
Controlled Bidirectional Grammars

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit Twente, op gezag van de rector
magnificus prof.dr.ir. J.H.A. de Smit volgens be-
sluit van het College van Dekanen in het open-
baar te verdedigen op vrijdag 31 augustus 1990
te 16.00 uur

door

Jan Anne Hogendorp

geboren op 22 juni 1958 te Wommels

Dit proefschrift is goedgekeurd door

Prof.dr.ir. A. Nijholt promotor,
Prof.dr.ir. L.A.M. Verbeek promotor, en
Dr.ir. P.R.J. Asveld assistent-promotor.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Hogendorp, Jan Anne

Controlled bidirectional grammars / Jan Anne Hogendorp. -
[S.l. : s.n.]. − Ill.
Proefschrift Enschede. − Met lit. opg. − Met samenvatting
in het Fries en Nederlands.
ISBN 90-9003620-2
SISO 805 UDC 801.5
Trefw.: grammatica / formele talen.

 1990 Jan Anne Hogendorp, Enschede, the Netherlands

print: FEBO drukkerij Enschede

oan myn âlden

Preface

Most grammar models contain a set of rewriting rules of some kind, e.g.
string-rewriting rules or term-rewriting rules. These rules are applied in one
direction only. Usually, in a grammar two or more alphabets are dis-
tinguished. In general the language generated by a grammar is defined as the
set of words (over some distinguished alphabet) that can be obtained by
applying the rewriting rules in a unidirectional way, starting from some
designated symbol, the start symbol.

In a Thue system the rules are applied in both directions. However, a
Thue system possesses a single alphabet. And there is no standard definition
of the language associated with a Thue system.

Therefore it seemed interesting to study grammar models in which the
rewriting rules can be applied in both directions, while maintaining the clas-
sical language definition. In this thesis we investigate such bidirectional
variants of context-free grammars (Chapters II-IV) and (extended) linear
basic grammars (Chapters V-VI). We focus attention to closure properties,
grammatical transformations (that result in a weak Chomsky normal form),
parsing algorithms, and determining the language generating power of these
grammatical models.

Another motive for studying bidirectionality in grammar models stems
from NTS or nonterminal separating grammars − one of the most well-
known types of grammar that satisfies the “disjunct syntactic categories pro-
perty”. NTS grammars are based on context-free grammars and on the con-
cept of bidirectionality. It is straightforward to extend the NTS definition to
macro grammars; cf. Appendix A.

Our main results are in Chapters II-VI. They are preceded by an Intro-
duction (Chapter I) and followed by Chapter VII which consists of conclud-
ing remarks and a few areas of computer science in which our results may be
applied.

The subject of this thesis is rather new and − in our opinion − it consti-
tutes an interesting way of specifying languages. Therefore, there are at this
moment more open questions than results. Particularly, the need of applica-
tions is conspicuous.

v

Acknowledgements

I am indebted to Peter Asveld for his contribution to both content and form
of this thesis. His criticism, knowledge and ideas were of great value to me.
Thanks are due to Anton Nijholt and Leo Verbeek for reading the
manuscript and for their constructive remarks. I also want to thank Henk
Alblas for his participation in the begeleidingscommissie.

I am grateful to Rieks op den Akker for some discussions on a few
topics in this thesis. Thanks also to the members of the vakgroepen TIF and
SETI for a nice working atmosphere. In this respect I like to mention Char-
lotte Bijron, Maarten Fokkinga, Thérèse ter Heide-Noll, Alice Hoogvliet-
Haverkate, Jan Kuper and Joke Lammerink, and, last but not least, my room-
mates Jan Molenkamp, Paul Oude Luttighuis and Gert Veldhuijzen van Zan-
ten.

The research resulting in this thesis has been made possible by a grant
(nr. 612-316-012) from the Netherlands Organization of Scientific Research
(NWO), to which I am grateful. I also thank the Department of Computer
Science of the University of Twente for its additional support.

vi

C o n t e n t s
hh

Chapter I −− Introduction
1 Specifying Formal Languages 1
2 Preliminaries 4

2.1 Rewriting Systems 4
2.2 Thue Systems 6
2.3 NTS Grammars 9
2.4 Macro Grammars 11

3 Regularly Controlled Bidirectional Grammars 14
3.1 Control on Grammars and Rewriting Systems 14
3.2 Modes of Derivation for RCB Grammars 18
3.3 RCB Extended Linear Basic Grammars 22

4 Outline of Chapters II−VII 27
4.1 Regularly Controlled Bidirectional Grammars 27
4.2 Time-Bounded Regularly Controlled Bidirectional Grammars 29
4.3 Generating Power of RCB/RA Grammars 30
4.4 Regularly Controlled Bidirectional Extended Linear Basic Grammars 31
4.5 Regularly Controlled Bidirectional Linear Basic Grammars 31
4.6 Concluding Remarks 32
4.7 Historical Remarks 32

Chapter II −− Controlled Bidirectional Grammars
1 Introduction 33
2 Definitions and Examples 34
3 Closure Properties 38
4 Grammatical Transformations 43
5 Linear and Left-Linear RCB Grammars 48
6 Arbitrary Families of Control Languages 51

Chapter III −− Time-Bounded Controlled Bidirectional Grammars
1 Introduction 55
2 Definitions, Examples and Elementary Properties 56
3 Closure Properties and Normal Form 60
4 Parsing λRCB Languages 65
5 Concluding Remarks 73

Chapter IV −− Generating Power of RCB/RO Grammars
1 Introduction 77
2 Preliminaries 78
3 The Main Result 79
4 Time-Bounded λ-free RCB Grammars 84
5 Modes of Derivation 85
6 Concluding Remarks 87

vii

viii Contents

Chapter V −− Regularly Controlled Bidirectional Extended Linear Basic
Grammars
1 Introduction 89
2 Regularly Controlled Bidirectional (m,K)-elb Grammars 90
3 Properties of RBLBr, f, m(K) Languages 96
4 Generating Power of (r, f, m,REG,K)-belb Grammars 108
5 Free Rewriting of Nonterminals and Language Names 116
6 Concluding Remarks 123

Chapter VI −− Regularly Controlled Bidirectional Linear Basic Grammars
1 Introduction 125
2 Regularly Controlled Bidirectional Linear Basic Grammars 126
3 Generating Power 130
4 Concluding Remarks 133

Chapter VII −− Conclusions and Suggestions for Further Research
1 Conclusions 135
2 Suggestions for Further Research 136

2.1 Application of Thue System Theory to RCB Grammars 137
2.2 Fair NTS Grammars 141
2.3 Applications 142

Appendix A −− Nonterminal Separating Grammars
1 Introduction 147
2 Preliminaries 147

2.1 UNR-Macro Grammars 147
2.2 The NTS Property for Context-Free Grammars 149

3 The NTS Property for Macro Grammars 150
3.1 Definitions 150
3.2 Properties of NTS Macro Grammars 151
3.3 The Pre-NTS Property for Macro Grammars 153

4 Concluding Remarks 155

References 157

Gearfetting 163

Samenvatting 165

CHAPTER I

Introduction

1. Specifying Formal Languages

Formal language theory deals with languages and with devices which
represent languages in a finite fashion. A language is a set of words over
some alphabet. By an alphabet we mean a finite set of symbols. A word
over an alphabet Σ is an element of the free monoid Σ∗ generated by Σ under
concatenation, and with the empty word, denoted by λ, as its two-sided iden-
tity. A word is also called a string.

We can distinguish two methods to specify a language. The first
method describes how words ought to look like in order to belong to the
language. Such a property specification can be stated in first-order predicate
logic and will be algebraic and “static” of nature. For example, we can
describe the language of “doubled sentences” or “copies” over the alphabet
Σ by L 0 = {x c x = ww, w ∈Σ ∗ }, which can be shortened to {ww c w ∈Σ ∗ }.

However, formal language theory is much more concerned with
another, second method of specifying languages. Instead of giving a
description, one can introduce a device that determines a language in an
active way. The active part of such a device uses rewriting rules. A rewrit-
ing rule, which is an ordered pair of words, tells us how to obtain one string
from another. The rewriting of a given word to another by a rewriting rule is
called the application of that rewriting rule to the given word. For example,
the rewriting rule (aa,ab) rewrites aaab into abab or aabb. A rewriting sys-
tem over some alphabet is a set of rewriting rules. Thus a rewriting system
is in fact a relation over the set of words over some alphabet.

We can define a language by means of a rewriting system either in a
generating or in an accepting way. In the resulting generating device we
start from a given set of initial words. The language generated by such a
device consists of all words which can be obtained by the successive appli-
cation of zero or more rewriting rules to some initial word. On the other
hand, an accepting device has, apart from rewriting rules, a set of halting
words. The language accepted − or recognized − by an accepting device is
the set of all words which can yield some halting word by successively

2 Chapter I

applying (zero or more) rewriting rules.

Intuitively, these concepts of generating and accepting seem to be dual
to each other. Indeed, these concepts can be defined without much effort
such that the language associated with an accepting device equals the
language produced by a corresponding generating device of which the set of
initial words is equal to the set of accepting words. This generating device
has as its set of rewriting rules the (set-theoretical) converse of the set of
rewriting rules of the accepting device. (Remember that a rewriting system
over Σ is some relation over Σ∗). Then the dual proposition, replacing
“accepting” by “generating” and “initial” by “halting” and vice versa, also
holds.

Rewriting systems are applied in many areas of computer science. For
instance programming languages, parsing theory, specification languages
etcetera. In most of these cases the unidirectional character of rewriting
gives sufficient power to be useful in these areas. For instance, there is a
huge amount of theory on phrase-structure grammars, finite state automata,
Turing machines, etcetera, each of which can be considered as a particular
type of rewriting system. However, in fields like theorem proving and pro-
gram transformation there is a need to use rewriting rules in a reversed way
too. This can be obtained by joining together a set of rewriting rules and its
converse. The resulting system is a Thue system [Thu]. In fact, in a Thue
system it is not necessary to add for each rewriting rule (u,v) its inverse
rewriting rule (v,u) because the latter is assumed to be available in a Thue
system. Therefore, a rewriting system is sometimes called a semi-Thue sys-
tem. So, in a Thue system T the rewriting of a string w is performed by
applying a rewriting rule (u,v) in T or its inverse (v,u).

A Thue system induces an equivalence relation as follows. Two words
are equivalent by the Thue system T if they can be rewritten into each other
by the rewriting rules of T. Actually, this is a congruence relation with
respect to concatenation. A word z is a reduct of a word x in case z is
obtained from x by applying only length-decreasing rewriting rules, i.e.,
rewriting rules (u,v) in T with c u c > c v c . A word is irreducible if no length-
decreasing rewriting rule is applicable to it. A Thue system T is called finite
if T is a finite set.

In the theory of Thue systems a traditional topic is the so-called word
problem. This is the problem of deciding whether or not two words over the
alphabet are equivalent with respect to the rewriting rules of the Thue sys-
tem. The study of Thue systems is also motivated by regarding Thue sys-
tems as an instrument to define formal languages. A Thue system has the
Church-Rosser property if each two equivalent words have a common

Introduction 3

unique irreducible reduct. Thue systems obeying the Church-Rosser pro-
perty received − and still receive − a lot of attention. The main reason is that
congruence classes of finite Church-Rosser Thue systems − i.e., finite Thue
systems which have the Church-Rosser property − are languages recogniz-
able by a deterministic linear-bounded automaton. This is the approach
taken by Nivat and others in the 1960s and 1970s; cf. [Niv, Ber].

If we define languages by Thue systems analogously to the way in
which we define languages by rewriting systems, then we cannot distinguish
between the generating and the accepting way of defining languages, due to
the bidirectional character of Thue systems. However, in this thesis we
study Thue systems of a special kind, which we call bidirectional grammars.
A bidirectional grammar is a generating device obtained by taking the set of
productions of a context-free grammar as the defining set of rules for a Thue
system. Then we define languages analogously to the case of phrase-
structure grammars; i.e., we derive sentential forms starting from an initial
symbol (or a set of initial words) by applying productions and their
corresponding inverse productions, called reductions. The generated
language is defined as the set of sentential forms over a terminal alphabet.

Bidirectional grammars happen to be powerful generating devices.
Therefore we restrict their power in a natural way. Essentially, this restric-
tion consists of two parts. First, we use a control language over the rules −
i.e., over the productions and reductions − and secondly, we attach a selec-
tion mechanism to a bidirectional grammar such that a rule can be applied to
at most one substring of a sentential form. The introduction of a control
language will in fact increase the generating power of bidirectional gram-
mars. However, it also turns out to be an enormous help in establishing vari-
ous theorems concerning (controlled) bidirectional grammars. In addition, it
emphasizes the generative character of bidirectional grammars.

The remaining part of this chapter is organized as follows. In Section
2 some technical preliminaries are introduced, in order to make this thesis
self contained. Most concepts introduced in this section such as rewriting
systems, Thue systems, and macro grammars, are well known, and they are
recalled here to establish our notation. However, the concept of NTS gram-
mar (or nonterminal separating grammar) may need some more attention.

In Section 3 we introduce the concept of regularly controlled bidirec-
tional grammar, based on either context-free or on macro grammars. In Sec-
tion 4 Chapters II−VII are outlined.

4 Chapter I

2. Preliminaries

In this section we first consider rewriting systems and Chomsky grammars
(§2.1). Then we recall the basic concepts related to Thue systems (§2.2).
Finally, we discuss nonterminal separating − or NTS − grammars (§2.3) and
macro grammars (§2.4) in somewhat more detail.

2.1. Rewriting Systems

Definition 2.1.1. A rewriting system R on the alphabet Ξ is a set of rewrit-
ing rules. A rewriting rule is an ordered pair (u,v) in Ξ∗ × Ξ∗ . A rewriting
rule or production (u,v) acts in one direction only, i.e., an occurrence of u in
a string may be rewritten to v but not vice versa. The derivation relation ⇒ R

∗

(or ⇒ ∗ if R is known from the context) is the transitive and reflexive closure
of the single-step or direct derivation relation ⇒ R (or ⇒) defined by

⇒ R = {(x,y) ∈Ξ ∗ × Ξ∗ c ∃ (u,v) ∈ R, ∃ w 1 ,w 2 ∈Ξ ∗ . x = w 1uw 2 ∧ y = w 1vw 2}.

`

A rewriting system can be used in two ways. One way is to define a
language to be the set consisting of all words over a given alphabet which
can be rewritten to a given word (or to a member of a given set of words). A
word may initially be concatenated with some additional words before the
actual rewriting starts; cf. Example 2.1.3. A device of this kind is called a
recognition device. The other, dual, method is to define a language by the
set of all words over a given alphabet Σ (Σ ⊆ Ξ) that can be obtained by start-
ing from a given word (or a given set of words) and then applying zero or
more rewriting rules. This kind of device is called a generative device or
grammar. Each string obtainable from the starting word (or set of words) is
called a sentential form. By a sentence we denote a sentential form in which
only symbols from Σ occur. This approach resulted, among others, in the
notion of phrase-structure grammar and related grammatical models by
Chomsky in [Cho56, Cho59].

Definition 2.1.2. A phrase-structure grammar G is a 4-tuple (V, Σ,P,S),
where

g V − the vocabulary − and Σ − the terminal alphabet − are finite alpha-
bets with Σ ⊆ V. The elements of V − Σ and Σ are called nonterminals
and terminals, respectively.

g The start symbol S is an element of V − Σ.

g P is a finite set of ordered pairs in (V ∗ − Σ∗) ×V ∗ . Elements of P are
called productions.*

hhhhhhhhhhhhhhhh
* Productions are also called rules. But in the sequel we will use the word “rule” in a

Introduction 5

The language L (G) generated by G is defined by

L (G) = {w ∈Σ ∗ c S ⇒ ∗ w},

where ⇒ ∗ is the derivation relation associated with the rewriting system P
on V. It is a well-known fact that the family of languages generated by
phrase-structure grammars equals the family of recursively enumerable
languages. `
Example 2.1.3. A finite state automaton M = (Q, Σ,δ,q 0 ,F), where

− Q is the finite set of states,

− Σ is the input alphabet,

− q 0 is the initial state (q 0 ∈ Q),

− F is the set of accepting states (F ⊆ Q),

− δ: Q × Σ → Q is transition function,

is usually defined as a machine that accepts the language

L (M) = {w ∈Σ ∗ c δ ′(q 0 ,w) ∈ F},

where δ ′ : Q × Σ∗ → Q is the extension of δ defined for all q in Q by

δ ′(q, λ) = q,

δ ′(q,a) = δ(q,a),

δ ′(q,as) = δ ′(δ (q,a),s),

with a ∈Σ and s ∈Σ ∗ ; cf. [Har] for details. However, M may also be con-
sidered as a rewriting system; particularly, as a recognition device. Then the
language accepted by M is defined by

L (M) = {w ∈Σ ∗ c q 0w ⇒ ∗ q, q ∈ F},

where ⇒ ∗ is the derivation relation associated with the rewriting system P
on Q ∪ Σ . The set of rewriting rules P is formed by

{(pa,q) c δ (p,a) = q, p,q ∈ Q, a ∈Σ }. `

Example 2.1.4. The dual concept of a phrase-structure grammar is the
analytical grammar, introduced by Salomaa [Sal73], which is another exam-
ple of a recognition device. It is a 4-tuple (V, Σ,P,S) which differs from the
4-tuple defined in Definition 2.1.2 in the definition of P, which now is a
finite subset of V ∗ × (V ∗ − Σ∗). An analytical grammar G = (V, Σ,P,S)
possesses an underlying rewriting system P on V which induces the relations
⇒ , i.e., one-step derivation and ⇒ ∗ , the reflexive and transitive closure of
hhhhhhhhhhhhhhhh
different way.

6 Chapter I

⇒ . The language L (G) recognized by the analytical grammar G is defined
by

L (G) = {w ∈Σ ∗ c w ⇒ ∗ S}.

It is easy to show [Sal73] that phrase-structure grammars and analyti-
cal grammars are equivalent with respect to descriptive power, i.e., for each
phrase-structure grammar G0 we can find an analytical grammar G1 such
that L (G0) = L (G1) and vice versa. `

Example 2.1.5. A context-sensitive grammar is a phrase-structure grammar
G = (V, Σ,P,S) in which each production is of the form (α A β,α u β), where
α,β ∈ V ∗ , A in V − Σ and u ∈ V + with the possible exception of the production
S → λ. However, if this production does occur in P, the symbol S does not
occur in the right-hand side of any production in P. A language L 0 is called
context-sensitive if there exists a context-sensitive grammar G such that
L 0 = L (G). We denote the family of context-sensitive languages by CSL. `

2.2. Thue Systems

Rewriting systems, and consequently the derived generative and analytical
grammars, act into one direction, i.e., given a rewriting rule (u,v) we cannot
rewrite a substring v of a word w to u, unless the rewriting rule (v,u) is an
explicit element of the rewriting system too. And in case of generative and
analytical grammars, adding such reversed rewriting rules is simply not
allowed for each rule, due to the definition of their respective set of rewriting
rules. The extension of such unidirectional devices to their corresponding
bidirectional variants is a natural one, and in case of rewriting systems this
leads to the concept of the well-known Thue system, named after the
Norwegian mathematician and logician Axel Thue, who studied such sys-
tems at the beginning of the twentieth century [Thu]. Thue systems were
one of the first known systems in which rewriting of strings of symbols was
the main objective of research, long before the advent of Chomsky’s gram-
matical model.

Definition 2.2.1. A Thue system T on the alphabet Ξ is a set of ordered pairs
(u,v) of strings over Ξ. If Ξ is known from the context, we can denote a
Thue system by its set of rewriting rules T. We can rewrite a string w by
(u,v) in T if either u or v occurs in w and then the result of rewriting w is the
string w ′ obtained from w by replacing an occurrence of the string u [or v,
respectively] by the string v [u, respectively]. Then we write w ⇔Tw ′. `

Remark that ⇔T is a relation on Ξ∗ . Moreover, note that a rewriting
system R on Ξ induces a Thue system on Ξ, in the sense that the rewriting
system R ∪ R

hh
on Ξ, where R

hh
is defined by R

hh
= {(v,u) c (u,v) ∈ R}, (or, in

Introduction 7

other words, R
hh

is the converse of R) is strongly equivalent to the Thue sys-
tem R on Ξ. A rewriting system R is strongly equivalent to a Thue system T
if

(i) for each rewriting rule (u,v) in T both (u,v) as well as (v,u) is in R, and

(ii) for each rewriting rule (u,v) in R either (u,v) or (v,u) is in T.

The alternative name of semi-Thue system for a rewriting system stems
from this observation. In turn, a Thue system T on Ξ induces two rewriting
systems T and T

h
(both on Ξ). Observe that the derivation relation of the

rewriting system T
h
, denoted by ⇐ T

∗ , is the converse of the derivation relation
⇒ T

∗ of the rewriting system T. In addition, by ⇔T
∗ (or ⇔∗ when T is under-

stood) we denote the derivation relation of the Thue system T. The relation
⇔T

∗ is the reflexive and transitive closure of ⇔T . Note that ⇔T
∗ equals the

corresponding relation for T
h
. This derivation relation ⇔T

∗ is a congruence
relation on Ξ∗ with respect to concatenation. We denote the congruence
class (modulo T) of a word x by

[x]T = {w ∈Ξ ∗ c x ⇔T
∗ w}.

A rewriting rule (u,v) in T is called length-decreasing if c u c > c v c .
Define the set of descendants of a word x by

∆T
∗ (x) = {w ∈Ξ ∗ c x ⇒ T

∗ w}.

For a language L 0 ⊆ Ξ ∗ , we define ∆T
∗ (L 0) = ∪ {∆T

∗ (x) c x ∈ L 0}. Define the
relation →T on Ξ∗ × Ξ∗ by x →T y if x ⇔Ty and c x c > c y c . Then x is irredu-
cible (modulo T), if there is no y such that x →T y. The set IRR (T) denotes
the set of irreducible words over Ξ by T. The domain and range of a Thue
system are defined by dom (T) = {u c ∃ v . (u,v) ∈ T} and range (T) =
{v c ∃ v . (u,v) ∈ T}, respectively.

A Thue system T is called monadic, if each (u,v) in T is length-
decreasing and range (T) ⊆ Ξ ∪ {λ}, i.e., c v c ≤ 1. A monadic Thue system T
is special if for each rule (u,v) in T, we have that v = λ.

Example 2.2.2. Consider the Thue system T = {(baa,ab)} on {a,b}. Let
L 0 be the regular set {b}{a}∗ . Then the descendants of L 0 by the rewriting
system T are given by

∆T
* (L 0) = {a nba m −2n c 0 ≤ 2n ≤ m},

and the irreducible words of the Thue system T are given by the set
IRR (T) = {a}∗ {b,ba}∗ . Then we have

∆T
* (L 0) ∩ IRR (T) = {a nb, a nba c n ≥ 0}. `

8 Chapter I

Nowadays, Thue systems still obtain widely attention from computer
scientists, algebraists and logicians; cf. [Boo87] for an overview. Thue sys-
tems can be used in various ways to define formal languages; cf. [Boo82,
BooJanWra, McNNarOtt].

In a bidirectional grammar based on a (well-known) unidirectional
grammar of some type, the set of rewriting rules is also formed by the union
of the set of productions P of the unidirectional grammar (called the under-
lying grammar) and its converse P

hh
. In the sequel we call an element of P

hh
a

reduction and an element of P ∪ P
hh

a rule. The extension of the concept of
phrase-structure grammar (or, equivalently, analytical grammar) to the
bidirectional case has obtained little attention. This can be explained by the
fact that even restricted subclasses of the set of phrase-structure grammars
give rise to a dramatic growth of generating power, when extented in the
bidirectional way. As an example we consider the case of context-free
grammars.

Definition 2.2.3. A context-free grammar is a phrase-structure grammar
G = (V, Σ,P,S) which obeys the additional restriction P ⊆ (V − Σ) ×V ∗ . A
production of the form (A,w), with A ∈ V − Σ and w ∈ V ∗ , is called a context-
free production. A context-free grammar with initial set M is like a
context-free grammar a 4-tuple G = (V, Σ,P,M), where M is a language. The
language generated by the context-free grammar with initial set M, G =
(V, Σ,P,M) is defined by

L (G,M) = {w ∈Σ ∗ c ∃ α ∈ M . α ⇒ ∗ w}.

Note that we can also define L (G) by L (G) = L (G, {S}). In addition,
CFL denotes the family of context-free languages. `

In the sequel we will apply the convention of denoting a rewriting rule
(u,v) in a rewriting system R by u →Rv. Moreover, a rewriting rule (u,v) in
a Thue system will T be denoted by u ↔Tv. As usual, the subscripts R and T
can be omitted if they are known from the context.

Example 2.2.4. Consider the bidirectional context-free grammar G =
(V, Σ,P,S), where V = {A,B,D,E,S,a,b,c}, Σ = {a,b,c}, and P consists of

π0 = S → abc, π4 = B → bDbc,
π1 = S → abDSc, π5 = B → bbc,
π2 = A → bDa, π6 = E → bDbb,
π3 = A → abD, π7 = E → bbb.

We note that, when considered as a unidirectional context-free gram-
mar, G is not reduced, i.e., there are nonterminals (viz. A, B, and E) which
will never occur in some unidirectional derivation from S, and there are also

Introduction 9

nonterminals (viz. A and D) for which there is no derivation which yields a
terminal string. In fact, the language generated by the unidirectional gram-
mar G is equal to {abc}.

We will show that G, considered as a bidirectional context-free gram-
mar, generates {a nb nc n c n ≥ 1}. First, a sentential form (abD)nabcc n (n ≥ 0)
is generated. To this string are applicable the sequences π

h
2π3 and π

h
0π1 . By

π
h

2π3 a terminal b is moved to the right side of a terminal a. If π
h

4 becomes
applicable, followed by π5 , then the second terminal b from the right side of
the sentential form has been put at its right position. In addition, the
sequence π

h
6π7 becomes applicable in case a terminal b has been moved by

several applications of sequences π
h

2 π3 to the right side, until it encounters −
only separated by a nonterminal D − his colleague terminals b which are
already at their right position. For instance, a derivation of a 4b 4c 4 may be
performed as follows.

S ⇒ π1
2

abDabDScc ⇒ π0 abDabDabccc ⇒ π
h

2π3 aabDbDabccc

⇒ π
h

0 aabDbDScc ⇒ π1 aabDbDabDSccc⇒ π0 aabDbDabDabcccc

⇒ π
h

2π3 aabDbDaabDbcccc⇒ π
h

4π5 aabDbDaabbcccc

⇒ (π
h

2π3)4

aaaabDbDbbcccc⇒ (π
h

6π7)2

aaaabbbbcccc `

2.3. NTS Grammars

In [Boa] it was shown that the family of languages generated by bidirec-
tional context-free grammars with initial context-free language − thus apply-
ing the context-free productions in both a productive as well as in a reduc-
tive fashion, starting from a context-free initial set − equals the family of
recursively enumerable languages. In the unidirectional case we have that
the family of languages generated by context-free grammars with initial
context-free language equals the family of context-free languages.

However, in the same paper Boasson introduces an interesting type of
grammar, involving bidirectional rewriting. He defines a subfamily of the
family of context-free languages, the family of the so-called nonterminal
separating or NTS languages, as follows. Let G be a context-free grammar
(V, Σ,P,S). Denote by ⇒ ∗ the (usual) derivation relation on V ∗ defined by
P. We construct a Thue system on V induced by P by taking the set of
rewriting rules equal to P. For each set of nonterminals M ⊆ V − Σ the fol-
lowing sets are defined.

g Denote the set of words over Σ derivable from M by G as

L (G,M) = {w ∈Σ ∗ c ∃ A ∈ M . A ⇒ P
∗ w}.

10 Chapter I

Note that this set equals the language generated by the context-free
grammar with initial set M.

g The set of sentential forms generated by G from M is denoted by

Lii(G,M) = {ω ∈ V ∗ c ∃ A ∈ M . A ⇒ P
∗ ω}.

g The set of words over V derivable from M by the Thue system P, i.e.,
by both productions and corresponding reductions, equals

LRiii(G,M) = {ω ∈ V ∗ c ∃ A ∈ M . A⇔P
∗ ω}.

If M equals a singleton set {A}, then we write L (G,A), Lii(G,A), and
LRiii(G,A), respectively.

A context-free grammar is called nonterminal separating (or NTS) if
for each A in V − Σ, we have LRiii(G,A) = Lii(G,A). A context-free language
L 0 is NTS if there exists an NTS grammar G = (V, Σ,P,S) and a set M with
M ⊆ V − Σ, such that L 0 = L (G,M). In that case we write G = (V, Σ,P,M)
rather than G = (V, Σ,P,S). NTS languages are congruential and acceptable
by a deterministic pushdown automaton [BoaSén]. A language L 0 over Σ is
congruential if L 0 is the union of congruence classes generated by some
congruence over Σ with respect to concatenation. In fact, in an NTS gram-
mar G = (V, Σ,P,M) for each A ∈ V − Σ the language L (G,A) is a congruence
class induced by a finitely generated congruence over Σ, which is induced in
its turn by G; cf. [BoaSén] for details. An NTS grammar G has the property
that for each two nonterminals A and B, either L (G,A) ∩ L (G,B) = ∅ or
L (G,A) = L (G,B) holds. This latter property, the so-called Disjoint Syntac-
tic Category property (DSC), is also used in texts on (parallel) parsing [Lan].

Example 2.3.1. The language {a nb n c n ≥ 0} is an NTS language. This can
be shown as follows. Consider the context-free grammar G equal to
({S,a,b},{a,b},P,S), where P equals {S → aSb, S → ab}. Then we have
L (G) = L (G,S) = {a nb n c n ≥ 0}. Observe that

Lii(G,S) = L (G,S) ∪ {a nSb n c n ≥ 0}.

Each rule in P ∪ P
hh

is applicable to some ω in Lii(G,S). In each case the
resulting string is in Lii(G,S). Thus LRiii(G,S) = Lii(G,S). `

It is easy to show that the language L 1 = {a nb n c n ≥ 1}∪ {a nb 2n c n ≥ 1}
can be generated by a context-free grammar that possesses the DSC pro-
perty. But L 1 is not an NTS language [BoaSén].

From the DSC-property and the fact that NTS languages are deter-
ministic context-free languages one would expect some nice parsing proper-
ties and efficient recognition algorithms based on NTS grammars. However,
the regular language {a}+ can be generated by the NTS grammar

Introduction 11

({A,a},{a},{A → AA, A → a}, A) which hardly possesses any efficient or
elegant parsing properties. For instance, with respect to Earley’s algorithm
[Ear], sentences of this language will be recognized in time proportional to
n 3 . We did not succeed in obtaining particular and interesting parsing pro-
perties for NTS or DSC grammars. So, the question whether there exists
more elegant and efficient parsing strategies for NTS or DSC languages
remains open.

To conclude this section we note an interesting application of the
theory of NTS languages in [FülVág]. In this paper Fülöp and Vágvölgyi
prove that the family of congruential languages coincides with the family of
recognizable tree languages. This theorem was originally stated, without a
proof, by Kozen [Koz]. For additional papers on NTS languages we refer to
[AutBoaSén77, AutBoaSén84, Sén81, Sén85, Sén89, Boo81, Fro].

2.4. Macro Grammars

Apart from bidirectional grammars with an underlying context-free gram-
mar, we can also take other types of grammar as underlying grammar. In
this thesis we also consider bidirectional grammars based on (variants of)
macro grammars.

Macro grammars have been introduced by Fischer in [Fis68a] as a gen-
eralization of context-free grammars. The difference with context-free
grammars is that in a macro grammar we associate with each nonterminal a
nonnegative number of arguments. We take arguments from the set of terms
build up from nonterminals, terminals, and variables. Therefore we can con-
sider a macro grammar as a particular kind of term rewriting system. In
order to define macro grammars in a precise way we use the concepts of
ranked alphabet, and term over a ranked alphabet.

A ranked alphabet ∆ is an alphabet of which each symbol is provided
with a nonnegative integer, called its rank. The ranked alphabet ∆ is parti-
tioned into sets ∆i consisting of those symbols with rank equal to i. Thus
∆ = ∪ ∆i and if i ≠ j, then ∆i ∩ ∆ j = ∅ . Let PC be a set of punctuation sym-
bols, consisting of the left and right parenthesis and the comma symbol.

Definition 2.4.1. Let ∆ be a ranked alphabet. The set T (∆) of terms over ∆
is the smallest set of strings over ∆ ∪ PC such that

(a) ∆0 ∪ {λ}⊆ T (∆);

(b) if t 1 , t 2 ∈ T (∆), then t 1t 2 ∈ T (∆);

(c) if A ∈∆ n and t 1 , . . . ,tn ∈ T (∆), then A (t 1 , . . . ,tn) ∈ T (∆). `

We will write A instead of A () if A has rank zero, thus if A ∈∆ 0 .

12 Chapter I

Definition 2.4.2. A macro grammar G is 5-tuple (Φ,Σ,X,P,S), where Φ is a
ranked alphabet of nonterminals, Σ is an alphabet of terminals, X is a finite
set of variables, and S is an element of Φ0 , called the start symbol. It is
understood that each terminal and variable has rank zero and that the sets Φ,
Σ and X are mutually disjoint. The set P consists of productions which have
the form A (x 1 , . . . ,xn) → t with A ∈Φ n , the variables x 1 , . . . ,xn are distinct
elements of X, and t is an element from T (Σ ∪ {x 1 , . . . ,xn}∪ Φ). `

We need the following terminology to define several modes of deriva-
tion for a macro grammar. A string τ is a subterm of a term σ if τ is a term
and τ is a substring of σ. A subterm τ of σ occurs at top level if there exist
subterms τ1 and τ2 such that σ = τ1τ τ2 . A term over Σ ∪ Φ that is a string
over Σ is an expanded term.

Definition 2.4.3. Let G = (Φ,Σ,X,P,S) be a macro grammar and let σ and τ
be terms over Σ ∪ Φ .

Then we write σ ⇒ OIτ if

g there is a nonterminal A from Φn and terms ξ1 , . . . ,ξn over Σ ∪ Φ such
that A (ξ1 , . . . ,ξn) is a subterm on top level in σ ;

g A (x 1 , . . . ,xn) → t is a production from P ;

g τ is obtained from σ by replacing the designated term A (ξ1 , . . . ,ξn) by
t ′. The term t ′ is the result of substituting the terms ξ1 , . . . ,ξn for
x 1 , . . . ,xn in t, respectively.

The relation ⇒ OI on T (Σ ∪ Φ) represents the OI-derivation mode,
(“outside-in”) which can be considered as expanding macros by outermost
calls first.

Secondly, we write σ ⇒ IOτ if

g there is a nonterminal A from Φn and there are expanded terms
ξ1 , . . . ,ξn over Σ and A (ξ1 , . . . ,ξn) is a subterm of σ ;

g A (x 1 , . . . ,xn) → t is a production from P ;

g τ is obtained from σ in the same way as formulated in the definition of
⇒ OI.

The relation ⇒ IO on T (Σ ∪ Φ) represents the IO-derivation mode,
(“inside-out”) which can be considered as expanding macros by innermost
calls first.

The reflexive and transitive closure of ⇒ OI [⇒ IO] is denoted by ⇒ OI
∗

[⇒ IO
∗ , respectively]. `

An OI-macro [IO-macro] grammar is a macro grammar provided with
the mode of derivation OI [IO, respectively]. In the sequel, m denotes a
mode of derivation. The language Lm(G) generated by an m-macro grammar

Introduction 13

G = (Φ,Σ,X,P,S) is the set {w ∈Σ ∗ c S ⇒ m
∗ w}. The sets OI and IO denote the

families of languages generated by OI and IO-macro grammars, respectively.
It is a well-known fact that OI and IO are incomparable [Fis68a]. Both fami-
lies properly include the family of context-free languages and they are prop-
erly included in the family of context-sensitive languages.

Example 2.4.4. [Fis68a]. Consider the macro grammar G defined by G =
(Φ,Σ,X,P,S), where Φ = {S,A,F,G}, Σ = {0,1,c}, X = {x}, and P consists
of the productions

S → F (A), G (x) → x,
F (x) → F (xA), A → 0,
F (x) → G (x), A → 1.
G (x) → xcG (x),

This macro grammar generates under the OI-mode the language of
equal length substrings, i.e.,

L OI(G) = {w 1cw 2 . . . cwn c wi ∈ {0,1}+, c wi c = m, 1 ≤ i ≤ n, n,m ≥ 1}.

Under the IO-mode the grammar G generates the language

L IO(G) = {w (cw)n c n ≥ 0, w ∈ {0,1}+}. `

A basic term over Σ ∪ Φ is a term in which no nonterminal appears
within an argument list of another nonterminal, i.e., all macros are non-
nested. A linear basic term is a basic term in which at most one nonterminal
occurs. Then a [linear] basic grammar is a macro grammar in which the
right-hand side of each production is a [linear] basic term. As a direct conse-
quence we have that providing linear basic grammars with the OI and IO-
mode of derivation results in two equivalent types of grammars, i.e.,
L OI(G) = L IO(G), where G is a linear basic grammar. So we can speak of
linear basic languages without specifying the mode of derivation. Further-
more, the family of linear basic languages, denoted by LB, is properly
included in OI ∩ IO [Fis68a], and it equals the family of EDTOL (Extended
Deterministic Tabled O Lindenmayer) languages [Dow].

According to Fischer [Fis68a], we can assume that each production in
a linear basic grammar has a special form.

Definition 2.4.5. A linear basic grammar G = (Φ,Σ,X,P,S) is in standard
linear form if each production from P has one of the forms

(i) A (x 1 , . . . ,xn) → B (w 1 , . . . ,wk), or

(ii) A (x 1 , . . . ,xn) → w,

14 Chapter I

where w, w 1 , . . . ,wk are words over Σ ∪ {x 1 , . . . ,xn}. `

Theorem 2.4.6. [Fis68a]. For each linear basic grammar one can con-
struct effectively an equivalent linear basic grammar in standard linear
form. `

It is also possible to define the NTS property and related concepts such
as the DSC property for macro grammars; cf. Appendix A, where also a few
characterization results − similar to those for context-free languages − have
been established.

3. Regularly Controlled Bidirectional Grammars

In this thesis we introduce new grammar models by restricting bidirectional
context-free grammars and macro grammars. These grammar models are
obtained by restricting the set of possible derivations of a bidirectional gram-
mar. This has been inspired by the observation that context-free NTS gram-
mars are in general highly ambiguous. See, e.g. the context-free NTS gram-
mar generating the language {a}+ mentioned above. In addition, we observe
that each context-free grammar is a special kind of macro grammar. There-
fore, in case of bidirectional macro grammars we restrict ourselves to under-
lying macro grammars which are (variants of) linear basic grammars.

In order to decrease the number of derivations, we can modify bidirec-
tional grammars with respect to several aspects. First, we can restrict the set
of subwords of a sentential form that can be rewritten by a rule of the gram-
mar. Secondly, we can prescribe in which order rules ought to be applied,
starting from an initial sentential form. This means that a control mechan-
ism is applied to the derivation of sentences. In that case there is a differ-
ence between whether or not we continue with the next rule designated by
the control mechanism in case the previous rule is not applicable. And
thirdly, we can exclude certain reductions from the set of rules.

3.1. Control on Grammars and Rewriting Systems

First we discuss the notion of control. The idea of controlling the applica-
tion of productions (in a unidirectional grammar) is well known. In order to
refer in an explicit way to productions of a grammar, in many grammar
models in which some control mechanism is used, a unique name or label is
attached to each production.

We can distinguish two main approaches to this subject. In an impli-
citly controlled grammar the control mechanism is incorporated in the pro-
ductions of such a controlled grammar. Contrary to this type of grammar we
have explicitly controlled grammars, in which by a separate language over
labels (or productions) the order of application of the productions is

Introduction 15

specified in advance.

A representative of the former type is found in the programmed gram-
mars, introduced and investigated by Rosenkrantz [Ros]. In a programmed
grammar each (phrase-structure) production is labeled, and with each pro-
duction there are associated two set of labels S and F. After the application
of a production to a sentential form the next production to be applied has to
be chosen from S (for Success). If a production cannot be applied, a label of
a rule to be tried next for application has to be picked from F (for Failure).
In addition, the actual application has to be performed as far as possible to
the left-side of the current sentential form (left-most rewriting).

Other typical examples of implicitly controlled grammars are matrix
grammars [Abr], state grammars [Kas] and ordered grammars [Fri]. Also
indexed grammars [Aho] can be reckoned to this kind of grammar.

However, more abundant in the literature are explicitly controlled
grammars. This may perhaps be explained by the more general approach in
explicitly controlled grammars. An implicitly controlled grammar induces a
subset of words over the set of productions. Due to the specific character of
the particular control mechanism, one can only obtain these subsets that
belong to restricted families of languages. In addition, the motivation for a
particular control mechanism is often rather poor [Kha74a]. In case of expli-
citly controlled grammars one can specify in advance any language family
from which the control language ought to be taken. One example is the con-
trolled grammar introduced and studied by Salomaa in [Sal69, Sal70, Sal73].

In Salomaa’s controlled grammars we use a phrase-structure grammar
G = (V, Σ,P,S) and a control language over the set of productions P. Con-
trol words are interpreted in two ways. In both interpretations each produc-
tion π in a control word ought to be applied. In the first sense, the derivation
is blocked in case this is not possible. Secondly, in a broader sense, if π is
not applicable, then we first check whether πoccurs in a previously specified
checking set F (F ⊆ P). Only if π does, we continue with the next produc-
tion in the control word, otherwise the derivation is blocked. In addition,
there are no restrictions on the choice of which string in a sentential form
ought to be rewritten by an applicable production (free application).

Another grammar model in which (explicit) control languages are
used, is the one of Ginsburg and Spanier in [GinSpa]. In this thesis we start
from this grammatical model.

In the model of Ginsburg and Spanier a controlled phrase-structure
grammar consists of a phrase-structure grammar G = (V, Σ,P,S) and a con-
trol language C. The control acts on the left derivations induced by G. The
relation ⇒ G,L on V ∗ ×V ∗ is defined by

16 Chapter I

x ⇒ G,L y if x ⇒ G y and there are words t,u,v,w in V ∗ such that x = uvw,
y = utw, and u ∈Σ ∗ .

The statement x ⇒ G,L y can be paraphrased as “The word y is left
derived from the word x in a single step by the grammar G”. The subscript
G can be omitted if G is known from the context. The transitive and
reflexive closure of ⇒ L is denoted by ⇒ L

∗ . The language of all words over
Σ∗ which can be obtained by a left derivation induced by G is defined by

L left(G) = {w ∈Σ ∗ c S ⇒ L
∗ w}.

It is well known that for each phrase-structure grammar G, L left(G) is a
context-free language [Mat].

To obtain controlled left derivations, we consider for each π ∈ P the
relation ⇒ L

π on V ∗ ×V ∗ , defined by

x ⇒ L
πy if the single left derivation step x ⇒ Ly is performed by the pro-

duction π.

