obj.reg{r id}):

set-del-docae ← set-del-d ocae ∪ c.obj.reg[r].set-docae

(5) * delete attr declarations evaluation *
For each r ∈ MDD.Del-Atrr{r id}:

Let Del attr decl be the declaration in MDD.Del-Attr for the region r with the highest position
If (position(Del attr decl) ≤ position(LSRR[r])):

Doc.FDUR[r].delete attr cert ← Docst.FDUR[r].delete attr cert
set-del-docae ← set-del-docae ∪ Del attr decl.set-docae
MDD.Del-Attr ← MDD.Del-Attr \ {Del attr decl}

else Let Attr-docae(r) ⊆ Docst.FDUR[r].DAE LIST{docae id} be the set of document
atomic elements belonging to the fully deletable and updatable region r that are
attributes
If (∃ c ∈ D.FDUR[r].delete attr cert: (c.obj = r) ∧ (c.sbj pk = Del attr decl.pub key)
∧ (Del attr decl.set-docae ⊆ Attr-docae(r)) ∧ (c.doc id = doc-id) ∧
(c.priv = delete attr) ∧ (DKUDO

(c.signature) = H(c \ signature))):
Doc.FDUR[r].delete attr cert ← {c}
set-del-docae ← set-del-docae ∪ Del attr decl.set-docae
For each del attr decl ∈ MDD.Del-Attr containing region r:

MDD.Del-Attr ← MDD.Del-Attr \ {del attr decl}

Fig. 13. The recovery algorithm (part 1)

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

Controlled and cooperative updates of XML documents · 39

(6) * update attr declarations evaluation *
For each r ∈ MDD.Up-Attr{r id}:

Let Up attr decl be the declaration in MDD.Up-Attr for the region r with the highest position
If (position(Up attr decl) ≤ position(it LSRR[r])):

Doc.FDUR[r].update cert ← Docst.FDUR[r].update cert
MDD.Up-Attr ← MDD.Up-Attr \ {Up attr decl}
Insertion in Doc of the modifiable content of region r contained in Docst

else chk ← Correct
For each docae ∈ (P.FDUR[r].DAE LIST{docae id}\ set-del-docae):

Compute h dae ← H(D.FDUR[r].DAE LIST [docae].data)
If (h dae 6= D.FDUR[r].DAE LIST [docae].h docae): chk = ERR

�ab break
If ((DKUUp attr decl.pub key

(sig-fdudocae) =

H((
∑

∗

t∈D.FDUR[r].DAE LIST ,type(t)=attribute
t.h docae) ∗ Up attr decl.fpa-id ∗

Up attr decl.ver ∗ Up attr decl.rs-id ∗ Up attr decl.orig)) ∧ (chk = Correct) ∧
(∃ c ∈ D.FDUR[r].update cert : (Up attr decl.pub key = c.sbj pk) ∧
(c.obj = r) ∧ (c.doc id = doc-id) ∧ (c.priv = update attr) ∧
(DKUDO

(c.signature) = H(c \ signature)))):
Doc.FDUR[r].update cert ← {c}
Insertion in Doc of the modifiable content of region r contained in D
For each up attr decl ∈ MDD.Up-Attr containing region r:

MDD.Up-Attr ← MDD.Up-Attr \ {up attr decl}

(7) * evaluation of invalid declarations and serch of the next subject to be contact *
For each decl ∈ MDD:

If (position(decl) = Rec-Position):
IMDD ← IMDD ∪ {decl}
MDD ← MDD \ {decl}

Let decl set be the set of declarations in MDD with the same hi ghest position
(declarations of the same subject in a position of the Fpa)
while (decl set 6= null):

If (∃ d ∈ decl set: ((d ∈ MDD.Up-Attr ∨ d ∈ MDD.Del-Attr) ∧
(position(d) > position(LSRR[d.r id]))) ∨ (d ∈ MDD.Del-Elmt)):

If (d.pub key ∈ Sbj):
IMDD ← IMDD ∪ {decl set}
MDD ← MDD \ { decl set}
decl set ← prev(decl set, MDD)

else send (doc-id, doc-version, doc-orig, pack-req) to d.pub key
If (rcvd(d.pub key, D) ∨ end(Timeout)):

If (end(Timeout)):
IMDD ← IMDD ∪ {decl set}
MDD ← MDD \ {decl set}
decl set ← �t prev(decl set, MDD)

else Rec-Position ← position(d)
decl set ← null

else For each de ∈ decl set:
If (de ∈ MDD.Up-Attr):

Doc.FDUR[r].update cert ← Docst.FDUR[r].update cert
MDD.Up-Attr ← MDD.Up-Attr \ {de}
Insertion in Doc of the modifiable content of region r contained in Docst

else Doc.FDUR[r].delete attr cert ← Docst.FDUR[r].delete attr cert
set-del-docae ← set-del-docae ∪ de.set-docae
MDD.Del-Attr ← MDD.Del-Attr \ {de}

decl set ← prev(decl set, ıt MDD)

(8) * deletion of document atomic element contents declared as deleted *
For each docae ∈ set-del-docae:

Let reg be the region such that: docae ∈ Doc.FDUR[reg].DAE LIST{docae}
Doc.FDUR[reg].DAE LIST[docae].data ← null

(9) * return of the algorithm result *
return (Doc, IMDD)

Fig. 14. The recovery algorithm (part 2)

ACM Transactions on Information and System Security, Vol. 2, No. 3, 09 2005.

