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We propose and analyze a nonlinear optical apparatus in which the direction of asymmetric steering

is controllable within the apparatus, rather than by adding noise to measurements. Using a nondegenerate

parametric oscillator with an injected signal field, we show how the directionality and extent of the steering

can be readily controlled for output modes that can be up to one octave apart. The two down-converted

modes, which exhibit the greater violations of the steering inequalities, can also be controlled to exhibit

asymmetric steering in some regimes.

DOI: 10.1103/PhysRevLett.119.160501

The existence of the phenomenon of steering was recog-

nized by Schrödinger in 1935 [1,2] as an extension of the

Einstein-Podolsky-Rosen paradox (EPR) [3], and put on a

firmmathematical footing byWiseman et al. in 2007 [4]. The

importance of EPR steering was reflected in a special journal

issue on the topic [5], and it has been shown to be necessary

for secure continuous-variable teleportation [6], with control

being possible by feedback [7].Wiseman et al. also raised the

question of whether asymmetric steering was possible, i.e.,

whether bipartite states shared betweenAlice andBob existed

where Alice could steer Bob, but not vice versa. For the case

of Gaussian measurements, this was soon answered, both

theoretically [8,9] and experimentally [10], using the Reid-

EPR criteria for the products of inferred variances [11]. It has

since been established that asymmetric steering is a general

property, not being dependent on Gaussian measurements

[12]. Continuous variable asymmetric steering has been

predicted in intracavity second harmonic generation [13]

and atomic Bose-Hubbard chains [14,15], and measured

experimentally in a four-mode cluster state [16].

The optical parametric oscillator (OPO) along with

homodyne measurements of phase-sensitive correlations

are mature technologies, found in many quantum optics

laboratories [17]. The first experimental demonstration of

EPR steering was by Ou et al. [18], using the two down-

converted fields of a nondegenerate OPO. An injected

signal at one of the low frequency modes can be used to

increase conversion efficiency as well as create a coherent

component of the modes, in both the degenerate [19] and

nondegenerate cases [20]. Yu et al. have shown how the

nondegenerate OPO can be used to produce three-color

entanglement [21], with two of the same authors analyzing

the bichromatic entanglement properties with an injected

signal [22]. These bichromatic entanglement properties

were experimentally investigated by Gu et al. [23].

Bichromatic entanglement was also analyzed theoretically

and experimentally with injected fields at both the signal

and idler by Wang and Li [24]. In this work we show how

controlling the amplitude of an injected signal can also

control the asymmetry of EPR steering in the system. We

examine EPR steering in all three possible output biparti-

tions and show that the effects are intrinsic to the scheme,

not requiring added noise to achieve control of the quantum

correlations as in previous work [10,25].

The nondegenerate OPO consists of a nonlinear χð2Þ

material inside a pumped Fabry-Perot cavity. Three optical

fields interact inside the material: an externally pumped

mode at frequency ω0, and two down-converted modes at

ω1 and ω2, where ω0 ¼ ω1 þ ω2. The important aspect of

the nondegeneracy is that the two down-converted modes

be distinguishable, so that they need not have different

frequencies if they can be separated due to different

polarizations, for example. In the system we examine here,

we will consider the effects of an injected coherent signal at

frequency ω1. Since the pump laser is often a high

frequency mode from an up-conversion process, a field

at one of the lower frequencies should be readily available.

The rotating wave interaction Hamiltonian for the

system is

Hint ¼ iℏκðâ0â†1â†2 − â†
0
â1â2Þ; ð1Þ

where âj is the bosonic annihilation operator for the mode

at ωj and κ represents the effective χð2Þ nonlinearity. The
cavity pumping Hamiltonian is

Hpump ¼ iℏðϵ0â†0 þ ϵ1â
†

1
Þ þ H:c:; ð2Þ

where the ϵj represent coherent input fields at frequency ωj.

Note that we are considering that all fields are resonant with

the cavity. The damping of the cavity fields into a zero

temperature Markovian reservoir is described by the

Lindblad superoperator
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Lρ ¼
X

2

i¼0

γið2âiρâ†i − â†i âiρ − ρâ†i âiÞ; ð3Þ

where ρ is the system density matrix and γi is the cavity loss

rate at ωi.