Let C be a control language − i.e., C ⊆ P ∗ − and c be a control word in
C with c = π1 . . . πn for some n (n ≥ 0). Then the relation ⇒ L

c on V ∗ ×V ∗ is
defined by

(i) if c equals the empty word, then x ⇒ L
c x, for each x ∈ V ∗ ,

(ii) otherwise, x ⇒ L
c y if and only if there exists words ωi ∈ V ∗ (1 ≤ i ≤ n −1),

with

x ⇒ L
π1 ω1 ⇒ L

π2 ω2 . . . ⇒ L
πn −1 ωn −1 ⇒ L

πn y.

If C is taken from a language family K, then the pair (G,C) is called a
K-controlled phrase-structure grammar. The language generated by (G,C) is
defined by

L left(G,C) = {w ∈Σ ∗ c ∃ c ∈ C . S ⇒ L
c w}.

Example 3.1.1. Consider the phrase-structure grammar G = (V, Σ,P,S),
where V = {S,D,#,a}, Σ = {#,a}, and P is defined by

π0 = S → #S#, π3 = aD → Daa,
π1 = S → aSa, π4 = #D → #,
π2 = Sa → DS, π5 = S# → #.

We define the regular control language C over P by

C = {π0π1
n(π2π3

mπ4)kπ5 c n ≥ 1, m,k ≥ 0}.

Then we have that L left(G,C) = {#a n 2n

c n ≥ 1}, which can easily be
checked. `

Introduction 17

In [Kha74a, Kha74b] linear context-free grammars controlled by
context-free languages are investigated within this framework. [A linear
context-free grammar or LCFG is a context-free grammar in which the
right-hand side of each production contains at most one nonterminal. Furth-
ermore, LCFL denotes the family of linear context-free languages]. Khab-
baz defines the hierarchy of languages families {L n c n ≥ 0} by

(i) L 0 = CFL,

(ii) L n +1 = CTRL (LCFG,L n),

where CTRL (LCFG,L) denotes the family of languages generated by L -
controlled linear context-free grammars. Then he showed that this hierarchy
is a proper one and lies in the family CSL of context-sensitive languages,
i.e.,

CFL = L 0 ⊂ L 1 ⊂ L 2 ⊂ . . . ⊂ CSL.

In [DusPar] it was shown that L 1 = LIND, the family of linear indexed
languages [Aho].

Greibach investigated such controlled phrase-structure grammars (with
left-most rewriting) from another point of view [Gre77]. There, for each
type of phrase-structure grammar G , CTRL (G , . .) is considered as an
operator on language families; so it maps a language family L onto another
language family CTRL (G ,L). Within this framework, the results of Khab-
baz are special instances.

Besides this concept of controlled grammar introduced by Ginsburg
and Spanier, similar approaches are possible. We mention the control
mechanism on ETOL-systems, cf. e.g. [GinRoz, Nie, Asv77], which can
also be applied to context-free grammars as well as to so-called high-level
(macro) grammars with outside-in (OI) derivation mode [Vog]. In these
grammatical models the application of the productions is in a parallel
fashion, rather than the strictly sequential left-most derivation.

Finally, the notion of control applied to rewriting systems has also
been investigated in the literature. For example, in [Chot] controlled rewrit-
ing systems are defined as a triple (P, Ξ,R), where P is a rewriting system
over the alphabet Ξ and R is a regular language over Ξ. Then a derivation
relation ⇒ P,L is defined by

x ⇒ P,Ly if x ⇒ Py and there are words t,u,v,w in Ξ∗ such that x = uvw,
y = utw, v → t ∈ P and u ∈ R.

Controlled rewriting systems generalize left derivations in a phrase-
structure grammar, since a phrase-structure grammar with left derivations
can be represented by a controlled rewriting system (P,V, Σ∗).

18 Chapter I

3.2. Modes of Derivation for RCB Grammars

In our approach, a controlled bidirectional grammar is a pair (G,C) consist-
ing of a (unidirectional) grammar G = (V, Σ,P,S) together with a control
language C over the productions from P and reductions induced by P

hh
.

Together with a controlled bidirectional grammar we define some modes of
derivation. In this thesis we mainly investigate controlled bidirectional
grammars provided with a regular control language.

For a context-free grammar G = (V, Σ,P,S), let P
hh

be the set of reduc-
tions induced by P, i.e.,

P
hh

= {π
h

c π ∈ P},

where for each πequal to A → α the rule π
h

is defined by α → A.

Definition 3.2.1. A regularly controlled bidirectional grammar or RCB
grammer (G,C) consists of

g a context-free grammar G = (V, Σ,P,S), called the underlying context-
free grammar of (G,C), and

g a regular language C over P ∪ P
hh

. The language C is called the control
language of (G,C).

Recall that a member of P ∪ P
hh

is called a rule of (G,C). `

The modes of derivation under consideration are constructed from
three submodes, each of which has two possible instances. With each mode
of derivation m we have a corresponding derivation relation ⇒ m . Using
these derivation relations ⇒ m we define with each RCB grammar (G,C) an
RCB/m language Lm(G,C). Then a language Lm(G,C) is said to be gen-
erated by an RCB grammar (G,C) under mode m, or − in other words − by
an RCB/m grammar.

The first submode is application from the right. This submode restricts
the way of selecting the substring in a sentential form which ought to be
rewritten by the current rule in the control word. With respect to this sub-
mode we distinguish two mode instances, RS and RA.

Definition 3.2.2.

g Let α be a string in V ∗ and r a rule in P ∪ P
hh

. In the right-most string
or RS-mode the right-most occurrence of the left-hand side of r is
selected as the string that ought to be rewritten, under the condition
that the string to the right of this occurrence is in Σ∗ .

g Let α be a string in V ∗ and r a rule in P ∪ P
hh

. In the right-most applica-
ble or RA-mode the right-most occurrence of the left-hand side of r in
α is selected as the substring that has to be rewritten. `

Introduction 19

Note that in Chapter II, III, and IV two slightly different submodes are
defined. However, the results obtained are similar; cf. Chapter IV Section 5
for a discussion of the differences.

As an example, in the string Baa, the rule a → A can only rewrite the
right-most a under RS-mode, viz., Baa ⇒ RS

a → ABaA. This also holds under
the RA-mode. The rule a → A is not applicable to the string aBA under
RS-mode, but it does under RA-mode, viz., aBA ⇒ RA

a → AABA. So we have
that

aBA ⇒ RA
(a → A) (A → a)ABa.

Remark that a derivation like aB ⇒ m
λ → AaBA, where m equals RS or RA, is

consistent with Definition 3.2.2.

The RA-mode as defined in our bidirectional grammar model is in fact
the direct incorporation of right-most rewriting into Thue systems. In
[NarOtt] a similar mode of rewriting has been defined for Thue systems. It
will be clear that the RS-mode, when restricted to (unidirectional) phrase-
structure grammars, is the right-most analogue of left-most rewriting in
phrase-structure grammars. The choice for selecting the substring to be
rewritten from the right end of the sentential form is of course arbitrary. An
approach based on selecting from the left end is also possible and yields
similar results. We see that in studying bidirectional grammars together
with right-most rewriting and the concept of control, we work in the tradi-
tion of [GinSpa].

The second submode is concerned with the continuation of the deriva-
tional process in case this process is confronted with a non-applicable rule
during the application of a control word to an initial sentential form. We
investigate two natural instances.

In the block mode (B-mode) the derivation is stopped in case the
current rule in the control word is not applicable. Then the application of
this control word will give no contribution to the set of sentential forms. In
the skip mode (S-mode) we discard the non-applicable rule, and try to apply
the next rule in the control word. It follows that in S-mode the application
of a control word to an initial string always will result in some sentential
form. Note that the B and S-mode coincide in the approach of Salomaa
[Sal69, Sal70, Sal73] with a checking set F equal to ∅ and V − Σ, respec-
tively. In addition, notice that in the approach of Ginsburg and Spanier the
B-mode is used. So, our approach is a combination of the approaches in
[GinSpa] and [Sal69, Sal70, Sal73].

The third submode arises from the following consideration. In the set
of productions P of a context-free grammar G = (V, Σ,P,S) we distinguish

20 Chapter I

productions of the form A → τ, with τ ∈Σ ∗ , from productions of the form
A → σ, with σ ∈ V ∗ − Σ ∗ . These productions are called terminal and nonter-
minal productions, respectively. Consequently, in the set of rules P ∪ P

hh
of

an RCB grammar G = (V, Σ,P,S), reductions associated with terminal pro-
ductions are called terminal reductions.

Obviously, terminal reductions − considered as independently intro-
duced rewriting rules, i.e., independent of the associated terminal produc-
tions − do not fit in the concept of phrase-structure grammar; cf. Definition
2.1.2. So the strict distinction between terminals and nonterminals, as it is
expressed in the restrictive form of phrase-structure grammar productions, is
lost. As a consequence, we obtain a Thue system to which a control
mechanism is applied, and in which we only distinguish a special − terminal
− alphabet. We remark that in such a controlled Thue system the adjective
“controlled” ought to be distinguished from “controlled” as it is used in the
controlled rewriting systems defined by Chottin [Chot].

Now, the third submode consists of allowing only certain types of
reductions from the set of rules. It is likely that this will influence the gen-
erating power of (controlled) bidirectional grammars. We study two sub-
mode instances, motivated by the observations on terminal reductions men-
tioned above.

First, in the general mode, abbreviated by g-mode, each reduction is
allowed, i.e. the control language is included in (P ∪ P

hh
)∗ . Secondly, in the

fair mode, abbreviated by f-mode, we only allow nonterminal reductions.
We call this submode instance fair for it respects the distinction between ter-
minals and nonterminals. Then we are dealing with controlled phrase-
structure grammars of a special kind. By fair reductions we mean reductions
of the form σ → A, σ ∈ V ∗ − Σ∗ . The set of the corresponding fair (or nonter-
minal) productions is defined by Pf = {A → σ ∈ P c σ ∈ V ∗ − Σ∗ }. Then we
can assume without loss of generality that the (regular) control language of
an RCB grammar provided with the fair mode is included in the set
(P ∪ P

hh
f)

∗ ; cf. Section 2 of Chapter II.

Now we combine instances of submodes to form composite modes, or
modes for short. Each submode has two instances so that we can form eight
modes. These are RS/B/f, RS/B/g, RS/S/f, RS/S/g, RA/B/f, RA/B/g,
RA/S/f, and finally RA/S/g. Furthermore, we use the following convention.
If we do not specify one or more submode instances, then we assume that in
each position of “ . . / . . / . . ” both of the corresponding possible instances are
involved. For example, “RS/f-mode” means “RS/B/f and RS/S/f-mode”.

With each (composite) mode m and each rule r in P ∪ P
hh

we define a
derivation relation.

Introduction 21

Definition 3.2.3. Let m be the mode α /β /γ and let r be a rule. Then the
derivation relation ⇒ m

r over V ∗ ×V ∗ is defined by

x ⇒ α /β /γ
r y

if either r is applicable to the string x with respect to α and γ and the
result is the string y,

or r is not applicable to x with respect to α and γ, and moreover β = S
and x = y. `

The definition of the relation ⇒ m
c , where c ∈ (P ∪ P

hh
)∗ , can be derived

in a straightforward way from the definition of ⇒ m
r ; cf. p. 16. Then the

language generated by the RCB/m grammar (G,C) − i.e., the RCB grammar
(G,C) under mode m − is defined by

Lm(G,C) = {w ∈Σ ∗ c ∃ c ∈ C . S ⇒ m
c w}.

To show the differences between the various modes we present the fol-
lowing example of an RCB grammar (G,C) that yields for each mode a dif-
ferent language.

Example 3.2.4. Consider the RCB grammar (G,C), where G = (V, Σ,P,S),
with V = {S,A,B,D,E,a,b,d,e}, Σ = {a,b,d,e} and P consists of

π1 = S → AaBe, π5 = D → d,
π2 = A → a, π6 = D → aB,
π3 = A → b, π7 = E → e,
π4 = B → b, π8 = E → d.

Define the control language C by

C = {π1}{π2 ,π
h

7}{π8 ,π
h

6}{π
h

2 ,π4 ,π5}{π3 ,λ}.

We observe that C consists of 24 (= 2 ⋅2 ⋅3 ⋅2) control words. This
control language C derives, when applied to G, for each mode m a different
language. All these languages are listed below, where we only show those
derivations that yield terminal strings. In addition, we assume that π1 has
already been applied to S.

g LRS /B /f (G,C) = ∅ .

In each control word in C, the occurrence of π2 or π
h

7 causes blocking.

g LRS /B /g(G,C) = {babd}.

Now π
h

7 is allowed, and we have the derivation

AaBe ⇒ π
h

7 AaBE ⇒ π8 AaBd ⇒ π4 Aabd ⇒ π3 babd.

22 Chapter I

g LRS /S /f (G,C) = {bde,babe}.

Non-applicable rules can be skipped. This gives us the following
derivations.

AaBe ⇒ {π
h

7 ,π2}AaBe ⇒ π8 AaBe ⇒ π4 Aabe ⇒ π3 babe,

and

AaBe ⇒ {π
h

7 ,π2}AaBe ⇒ π
h

6 ADe ⇒ π5 Ade ⇒ π3 bde.

g LRS /S /g(G,C) = {babd,bde,babe}.

By coincidence, we have LRS /S /g(G,C) = LRS /B /g(G,C) ∪ LRS /S /f (G,C).

g LRA /B /f (G,C) = {ade}.

Now the occurrence of π2 in each control word from C is applicable,
and we obtain

AaBe ⇒ π2 aaBe ⇒ π
h

6 aDe⇒ π5 ade.

g LRA /B /g(G,C) = {babd,ade}.

In addition to all words from LRA /B /f (G,C) we have under this mode
the derivation

AaBe ⇒ π
h

7 AaBE ⇒ π8 AaBd ⇒ π4 Aabd ⇒ π3 babd.

g LRA /S /f (G,C) = {ade,bde,aabe,babe}.

Skipping rules gives the following additional derivations, when com-
pared with LRA /B /f (G,C).

AaBe ⇒ π
h

7 AaBe ⇒ π8 AaBe ⇒ π4 Aabe ⇒ π3 babe,

AaBe ⇒ π
h

7 AaBe ⇒ π
h

6 ADe ⇒ π5 Ade ⇒ π3 bde,

AaBe ⇒ π2 aaBe ⇒ π8 aaBe ⇒ π4 aabe.

g LRA /S /g(G,C) = {bade,aabe,babd}.

Apart from the derivations of each word from LRA /B /g(G,C) we have in
addition

AaBe ⇒ π2 aaBe ⇒ π8 aaBe ⇒ π4 aabe. `

3.3. RCB Extended Linear Basic Grammars

In case we replace the underlying context-free grammar of an RCB grammar
by a macro grammar, we obtain a regularly controlled bidirectional term
rewriting system. In this thesis we will concentrate on linear basic

Introduction 23

grammars as the underlying grammar. This is due to the fact that context-
free grammars are a special kind of macro grammars, and that for some
modes m the family of RCB/m languages is equal to the family of recur-
sively enumerable languages. Recall that LB is incomparable with CFL
[EhrRoz]; so taking linear basic grammars as underlying grammars may
result in new, interesting language families.

As a generalization of linear basic grammars “extended linear basic
grammars” (or “elb grammars”) have been introduced. Starting from [Dow]
where the words w, w 1 , . . . ,wk in the standard linear form have been
replaced by finite languages over Σ ∪ {x 1 , . . . ,xn}, via [EngSchVanL] where
regular languages have been used instead of finite languages − however,
resulting in no additional generating power − the ultimate extension possible
in this way of generalizing the concept of linear basic grammar was defined
in [AsvEng79] in which K-elb grammars have been introduced by replacing
each word w, w 1 , . . . ,wk by a language from a given, arbitrary family of
languages K. The precise definition of this latter grammatical model is as
follows.

Definition 3.3.1. Let K be a family of languages. An extended linear basic
K grammar or K-elb grammar is a 6-tuple (Φ,Ψ,Σ,X,P,S) where

g Φ is a ranked alphabet of nonterminals,

g Ψ is a ranked alphabet of language names,

g Σ is a terminal alphabet,

g X is a finite set of variables,

g S ∈Φ 0 is the start symbol,

g P is a finite set of productions. Each production has one of the follow-
ing forms.

A (x 1 , . . . ,xn) → B (ψ1(x→)), . . . ,ψk(x→)), (i)

where A ∈Φ n (n ≥ 0), B ∈Φ k (k ≥ 1), and x→ is the abbreviation of x 1 ,
. . . ,xn . Thus ψi ∈Ψ n (1 ≤ i ≤ k). If A = S, then production (i) is a so-
called initial production.

A (x 1 , . . . ,xn) → ψ (x 1 , . . . ,xn), (ii)

where A ∈Φ n−{S} and ψ ∈Ψ n .

ψ (x 1 , . . . ,xn) → L 0 , (iii)

where ψ ∈Ψ n and L 0 ⊆ (Σ ∪ {x 1 , . . . ,xn})∗ is a language in K.

Moreover, we require that for each language name ψ from Ψ there is
exactly one production of the form (iii) in P. `

24 Chapter I

We apply the same conventions on notation as we did in Definition
2.4.2, i.e., the list x 1 , . . . ,xn consists of distinct elements of X, the sets Φ, Ψ,
Σ and X are mutually disjoint, variables and terminals have rank zero, and if
A is an element of either Φ0 or Ψ0 we write A instead of A ().

In Definition 3.3.1 we demand that k ≥ 1 in a production of the form (i),
whereas in the original definition in [AsvEng79] k ≥ 0 is permitted. How-
ever, we obtain no loss of generality; cf. Section V.2.

Notice that each word w, w 1 , . . . ,wk in the standard linear form is
replaced by a language name ψ (x 1 , . . . ,xn), ψ1(x 1 , . . . ,xn), . . . ,
ψk(x 1 , . . . ,xn), respectively. These language names constitute a special
ranked alphabet. We associate to each language name ψ a unique produc-
tion of the form ψ (x 1 , . . . ,xn) → L 0 , where L 0 is a language from the family
K with L 0 ⊆ (Σ ∪ {x 1 , . . . ,xn})∗ . As in [Asv78, AsvEng79] this approach
allows us to make a distinction between OI and IO-derivations in a natural
way. In particular, this implies that for many instances of the family K, the
generating power of K-elb grammars depends on the mode of derivation.

The relation of K-elb grammars with macro grammars can be obtained
in a natural way when we treat a K-elb grammar G = (Φ,Ψ,Σ,X,P,S) as a
macro grammar G ′ with a countable (rather than a finite) number of produc-
tions. Viz., let G ′ be the macro grammar (Φ ∪ Ψ ,Σ,X,P ′,S) where the
(countable) set P ′ of productions is determined by G as follows.

(1) Each production in P of the form 3.3.1(i) or 3.3.1(ii) is also in P ′.
(2) For each production ψ (x 1 , . . . ,xn) → L 0 of the form 3.3.1(iii) in P, P ′

contains the (countable number of) productions
ψ (x 1 , . . . ,xn) → w for each w in L 0 .

Now we can provide this countable macro grammar G ′ with either the
OI-mode or with the IO-mode of derivation. In this indirect way one can
define a K-elb grammar with the OI or IO-mode of derivation. Viz., an
(m,K)-elb grammar G is a K-elb grammar provided with the mode m if the
corresponding G ′ is an m-macro grammar with a countable set of produc-
tions. The language Lm(G) generated by G is defined by Lm(G) = Lm(G ′).
The set LBm(K) denotes the family of languages generated by (m,K)-elb
grammars.

We illustrate the concepts defined above by the following example.
Let FIN be the family of finite languages.

Example 3.3.2. Consider the (m,FIN)-elb grammar G defined by G =
(Φ,Ψ,Σ,X,P,S), where Φ = {S,A}, Ψ = {ψ0 ,ψ1 ,ψ2 ,ψ3 ,ψ4}, X = {x,y}, Σ =
{0,1} and P consists of the productions

π0 = S → A (ψ0 ,ψ1), π4 = ψ1 → {0,1},

Introduction 25

π1 = A (x,y) → A (ψ2(x,y),ψ3(x,y)), π5 = ψ2(x,y) → {y},
π2 = A (x,y) → ψ4(x,y), π6 = ψ3(x,y) → {yx},
π3 = ψ0 → {0,1}, π7 = ψ4(x,y) → {y}.

One can verify that

(i) L IO(G) = ∪ {huv(L 0) c u,v ∈Σ },

where for each u,v ∈Σ the length-preserving homomorphism huv : Σ → Σ is
defined by huv(0) = u and huv(1) = v. The language L 0 equals

{1, 10, 101, 10110, 10110101, 1011010110110,},

which is the set of Fibonacci words over the alphabet {0,1}. These Fibo-
nacci words are given by the sequence f : IN → Σ∗ defined by

f 0 = 1 ; f 1 = 10 ; fn +2 = fn +1 fn for each n (n ≥ 0).

(ii) L OI(G) = σ (L 0) = ∪ {{0,1}Fn c n ≥ 1},

where the length-preserving substitution σ : Σ → 2Σ is defined by σ (0) = Σ
and σ (1) = Σ. And Fn is the nth Fibonacci number; i.e., F 0 = 0, F 1 = 1,
Fn +2 = Fn + Fn +1 for each n (n ≥ 0).

In proving (i) we first observe that for all w 1 , w 2 ∈Σ ∗ we have

A (w 1 ,w 2) ⇒ IO
π1π6π5 A (w 2 ,w 2w 1) (1)

and

A (w 1 ,w 2) ⇒ IO
π2π7 w 2 . (2)

These subderivations can be used to prove by induction that

A (0,1) ⇒ IO
dn fn , for all n (n ≥ 0), (3)

where dn = (π1π6π5)nπ2π7 , for all n (n ≥ 0).

It is straightforward to show that

{w ∈Σ ∗ c A (0,1) ⇒ IO
∗ w} = L 0 .

Then it follows that for all u,v ∈Σ ,

{w ∈Σ ∗ c A (u,v) ⇒ IO
∗ w} = huv(L 0).

Property (ii) easily follows from the former, considering the linear
character of G. `

We define regularly controlled bidirectional (m,K)-extended linear
basic grammars, or (m,REG,K)-belb grammars, by a tuple (G,C, ¢), where
G = (Φ,Ψ,Σ,X,P,S) is an (m,K)-elb grammar. The symbol ¢ does not occur

26 Chapter I

in Φ, Ψ, Σ or X. We use ¢ in order to define P
hh

, the set of reductions
corresponding to productions in P. We associate with a production π in P of
the form ψ (x→) → L 0 − cf. Definition 3.3.1(iii) − i.e., a (countable) set of
productions {ψ (x→) → t c t ∈ L 0}, a corresponding set of reductions, defined
by {t → ψ (γ1 , . . . ,γn) c t ∈ L 0}, where γi is equal to xi in case xi occurs in t,
and otherwise γi equals the symbol ¢ (1 ≤ i ≤ n). Note that ψ (γ1 , . . . ,γn)
depends on t. This set of reductions is also denoted by π

h
or even by

L 0 → ψ (x→). Note that L 0 = ∅ implies that both πand π
h

are empty.

For example, let π equal ψ (x,y,z) → {axaz, yz}. Then π denotes the
set {ψ (x,y,z) → axaz, ψ (x,y,z) → yz}, and the corresponding set of reduc-
tions is {axaz → ψ (x, ¢,z), yz → ψ (¢,y,z)}. Therefore the reduction π

h

associated with π
h

is denoted by {axaz,yz} → ψ (x,y,z).

If π is of the form 3.3.1(i) or 3.3.1(ii), then π
h

is defined by the rewrit-
ing rule B (ψ1(x→), . . . ,ψk(x→)) → A (x→) and ψ (x→) → A (x→), respec-
tively. Then P

hh
is defined by P

hh
= {π

h
c π ∈ P} as usual.

Finally, C in (G,C, ¢) is a regular control language with C ⊆ (P ∪ P
hh

)∗ .

In Chapter V (m,REG,K)-belb grammars are provided with a deriva-
tion mode which corresponds to RS/B/f-mode defined for RCB grammars.
The resulting grammars are the so-called (r, f, m,REG,K)-belb grammars.

Example 3.3.3. Consider the (r, f, OI,REG, ∅ NE)-belb grammar (G,C),
where ∅ NE equals the family ONE of all languages consisting of one word,
together with the language ∅ , or formally, ∅ NE = ONE ∪ {∅ }. We define
the (OI,∅ NE)-elb grammar G by G = (Φ,Ψ,{0,1},X,P,S), with X = {x},
Φ = {S,A,B,D}, Ψ = {ψ1 ,ψ2 ,ψ3 ,ψ4 ,ψ5}, and P consists of the productions

π0 = S → A (ψ1), π6 = B → ψ1 ,
π1 = A (x) → A (ψ2(x)), π7 = B → D (ψ1),
π2 = A (x) → ψ3(x), π8 = D (x) → ψ4(x),
π3 = ψ3(x) → {x}, π9 = ψ4(x) → {0x},
π4 = ψ2(x) → {xx}, π10 = D (x) → ψ5(x),
π5 = ψ1 → {1}, π11 = ψ5(x) → {x 0}.

First, a string A (ψ2(. . . (ψ2(ψ1)) . . .)) is generated, with n occurren-
ces of the language name ψ2 (n ≥ 0). Then by the productions π2 and π3 , fol-
lowed by a sequence of productions π4 , we obtain a string with two language
names ψ1 at the right end. After each of these ψ1’s has been rewritten into
terminal strings in 0∗ 10∗ , we continue to apply productions π4 . This yields
again two ψ1’s from which strings in 0∗ 10∗ can be derived. This continues
until a completely terminal string is obtained. The total number of language
names ψ1 that show up during this derivation equals 2n .

Introduction 27

Each ψ1 generates some string in 0∗ 10∗ by the following sequences of
rules. Let c 1 = π5 , c 2 = π

h
6π7π8π9 , and c 3 = π

h
6π7π10π11 . Then

ψ1 ⇒ r, f, OI
c1 1, ψ1 ⇒ r, f, OI

c2 0 ψ1 , and ψ1 ⇒ r, f, OI
c3 ψ10 .

As the control language we take the trivial control language, i.e.,
C = (P ∪ P

hh
)∗ . We have

Lr, f, OI(G,C) = {w ∈ {0,1}∗ c the number of 1’s in w is a power of 2},

which can easily be checked. Cf. [Fis68a], where it has also been proved
that this language can be generated by an OI-macro grammar but not by an
IO-macro grammar. `

4. Outline of Chapters II−−VII

Instead of the RS-mode the slightly different RN-mode is introduced in
Chapter II−IV, and instead of the RA-mode the related RO-mode is studied.
However, the results we have obtained in studying the RN and RO-mode
rather than the RS and RA-mode hold for the RS and RA-mode as well; cf.
Chapter IV, Section 5. Therefore, in this section we present our results of
the Chapters II−IV in terms of the RS-mode and the RA-mode.

4.1. Regularly Controlled Bidirectional Grammars

In Chapter II we investigate RCB/m grammars, where m ranges over various
modes of derivation. First, it is shown that for each mode m, the family of
RCB/m languages includes the family of context-free languages (Proposi-
tion II.2.4(1)). In addition, if m equals the mode RS/B/f, then it is shown
that the family of RCB/m languages precisely equals the family CFL of
context-free languages (Proposition II.2.4(2)).

Section II.3 is devoted to establishing closure properties of the families
of RCB/m languages. First, the closure properties of the family of
RCB/RS/B/f languages needs no further investigation, since this family is
equal to CFL. Concerning the other modes we have the following results.

g The families of RCB languages are closed under (marked) union.

g The family of RCB/RA/B/f languages and the family of RCB/RS/S/f
languages are closed under marked concatenation, marked Kleene +,
and marked Kleene ∗ .

g The family of RCB/RA/S/f languages is closed under marked concate-
nation.

g The families of RCB/RA/f languages are closed under concatenation.

28 Chapter I

g The family of RCB/RA/B/f languages is closed under Kleene +, and
Kleene ∗ .

With respect to the families of RCB/RA languages we have that these
families are

g closed under intersection with regular sets,

g closed under context-free substitution,

g closed under inverse homomorphism.

As a corollary, the family of RCB/RA languages is closed under
homomorphism. Furthermore, we have the following.

g The family of RCB/RA/B/f languages is closed under substitution.

In establishing these results we use classical proof methods, however,
combined with special arrangements in order to handle the presence of
reductions, control languages and rewriting from the right (either RA or RS).
A typical example is the proof of the closure of the RCB/RA/B/f language
family under substitution.

In Section II.4 we establish a normal form theorem for RCB/RS/B/f
grammars. For context-free grammars we have the well-known Chomsky
Normal Form (CNF). With respect to RCB/RS/B/f grammars we introduce
the weak Chomsky Normal Form. A context-free grammar G = (V, Σ,P,S)
is in weak CNF if each production in P is either of the form A → XY or
A → a, where X and Y are in V and a ∈Σ ∪ {λ}. Recall that in the usual CNF
the symbols X and Y ought to be in V − Σ. Now an RCB/RS/B/f grammar is
in weak CNF if its underlying context-free grammar is in weak CNF. We
show that each RCB/RS/B/f grammar can be transformed into an
RCB/RS/B/f grammar in weak CNF that generates the same language.

The most interesting result of Section II.5 is the existence of a very
simple normal form for RCB/f grammars which have a left-linear [or linear]
context-free grammar as their underlying grammar. We show that each such
LLRCB/f [LRCB/f, respectively] grammar can be transformed into an
equivalent LLRCB/f [LRCB/f, respectively] grammar that has the following
properties. Its nonterminal alphabet consists of one symbol only, and each
control word in the control language ends with a terminal production.
Finally, in Section II.6 we generalize our results to controlled bidirectional
context-free grammars with control languages from an arbitrary family of
languages, rather than from the family of regular languages.

Introduction 29

4.2. Time-Bounded Regularly Controlled Bidirectional Grammars.

In Chapter III we continue our investigation of RCB grammars. We observe
that in an RCB/m grammar (G,C), where G = (V, Σ,P,S), there may be
sequences of rules c such that for some words ω over V, we have that
ω ⇒ m

c ω. Consequently, if we have a string d over P ∪ P
hh

with S ⇒ m
d ω, and a

string e over P ∪ P
hh

such that all strings of the form dc ∗ e are in C, and
S ⇒ m

dew with w ∈Σ ∗ , then it is hard to construct a parser or a recognizer for
this RCB/m grammar that terminates for each input string. It is unclear
whether or not it is possible to transform in an effective way an RCB gram-
mar into an equivalent RCB grammar without such “cycles” in the control
language. At this moment no such transformations − which may yield a
linear or a polynomial bound on the length of the derivation − are known.
The construction of these transformations will probably depend on the mode
of derivation under consideration.

In order to get round this unsolved problem, we use the idea of time-
bounded grammar to obtain a bound on the derivation length which only
depends on the length of the derived sentence by means of some bounding
function. Let (G,C) be an RCB/m grammar. We first define a partial func-
tion t (G,C) from V ∗ to IN which assigns to a string w the length of the shor-
test control word that derives w by (G,C), if such a control word exists.
Then we define the time function T (G,C) of an RCB grammar as the function
from IN to IN which assigns to every n ∈ IN the maximal value of t (G,C)(w)
over all strings w from Σn for which there exists a control word c with
S ⇒ cw. If there is no such string, T (G,C)(n) will be undefined. Furthermore,
a function φ: IN → IN is referred to as a bounding function of (G,C) (or
(G,C) is bounded by φ) if for any natural number n, if T (G,C)(n) is defined
then T (G,C)(n) ≤ φ(n).

Time-bounded grammars have originally been introduced in [Gla] to
describe the derivational complexity of general phrase-structure grammars.
In [Boo71] bounding functions have been used to generate particular
language families; thus Chapter III may also be considered as an extension
of [Boo71].

In this framework it is now possible to write parsers for φ-bounded
RCB/m grammars (G,C) in the following way (m is any mode of derivation).
We parse the input string w ∈Σ ∗ with n = c w c in a bottom-up way (which is
forced by the mode of derivation which will rewrite at the right-hand side of
a string), following in reverse the control language C. We increase a counter
each time we can apply a rule (i.e., a production or a reduction) according to
this control language C. As long as this counter does not exceed φ(n) we
perform the normal parsing actions [AhoUll, Sud], (however, with some

30 Chapter I

extensions, due to the fact that we have to deal with reductions in the control
language as well); otherwise we have to backtrack. Now the fact that (G,C)
is bounded by φ guarantees that after a long enough but bounded backtrack-
ing process, the parser can decide whether or not w is an element of
Lm(G,C). For each mode m, the time and space complexity turn out to be
exponential and linear in φ2(n), respectively.

Section III.2 contains the definition of time-bounded RCB grammars,
together with some properties and examples. Here we restrict ourselves to
RCB grammars (G,C) in which the underlying grammar G has no λ-
productions. These grammars are referred to as λRCB grammars. For each
class Φ of bounding functions we define Φm as the family of languages gen-
erated by λRCB grammars under mode m which are bounded by bounding
functions from Φ. For Φ we will mainly take POLY, POLY (k) and LIN
which are the families of polynomial functions, of polynomial functions up
to degree k and of polynomial functions of degree 1 (linear functions),
respectively, all polynomials having coefficients greater than or equal to
zero.

Section III.3 is devoted to some closure properties of a few families
Φm . Depending on the mode of derivation we can show the regular closure
properties (union, concatenation, Kleene +), intersection with a regular set,
λ-free context-free substitution and substitution. In this section we also
establish a weak CNF for bounded λRCB grammars for one particular mode.

In Section III.4 we construct parsers for φ-bounded λRCB/m
languages. These constructions are performed for a few characteristic
modes. The worst-case time complexity of the parser for the RN/B/f-mode,
which induces the smallest language family, is already exponential. Finally,
Section III.5 contains some concluding remarks.

4.3. Generating Power of RCB/RA grammars.

In Chapter IV we investigate the generating power of RCB/RA grammars.
Actually, RCB/RO grammars are investigated; cf. Section IV.5. We show
that the (four) families of RCB/RA languages are all equal to the family of
recursively enumerable languages. This is obtained by simulating some Tur-
ing machine, by an RCB/RA/B/f grammar (G,C). The idea is to simulate
each step of the Turing machine computation by a sequence of a single
reduction followed immediately by an associated production. Actually, the
control language C of the constructed RCB/RA/B/f grammar can be the
trivial one, viz., C = (P ∪ P

hh
)∗ .

In Section IV.4 we have tried to incorporate the ideas of Section IV.3
into a possible proof of the conjecture POLY = NP, where POLY is as

Introduction 31

defined in Chapter III and NP is the family of λ-free languages acceptable
nondeterministically in polynomial time. This attempt gave no final results,
leaving the conjecture unresolved.

Finally, in Section IV.5 we discuss the differences and correspon-
dences between the modes RA and RS defined in Chapter I and the modes
RO and RN defined in Chapter II.

4.4. Regularly Controlled Bidirectional Extended Linear Basic Gram-
mars

In Chapter V we introduce bidirectional regularly controlled (m,K)-elb
grammars or (m,REG,K)-belb grammars. In Section V.2 we formally define
for (m,REG,K)-belb grammars the RS/B/f-mode of derivation. We call the
resulting grammars (r, f, m,REG,K)-belb grammars.

Closure properties of the corresponding family RBLBr, f, m(K) are esta-
blished in Section V.3. It is shown that for both modes OI and IO and under
weak assumptions on the family K, the family RBLBr, f, m(K) is closed under
the regular operations (union, concatenation, and Kleene +). Furthermore,
we establish that if K is a nontrivial family of languages closed under ngsm-
mappings, then RBLBr, f, OI(K) is a full substitution-closed AFL. We also
proof − under appropriate conditions on K − that the family RBLBr, f, IO(K) is
closed under intersection with regular languages and deterministic substitu-
tion; hence this family is a full QAFL (in the sense of [AsvEng79]) closed
under deterministic substitution.

Section V.4 is devoted to determining the language generating capacity
of (r, f, m,REG,K)-belb grammars. We show that the language families
RBLBr, f, OI(∅ NE) and RBLBr, f, OI(OI) are equal to the family OI of OI-
macro languages, and that the family IO of IO-macro languages is included
in the family RBLBr, f, IO(∅ NE). Moreover, we show that the family OI is
unequal to the family RBLBr, f, IO(∅ NE).

In Section V.5 we study (m,REG,K)-belb grammars provided with free
application of rules, maintaining the restriction of allowing fair reductions
only . Then we show that the family of languages generated by these so-
called (f, m,REG,K)-belb grammars equals the family of recursively enu-
merable languages.

4.5. Regularly Controlled Bidirectional Linear Basic Grammars

Linear basic grammars can also serve as underlying grammars in the frame-
work of (regularly) controlled bidirectional grammars. In Chapter VI we
define regularly controlled bidirectional linear basic grammars as a tuple

32 Chapter I

(G,C, ¢), which consists of a linear basic grammar G = (Φ,Σ,X,P,S); cf.
Definition 2.4.5, a symbol ¢, and a control language C over P ∪ P

hh
, where P

hh

is defined analogously to the case of (m,REG,K)-belb grammars. I.e., if π
equals a production ψ (x 1 , . . . ,xn) → t in P, where t is either a term of the
form B (w 1 , . . . ,wk) or a string w in (Σ ∪ X)∗ , then π

h
is defined by

t → ψ (x 1 , . . . ,xn), where γi is equal to xi in case xi occurs in t and otherwise
γi equals ¢ (1 ≤ i ≤ n). Then P

hh
is defined by P

hh
= {π

h
c π ∈ P}. The resulting

grammars are called (m,REG)-blb grammars.

We study (m,REG,K)-blb grammars under the RS/B/f-mode, which
results in (r, f, m,REG)-blb grammars, or (f, REG)-blb grammars, as will be
explained in Section VI.2. We present some interesting examples of
(f, REG)-blb grammars and show that each recursively enumerable language
L 0 over some alphabet Σ can be obtained by intersecting some (f, REG)-blb
language (over an alphabet Γ with Γ ⊇ Σ) with Σ∗ .

4.6. Concluding Remarks

In the final Chapter VII we draw some conclusions from the results
presented in this thesis in Section VII.1. Some applications are discussed in
Section VII.2, and in Section VII.3 we suggest some interesting topics for
further research.

4.7. Historical Remarks

Chapter II − VI of this thesis and the appendix have appeared in various
media, sometimes in a slightly different form. These chapters differ in their
introduction from the original publication. Some other chapters have
(slightly) modified sections too, as compared with their first, original form.

Chapter II − Regularly controlled bidirectional grammars − stems from
the paper [Hog89a] with the same title published in Internat. Journal of
Computer Math. In its present form, Sections II.3 and II.4 contain some
additions, and Section II.5 has completely been rewritten. The main results
of this chapter also appeared in [Hog88a].

Chapter III will be published in nearly the same form in Internat. Jour-
nal of Computer Math. (to appear). Chapters IV and V originate from two
reports of the Department of Computer Science, viz. [AsvHog], which was
written together with Peter Asveld, and [Hog89b], respectively. Chapter VI
appeared as [Hog90].

Finally, an earlier version of Appendix A has been published in
P.R.J. Asveld & A. Nijholt (Eds.): Essays on Concepts, Formalisms, and
Tools (1987), C.W.I. Tract no. 42, Centre for Mathematics and Computer
Science, Amsterdam [Hog88a].

CHAPTER II

Controlled Bidirectional Grammars

1. Introduction

In this chapter we investigate RCB grammars, i.e., context-free grammars
the rules of which can be used in a productive and in a reductive fashion,
where the application of these rules is controlled by a regular language. We
distinguish several modes of derivation for this kind of grammar. The
resulting language families (properly) extend the family of context-free
languages. In Section 2 various modes of derivation are introduced. Note
that the modes used in this chapter differ from the modes defined in Chapter
I. However, the obtained results will be similar; cf. Section IV.5 for a dis-
cussion of the differences.

In Section 3 we establish some closure properties of the language fami-
lies defined by RCB grammars. These closure properties consist of the regu-
lar ones (union, concatenation, and Kleene +) and closure under homomor-
phism, inverse homomorphism, intersection with a regular set, and (regular
or context-free) substitution. In Theorem 3.6 the most important results are
summarized in AFL-terminology as follows. The family of RCB/RO/B/f
languages is a full AFL (Abstract Family of Languages) closed under substi-
tution. The family of RCB/RO/S/f languages is a full semi-AFL closed
under concatenation. And the family of RCB/RO/g languages is a full
semi-AFL.

In Section 4 we introduce the notion of “weak Chomsky Normal
Form”. This is a variant of the Chomsky Normal Form in which productions
of the form A → XY with X or Y ∈Σ are allowed. The main result of this sec-
tion shows that every RCB/RN/B/f language can be generated by an
equivalent RCB/RN/B/f grammar in this particular normal form.

Linear and left-linear RCB grammars − abbreviated by LRCB and
LLRCB grammars, respectively − are studied in Section 5. Besides some
closure properties of the corresponding language families, we also establish
a normal form for some modes of derivation. In this normal form an
(L)LRCB grammar has a single nonterminal in its underlying grammar only.

34 Chapter II

Section 6 is mainly devoted to the generalization to arbitrary control
languages rather than regular ones. In this way it becomes clear which pro-
perties of the (regular and arbitrary) control languages are needed to prove
the results of the previous sections.

2. Definitions and Examples

For completeness’ sake we recall Definition 3.2.1 of Chapter I.

Definition 2.1. A regularly controlled bidirectional grammar or RCB gram-
mer (G,C) consists of

− a context-free grammar G = (V, Σ,P,S), called the underlying context-
free grammar of (G,C), and

− a regular language C over P ∪ P
hh

. The language C is called the control
language of (G,C). `

Before defining the language generated by an RCB grammar (G,C),
we first consider several modes of derivation, i.e., ways in which productions
and reductions are applied to a sentential form of the underlying context-free
grammar G, according to a word from the control language C. For each
mode m, this results in a particular derivation relation ⇒ m . Then using these
derivation relations, we will associate to each mode m the language Lm(G,C)
generated by (G,C) under mode m. Roughly spoken, a terminal word w
belongs to Lm(G,C) if and only if it can obtained by means of applying a
sequence of productions and reductions from P ∪ P

hh
starting with S, accord-

ing to some control word in the control language C. In the sequel a member
of P ∪ P

hh
will be called a rule of (G,C).

First we introduce two ways of selecting the nonterminal symbol from
a string α in V ∗ to which a production πhas to be applied, viz.

(1) RN-mode: determine the right-most nonterminal symbol of α,

(2) RO-mode: determine the right-most occurrence of the left-hand side of
π in α.

The choice for determining the selected nonterminal symbol from the right
end of α is arbitrary. Clearly, an analogous approach based on the nontermi-
nal symbol selected from the left end is possible too and yields similar
results. Let πbe a production from P equal to A → σ and let m be either RN
or RO. Now if the nonterminal selected by the mode m in a particular sen-
tential form α is equal to the left-hand side A of π, then we say − as usual −
that π is applicable to α, and we write appm(π,α,β) in case β is the result of
replacing that selected occurrence of A in α by the right-hand side σ of π.
Next we call a reduction ρ, with ρ = π

h
for some π ∈ P, applicable to a string

Controlled Bidirectional Grammars 35

α if there exists a string β with appm(π,β,α), in case we also write
appm(ρ,α,β). It will be clear that there is at most one such a string β.