Starting with the Hamiltonian, we proceed via the von

Neumannequation for thedensitymatrix,mapping this onto a

Fokker-Planck equation (FPE) for the chosen pseudoprob-

ability distribution, and then onto stochastic differential

equations [26]. Since it is well known that the FPE for the

Glauber-Sudarshan P function [27,28] has a negative dif-

fusionmatrix and therefore cannot bemapped onto stochastic

differential equations, we decide to use the positive-P
distribution [29], which is exact for this system. This

distribution requires a doubled phase space and the FPE

can be simply found from the equation for the Glauber-

Sudarshan P distribution by setting variables and their

complex conjugates as independent [30]. This entails chang-

ing α�j to α
þ
j , so that αj and α

þ
j are now independent variables

and allows for a positive-definite diffusion matrix in the

resulting FPE.

The resulting FPE is found as

dP

dt
¼
�

−

�

∂

∂α0
ðϵ0−γ0α0−κα1α2Þþ

∂

∂αþ0
ðϵ�0−γ0αþ0 −καþ1 αþ2 Þ

þ ∂

∂α1
ðϵ1−γ1α1þκα0α

þ
2
Þþ ∂

∂αþ
1

ðϵ�
1
−γ1α

þ
1
þκαþ

0
α2Þ

þ ∂

∂α2
ð−γ2α2þκα0α

þ
1
Þþ ∂

∂αþ
2

ð−γ2αþ2 þκαþ
0
α1Þ

�

þ1

2

�

2
∂2

∂α1∂α2
κα0þ2

∂2

∂αþ
1
∂αþ

2

καþ
0

��

Pð ~α;tÞ; ð4Þ

where ~α is the vector of amplitude variables. This FPEmaps

onto six coupled stochastic differential equations

dα0

dt
¼ ϵ0 − γ0α0 − κα1α2;

dαþ
0

dt
¼ ϵ

�
0
− γ0α

þ
0
− καþ

1
αþ
2
;

dα1

dt
¼ ϵ1 − γ1α1 þ κα0α

þ
2
þ

ffiffiffiffiffiffiffi

κα0

2

r

ðη1 þ iη2Þ;

dαþ
1

dt
¼ ϵ

�
1
− γ1α

þ
1
þ καþ

0
α2 þ

ffiffiffiffiffiffiffiffi

καþ
0

2

r

ðη3 þ iη4Þ;

dα2

dt
¼ −γ2α2 þ κα0α

þ
1
þ

ffiffiffiffiffiffiffi

κα0

2

r

ðη1 − iη2Þ;

dαþ
2

dt
¼ −γ2α

þ
2
þ καþ

0
α1 þ

ffiffiffiffiffiffiffiffi

καþ
0

2

r

ðη3 − iη4Þ; ð5Þ

where the complex variable pairs ðαi;αþj Þ correspond to the

operator pairs ðâi; â†jÞ in the sense that stochastic averages of

products converge to normally ordered operator expectation

values, e.g., αþm
i αnj → hâ†mi ânj i. The ηj are Gaussian noise

terms with the properties η̄i ¼ 0 and ηjðtÞηkðt0Þ ¼
δjkδðt − t0Þ. We note that these equations have the same

form in either Itô or Stratonovich calculus [31] and that they

describe the process inside the optical cavity.

When nonlinear optical media are held inside a pumped

optical cavity, the measured observables are usually the

output spectral correlations, which are accessible using

homodyne measurement techniques [32]. These are readily

calculated in the steady state by treating the system as an

Ornstein-Uhlenbeck process [31]. In order to do this, we

begin by expanding the positive-P variables into their

steady-state expectation values plus delta-correlated

Gaussian fluctuation terms, e.g.,

αss → hâiss þ δα: ð6Þ

Given that we can calculate the hâiss, we may then write the

equations of motion for the fluctuation terms. The resulting

equations are written for the vector of fluctuation terms as

dδα⃗ ¼ −Aδα⃗dtþ BdW⃗; ð7Þ

where A is the steady-state drift matrix, B is found from the

factorization of the diffusion matrix of the original Fokker-

Planck equation, D ¼ BBT , with the steady-state values

substituted in, and dW⃗ is a vector of Wiener increments. As

long as the matrix A has no eigenvalues with negative real

parts, this method may be used to calculate the intracavity

spectra via

SðωÞ ¼ ðAþ iω1Þ−1DðAT
− iω1Þ−1; ð8Þ

from which the output spectra are calculated using the

standard input-output relations [32] and 1 is the 6 × 6

identity matrix. Note that the procedure for obtaining the

matrix SðωÞ by the Fourier transform of the two-time

covariance matrix is fully covered in Ref. [31], having been

originally developed for stochastic analysis of chemical

reactions by Chaturvedi et al. [33].