It may happen that in RN-mode the selected nonterminal is not equal
to the left-hand side of a production π, and in both modes it may not even
occur. With respect to reductions, in RO-mode it is possible that, when
applied to a sentential form α, we cannot find a substring σ equal to the left-
hand side of the reduction to the right of the right-most occurrence of the
nonterminal symbol, if any is present. And in RN-mode, there may be no
substring σ of α such that to the right of this σ only terminals occur. In
these cases a production or a reduction is not applicable to a sentential form.
Then we can follow two different strategies, giving us two additional mode
instances independent of the nonterminal-selecting modes. In the block
mode (B-mode) we do not allow to apply any rule to α once we have tried
to apply a rule which was not applicable to α. In this mode the derivation
relation ⇒ m /B

r − where r is a rule, i.e., either a production or a reduction −
holds between strings α and β over V if appm(r, α,β) holds. In the skip
mode (S-mode) we still may apply rules to α after we have tried to apply a
non-applicable rule with respect to α and m. In this mode the derivation
relation ⇒ m /S

r holds between α and β, if either appm(r, α,β) or
¬ appm(r, α,β) ∧ α = β holds. Thus in B-mode applying a rule to a string
over V may give no result, whereas in S-mode we will always end up with
some string from V ∗ .

Next we define for x ∈ (P ∪ P
hh

)∗ the relation ⇒ m
x which is the analogue

of ⇒ ∗ in uncontrolled grammars. In this notation m is a combination of dif-
ferent kinds of modes, separated by /’s, for instance RO/S or RN/B. This
notational convention will also be applied to other mode instances to be
defined in the sequel. Now let x = r 1 ...rn (n ≥ 0, ri ∈ P ∪ P

hh
for 1≤ i ≤ n). Then

α ⇒ m
x β holds if there exists strings αi ∈ V ∗ (1≤ i ≤ n −1), with

α ⇒ m
r 1 α1 ⇒ m

r 2 α2 ⇒ m
r 3 . . . αn −1 ⇒ m

rn β .

With respect to applying a reduction ρ (ρ ∈ P
hh

) we distinguish the g-
mode and the f-mode as they are introduced in Chapter I. An RCB grammar
in f-mode is in fact a special kind of a controlled phrase-structure grammar;
cf. the proof of Proposition 2.4.(2). The distinction between f-mode and g-
mode is also important when one considers chain rule deletion and when one
studies LRCB and LLRCB grammars, i.e., RCB grammars of which the
underlying grammar is linear and left-linear, respectively; cf. Section 5.

Thus each RCB grammar will be provided with three different types of
modes, each of which may take one out of two values. RN versus RO, B
versus S, and g versus f. In the sequel we will combine these mode values in

36 Chapter II

an obvious fashion which results in notations like “RN/B/f-mode”, and in
concepts as “RCB/RO/S/f grammar”. If we do not specify a mode instance
in a proposition or example, then we assume that it applies to both instances.
For example, “RN/f-mode” means “RN/B/f-mode and RN/S/f-mode”. Thus,
in principle we now have 8 different types of grammars. However, not all
these combinations of modes are equally important. Some interesting results
will be established for certain mode combinations only; cf. Sections 3, 4 and
5. We will return to this matter in Section 6.

For each of the concrete modes of derivation, introduced above, we can
now define the language generated by an RCB grammar under that particular
mode.

Definition 2.2. Let (G,C) be an RCB grammar with underlying context-free
grammar G = (V, Σ,P,S) and control language C ⊆ (P ∪ P

hh
)∗ . For each mode

m, the language Lm(G,C) generated by (G,C) under mode m is
Lm(G,C) = {w ∈Σ ∗ c S ⇒ m

x w, for some x ∈ C}. `

In the following example the differences between the four possible
combinations of mode instances of two modes are shown. We study the
mode instances RO and RN together with the S-mode and B-mode, and we
show that these modes are mutually independent.

Example 2.3. Consider the following RCB grammar (G,C) with G =
({S,A,B,a,b},{a,b},P,S) and P consists of π1 = S → AB, π2 = A → a, π3 =
B → A, π4 = A → AA, π5 = A → b. As the control language we take C =
{c 1 ,c 2} with c 1 = π1π2π3π

h
4π5 and c 2 = π1π2π3π2 . With every combina-

tion of mode instances mentioned above, together with the g-mode, we
obtain a different language.

LRN /B /g(G,C) = ∅ . This equality holds because in both control
words the application of π2 causes blocking.

LRN /S /g(G,C) = {b}. Now π2 is skipped, so we have the derivations
S ⇒ RN /S /g

c1 b and S ⇒ RN /S /g
c2 Aa.

LRO /B /g(G,C) = {aa}. In this setting, π2 is applicable. But π
h

4 in c 1

causes blocking, and c 2 gives S ⇒ RO /B /g
c2 aa.

LRO /S /g(G,C) = {aa,ab}. Now π
h

4 is skipped in c 1 , and so S ⇒ RO /S /g
c1 ab. `

The generating power of RCB grammars turns out to be rather strong.
For instance, the family of context-free languages is included in the family
of RCB/m languages, independently of the mode m.

Proposition 2.4. (1) The family of context-free languages is included in the
family of regularly controlled bidirectional languages for each mode of
derivation.
(2) The family of RCB/RN/B/f languages coincides with the family of

Controlled Bidirectional Grammars 37

context-free languages.

Proof. (1) Let G = (V, Σ,P,S) be a context-free grammar. Then L (G) =
Lm(G,C) for each mode m, where (G,C) is the RCB grammar with C = P ∗ .

(2) Because of (1) we only ought to prove the inclusion from left to right.
In [GinSpa] the family of languages LC(G) generated by phrase-structure
grammars G and control languages C has been investigated. In our notation
the mode of derivation used in [GinSpa] reads LN/B where LN abbreviates
left-most nonterminal (cf. RN-mode), or even, LN/B/f since in [GinSpa] no
reductions are considered. For each RCB/RN/B/f grammar (G,C) with
G = (V, Σ,P,S) we now consider the phrase-structure grammar G ′ =
(V, Σ,P ′,S) where P ′ = P ∪ {α → β c β → α ∈ P, α ∈ V ∗ (V − Σ) V ∗ } and we
modify C accordingly into C ′. Then L (G,C) = LC ′ (G ′) provided in the
latter case we take the RN/B/f-mode instead of the LN/B/f-mode. By a
“right-most nonterminal” variant of Corollary 1 to Theorem 2.1 from
[GinSpa] we obtain that LC ′ (G ′), and hence L (G,C), is context-free. `

For some concrete modes, one can easily show that the generating
power of RCB grammars increases as compared with the underlying gram-
mar. This fact is illustrated by the following examples.

Example 2.5. Consider the RCB/g grammar (G,C) with G = (V, Σ,P,S),
V = {S}∪ Σ , Σ = {a,b,c}, and P = {π1 ,π2 ,π3 ,π4 ,π5 ,π6 ,π7}, the set of pro-
ductions, defined as π1 = S → abc, π2 = S → a, π3 = S → aa, π4 = S → b,
π5 = S → bb, π6 = S → c, and π7 = S → cc. As the control language we
take C = π1(π

h
2π3π

h
4π5π

h
6π7)∗ . Then Lg(G,C) = {a nb nc n c n ≥ 1}, as easily

can be checked. Note that P contains only terminal productions. `

Example 2.6. [Sal73]. The language in Example 2.5 is also generated by
the RCB/RO/f grammar (G0 ,C 0) with G0 = (V, Σ,P,S), where Σ = {a,b,c},
V ={S,A,B,C}∪ Σ , and P consists of the productions π1 =S → ABC, π2 =
A → Aa, π3 = B → Bb, π4 = C → Cc, π5 = A → a, π6 = B → b, π7 = C → c.
The control language C 0 is given by π1(π2π3π4)∗ π5π6π7 . Note that no
reductions occur in any derivation of (G0 ,C 0). `

Example 2.7. The language {a nb nc n c n ≥ 1} can also be generated by an
RCB/RN/S/f grammar (G1 ,C 1). Define G1 = (V, Σ,P,S) by Σ = {a,b,c},
and V = Σ ∪ {A,D,S}. The set of productions P is {πi c 0 ≤ i ≤ 5} with

π0 = S → abc, π3 = A → abD,
π1 = S → abDSc, π4 = A → bDb,
π2 = A → bDa, π5 = A → bb.

By the regular expression π1
∗ π0(π

h
2π3π

h
4π5)∗ we define the control language

C 1 . It can easily be checked that LRN /S /f (G1 ,C 1) equals the desired
language. `

38 Chapter II

3. Closure Properties

In this section we establish some closure properties of the family of
languages generated by regularly controlled bidirectional grammars. In the
sequel of this section we assume that Li (i ≥ 1) is a language generated by an
RCB grammar (Gi ,Ci) with Gi = (Vi ,Σi ,Pi ,Si). In addition we assume that
Ni∩ Nj = ∅ if i ≠ j, where Ni = Vi− Σi for every i ≥ 1.

If not stated otherwise the results in this section hold for every combi-
nation of modes introduced in the previous section. By Proposition 2.4.(2)
the family of RCB/RN/B/f languages inherits all closure properties of the
context-free languages. Therefore we mainly focus our attention in this sec-
tion to modes different from RN/B/f.

Proposition 3.1.

g The families of RCB languages are closed under (marked) union.

g The families of RCB/B/f languages and the family of RCB/RN/S/f
languages are closed under marked concatenation, marked Kleene +,
and marked Kleene ∗ .

g The family of RCB/RO/S/f languages is closed under marked concate-
nation.

g The families of RCB/RO/f languages are closed under concatenation.

g The family of RCB/RO/B/f languages is closed under Kleene +, and
Kleene ∗ .

Proof. Union. We construct an RCB grammar (G,C) from (G1 ,C 1) and
(G2 ,C 2) such that L (G,C) = L 1 ∪ L 2 . Consider the grammar G =
(V 1 ∪ V 2 ∪ {S},Σ 1 ∪ Σ 2 ,P,S) where S ∉ V 1 ∪ V 2 , P = P 1 ∪ P 2 ∪ {π1 ,π2}, and
πi = S → Si (i = 1,2). Define the regular control language C by C =
{π1}C 1 ∪ {π2}C 2 . Then L (G,C) = L (G1 ,C 1) ∪ L (G2 ,C 2).

Marked concatenation. Consider the RCB/f grammar (G,C) for L 1#L 2 with
∉Σ 1 ∪ Σ 2 defined as follows. Let G be the context-free grammar
(V, Σ,P,S) where V = V 1 ∪ V 2 ∪ {S,#}, Σ = Σ1 ∪ Σ 2 ∪ {#}, S is a new symbol
not occurring in V 1 ∪ V 2 , and P = P 1 ∪ P 2 ∪ {π0} with π0 = S → S 1#S 2 . As
the regular control language we take C = {π0}C 2C 1 . Then we have
L (G,C) = L (G1 ,C 1) #L (G2 ,C 2).

Marked Kleene +. Define the RCB/B/f or RCB/RN/S/f grammar (G,C)
which generates (L 1#)+, by G = (V 1 ∪ {S,#},Σ1 ∪ {#},P,S) with P =
P 1 ∪ {π0 ,π1}, S ∉ V 1 , # ∉Σ 1 , π0 = S → S 1#, and π1 = S → SS 1#. Take as
regular control language C = ({π1}C 1)∗ {π0}C 1 . Then L (G,C) = (L 1#)+.

Marked Kleene ∗ . (L 1#)∗ is also an RCB/B/f or an RCB/RN/S/f language.
This follows from a simple change in the last construction; viz. define an

Controlled Bidirectional Grammars 39

additional element π2 of P by π2 = S → λ, and take as control language C =
({π1}C 1)∗ {π0}C 1 ∪ {π2}.

The corresponding “unmarked” results for families of RCB/RO/f and
RCB/RO/B/f languages are obtained in each case by considering # to be a
nonterminal instead of a terminal symbol. In addition, P is extended with
the production π# = # → λ. Finally, the control languages are concatenated
(to the right) with π# , {π#}+ and {π#}∗ , respectively. `

The well-known proof to show closure under concatenation does not
work for RCB grammars. Viz. consider the RCB grammars (G1 ,C 1) and
(G2 ,C 2) where G1 = (V 1 ,Σ1 ,P 1 ,S 1), G2 = (V 2 ,Σ2 ,P 2 ,S 2), Σ1 = {a,b},
V 1 = {S 1 ,A,B}∪ Σ 1 , V 2 = {S 2}∪ Σ 2 , Σ2 = {b}. The rules of P 1 and P 2 are

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
P 1 P 2ii

π11 S 1 → AA π21 S 2 → b
π12 B → Ab
π13 A → a
π14 B → b
π15 A → Biiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c
c

whereas C 1 = {π11π
h

12π13π14π15π14 ,π11π13π15π12π13} and C 2 = {π21} are
the control languages. To generate L (G1 ,C 1) L (G2 ,C 2) we can simply take
as a candidate the grammar (G,C) with G = (V, Σ,P,S), V = V 1 ∪ V 2 ∪ {S},
Σ = Σ1 ∪ Σ 2 , P = P 1 ∪ P 2 ∪ {π0}, where π0 = S → S 1S 2 and C = {π0}C 2C 1 .
However, we do not reach our aim with this construction. For it is easy to
see that LS(G1 ,C 1) = {ba,aba}, and LRN /S(G2 ,C 2) = LRN /S(G2 ,C 2) = {b},
but LRN /S(G,C) = {bb,abab}.

Analogous counterexamples to show that these closure properties hold
for certain modes only can easily be constructed.

Proposition 3.2. The families of RCB/RO languages are closed under inter-
section with regular languages.

Proof. Let L 1 = L (G1 ,C 1) and R be a regular language, and let
(Q, ΣR ,δ,q 0 ,F) be a deterministic finite automaton which accepts the rever-
sal of R. We construct an RCB/RO grammar (G,C) with G = (V, Σ,P,S)
such that L 1∩ R = L (G,C). The set of nonterminals N will be defined as
follows. N contains two new symbols S and Z (S,Z ∉ V 1) and all triples of
the form (u,A,t) where u,t ∈ Q and A ∈ V 1 ∪ {λ}. To complete N we add a
symbol Aa for every a ∈Σ 1 ∪ {λ}. The set Σ of terminals of G equals
Σ1∩ ΣR . In order to define P we use the following notational conventions.
For each x ∈ V1

∗ , with x = x 1 . . . xm (m ≥ 0), xi ∈ V 1 (1≤ i ≤ m), we define

x̃ = {(p 0 ,x 1 ,p 1) . . . (pm −1 ,xm ,pm) c pi ∈ Q, 0 ≤ i ≤ m},

40 Chapter II

λ∼ = {(p 0 ,λ,p 1) c p 0 ,p 1 ∈ Q},

and for every p,q in Q

x̃p
q

= {(p,x 1 ,p 1) . . . (pm −1 ,xm ,q) c pi ∈ Q, 1≤ i ≤ m −1},

λ∼ p
q = {(p, λ,q)}.

We denote an element from x̃ by x̃(p 0 , . . . ,pm). Consider for every
π =A → α in P 1 ,

P π = {(p,A,q) → t c p,q ∈ Q, t ∈α∼
p
q}

and for every a ∈Σ 1 ∪ {λ},

Pa = {(p,a,q) → a c p,q ∈ Q, δ (q,a) = p}.

Because Pa = ∅ whenever a ∈Σ 1−Σ, we define P Σ = ∪ {Pa c a ∈Σ ∪ {λ}}.
Now we define the set P of productions of G by

P = P 0 ∪ PF ∪ PE ∪ P Σ ∪ ∪ {P π c π ∈ P 1}

where

P 0 = {S → Z (u,S 1 ,q 0) c u ∈ Q},

PF = {Aa → Z (u,a,t) c u = δ(t,a), u ∈ F, a ∈Σ 1 ∪ {λ}},

PE = {Aa → a c a ∈Σ ∪ {λ}}.

Consider the finite substitution σ : P 1 ∪ P
hh

1 → 2(P ∪ P
hh

)∗
defined by σ (π) = P π

and σ (π
h

) = P
hh

π for each π ∈ P 1 . Finally, we define the control language C
by C = P 0σ (C 1) P

hh
FPEPΣ

∗ .

The fact that (G,C) exactly generates L 1∩ R is shown as follows. Let
T = P

hh
FPEPΣ

∗ and let w ∈ L (G,C). Then there exist π0 ∈ P 0 , d ∈σ (C 1) and
t ∈ T such that S ⇒ RO

π0dtw. Applying π0 yields that there are p ∈ Q, d ∈ σ (C 1)
and t ∈ T, such that Z (p,S 1 ,q 0) ⇒ RO

dt w. From the definition of σ (C 1), this d
yields p,p 1 , . . . ,pm −1 in Q such that there exist t ∈ T and v ∈ L 1 with
Z ṽ(p,p 1 , . . . ,pm −1 ,q 0) ⇒ RO

t w. Following the definitions of P
hh

F , PE and PΣ
∗ ,

we see that this implies that p ∈ F, v = w and w ∈ L 1∩ R. The second part of
the proof is obtained by traversing this argument in the opposite direction. `

Proposition 3.3.

(a) The family of RCB/RO/B/f languages is closed under substitution.

(b) The families of RCB/RO languages are closed under context-free substi-
tution.

Proof. (a) Let L 1 = L (G1 ,C 1) be an RCB/RO/B/f language and let σ be an
RCB/RO/B/f-substitution σ : Σ1 → 2Σ∗

. Assume that Σ1 = {a 1 , . . . ,an}.

Controlled Bidirectional Grammars 41

Then for each a ∈Σ 1 , there exists an RCB/RO/B/f grammar (Ga ,Ca) with
Ga = (Va ,Σ,Pa ,Sa) such that L (Ga ,Ca) = σ (a). We assume that for every
a ∈Σ 1 , N 1∩ Va = ∅ and that Nai

∩ Naj
= ∅ if i ≠j for every 1 ≤ i, j ≤ n.

Define alphabets ∆ = {Sa1
, . . . ,San

} and Ω = {Za1
, . . . ,Zan

}. Furthermore,

consider an isomorphism i : V 1 → N 1 ∪ Ω defined by

i (A) = A for each A in N 1 ,
i (a) = Za for each a in Σ1 .

Let U = {A → α c A ∈ N 1 ,α ∈ (N 1 ∪ Ω)∗ }. Then we introduce a control set
T = ∪ {Ca c a ∈Σ 1} and a homomorphism h : P 1 ∪ P

hh
1 → U ∪ U

hh
defined as

follows

h (A → α) = A → i (α),
h (α → A) = i (α) → A.

Now we can define the RCB/RO/B/f grammar (G,C) which generates the
language σ (L 1) by G = (V, Σ,P,S) where

− V = ∪ {Va c a ∈Σ 1}∪ N 1 ∪ ∆ ∪ Ω ∪ {Z}

− P = ∪ {Pa c a ∈Σ 1}∪ h (P 1) ∪ PZ ∪ {Z → λ} with

PZ = {Za → Z Sa c a ∈Σ 1},

− S = S 1

and C = h (C 1) PZ
∗ T ∗ {Z → λ}∗

(b) The construction for the proof of Proposition 3.3(b) is nearly the
same as the one for the proof of 3.3(a) except for the following details. The
language L 1 is an RCB/RO language and the substitution is a context-free
substitution. The grammars (Ga ,Ca) for σ (a) are RCB/RO grammars with
Ca = Pa

∗ . Furthermore, we do not need a nonterminal Z which is therefore
omitted. Then we write U as {A → α c A ∈ N 1 ,α ∈ (N 1 ∪ ∆)∗ } and P =
∪ {Pa c a ∈Σ 1}∪ h (P 1). Consequently, {Z → λ} is left out of P and the iso-
morphism i is defined as i : V 1 → N 1 ∪ ∆ with i (A) = A, for each A ∈ N 1 and
i (a) = Sa , for each a ∈Σ 1 . As the control language C we take h (C 1) T ∗ .

In order to substantiate our claim that σ (L 1) = L (G,C), we only give
an informal sketch of the correctness of the construction from which one
may provide a formal proof. We use the nonterminal Z to prevent interac-
tion between neighbor parts in a sentential form. This interaction may occur
(in case we omit these Z’s) when we apply T ∗ to a string SaSa for instance.
Take some c 1 ,c 2 ∈ Ca (Ca ⊆ T) such that c 1 applied to Sa gives no terminal
string, and c 2 applied to Sa yields a terminal string w 2 . Now it may happen
that after applying c 2 to SaSa and then c 1 to Saw 2 we can apply some reduc-
tion occurring in c 1 to an intermediate string xw 2 which uses some terminal

42 Chapter II

symbols of w 2 . Then it might happen that c 2c 1 applied to SaSa will yield a
terminal string which is not in L (Ga ,Ca) L (Ga ,Ca), thus violating
σ (aa) = σ (a) σ (a). Note that introducing these Z’s in order to avoid these
interactions properly works for the RO-mode only. The f-mode is of course
necessary to prevent terminal reductions which may be applied at the wrong
places in a sentential form derived by (G,C). Analogously, this construction
is restricted to the B-mode because the S-mode combined with the RO-mode
may lead to similar counterexamples as mentioned above. In that case rules
may be applied to the wrong sentential forms although they are separated by
Z’s.

The correctness argument for the proof of 3.3(b) is easier, since in the
derivations according to (Ga ,Ca) only productions are used, and the control
languages Ca are equal to Pa

∗ for each a in Σ1 . Together with the assumption
that the nonterminal alphabets of the grammars Ga are mutually disjoint it is
straightforward to prove that L (G,C) = σ (L (G1 ,C 1)). `

Corollary 3.4. The families of RCB/RO languages are closed under
homomorphism. `

Proposition 3.5. The families of RCB/RO languages are closed under
inverse homomorphism.

Proof. It is sufficient to prove that RCB/RO languages are closed under
intersection with a regular language, regular substitution and union with a
regular language; cf. [Gin] Proposition 3.7.1 and its Corollary. The latter
fact follows from the observation that the regular languages form a subset of
the RCB languages; cf. Proposition 2.4.(1). The other premisses are proven
in Propositions 3.2 and 3.3. `

A family of languages is called nontrivial if it contains a language
which differs from ∅ and from {λ}. Recall that a full semi-Abstract Family
of Languages or full semi-AFL (cf. [Gin] for this and the following related
concept) is a nontrivial family of languages which is closed under union,
homomorphism, inverse homomorphisms and intersection with regular
languages. Furthermore, a full Abstract Family of Languages or full AFL is
a full semi-AFL which is also closed under concatenation, and Kleene +.

These concepts allow us to summarize some closure properties in the
following form.

Theorem 3.6.

g The family of RCB/RO/B/f languages is a full AFL closed under substi-
tution.

g The family of RCB/RO/S/f languages is a full semi-AFL closed under
concatenation.

Controlled Bidirectional Grammars 43

g The families of RCB/RO/g languages are full semi-AFL′s.

Proof. These results follow immediately from Propositions 3.1, 3.2, 3.3, 3.5
and Corollary 3.4. `

We define a λRCB grammar to be an RCB grammar of which the
underlying context-free grammar G has no λ-productions, i.e. G is λ-free.

Proposition 3.7.

g The families of λRCB languages are closed under (marked) union.

g The families of λRCB/f languages are closed under marked concatena-
tion.

g The families of λRCB/B/f languages and the family of λRCB/RN/S/f
languages are closed under marked Kleene +.

g The families of λRCB/RO/f languages are closed under concatenation.

g The family of λRCB/RO/B/f languages is closed under Kleene +.

g The families of λRCB/RO languages are closed under intersection with
regular languages, and λ-free context-free substitution.

g The family of λRCB/RO/B/f languages is closed under substitution.

Proof. These statements follow immediately from the constructions used in
proving Propositions 3.1, 3.2, 3.3 and 3.5. However, the results concerning
closure under concatenation and closure under Kleene + are obtained in a
way different from the method used in Proposition 3.1. We consider # to be
a nonterminal symbol too, but now P is extended with productions of the
form Aa → a# and Aa → a with a ∈Σ 1 . I.e., let Θ = {Aa → a# c a ∈Σ 1},
Ψ = {Aa → a c a ∈Σ 1}, where the nonterminals Aa do not occur in V 1 ∪ V 2 or
V 1 , respectively. Consequently, V is extended with {An c a ∈Σ }. Finally, the
control languages are concatenated (to the right) with Θ

hh
Ψ and Θ

hh∗
Ψ∗ ,

respectively. To prove closure under substitution of the family of
λRCB/RO/B/f languages we use this method too in order to replace the pro-
duction Z → λ used in the proof of Proposition 3.3. `

4. Grammatical Transformations

In this section we study certain transformations on RCB grammars with the
purpose to obtain normal forms for RCB grammars. First we introduce the
notion of “weak Chomsky Normal Form”.

Definition 4.1. A context-free grammar G = (V, Σ,P,S) is in weak Chomsky
Normal Form or in weak CNF if each production of P has one of the follow-
ing forms: A → XY or A → a with A ∈ N (N = V − Σ), where X,Y ∈ V and a is
in Σ ∪ {λ}. An RCB grammar (G,C) is in weak CNF if its underlying

44 Chapter II

grammar G is in weak CNF. `

We allow X or Y to be an element of Σ, contrary to the usual Chomsky
Normal Form where X and Y ought to be members of N only.

To transform an RCB grammar into a weak CNF RCB grammar it is
not sufficient to transform the underlying grammar only, but we also ought
to modify the corresponding control language. To obtain a weak Chomsky
Normal Form for an RCB grammar (G0 ,C 0), we first transform it into an
equivalent RCB grammar (G1 ,C 1) in which G1 has no chain rules. It turns
out that this transformation works properly for one combination of modes
only.

Definition 4.2. Let N be a set of nonterminal symbols. A chain rule is a
rule A → B with A,B ∈ N, and CH (N) is the set of all chain rules which can
be formed with elements from N. `

Lemma 4.3. Let (G0 ,C 0) be an RCB/RN/B/f grammar. Then there exists an
equivalent RCB/RN/B/f grammar (G1 ,C 1) such that G1 possesses no chain
rules.

Proof. The idea of the proof is based on similar arguments in [AsvVanL,
Asv80] for parallel rewriting systems. Viz. we construct a nondeterministic
generalized sequential machine (or ngsm) T = (Q,PI ,PO ,δ,q 0 ,QF) such that
C 1 = T (C 0) and G1 = (V 0 ,Σ0 ,P 1 ,S 0), with

P 1 = {A → ω c A ∈ N 0 ,A → ω ∈ PO},

and P 1 has no chain rules. Because the family of regular languages is closed
under ngsm-mappings, C 1 is a regular language too. Cf. Chapter V,
Definition 4.2, for a precise description of ngsm’s and ngsm-mappings.

Each state of T is an ordered pair (X,Y) where X is equal to the right-
most nonterminal which appeared in the sentential form by the last non-
chain rule in the derivation from S, or it is equal to S itself. The variable Y
contains the nonterminal to which X is rewritten by means of a nonempty
consecutive sequence of chain rules. The case Y = λ denotes that X is not
rewritten by chain rules or that it is rewritten by such rules to X itself. The
nondeterministic character of T appears when a nonterminal is rewritten to a
terminal string. In that case another nonterminal becomes the right-most
nonterminal which T ought to guess nondeterministically. The ngsm T also
ought to guess whether or not a reduction which is not a chain rule can be
applied.

Before giving the formal description of T we introduce the following
notation. Let (G,C) be an RCB grammar, r be a rule of (G,C) and let X ∈ N.
By R (α) we denote the right-most nonterminal of α if α ∈ V ∗ − Σ∗ and
R (α) = λ if α ∈Σ ∗ . Let lhs (r) and rhs (r) denote the left-hand side and the

Controlled Bidirectional Grammars 45

right-hand side of r respectively. We write rX to denote the rule
([X / R (lhs (r))] lhs(r)) → rhs (r), where [X / R (α)] α denotes the string
obtained from α by substituting X for the right-most nonterminal of α.
Furthermore, we define the set RN (r) as {R (rhs (r))} if rhs (r) ∈ V ∗ − Σ∗ and
RN (r) = N ∪ {λ} if rhs (r) ∈Σ ∗ . Finally, we will use a function act : Q → N
defined by

act ((X,Y)) = X if Y = λ and
act ((X,Y)) = Y otherwise.

Now act ((X,Y)) = R (lhs (r)) is a necessary condition for r to be applicable,
and in most cases also sufficient, except when r ∈ P

hh
0 −CH (N 0).

Formally, the ngsm T is defined as follows.

− The set of states is Q = {(X,Y) c X,Y ∈ N 0 ∪ {λ}},

− the input alphabet is PI = P 0 ∪ P
hh

0 ,

− the output alphabet equals

PO = P 0 ∪ P
hh

0 ∪ {rX c r ∈ P 0 ∪ P
hh

0 , X ∈ N 0}−CH (N 0),

− the initial state is q 0 = (S 0 ,λ),

− the set of final states is QF = {(λ,λ)},

− the transition mapping δ : Q ×PI → 2Q ×PO
∗

is defined by

δ ((X,Y),r) =

{((Z, λ),r) c Y = λ, Z ∈ RN (r), r ∉ CH (N 0), R (lhs (r)) = X}∪

∪ {((Z, λ),rX) c Y ≠ λ, Z ∈ RN (r), r ∉ CH (N 0), R (lhs (r)) = Y}∪

∪ {((X, λ),λ) c X = rhs (r), r ∈ CH (N 0), lhs (r) = act ((X,Y))}∪

∪ {((X,rhs (r)),λ) c X ≠ rhs (r), r ∈ CH (N 0), lhs (r) = act ((X,Y))}.

Note that Y ≠ λ implies X ≠ λ, and consequently rX is defined.

The correct behavior of T is easily checked. We will only prove for the
B-mode that T behaves correctly when it has to guess. Assume that every
rule r in a control string is applicable. If r is wrongly considered to be appli-
cable, then − because of the block mode − the output c ′ of T will block the
derivation controlled by c ′, whenever it tries to apply r. This also holds
whenever it tries to apply rX , which implies Y ≠ λ. We distinguish two cases.

a. If r is a production or r ∈ CH (N 0), then T produces no output if r is not
applicable in the original derivation determined by the control word c,
because act ((X,Y)) ≠ R (lhs (r)).

46 Chapter II

b. In case r is a reduction ρ and ρ ∉ CH (N 0), then T ought to guess
whether ρ is applicable or not in the original derivation. If ρ is
wrongly considered to be applicable, then we have the following situa-
tion: ρ is not applicable to a string α with α = uYv, u ∈ V ∗ , v ∈Σ ∗ , and
S ⇒ bα, where b is such that there exists an d with bd ∈ C, and finally
R (lhs (ρ)) = Y = act ((X,Y)) = R (α). The latter holds because T has
produced ρX . Then S ⇒ T (b)uXv, and R (lhs (ρX)) = X = R (uXv). How-
ever, this condition, with X replaced by Y, was apparently not sufficient
for ρ to be applicable, so ρX is not applicable to uXv.

T also ought to guess the new right-most nonterminal, after a terminal pro-
duction has been processed by T. Let r be the next rule in the control word c
from C 1 , i.e., let c = c 1rc 2 . Furthermore, let B be equal to R (w), where
S ⇒ c1 w. Note that B may be equal to λ. Suppose the new right-most nonter-
minal is wrongly guessed to be B ′ instead of the correct B. Then the new
state of T is (B ′,λ). If B ′ = λ, then we have wrongly reached the final state
(λ,λ), and so the output c ′ produces a string not in Σ∗ . Now, if B ′∈ V − Σ,
then we can distinguish two cases.

a. r is a production π =A → α. We may suppose A = B ′. Let c ′ =
c ′1rc ′2 be a produced output of T. Then c ′ will give no contribution
to L (G,C). When applying π to w (with S ⇒ c ′1 w) the derivational pro-
cess is blocked, because A = B ′≠ B and B is the actual right-most non-
terminal at that moment.

b. r is a reduction ρ, and in fact it is a fair reduction. Therefore the appli-
cability of ρ depends on B, which is essential. Suppose ρ is inapplica-
ble in the original derivation. In T we suppose ρ to be applicable, so
B ′ = R (lhs (ρ)). But then the output c ′ of T will cause blocking in
applying ρ at this place − i.e., after the application of C ′1 in c ′, if
ρ ∉ CH (N 0). If ρ ∈ CH (N 0), then T has constructed a production
B ′ → φwith φ ∉ N 0 at this place, which will also give blocking. `

For the RN/S/f-mode we are faced with the following difficulties. An
eventual ngsm TS for the RN/S/f-mode will have a transition mapping δS

with at least the set {((X,Y),λ) c act ((X,Y)) ≠ R (lhs (r)), r ∈ CH (N 0)}
included in δS((X,Y),r). If we extend the mapping δ used at the RN/B/f-
mode with this set to obtain δS , then we have to deal with the following
example. Let G0 = (V 0 ,Σ0 ,P 0 ,S) with V 0 = {A,B,S}∪ Σ 0 , Σ0 = {a,b}. The
production set P 0 consists of π1 = B → aS, π2 = B → A, π3 = S → A,
π4 = A → bS, π5 = S → a. With C consisting of the control word
c = π

h
1π2π3π4π5 we obtain S ⇒ cba. However, in processing c by TS we

have act ((S, λ)) = R (lhs(π
h

1)). So we assume π
h

1 to be applicable, which will
lead to TS(c) = c ′ = π

h
1π4,Bπ5 , where π4,B = B → bS, and thus S ⇒ c ′ a. The

Controlled Bidirectional Grammars 47

correct output of TS(c) ought to be π
h

1π4,Sπ5 .

The proof technique of Lemma 4.3 probably works for the RN-mode
only, viz. in case of the RO-mode we would need states (in the ngsm T) of
the form ((A 1 ,B 1), . . . ,(An ,Bn)) with N 1 = {A 1 , . . . ,An} and Bi ∈ N 1 ∪ {λ}.
If we process a production π =B → β with some Ai occurring in β, but
Ai≠ B, then we ought to remember both (Ai ,Bi) − i.e., the current value − as
well as the new value (Ai ,λ) in case π has been applied right to the right-
most Ai . Because of recursion this may lead to an infinite set of states which
is not allowed for ngsm’s.

Similarly, the restriction to the f-mode is essential in the proof of
Lemma 4.3. Since in the RN/g-mode it may happen that a reduction
α → Ai , (α ∈Σ ∗) introduces a nonterminal right from the right-most nonter-
minal. Then we ought to store the current state (Ai ,Bi) besides the new state
(Ai ,λ). Again this may lead to an infinite state set.

By means of Lemma 4.3 we are able to prove the following normal
form theorem.

Theorem 4.4. For every RCB/RN/B/f grammar (G1 ,C 1) there exists an
equivalent RCB/RN/B/f grammar (G,C) in weak CNF.

Proof. By Lemma 4.3 we assume that G1 has no chain rules. Let P 1 =
{π1 , . . . ,πn} be the set of productions of G1 with πi = Ai → Bi, 1 . . . Bi,mi

.

Let P be constructed as follows. Starting with the empty set, adjoin every
production of P 1 to P which has a right-hand side with a length smaller than
three. Next, for every πi ∈ P 1 with mi≥ 3, construct mi −1 new productions
from this production as follows. We take πi, 1 = Ai → Bi, 1Di, 1 , πi, 2 =
Di, 1 → Bi, 2Di, 2 , . . . , πi,mi−1 = Di,mi−2 → Bi,mi−1Bi,mi

. We assume that the

Di, j’s are distinct from each other, and that these Di, j’s constitute the set D.
The productions πi, j will be adjoined to P. Now we define a homomorphism
h : P 1 → P ∗ with h (πi) = πi if mi ≤ 2 and h (πi) = πi, 1 , . . . ,πi,mi

if mi≥ 3.

Furthermore, for a reduction π
h

∈ P
hh

1 we define h (π
h

) = h (π)
hhhhh

, using π τ
hhh

= τ
h

π
h

for every π,τ ∈ P 1 . Finally, we take C = h (C 1) and G = (V 1 ∪ D, Σ1 ,P,S 1).

Verifying the correctness of this construction is left to the reader as an
easy exercise. `

It is unlikely that the arguments used in establishing Lemma 4.3 and
Theorem 4.4 can be modified to obtain an RCB/RN/B/f grammar in the
usual Chomsky Normal Form, because of productions of the form A → α β
with α ∈Σ 1

+ and β ∈ V1
∗ − Σ1

∗ . For then we ought to remember to insert pro-
ductions Fa → a, a ∈Σ 1 in the new control word after inserting productions
which will derive β. Because this may get nested up to any level, an ngsm-
mapping is not able to handle this.

48 Chapter II

It is an interesting question whether we can characterize some of the
language families defined by a type of RCB grammar in terms of an other
one. The next proposition shows that under some conditions we can con-
struct an equivalent RCB/RO/S grammar in f-mode from an RCB/RO/S
grammar in g-mode.

Proposition 4.5. Let (G1 ,C 1) be a λRCB/RO/S/g grammar. Then there
exists an RCB/RO/S/f grammar (G,C) that generates the same language as
(G1 ,C 1).

Proof. Let V = V 1 ∪ {S,Z} be the new alphabet of the grammar (G,C),
where S and Z do not occur in (G1 ,C 1). Define a mapping

ζ : V1
+ → (V 1{Z})∗ V 1

by ζ (a) = a if a ∈ V 1 , and ζ (ax) = a Z ζ (x) if a ∈ V 1 and x ∈ V1
+. Let P be

the new production set of G with

P = {A → ζ (α) c A → α ∈ P 1} ∪ {S → Z S 1Z, Z → λ} ∪

∪ {A → Z a, A → Z A c A → a ∈ P 1 , a ∈Σ 1}.

Next we define a homomorphism h : P 1 ∪ P
hh

1 → (P ∪ P
hh

)∗ as follows

h (A → α) = A → ζ (α) if A → α ∈ P 1

h (α → A) = ζ (α) → A if c α c > 1 or M
J

α ∈ V 1− Σ1 N if α → A ∈ P
hh

1J
h (α → A) = (Z α → A) (A → ZA) if α ∈Σ 1 O

Now we define the RCB/RO/S/f grammar by (G,C) with G = (V, Σ1 ,P,S)
and C = {S → Z S 1Z}h (C 1) (Z → λ)∗ .

That the construction is correct can be seen from the fact that for all
strings α,β ∈ V1

+ and rule r ∈ P 1 ∪ P
hh

1 , we have appRO /S /g(r, α,β) if and only
if appRO /S /f (h (r), Z ζ (α) Z, Z ζ (β) Z) holds. This latter formula is defined
by appm(r 1r 2 ,α,β) if and only if ∃ γ (appm(r 1 ,α,γ) ∧ appm(r 2 ,γ,β)). `

5. Linear and Left-Linear RCB grammars

This section is devoted to the study of RCB grammars of which the underly-
ing grammar is linear or left-linear. The major part of the results in this sec-
tion consists of straightforward consequences of propositions established in
Sections 3 and 4.

Definition 5.1. If the underlying context-free grammar G of an RCB gram-
mar (G,C) happens to be linear, then we call (G,C) a linear RCB grammar
or LRCB grammar. And (G,C) is a left-linear RCB grammar or an LLRCB
grammar if G is a left-linear grammar. `

Controlled Bidirectional Grammars 49

All the modes of derivation introduced in Section 2 are applicable to
LRCB and to LLRCB grammars as well. However, the grammar types
LRCB/RN/B/f and LRCB/RO/B/f, as well as the types LRCB/RN/S/f and
LRCB/RO/S/f are strongly equivalent. This equivalence is due to the fact
that fair reduction maps linear sentential forms into linear sentential forms,
in which case the difference between RN-mode and RO-mode vanishes. The
same remark applies to LLRCB grammars.

For LRCB/f and LLRCB/f grammars we can establish a very simple
normal form.

Proposition 5.2. Let (G,C 0) be an LRCB/f or an LLRCB/f grammar. Then
there exists an equivalent LRCB/f or an LLRCB/f grammar (G,C), respec-
tively, which only possesses one nonterminal symbol, and each control word
from C ends with a terminal production.

Proof. Let (G,C 0) be an LRCB/f or an LLRCB/f grammar. For this type of
grammar we can easily construct, using a gsm, a grammar (G,C ′1) where
C ′1 is such that for every two consecutive rules r 1 and r 2 in a control word
c ∈ C ′1 , we have R (rhs (r 1)) = R (lhs (r 2)), and that the last rule of each con-
trol word in C ′1 is a terminal production. Note that due to the B-mode and
S-mode, we actually need two gsm’s. (Cf. Lemma 4.3 for the definition of
R. In this case R yields the nonterminal of a string α ∈Σ ∗ (V − Σ) Σ∗ , and
R (α) = λ if α ∈Σ ∗ .) If we replace each nonterminal in every rule occurring
in G and C ′1 by the start symbol S 0 we obtain a grammar (G,C 1) which
possesses one nonterminal symbol. This latter step is now possible because
the remaining nonterminals in (G,C ′1) have as their single task to indicate at
which position in a sentential form a rule ought to be applied. This can be
performed by one unique nonterminal as well. `

The obtained normal form will be called the 1-normal form.

Proposition 5.3. The family of [left-] linear context-free languages is
included in the family of [left-] linear regularly controlled bidirectional
languages for each mode of derivation. `

Clearly, the first construction in the proof of Proposition 3.1 also
applies to LRCB grammars. Therefore we have

Corollary 5.4. (1) The families of LRCB languages are closed under
(marked) union.
(2) The families of LRCB and LLRCB languages are closed under union
with a regular set.

Proof. (2) It is easy to see that the regular languages form a subset of the
LLRCB languages. `

50 Chapter II

Proposition 5.5. The families of LRCB/S/f languages are closed under
marked concatenation, marked Kleene + and marked Kleene ∗ .

Proof. Let G = (V, Σ,P,S) be a context-free grammar. We will use the fol-
lowing homomorphism h : P → P ∪ {A → S 1α c A → α ∈ P} defined by

h (A → α) = A → α if α ∈ V ∗ (V − Σ)V ∗

h (A → α) = A → S 1α if α ∈Σ ∗ .

In addition, define h (π
h

) = h (π)
hhhhh

for each π ∈ P.

Marked concatenation. Let (G1 ,C 1) and (G2 ,C 2) be LRCB/S/f grammars
generating the languages L 1 and L 2 , respectively. Define the LRCB/S/f
grammar (G,C), which will generate L 1#L 2 , as follows. G is the linear
context-free grammar (V, Σ,P,S 2) with V = V 1 ∪ V 2 ∪ {#}∪ {Da c a ∈Σ 2},
Σ = Σ1 ∪ Σ 2 ∪ {#}. Let π# be the production S 1 → S 1#. Furthermore, let
PL = {Da → aS 1 c a ∈Σ 2}, PR = {Da → S 1a c a ∈Σ 2}, and define the produc-
tion set P by P = P 1 ∪ h (P 2) ∪ PL ∪ PR ∪ {π#}. Now define the control
language C by C = h (C 2)(P

hh
LPR)∗ P

hh
L{π#}C 1 . Note that the last occurrence

of P
hh

L in each control word c in C has the effect that if the nonterminal S 1

has not been moved to the ultimate left position of the sentential form by
some word in (P

hh
LPR)∗ , then this P

hh
L is applicable, and all rules in {π#}C 1

will be skipped. As a result no terminal string is generated. Then
L (G,C) = L 1#L 2 .

Marked Kleene +. Let (G1 ,C 1) be a LRCB/S/f grammar generating L 1 .
Assume that (G1 ,C 1) is in 1-normal form. Let G be the linear context-free
grammar (V, Σ,P,S 1), where V = V 1 ∪ {#}∪ {Da c a ∈Σ 1}, Σ = Σ1 ∪ {#} and P
is defined as follows. Let π# = S 1 → S 1#, and PL = {Da → aS 1 c a ∈Σ 1},
PR = {Da → S 1a c a ∈Σ 1}. Then define the set of productions P by P 1 ∪
h (P 2) ∪ PL ∪ PR ∪ {π#}. With the control language C defined by C =
{π#}(h (C 1)(P

hh
LPR)∗ P

hh
L{π#})∗ C 1 , we obtain L (G,C) = (L 1#)+.

Marked Kleene ∗ . This follows immediately from a small change in the last
construction; viz. define πλ = S 1 → λ and take C ′ = C ∪ {πλ }. `

Concerning the LLRCB languages we have the following results.

Proposition 5.6.

g The families of LLRCB languages are closed under (marked) union.

g The families of LLRCB/f languages are closed under marked concate-
nation, marked Kleene + and marked Kleene ∗ .

Proof. Union. Cf. the proof of Proposition 3.1.

To prove the other properties we use the same constructions as in Pro-
position 5.5. Due to the fact that G is left-linear, we will not need the sets
{Da c a ∈Σ i} (i = 1,2), PL and PR in (G,C). Therefore these closure

Controlled Bidirectional Grammars 51

properties do also hold for the families of LLRCB/B/f languages. `

Many of the constructions used in Section 3 fail to work in the LRCB
and LLRCB case. Therefore we have less results for these language fami-
lies. However, the families of LRCB/f languages and of LLRCB/f
languages turn out to be closed under reversal.

Proposition 5.7. The families of LRCB/f languages and of LLRCB/f
languages are closed under reversal.

Proof. Let (G1 ,C 1) be an LRCB/f grammar which generates the LRCB/f
language L 1 . Define a homomorphism h on P 1 ∪ P

hh
1 by

h (A → w) = A → w R for each production A → w
h (w → A) = w R → A for each reduction w → A

where R is the reversal operation. When we define G = (V 1 ,Σ1 ,h (P 1),S 1)
and the regular control language C = h (C 1), we have L (G,C) = L1

R .

Clearly, the same construction also applies to LLRCB/f grammars.
However, in this case the resulting underlying grammar G is a right-linear
context-free grammar. Using standard methods it is now easy to construct
an LLRCB/f grammar generating L1

R . `

6. Arbitrary Families of Control Languages

In this paper we extended regularly controlled context-free grammars to reg-
ularly controlled grammars with context-free rules which may be applied in
a productive as well as a reductive fashion. In this approach we dis-
tinguished several (combinations of) modes of derivation. Some of these
combinations have originally been introduced in the literature, i.e., the RN-
mode in [GinSpa] (actually the LN-mode, cf. Proposition 2.4.(2)) and the
B-mode and S-mode in [Sal69, Sal70, Sal73] using somewhat different
names. The introduction of the RO-mode has been inspired by the proof to
establish closure under intersection with a regular set; cf. the proof of Propo-
sition 3.2. A similar observation can be made for the f-mode with respect to
closure under substitution; cf. the proof of Proposition 3.3. However, the
latter mode has also a justification in itself, for in g-mode some terminals
play the part of “pseudo-nonterminals”, i.e., they are in the terminal alphabet
of the grammar but they can act as a nonterminal, for example a reduction
a → A, which is not a phrase-structure rule; cf. Example 2.5. This
phenomenon obscures the distinction between terminal and nonterminal
symbols in grammatical models.

The closure properties established in Section 3 are summarized in
Table 1. We can make the following observations from Table 1. First, we

52 Chapter II

iii
Closure properties of RCB languages.ii

RN cc ROiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
B cc S cc B cc Siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

f g f g f g f gii
union + + + + + + + +iii
marked union + + + + + + + +iii
concatenation + + +iii
marked concatenation + + + +iii
Kleene + + +iii
marked Kleene + + + +iii
Kleene ∗ + +iii
marked Kleene ∗ + + +iii
homomorphism + + + + +iii
intersection with a regular set + + + + +iii
context-free substitution + + + + +iii
union with a regular set + + + + + + + +iii
inverse homomorphism + + + + +iii
substitution + +iii
substitution into a regular set + +iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1.

ought to remark that a table entry which is empty does not mean a negative
result, but a problem not yet solved. Concerning the positive results, we see
that the combination of the modes B and f enables us to prove all the closure
properties listed in the table. Intuitively, this is because in combination with
the RO-mode other mode instances can cause “side effects” such as in case
of the mode instances S or g. In addition we have the result of Theorem 4.4,
which gives us a useful normal form for RCB/RN/B/f grammars. These
facts make the B/f-mode the most promising combination of modes, espe-
cially the RN/B/f-mode.

In establishing the closure properties of RCB languages we used some
(closure) properties of the family of regular languages (“over the alphabet of
productions and reductions”). If we generalize from the family of regular
languages we ought to know which of these properties are needed to obtain
these closure properties of RCB languages. Let C denote an arbitrary family
of control languages. Then, for instance, closure under (marked) union is

Controlled Bidirectional Grammars 53

ii
Closure property Closure properties
of CB languages of Cii

(marked) union marked union
concatenation concatenation, left and right-marking
marked concatenation concatenation, left-marking
Kleene + concatenation, left-marking, Kleene ∗ ,

Kleene +
marked Kleene + concatenation, left-marking, Kleene ∗
Kleene ∗ union, concatenation, left-marking,

Kleene ∗
marked Kleene ∗ union, concatenation, left-marking
intersection by a regular set union, concatenation, Kleene ∗ ,

reversal, finite substitution
homomorphism union, concatenation, Kleene ∗ ,

homomorphism
regular substitution union, concatenation, Kleene ∗ ,

homomorphism
context-free substitution union, concatenation, Kleene ∗ ,

homomorphism
substitution union, concatenation, Kleene ∗ ,

homomorphism
union with a regular set P ∗ ∈ C
inverse homomorphism union, concatenation, Kleene ∗ ,

reversal, finite substitution, P ∗ ∈ C
substitution into a regular set union, concatenation, Kleene ∗ ,

marked union, left and right-markingiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2.

provable if C is closed under marked union, as one can see from the proof of
Proposition 3.1. In Table 2 results are shown based on the analysis of the
proof of each closure property. Because C is no longer equal to the family
of regular languages, we generalize RCB grammars to Controlled Bidirec-
tional grammars (CB grammars). Besides the properties of C, also a specific
combination of modes is necessary to establish each closure property for CB
languages. These modes are not included in the table, but can be extracted
in a direct way from the results in Section 3. We conclude this subject with
a final remark about the mode RN/B/f. Since most of the closure properties
of the family of RCB/RN/B/f languages heavily depend on C being the fam-
ily of regular control languages, cf. Proposition 2.4.(2), we cannot expect to
maintain all the closure properties if we generalize to an arbitrary family C

54 Chapter II

of control languages.

To obtain closure properties for the family of C-controlled bidirec-
tional languages we often need closure under left or right-marking. A family
of languages Φ is closed under left- or right-marking if for every language
L 0 ∈Φ also {#}L 0 ∈ Φ and L 0{#}∈ Φ , respectively, where # does not occur
in the alphabet of L 0 .

Consequently, we can also generalize Theorem 3.6 in the following
way.

Theorem 6.1. Let C be a family of control languages such that for every
alphabet P, we have P ∗ ∈ C.

g The family of CB/RO/S/g languages is a full semi-AFL if C is closed
under union, concatenation, Kleene ∗ , reversal and finite substitution.

g The family of CB/RO/S/f languages is a full semi-AFL closed under
concatenation if C is closed under union, concatenation, Kleene ∗ , left
and right-marking, reversal and finite substitution.

g The family of CB/RO/B/f languages is a full AFL closed under substi-
tution if C is closed under union, concatenation, Kleene + and ∗ , left
and right-marking, reversal and finite substitution. `

Similarly, as a generalization of Theorem 4.4 we have the following
result.

Theorem 6.2. Let C be a family of control languages closed under ngsm-
mappings. Then for each CB/RN/B/f grammar (G1 ,C 1) with C 1 ∈ C we can
obtain an equivalent CB/RN/B/f grammar (G,C) in weak Chomsky Normal
Form (and C ∈ C). `

CHAPTER III

Time-Bounded Controlled
Bidirectional Grammars

1. Introduction

Due to the occurrence of reductions it is possible to have in an RCB gram-
mar (G,C) nonempty control strings d and c with properties as already men-
tioned at the beginning of Section I.4.2, viz., there exists a string ω with
S ⇒ m

d ω and ω ⇒ m
c ω. When c ∗ occurs as part of the control language C, it is

hard to construct parsers that terminate for each input string. Till now, no
transformations are known that transform in an effective way an RCB gram-
mar (G,C) into an equivalent RCB grammar (G ′,C ′) without this undesir-
able behavior. In particular, we are therefore unable to establish a linear or
even a polynomial bound on the derivation length of an RCB grammar.

The problem sketched above raised our interest in the derivational
complexity of RCB grammars. So we use concepts as bounding function
and time-bounded grammars in order to describe this complexity. For these
time-bounded RCB grammars we are able to design parsing algorithms
indeed.

This chapter is organized as follows. In Section 2 we recall the
definition of time-bounded RCB grammars, together with some properties
and examples. We restrict ourselves to λRCB grammars (G,C), i.e., RCB
grammars (G,C) in which the underlying grammar G has no λ-productions.

In Section 3 closure properties of a few families of time-bounded
λRCB languages are established. In this section we also prove the weak
Chomsky Normal Form (cf. Section II.4) for time-bounded λRCB grammars
under the RS/B/f-mode.

Section 4 is devoted to the construction of parsers for φ-bounded
λRCB/m languages. We perform these constructions for a few characteristic
modes. The worst-case time complexity of the parser for the RN/B/f-mode,
which induces the smallest language family, is already exponential.

56 Chapter III

Section 5 contains concluding remarks, and some generalizations to
arbitrary families of control languages and to less restricted families of
bounding functions.

2. Definitions, Examples and Elementary Properties.

First, we introduce time-bounded RCB grammars of which we give some
examples. Then we establish some properties of time-bounded RCB gram-
mars and their languages. For all unexplained notations and concepts from
parsing theory used in this chapter, we refer to standard texts like [AhoUll,
Har, Sud].

We start with another example of an RCB language to which we will
return in Example 2.6 and in the proof of Proposition 2.9.

Example 2.1. The language {a 2n

c n ≥ 0}, which is not context-free, can be
generated by an RCB/RN/S/f grammar (G,C). Take G = (V, Σ,P,S) with
V = {S,A,B,D,E,F,G,H,a}, Σ = {a} and P consists of the following produc-
tions.

π0 = S → a, π1 = S → aa, π2 = S → aAaa, π3 = A → aA,
π4 = B → aAa, π5 = B → AD, π6 = D → aaE, π7 = D → Ea,
π8 = F → aE, π9 = F → a, π10 = G → aA, π11 = H → Aa,
π12 = H → a.

The control language C is defined by

C = {π0}∪ {π1}∪ {π2π3
∗ (π

h
4π5π6(π

h
7π
h

8π9π6)∗ π
h

10π
h

11π12π10)+}.

The grammar (G,C) works as follows. For m ≥ 2 it produces a string
a m −1Aaa by applying π2π3

m −2 to S. Next, π
h

4π5π6 rewrites aAa into AaaE.
So one a to the left of A is removed and one a to the right of A is doubled.
By (π

h
7π
h

8π9π6)∗ the nonterminal E moves to the right, doubling each a it
encounters. As a consequence, a xAa y with x ≥ 1 and y ≥ 2 is rewritten into
a x −1Aa 2y. Finally, the sequence π

h
10π

h
11π12π10 checks if there are no more

occurrences of a to the left of A, in which case a terminal string is produced.
Now it will be clear that this string is of the form a 2m

, with m ≥ 2. Together
with the productions π0 and π1 we obtain the intended language. `

In introducing (time-)bounded RCB grammars we first define the time
function T (G,C) of an RCB grammar (G,C). This time function T (G,C) is a
(partial) function such that for any n > 0 for which T (G,C) is defined,
T (G,C)(n) bounds the length of the shortest control words that derive all
strings of length equal to n which are generated by (G,C). This is a
modified version of the original definition by Gladkii [Gla] for general

Time-Bounded Controlled Bidirectional Grammars 57

phrase-structure grammars which has been investigated by Book [Boo71].
First, we define the (partial) function t (G,C) which assigns to a string w the
length of the shortest control word deriving w by (G,C) if such a control
word exists. In the sequel we only consider λRCB grammars, i.e., the under-
lying context-free grammar G has no λ-productions at all; cf. Section II.3.

Definition 2.2. For any λRCB grammar (G,C) and every w ∈ Lii(G,C), where
Lii(G,C) = {w ∈ V + c ∃ c ∈ C. S ⇒ cw}, let t (G,C)(w) be the least integer k such
that there is a control word c ∈ C deriving w with c c c = k or, equivalently,

t (G,C)(w) = min{ c c c c S ⇒ cw, c ∈ C} `

The function t (G,C) is partial recursive function. This is easy to show by
modifying a similar proof from [Boo71].

Definition 2.3. For every λRCB grammar (G,C) the time function
T (G,C) : IN → IN is the function determined by

I max{t (G,C)(w) c ∃ c. S ⇒ cw, w ∈ V n} if Lii(G,C) ∩ Σn ≠ ∅
J

T (G,C)(n) = K
J
L undefined otherwise.

`

Originally the time function TG of a phrase-structure grammar G has
been introduced to serve as a measure of its derivational complexity, cf.
[Gla]. In [Boo71] Book used time functions “to define families of languages
based on “bounds” on derivational complexity”. In this paper we use time
functions in a similar way, viz. to restrict the possible control languages C
which can generate some language L 0 , when given an underlying context-
free grammar G. For some function φ: IN → IN, context-free grammar G
and two control languages C 1 , C 2 it is possible to have L (G,C 1) =
L (G,C 2) = L 0 and ∀ n. T (G,C 1) (n) ≤ φ(n) but not ∀ n. T (G,C 2) (n) ≤ φ(n).

The function φwill be called a bounding function.

Definition 2.4. A function φ is a bounding function if it is a nondecreasing
total recursive function with the property that there is a positive integer k
such that for all x, φ(x) ≥ x /k and such that for all x ≥ 0, φ(x) ≥ 0. `

Let Φ denote a family of bounding functions. In this paper we will
consider mainly the following families of bounding functions: POLY,
POLY (k) with k ≥ 1 and LIN which are the families of polynomial functions,
of polynomial functions up to degree k and polynomial functions of degree 1
(linear functions), respectively, all polynomials having coefficients greater
than or equal to zero. Note that POLY (1) = LIN.

For a partial function F : A → B we write F (a) ↓ whenever F (a) is
defined and F (a) ↑ otherwise.

58 Chapter III

Definition 2.5.

(a) A λRCB grammar (G,C) is bounded by a function φ if for any natural
number n, if T (G,C)(n) ↓ then T (G,C)(n) ≤ φ(n).

(b) A λRCB language L 0 is bounded by a function φ if there is a λRCB
grammar (G,C) generating L 0 which is bounded by φ.

The family of φ-bounded λRCB/m languages, denoted by Lm(φ), con-
sists of those languages for which there is a λRCB/m grammar (G,C) that is
bounded by φ. For each class Φ of bounding functions, and for each mode m
the family of Φ-bounded λRCB/m languages — denoted by Φm — equals
∪ {Lm(φ) c φ ∈Φ }. `

Example 2.6. The grammar (G,C) of Example 2.1 is bounded by φ: n ||||→ 5n.
This is shown as follows. For each n ∈ IN there is at most one string w from
L (G,C) with length n. Furthermore, every string w ∈ L (G,C) has length 2m ,
for some m ∈ IN. Since S ⇒ π0 a and S ⇒ π1 aa, we have 1≤ φ(1), and 1≤ φ(2).
We also have the derivation S ⇒ π2π3

m −2

a m −1Aaa, m ≥ 2, with c π2π3
m −2 c =

m −1. Let ∆ denote the set {π
h

4π5π6(π
h

7π
h

8π9π6)∗ π
h

10π
h

11π12π10} and let d ∈∆ .
Then for y ≥ 2 we have

aAa y⇒ da 2y, M
J
N with c d c = 4y +7,
J

a m −1Aa y⇒ da m −2Aa 2y, m > 2 O

where c d c = 4y +7 implies that the sequence π
h

7π
h

8π9π6 has been repeated y
times. If we combine these facts we obtain that there exists an e ∈ (P ∪ P

hh
)∗

with

S ⇒ π2π3
m −2

a m −1Aaa ⇒ ea 2m

, e ∈∆ ∗ and c e c =
i =1
Σ

m −1
(4⋅2i+7),

so that there exists a c ∈ C with S ⇒ ca 2m

, c c c ≥ m −1+7m −7+4⋅2m−8 =
4(2m+2m −4), (m ≥ 2). Now we have ∀ m ≥ 2. 5⋅2m≥ 4(2m+2m −4) which
gives us the linear bounding function φ: n ||||→ 5n. A “sharper” bounding
function is of course ψ : 1 ||||→ 1, 2 ||||→ 1, n ||||→ 4(n +2 Rlog n H−4), where n ≥ 3. `

A useful property for φ-bounded λRCB languages is the following
characterization, of which the proof is straightforward.

Lemma 2.7. Let (G,C) be a λRCB grammar. Then for each mode m the fol-
lowing statements are equivalent.

(1) L (G,C) is bounded by φ.

(2) ∀ w ∈ L (G,C). ∃ c ∈ C. (S ⇒ cw ∧ c c c ≤ φ(c w c)). `

Time-Bounded Controlled Bidirectional Grammars 59

Let CFL [λCFL] denote the family of [λ-free] context-free languages.
The following lemma is a simple modification of Proposition II.2.4.(2); the
proof is also a straightforward variation of the original proof.

Lemma 2.8. The family of λRCB/RN/B/f languages coincides with the fam-
ily λCFL. `

Concerning the various families of bounding functions Φ discussed
above we have the following result, where λRCB/m denotes the family of
languages generated by λRCB/m grammars.

Proposition 2.9.

(a) For every family Φ of bounding functions, and for all modes m, we
have Φm ⊆ λ RCB/m.

(b) For all modes m, we have λCFL ⊆ LINm ⊆ POLY (k)m ⊆ POLYm .

(c) For all modes m ≠ RN/B/f, we have λCFL ⊂ LINm .

Proof. (a) is trivial, and for (b) we use for the first inclusion the fact that
every λ-free context-free language can be generated by a λRCB/m grammar
(G,P ∗). Without loss of generality we may take G in standard 2-form, i.e.,
all productions have one of the following three forms: A → a, A → aB,
A → aBC, with a ∈Σ , where S does not occur at the right-hand side of a pro-
duction. From this the result easily follows. The other inclusions are trivial.

Finally, (c) can be proved by using the language L 0 = {a nb nc n c n ≥ 1}
in case of the modes g and RO/f. For these modes simple RCB/m grammars
have been constructed in Chapter II which generate L 0 . These grammars
can easily be shown to be linearly bounded λRCB/m grammars. For the
mode RN/S/f Example 2.6 establishes the result. `

In Example II.2.7 a λRCB/RN/S/f grammar has also been constructed
that generates L 0 . However, that grammar is bounded by a polynomial of
degree two.

Remark. The case of Φm versus RCB/m leads to the proper inclusion
Φm ⊂ RCB/m, which is shown by considering the language {λ} which can be
generated by an RCB/m grammar with a single production π equal to S → λ
and C = {π}. However, by definition λRCB/m grammars cannot have λ-
rules. Consequently, Φm is a λ-free family of languages. `

Corollary 2.10. λCFL = LINRN /B /f = POLY (k)RN /B /f = POLYRN /B /f .

Proof. This follows directly from Proposition 2.9(a) and Lemma 2.8. `

60 Chapter III

3. Closure Properties and Normal Form.

In this section we investigate the closure properties of some families of
time-bounded λRCB languages. In addition a normal form for some gram-
mars will be established. If not stated otherwise the results in this section
hold for every combination of modes mentioned in the previous section.

By Corollary 2.10 the family ΦRN /B /f (Φ = LIN, POLY (k) or POLY)
shares all closure properties of the λ-free context-free languages. Therefore
we restrict our attention to modes different from RN/B/f. Cf. Table 1 in Sec-
tion 5.

In the sequel we suppose that (Gi ,Ci) are λRCB grammars, where Gi =
(Vi ,Σi ,Pi ,Si), which are bounded by some φi ∈ POLY (k) (i = 1,2). In addi-
tion Li denotes the language generated by (Gi ,Ci), i.e., Li = L (Gi ,Ci). Furth-
ermore, Ni equals the set Vi − Σi , i.e., the set of nonterminals of Gi .

Proposition 3.1. Let Φ be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the following statements hold.

g For all modes m, the families Φm are closed under union.

g The families ΦB /f and the family ΦRN /S /f are closed under marked con-
catenation and marked Kleene +.

g The families Φf are closed under marked concatenation.

g The families ΦRO /f are closed under concatenation.

g The family ΦRO /B /f is closed under Kleene +.

Proof. Union. We construct a λRCB grammar (G,C) from (G1 ,C 1) and
(G2 ,C 2) such that L (G,C) = L 1 ∪ L 2 . Consider the grammar G =
(V 1 ∪ V 2 ∪ {S},Σ1 ∪ Σ 2 ,P,S) where S ∉ V 1 ∪ V 2 , P = P 1 ∪ P 2 ∪ {π1 ,π2}, and
πi = S → Si (i = 1,2). Define the regular control language C by C =
{π1}C 1 ∪ {π2}C 2 . Then L (G,C) = L (G1 ,C 1) ∪ L (G2 ,C 2). To show that
(G,C) is a Φ-bounded λRCB grammar we write

T (G,C)(n) ≤ 1+max{T (Gi ,Ci)(n) c i = 1,2}.

Now it is clear that for Φ = POLYm(k) it holds that there exists a φ ∈Φ with
T (G,C)(n) ≤ φ(n).

Marked concatenation. The proof for this case is left to the reader as
an exercise.

Marked Kleene +. Define the λRCB/B/f or λRCB/RN/S/f grammar
(G,C) which generates (L 1#)+, by G = (V 1 ∪ {S,#},Σ1 ∪ {#},P,S) with P =
P 1 ∪ {π0 ,π1}, S ∉ V 1 , # ∉Σ 1 , π0 = S → S 1#, and π1 = S → SS 1#. Take as
regular control language C = ({π1}C 1)∗ {π0}C 1 . Then L (G,C) = (L 1#)+.
We show that (G,C) is a POLY (k)m grammar (with the proper modes m) as

Time-Bounded Controlled Bidirectional Grammars 61

follows. For l ≥ 1, si ≥ 1, let

n =
i = 1
Σ
l

si .

Write φ1 ∈ POLY (k) as

φ1(n) =
j = 0
Σ
k

ajn
j

where ak> 0 and aj ≥ 0 (0 ≤ j < k). Then we have

T (G,C)(n) ≤
i = 1
Σ
l

(1+ φ1(si)) =
i = 1
Σ
l

(1+
j = 0
Σ
k

ajsi
j) = l +

j = 0
Σ
k

aj
i = 1
Σ
l

si
j ≤

≤ l +
j = 0
Σ
k

aj(
i = 1
Σ
l

si)
j+a 0(l −1) ≤ φ1(n) +n (a 0+1),

which completes the proof.

The corresponding “unmarked” results are obtained in each case by
considering # to be a nonterminal instead of a terminal symbol. In addition,
P is extended with productions of the form Aa → a# and Aa → a with a ∈Σ 1 .
I.e. let ∆ = {Aa → a# c a ∈Σ 1}, Ω = {Aa → a c a ∈Σ 1}, where the nontermi-
nals Aa do not occur in V 1 ∪ V 2 . Finally, the control languages are con-
catenated (to the right) with ∆

hh
Ω and ∆

hh∗
Ω∗ , respectively. Even in the proof

of closure under Kleene + this construction adds only a linear contribution to
the time function. For the remaining families LIN and POLY the results fol-
low in a simple way from the case Φ equals POLY (k) `

Proposition 3.2. Let Φ be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the families ΦRO are closed under intersection
with regular languages.

Proof. The closure under intersection with regular languages has been
shown in Chapter II for RCB/RO languages by means of the well-known
“triple” construction. Here we use the same construction, however, with
some minor modifications due to the fact that we have to deal with
λRCB/RO grammars. Starting from a λRCB/RO grammar (G1 ,C 1) and a
deterministic finite automaton (Q, ΣR ,δ,q 0 ,F) which accepts the reversal of
a regular language R this construction results in a λRCB/RO grammar (G,C)
that generates L (G1 ,C 1) ∩ R. Here G = (V, Σ,P,S) with Σ = Σ1∩ ΣR and
V = N ∪ Σ . N is the set of nonterminals defined as follows. N contains two
new symbols S and Z (S,Z ∉ V 1) and all triples of the form (u,A,t) where
u,t ∈ Q and A ∈ V 1 . To complete N we add a symbol Aa for every a ∈Σ 1 .
The set P of productions of G is defined by

P = P 0 ∪ PF ∪ PE ∪ P Σ ∪ ∪ {P π c π ∈ P 1}.

62 Chapter III

The control language of (G,C) is given by

C = P 0σ (C 1)P
hh

FPEPΣ
∗ ,

where

P 0 = {S → Z (u,S 1 ,q 0) c u ∈ Q},

PF = {Aa → Z (u,a,t) c u = δ(t,a), u ∈ F, a ∈Σ 1},

PE = {Aa → a c a ∈Σ },

P Σ = ∪ {Pa c a ∈Σ },

with, for every a ∈Σ 1 ,

Pa = {(p,a,q) → a c p,q ∈ Q, δ (q,a) = p}.

The finite substitution σ : P 1 ∪ P
hh

1 → 2(P ∪ P
hh

)∗
is defined by σ (π) = P π and

σ (π
h

) = P
hh

π for each π ∈ P 1 . The set P π is defined for every π =A → α in P 1

by

P π = {(p,A,q) → t c p,q ∈ Q, t ∈α∼
p
q}

where for every p,q in Q

x̃p
q

= {(p,x 1 ,p 1) . . . (pm −1 ,xm ,q) c pi ∈ Q, 1≤ i ≤ m},

Let (G1 ,C 1) be a λRCB/RO grammar that is bounded by φ1 , where
φ1 ∈ POLY (k). Then (G,C) is a POLY (k)-bounded λRCB/RO grammar,
since T (G,C)(n) ≤ 1+ φ1(n) +1+1+ (n −1) = φ1(n) +n +2; cf. the definition of
C. From this the corresponding statements for the families LIN and POLY
follow immediately. `

Proposition 3.3. Let Φ be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the following closure properties hold.

(a) The family ΦRO /B /f is closed under substitution.

(b) The families ΦRO are closed under λ-free context-free substitution.

Proof. (a) Let L 1 = L (G1 ,C 1) be a λRCB/RO/B/f language and let σ be a
λRCB/RO/B/f-substitution σ : Σ1 → 2Σ∗

. Next, let Σ1 = {a 1 , . . . ,an} and for
each a ∈Σ 1 , let (Ga ,Ca) be a λRCB/RO/B/f grammar with Ga =
(Va ,Σ,Pa ,Sa) such that L (Ga ,Ca) = σ (a). Assume that for every a ∈Σ 1 ,
N 1∩ Va = ∅ and that Nai

∩ Naj
= ∅ if i ≠ j for every 1≤ i, j ≤ n. Define

alphabets ∆ = {Sa1
, . . . ,San

} and Ω = {Za1
, . . . ,Zan

}. Let T be the control set

∪ {Ca c a ∈Σ 1}, and U = {A → α c A ∈ N 1 ,α ∈ (N 1 ∪ Ω)+}. We use the iso-
morphism i : V 1 → N 1 ∪ Ω defined by

i (A) = A for each A in N 1 ,
i (a) = Za for each a in Σ1

Time-Bounded Controlled Bidirectional Grammars 63

to define a homomorphism h : P 1 ∪ P
hh

1 → U ∪ U
hh

as follows

h (A → α) = A → i (α),
h (α → A) = i (α) → A.

Now we can define the λRCB/RO/B/f grammar (G,C) which generates the
language σ (L 1) by G = (V, Σ,P,S), where

− V = ∪ {Va c a ∈Σ 1}∪ N 1 ∪ ∆ ∪ Ω ∪ {Z}∪ {Aa c a ∈Σ }

− P = ∪ {Pa c a ∈Σ 1}∪ h (P 1) ∪ PZ ∪ Θ ∪ Ψ with

PZ = {Za → Z Sa c a ∈Σ 1},

Θ = {Aa → Za c a ∈Σ },

Ψ = {Aa → a c a ∈Σ }

− S = S 1

and C = h (C 1) PZ
∗ T ∗ Θ

hh∗
Ψ∗ .

The proof is completed as follows. Let (G1 ,C 1) be bounded by φ1

where φ1 ∈ POLY (k) and

φ1(p) =
j = 0
Σ
k

aj p j

and let for all ai ∈Σ 1 the languages σ (ai) be bounded by ψi with
ψi ∈ POLY (k) and

ψi(p) =
j = 0
Σ
k

bij p j

where 1≤ i ≤ n. Let F be a bounding function, F ∈ POLY (k), determined by

F (p) =
j = 0
Σ
k

bj p j

where bj = max{bij c 1≤ i ≤ n}. Let v =au (1) . . . au (l) with l ≥ 1 and u a func-
tion from IN+ to {1, . . . ,n}. Furthermore, let w = w 1 . . . wl = σ (v) such that
ws ∈ σ (au (s)), 1≤ s ≤ l. Now with C = h (C 1) PZ

∗ T ∗ Θ
hh∗

Ψ∗ we can write

T (G,C)(c w c) ≤ φ1(l) + l +
s = 1
Σ
l

ψu (s) (c ws c) + l + l

≤ φ1(l) +
s = 1
Σ
l

F (c ws c) +3l

≤ φ1(l) +F (c w c) +b 0(l −1) +3l.

The latter inequality is obtained by using the same method as in the proof of
closure under marked Kleene +. With

64 Chapter III

l ≤
s = 1
Σ
l

c ws c

the result follows immediately.

(b) The construction for the proof of Proposition 3.3(b) differs only
from the proof of 3.3(a) in the following details. The language L 1 is a
λRCB/RO language and the substitution is a λ-free context-free substitution.
The grammars (Ga ,Ca) for σ (a) are λRCB/RO grammars with Ca = Pa

∗ . As
a matter of fact, we do not need a nonterminal Z which is therefore omitted.
Consequently, Θ, Ψ, PZ and Ω are left out of (G,C) and P is equal to
∪ {Pa c a ∈Σ 1}∪ h (P 1). We define U as {A → α c A ∈ N 1 ,α ∈ (N 1 ∪ ∆)∗ } and
the isomorphism i is defined by i : V 1 → N 1 ∪ ∆ with i (A) = A, for each
A ∈ N 1 and i (a) = Sa , for each a ∈Σ 1 . As the control language C we take
h (C 1) T ∗ . Now the final steps of the proof are analogous to the case of sub-
stitution.

If Φ equals LIN or POLY, then the result follows from Φ = POLY (k) as
a corollary. `

In Chapter II, Definition 4.1 we introduced the weak Chomsky Normal
Form (CNF). This definition can be adapted to time-bounded λRCB gram-
mars in the obvious way. The time-bounded variant of Theorem II.4.4 reads
as follows.

Proposition 3.4. Let Φ be a family of bounding functions. If Φ is equal to
LIN, POLY (k) or POLY, then for every ΦRN /B /f grammar (G0 ,C 0) there
exists an equivalent ΦRN /B /f grammar (G,C) in weak CNF.

Proof. Let (G0 ,C 0) be bounded by some φ0 ∈Φ . The first step consists of
transforming this grammar into an equivalent grammar (G1 ,C 1) without
chain rules. This is effected by incorporating chain rules into the other non-
chain rules, whereas C 1 = T(C 0) for some nondeterministic generalized
sequential machine mapping T; cf. Lemma II.4.3 for the details of this con-
struction. Since c T (x) c ≤ c x c for each control word x, (G1 ,C 1) will also be
bound by φ0 . From this grammar we obtain the final grammar (G,C) by
“splitting” each rule of (G1 ,C 1) into smaller rules having a right-hand side
of length less than or equal to two. This is achieved by the following con-
struction. We assume that G1 has no chain rules. Let P 1 = {π1 , . . . ,πn} be
the set of productions of G1 with πi = Ai → Bi, 1 . . . Bi,mi

. Let P be con-

structed as follows. Starting with the empty set, adjoin every production of
P 1 to P which has a right-hand side with a length smaller than three. Next,
for every πi ∈ P 1 with mi≥ 3 construct mi−1 new productions from this pro-
duction as follows. Take πi, 1 = Ai → Bi, 1Di, 1 , πi, 2 = Di, 1 → Bi, 2Di, 2 , . . . ,
πi,mi−1 = Di,mi−2 → Bi,mi−1Bi,mi

. We assume that the Di, j’s are distinct from

Time-Bounded Controlled Bidirectional Grammars 65

each other, and that these Di, j’s constitute the set D. The productions πi, j

will be adjoined to P. Now we define a homomorphism h : P 1 → P ∗ with
h (πi) = πi if mi ≤ 2 and h (πi) = πi, 1 . . . πi,mi−1 if mi≥ 3. Furthermore, for a

reduction π
h

∈ P
hh

1 define h (π
h

) = h (π)
hhhh

, using π τ
hhh

= τ
h

π
h

for every π,τ ∈ P 1 .
Finally, we take C = h (C 1) and G = (V 1 ∪ D, Σ1 ,P,S 1). Now let M be the
maximum value of the length of a right-hand side of a rule of (G1 ,C 1).
Then we have T (G,C)(n) ≤ (M−1) φ0(n) if M ≥ 3 and T (G,C)(n) ≤ φ0(n) other-
wise. Hence (G,C) is bounded by (M −1) φ0 . This completes the proof. `

4. Parsing λRCB Languages.

In this section we present depth-first bottom-up parsing algorithms for some
Φm languages where Φ is a family of bounding functions. Although the
algorithms are modifications of a well-known backtrack algorithm, the pres-
ence of reductions introduces some principal differences when compared
with the usual bottom-up parsing algorithms for context-free languages. In
the “normal case” of bottom-up parsing, a correct sequence of productions
which rewrites S into a string w is determined by applying reduce and shift
operations to the input string w. In our framework, where reductions may
occur in the control language, we also ought to apply produce operations.
This means that a reduction α → A in the control language causes the pars-
ing algorithm to rewrite the right-most nonterminal of the current sentential
form into α, at least if this right-most nonterminal is equal to A. We say that
a rule j is applicable (with respect to the parsing algorithm) to a string α if

there is a string β such that appm(j
h
,α,β) (assuming, of course, that π

hh
= π, for

each π in P). In other words, a production in the control language will cause
a reduce operation at the parsing process; a reduction in the control language
will cause a produce operation. The presence of reductions has also the
effect that we cannot use lookahead to obtain faster algorithms, at least not
in a straightforward way as in the case of ordinary context-free parsing. This
can be illustrated by the following observation, concerning the RN-mode. A
produce operation rewrites a nonterminal A into a string α according to a
reduction α → A in the control language. In this case, the longest postfix of
α which consists entirely of terminals ought to be considered as a string of
terminals that have not yet been involved in the parsing algorithm by shift
operations.

All algorithms in this section are bottom-up parsers. This is due to the
fact that in RCB grammars we rewrite the right-most nonterminal, i.e., we
consider right-most derivations. In case of the corresponding “LN-mode”
(Left Nonterminal) a top-down parser would be needed. First we present a

66 Chapter III

parsing algorithm for the mode RN/B/f. The algorithm is inspired by the
depth-first bottom-up parsing algorithm presented in [Sud]. As in [Sud], we
use a stack (here represented by T) to handle the backtrack information.

Algorithm 4.1. A depth-first bottom-up parser for λRCB/RN/B/f languages.

input: − λ-free RCB/RN/B/f grammar (G,C) represented by a λ-free
context-free grammar G = (V, Σ,P,S), and a deterministic
finite automaton M = (Q, ∆,δ,q 0 ,F), with ∆ ⊆ P ∪ P

hh
,

that accepts C R , i.e., the reverse of C.
− string w ∈Σ ∗ , where w = w 1 . . . wn , n ≥ 1, wi ∈Σ .
− bounding function φ.

output: − a control word (a parse) c with c deriving w from S
if such a c in C exists, otherwise a reject message.

1. K : = φ(n)
PUSH([λ,w, 0,0,λ,q 0],T)

2. repeat
[u,v,i,t,c,q] : = POP(T)
dead_end : = false
repeat

Find the first rule j with j > i that satisfies
i) j ∈ Follow (q)
ii) j = xAy → z with u = pz and x,p ∈ V ∗ , z ∈ V +, y ∈Σ ∗

if there is such a j then
PUSH([u,v, j,t,c,q], T)
u : = pxAy
rearrange (u,v)
i : = 0
t : = t +1
q : = δ(q, j)
c : = jc

end if
if there is no such j then

if v ≠ λ then
shift(u,v)
i : = 0

else
dead_end : = true

end if
end if

Time-Bounded Controlled Bidirectional Grammars 67

until (u = S and v = λ and q ∈ F) or dead_end or t = K
until (u = S and v = λ and q ∈ F) or EMPTY(T)

3. if EMPTY(T) then reject else output(c) `

The algorithm works as follows. As already stated, a stack T is used to
manage the information where to continue with the parsing algorithm in case
we have to backtrack from a wrong parsing decision. To this end each ele-
ment of the stack consists of six items. The first and second item are strings
from V ∗ which constitute − when concatenated − the string on which the
latest rule has been applied. The first item is associated with the variable u
and the second with the variable v. The algorithm is organized in such a way
that, after each operation on u, the pair (u,v) is rearranged (if necessary) into
the pair (u ′,v ′) such that u ′v ′ = uv, u ′∈ V ∗ (V − Σ) and v ∈Σ ∗ . Throughout
this section, we suppose that this rearranging is performed by a procedure
rearrange (u,v). So the variable v contains a string from Σ∗ during the entire
parsing process. This string v represents more or less the input which has
not yet been processed. Because we also have to deal with reductions in the
control language, v may even become longer during the parsing process.
This happens in case a nonterminal A at the right side of u is rewritten to a
string with terminals at the right side, according to the application of some
reduction in the control word from C. After the PUSH operation, these ter-
minals are adjoined to the left side of v. As already mentioned, this is per-
formed by rearrange (u,v). The sixth item, associated with the variable q, is
a state of the deterministic finite automaton M. With each state s we associ-
ate a set Follow (s) which is defined by

Follow (s) = {i ∈ P ∪ P
hh

c ∃ p. δ (s,i) = p},

i.e., this set is formed by all label names of the outgoing arcs of the state s.
The third item, associated with the variable i, gives us the index of the latest
rule which has been tried. We represent each rule from P ∪ P

hh
by a number

from 1 . . . 2 ⋅ c P c . Then i indicates that the next rule that will be tried, ought
to have an index greater than i. If i = 0, then no rules have yet been tried
after entering the state q. The fourth item of a stack element is associated
with t. It stands for the number of rules used so far at the current path, and it
is increased by one each time a rule can be applied. If t becomes equal to the
time-bound K, no rules will be tried any more. If the stack is not empty at
that moment, then we backtrack by popping an element from the stack,
which will have an item t with t< K. Finally, the fifth item, associated with
the variable c, contains the parse string, and after a successful parse of an
input string c equals a control word from C which derives w.

68 Chapter III

The algorithm starts with calculating the time-bound K from φ and n,
the length of the input w. The stack is initiated by pushing [λ,w, 0,0,λ,q 0]
onto the stack. The body of the algorithm begins with popping an element
[u,v,i,t,c,q] from the stack T. Starting at j = i +1 we try to find the first j
smaller or equal to 2 ⋅ c P c with j ∈ Follow (q) and j is the index of a rule
applicable to u with respect to the parsing algorithm. If this search is suc-
cessful, then we first put backtrack information onto the stack by
PUSH([u,v, j,t,c,q],T). Then we perform a reduce or produce operation on
the string u, according to the type of the rule associated with j, obtaining a
new string u ′. We change q to the new state q ′ of M which is equal to
δ (q, j), and set i equal to zero. Next we increase the counter t by one, and
the index j is adjoined to the left of the old string c. We obtain a new “input
string” v ′ differing from the old string v in case we applied a produce opera-
tion B → xAy with y ∈Σ +. This is effected by rearrange (u,v). If there
exists no rule with index j > i and j ∈ Follow (q) with j applicable to u, then
we shift one terminal symbol a from the remaining input v to the right of u
in case v ≠ λ. Hereafter we try repeatedly to find a proper rule which is
applicable to the new string ua. If v = λ, then we have to backtrack, which is
effected by chancing the value of the variable dead_end to true.

Let M be a deterministic finite automaton with a set of states Q. Then
we define M by

M = max{Card (Follow (q)) c q ∈ Q}.

where for a set B, Card (B) denotes its cardinality.

Proposition 4.2. Let (G,C) be a λRCB/RN/B/f grammar bounded by a
bounding function φ and let w be a string from Σ+ with n = c w c . Then Algo-
rithm 4.1 can decide in time O (Mφ2(n)) and in space O (φ2(n)) whether or
not w is an element of L (G,C). If w ∈ L (G,C), then the algorithm produces
also a control word c deriving w.