In this case the semiclassical equations found by

removing the noise terms from Eq. (5) are difficult to

solve analytically, requiring the solution of a fifth-order

polynomial. For this reason, we will proceed numerically in

what follows. A is found as

A ¼

2

6

6

6

6

6

6

6

6

6

4

γ0 0 κα2 0 κα1 0

0 γ0 0 κα�
2

0 κα�
1

−κα�
2

0 γ1 0 0 −κα0

0 −κα2 0 γ1 −κα�
0

0

−κα�
1

0 0 −κα0 γ2 0

0 −κα1 −κα�
0

0 0 γ2

3

7

7

7

7

7

7

7

7

7

5

; ð9Þ
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and D is a 6 × 6 matrix with

Dð3; 5Þ ¼ Dð5; 3Þ ¼ κα0;

Dð4; 6Þ ¼ Dð6; 4Þ ¼ κα�
0
; ð10Þ

and all other elements are zero. In the above two equations,

the αj should be read as the steady-state mean values, so

that α�j ¼ αþj . These are now complex numbers that are the

averages of the positive-P stochastic variables. Because we

have parametrized our system using γ1 ¼ 1, the frequency

ω is in units of γ1. SðωÞ is now in terms of quadratic

products of the fluctuation operators. To express it in terms

of the canonical quadratures, we calculate

SqðωÞ ¼ QSQT ; ð11Þ

where Q is the block diagonal 6 × 6 matrix constructed

from

q ¼
�

1 1

−i i

�

: ð12Þ

SqðωÞ then gives us the products we require to construct the
output spectral variances and covariances for modes i and j
as, for example,

VðXi; XjÞ ¼ δij þ
ffiffiffiffiffiffiffiffi

γiγj
p ðSq

2i−1;2j−1 þ S
q
2j−1;2i−1Þ: ð13Þ

It is important to note here that this process is not valid if

the eigenvalues of A have any negative real parts, which is

not the case for any of the results presented.

In order to show EPR steering, we use the Reid criterion

[11], for which the product of two inferred quadrature

variances being less than 1 proves the existence of the

EPR paradox for that particular bipartition. The inferred

variances are found as

V infðX̂ijÞ ¼ VðX̂iÞ −
½VðX̂i; X̂jÞ�2

VðX̂jÞ
;

V infðŶijÞ ¼ VðŶiÞ −
½VðŶi; ŶjÞ�2

VðŶjÞ
; ð14Þ

where VðABÞ ¼ hABi − hAihBi and V infðAijÞ denotes the
variance of Ai as inferred by measurements made of Aj.

When the product of these two inferred variances is less

than 1, mode i can be steered by measurements made at

mode j, and the EPR paradox is demonstrated for these two

modes. We will use EPRjk as the product of the X̂jk and Ŷjk

inferred variances. The directionality of the paradox is

recognized in the fact that EPRjk, where mode j is steered

by measurements of mode k, is not always equal to EPRkj.

The situation where one of these is less than 1 while the

other is more than 1 is known as Gaussian asymmetric

steering. We note that our quadrature definitions are

X̂j ¼ âj þ â†j and Ŷj ¼ −iðâj − â†jÞ. Because the EPR

steerable states are a strict subset of the entangled states,

both symmetric and asymmetric steering demonstrate that

the two modes concerned are fully bipartite entangled.

We find that the presence or otherwise of asymmetric

steering between the three output modes can be controlled

by the simple mechanism of altering the amplitude of ϵ1,

the injected signal. This can be seen in Fig. 1, where EPR01

is less than 1 across the whole range shown, while EPR10

only drops below 1 for ϵ1 ≳ 1.28ϵ0. For this result the

mirror loss rates at all frequencies are equal. Controlling the

signal amplitude is perhaps the simplest change that can be

made to a nondegenerate parametric oscillator, and should

be easier than dynamically changing mirror reflectivities or

detunings. A large degree of symmetric violation of the

Reid inequalities for the two down-converted modes is

available across much of the range for these parameters,

with asymmetric steering only appearing when the actual

steering is negligible. We did not find any steering

involving the pair of fields at ω0 and ω2, for the whole

parameter range investigated.

It is also worthwhile to investigate the effects of different

cavity loss rates on these phenomena. In practice, mirror

losses can be either frequency dependent or polarization

dependent. When we double the loss rates for the down-

converted modes, while leaving that at ω0 unchanged, we

see no change from symmetric to asymmetric steering over

the range of signals investigated. As shown in Fig. 2, the

pair (1,2) exhibits symmetric steering across the whole

range, while (0,1) exhibits asymmetric steering.

A different example is the case where the injected field

experiences a lower damping rate, as shown in Fig. 3,

1
/

0

0 0.5 1 1.5 2

E
P

R
ij

0

0.2

0.4

0.6

0.8

1

1.2

EPR
01

EPR
10

EPR
12 EPR

21

FIG. 1. The minima of the spectral EPRij output correlations

between the modes 0 and 1, and 1 and 2, as a function of the ratio

of the injected signal to the pump amplitude at ω0. γ0 ¼ γ1 ¼
γ2 ¼ 1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100. All quantities

plotted in this Letter are dimensionless.
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where γ0 ¼ γ2 ¼ 1 ¼ 2γ1. In this case we see a clear

crossover for both bipartitions, at ϵ1 ≈ 0.78ϵ0, with (0,1)

being asymmetric below this, and (1,2) asymmetric above.

We show the positive frequency spectra for this example in

Fig. 4, from which the symmetry and asymmetry of the

different bipartitions can be seen.

In the normal nondegenerate OPO below threshhold, the

down-converted fields have no coherent component and

no fixed phase. This is no longer the case with an injected

field at ω1, which sets a phase reference and thus gives a

coherent component to both low frequency fields. In our

case, we have treated both input fields as real and positive

so that the intracavity fields in the resonant case are also real

and positive. The fields have a bright coherent component, as

can be seen in Fig. 5, for γ2¼ γ0¼1¼2γ1. Although not

easily seen in the figure, α1 ¼ α2 ¼ 0 for ϵ1 ¼ 0 and in the

noninjected case would maintain this value up to the

oscillation threshold.

In the three parameter regimes presented here, there is

always at least one bipartition available that exhibits

symmetric steering across the whole range ϵ1=ϵc that has

been investigated. In Fig. 1 we find a region where only one

bipartition has symmetric steering, and one where both do,

although the degree of violation of the inequality by EPR12

is small for larger ϵ1. In Fig. 2, we see there is always

one symmetric pair and one asymmetric pair, with these

swapping roles at the same value of injected signal. The

ability to choose the mode of operation adds flexibility to

this scheme and may well have practical applications,

beyond being of fundamental interest.
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FIG. 2. The minima of the spectral EPRij output correlations

between the modes 0 and 1, and 1 and 2, as a function of the ratio

of the injected signal to the pump amplitude at ω0. γ1 ¼ γ2 ¼
2 ¼ 2γ0 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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FIG. 3. The minima of the spectral EPRij output correlations

between the modes 0 and 1, and 1 and 2, as a function of the ratio

of the injected signal to the pump amplitude at ω0. γ2 ¼ γ0 ¼
1 ¼ 2γ1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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FIG. 5. The steady-state mode amplitudes as a function of the

ratio of the injected signal to the pump amplitude. γ2 ¼ γ0 ¼
1 ¼ 2γ1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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FIG. 4. The positive frequency spectral EPRij output correla-

tions between the modes 0 and 1, and 1 and 2, for ϵ1 ¼ 50.

γ2 ¼ γ0 ¼ 1 ¼ 2γ1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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In conclusion, we have proposed a versatile and simple

to operate means of producing tuneable symmetric and

asymmetric steering between either modes of similar

frequencies, or modes that are up to one octave apart in

frequency. Optical parametric oscillators are a mature

technology, as is homodyne detection. The addition of a

controllable input signal to an operating OPO is simplified

by the fact that pumping lasers are often the result of

frequency doubling from another laser output, meaning

that a field at the appropriate frequency is already available.

The control of the steering direction in this scheme is

inherent to the apparatus itself, and does not depend on

noise being added after the nonlinear interaction, as in

previous proposals.
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