Proof. Suppose w ∈Σ +. Because the algorithm cuts off every possible
derivation with a length greater than φ(c w c) it has to search among a finite
number of strings from (P ∪ P

hh
)∗ . Furthermore, by Lemma 2.7 the existence

of a control word c ∈ C with length smaller than or equal to φ(c w c) is
guaranteed in case w ∈ L (G,C). So the algorithm can decide in a bounded
amount of time and space whether or not w ∈ L (G,C). To be more precise, if
we count every PUSH operation as one unit of time we obtain the time and
space bounds stated above as follows. The stack will have a height of at
most φ(n) elements. Each element will need an amount of space propor-
tional to φ(n) because once we have recognized a nonterminal A, it is possi-
ble that this nonterminal will be rewritten by a series of reductions α A → A
in the control language, at most φ(n) −1 times, where c α c <

Time-Bounded Controlled Bidirectional Grammars 69

max{ c γ c c A → γ ∈ P}. Summarizing, the algorithm will need at most
O (φ2(n)) units of space. At every node q of M, where M is the deterministic
finite automaton of Algorithm 4.1, the algorithm can make at most M wrong
tries after each shift operation. The expected number of shift operations is
proportional to φ(n). This is due to the same reason that a stack element has
an O (φ(n)) need of space. Then at each node we can perform at most
O (Mφ(n)) PUSH actions which finally lead to a dead alley situation. So
there exist at most O (Mφ2(n)) control words the algorithm ought to check
before terminating. `

Algorithm 4.1 presented above serves as a base for other parsers.
Depending on the mode m, we modify Algorithm 4.1 in order to obtain
parsers for λRCB/m languages. We will discuss parsers for the modes
RN/B/g, RN/S/f and RO/B/f in some detail. Further modifications − yield-
ing parsers for the remaining modes − are left to the reader as an exercise.

The algorithm for λRCB/RN/B/g languages can be obtained from
Algorithm 4.1 by chancing the part beginning at “ii) j = xAy → z with u = pz
and . . .” up to and including “u : = pxAy” into the following sequence of
instructions.

ii) j = xAy → z with u = pz and x,p ∈ V ∗ , z ∈ V +, y ∈Σ ∗

or j = x → A with u = pA and x ∈Σ +, p ∈ V ∗

if there is such a j then
PUSH([u,v, j,t,c,q], T)
if j is a general reduction then

(* j = x → A, x ∈Σ + *)
u : = px

else
u : = pxAy

end if

Concerning the time and space complexity, we can easily show that for
the algorithm for λRCB/RN/B/g languages these will be of the same order as
for Algorithm 4.1. This fact indicates that the upper bounds presented in
Proposition 4.2 are probably not very tight. Cf. also the remark on the com-
plexity of the λRCB/RO/B/f-parser at the end of this section.

Next we consider a parsing algorithm for the RN/S/f-mode; cf. Algo-
rithm 4.3 below. If we compare this algorithm with Algorithm 4.1, then the
following differences are conspicuous. Stack elements have been extended
with a seventh and an eighth item. The seventh item will contain the value
of a boolean variable Skip. Skip indicates whether the algorithm ought to
skip a rule of the control language. If Skip = false then we execute the same
lines as in the algorithm for the RN/B/f-mode (plus the initializing of the

70 Chapter III

eighth item, notapp). However, at some moment, if no rule j with j > i is
applicable after shifting the entire remaining input string, we can try to skip
a rule. Therefore we replace “dead_end : = true” from Algorithm 4.1 by
“Skip : = true; i : = 0”. To keep the administration concerning which rule
is not applicable in the context of the sentential form uv and the state q of the
deterministic finite automaton M, we use the variable notapp. It denotes a
subset of P ∪ P

hh
f , where

P
hh

f = {α → A c A → α ∈ P, α ∈ V ∗ − Σ∗ }.

Each time a new state q ′ is computed from δ (j,q), notapp is set to the value
P ∪ P

hh
f , which is also the initial value of notapp. After finding an applicable

rule j we remove this rule from notapp. This is effected by storing this fact,
together with the other backtrack information, in the eighth item of the stack
element by PUSH([u,v, j,t,c,q,Skip,notapp −{j}],T).

Algorithm 4.3. A depth-first bottom-up parser for λRCB/RN/S/f grammars.

input: − λ-free RCB/RN/S/f grammar (G,C) represented by a λ-free
context-free grammar G = (V, Σ,P,S), and a deterministic
finite automaton M = (Q, ∆,δ,q 0 ,F), with ∆ ⊆ P ∪ P

hh
, that

accepts C R , i.e., the reverse of C.
− string w ∈Σ ∗ , where w = w 1 . . . wn , n ≥ 1, wi ∈Σ .
− bounding function φ.

output: − a control word (a parse) c with c deriving w from S
if such a c in C exists, otherwise a reject message.

1. K : = φ(n)
PUSH([λ,w, 0,0,λ,q 0 ,false,P ∪ P

hh
f],T)

2. repeat
[u,v,i,t,c,q,Skip,notapp] : = POP(T)
dead_end : = false
repeat

if not Skip then
Find the first rule j with j > i that satisfies
i) j ∈ Follow (q)
ii) j = xAy → z with u = pz

and x,p ∈ V ∗ , z ∈ V +, y ∈Σ ∗

if there is such a j then
PUSH([u,v, j,t,c,q,Skip,notapp −{j}], T)
u : = pxAy
rearrange (u,v)
i : = 0

Time-Bounded Controlled Bidirectional Grammars 71

t : = t +1
q : = δ(q, j)
notapp : = P ∪ P

hh
f

c : = jc
end if
if there is no such j then

i : = 0
if v ≠ λ then

shift(u,v)
else

Skip : = true
end if

end if
else (* Skip = true *)

Find the first rule j with j > i that satisfies
i) j ∈ Follow (q)
ii) j ∈ notapp
if there is such a j then

rearrange (u,v)
PUSH([u,v, j,t,c,q,Skip,notapp],T)
i : = 0
q : = δ(q, j)
notapp : = P ∪ P

hh
f

Skip : = false
else

dead_end : = true
end if

end if
until (u = S and v = λ and q ∈ F) or dead_end or t = K

until (u = S and v = λ and q ∈ F) or EMPTY(T)

3. if EMPTY(T) then reject else output(c) `

So after setting the variable Skip to true in the then-part of the “if
not Skip then . . . else . . .” statement, we will enter the next turn of the
inner repeat loop the else-part of the “if not Skip then . . . else . . .”
statement. Because we have set i equal to 0 we can try each rule j that is not
applicable at the current string uv. If we find such a j, then we first ought to
perform rearrange (u,v). This is because v may be equal to λ due to shift
operations. Then we store these new u and v together with the other back-
track information (j,t,c,q,Skip,notapp) by pushing them onto the stack T
(where Skip has the value true). The variable i is set to 0, Skip to false and

72 Chapter III

we compute the new state q ′ by δ (q, j). Furthermore, in this new context
consisting of uv and q ′, notapp is initialized by P ∪ P

hh
f . Of course, no rule

can be concatenated to the control string already found. Also the time
counter t will not be increased. If there are no rules left that are not applica-
ble, this path has been exhausted and we have reached a dead end situation.

Algorithm 4.3 can make at each node q of M at most 2 ⋅M wrong deci-
sions after each shift operation. This results in a time complexity of
O ((2 ⋅M)φ2(n)). The space complexity is of the same order as in Algorithm
4.1; cf. the proof of Proposition 4.2.

As a last example of λRCB/m-parsers we discuss the case in which m
is equal to RO/B/f. In this mode, rules can be applied more freely than in
the mode RN/B/f. This means that we ought to weaken the corresponding
condition in Algorithm 4.1. Viz., we change

ii) j = xAy → z with u = pz and x,p ∈ V ∗ ,z ∈ V + ,y ∈Σ ∗

into

ii) j = xAy → z with u = pzs and x,p,s ∈ V ∗ ,z ∈ V + ,y ∈Σ ∗

and either ((x = λ and y = λ) and A does not occur in s)

or ((x ≠ λ or y ≠ λ) and z does not occur in s)

In addition, we change “u : = pxAy” from Algorithm 4.1 into
“u : = pxAys”.

The time and space complexity of this modified algorithm is of the
same order as in Algorithm 4.1. This is due to not taking into account the
time needed to check for the applicability of a rule j from Follow (q). This
latter test is expressed in condition ii) occurring in the various algorithms. It
is just this condition that depends on the mode under consideration.

In the algorithms presented above, some improvements are possible.
Viz. we do not need to push backtrack information onto the stack if it hap-
pens that Follow (q) possesses only one element. Furthermore, for each pair
u and v just popped from the stack, we observe that, once we have shifted
from v to u, we do not need to check for the applicability of reductions from
Follow (q). Another improvement is the following. It is possible for a state
q that all productions in Follow (q) are fair productions, i.e., their right-hand
side is an element of V ∗ (V − Σ)V ∗ . Then after a (bounded) number of shift
operations, depending on the set Follow (q), no further shift operations are
needed. This is because the length of the longest postfix, consisting of ter-
minals only, of the right-hand side of a production πhas a maximal value on
the set Follow (q). In the same way, whenever there are also terminal

Time-Bounded Controlled Bidirectional Grammars 73

productions in Follow (q), we need only to check for the applicability of ter-
minal productions on the intermediate string uv (with respect to the parsing
algorithm) after a bounded number of shift operations.

These possible improvements show that the derived upper bounds for
the time and space complexity are probably not very tight. Thus it is likely
that a more careful analysis will yield better upper bounds for the improved
parsing algorithms.

5. Concluding Remarks.

In this chapter we extended the idea of time-bounded grammars, as intro-
duced in [Boo71, Gla], to the concept of λRCB grammar. We showed that
for the mode RN/B/f we have ΦRN /B /f = λ RCB /RN /B /f = λCFL, where Φ is
equal to POLY, POLY (k), or LIN. We also constructed parsers for some of
the modes. In Table 1 we summarize the closure properties established in
Section 3. In this table, an entry which is empty indicates an open problem;
a plus means a positive result.
ii

Closure properties of Φm languages
with Φ equal to POLY, POLY (k) or LIN.ii

RN cc ROiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
B cc S cc B cc Siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

f g f g f g f gii
union + + + + + + + +ii
concatenation + + +ii
marked concatenation + + + +ii
Kleene + + +ii
marked Kleene + + + +ii
intersection with a regular set + + + + +ii
λ-free context-free substitution + + + + +ii
substitution + +iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1.

Note that the positive results for the mode RN/B/f are due to the fact
that λCFL = ΦRN /B /f , with Φ as above.

The closure properties for Φm languages, with Φ equal to POLY,
POLY (k) or LIN, can also be established for other language families based
on more general control languages and on less restricted families of

74 Chapter III

iii
µ ∀ p ≥ 2 . ∀ ψ 1 , . . .,ψp ∈Φ . ∃ φ ∈Φ . ∀ n. φ(n) ≥ max{ψi(n) c 1≤ i ≤ p}
µ2 ∀ ψ 1 ,ψ2 ∈Φ . ∃ φ ∈Φ . ∀ n. (φ(n) ≥ max{ψ1(n),ψ2(n)}
α ∀ φ ,ψ ∈Φ . λn. (φ(n) + ψ(n)) ∈Φ
α0 ∀ φ ∈Φ , ∀ c ≥ 0 . λn. (φ(n) +c) ∈Φ
α1 ∀ φ ∈Φ , ∀ c,d ≥ 0 . λn. (φ(n) +d ⋅n +c) ∈Φiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c and d are natural numbers.

Table 2.

bounding functions. Let C denote an arbitrary family of control languages
and Φ an arbitrary family of bounding functions. Then for each closure pro-
perty it is possible to list simple properties of C and of Φ which imply a cer-
tain closure property of the family of languages generated by Φ-bounded C-
controlled grammars. Results of this type − which can easily be proven in a
way similar to the proofs in Section 3 − are in Table 3.

iii
Assumptions Assumptions Closure property

on C on Φ of Φm(C)ii
marked union µ2 , α0 union

concatenation, α0 , α concatenation
left and right-marking

concatenation, α0 , α marked
left-marking concatenation

concatenation, Kleene +, α1 Kleene +
Kleene ∗ , left-marking

concatenation, α1 marked Kleene +
Kleene ∗ , left-marking

union, concatenation, α1 intersection by a
Kleene ∗ , reversal, regular set
finite substitution

union, concatenation, µ, α λ-free context-free
Kleene ∗ , homomorphism substitution

union, concatenation, µ, α, α1 substitution
Kleene ∗ , homomorphism

iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3.

The meaning of the assumptions on the family of bounding functions
Φ mentioned in Table 3 are listed in Table 2. For a precise definition of

Time-Bounded Controlled Bidirectional Grammars 75

closure under left and right-marking we refer to Section II.6. With each clo-
sure property mentioned in the table a specific set of modes is necessary to
obtain a proper result. This set can be found in the corresponding proposi-
tion from Section 3. Since C now replaces the family of regular languages,
we are dealing with λ-free C-controlled bidirectional grammars (λCCB
grammars) rather than λRCB grammars. Then Φm(C) denotes the family of
languages generated by λCCB/m grammars that are bounded by some
bounding function from Φ. For an arbitrary family C of control languages,
Lemma 2.8 and Corollary 2.10 no longer hold. Under which conditions on
C, the family ΦRN /B /f (C) − with Φ equal to POLY, POLY (K) or LIN −
shares all closure properties of the family λCFL, remains therefore an open
problem. Note that Table 3 only provides a partial answer to this question.

76 Chapter III

CHAPTER IV

Generating Power of RCB/RO Grammars

1. Introduction

One aspect of the derivational process in RCB grammars is the selection of
the terminal that has to be rewritten − if possible − by the next rule
prescribed by the control word. In Chapter II the right-occurrence or RO-
mode has been introduced. We introduced this rather “exotic” way of
rewriting in order to establish some closure properties of the corresponding
family of RCB languages, viz. closure under homomorphism, inverse
homomorphism, intersection with a regular set, and under context-free sub-
stitution. Now the main result of this chapter is, that if the mode of deriva-
tion m includes this RO-mode instance, then the resulting language family
equals the family of recursively enumerable languages. And so this family
inherits all (closure) properties of the family of recursively enumerable
languages. But the proofs in Section II.3 for the RO-mode remain to have
some interest since they deal with rules rather than with productions only.

This chapter is organized in the following way. In Section 2 we recall
some definitions concerning Turing machines and related concepts in order
to fix our notation. Section 3 is devoted to the proof the main result con-
cerning the generating power of RCB grammars provided with the RO-
mode. Some consequences of this result are mentioned in Section 4; viz. the
time-bounded RCB/RO grammars of Chapter III are weaker than ordinary
RCB/RO grammars with respect to generating power. This follows from the
fact that time-bounded RCB languages are recursive; cf. Chapter III. Then
in Section 5 we discuss the difference between the RS-mode and RA-mode
introduced in Chapter I, and the RN-mode and RO-mode introduced in
Chapter II. We show that the RA-mode has the same generating power as
the RO-mode. Finally, Section 6 contains some concluding remarks and
open problems.

78 Chapter IV

2. Preliminaries

We refer to [Har, HopUll79] for all unexplained notations and concepts from
formal languages and complexity theory. Another useful standard text is
[Sal73]. First, we recall some basic definitions and terminology with respect
to Turing machines.

Definition 2.1. A deterministic single-tape Turing machine is a 7-tuple
A = (Q, Σ,Γ,B, δ,q 0 ,F), where

g Q is a finite nonempty set of states,

g Σ is a finite nonempty set of input symbols,

g Γ is a finite nonempty set of work symbols and Σ ⊆ Γ ,

g B ∈Γ − Σ is the blank symbol,

g q 0 ∈ Q is the initial state,

g F ⊆ Q is the set of final or accepting states,

g δ is a partial mapping from Q × Γ into Q × Γ ×{−1,0,1}. This mapping
is called the transition function. `

From the so-called instantaneous description of a Turing machine A we
can infer in what state A is, the contents of its tape, and the head position on
the tape. We assume Q ∩ Γ = ∅ .

Definition 2.2. An instantaneous description or ID of a deterministic
single-tape Turing machine A equal to (Q, Σ,Γ,B, δ,q 0 ,F) is any element of
Γ∗ Q Γ+. An initial ID is an ID of the form q 0w with w ∈Σ +∪ {B} and an
accepting ID is any element of Γ∗ F Γ+. `

In an ID α q β, the symbol q represents the state in which the Turing
machine is. The string α β denotes the contents of the tape such that the
head is scanning the first symbol of β.

Definition 2.3. Let A = (Q, Σ,Γ,B, δ,q 0 ,F) be a deterministic single-tape
Turing machine. The transition relation c— on Γ∗ Q Γ+ is defined as fol-
lows. Let x,y be ID’s, where x = α aqb β and y = α′ q ′β′ with α a, α′∈Γ ∗ ,
a ∈Γ ∪ {λ}, and b β, β′∈Γ +. Furthermore, let δ (q,b) = (p,c,d). Then A
rewrites b into c and moves one position to the right [left] if d = +1 [−1,
respectively], and if d = 0 the position of the head does not change. Now we
write x c— y if and only if

g p = q ′ and

g (d = +1 and α ′ = α ac and β ′ = β) or

(d = −1 and α ′ = α and β ′ = ac β) or

(d = 0 and α ′ = α a and β ′ = c β).

Generating Power of RCB/RO Grammars 79

As usual, c—∗ denotes the reflexive and transitive closure of c— . `

Definition 2.4. Let A = (Q, Σ,Γ,B, δ,q 0 ,F) be a deterministic single-tape
Turing machine and w ∈Σ +∪ {B}. The Turing machine A accepts w (when
w ∈Σ +) or A accepts λ (when w = B) if

q 0w c—∗ α q β for some q ∈ F.

The set of all w in Σ∗ accepted by A is called the language accepted by A; it
is denoted by T (A). Thus T (A) = {w ∈Σ ∗ c A accepts w}.

A language L 0 is called recursively enumerable, if L 0 = T (A) for some
deterministic single-tape Turing machine A. The family of recursively enu-
merable languages is denoted by RE. `

It is well known [Har, HopUll79, Sal73] that the family of recursively
enumerable languages is equal to the family of Chomsky type-0 languages
or phrase-structure languages.

3. The Main Result

The proof of Proposition 3.1 has been inspired by the proof of Lemma 9.5.2
in [Har] which establishes the equality of the family of phrase-structure
languages and the family of the recursively enumerable languages. In that
proof some arbitrary phrase-structure productions rather than context-free
productions play of course an essential part. In order to show that for certain
modes m, RCB/m grammars are able to generate all recursively enumerable
languages we have to simulate arbitrary phrase-structure productions by a
combination of context-free productions and reductions. The idea of the
proof below is that we simply replace each of these phrase-structure produc-
tions by a reduction immediately followed by a production such that these
two rules have the same effect as that single phrase-structure production.

For each mode m, let Lm denote the family of languages generated by
RCB/m grammars.

Proposition 3.1. A language L 0 is an RCB/RO language if and only if L 0 is
recursively enumerable. Equivalently, LRO = RE.

Proof. Let L 0 be equal to T (A), the set of strings in Σ∗ accepted by the
deterministic single-tape Turing machine A, where A = (Q, Σ,Γ,B, δ,q 0 ,F).
Furthermore, we assume that δ (q,a) = ∅ for each q in F. First, we construct
an RCB grammar (G,C) with G = (V, Σ ∪ {$},P,S) such that LRO(G,C) =
{$}L 0 . This RCB grammar (G,C) starts with producing nondeterministi-
cally a coded version of a word x in Σ∗ . Then it simulates the computation
of A on input x. In case this simulated computation of A on input x reaches a
final state, then (G,C) will yield $x as the string it generates.

80 Chapter IV

We define the alphabet V of G by

V = Σ ∪ {$}∪ V 0 ∪ V 1 ∪ V 2 ∪ V 3 ∪ {S,U,W $,W}∪ Q

where

V 0 = (Σ ∪ {λ}) × Γ,

V 1 = Q × (Σ ∪ {λ}) × Γ,

V 2 = (Σ ∪ {λ}) × Γ × Q × (Σ ∪ {λ}) × Γ,

V 3 = {Wa c a ∈Σ }.

The set P is the union of a finite number of mutually disjoint sets, each
of which consists of a finite number of productions. This subdivision of the
elements of P facilitates the description of the way in which (G,C) simulates
the computations according to A.

The subsets {π1 ,π2 ,π3 ,π4 ,π5}, P Σ Σ , P $R and P $L of P consist of pro-
ductions that initialize the simulation of the Turing machine A. These pro-
ductions are defined by

π1 = S → S (λ,B), π2 = S → W $U (λ,B),
π3 = U → $, π4 = W → W $$,
π5 = W → $q 0 .

Furthermore,

P Σ Σ = {U → (a,a)U c a ∈Σ },

P $R = {Wa → (a,a)$ c a ∈Σ },

P $L = {Wa → $(a,a) c a ∈Σ }.

In the next six subsets of P − to be defined below − the set Pi,I

(i = −1,0,1) consists of the productions that are necessary to start a simula-
tion of an i-step of the Turing machine A. In fact, only reductions from P

hh
i,I

will be used. Then the rules in the corresponding set Pi will actually com-
plete that simulation.

P 0,I = {(p,a,D) → p (a,D) c a ∈Σ ∪ {λ}, p ∈ Q, D ∈Γ ,

∃ E ∈Γ , ∃ q ∈ Q . δ (p,D) = (q,E, 0)},

P 0 = {(p,a,D) → q (a,E) c a ∈Σ ∪ {λ}, p,q ∈ Q, D,E ∈Γ , δ (p,D) = (q,E, 0)},

P 1,I = {(p,a,D) → p (a,D) c a ∈Σ ∪ {λ}, p ∈ Q, D ∈Γ ,

∃ E ∈Γ , ∃ q ∈ Q . δ (p,D) = (q,E, 1)},

P 1 = {(p,a,D) → (a,E) q c a ∈Σ ∪ {λ}, p,q ∈ Q, D,E ∈Γ , δ (p,D) = (q,E, 1)},

Generating Power of RCB/RO Grammars 81

P −1,I = {(b,H,p,a,D) → (b,H) p (a,D) c a,b ∈Σ ∪ {λ}, p ∈ Q, D,H ∈Γ ,

∃ E ∈Γ , ∃ q ∈ Q . δ (p,D) = (q,E, −1)},

P −1 = {(b,H,p,a,D) → q (b,H)(a,E) c a,b ∈Σ ∪ {λ}, p,q ∈ Q,

D,E,H ∈Γ , δ (p,D) = (q,E, −1)}.

Once we reach a final state in the simulation of the Turing machine A,
the next four subsets of P take care of generating the terminal string that has
apparently been accepted by (the simulation of) the Turing machine.

PR = {(q,a,D) → q (a,D) c q ∈ F, a ∈Σ ∪ {λ}, D ∈Γ },

PL = {(q,a,D) → (a,D) q c q ∈ F, a ∈Σ ∪ {λ}, D ∈Γ },

P Σ = {(q,a,D) → aq c q ∈ F, a ∈Σ ∪ {λ}, D ∈Γ },

P λ = {q → λ c q ∈ F}.

Finally, we define the control language C of (G,C) by C = (P ∪ P
hh

)∗ .

A consequence of the equality C = (P ∪ P
hh

)∗ is that the generating
power of the B and S-mode will be equal. This is due to the fact that if we
have some control string c in C such that S ⇒ RO /S /f

c w, then the string c ′
obtained from c by removing each skipped rule has the property S ⇒ RO /B /f

c ′ w
and c ′∈ C.

The construction sketched above works as follows. If the Turing
machine A accepts the string a 1 . . . an , then it will stop after a finite compu-
tation. During this computation A uses, apart from the n cells on which the
input has been written, some number of additional cells − say k (k ≥ 0) − to
the right of the input. Now we can only start a derivation of (G,C) by apply-
ing k times (k ≥ 0) the production π1 = S → S (λ,B) to S, followed by π2 in
order to remove S. This production is followed by zero or more applications
of productions of the form U → (a,a)U with a ∈Σ , and a single application
of the production U → $. Thus there exists a control string c 1 in
{π1}∗ {π2}PΣ Σ

∗ {π3} such that

S ⇒ RO /f
c1 W $(a 1 ,a 1) . . . (an ,an) $ (λ,B)k, (n +k ≥ 1).

The string obtained by this subderivation will be denoted by αn,k.

By zero or more applications of pairs of the form (a,a)$ → Wa and
Wa → $(a,a) with a ∈Σ , and followed by the application of π

h
4 and π5 we

observe that there exists a control string c 2 in (P
hh

$RP $L)∗ {π
h

4π5} such that

αn,k⇒ RO /f
c2 $q 0(a 1 ,a 1) . . . (an ,an) (λ,B)k, (n +k ≥ 1). (1)

The string obtained by this subderivation will be denoted by ωn,k.

82 Chapter IV

Note that inserting productions and reductions from P Σ Σ ∪ P $R ∪
P $L{π1 ,π2 ,π3 ,π4 ,π5} in c 1 does not result in other, “undesirable” deriva-
tions.

Next we can simulate the actions of A by applying rules from Pi,I and
Pi (i = −1,0,1) to ωn,k. The position of the head of A is given by the posi-
tion of the nonterminal q in the string. P

hh
0,IP 0 simulates an action of A with

no head movement, P
hh

1,IP 1 takes care of a movement to the right A, and
finally P

hh
−1,IP −1 performs an action of A in which the head is moved to the

left. At each moment of time there occurs at most one nonterminal q from Q
in the sentential form. Therefore, reductions from P

hh
0,I , P

hh
1,I and P

hh
−1,I will

always be applied to the correct substring. Note that these sets consist of fair
reductions only. Due to these observations we have the following subderiva-
tions. There exist ci ∈ P

hh
i,IPi (i = −1, 0, 1) such that

g p (a,D) ⇒ RO /f
c0 q (a,E)

for each p,q ∈ Q, a ∈Σ ∪ {λ} and D,E ∈Γ such that δ (p,D) = (q,E, 0).

g p (a,D) ⇒ RO /f
c1 (a,E) q

for each p,q ∈ Q, a ∈Σ ∪ {λ} and D,E ∈Γ such that δ (p,D) = (q,E, 1).

g (b,H)p (a,D) ⇒ RO /f
c−1 q (b,H)(a,E)

for each p,q ∈ Q, a,b ∈Σ ∪ {λ} and D,E,H ∈Γ such that δ (p,D) =
(q,E, −1).

Apart from these subderivations we also have that there exist control
words d 0 , e 0 in P

hh
0,IP 0 such that

p (a,D) ⇒ RO /f
d0 p (a,D)

and

p (a,D) ⇒ RO /f
e0 (p,a,D).

These latter two subderivations represent wrong guesses of the gram-
mar (G,C) in the simulation of the Turing machine. However, they will not
yield additional terminal strings. The first one for obvious reasons, and
(p,a,D) can only be rewritten by one specific production from P 0 . Analo-
gous observations can be made with respect to P

hh
1,IP 1 and P

hh
−1,IP −1 . We

can show by induction on the number of Turing machine moves that if

q 0a 1 . . . an c—A
∗ X 1 . . . Xr −1q Xr . . . Xn +k,

then for some string c in (∪ {P
hh

i,I ∪ Pi c i = −1,0,1})∗ we have

ωn,k⇒ RO /f
c $(a 1 ,X 1) . . . (ar −1 ,Xr −1) q (ar ,Xr) . . . (an +k,Xn +k) (2)

where ai = λ (i > n) and Xi ∈Γ (1≤ i ≤ n +k). Let the derived string in (2) be

Generating Power of RCB/RO Grammars 83

denoted by X
∼

r,q
n +k.

If a nonterminal symbol q from F appears in X
∼

r,q
n +k, then only rules

from P
hh

R , P
hh

L are applicable. Then it will be clear that there exists some con-
trol string d in (PR ∪ PL ∪ P

hh
R ∪ P

hh
L ∪ P Σ)∗ such that

X
∼

r,q
n +k⇒ RO /f

d $a 1 . . . anq. (3)

By applying a single rule from P λ to this latter string we obtain the terminal
string $a 1 . . . an .

Thus {$}T (A) ⊆ LRO /f (G,C). The converse inclusion can be proved
by induction in a similar way. Note that if q 0 ∈ F, then LRO /f (G,C) = Σ∗ .

For each Turing machine A we have constructed RCB/RO/S/f and
RCB/RO/B/f grammars that generate {$}T (A). These grammars are trivi-
ally RCB/RO/S/g and RCB/RO/B/g grammars too, respectively. However,
in these latter two cases we have to define C by C = (P ∪ P

hh
f)

∗ , where P
hh

f is
the set of fair reductions induced by P. Note that this control language can
be used for both the B and the S-mode; cf. the remark at the end of the con-
struction of P.

Next we define a homomorphism h : Σ∪ {$}→Σ∗ by h ($) = λ and
h (a) =a for each a in Σ. Since the families of RCB/RO languages are closed
under homomorphism (Proposition 3.3.b in Chapter II), we can effectively
construct an RCB/RO grammar (G0 ,C 0) such that

LRO(G0 ,C 0) = h (LRO(G,C)) = h ({$}T (A)) = h ({$}L 0) = L 0 .

This concludes the proof of the implication from right to left in 3.1.
The converse implication can be proved using Church’s Thesis. `

In the construction applied in the proof of Proposition 3.1 we defined
the control language C equal to (P ∪ P

hh
)∗ for the RO/B/f and the RO/S/f-

mode. Thus we actually constructed an uncontrolled bidirectional grammar.
Therefore, from the proof of Proposition 3.1 we obtain immediately the fol-
lowing consequence in which we use the concept of B grammar. A bidirec-
tional grammar or B grammar is an RCB grammar (G,C) which satisfies
C = (P ∪ P

hh
)∗ .

Corollary 3.2. A language L 0 is recursively enumerable if and only if the
language {$}L 0 is a B/RO/f language. `

From 3.1 and 3.2 it follows that providing B/RO/f grammars with con-
trol languages does not result in additional language generating power.

Both 3.1 and 3.2 are examples of characterizing the recursively enu-
merable languages in terms of rather simple means. We only use context-
free rules but in both a productive and a reductive way. So the main results

84 Chapter IV

of this section belong to a large class of similar characterizations of which
[Asv86, BakBoo, Boa, Boo78, Cul, EngRoz, Sav] are a few instances only.

4. Time-Bounded λλ-free RCB Grammars

For the definition of λ-free RCB or λRCB grammar we refer to Section III.3.
The notions of bounding function, time-bounded λRCB grammar as well as
the classes Φm , POLYm , POLY (k)m with k ≥ 1, and LINm (m is a mode) have
been introduced in Section III.2. For each mode m and each bounding func-
tion φ, let L(φ) denote the family of languages generated by λRCB/m gram-
mars that are bounded by φ. Then we have that Φm = ∪ {Lm(φ) c φ ∈Φ }.

Now we are ready to formulate a consequence of Proposition 3.1. It
shows that for each mode m that includes the RO-submode, providing
RCB/m grammars with a time bound is a real restriction in the sense that it
results in a less powerful grammar model.

Corollary 4.1.
(1) For each bounding function φ, LRO(φ) is a proper subfamily of LRO .
(2) For each family Φ of bounding functions, ΦRO ⊂ LRO , i.e., ΦRO is a
proper subfamily of the family of RCB/RO languages.

Proof. In Chapter III parsing algorithms for ΦRO languages have been out-
lined. Since these algorithms terminate for each input, it follows that all
languages in ΦRO are recursive. `

Actually, we can slightly improve upon Corollary 4.1, for which we
need the following concepts and notations. Let NTIME(φ) be the family of
λ-free languages which are accepted by multi-tape nondeterministic Turing
machines in time φ: IN→IN. As usual NP is defined by

NP = ∪ {NTIME(n d) c d ∈ IN},

i.e., NP is the family of λ-free languages acceptable nondeterministically in
polynomial time.

Proposition 4.2. (1) Let L 0 be a λRCB language bounded by a function
φ: IN→IN. Then L 0 ∈ NTIME(φ2).
(2) POLY ⊆ NP.

Proof (sketch). (1) Using a 2-tape nondeterministic Turing machine each re-
writing step can be simulated in a constant number of steps. Looking for the
prescribed substring to be rewritten requires an amount of time which does
not exceed c. φ(n) for some c ≥ 1, where n is the length of the string in L 0 to
be accepted. Therefore, the total time is in O (φ2). Note that this crude time
bound holds for all different modes.
(2) This follows from (1) and the fact that the class of polynomials over IN

Generating Power of RCB/RO Grammars 85

is closed under squaring. `

It remains an open question whether a kind of converse of Proposition
4.2(2) holds, i.e., whether there exists a mode m such that NP ⊆ POLYm .
The problem in establishing such an inclusion is twofold. First, we have to
simulate nondeterministic Turing machine computations by RCB grammars.
This is the easy part since in the proof of Proposition 3.1 we can replace the
control language C = (P ∪ P

hh
)∗ by

{π1}∗ {π2}PΣΣ
∗ {π3}(P

hh
$RP $L)∗ {π

h
4π5}(P

hh
−1,IP −1 ∪ P

hh
0,IP 0 ∪ P

hh
1,IP 1)∗ (PR ∪

PL ∪ P
hh

R ∪ P
hh

L ∪ P Σ)∗ P λ .

and simulate all nondeterministic transitions of A in a straightforward way.
But the hard part is, of course, to do this simulation with a λ-free RCB gram-
mar, since in general we have k ≠ 0, i.e., A needs more than n tape cells for
its computation. Therefore, some substantial amount of erasing seems to be
inevitable. Probably, it is easier to show that NTIME(n) ⊆ LIN.

5. Modes of Derivation.

In this section we discuss some differences between the RO-mode and RA-
mode and between the RN-mode and the RS-mode; cf. Sections I.3.2 and
II.2.

When we apply a production to a sentential form with respect to the
RO-mode, only one terminal can be rewritten. This is not reflected in the
case of applying a reduction under RO-mode. In this latter case there is pos-
sibly more than one substring that can be rewritten. For example, in the
string aBa the reduction a → A is applicable to both a’s, i.e., we have
aBa ⇒ RO

a → AaBA and aBa ⇒ RO
a → AABa.

The RA-mode has the property that when a rule is applicable to some
sentential form, then precise one substring of this sentential form can be
rewritten. In the example presented above, only the a on the right can be
rewritten, i.e., aBa ⇒ RA

a → AaBA. There is another difference with the RO-
mode, viz., aBA ⇒ RA

a → AABA does hold, in contrary to the RO-mode which
does not permit this derivation. However, the generating power of the RA-
mode is the same as the RO-mode.

Proposition 5.1. A language L 0 is an RCB/RA language if and only if L 0 is
recursively enumerable; i.e., LRA = RE.

Proof. In the construction in the proof of Proposition 3.1, the left-hand side
of each reduction occurs at most once in each possible sentential form.
Therefore the derivation according the RO-mode and the RA-mode will have

86 Chapter IV

the same effect with respect to this particular grammar. `

In case of ordinary context-free grammars the RO-mode and RA-mode
are also equivalent of course. Definition I.3.2.2 (RA-mode) uses the same
condition as the RO-mode, but now this condition also applies to reductions
as well. Another reason to prefer the RA-mode rather than the RO-mode
shows up if we express both modes in the terminology of Thue systems.
Consider P as a Thue system with alphabet V and the relation ⇔P is defined
as in Definition I.2.2.1. Then we have

xuy ⇒ RA
u → vxvy if and only if

g xuy ⇔P xvy

g u occurs in uy only once

g if u = λ then y = λ.

The RO-mode can be expressed in a similar way as follows.

xuy ⇒ RO
u → vxvy if and only if

g xuy ⇔P xvy

g if u is in V − Σ
then u does not occur in y

else v does not occur in y.

Clearly, this is a less elegant property than in case of the RA-mode.

We can also use this description of the RO-mode and RA-mode both
for the RN-mode and RS-mode. Let Σ ⊂ V. The RN-mode can be described
by

xuy ⇒ RN
u → vxvy if and only if

g xuy ⇔P xvy

g y ∈Σ ∗ .

This allows us to write Baa ⇒ RN /g
a → ABAa, as well as Baa ⇒ RN /g

a → ABaA, where
one would expect only the latter possibility. In the RS-mode at most one
substring can be rewritten. In the terminology of Thue systems the RS-mode
mode is characterized by

xuy ⇒ RS
u → vxvy if and only if

g xuy ⇔P xvy

g u occurs in uy only once

g y ∈Σ ∗ .

g if u = λ then y = λ.

Generating Power of RCB/RO Grammars 87

It is obvious that the following holds.

Proposition 5.2. The modes RN and RS are equivalent when combined with
the f-mode. Consequently, LRS /f = LRN /f , and for each family Φ of bounding
functions we have ΦRS /f = ΦRN /f .

Proof. Restricted to the f-mode, in the characterizations of both the RN- as
the RS-mode the string u has to contain at least one nonterminal. `

So the families of RN/B/f and RN/S/f languages are equal to the fami-
lies of RS/B/f and RS/S/f languages, respectively. For the other RN-modes
it may be possible that the corresponding RS variant will result in a different
language family. Viz., it might turn out that the family of RN/B/g and
RN/S/g languages are not equal to the families of RS/B/g and RS/S/g
languages, respectively. However, we observe that the properties of the
families of RN/B/g and RN/S/g languages, established in Chapter II, also
hold for the corresponding families of RS languages.

Proposition 5.3. The families of RS/B/g and RS/S/g languages are closed
under union and in particular under union with a regular set. `

6. Concluding Remarks

We showed that the families of RCB/RO- and of RCB/RA languages coin-
cide with the family of recursively enumerable languages (Propositions 3.1
and 5.2). Although it is not very difficult to simulate Turing machine com-
putations by RCB/RO grammars we organized our construction in a way
such that a minimum of control is sufficient; cf. Corollary 3.2. Our results
are summarized in Table 1 in which CFL denotes the family of context-free
languages. A question mark represents an open problem, viz. a language
family that has not yet been characterized in terms of a well-known member
of the extended Chomsky-hierarchy. These “unknown” language families
properly include CFL (Proposition II.2.4) and are, of course, included in RE.

ii
RO RNii

m B S B Sii
f g f g f g f gii

Lm RE RE RE RE CFL ? ? ?iic
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c

cc
c
c
c
c

c
c
c
c

c
c
c
c
c
c
c

c
c
c
c

cc
c
c
c
c

c
c
c
c

c
c
c
c
c
c
c

Table 1.

Whether there exist similar characterizations for the complexity classes

88 Chapter IV

g NP in terms of polynomial time-bounded RCB/RO grammars, and

g NTIME(n) in terms of linear time-bounded RCB/RO grammars

remains open; cf Section 4. Another open problem is the question whether
there exists a natural restriction on RCB/m grammars that characterizes
NSPACE(n), i.e., the family of languages acceptable nondeterministically
by Turing machines in linear space.

CHAPTER V

Regularly Controlled Bidirectional
Extended Linear Basic Grammars

1. Introduction

In this chapter we study the concept of bidirectional application of produc-
tions − i.e., using a production of a grammar as a reduction too − with
respect to regularly controlled extended linear basic (macro) grammars
[AsvEng79]. The resulting new grammatical model is in essence equal to
the regularly controlled bidirectional context-free grammars of Chapter II in
which the underlying context-free grammar has been replaced by an
extended linear basic grammar. We motivate the choice of (K-)extended
linear basic grammars by the fact that for some language families K the fam-
ily of languages LBm(K) is incomparable with CFL. This holds for instance
if K equals ∅ NE or FIN and m = IO, since in these cases we have LB =
LB IO(K).

The structure of this chapter is as follows. In Section 2 we introduce
regularly controlled bidirectional (m,K)-elb grammars or (m,REG,K)-belb
grammars. Then we formally define for these (m,REG,K)-belb grammars
the RS/B/f-mode of derivation. The corresponding grammars are called
(r, f, m,REG,K)-belb grammars. In addition, we introduce c-trees to visual-
ize the structure of sentential forms generated by (r, f, m,REG,K)-belb gram-
mars. These c-trees are also helpful in the proofs of Section 5. Closure pro-
perties of the family RBLBr, f, m(K) of (r, f, m,REG,K)-belb languages are
established in Section 3. For both modes OI and IO and under weak
assumptions on the family K it is shown that the family RBLBr, f, m(K) is
closed under the regular operations (union, concatenation, and Kleene +).
Furthermore, we will prove that if K is a nontrivial family of languages
closed under ngsm mappings, then RBLBr, f, OI(K) is a full substitution-
closed AFL. Concerning the family RBLBr, f, IO(K), we establish − under
appropriate conditions on K − closure under intersection with regular
languages and deterministic substitution; hence this family is a full QAFL
(in the sense of [AsvEng79]) closed under deterministic substitution. In

90 Chapter V

Section 4 we discuss the language generating capacity of (r, f, m,REG,K)-
belb grammars. We show that the family RBLBr, f, OI(∅ NE) is equal to the
family OI of OI-macro languages and that the family IO of IO-macro
languages is included in the family RBLBr, f, IO(∅ NE). In Section 5
(m,REG,K)-belb grammars provided with free application of rules are stu-
died. However, the restriction of allowing only fair reductions is main-
tained. Then for m = OI and for m = IO the family of languages generated
by these so-called (f, m,REG,K)-belb grammars equals the family of recur-
sively enumerable languages. Finally, Section 6 contains some concluding
remarks.

2. Regularly Controlled Bidirectional (m,K)-elb Grammars

First, we note that in Definition I.3.3.1(i) we required that k ≥ 1, whereas in
the original definition of (m,K)-elb grammars in [AsvEng79] k = 0 is also
permitted. However, the restriction to k ≥ 1 causes no loss of generality,
except that in our approach we need that the family K contains at least one
nonempty language. This will be proved in Lemma 2.2.

Definition 2.1. An (m,K)-elb grammar G = (Φ,Ψ,Σ,X,P,S), is in equal
length form if there is a natural number n (n ≥ 0) such that each nonterminal
in Φ is either in Φ0 and equal to S, or in Φn and each language name in Ψ is
either in Ψ0 or in Ψn . `

Lemma 2.2. Let K be a language family that contains a nonempty language
L 0 . For each (m,K)-elb grammar G0 there exists an (m,K)-belb grammar
G in equal length form such that Lm(G) = Lm(G0).

Proof (sketch). Let G0 = (Φ,Ψ,Σ,X,P,S) be an (m,K)-elb grammar with
X 0 = {x 1 , . . . ,xn}. We enlarge the rank of each nonterminal unequal to S in
Φk, where k ≥ 0, and of each language name in Ψk, where k ≥ 0, to n by
adding n −k dummy arguments. To the resulting alphabet Ψ ′ we add each
language name with zero rank which occurs in an initial production of P.
The productions are changed accordingly by introducing two new language
names ψe in Ψn and ψz in Ψ0 , with ψe(x→) → L 0 and ψz → L 0 .

This well-known construction − e.g., cf. [Asv78] − can easily be writ-
ten out in full detail. `

Now we introduce regularly controlled bidirectional (m,K)-elb gram-
mars. They consist of an (m,K)-elb grammar provided with a regular control
language over P ∪ P

hh
. We define the set of reductions P

hh
corresponding to P

as in Section I.3.3. Furthermore, for each production π we define π
hh

to be
equal to π. An element of P ∪ P

hh
will be called a rule as in previous chapters.

RCB Extended Linear Basic Grammars 91

Notice that (m,K)-elb grammars provided with an arbitrary control
language over P have been studied in [Asv78, AsvEng79].

Definition 2.3. A regularly controlled bidirectional (m,K)-elb grammar or
(m,REG,K)-belb grammar is a triple (G,C, ¢) where

g G is an (m,K)-elb grammar (Φ,Ψ,Σ,X,P,S),

g C is a regular language with C ⊆ (P ∪ P
hh

)∗ ,

g ¢ is a special symbol not occurring in Φ, Ψ, Σ or X.

We call G the underlying grammar of (G,C, ¢) and C is called the con-
trol language of (G,C, ¢). Sentences of C will be referred to as control
words. `

Definition 2.4. A production A (x 1 , . . . ,xn) → t of a macro grammar is
called argument preserving [Fis68a] if each variable xi (1 ≤ i ≤ n) occurs in
the term t.

Let G = (Φ,Ψ,Σ,X,P,S) be an (m,K)-elb grammar. A production of
the form ψ (x 1 , . . . ,xn) → L 0 in P, where ψ ∈Ψ n , is called argument
preserving if each variable xi (1 ≤ i ≤ n) occurs in each word w from L 0 . `

Note that productions of the form I.3.3.1(i) and I.3.3.1(ii) are argument
preserving by definition.

For an (m,REG,K)-belb grammar (G,C, ¢), with G = (Φ,Ψ,Σ,X,P,S),
let and Term (G, ¢) denote the set of terms T (Σ ∪ X ∪ Φ ∪ Ψ ∪ {¢}). With
each (m,REG,K)-belb grammar we associate − as usual − a derivation rela-
tion. This derivation relation formalizes bidirectional right-most rewriting;
cf. Definition 2.6.

Definition 2.5. Let (G,C, ¢) be an (m,REG,K)-belb grammar, where G =
(Φ,Ψ,Σ,X,P,S). Let ρ be a rule from P ∪ P

hh
, where α [x→] is the left-hand

side of ρ, and let τ be a term in Term (G, ¢).

(a) If α [x→] is of the form Z (. . .), with Z ∈Φ ∪ Ψ , then we say that τ fits
in with ρ in case there are arguments t 1 , . . . ,tn from Term (G, ¢) such
that τ = α [t 1 , . . . ,tn], where α [t 1 , . . . ,tn] is the result of substituting
the terms t 1 , . . . ,tn for x 1 , . . . ,xn in α [x→], respectively.

(b) If α [x→] is a language L 0 ⊆ (Σ ∪ X)∗ , i.e., ρ is a reduction of the form
L 0 → ψ (x→), then τ fits in with ρ if there is at least one string t in L 0

such that τ = t [t 1 , . . . ,tn], where t [t 1 , . . . ,tn] is the result of substitut-
ing the terms t 1 , . . . ,tn for x 1 , . . . ,xn in t, respectively. `

Definition 2.6. Let (G,C, ¢) be an (m,REG,K)-belb grammar, where G =
(Φ,Ψ,Σ,X,P,S). Let ρ be rule from P ∪ P

hh
, and σ, τ be terms in Term (G, ¢).

We write σ ⇒ r,m
ρ τ if there exists a term u in Term (G, ¢), and strings v, x and

y over the alphabet Φ ∪ Ψ ∪ Σ ∪ X ∪ PC such that σ = xuy and τ = xvy and

92 Chapter V

g y contains no symbol from Φ ∪ Ψ ,

g if λ fits in with ρ then u = y = λ,

g u is the only subterm in uy that fits in with ρ,

g either ρ is a production, τ is the result of rewriting σ by ρ, and σ ⇒ mτ,
or ρ is a reduction, σ is the result of rewriting τ by ρ

h
, and τ ⇒ mσ. `

Let C ⊆ (P ∪ P
hh

)∗ be a control language. A control word c in C is a
sequence of rules. The application of a sequence of rules from P ∪ P

hh
to a

term τ is defined as the successive application of the rules which constitute
c. Viz., if c = ρ1 . . . ρn (n ≥ 0), then we write τ ⇒ r,m

c τ ′ if there are terms τi

(0 ≤ i ≤ n) such that τ0 = τ, τn = τ ′ and for each i (0 ≤ i < n) τi ⇒ r,m
ρi τi +1

holds. In case a rule ρi in c is not applicable to the term τi , then further
application of rules is blocked, and the application of c to τ yields no result,
i.e., there is no term τ ′ such that τ ⇒ r,m

c τ ′ is defined.

Definition 2.7. An (m,REG,K)-belb grammar provided with right-most
rewriting will be called an (r,m,REG,K)-belb grammar. Let (G,C, ¢) be an
(r,m,REG,K)-belb grammar with underlying grammar G = (Φ,Ψ,Σ,X,P,S)
and control language C ⊆ (P ∪ P

hh
)∗ . Then the language generated by

(G,C, ¢) under the mode r,m is defined by

Lr,m(G,C, ¢) = {w ∈Σ ∗ c ∃ c ∈ C . S ⇒ r,m
c w}.

The family of languages generated by (r,m,REG,K)-belb grammars is
denoted by RBLBr,m(K). `

The derivation relation ⇒ r,m defined above corresponds to the RS/B-
mode of derivation as defined in Chapter I for RCB grammars.

Example 2.8. Let L 1 be the language of equal length substrings, i.e.,

L 1 = {x 1cx 2 . . . cxn c xi ∈ {a,b}∗ , c xi c = m, 1 ≤ i ≤ n, n,m ≥ 1}.

In [Fis68a] it is shown that this language can be generated by an OI
macro grammar. The language L 1 belongs to RBLBr, OI(∅ NE), i.e., it can
also be generated by the following (r, OI,REG, ∅ NE)-belb grammar
(G,C, ¢).

Define G by (Φ,Ψ,Σ,X,P,S), where the set of nonterminals Φ is equal
to {S,A,B,D,E,F,H}, and S is the start symbol. The alphabet of language
names Ψ equals {ψi c 0 ≤ i ≤ 9}. The set Σ of terminals is {a,b,c}, and X =
{x,y}. Finally, the set of productions P of G consists of

π0 = S → A (ψ0), π12 = F → ψ6 ,
π1 = A (x) → A (ψ1(x)), π13 = F → ψ7 ,
π2 = A (x) → B (ψ2(x)), π14 = ψ0 → ∅ ,

RCB Extended Linear Basic Grammars 93

π3 = B (x) → ψ3(x), π15 = ψ6 → {a},
π4 = A (x) → ψ2(x), π16 = ψ7 → {b},
π5 = D (x) → ψ1(x), π17 = H (x) → ψ4(x),
π6 = D (x) → E (ψ2(x),ψ4(x)), π18 = H (x) → ψ8(x),
π7 = E (x,y) → ψ5(x,y), π19 = H (x) → ψ9(x),
π8 = ψ5(x,y) → {xy}, π20 = ψ4(x) → ∅ ,
π9 = ψ3(x) → {xcx}, π21 = ψ8(x) → {a},
π10 = ψ2(x) → {x}, π22 = ψ9(x) → {b}.
π11 = F → ψ0 ,

The rank of the symbols in Φ ∪ Ψ are easy to infer from the produc-
tions in P. Define the control language C by the regular expression

π0π1
∗ (π2π3π9π

h
4)∗ π4(π10(π

h
5π6π7π8π

h
17(π18π21+ π19π22) + π

h
11(π12π15+

π13π16)))+.

First, a string A (ψ1(. . . ψ1(ψ0) . . .), in which the language name ψ1

occurs n times, is generated by π0π1
n (n ≥ 0). We represent the argument of A

by [n], where [0] represents ψ0 . By applying k times (k ≥ 0) π2π3π9π
h

4 , fol-
lowed by π4 we obtain the string ψ2([n])c . . . c ψ2([n]), which contains k
times the symbol c. In the following we discuss the expanding of a substring
ψ2([n]). By π10 we derive ψ2([n]) to [n], which is rewritten to
ψ2([n −1]) H ([n −1]) by the subsequence π

h
5π6π7π8π

h
17 in case n ≥ 1, and to

F by the reduction π
h

11 in case n = 0. Next, both H ([n −1]) and F are
expanded to a or b by the sequences π18π21+ π19π22 and π12π15+ π13π16 ,
respectively.

Then Lr, OI(G,C, ¢) = L 1 , which can now be easily verified. `

Although it is straightforward to define reductions associated with pro-
ductions of the form I.3.3.1(iii) (cf. Definition 2.6.), we do not study gram-
matical models in which such (arbitrary) reductions occur. These terminal
reductions have the effect that they allow terminals to act as some kind of
nonterminal symbol, which makes the distinction between terminals and
nonterminals unclear. We have noticed this problem already in the case of
regularly controlled bidirectional grammars that have a context-free gram-
mar as its underlying grammar; cf. Chapter II. This restriction means that in
this chapter we only study the fair mode − cf. Chapter II − of bidirectional
rewriting, in which we disallow terminal reductions. As a consequence, it
enables us to omit the symbol ¢. We will call this type of grammar an
(r, f, m,REG,K)-belb grammar. The family of languages generated by
(r, f, m,REG,K)-belb grammars is denoted by RBLBr, f, m(K). Note that the
language of Example 2.8 can be generated by an (r, f, OI,REG, ∅ NE)-belb

94 Chapter V

grammar.

In the remainder of this section we clarify the structure of sentential
forms generated by (r, f, m,REG,K)-belb grammars. Since the family of reg-
ular languages is closed under intersection, we can put regular restrictions on
the control language. In the sequel, we assume that the set of productions P
is the union of the disjoint sets P 1 , P 2 and P 3 , where P 1 , P 2 and P 3 consist
of productions of the form I.3.3.1(i), I.3.3.1(ii) and I.3.3.1(iii), respectively.
Then we assume without loss of generality that for an (r, f, OI,REG,K)-belb
grammar (G,C) with underlying grammar G = (Φ,Ψ,Σ,X,P,S), the control
language C is included in

((P 1P
hh

1 ∪ P 2P
hh

2)∗ (P 1 ∪ P
hh

1 ∪ P 2P3
+ (P

hh
2 ∪ {λ})))+. (1)

For the same reason we can assume that an (r, f, IO,REG,K)-belb grammar
(G,C) possesses a control language C which is included in

((P
hh

2P 2 ∪ P 3)∗ (P
hh

2 ∪ {λ})(P 1(P
hh

2P 2)∗ P
hh

1 ∪ P 2P
hh

2)∗ (P 1 ∪ P 2P 3))+. (2)

In addition, for both modes OI and IO we may assume that the first rule
of each control word in C is an initial production.

The restriction to control languages which are included in (1) or (2)
becomes apparent when we inspect the structure of a sentential form occur-
ring in the derivation according to an (r, f, m,REG,K)-belb grammar (G,C).
We represent terms from Term (G) as follows. Define a c-tree as a variation
on the well-known tree structure in which now the nodes are strings over
Φ ∪ Ψ ∪ Σ ∪ X ∪ {#}. The symbol # is used to denote the concatenation
operation in T (Φ ∪ Ψ ∪ Σ ∪ X) explicitly. If A is an element of Φ ∪ Ψ with
rank n and n ≥ 1, then A has n descendants which are again c-trees. If a node
α is a string of symbols of rank zero, i.e., α ∈ (Φ 0 ∪ Ψ 0 ∪ Σ ∪ X ∪ {#})∗ ,
then α is called a leave. As an example, the term

A (ψ (x 1 ,ax 2b) x 1 ,ab) ψ (a,b) x 1

is represented by the c-tree in Figure 1.

Note that a c-tree does not represent a derivation of the grammar
(G,C).

A derivation corresponding to an (r, f, OI,REG,K)-belb grammar con-
sists of a sequence of sentential forms which have the form

ψ1(ψ1
→

(t 1
→

)) w 1 . . . wn −1ψn(ψn
→

(tn
→)) wnA (ψ0

→
(t 0

→
)) w 0 . (3)

The formula ψi
→

(ti
→

) is the abbreviation of

ψi 1(ti 1), . . . ,ψir (i)(tir (i)) with 0 ≤ i ≤ n.

RCB Extended Linear Basic Grammars 95

A # ψ # x 1

ψ# x 1 a#b a b

x 1 a#x 2#b

Figure 1.

In (3) the following notational conventions are used. The symbols ψij

are language names. The number of language names may be zero, i.e., n ≥ 0.
The symbol A is either a language name or a nonterminal. A terminal string
is a possible sentential form, so the substring A (. . .) is optional in (3). Each
tij is a list of terms over Ψ, each of which can be represented by a c-tree in
which each node is a language name; the leaves of each term in tij are
language names of rank zero. In the c-tree representation of (3), shown in
Figure 2, these tij’s are represented by a triangle. The terms wi are strings in
(Σ ∪ X)∗ . Note that r (i) is equal to the rank of ψi (i ≥ 1), and r (0) is equal to
the rank of A.

ψ1 # w 1 # . . . # wn −1 # ψn # wn # A # w 0

ψ11 . . . ψ1r (1) ψn 1 . . . ψnr (n) ψ01 . . . ψ0r (0)

hhhhh hhhhh hhhhh hhhhh hhhhh hhhhh
Figure 2.

A sentential form generated by an (r, f, IO,REG,K)-belb grammar
(G,C) is of the form

A 0(ψ01(t 01),...,ψ0i 0
(t 0i 0

),A 1(ψ11(t 11),...,ψ1i 1
(t 1i 1

),A 2(...,An(ψn 1(tn 1),...,

ψnin
(tnin

),wnin+1 , ...,wr (n)),...,wr (2)),w 1i 1+2 , ...,wr (1)),w 0i 0+2 , ...,wr (0)). (4)

96 Chapter V

In this sentential form (4) the Ai’s are nonterminals, the ψij’s denote
language names, the wij’s are strings over Σ ∪ X, and each tpq denotes a list
of wij’s the length of which is equal to the rank of ψpq . Furthermore, r (i)
(0 ≤ i ≤ n) is equal to the rank of Ai . The sentential form (4) is represented by
a c-tree in Figure 3 in which each tij is represented by a triangle.

A 0

cc
c
c
c
c

ψ01 ψ0i 0
A 1 w 0i 0+2 wr (0)

hhhhh hhhhh cc
c
c
c
c

ψ11 ψ1i 1
A 2 w 1i 1+2 wr (1)

hhhhh hhhhh

An

ψn 1 ψnin
wnin+1 wr (n)

hhhhh hhhhh
Figure 3.

3. Properties of RBLBr, f, m(K)-languages

In the proofs of the following propositions we assume that Li (i ≥ 1) is a
language generated by an (r, f, m,REG,K)-belb grammar (Gi ,Ci) with Gi =
(Φ(i) ,Ψ(i) ,Σi ,Xi ,P (i) ,Si). Thus Φ(i) and Ψ(i) are ranked alphabets, i.e.,
Φ(i) = ∪ Φ(i) j and Ψ(i) = ∪ Ψ (i) j . We assume that the sets of language
names and the sets of variables of these grammars are mutually disjoint, i.e.,
i ≠j implies Φ(i)∩ Φ(j) = ∅ , Ψ(i)∩ Ψ(j) = ∅ and Xi∩ Xj = ∅ .

RCB Extended Linear Basic Grammars 97

Remember that a family of languages K is closed under left- [right-]
marking if for each language L 0 in K, the language {$}L 0 [L 0{$}, respec-
tively] is in K, where the symbol $ does not occur in the alphabet of L 0 .
Frequently, we write $L 0 instead of {$}L 0; cf. Section II.6.

The family SYMBOL is defined as the family of all languages consist-
ing of a single word which is of length one, i.e., SYMBOL = {{a} c a ∈Σ ω}
where Σω is a countably infinite set of terminal symbols.

Proposition 3.1. Let K be a family of languages closed under left- or right-
marking. If K ⊇ SYMBOL, then RBLBr, f, m(K) is closed under union, con-
catenation, Kleene + and Kleene ∗ .

Proof. Union. Straightforward. This even holds without the premisses on
the family K.

Concatenation. We construct an (r, f, m,REG,K)-belb grammar (G,C) from
(G1 ,C 1) and (G2 ,C 2) such that Lr,m(G,C) = L 1L 2 . For both modes OI and
IO we can use the same underlying grammar G. Define G equal to
(Φ,Ψ,Σ1 ,X 1 ,P,S), where Φ = Φ(1)∪ Φ (2)∪ {S,Z}, S ∈Φ 0 , Z ∈Φ 2 , and where
Ψ = Ψ(1)∪ Ψ (2)∪ {ψ,ψ1 ,ψ2} such that ψ1 ,ψ2 ∈Ψ 0 and ψ ∈Ψ 2 . Furthermore,
we assume that S, Z, ψ, ψ1 , and ψ2 are new symbols. The set of productions
P is equal to P (1)∪ P (2)∪ {πψ,πZ ,π0 ,π1 ,π2} with πψ = ψ(x,y) → {xy}, πZ =
Z (x,y) → ψ (x,y), π0 = S → Z (ψ1 ,ψ2), π1 = S 1 → ψ1 , and π2 = S 2 → ψ2 .
Note that {xy} belongs to K, as K includes the family SYMBOL, x ≠ y, and K
is closed under left- or right-marking. Now if m = OI, then define the con-
trol language C by π0πZπψπ

h
2C 2π

h
1C 1 . Otherwise, if m = IO, then we define

C by π0π
h

2C 2π
h

1C 1πZπψ.

Kleene +. As in the case of concatenation, we construct an (r, f, m,REG,K)-
belb grammar (G,C) from (G1 ,C 1), that generates L1

+. The underlying
grammar G is for both modes OI and IO the same, but the control languages
are different. Viz., define G by (Φ,Ψ,Σ,X,P,S), where Φ = Φ(1)∪ {S,Z}
with S ∈Φ 0 and Z ∈Φ 2 , and where the set Ψ is equal to Ψ(1)∪ {ψ,ψ1 ,ψ2},
with ψ1 ,ψ2 ∈Ψ 0 and ψ ∈Ψ 2 . Again S, Z, ψ, ψ1 , and ψ2 are new symbols.
We also assume Φ(1)∩{S,Z} = ∅ and Ψ(1)∩{ψ,ψ1 ,ψ2} = ∅ . The set of
productions P is formed by P (1)∪ {πψ,πZ ,πS ,π0 ,π1}, where πS = S → S 1 ,
πψ = ψ(x,y) → {xy}, πZ = Z (x,y) → ψ (x,y), π0 = S 1 → Z (ψ1 ,ψ1), and π1 =
S 1 → ψ1 . The control language C is equal to πS(π0πZπψπ

h
1C 1π

h
1)∗ C 1 if m

is equal to OI, and in case of the IO-mode we take C equal to
πS(π0π

h
1C 1π

h
1)∗ C 1(πZπψ)∗ .

Kleene ∗ . Straightforward.

Note that in the proofs presented above the control languages have for
both modes OI and IO a form in accordance with (1) and (2) from Section 2,

98 Chapter V

respectively. `

In the next proposition we show the closure under ngsm mappings of
the language family RBLBr, f, OI(K). Therefore, we recall the following
definition.

Definition 3.2. An ngsm or a nondeterministic generalized sequential
machine is a 6-tuple T = (Q, Σ,∆,δ,q 0 ,QF), where

g Q is a finite alphabet of states,

g Σ is a finite alphabet of input symbols,

g ∆ is a finite alphabet of output symbols,

g q 0 ∈ Q is the initial state,

g QF ⊆ Q is the set of accepting states,

g δ is a mapping from Q × Σ into the finite subsets of Q × ∆∗ .

As usual, δ is extended to a function from Q × Σ∗ into the finite subsets
of Q × ∆∗ as follows.

(i) δ (q, λ) = {(q, λ)},

(ii) For q ∈ Q, x ∈Σ ∗ and a ∈Σ ,

δ (q,xa) = {(p,w) c w = w 1w 2 and for some r in Q, (r,w 1) is in δ (q,x)

and (p,w 2) is in δ (r,a)}.

The mapping associated with T = (Q, Σ,∆,δ,q 0 ,QF) − called an ngsm
mapping and denoted by T too − is the function T : Σ∗ → 2∆∗

defined by
T (w) = {z c (q,z) ∈δ (q 0 ,w), q ∈ QF}. The extension of T to a language L 0

over Σ is defined by T (L 0) = ∪ {T (w) c w ∈ L 0}. `

The proof of the following proposition is performed by applying the
well-known ‘‘triple’’ construction.

Proposition 3.3. Let K be a family closed under ngsm mappings. Then
RBLBr, f, OI(K) is closed under ngsm mappings.

Proof. Let (G1 ,C 1) be an (r, f, OI,REG,K)-belb grammar with G1 =
(Φ(1),Ψ(1),Σ,X 1 ,P (1),S 1), C 1 ⊆ (P (1)∪ P

hh
(1))

∗ , and let T be an ngsm with
T = (Q, Σ,∆,δ,q 0 ,QF). We construct an (r, f, OI,REG,K)-belb grammar
(G,C) such that Lr, OI(G,C) = T (Lr, OI(G1 ,C 1)). Define the set of variables X
as {xi [p,q] c 1 ≤ i ≤ c X 1 c , p,q ∈ Q}, and let Q = {q 0 , . . . ,qN}. With the list
x 1 , . . . ,xn we associate the list x 1[q0 ,q0] , . . . ,xn [qN ,qN] , denoted by x̃. It con-

sists of n c Q c 2 different variables from X; c Q c is the cardinality of the set Q.
Let ψ∼ (x̃) denote

(q 0 ψ q 0)(x̃), . . . ,(qN ψ qN)(x̃).

RCB Extended Linear Basic Grammars 99

For each p,q ∈ Q, let Tpq be the ngsm mapping induced by the ngsm
(Q, Σ ∪ X 1 ,Σ ∪ X, δ ′,p, {q}), where δ ′ : Q × (Σ ∪ X 1) → 2(Q × (Σ ∪ X))∗

is the
mapping defined by

δ ′(s,y) = {(t,z) c (t,z) ∈δ (s,y), y ∈Σ }∪ {(t,xi [s,t]) c t ∈ Q, xi = y, y ∈ X 1}.

Furthermore, let U be the union of the sets

{(p A q)(x̃) → (p B q)(ψ∼ 1(x̃), . . . ,ψ∼ k(x̃)) c A ∈Φ n , B ∈Φ k, p,q ∈ Q,

ψi ∈Ψ n , n ≥ 0, k ≥ 1},

{(p A q)(x̃) → (p ψ q)(x̃) c A ∈Φ n ,ψ ∈Ψ n , n ≥ 0, p,q ∈ Q}, and

{(p ψ q)(x̃) → Tpq(L 0) c ψ ∈Ψ n , p,q ∈ Q, ψ (x→) → L 0 ∈ P (1)}.

Define a finite substitution τ : (P (1)∪ (P (1)−P (1) 3

hhhhhhhhh
))∗ → 2(U ∪ U

hh
)∗

by

τ (S 1 → A (ψ1 , . . . ,ψn)) = {(q 0 S 1 qf) → (q 0 A qf)(ψ∼ 1 , . . . ,ψ∼ n) c qf ∈ QF},

τ (A (x→) → B (ψ1(x→), . . . ,ψk(x→))) =

{(p A q)(x̃) → (p B q)(ψ∼ 1(x̃), . . . ,ψ∼ k(x̃)) c p,q ∈ Q},

τ (A (x→) → ψ (x→)) = {(p A q)(x̃) → (p ψ q)(x̃) c p,q ∈ Q},

τ (ψ (x→) → L 0) = {(p ψ q)(x̃) → Tpq(L 0) c p,q ∈ Q}.

Since there are no terminal reductions involved, a reduction π
h

is
always a reduction associated with an argument-preserving production of
type I.3.3.1(i) or I.3.3.1(ii). Therefore, we can define τ (π

h
) equal to τ (π)

hhhhh
.

Then we define G equal to (Φ,Ψ,Σ,X,P,S), where Φ is given by

Φ0 = {S}∪ {(p A q) c A ∈Φ (1) 0 ,p,q ∈ Q},

Φn c Q c 2 = {(p A q) c A ∈Φ (1) n ,p,q ∈ Q} for each n (n ≥ 1),

Φl = ∅ if there is no n ∈ IN with l = n c Q c 2 ,

and Ψ is given by

Ψn c Q c 2 = {(p ψ q) c ψ ∈Ψ (1) n , p,q ∈ Q} for each n (n ≥ 0),

Ψl = ∅ if there is no n ∈ IN with l = n c Q c 2 .

The set of productions P equals τ (P (1)) ∪ PS , where PS is equal to
{S → (q 0 S 1 qf) c qf ∈ QF}, and, finally, we define the new control language
C equal to PSτ (C 1). Then Lr, OI(G,C) = T (Lr, OI(G1 ,C 1)). `

Remember that a family closed under ngsm mappings if and only if it
is closed under intersection with regular languages and under finite substitu-
tion; cf. Lemma 9.3 in [HopUll69]. Therefore, a direct consequence of Pro-
position 3.3 is the following result.

100 Chapter V

Corollary 3.4. Let K be a family closed under ngsm mappings. Then the
family of languages RBLBr, f, OI(K) is closed under intersection with regular
languages and under finite substitution. `

Next we establish closure under two types of substitution. First we
give precise definitions of substituting words for symbols in a word “non-
deterministically” (Definition 3.5) and “deterministically” (Definition 3.6).

Definition 3.5. Let K be a family of languages and let Σ1 be an alphabet. A
nondeterministic K-substitution (or nK-substitution) τ is a mapping from Σ1

into the set of K-languages which is extended to words in Σ1
∗ by τ (λ) = {λ}

and τ (a 1 . . . an) = τ (a 1) . . . τ (an), where ai ∈Σ 1 (1 ≤ i ≤ n), or, equivalently,

τ (a 1 . . . an) = {w 1 . . . wn c wi ∈τ (ai), 1 ≤ i ≤ n}.

The mapping τ is extended to languages L 0 over Σ1 by

τ (L 0) = ∪ {τ (w) c w ∈ L 0}. `

Notice that in case the family K equals ONE, FIN or REG, an nK-
substitution is known as a homomorphism, finite substitution and regular
substitution, respectively.

The addition of the adjective “nondeterministic” suggests that we can
also consider deterministic substitutions [AsvEng77, EngSch]. The differ-
ence with the usual (nondeterministic) substitution − the additional “non-
deterministic” may be omitted − is that in a deterministic K-substitution τ
we choose in advance for each letter a in Σ1 a fixed word wa from the
language τ (a) (τ (a) is a language in the family K). Then in the application
of τ to a word ω each occurrence of a is replaced by wa . The choice of the
words wa determines a homomorphism h : Σ1 → Σ2

∗ . Therefore τ (ω) is
defined to be equal to the set of the images of all homomorphisms
h : Σ1 → Σ2

∗ such that h (a) is in τ (a). We define this formally.

Definition 3.6. Let K be a family of languages and let Σ1 be an alphabet. A
deterministic K-substitution (or dK-substitution) τ is a mapping from Σ1 into
the set of K-languages. It is extended to words in Σ1

∗ by τ (λ) = {λ} and

τ (a 1 . . . an) ={h (a 1) . . . h (an) c h is a homomorphism such that h (a) ∈τ (a)

for each a ∈Σ 1}, where ai ∈Σ 1 (1 ≤ i ≤ n).

The extension of τ to languages L 0 over Σ1 is defined by

τ (L 0) = ∪ {τ (w) c w ∈ L 0}. `

From this definition it follows that τ (ω) = ∅ for each word ω in case
τ (a) = ∅ and at least one symbol a occurs in ω. It is also important to note
that a dK-substitutions is not a special case of a nondeterministic

RCB Extended Linear Basic Grammars 101

substitution, but they are both different generalizations of the notion of
homomorphism. In fact, a homomorphism is both a dONE-substitution and
an nONE-substitution.

Definition 3.7. A family F is closed under nK-substitution [dK-substitution]
if for each language L 0 in F and each nK-substitution [dK-substitution,
respectively] τ the language τ (L 0) is in F. In case the family K equals the
family F, the we say that F is closed under (n-)substitution [d-substitution,
respectively]. `

The following proposition shows that under weak assumptions on K
the family of languages RBLBr, f, OI(K) is closed under n-substitution.

Proposition 3.8. Let K be a family closed under isomorphism such that
SYMBOL ∪ {∅ }⊆ K. Then RBLBr, f, OI(K) is closed under nondeterministic
substitution.

Proof. Let L 1 = Lr, OI(G1 ,C 1) be a language in RBLBr, f, OI(K) , where G1 =
(Φ(1),Ψ(1),Σ1 ,X 1 ,P (1),S 1). Let Σ1 = {a 1 , . . . ,aN}, and let σ : Σ1 → 2Σ∗

be a
nondeterministic RBLBr, f, OI(K)-substitution, such that for each a in Σ1 the
language σ (a) is generated by the (r, f, OI,REG,K)-belb grammar (Ga ,Ca),
where Ga = (Φ(a) ,Ψ(a) ,Σa ,Xa ,P (a) ,Sa). We construct an (r, f, OI,REG,K)-
belb grammar (G,C) with underlying grammar G = (Φ,Ψ,Σ,X,P,S) such
that σ (L 1) = Lr, OI(G,C).

Essentially, we use the terminals in Σ1 of (G1 ,C 1) as variables in
(G,C) via a transformation which associates with each a in Σ1 a correspond-
ing variable ya in X. Each terminal a in Σ1 which occurs in the K-languages
at the right-hand side of the productions of type I.3.3.1(iii) in (G1 ,C 1) is
replaced by the variable ya . The original start symbol S 1 in (G1 ,C 1) is
transformed into S 1′ such that S 1′ has rank N. The new start symbol S is used
in the new initial production S → S 1′ (ψa1

, . . . ,ψaN
). The other productions

of (G,C) are obtained from those in (G1 ,C 1) by adorning them with addi-
tional variables ya1

, . . . ,yaN
. Then throughout each derivation the language

names ψa1
, . . . ,ψaN

will be passed on downwards. By applying reductions

ψa → Sa followed by a control word from Ca (where a ∈Σ 1) in the proper
way, each a ∈Σ 1 in a word from Lr, OI(G1 ,C 1) is substituted by the
RBLBr, f, OI(K)-language σ (a). Formally, we perform the construction of
(G,C) in the following way.

Assume that the sets Φ(a) with a ∈Σ 1 are mutually disjoint. Let this
property hold for the sets Ψ(a) and for the sets Xa too; in both cases a varies
over Σ1 . Then the alphabets Φ and Ψ are defined by

Φ0 = {S}∪ ∪ {Φ(a) 0 c a ∈Σ 1},

102 Chapter V

Φn = ∪ {Φ(a) n c a ∈Σ 1} for each n with 1 ≤ n < N,

Φn +N = {A ′ c A ∈Φ (1) n}∪ ∪ {Φ(a) n +N c a ∈Σ 1} for each n (n ≥ 0),

and

Ψ0 = {ψa c a ∈Σ 1}∪ ∪ {Ψ(a) 0 c a ∈Σ 1},

Ψn = ∪ {Ψ(a) n c a ∈Σ 1} for each n with 1 ≤ n < N,

Ψn +N ={ψ ′ c ψ ∈Ψ (1) n}∪ {φn,a c a ∈Σ 1}∪ ∪ {Ψ(a) n +N c a ∈Σ 1} for each
n (n ≥ 0).

Define X = X 1 ∪ {ya c a ∈Σ 1}∪ ∪ {Xa c a ∈Σ 1}. Let the sets U1 , U2 ,
and U3 be defined in the following way, where x→ = (x 1 , . . . ,xn) and y→ =
(ya1

, . . . ,yaN
).

U1 =

{A ′(x→, y→) → B ′(ψ1′ (x→, y→), . . . ,ψk′ (x→, y→),φn,a1
(x→, y→), . . . ,φn,aN

(x→, y→)) c

A ′∈Φ n +N , B ′∈Φ k +N , φn,a ∈Ψ n +N , a ∈Σ 1 , ψi′ ∈Ψ n +N , 1 ≤ i ≤ k, n ≥ 0},

U2 = {A ′(x→ , y→) → ψ ′(x→ , y→) c A ′∈Φ n +N ,ψ ′∈Ψ n +N , n ≥ 0},

U3 = {ψ ′(x→ , y→) → i (L 0) c ψ ′∈Ψ n +N ,ψ (x→) → L 0 ∈ P (1) 3 , n ≥ 0},

where i : Σ1 ∪ X 1 → X is the isomorphism defined by

i (x) = x if x ∈ X 1 ,
i (a) = ya if a ∈Σ 1 .

Let U = U1 ∪ U2 ∪ U3 ∪ P Σ1
∪ P φ, where P Σ1

= {Sa → ψa c a ∈Σ 1} and

P φ = {φn,a(x→ , y→) → {ya} c a ∈Σ 1 , n ≥ 0}. Define the regular substitution
g : P (1) → 2U ∗

by

g (A (x→) → B (ψ1(x→), . . . ,ψk(x→))) =

{A ′(x→, y→) → B ′(ψ1′ (x→, y→),. . .,ψk′ (x→, y→),φn,a1
(x→, y→), . . .,φn,aN

(x→, y→))},

g (A (x→) → ψ (x→)) = {A ′(x→ , y→) → ψ ′(x→ , y→)},

g (ψ (x→) → L 0) = {(ψ ′(x→ , y→) → i (L 0))(Pφ
∗ (P Σ1

hhh
∪ {Ca c a ∈Σ 1})∗)∗ }.

We define the set P ∅ to be equal to {ψa → ∅ c a ∈Σ 1} in order to
satisfy the condition that G ought to be an (OI,K)-elb grammar. Further-
more, if π is in P (1) 1 ∪ P (1) 2 , then g (π

h
) is defined as g (π

h
) = g (π)

hhhhh
.

Let π0 = S → S 1′ (ψa1
, . . . ,ψaN

). Then P is defined by

P = ∪ {P (a) c a ∈Σ 1}∪ {ψ ′(x→ , y→) → i (L 0) c (ψ (x→) → L 0) ∈ P (1) 3}∪

P Σ1
∪ P φ∪ {π0}∪ g (P (1) 1 ∪ P (1) 2) ∪ P ∅ .

RCB Extended Linear Basic Grammars 103

Finally, as the control language we take C equal to π0g (C 1). `

We recall the following concepts. A family of languages is called non-
trivial if it contains a language which differs from ∅ and from {λ}. A full
Abstract Family of Languages or full AFL is a nontrivial family of languages
which is closed under union, concatenation, Kleene +, homomorphism,
inverse homomorphism and intersection with regular languages.

Corollary 3.9. Let K be a nontrivial family closed under ngsm mappings.
Then RBLBr, f, OI(K) is a full substitution-closed AFL.

Proof. Recall that it is sufficient to prove closure under intersection with
regular languages, regular substitution and union with a regular set in order
to prove closure under inverse homomorphism [Gin]. We can easily show
by the inclusion LB OI(K) ⊆ RBLBr, f, OI(K) that under the premisses on K the
regular languages are included in RBLBr, f, OI(K). Then the statement fol-
lows immediately from Propositions 3.1, 3.3, and 3.8, and Corollary 3.4. `

For the IO-mode closure under K-substitution or even under finite sub-
stitution is unlikely. On the other hand we can establish closure under inter-
section with regular languages and under deterministic substitution.

Proposition 3.10. Let K be a family closed under intersection with regular
languages. Then RBLBr, f, IO(K) is closed under intersection with regular
languages.

Proof. The proof is based on a modification of the technique of factored
grammars [Fis68a]. Recall that each regular set R equals the (finite) union of
a number of congruence classes which corresponds to a congruence relation
≡ − with respect to concatenation − over Σ∗ of finite index; cf. [Sal73].
Starting from an (r, f, IO,REG,K)-belb grammar (G1 ,C 1) we will construct
an (r, f, IO,REG,K)-belb grammar (G,C) such that in (G,C) we can tell just
by looking at a nonterminal or a language name to which congruence class
its arguments must belong if this nonterminal or language name ever appears
in a sentential form. We also can determine to which congruence class any
string generated by this nonterminal will belong. Therefore, we transform
the grammar (G1 ,C 1) in the following way. Each nonterminal and language
name is adorned with n +1 congruence classes u 0 , . . . ,un , where n is the
rank of that nonterminal or language name. However, an exception is made
for the start symbol S 1 , which is left unchanged. The congruence class of
the resulting terminal string generated by the transformed nonterminal − if
any − is equal to u 0 .

The transformation of productions is arranged as follows. In connec-
tion with the exception made for the start symbol, the congruence class u 0 of
the nonterminal on the right-hand side of an initial production ought to be
taken from the finite number of congruence classes, the union of which

104 Chapter V

equals R. The transformation of the remaining productions is such that with
respect to the nonterminal or language name to the left-hand side we can
freely choose the congruence classes u 0 , . . . ,un . Then the congruence class
u 0 of the nonterminal or language name on top level of the right-hand side is
equal to the corresponding congruence class on the left-hand side. And in
case of non-initial productions of type I.3.3.1(i) and productions of type
I.3.3.1(ii) the congruence class of each argument of the nonterminal on the
left-hand side determines the congruence class of the corresponding argu-
ment of the language name on the right-hand side.

Concerning the productions of type I.3.3.1(iii) we replace the language
L by L ∩ Ru0 , u→ , where u→ = (u 1 , . . . ,un). The regular set Ru0 , u→ consists of

those words in (Σ ∪ {x 1 , . . . ,xn})∗ such that substituting an element from the
congruence class ui for xi (1 ≤ i ≤ n) results in a word from the congruence
class u 0 . After applying this transformation, a combination u 0 , . . . ,un of
congruence classes combined with a production ψ (x 1 , . . . ,xn) → L 0 of type
I.3.3.1(iii) gives a blocked derivation in case the intersection of the language
L and the regular set Ru0 , u→ is empty. Viz., in that case there are no rules to

rewrite the language name [ψ,u 0 , u→], and this particular guess of the gram-
mar gives no contribution to the language generated by (G,C).

It is left to the reader to check that the construction below formalizes
the ideas presented above, and that the resulting grammar (G,C) generates
the language Lr, IO(G1 ,C 1) ∩ R.

Let G1 = (Φ(1),Ψ(1),Σ,X 1 ,P (1),S 1) and C 1 ⊆ (P (1)∪ P
hh

(1))
∗ . Let R be a

regular language accepted by the deterministic finite automaton M =
(Q, Σ,δ,q 0 ,F). The relation ≡ on Σ∗ × Σ∗ is defined by

x ≡y if and only if ∀ q ∈ Q . δ (q,x) = δ(q,y).

Because R is regular, it is possible to partition Σ∗ by ≡ into a finite
number of congruence classes. Let Σ∗ / ≡ denote the set of congruence
classes [t 1], . . . ,[tk] induced by ≡ , where t 1 , . . . ,tk are freely chosen but
fixed representatives. Let R ≡ be equal to {[ti] c δ (q 0 ,ti) ∈ F, 1 ≤ i ≤ k}. Then
we have the identity R = ∪ R ≡ . Define the sets Ru0 , u→ , where ui ∈Σ ∗ / ≡
(0 ≤ i ≤ n) by

Ru0 , u→ = h u→
−1 (u 0),

where h u→ : (Σ ∪ X 1)∗ → Σ∗ is the homomorphism defined by

h u→ (a) = a for each a in Σ,
h u→ (xi) = ti for each xi in X 1 , where ti equals ui = [ti].

RCB Extended Linear Basic Grammars 105

Note that Ru0 , u→ is regular.

Consider the following (r, f, IO,REG,K)-belb grammar (G,C) which
generates the language Lr, IO(G1 ,C 1) ∩ R. The underlying grammar G
equals (Φ,Ψ,Σ,X 1 ,P,S 1), where P is given by P = g (P (1)). The finite sub-
stitution g is defined in the following way for rules in P (1) of the types
I.3.3.1(i), I.3.3.1(ii) and I.3.3.1(iii). Let u→ = (u 1 , . . . ,un) and v→ =
(v 1 , . . . ,vk). Then

g (S 1 → A (ψ1 , . . . ,ψn)) = {S 1 → [A,u 0 , u→]([ψ1 ,u 1], . . . ,[ψn ,un]) c

u 0 ∈ R ≡ , u 1 , . . . ,un ∈Σ ∗ / ≡},

g (A (x→) → B (ψ1(x→), . . . ,ψk(x→))) =

{[A,u 0 , u→](x→) → [B,u 0 , v→]([ψ1 ,v 1 , u→](x→), . . . ,[ψk,vk, u→](x→)) c

u 0 , . . . ,un ,v 1 , . . . ,vk∈Σ ∗ / ≡},

g (A (x→) → ψ (x→)) = {[A,u 0 , u→](x→) → [ψ,u 0 , u→](x→) c u 0 , . . . ,un ∈Σ ∗ / ≡},

g (ψ (x→) → L 0) = {[ψ,u 0 , u→](x→) → L 0∩ Ru0 , u→ c u 0 , . . . ,un ∈Σ ∗ / ≡}.

Since there are no terminal reductions involved, a reduction π
h

is
always a reduction associated with an argument-preserving production of
type I.3.3.1(i) or I.3.3.1(ii). Therefore, we can define g (π

h
) to be equal to

g (π)
hhhhh

.

The ranked alphabet Φ of nonterminals is given by

Φn = {[A,u 0 , u→] c A ∈Φ (1) n , u 0 , . . . ,un ∈Σ ∗ / ≡} for each n (n ≥ 1),

Φ0 = {S 1}∪ {[A,u 0] c A ∈Φ (1) 0 −{S 1} , u 0 ∈Σ ∗ / ≡}.

The sets Ψn of language names are given for each n (n ≥ 0) by

Ψn = {[ψ,u 0 , u→] c ψ ∈Ψ (1) n , u 0 , . . . ,un ∈Σ ∗ / ≡}.

Finally, as the control language we take C = g (C 1). `

Although − as remarked before − for the IO-mode closure under finite
substitution is unlikely, we have closure under deterministic substitution.

Proposition 3.11. Let K be a family closed under isomorphism such that
SYMBOL ∪ {∅ }⊆ K. Then RBLBr, f, IO(K) is closed under deterministic sub-
stitution.

Proof. Let L 1 be an RBLBr, f, IO(K)-language, i.e., L 1 = Lr, IO(G1 ,C 1), where
G1 = (Φ(1),Ψ(1),Σ1 ,X 1 ,P (1),S 1). Let Σ1 = {a 1 , . . . ,aN}, and let
σ : Σ1 → 2Σ∗

be a RBLBr, f, IO(K)-substitution, such that for each a in Σ1 the

106 Chapter V

language σ (a) is generated by the (r, f, IO,REG,K)-belb grammar (Ga ,Ca),
where Ga = (Φ(a) ,Ψ(a) ,Σa ,Xa ,P (a) ,Sa). We construct an (r, f, IO,REG,K)-
belb grammar (G,C) with underlying grammar G = (Φ,Ψ,Σ,X,P,S) such
that σ (L 1) = Lr, IO(G,C).

The construction resembles much to the proof of Proposition 3.8. We
use the terminals in Σ1 of (G1 ,C 1) as variables in (G,C). This is obtained
via the isomorphism v which associates with each a in Σ1 a corresponding
variable ya in X. Each terminal a in Σ1 which occurs in the K-languages at
the right-hand side of the productions of type I.3.3.1(iii) in (G1 ,C 1) is
replaced by the variable ya . The original start symbol S 1 in (G1 ,C 1) is
transformed into S 1′ such that S 1′ has rank N. The new start symbol S of G is
used in the new initial production π0 equal to S → S 1′ (ψa1

, . . . ,ψ aN
). The

other productions of (G,C) are obtained from those in (G1 ,C 1) by adorning
them with additional variables ya1

, . . . ,yaN
. A derivation in (G,C) starts with

the initial production, followed by a sequence of control strings from the set
∪ {(ψa → Sa) Ca c a ∈Σ 1}, until we have obtained a term in Term (G) of the
form S 1′ (w 1 , . . . ,wN), where wi ∈σ (ai) (1 ≤ i ≤ N). From then on we can fol-
low a derivation according to C 1 , where the construction is such that each
letter ai in Σ1 (1 ≤ i ≤ N) is replaced by a fixed word wi from σ (ai). The for-
mal construction is as follows.

We assume that the sets Φ(a) with a ∈Σ 1 are mutually disjoint. Let the
sets Ψ(a) and the sets Xa , where a varies over Σ1 , possess this property too.
Then the alphabets Φ and Ψ are defined by

Φ0 = {S}∪ ∪ {Φ(a) 0 c a ∈Σ 1},

Φn = ∪ {Φ(a) n c a ∈Σ 1} for each n with 1 ≤ n < N,

Φn +N = {A ′ c A ∈Φ (1) n}∪ ∪ {Φ(a) n +N c a ∈Σ 1} for each n (n ≥ 0),

and

Ψ0 = {ψa c a ∈Σ 1}∪ ∪ {Ψ(a) 0 c a ∈Σ 1},

Ψn = ∪ {Ψ(a) n c a ∈Σ 1} for each n with 1 ≤ n < N,

Ψn +N ={ψ ′ c ψ ∈Ψ (1) n}∪ {φn,a c a ∈Σ 1}∪ ∪ {Ψ(a) n +N c a ∈Σ 1} for each
n (n ≥ 0).

Define X = X 1 ∪ {ya c a ∈Σ 1}∪ ∪ {Xa c a ∈Σ 1}. Let the sets U1 , U2 ,
and U3 be defined in the following way, where x→ = (x 1 , . . . ,xn) and y→ =
(ya1

, . . . ,yaN
).

U1 =

{A ′(x→, y→) → B ′(ψ1′ (x→, y→), . . . ,ψk′ (x→, y→),φn,a1
(x→, y→), . . . ,φn,aN

(x→, y→)) c

A ′∈Φ n +N , B ′∈Φ k +N , φn,a ∈Ψ n +N , a ∈Σ 1 , ψi′ ∈Ψ n +N , 1 ≤ i ≤ k, n ≥ 0},

RCB Extended Linear Basic Grammars 107

U2 = {A ′(x→ , y→) → ψ ′(x→ , y→) c A ′∈Φ n +N ,ψ ′∈Ψ n +N , n ≥ 0},

U3 = {ψ ′(x→ , y→) → v (L 0) c ψ ′∈Ψ n +N ,ψ (x→) → L 0 ∈ P (1) 3 , n ≥ 0},

where v : Σ1 ∪ X 1 → X is the isomorphism defined by

v (x) = x if x ∈ X 1 ,
v (a) = ya if a ∈Σ 1 .

Let U = U1 ∪ U2 ∪ U3 ∪ P Σ1
∪ P φ, where P Σ1

= {Sa → ψa c a ∈Σ 1} and

P φ = {φn,a(x→ , y→) → {ya} c a ∈Σ 1 , n ≥ 0}. Define the regular substitution
g : P (1) → 2U ∗

by

g (A (x→) → B (ψ1(x→), . . . ,ψk(x→))) =

{A ′(x→, y→) → (B ′(ψ1′ (x→, y→), . . . ,ψk′ (x→, y→),φn,a1
(x→, y→), . . . ,

φn,aN
(x→, y→)))Pφ

∗ },

g (A (x→) → ψ (x→)) = {A ′(x→ , y→) → ψ ′(x→ , y→)},

g (ψ (x→) → L 0) = {ψ ′(x→ , y→) → v (L 0)}.

In order to satisfy the condition that G ought to be an (IO,K)-elb gram-
mar, we define the set P ∅ to be equal to {ψa → ∅ c a ∈Σ 1}. Furthermore, if
π is in P (1) 1 ∪ P (1) 2 , then g (π

h
) is defined as g (π

h
) = g (π)

hhhhh
.

Let π0 = S → S 1′ (ψa1
, . . . ,ψaN

). Then P is defined by

P = ∪ {P (a) c a ∈Σ 1}∪ {ψ ′(x→ , y→) → v (L 0) c (ψ (x→) → L 0) ∈ P (1) 3}∪

P Σ1
∪ P φ∪ {π0}∪ g (P (1) 1 ∪ P (1) 2) ∪ P ∅ .

Finally, as the control language we take C equal to

π0{(ψa → Sa) Ca c a ∈Σ 1}∗ g (C 1). `

Remark that it follows from Proposition 3.11 that the language family
RBLBr, f, IO(K) is closed under homomorphism in case K is closed under iso-
morphism.

Recall that a language family is a full Quasi Abstract Family of Lan-
guages or full QAFL [AsvEng77], if it is a family that contains at least one
SYMBOL-language and that is closed under the regular operations (union,
concatenation, and Kleene ∗), intersection with regular languages, and
homomorphism.

Corollary 3.12. Let K be a family with K ⊇ SYMBOL, and let K be closed
under left or right-marking, intersection with regular languages, and iso-
morphism. Then the family RBLBr, f, IO(K) is a full QAFL closed under

108 Chapter V

deterministic substitution. `

4. Generating Power of (r, f, m,REG,K)-belb Grammars

In this section we determine a lower bound on the language generating capa-
city of (r, f, m,REG,K)-belb grammars. First, we establish some results
which are analogously to the non-bidirectional (unidirectional) case. Let the
family BLBr, f, m(K) denote the family of languages generated by
(r, f, m,REG,K)-belb grammars (G,C) in which C = (P ∪ P

hh
)∗ . Such uncon-

trolled bidirectional grammars are called (r, f, m,K)-belb grammars in the
sequel. Consequently, the control language C will be omitted in the pair
(G,C), so that we denote such a grammar by a single tuple G.

Lemma 4.1.

(i) RBLBr, f, IO(∅ NE) = RBLBr, f, IO(FIN).

(ii) BLBr, f, IO(∅ NE) = BLBr, f, IO(FIN).

(iii) For each family K we have BLBr, f, m(K) ⊆ RBLBr, f, m(K), where either
m = OI or m = IO.

Proof. (i). The inclusion from left to right is obvious. The converse inclu-
sion can be shown by replacing each production ψ (x 1 , . . . ,xn) → L 0 in an
(r, f, IO,REG,FIN)-belb grammar by productions ψi(x 1 , . . . ,xn) → {ηi},
where it is understood that L 0 = {η1 , . . . ,ηk} for some k ≥ 0. Here k = 0
means that L 0 = ∅ , in which case no replacement ought to be made. As a
consequence, each rule ρ in which ψ (x→) occurs l-times has to be replaced
by k l rules covering all combinations of ψi’s (1 ≤ i ≤ k) possible in ρ. The
corresponding alterations in the control language C are allowed, for REG is
closed under finite substitution.

(ii) and (iii). Obvious. `

In the following proposition we show that the family IO is included in
BLBr, f, IO(∅ NE). With respect to an m-macro grammar G equal to
(Φ,Σ,X,P,S) we define for each A ∈Φ the finite (possibly empty) language
LA,G over Σ ∪ X by LA,G = {η ∈ (Σ ∪ X)∗ c ∃ π ∈ P . π =A (x→) → η}. Note
that LA,G does not depend on the mode m.

Proposition 4.2. The family IO of IO-macro languages is included in the
families BLBr, f, IO(∅ NE) and RBLBr, f, IO(∅ NE).

Proof. Let L 0 be an IO-macro language generated by the grammar G1 =
(Φ(1),Σ,X,P (1),S). We assume G1 is in IO standard form [Fis68a]; i.e., each
production is argument-preserving and it has either the form

(i) A (x 1 , . . . ,xn) → B (D (y 1 , . . . ,yl), z 2 , . . . ,zk), where A ∈Φ (1) n , B ∈Φ (1) k

(k ≥ 1), D ∈Φ (1) l and y 1 , . . . ,yl , z 2 , . . . ,zk∈ X, or

RCB Extended Linear Basic Grammars 109

(ii) A (x 1 , . . . ,xn) → η, where η ∈ (Σ ∪ X)∗ .

We construct an (r, f, IO,FIN)-belb grammar G with underlying gram-
mar G = (Φ,Ψ,Σ,X,P,S) such that Lr, IO(G) = L IO(G1) as follows. Starting
from P = ∅ , for each production π in P (1) we add to P a sequence of produc-
tions. If π is of the form (i), then we add productions pABD π, pD ′πD and pD ′π
to P, where D ′∈ Φ n (n ≥ 0) and

pABD π = A (x 1 , . . . ,xn) → B (ψD π(x→),ψz 2
(x→), . . . ,ψzk

(x→)),

pD ′πD = Dπ′ (x 1 , . . . ,xn) → D (ψy1
(x→), . . . ,ψyl

(x→)),

pD ′π = Dπ′ (x 1 , . . . ,xn) → ψD π(x 1 , . . . ,xn).

If π is of the form (ii), then we add to P the productions πA and πA ′′ , where

πA = A (x 1 , . . . ,xn) → ψA(x 1 , . . . ,xn),

πA ′′ = ψA(x 1 , . . . ,xn) → LA,G1
.

Furthermore, we add to P the elements of the set PX , consisting of all
productions ψx(x 1 , . . . ,xn) → {x}, with x ∈ X and x occurs in x→. A nonter-
minal D ought to be expanded by the corresponding language name ψD .
Therefore, we add to P all productions ψD π(x→) → ∅ , in case D occurs in
the argument list of the right-hand side of a nested production π in G1 .
From the construction of P one can easily determine Φ and Ψ. We observe
that a production of the form (i) is simulated in G by some element of
{pABD π}PX

∗ {p
h

D ′π pD ′πD}PX
∗ . In addition, a production of the form (ii) is

simulated in G by πAπA ′′ . However, it is not necessary to provide G with a
control language in order to generate the language L 0 . The correct order of
application is arranged implicitly by the derivation mode. Therefore, we can
take for C the trivial control language (P ∪ P

hh
)∗ .

So far we have shown that IO ⊆ BLBr, f, IO(FIN). The conclusion now
follows from Lemma 4.1. `

Corollary 4.3. If K is a language family that includes ∅ NE, then the fami-
lies BLBr, f, IO(K) and RBLBr, f, IO(K) both contain all IO-macro languages. `

For m equal to OI an analogous result holds.

Proposition 4.4. The family OI of OI-macro languages is included in the
families BLBr, f, OI(∅ NE) and RBLBr, f, OI(∅ NE).

Proof. Let L 0 be an OI-macro language generated by the grammar G1 =
(Φ(1),Σ,X,P (1),S). Assume G1 is in OI standard form [Fis68a]; that means
that each production has either the form

110 Chapter V

(i) A (x 1 , . . . ,xn) → B (D1(x 1 , . . . ,xn), . . . ,Dk(x 1 , . . . ,xn)) , with k,n ≥ 0,

or

(ii) A (x 1 , . . . ,xn) → η, where η ∈ (Σ ∪ X)∗ and n ≥ 0.

Furthermore, we assume that in G1 the symbol S only occurs at the
left-hand side of productions of the form (i). This is no loss of generality,
since we can eventually transform the grammar G1 into the equivalent gram-
mar G2 equal to (Φ(2),Σ,X (2),P (2),S ′), where

Φ(2) = Φ(1)∪ {S ′,S ′′}, X ′ = X ∪ {x}, and

P (2) = P (1)∪ {S ′ → S ′′ (S), S ′′ (x) → x}.

Analogously to Proposition 4.2 we construct an (r, f, OI,∅ NE)-belb
grammar G with G = (Φ,Ψ,Σ,X,P,S) such that Lr, OI(G) = L OI(G1) as fol-
lows. For each nested production π in P (1) of the form (i), we add a
corresponding production π ′ to P, where π ′ is defined by

A (x→) → B (ψD1
(x→), . . . ,ψDk

(x→)).

Define P (1)i′ by P (1)i′ = {π ′ c π ∈ P (1),π is of the form (i)}.

Let Θ be the set of all nonterminals in Φ(1) that occur in the argument
list at the right-hand side of a nested production of the form (i). For each D
in Θ we introduce a language name ψD and a production of type I.3.3.1(ii),
viz. D (x→) → ψD(x→). In addition, we define for each such D a production
of type I.3.3.1(iii) by ψD(x→) → ∅ . The two sets of all productions of the
form I.3.3.1(ii) and I.3.3.1(iii) obtained in this way are denoted by P Θ and
P ∅ , respectively. Thus

P Θ = {D (x→) → ψD(x→) c D ∈Φ (1)}, and

P ∅ = {ψD(x→) → ∅ c D ∈Φ (1)}.

Next, we define P by

P = P (1)i′ ∪ P Θ∪ P ∅ ∪ {A (x→) → ψη (x→), ψη (x→) → {η} c A (x→) → η ∈ P (1)}

We take the set of nonterminals Φ equal to Φ(1) and the set of language
names Ψ is defined by

Ψn = {ψη c A (x→) → η ∈ P (1), A ≠ S}∪ {ψD c D ∈Θ ∩ Φ (1) n},

for each n (n ≥ 0).

The application of a nested production of the form (i) is simulated by
the corresponding production A (x→) → B (ψD1

(x→), . . . ,ψDk
(x→)) in G. In

case a language name ψD percolates at top level, it has to be rewritten into

RCB Extended Linear Basic Grammars 111

the corresponding nonterminal D. Thus a terminal production π equal to
B (x→) → η, with η ∈ (Σ ∪ X)∗ , in G1 is simulated by the sequence of rules

(B (x→) → ψη (x→)) (ψη (x→) → {η}) (P
hh

Θ∪ {λ}).

The additional {λ} in this sequence is necessary to cover the case in
which B has no arguments. Note that the trivial control language suffices,
i.e., we can take C equal to (P ∪ P

hh
)∗ . `

Corollary 4.5. If K is a language family that includes ∅ NE, then the fami-
lies BLBr, f, OI(K) and RBLBr, f, OI(K) both contain all OI-macro languages. `

In the remaining part of this section we show that the language family
RBLBr, f, OI(OI) equals the family OI; cf. Theorem 4.13.

Let G be an OI-macro grammar. Then we define the language Lr, OI(G)
over Σ∗ by

Lr, OI(G) = {w ∈Σ ∗ c S ⇒ r, OI
∗ w},

where α ⇒ r, OIβ holds if and only if β is obtained from α by a single right-
most (OI) derivation step. The strings α and β are terms over the alphabet of
G. For IO and OI-macro grammars, the right-most derivation relation can be
defined analogously to Definition 2.6. An OI-macro grammar provided with
right-most rewriting will be called an (r, OI)-macro grammar, and the
language Lr, OI(G) will be called an (r, OI)-macro language. Let OIr denote
the family of (r, OI)-macro languages. In addition, let OIr(REG) denote the
family of languages generated by regularly controlled (r, OI)-macro gram-
mars. Then we can prove the following result.

Proposition 4.6. The family RBLBr, f, OI(OI) is included in the family
OIr(REG).

Proof. Let L 0 be generated by the (r, f, OI,REG,OI)-belb grammar
(G1 ,C 1), where G1 = (Φ(1),Ψ,Σ,X (1),P (1),S). We construct a regularly
controlled OI-macro grammar (G,C) with G = (Φ,Σ,X,P,S) such that L 0 =
Lr, OI(G,C). Starting with P = ∅ we add for each rule in P (1)∪ P

hh
(1) one or

more productions to P as follows. If ρ ∈ P (1) 2 ∪ P
hh

(1) 2 ∪ P (1) 1 , then ρ is
added to P. If ρ is in P (1) 3 , then ρ is of the form ψ (x 1 , . . . ,xn) → L ψ. Let
for each language name ψ in Ψ the language L ψ be generated by some OI-
macro grammar Gψ = (Φψ,Σ ∪ {x 1 , . . . ,xn},Y ψ,P ψ,S ψ). We assume that
the alphabets of this finite number of grammars Gψ are mutually disjoint.
Then we add each production in P ψ′ to P, where P ψ′ equals
{A ′(y→ , x→) → t c A (y→) → t ∈ P ψ}, and we define P Ψ′ = ∪ {P ψ′ c ψ ∈Ψ }.
Next, we add to P productions ψ (x→) → S ψ(x→), where ψ ∈Ψ . Finally, if
the rule ρ is in P

hh
(1) 1 , then ρ is a reduction of the form

B (ψ1(x→), . . . ,ψk(x→)) → A (x→). First consider the case that A is in Φ(1) 0 .

112 Chapter V

Then the production πBA equal to B (x→) → A is added to P. Secondly, if A
is in Φ(1) n (n ≥ 1), then we add productions πB 1 equal to B (x→) → x 1

(Remember that k ≥ 1.) and πψ1A equal to ψ1(x→) → A (x→) to P.

Now we define P to be equal to

P (1) 2 ∪ P
hh

(1) 2 ∪ P (1) 1 ∪ ∪ {ψ (x→) → S ψ(x→) c ψ (x→) → L ψ∈ P (1) 3}∪ P Ψ′

∪ {πψ1A c ∃ B ∈Φ . ∃ ψ 2 , . . ., ∃ ψ k∈Ψ . A (x→) → B (ψ1(x→), . . .,ψk(x→)) ∈ P (1)}

∪ {πB 1 c ∃ A ∈Φ . ∃ ψ 1 , . . ., ∃ ψ k∈Ψ . A (x→) → B (ψ1(x→), . . .,ψk(x→)) ∈ P (1)}

∪ {πBA c ∃ ψ 1 , . . ., ∃ ψ k∈Ψ . A (x→) → B (ψ1(x→), . . .,ψk(x→)) ∈ P (1)}.

Next define the regular substitution σ : (P (1)∪ (P (1)−P (1) 3

hhhhhhhhh
))∗ → 2P ∗

by

σ (A (x→) → ψ (x→)) = {A (x→) → ψ (x→)},

σ (ψ (x→) → A (x→)) = {ψ (x→) → A (x→)},

σ (ψ (x→) → L ψ) = {ψ (x→) → S ψ(x→)}P Ψ′ ∗ ,

σ (A (x→) → B (ψ1(x→), . . . ,ψk(x→))) = {A (x→) → B (ψ1(x→), . . . ,ψk(x→))},

σ (B (ψ1(x→), . . . ,ψk(x→)) → A (x→)) = {πB 1πψ1A},

σ (B (ψ1 , . . . ,ψk) → A) = {πBA}.

From P we obtain Φ and X in a straightforward way. It easily follows
from the construction of G that L 0 = Lr, OI(G, σ (C 1)). `

Let the number of occurrences of a symbol σ in a word w be denoted
by # σ(w).

Example 4.7. Consider the (r, f, OI,REG, ∅ NE)-belb grammar (G,C) of
Example I.3.3.3, where G = (Φ,Ψ,{0,1},X,P,S), X = {x}, C = (P ∪ P

hh
)∗ , and

P consists of

π0 = S → A (ψ1), π6 = B → ψ1 ,
π1 = A (x) → A (ψ2(x)), π7 = B → D (ψ1),
π2 = A (x) → ψ3(x), π8 = D (x) → ψ4(x),
π3 = ψ3(x) → {x}, π9 = ψ4(x) → {0x},
π4 = ψ2(x) → {xx}, π10 = D (x) → ψ5(x),
π5 = ψ1 → {1}, π11 = ψ5(x) → {x 0}.

According to Section 2, we have that P 1 = {π0 ,π1 ,π7}, P 2 = {π2 ,π6 ,π8π10},
and P 3 = P − (P 1 ∪ P 2). Now we replace production π5 by the production
π5′ = ψ1 → L ψ1

, where

L ψ1
= {w ∈ {a, 1}+ c # 1(w) = 2k, k ≥ 0}.

RCB Extended Linear Basic Grammars 113

The resulting grammar (G ′,C ′) is an (r, f, OI,REG,OI)-belb grammar,
where G ′ = (Φ,Ψ,{0,1,a},X,P ′,S), with P ′ = P ∪ {π5′ }−{π5} and C ′ is the
resulting variant of C. It is easy to see that the language generated by this
grammar equals

L 1 = {w ∈ {0,1,a}+ c w = w 1 . . . wk, k = 2l , l ≥ 0, wi is in 0∗ a ∗ (1a ∗)mi 0∗ ,

mi = 2li , li≥ 0 }.

The language L ψ1
can be generated by the OI-macro grammar Gψ1

=
(Φψ1

,{1,a},Y,P ψ1
,S ψ1

), where Φψ1
= {S ψ1

,F,H}, Y = {y}, and P ψ1
con-

sists of the productions

S ψ1
→ F (H), F (y) → y, H → Ha,

F (y) → F (yy), H → aH, H → 1.

The languages {ui}, with ψi(x) → {ui} (2 ≤ i ≤ 5), can be generated by
OI-macro grammars which have a single production S ψi

→ ui (2 ≤ i ≤ 5).

Using the construction given in the proof of Proposition 4.6, we obtain
the following regularly controlled (r, OI)-macro grammar (G1 ,C 1) that gen-
erates L 1 , where G1 = (Φ(1),Σ,X (1),P (1),S), and P (1) is formed by

P 1 ∪ P 2 ∪ P
hh

2 ∪ {ψi(x) → S ψi
(x) c 2 ≤ i ≤ 5}∪ {S ψi

(x) → ui c 2 ≤ i ≤ 5}∪ P ψ1
∪

∪ {ψ1 → S ψ1
,A (x) → S, D (x) → B, A (x) → x, ψ2(x) → A (x)}.

We define the regular substitution σ : (P (1)∪ (P (1)−P (1) 3

hhhhhhhhh
))∗ → 2P ∗

by

σ (ρ) = {ρ} for each ρ ∈ P (1)∪ P (2)∪ P
hh

(2),

σ (ψ1 → L ψ1
) = {ψ1 → S ψ1

}Pψ1

∗ ,

σ (ψi(x) → L ψi
) = {(ψi(x) → S ψi

)(S ψi
→ ui)} for each i (2 ≤ i ≤ 5),

σ (A (ψ1) → S) = {A (x) → S},

σ (D (ψ1) → B) = {D (x) → B},

σ (A (ψ2(x)) → A (x)) = {(A (x) → x)(ψ2(x) → A (x))}.

Finally, Φ(1) = Φ ∪ Ψ ∪ Φ ψ1
∪ {S ψi

c 2 ≤ i ≤ 5}, X (1) = X ∪ Y and as the

control language we define C 1 = σ (C ′). `

Next we give a characterization of the family OIr(REG). This is
achieved by a proof method of Ginsburg and Spanier [GinSpa], who proved
that the family of languages generated by regularly controlled context-free
grammars provided with left-most derivation equals the family of context-
free languages. First we give the obvious right-most version of Theorem 2.1

114 Chapter V

from [GinSpa] which is formulated in our notation.

Theorem 4.8. [GinSpa]. Let K be a family of languages closed under λ-free
regular substitution. Then the family of languages generated by K-
controlled context-free grammars provided with right-most rewriting equals
the family of all languages of the form h (L 1∩ L 2), where L 1 is in K, L 2 is a
context-free language, and h is a homomorphism. `

If we replace in Theorem 4.8 “context-free” by “OI-macro” every-
where, then an analogous statement still holds; cf. Theorem 4.11. The proof
according to [GinSpa] of Theorem 4.8 uses closure under inverse homomor-
phism of the family of context-free languages. Although this closure pro-
perty does hold for the family OI [Fis68a], it is sufficient to have closure
under isomorphism. To prove Theorem 4.11 we need the following two
lemmas.

Lemma 4.9. OIr = OI.

Proof. The proof is analogously to the context-free case, which is well
known; cf. for instance [LewPap]. `

For each OI-macro grammar G = (Φ,Σ,X,P,S) we define the OI-macro
grammar H (G) by (Φ,Σ1 ,X,P 1 ,S), where Σ1 = Σ ∪ P and

P 1 = {A (x→) → η π c π ∈ P, π =A (x→) → η}.

Lemma 4.10. Let G be an OI-macro grammar (Φ,Σ,X,P,S) and C be a
control language over P. Then there exists a λ-free regular substitution τ
and a homomorphism h such that Lr, OI(G,C) = h (Lr, OI(H (G)) ∩ τ (C R)).

Proof. Similarly to the proof of Lemma 2.1 in [GinSpa]. Viz., the homo-
morphism h : Σ1

∗ → Σ∗ is defined by h (π) = λ if π ∈ P, and h (a) = a if a ∈Σ .
The λ-free regular substitution τ is defined by τ (π) = Σ∗ {π}Σ∗ , for each
π ∈ P. `

The following theorem has been adapted from Theorem 2.1 in
[GinSpa].

Theorem 4.11. Let K be a family of languages closed under reversal and
λ-free regular substitution. Then the family of languages generated by K-
controlled OI-macro grammars provided with right-most rewriting equals
the family of all languages of the form h (L 1∩ L 2), where L 1 is in K, L 2 is
an OI-macro language, and h is a homomorphism.

Proof. By Lemma 4.10 there exists for each control language C in K and
each OI-macro grammar G a λ-free regular substitution τ and a homomor-
phism h such that Lr, OI(G,C) = h (Lr, OI(H (G)) ∩ τ (C R)). Then τ (C R) is in
K. The language Lr, OI(H (G)) is an OI-macro language (Lemma 4.9), so
Lr, OI(G,C) has the proper form.

RCB Extended Linear Basic Grammars 115

Conversely, let L 1 and L 2 be languages over Σ1 , where L 1 is a K-
language and L 2 an OI-macro language. Let h : Σ1

∗ → Σ2
∗ be a homomor-

phism.

We may assume Σ1∩ Σ2 = ∅ , which is shown as follows. Let a
h

be a
distinct symbol not in Σ2 for each a in Σ1 , and let Σ

h
1 = {a

h
c a ∈Σ 1}. Let h 1

be the isomorphism from Σ
h

1 into Σ1 defined by h 1(a
h

) = a for each a
h

in Σ1 .
Then h1

−1 is an isomorphism too. Let L
h

1 = h1
−1 (L 1) and L

h
2 = h1

−1 (L 2).
Then Σ

h
1∩ Σ2 = ∅ , L

h
1 is in K, L

h
2 is an OI-macro language [Fis68a], hh 1 is a

homomorphism and h (L 1∩ L 2) = hh 1(L
h

1∩ L
h

2).

Now let G1 = (Φ1 ,Σ1 ,X 1 ,P 1 ,S) be an OI-macro grammar that gen-
erates L 2 . Let G2 = (Φ2 ,Σ2 ,X 1 ,P 2 ,S) be the OI-macro grammar with Φ2 =
Φ1 ∪ Σ 1 and P 2 = P 1 ∪ {a → h (a) c a ∈Σ 1}. Let the production πa be equal
to a → h (a) for each a in Σ1 . The homomorphism h 3 : P2

∗ → Σ1
∗ is defined

by h 3(π) = λ for π ∈ P 1 and h 3(πa) = a for a in Σ1 . Then h3
−1 : Σ1

∗ → 2P2
∗

is
a λ-free regular substitution, h3

−1 (L1
R) is in K and Lr, OI(G2 ,h3

−1 (L1
R)) =

h (L 1∩ L 2). Hence a language of the form h (L 1∩ L 2), with L 1 in K and L 2

an OI-macro language, can be generated by some K-controlled (r, OI)-macro
grammar (G,C). `

Corollary 4.12. The family OIr(REG) equals the family OI.

Proof. Recall that the family OI is closed under intersection with regular
sets and under homomorphism [Fis68a]. `

Theorem 4.13. The language families RBLBr, f, OI(OI) and BLBr, f, OI(OI)
are equal to the language family OI.

Proof. Lemma 4.1(iii), Corollaries 4.5 and 4.12, Propositions 4.4 and 4.6. `

Corollary 4.14. RBLBr, f, OI(∅ NE) = RBLBr, f, OI(OI) = OI.

Proof. Corollary 4.5 and Theorem 4.13. `

Of course, a similar statement holds for any family of languages K
which satisfies ∅ NE ⊆ K ⊆ OI.

On the other hand, Corollary 4.14 may also be considered as a closure
property of the family OI, viz., RBLBr, f, OI(OI) ⊆ OI. Whether this property
is stronger or weaker than the one established in [Dow] for the family OI
remains open.

Now we show that the family BLBr, f, IO(∅ NE) differs from the family
BLBr, f, OI(∅ NE).

Proposition 4.15. The family BLBr, f, IO(∅ NE) is not equal to the family OI.

Proof. The language L 0 = {1m(c 1m)n c n = 2m−1, m ≥ 0} is an IO-macro
language which is not an OI-macro language [Fis68a]. The language L 0 can
be generated by the (r, f, IO,REG, ∅ NE)-belb grammar (G,C), where G =

116 Chapter V

(Φ,Ψ,Σ,X,P,S) is defined by Φ = {S,D,F,G}, Ψ = {ψi c 0 ≤ i ≤ 4}, Σ = {1,c},
X = {x}, and P consists of

π0 = S → F (ψ0), π6 = ψ1(x) → ∅ ,
π1 = ψ0 → {1}, π7 = G (x) → ψ3(x),
π2 = F (x) → G (ψ1(x)), π8 = ψ2(x) → {x 1},
π3 = F (x) → G (ψ4(x)), π9 = ψ3(x) → {xcx},
π4 = D (x) → ψ1(x), π10 = ψ4(x) → {x}.
π5 = D (x) → F (ψ2(x)),

Finally, take as the control language the trivial control language, i.e.,
C = (P ∪ P

hh
)∗ . That (G,C) generates L 0 can be shown in the following way.

First, a term τm of the form G (G (. . . G (F (1m)) . . .)) is produced, where τm

contains exactly m −1 symbols G (m ≥ 1). This can be performed by a con-
trol word π0π1(π2π

h
4π5π8)m −1 . Then applying π3π10 , followed by repeat-

edly applying π7π9 yields the string 1m(c 1m)2m−1 . `

Proposition 4.15 shows a typical consequence of bidirectional rewrit-
ing. In case of unidirectional rewriting we have that with K = ∅ NE for both
modes OI and IO, linear basic grammars have the same generating power;
viz. they both generate the linear basic languages. The latter equality can
also be expressed in terms of (m,K)-elb languages, i.e., let LB denote the
family of linear basic languages. Then we have LB OI(∅ NE) =
LB IO(∅ NE) = LB (= EDTOL, [Dow]). Due to the presence of bidirectional
rewriting in (m,REG,K)-belb grammars we have that the family
BLBr, f, OI(∅ NE) differs from the family BLBr, f, IO(∅ NE).

5. Free Rewriting of Nonterminals and Language Names

In this section we study another grammatical model that can be derived from
(m,REG,K)-belb grammars. It is natural to investigate also (m,REG,K)-belb
grammars provided with the (usual) derivation relation which models the
free application of rules from the grammar; i.e., the restriction of right-most
rewriting will be dropped in this section. We maintain the restriction of
disallowing terminal reductions. Then we prove that the corresponding
language family RBLB f, m(K) equals the family of recursively enumerable
languages for m = IO (Proposition 5.3) and for m = OI (Proposition 5.4),
provided some minor conditions on the family K hold.

Definition 5.1. Let (G,C, ¢) be an (m,REG,K)-belb grammar, where G =
(Φ,Ψ,Σ,X,P,S). Let ρ be rule from P ∪ P

hh
, and σ, τ be terms in Term (G, ¢).

We write σ ⇒ m
ρ τ if

g either ρ is a production, σ is rewritten by ρ, and σ ⇒ mτ,

RCB Extended Linear Basic Grammars 117

g or ρ is a reduction, τ is rewritten by ρ
h

, and τ ⇒ mσ.

In addition, let c be a control word in C ⊆ (P ∪ P
hh

)∗ , with c = ρ1 . . . ρn

(n ≥ 0, ρi ∈ P ∪ P
hh

, 0 ≤ i ≤ n). Then ⇒ m
c is defined (as usual) for terms τ and τ ′

from Term (G, ¢) by τ ⇒ m
c τ ′ if there are terms τi (0 ≤ i ≤ n) such that τ0 = τ,

τn = τ ′ and for each i (0 ≤ i < n), τi ⇒ m
ρi τ i +1 holds.

In case a rule ρi in c is not applicable to the term τi , then further appli-
cation of rules is blocked, and the application of c to τ yields no result, i.e.,
there is no term τ ′ such that τ ⇒ m

c τ ′ is defined. `

In this section an (m,REG,K)-belb grammar will be provided with the
derivation relation introduced in Definition 5.1.

Definition 5.2. If (G,C, ¢) is an (m,REG,K)-belb grammar where G =
(Φ,Ψ,Σ,X,P,S) is its underlying grammar, then the language generated by
(G,C, ¢) is

Lm(G,C, ¢) = {w ∈Σ ∗ c ∃ c ∈ C . S ⇒ m
c w},

where either m = OI or m = IO. The family of languages generated by
(m,REG,K)-belb grammars is denoted by RBLBm(K). `

As in Section 2 and 3, only (m,REG,K)-belb grammars without termi-
nal reductions will be studied. Such grammars are called (f, m,REG,K)-belb
grammars, and their associated family of languages will be denoted by
RBLB f, m(K). The next propositions characterize − under minor conditions
on the family K − the families RBLB f, IO(K) and RBLB f, OI(K); viz. these
families equal the family of recursively enumerable languages. The proofs
are inspired by the equivalence of Turing machines and on-line acceptors
provided with two pushdown stores as auxiliary storage. We refer to
Chapter IV, Section 2, for a precise definition of the concept of the Turing-
machine as well as related notions and terminology. Given a Turing
machine A and a mode m, we construct an (f, m,REG,K)-belb grammar
(G,C) which simulates computations of A, using an encoding of two push-
down stores in the derivation tree. These simulations (Propositions 5.3 and
5.4) heavily rely on the use of reductions, which will be no surprise, in view
of the main result of Chapter IV.

Remember that RE denotes the family of recursively enumerable
languages.

Proposition 5.3. Let K be a family satisfying {{λ}, ∅ }⊆ K ⊆ RE and let K
be closed under left or right-marking. Then a language L 0 is in the family
RBLB f, IO(K) if and only if L 0 is recursively enumerable.

Proof. Let L 0 be equal to T (A), the set of strings in Σ∗ accepted by the
deterministic single-tape Turing machine A, where A = (Q, Σ,Γ,B, δ,q 0 ,F).

118 Chapter V

Furthermore, we assume that δ (q,a) = ∅ for each q in F. We construct an
(f, IO,REG, ∅ NE)-belb grammar (G,C) with G = (Φ,Ψ,Σ,X,P,S) such that
L IO(G,C) = L 0 . The grammar (G,C) generates nondeterministically a
representation of a word z in Σ* and simulates the computation of A on z.
The Turing machine A reaches a final state with z as its input if and only if
(G,C) generates z. Let Σλ denote Σ ∪ {λ}.

We define the alphabets Φ and Ψ of G by

Φ0 = {S,A 0}∪ {RqDa ,UqDa c q ∈ Q, D ∈Γ , a ∈Σ λ },

Φ1 = {[D,a] c D ∈Γ , a ∈Σ λ },

Φ2 = {A 1},

and

Ψ0 = {ψ1}∪ {ξq ,ηq c q ∈ Q},

Ψ1 = {ψa c a ∈Σ λ },

Ψ2 = {ψA1
}.

The set of variables X is defined by X = {x,y} and the set P of produc-
tions by

P = {π0 ,π1 ,πB ,πq0
,πA1

,πψ}

∪ {UpDa → ηq c p,q ∈ Q, D ∈Γ ,a ∈Σ λ }

∪ {RpDa → ξq c p,q ∈ Q, D ∈Γ , a ∈Σ λ }

∪ {UpDa → [E,a](ηq) c p,q ∈ Q, D,E ∈Γ , a ∈Σ λ }

∪ {RpDa → [E,a](ξq) c p,q ∈ Q, D,E ∈Γ , a ∈Σ λ }

∪ {[D,a](x) → ψa(x) c D ∈Γ , a ∈Σ λ }

∪ {ψa(x) → {xa} c a ∈Σ λ }

∪ P ξ ∪ P Σ∪ P η ∪ {ψ1 → ∅ },

where

π0 = S → A 1(ξq0
,ψ1), π1 = A 0 → ψ1 ,

πB = A 0 → [B, λ](ψ1), πq0
= A 0 → ηq0

,

πA1
= A 1(x,y) → ψA1

(x,y), πψ = ψA1
(x,y) → {xy}.

Furthermore, let

P ξ ={ξq → {λ} c q ∈ F},

RCB Extended Linear Basic Grammars 119

P η ={ηq → {λ} c q ∈ F},

P Σ = {A 0 → [a,a](ψ1) c a ∈Σ }.

The control language C is defined by

C = π0π
h

1(πBπ
h

1)∗ (P Σπ
h

1)∗ πq0
(E 1 ∪ M 0 ∪ M−1E −1)∗ ML

∗ P η EΣ
+P ξπA1

πψ.

The control language C can be considered to consist of three major
parts; viz.

initialization part π0π
h

1(πBπ
h

1)∗ (P Σπ
h

1)∗ πq0
,

simulation part (E 1 ∪ M 0 ∪ M−1E −1)∗ ,

termination part ML
∗ P λ EΣ

+P ξπA1
πψ.

Before the actual simulation of the Turing machine A starts, the initial-
ization part generates a sentential form αn,k, which has a corresponding c-
tree of the form shown in Figure 4, where ai ∈Σ (1 ≤ i ≤ n). If A accepts the
string a 1 . . . an , then it will stop after some finite computation. The number k
is a guess of the number of additional cells to the right of the n input cells,
which the Turing machine A uses during this computation.

A 1

ξq0 [B, λ].......
[B, λ]

[an ,an].......
[a 1 ,a 1]

ηq0

M
J
N
J
O

k

Figure 4.

The simulation part (E 1 ∪ M 0 ∪ M−1E −1)∗ simulates the computation
of the Turing machine A. The sets E 1 , E −1 , M 0 and M−1 in the simulation
part of C are defined as follows. Let ∆ (r,q,D,a) be an abbreviation of

r ∈ {−1,0,1}, q ∈ Q, D ∈Γ , a ∈Σ λ , ∃ E ∈Γ . ∃ p ∈ Q . δ (q,D) = (p,E,r),

120 Chapter V

and let [(q,E,r)]1 = q and [(q,E,r)]2 = E. Then we define

E 1 = {(ξq → RqDa)([D,a](ηq) → UqDa)(RqDa → [[δ (q,D)]2 ,a](ξ[δ(q,D)]1
))

(UqDa → η[δ(q,D)]1
) c ∆ (1,q,D,a)}.

The set E 1 simulates a 1-step of the Turing machine A. The first rule
ξq → RqDa of each control string in E 1 is such that D and a are guessed non-
deterministically. By the second rule ([D,a](ξq) → UqDa) this guess is
checked, and if the guess happens to be wrong the derivation is blocked.

Ms ={([D,a](ηq) →UqDa)(UqDa → [[δ (q,D)]2 ,a](η[δ(q,D)]1
)) c ∆(s,q,D,a)},

where s equals −1 or 0.

The set M 0 simulates a 0-step of the Turing machine A.

E −1 = {(ηq → UqDa)([D,a](ξp) → RqDa)(UqDa → [D,a](ηq))(RqDa → ξq) c

p,q ∈ Q, D ∈Γ , a ∈Σ λ }.

The sequence M−1E −1 simulates a (−1)-step of the Turing machine A.

A 1

[Dn +k,λ].......
[Di ,ai]

ηq

[D1 ,a 1].......
[Di −1 ,ai −1]

ξq

Figure 5.

We can show by induction on the number of Turing machine moves
that if

q 0a 1 . . . an c—A
∗ D1 . . . Di −1q Di . . . Dn +k,

then for some control string c in the simulation part of C we have

αn,k⇒ IO
c ωi,q

n +k,

where αn,k is the sentential form generated by the initialization part of C,
corresponding to q 0a 1 . . . an (cf. Figure 4) and ωi,q

n +k is the sentential form
associated with the c-tree represented in Figure 5, where ai = λ for all i with
n +1 ≤ i ≤ n +k, and Di ∈Γ for all i with 1 ≤ i ≤ n +k.

RCB Extended Linear Basic Grammars 121

If q is in F, then no rules in the simulation part of C are applicable.

In the termination part, sequences from ML
∗ − with ML defined by

ML = {(ηq → UqDa)([D,a](ξq) → RqDa)(UqDa → [D,a](ηq))(RqDa → ξq) c

q ∈ F, D ∈Γ , a ∈Σ λ },

− transform the sentential form that has been derived after the actual simula-
tion of the Turing machine A into one with a corresponding c-tree of the
form shown in Figure 6, where q ∈ F, and Di ∈Γ (1 ≤ i ≤ n +k).

A 1

ξq [Dn +k,λ].......
[Dn +1 ,λ]

[Dn ,an].......
[D1 ,a 1]

ηq

Figure 6.

Finally, P η EΣ
+P ξπA1

πψ derives the terminal string a 1 . . . an , where

E Σ = {([D,a](x) → ψa(x))(ψa(x) → {xa}) c a ∈Σ λ , D ∈Γ }.

By this construction, we have T (A) ⊆ Lm(G,C). The converse inclu-
sion can also be proved in a straightforward way. Thus, for each Turing
machine A we have constructed an (f, IO,REG,K)-belb grammar that gen-
erates T (A). This proves the proposition from right to left. The converse
implication can be proved using Church’s Thesis. `

The construction in the proof of Proposition 5.3 can serve as a base to
prove a similar result with respect to the family RBLB f, OI(K).

Proposition 5.4. Let K be a family satisfying {{λ}, ∅ }⊆ K ⊆ RE, and let K
be closed under left or right-marking. Then a language L 0 is an
RBLB f, OI(K) language if and only if L 0 is recursively enumerable.

Proof. We give only the major steps of the construction. The construction
of G = (Φ,Ψ,Σ,X,P,S) and C follows the proof of Proposition 5.3 directly.
First, the initialization part of C has to generate a sentential form αn,k with a

122 Chapter V

c-tree structure as shown in Figure 7.

q 0

[$,λ]

q 0 ′

[a 1 ,a 1].......
[an ,an]

[B, λ].......
[B, λ]

[£,λ]

M
J
N
J
O

k

Figure 7.

This can be obtained easily. In general, if q ∈ Q, then q and q ′ are nontermi-
nals in Φ1 . Nonterminals of the form [D,a], where D ∈Γ and a ∈Σ λ , are in
Ψ1 . Furthermore, [$,λ] and [£,λ] are in Ψ0 , where $, £ are new symbols
not in Γ.

The simulation part of C has the form (E 1 ∪ M 0 ∪ M−1E −1)∗ , which is
identical to the simulation part of the control language in the proof of Propo-
sition 5.3. However, the sets E 1 , E −1 , M 0 and M−1 are defined differently.
Let RqDa , UqDa (q ∈ Q, D ∈Γ , a ∈Σ λ) and ∆ (r,q,D,a) be defined as in the
proof of Proposition 5.3. In addition, we need language names ψq , with
q ∈ Q. Then

E 1 = {(q (x) → q ([D,a])(x))) (q ′([D,a](y)) → UqDa(y))

(q ([D,a](x) → RqDa(x)) (RqDa(x) → [δ (q,D)]1([[δ (q,D)]2 ,a](x)))

(UqDa(y) → ψ[δ(q,D)]1
(y)) (ψ[δ(q,D)]1

(y) → [δ (q,D)]1 ′(y)) c

∆ (1,q,D,a)}.

To obtain M 0 and M−1E −1 we define Ms for s equal to −1 or 0 by

Ms = {(q ′([D,a](y)) → UqDa(y))

(UqDa(y) → [δ (q,D)]1 ′([[δ (q,D)]2 ,a](y))) c ∆ (s,q,D,a)}.

Finally, E −1 is defined by

E −1 = {(q ′(y) → q ′([D,a](y))) (p ([D,a](x)) → RqDa(x))

(RqDa(x) → ψq(x)) (ψq(x) → q (x)) c p,q ∈ Q, D ∈Γ , a ∈Σ λ }.

RCB Extended Linear Basic Grammars 123

Then it easily follows that a sentential form generated during the simu-
lation of the Turing machine A has a c-tree structure as shown in Figure 8.
Note that ai = λ for all i with n +1 ≤ i ≤ n +k.

q

[Di −1 ,ai −1].......
[D1 ,a 1]

[$,λ]

q ′

[Di ,ai].......
[Dn +k,an +k]

[£,λ]

Figure 8.

The discussion of the termination part of C is left to the reader, as well
as the remaining details of the proof. `

6. Concluding Remarks

In this chapter we have studied (m,K)-elb grammars provided with regular
control and bidirectional rewriting. We have shown that if K is a nontrivial
family closed under ngsm mappings, then the family RBLBr, f, OI(K) is a full
substitution-closed AFL. Furthermore, if K is a family with K ⊇ SYMBOL,
and closed under left or right-marking, intersection with regular languages,
and homomorphism, then the family RBLBr, f, IO(K) is a full Quasi Abstract
Family of Languages closed under deterministic substitution.

As for the generating power of these types of grammar we have seen
that the family of IO-macro languages is included in each family
RBLBr, f, IO(K), whenever K ⊇ ∅ NE. And similarly, the family of OI-macro
languages is included in each family RBLBr, f, OI(K), whenever K ⊇ ∅ NE.
Furthermore, we have that the family RBLBr, f, OI(K) equals the family OI
whenever the family K satisfies ∅ NE ⊆ K ⊆ OI. We also would like to estab-
lish upper bounds for the families RBLBr, f, IO(∅ NE). However, the proof
techniques applied in the OI-case do not work for the IO-mode, since
Lemma 4.10 does not hold for IO-macro grammars.

The results of Section 4 suggest that (m,K)-elb grammars provided
with RCB-rewriting generate languages of a “nonlinear” character; i.e.,
languages generated by a type of grammar provided with symbols similar to
nonterminals, such that each grammar, which generates such a language,
derives − unidirectionally − at least one sentential form which contains at
least two nonterminal-like items. It is likely that this is due to the interac-
tion between the bidirectional rewriting and the presence of language names

124 Chapter V

nested within nonterminals, which allow to obtain such nonlinear sentential
forms. Therefore, it is interesting to study ordinary linear basic grammars
provided with RCB-rewriting; cf. Chapter VI.

Finally, with respect to Section 5 we remark that the use of control on
the application of rules is indispensable to establish that − under weak
assumptions on the family K − the family RBLB f, m(K) equals the family of
recursively enumerable languages for both m = OI and m = IO.

CHAPTER VI

Regularly Controlled Bidirectional
Linear Basic Grammars

1. Introduction

In Section V.6 we suggested that it might be interesting to investigate ordi-
nary linear basic grammars as the underlying grammar type for regularly
controlled bidirectional grammars. Therefore, in this chapter we extend
linear basic grammars to regularly controlled bidirectional linear basic gram-
mars, provided with right-most rewriting, block mode and fair mode.

The structure of this chapter is as follows. In the first part of Section 2
we recall some basic terminology. Then we define a regularly controlled
bidirectional linear basic grammar as a tuple (G,C, ¢), where G =
(Φ,Σ,X,P,S) is a linear basic grammar, C is a control language over P ∪ P

hh
,

and ¢ is a symbol not occurring in G. The set P
hh

is formed by the reductions
corresponding to the productions in P. In regularly controlled bidirectional
linear basic grammars there is − in general − a difference between applying
rules from P ∪ P

hh
in the “outside-in” (OI) fashion or in the “inside-out” (IO)

fashion. Therefore, we call the regularly controlled bidirectional grammars
based on linear basic grammars (m,REG)-blb grammars. Then we actually
investigate (m,REG)-blb grammars under the RS/B/f-mode of derivation,
where m = OI or m = IO. The resulting grammar type is denoted by
(r, f, m,REG)-blb or even by (f, REG)-blb, since it is argued that in case of
the RS/B/f-mode the mode RS does not differ from the RA-mode and even
the value of the mode m can be left unspecified.

The remaining part of Section 2 contains some examples of (f, REG)-
blb languages. These examples give some insight in the generating power of
(f, REG)-blb grammars. Section 3 is devoted to the generating power of
(f, REG)-blb grammars. We show that for each recursively enumerable
language L 0 over an alphabet Σ0 there exists an alphabet Σ and some
(f, REG)-blb grammar (G,C) such that the language L (G,C) ∩ Σ0

∗ equals
L 0 . Finally, in Section 4 we draw some conclusions.

126 Chapter VI

2. Regularly Controlled Bidirectional Linear Basic Grammars

Analogously to Chapter V, in which we investigated regularly controlled
bidirectional (m,K)-elb grammars, we study in this chapter the effect of reg-
ular control together with bidirectional rewriting on linear basic grammars
[Fis68a]. Recall that a linear basic grammar is a macro grammar in which
the right-hand side of each production is a linear term. In the sequel we
assume that each production in a linear basic grammar is in standard linear
form; cf. Definition I.2.4.5. For completeness’ sake we repeat this
definition.

Definition 2.1. A linear basic grammar G = (Φ,Σ,X,P,S) is in standard
linear form if each production from P has one of the forms

(i) A (x 1 , . . . ,xn) → B (w 1 , . . . ,wk) or

(ii) A (x 1 , . . . ,xn) → w,

where w, w 1 , . . . ,wk are words over Σ ∪ {x 1 , . . . ,xn}. `

For each linear basic grammar we can construct effectively an
equivalent linear basic grammar in linear standard form [Fis68a]. Note that
this result has already been quoted in Theorem I.2.4.6.

The new grammar model under consideration now consists of a linear
basic grammar provided with a control language over P ∪ P

hh
. The set P

hh
con-

sists of the reductions corresponding to P. If π is a production in P equal to
A (x 1 , . . . ,xn) → t, then π

h
is in P

hh
and π

h
equals t → A (γ1 , . . . ,γn). Here γi is

equal to xi if xi occurs in t, and otherwise γi is equal to ¢; cf. Chapter V.

Furthermore, for each production π we define π
hh

equal to π. An element of
P ∪ P

hh
will be called a rule. The symbol ¢ is of a special kind and is not an

element of Σ, Φ or X.

Definition 2.2. An m-regularly controlled bidirectional linear basic gram-
mar or (m,REG)-blb grammar, where m is equal to either OI or IO, is a tri-
ple (G,C, ¢) where

g G is a linear basic grammar (Φ,Σ,X,P,S),

g C is a regular language with C ⊆ (P ∪ P
hh

)∗ ,

g ¢ is a special symbol not occurring in Φ, Σ or X.

We call G the underlying grammar of (G,C, ¢) and C is called the con-
trol language of (G,C, ¢). Sentences of C will be referred to as control
words. `

The notion of argument preserving grammars − originally introduced
by Fischer in [Fis68a] − has already been defined formally in Chapter V
(Definition V.2.4). Obviously, this definition also applies to linear basic
grammars. In addition, we need the following concept.

RCB Linear Basic Grammars 127

Definition 2.3. A linear basic grammar G = (Φ,Σ,X,P,S) is called semi-
argument preserving if each production in P of the form 2.1(i) is argument
preserving. `

The symbol ¢ can be omitted from the tuple (G,C, ¢) in case each pro-
duction of G is argument preserving.

For an (m,REG)-blb grammar (G,C, ¢), with G = (Φ,Σ,X,P,S), let
Term (G, ¢) denote the set of terms T (Σ ∪ X ∪ Φ ∪ {¢}). With each
(m,REG)-blb grammar we associate the following derivation relation, which
formalizes bidirectional right-most rewriting; cf. Definition 2.5.

Our approach is similar to the one we developed in Chapter V. There-
fore the following definitions and comments are anything but a surprise.

Definition 2.4. Let (G,C, ¢) be an (m,REG)-blb grammar, where G equals
(Φ,Σ,X,P,S). Let ρ be a rule from P ∪ P

hh
, where α [x→] is the left-hand side

of ρ, and let τ be a term in Term (G, ¢). We say that τ fits in with ρ, if there
are arguments t 1 , . . . ,tn from Term (G, ¢) such that τ = α [t 1 , . . . ,tn], where
α [t 1 , . . . ,tn] is the result obtained from α [x→] by substituting the terms
t 1 , . . . ,tn for x 1 , . . . ,xn in α [x→], respectively. `

Definition 2.5. Let (G,C, ¢) be an (m,REG)-blb grammar, where G =
(Φ,Σ,X,P,S). Let ρ be rule from P ∪ P

hh
, and σ, τ be terms in Term (G, ¢).

We write σ ⇒ r,m
ρ τ if there exists a term u in Term (G, ¢), and strings v, x and

y over the alphabet Φ ∪ Σ ∪ X ∪ PC such that σ = xuy and τ = xvy and

g y contains no symbol from Φ,

g if u = λ, then y = λ,

g u is the only subterm in uy that fits in with ρ,

g either ρ is a production, τ is the result of rewriting σ by ρ, and σ ⇒ mτ,
or ρ is a reduction, σ is the result of rewriting τ by ρ

h
, and τ ⇒ mσ. `

The relation ⇒ r,m
c , where c is a control word in (P ∪ P

hh
)∗ , can be

defined in a straightforward way; cf. Definition V.2.8. An (m,REG)-blb
grammar provided with right-most rewriting will be called an (r,m,REG)-
blb grammar or a right-most regularly controlled bidirectional linear basic
grammar.

Definition 2.6. Let (G,C, ¢) be an (r,m,REG)-blb grammar with underlying
linear basic grammar G = (Φ,Σ,X,P,S) and control language C ⊆ (P ∪ P

hh
)∗ .

Then the language generated by (G,C, ¢) under the mode (r,m) is

Lr,m(G,C, ¢) = {w ∈Σ ∗ c ∃ c ∈ C . S ⇒ r,m
c w}.

The family of languages generated by (r,m,REG)-blb grammars is
denoted by RBLBr,m . `

128 Chapter VI

The derivation relation ⇒ r,m defined above corresponds to the RS/B-
mode of derivation as defined in Chapter I for RCB grammars.

It is possible to define reductions associated with terminal productions
in the obvious way; cf. Definition 2.5. However, we do not study grammati-
cal models in which such general reductions occur. Terminal reductions
have the effect that they allow terminals to act as some kind of nonterminal
symbol, which obscures the sharp distinction between terminals and nonter-
minals. We have already noticed this phenomenon several times; cf.
Chapter I, II, and V. Restricting ourselves − once again − to non-terminal
reductions means that we only consider the fair mode of bidirectional rewrit-
ing. So in this chapter we also disallow terminal reductions.

It is easy to see that each nonterminal sentential form generated by an
(r,m,REG)-blb grammar in fair mode − which we will call an (r, f, m,REG)-
blb grammar − has a form uA (v→)w, where u, w, v 1 , . . . ,vn are strings over
the terminal alphabet extended with the symbol ¢. In other words, it is
impossible to obtain nested terms. So, the distinction between OI and IO-
mode vanishes, and therefore the symbol m can be omitted in the name of
grammar and of the language family too. We also see that at most one non-
terminal symbol can occur in a sentential form generated by such an
(r, f, m,REG)-blb grammar. Thus the symbol r can also be omitted. There-
fore we call an (r, f, m,REG)-blb grammar an (f, REG)-blb grammar for
short. In addition, the language generated by an (f, REG)-blb grammar
(G,C, ¢) is denoted by Lf (G,C, ¢), and the family of languages generated by
(f, REG)-blb grammars is denoted by RBLB f . As another consequence, it is
easy to see that the following proposition holds.

Proposition 2.7. For each (f, REG)-blb grammar (G0 ,C 0 ,¢) there exists an
equivalent (f, REG)-blb grammar (G,C, ¢) such that G is in standard linear
form. `

Notice that in a semi-argument-preserving (f, REG)-blb grammar
(G,C, ¢) the symbol ¢ is useless. So we will omit this symbol in semi-
argument-preserving (f, REG)-blb grammars.

Example 2.8. Let L 1 be the language {1m(c 1m)n c m ≥ 1, n = 2m−1}. In
[Fis68a] it has been shown that this language can be generated by an IO-
macro grammar, but not by an OI-macro grammar. However, the language
L 1 can be generated by the following argument-preserving (f, REG)-blb
grammar (G1 ,C 1), with G1 = ({S,A,B},{1,c},{x,y},P,S), where the set of
productions P consists of

π0 = S → A (c 1), π5 = A (x) → A (1x),
π1 = A (x) → A (cx 1), π6 = A (x) → 1x,
π2 = A (x) → A (ccx), π7 = A (x) → A (c 1x),

RCB Linear Basic Grammars 129

π3 = B (x,y) → A (xcc 1y), π8 = A (x) → A (1xc 1x).
π4 = B (x,y) → A (xc 1yc 1y),

The rank of the symbols in Φ can be easily inferred from the form of
the productions in P. Finally, define the control language C 1 by

C 1 = π0π1
∗ (π

h
7π8+ π

h
2π2π

h
3π4)∗ π

h
5π6 .

In general, if a production π of the form 2.1(i) in P is argument
preserving, we call a sequence π

h
π a test. For then we observe that for each

string ω to which π
h

is applicable we have that ω ⇒ π
h

πω, and if π
h

is not appli-
cable, then the derivation is blocked by definition. So, a test is able to filter
out undesired sentential forms.

That L 1 = L (G1 ,C 1) is now shown as follows. First, a sentential form
A (c m1m) (m ≥ 1) is generated by π0π1

∗ , followed by the test π
h

2π2 whether the
argument of A starts with at least two symbols c. If this is confirmed, the
argument string s is split by π

h
3 into three substrings u, cc 1 and v with

u ∈ {c}∗ and s = ucc 1v. The next step is to construct from the strings u and
v, the string uc 1vc 1v, which is performed by π4 . Initially, v equals 1m −1 , so
that the resulting string uc 1vc 1v is of the form c k(c 1m)l , where 0 ≤ k < m
and l = 2m −k −1 . The sequence π

h
7π8 manages the case in which c 1 is a

prefix of the argument of A, and π
h

5π6 applies in case the argument of A has a
prefix equal to 1. `

Example 2.9. The language L 2 defined by {w ∈ {0,1}∗ c # 1(w) = 2n , n ≥ 0},
is known to be an OI-macro language that does not belong to the family IO
[Fis68a]. The language L 2 can also be generated by the following
argument-preserving (f, REG)-blb grammar (G2 ,C 2), with the underlying
grammar G2 = ({S,A,B},{0,1},{x,y},P,S), where the set of productions P
consists of

π0 = S → A (1), π3 = B (x,y) → A (x 0y),
π1 = A (x) → A (xx), π4 = A (x) → x.
π2 = B (x,y) → A (xy),

In this case it is also straightforward to determine the rank of the sym-
bols in Φ from these productions. We define the control language C 2 by
C 2 = π0π1

∗ (π
h

2π3)∗ π4 .

It is easy to see that L (G2 ,C 2) = L 2 . Note that the sequence π
h

2π3 has
the effect of inserting a symbol 0 somewhere in the current argument string
of A. `

130 Chapter VI

3. Generating Power

In Section 2 we showed that both RBLB f ∩ IO ≠ ∅ and RBLB f ∩ OI ≠ ∅ ; cf.
Examples 2.8 and 2.9. The main result of this chapter − formulated in the
following proposition − shows that (f, REG)-blb grammars possess a consid-
erable generating power indeed.

Proposition 3.1. Let Σ0 be an alphabet. For each recursively enumerable
language L 0 over Σ0 there exist an alphabet Σ and a semi-argument-
preserving (f, REG)-blb grammar (G,C) with G = (Φ,Σ,X,P,S) and Σ0 ⊆ Σ
such that L 0 = L (G,C) ∩ Σ0

∗ .

Proof. Let A = (Q, Σ0 ,Γ,B, δ,q 0 ,F) be a deterministic single-tape Turing
machine such that L 0 is equal to T (A). For a precise definition of a Turing
machine and related notions we refer to Section IV.2. We assume that
δ (q,a) = ∅ for each q in F and that each symbol in Γ− Σ0 occurs at least
once in some tape contents which is reachable during the computation on
some input a 1 . . . an (n ≥ 0). We construct a semi-argument-preserving
(f, REG)-blb grammar (G,C) with G = (Φ,Γ,X,P,S) such that L (G,C) con-
tains both all sentences w over Σ0 with w ∈ L 0 as well as each tape contents
of A during the computation on w. Of course, then we obtain the equality
T (A) = L (G,C) ∩ Σ0

∗ . To this end we take the terminal alphabet of G equal
to Γ. Next our concern is to assure that each tape symbol from Γ− Σ0 will
occur at least once in a sentence of L (G,C). This is achieved by deriving
each possible tape contents which can occur during some (simulated) com-
putation of the Turing machine A. However, it may happen that some tape
contents, represented by τ, wholy consists of terminals from Σ0 . Such a
string τ is not necessarily an element of T (A) whenever the state of A is not
final. So τ has to be excluded from the sentences generated by (G,C). This
is done by testing whether or not such a string includes a tape symbol in
Γ− Σ0 . If no symbol from Γ− Σ0 occurs in τ, then the derivation will be
blocked. The sets PE,I and PE in the construction of (G,C) perform this task
in the right way. A derivation in an (f, REG)-blb grammar (G,C) starts with
producing nondeterministically a word w in Σ0

∗ as both the second and the
third argument of a nonterminal U. Then it simulates the computation of A
on input w. At each stage of the computation the grammar is able to derive
the current tape contents as a terminal string, in case this tape contents con-
tains at least one symbol in Γ− Σ0 . In case this simulated computation of A
on input w reaches a final state, then the derivation in (G,C) will yield w as
the string it generates.

By Φ = V 0 ∪ V 1 ∪ {S,U}∪ Q ∪ {ED
l , ED

r c D ∈Γ− Σ 0} we define the
alphabet Φ of G, where V 0 = Q × Γ and V 1 = V 0× Γ.

RCB Linear Basic Grammars 131

The set X is equal to {x,y,z,x 1 ,x 2 ,y 1 ,y 2}. The set P is the union of the
finite sets PI , P Σ0

, Pch, Pi (i ∈ {−1,0,1}), P −1,I , PE,I , PE , and PF . The order

of description of these sets follows the way in which (G,C) simulates the
operation of the Turing machine A.

The subsets PI = {π0 ,πB ,π1} and P Σ0
consist of productions that ini-

tialize the simulation of the Turing machine A. These productions are
defined by

π0 = S → U (λ,λ,λ), π1 = U (x,y,z) → q 0(x,yB,z),
πB = U (x,y,z) → U (x,yB,z),

and P Σ0
= {U (x,y,z) → U (x,ya,za) c a ∈Σ 0}.

The following five subsets of P − to be defined below − consist of the
productions that are necessary to start a simulation of an r-step of the Turing
machine A (r ∈ {−1,0,1}).

Pch = {(p,D)(x,y,z) → p (x,Dy,z) c p ∈ Q, D ∈Γ ,

∃ E ∈Γ , ∃ q ∈ Q, ∃ r ∈ {0,1} . δ (p,D) = (q,E,r)},

P 0 = {(p,D)(x,y,z) → q (x,Ey,z) c p,q ∈ Q, D,E ∈Γ , δ (p,D) = (q,E, 0)},

P 1 = {(p,D)(x,y,z) → q (xE,y,z) c p,q ∈ Q, D,E ∈Γ , δ (p,D) = (q,E, 1)},

P −1,I = {((p,D),H)(x,y,z) → (p,D)(xH,y,z) c p ∈ Q, D,H ∈Γ ,

∃ E ∈Γ , ∃ q ∈ Q . δ (p,D) = (q,E, −1)},

P −1 = {((p,D),H)(x,y,z) → q (x,HEy,z) c p,q ∈ Q, D,E,H ∈Γ ,

δ (p,D) = (q,E, −1)}.

To derive each tape contents with at least one symbol in Γ− Σ0 , the sets
PE,I and PE are defined as follows.

PE,I = {ED
l (x 1 ,x 2 ,y,z) → p (x 1Dx2 ,y,z), ED

r (x,y 1 ,y 2 ,z) → p (x,y 1Dy2 ,z)

c p ∈ Q, D ∈Γ− Σ 0},

PE = {ED
l (x 1 ,x 2 ,y,z) → x 1Dx2y, ED

r (x,y 1 ,y 2 ,z) → xy 1Dy2 c D ∈Γ− Σ 0}.

Note that a reduction in P
hh

E,I can be applied if and only if the (simu-
lated) tape contents includes at least one symbol in Γ− Σ0 .

Once we reach a final state in the simulation of the Turing machine A,
the corresponding production in the set PF ={πp c πp = p (x,y,z) → z, p ∈ F}
generates the terminal string that has apparently been accepted by (the simu-
lation of) the Turing machine A.

132 Chapter VI

Finally, we define the control language C of (G,C) by

C = {π0}PΣ0

∗ {πB
∗ π1}((P

hh
E,IPE ∪ P

hh
ch(P 0 ∪ P 1) ∪ P

hh
−1,IP −1)(PF ∪ {λ}))∗ .

The construction described above works as follows. Accepting an
input string a 1 . . . an means that the Turing machine A halts after a finite
number of transitions. Apart from the n cells on which the input has been
written, A uses an additional number of cells − say k (k ≥ 0) − to the right of
the input, in order to perform the computation on this input. Now we start a
derivation of (G,C) by the consecutive application of n (n ≥ 0) productions
from P Σ0

to U (λ,λ,λ), which in turn has been obtained by the initial pro-

duction π0 . By applying k times (k ≥ 0) the production πB , followed by the
production π1 , we obtain the sentential form on which the actual simulation
of the Turing machine A will take place. So there exists a control string c 1

in {π0}PΣ0

∗ {πB
∗ π1} such that S ⇒ c1 q 0(λ,a 1 . . . anB k,a 1 . . . an), where

n +k ≥ 1. The term obtained by this subderivation is denoted by αn,k.

Next we can simulate the actions of A by applying rules from P −1,I

and Pi (i = −1,0,1) to αn,k. The current state q of A is represented by the
nonterminal q from Φ3 . The (values of the) first and second argument form,
when concatenated, the current tape contents, such that the position of the
head of A is at the left-most symbol of the second argument. Then P

hh
chP 0

and P
hh

chP 1 perform actions of A with no head movement and a movement of
the head to the right, respectively. In addition, P

hh
−1,IP −1 simulates an action

of A in which the head is moved to the left. Thus there exist control strings
c 0 ∈ P

hh
chP 0 , c 1 ∈ P

hh
chP 1 , and c−1 ∈ P

hh
−1,IP −1 such that

g p (x,Dy,z) ⇒ c0 q (x,Ey,z)

for each p,q ∈ Q, x,y ∈Γ ∗ , z ∈Σ 0
∗ and D,E ∈Γ , such that δ (p,D) = (q,E, 0),

g p (x,Dy,z) ⇒ c1 q (xE,y,z)

for each p,q ∈ Q, x,y ∈Γ ∗ , z ∈Σ 0
∗ and D,E ∈Γ , such that δ (p,D) = (q,E, 1),

g p (xH,Dy,z) ⇒ c−1 q (x,HEy,z)

for each p,q ∈ Q, x,y ∈Γ ∗ , z ∈Σ 0
∗ and D,E,H ∈Γ , such that δ (p,D) =

(q,E, −1).

We can show by induction on the number of Turing machine moves
that if q 0a 1 . . . an c—A

∗ b 1 . . . br −1q br . . . bn +k, then for some string c in
(P
hh

ch(P 0 ∪ P 1) ∪ P
hh

−1,IP −1)∗ we have

αn,k⇒ cq (b 1 . . . br −1 ,br . . . bn +k,a 1 . . . an) (∗)

where bi ∈Γ (1≤ i ≤ n +k). Let the derived string in (∗) be denoted by ωn,k
r,q .

RCB Linear Basic Grammars 133

If a nonterminal symbol q from F appears in ωn,k
r,q , then only a rule

from PF is applicable. In that case there exists a production πq in PF such
that

ωn,k
r,q ⇒ πq a 1 . . . an .

Thus T (A) ⊆ L (G,C). We observe that due to the application of
sequences from P

hh
E,IPE only tape contents containing at least one symbol

from Γ− Σ0 contribute to L (G,C). So, T (A) includes all strings over Σ0 in
L (G,C). Then it follows that T (A) = L (G,C) ∩ Σ0

∗ . This concludes the
proof. `

As we have already mentioned before, no nested terms occur in senten-
tial forms derivable by (f, REG)-blb grammars. Therefore, it will be
extremely difficult, if not impossible, to find an (f, REG)-blb grammar
which can generate T (A). For in that case, the straightforward approach of
considering tape symbols in Γ− Σ0 as nonterminal symbols in the intended
(f, REG)-blb grammar causes trouble. This is because the occurrence of two
or more tape symbols from Γ− Σ0 in a tape contents will be hard to represent
in such a grammar. Remember that only one nonterminal symbol can occur
in sentential forms generated by (f, REG)-blb grammars.

4. Concluding Remarks.

In Chapter V we have seen that the family RBLBr, f, OI(∅ NE) of languages
generated by (r, f, OI,REG, ∅ NE)-belb grammars equals the family OI.
Example 2.8 shows that RBLB f ≠ OI. So this means that in general regularly
controlled bidirectional linear basic grammars have a different generating
capacity than regularly controlled bidirectional (OI,∅ NE)-elb grammars.
This contrasts with the fact that in the unidirectional case we have

LB OI(REG, ∅ NE) = LB OI(∅ NE) = LB,

where LB OI(REG, ∅ NE) denotes the family of languages generated by regu-
larly controlled (unidirectional) (OI,∅ NE)-elb grammars; cf. [Asv78].

Attempts to prove closure of RBLB f under concatenation, homomor-
phism and intersection with regular sets have not been successful. We sup-
pose that this is due to the “stronger” linear character of (f, REG)-blb gram-
mars compared to (m,REG,K)-belb grammars; Section V.6. In this respect
Examples 2.8 and 2.9 become even more interesting, as well as Proposition
3.1. So establishing the precise character and expressive power of
(m,REG)-blb grammars under the various modes defined in Chapter I, par-
ticularly that of (f, REG)-blb grammars, is an obvious but intriguing prob-
lem to solve.

134 Chapter VI

CHAPTER VII

Conclusions and Suggestions
for Further Research

1. Conclusions

In the preceding chapters we introduced and studied various types of con-
trolled bidirectional grammars. All these types of grammar have been intro-
duced in the following way. Let G be some grammar type, i.e., a collection
of structurally similar grammars. G may be equal to the family of context-
free grammars or the regular grammars to mention but a few concrete exam-
ples. Each grammar G of such a type G possesses a set P of productions.
After defining the set P

hh
of reductions corresponding to the set of productions

P, we form a pair (G,C) consisting of a grammar G of type G and a regular
language C over P ∪ P

hh
. This construct (G,C) is called a regularly controlled

bidirectional G grammar, or RCB G grammar. For the following instances
of G we defined the corresponding notion of RCB G grammar.
iii

G RCB Gii
context-free RCB (context-free)iii
linear context-free LRCBiii
left and right linear context-free LLRCB, RLRCBiii
K-extended linear basic (OI,REG,K)-belb, (IO,REG,K)-belbiii
linear basic (OI,REG)-blb, (IO,REG)-blbiiicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

In addition to the RCB (context-free) grammars we also have defined a
time-bounded variant of RCB (context-free) grammars.

Furthermore, we have introduced a collection of modes of derivation
m, each of which can be attached to an RCB G grammar. We have studied
RCB (extended) linear basic grammars with respect to one derivation mode,
the so-called RS/B/f-mode. The families of languages generated by RCB
G /m grammars have been investigated with respect to closure properties,
grammatical transformations (which yield a few normal forms), generating

136 Chapter VII

capacity, and in case of time-bounded RCB (context-free) grammars, also
with respect to parsing properties.

Our results give rise to the following concluding observations. First, if
we are able to prove a closure property of the family of RCB G languages in
a direct way, then this takes in general much more effort than in the case of
the corresponding family of uncontrolled (unidirectional) G languages.
Apart form a usually more complicated construction, due to the presence of
reductions, we heavily rely on the control language and the block or skip
mode to enforce derivations that possess the desired properties.

It is remarkable that in case of extended linear basic grammars, the
families of RBLBr, f, m(K) languages − cf. Chapter V − share so many closure
properties with the corresponding families LBm(K) (where m = OI or
m = IO); cf. [Asv77]. Together with Corollaries V.3.9 and V.3.12 this sug-
gests that (r, f, m,REG,K)-belb grammars inherit many characteristic proper-
ties of m-macro grammars. For m = OI and ∅ NE ⊆ K ⊆ OI this is confirmed
by Corollary 4.14.

Concerning the generating capacity of RCB G grammars, we observe
a considerable increase of generating power, when compared with G gram-
mars; cf. Chapter IV, Section V.4, and Chapter VI. This is not a complete
surprise, although some of the derivation modes lay severe restrictions on
the possible derivations in an RCB G grammar. Remark that the mode
RS/B/f gives no increase of generating power in case of RCB (context-free)
grammars − compared with (uncontrolled, unidirectional) context-free gram-
mars; cf. Proposition II.2.4(1) − whereas in case of (m,REG,K)-belb gram-
mars (m = OI or m = IO) it does with respect to (m,K)-elb grammars; cf.
Section V.4. We see that the RA and RO-mode of derivation do not
decrease the generating power when compared to RCB grammars provided
with free application of rules; cf. Chapter IV. Furthermore, an interesting
fact is the difference in generating capacity between (f, REG)-blb grammars
and (r, f, OI,REG, ∅ NE)-belb grammars, whereas the corresponding uni-
directional grammars have equal language generating power; cf. Chapter VI.

2. Suggestions for Further Research.

First of all, we are interested in the position of the families Lm of RCB/m
languages, with m = RS/B/g, m = RS/S/f, and m = RS/S/g in the Chomsky
hierarchy; cf. also Section 2.1 below. The question whether for one of these
modes the family Lm equals the family CSL of context-sensitive languages is
intriguing. In case the answer is negative, the question can be modified.
That is, can we define some new mode of derivation m ′ such that the family
Lm ′ of RCB/m ′ languages equals the family CSL. Remember that

Conclusions and Suggestions for Further Research 137

NSPACE(n) is an alternative characterization of CSL; cf. Section IV.6.

From Chapter IV we also recall the open problems whether there exist
characterizations for the complexity classes NP in terms of polynomial
time-bounded RCB/RO grammars, and NTIME(n) in terms of linear time-
bounded RCB/RO grammars.

Next, we suggest the investigation of (m,REG,K)-belb grammars pro-
vided with a mode which differs from RS/B/f. And the family RBLB f intro-
duced in Chapter VI has hardly been investigated. In particular, it is very
interesting to know whether this family is closed under intersection with reg-
ular languages or, at least, under intersection with Σ∗ for each alphabet Σ. If
this question can be answered in a positive way, Proposition VI.3.1 implies
the equality RBLB f = RE and consequently RBLB f inherits all (closure) pro-
perties from the family RE. The proof of Proposition VI.3.1 contains a
feature that has its own merit. Viz., a subsequence π

h
π in a control word

serves as a partial identity function on strings and so it can be used as a test;
cf. Section 2.3 below for an application.

For a number of grammar types G and modes of derivation m we have
seen that the families of RCB/m G languages equal RE. Providing these
RCB/m G grammars with a time bound usually results in a family of recur-
sive languages. In this thesis we only considered time-bounded RCB/m
(context-free) grammars in Chapter III. Of course, it is interesting to know
the effect of time bounds on the bidirectional grammatical models intro-
duced in Chapters V and VI.

Apart from these questions we discuss in the following two sections
two topics of interest in a more detailed way.

2.1. Application of Thue System Theory to RCB Grammars

RCB grammars can be considered as regularly controlled Thue systems
together with some kind of restricted application of rules. However, there is
another point of view possible from the theory of Thue systems. Therefore
we first introduce the following definition. Remember that a linear RCB
grammar (G,C) with G = (V, Σ,P,S) is in 1-normal form if V − Σ = {S} and
each control word ends with a terminal production; cf. Section II.5.

We call an RCB grammar (G,C) an RLRCB grammar if the underlying
grammar G is right-linear.

Definition 2.1.1.

g An LLRCB/ f grammar (G,C) is in strong 1-normal form if (G,C) is in
1-normal form and the productions of G are of the form S → Sa,

138 Chapter VII

S → a (a ∈Σ), and S → λ.

g An RLRCB/ f grammar (G,C) is in strong 1-normal form if (G,C) is in
1-normal form and the productions of G are of the form S → aS,
S → a (a ∈Σ), and S → λ. `

It is easy to see that the special form of the productions in an LLRCB/ f
grammar in strong 1-normal form can be obtained in a straightforward way
by applying some specific ngsm to an LLRCB/ f grammar in 1-normal form;
cf. the proof of Proposition II.5.2.

Consider an RCB/f grammar (G,C), where G = (V, Σ,P,S) is a regular
grammar, i.e., G is either a left-linear or a right-linear context-free grammar.
Assume that G is a right-linear context-free grammar. It is easy to see that
Proposition II.5.2 holds for RLRCB/f grammars as well. So we assume that
(G,C) is in strong 1-normal form, i.e., V − Σ = {S}, P contains only rules of
the form S → aS, S → a (a ∈Σ), and S → λ and for each control word c in C
we have that c ends with a terminal production.

In order to prove Proposition 2.1.3 below, we cite the following result
concerning monadic Thue systems.

Proposition 2.1.2 [Boo83]. Let T be a finite monadic Thue system on Σ.
For every regular set D ⊆ Σ ∗ the set ∆T

∗ (D) of descendants of D is regular. `

In addition to Proposition 2.1.2 we note that one can effectively con-
struct from T a finite automaton which accepts the set ∆T

∗ (D); cf. [Boo83].

Proposition 2.1.3. The family of RLRCB/B/f languages equals the family of
regular languages.

Proof. Let L 0 be an RLRCB/B/f language. Assume that L 0 equals L (G,C),
where (G,C) is an RLRCB/B/f grammar in strong 1-normal form. Consider
a control word c in C. Then each sequence that consists of a production
πa = S → aS followed by the corresponding reduction π

h
a = aS → S (a ∈Σ)

has no net effect to the generation of the ultimately generated terminal
string.

If for some control word c in C we have S ⇒ B /f
c w, where w is a termi-

nal string, then each rule in c is applicable. In particular, each reduction in c
is applicable. We remark that if at least one reduction occurs in the control
word c, then there exists a terminal a such that the sequence πaπ

h
a does occur

in c. So we write c as c = c 1πaπ
h

ac 2 . Then removing the sequence πaπ
h

a

results in a control word c 1c 2 from which it is clear that for w ∈Σ ∗ , if
S ⇒ B /f

c w, then also S ⇒ B /f
c1c2 w. Consequently, in c 1c 2 each reduction is

applicable too. Thus we can repeatedly apply this process to c 1c 2 until we
will end with a control word c ′ in P ∗ , such that S ⇒ B /f

c ′ w holds.

Conclusions and Suggestions for Further Research 139

Let c be some control word that yields no terminal string when applied
to S, i.e., the derivation is blocked. Because (G,C) is in strong 1-normal
form, this can only be caused by a non-applicable reduction of the form
aS → S (a ∈Σ) in c. When we repeatedly apply the process of removing
sequences of the form πaπ

h
a (a ∈Σ) sketched above to such a blocking con-

trol word c, sooner or later a sequence of the form πaπ
h

b has to show up,
where a and b are in Σ and a ≠ b.

Let C ′ be the control language consisting of all control words c ′
obtained from control words c from C by removing sequences πaπ

h
a (a ∈Σ),

such that in c ′ no sequences of that form occur. Then it will be clear that
L (G,C) = L (G,C ′). Next, we construct the control language C ′′ from C ′ by
removing each control word from C ′ in which a reduction occurs. Such con-
trol words (in C ′) cause blocking. Thus L (G,C ′′) = L (G,C).

The next step of the proof is to show that C ′′ is regular, from which it
follows that L (G,C) is regular [GinSpa]. The cancellation of πaπ

h
a suggests

that Thue systems may be helpful in gaining insight in what kind of control
languages the sets C ′ and C ′′ are. To this end we introduce the alphabets
Σ0 = {ã c a ∈Σ }, Σ1 = {a

h
c a ∈Σ }, Σ2 = Σ ∪ Σ 0 ∪ Σ 1 , and Σ# = Σ2 ∪ {#}. Note

that the alphabets V, Σ0 and Σ1 are mutually disjoint. Moreover, # does not
occur in V ∪ Σ 2 . We define the isomorphism i : P ∪ P

hh
f → Σ# by

i (S → λ) = #, i (S → aS) = a, a ∈Σ ,
i (S → a) = ã, a ∈Σ , i (aS → S) = a

h
, a ∈Σ .

As a consequence, for each control word c in C, i (c) ends with a sym-
bol from Σ0 ∪ {#}. Furthermore, we define the finite special Thue system T
over Σ# by

T = {aa
h

↔T λ c a ∈Σ }.

Using the arguments by which we obtained the control language C ′
from C, discussed above, we see that

C ′ = i −1(∆T
∗ (i (C)) ∩ IRR (T)).

Moreover, we can write the control language C ′′ as

C ′′ = i −1(∆T
∗ (i (C)) ∩ Σ∗ (Σ0 ∪ {#})).

Finally, we claim

L (G,C) = h (∆T
∗ (i (C)) ∩ Σ∗ (Σ0 ∪ {#})),

where h : Σ ∪ Σ 0 ∪ {#} → Σ∗ is the homomorphism defined by h (#) = λ,
h (a) = a and h (ã) = a (a ∈Σ).

140 Chapter VII

We note that IRR (T) can be characterized by Σ#
∗ − (Σ#

∗ dom (T) Σ#
∗), thus

IRR (T) is a regular set. It follows from Proposition 2.1.2 that C ′, C ′′ and
L (G,C) are regular sets. `

Remark that C ′′ can also be defined by a (rather complicated) ngsm
mapping T, i.e., C ′′ = T (C). Since C is regular, so is C ′′ .

It may be interesting to generalize this approach to LRCB/m grammars
and RCB/m grammars. This approach may also be fruitful in case of modes
different from the RS/B/f-mode. As a promising starting point we use Thue
systems in which left-most derivations are defined; cf. [NarOtt] from which
we adapt the following terminology and definitions.

Definition 2.1.4. [NarOtt]. Let T be a Thue system on Ξ. The derivation
x ⇒ Ty is called a left-most derivation if there is a rewriting rule (u,v) in T
and strings w and z in Ξ∗ such that

g x = wuz, y = wvz, and

g whenever x = w 1u 1z 1 , with u 1 ∈ dom (T), then

g wu is a proper prefix of w 1u 1 , or

g wu = w 1u 1 , and w is a proper prefix of w 1 , or

g w = w 1 and u = u 1 .

Then x ⇒ T,Ly denotes that x ⇒ Ty is a left-most derivation, and ⇒ T,L
∗

denotes the reflexive and transitive closure of ⇒ T,L . Define for x in Ξ∗ the
set of left-most descendants of x by

∆T,L
∗ (x) = {y c x ⇒ T,L

∗ y}.

For a language L 0 over Ξ the set of all left-most descendants from
words of L 0 is defined by

∆T,L
∗ (L 0) = ∪ {∆T,L

∗ (x) c x ∈ L 0}. `

Let R be a rewriting system on Ξ. Then we call x in Ξ∗ r-irreducible
(modulo R) if there is no y in Ξ∗ such that x ⇒ Ry. The set r -IRR (R) denotes
the set of r-irreducible words over Ξ by R. A Thue system T on Ξ is called
reduced if for all (u,v) ∈ T we have that u and v are in r -IRR (T −{(u,v)}),
i.e., no rewriting rule can be rewritten on either side by any other rewriting
rule of T, when considering T as a rewriting system. As a consequence two
different rewriting rules of T have left-hand sides differing from each other
[NarOtt]. If a Thue system T is reduced, then for each u which is not r-
irreducible (modulo T) − where T is considered as a rewriting system − there
exists a unique v in Ξ∗ such that u ⇒ T,Lv [NarOtt].

We can use left-most Thue derivations in the study of LRCB grammars
and RCB grammars as follows. Let (G,C) be an LRCB/RS/B/f grammar or

Conclusions and Suggestions for Further Research 141

an RCB/RS/B/f grammar, where G is the tuple (V, Σ,P,S). Define the fol-
lowing Thue system T over the alphabet V ∪ {[,],;} by

a [u ; v] ↔ T [u ; v]a, a ∈Σ , u → v ∈ P ∪ P
hh

f ,

u [u ; v] ↔ T v, u → v ∈ P ∪ P
hh

f .

For example,

baBaa [aBa ; A][bA ; B] ⇒ T,LbaBa [aBa ; A]a [bA ; B]

⇒ T,LbAa [bA ; B] ⇒ T,LbA [bA ; B]a ⇒ T,LBa.

Remark that in the second derivation step the application of
a [aBa ; A] ↔ T[aBa ; A]a is not allowed, since we have, following
Definition 2.1.4, wu = w 1u 1 = baBa, where w = b, u = aBa [aBa ; A], and
w 1 = baB and u 1 = a [aBa ; A].

Note that T is reduced. We see that

LRS /B /f (G,C) = ∆T,L
∗ ({S}h (C)) ∩ Σ∗ , where

h : P ∪ P
hh

f → (V ∪ {[,],;})∗ is the isomorphism defined by h (ρ) = [u ; v] if
ρ = u → v. Note that we actually use T as a rewriting system.

If we can determine what kind of language ∆T,L
∗ (A) is − in case A is a

K-language, where K is some language family − then we can achieve further
results by this approach in which we consider ∆T,L

∗ as an operator on
language families. In particular the effect of this operator on the family
REG is one of the first problems to be studied. Furthermore, this method
may be modified in order to investigate RCB/m grammars with m equal to
RS/B/g, RS/S/f or RS/S/g.

2.2. Fair NTS Grammars

Our source of inspiration to the subject of regularly controlled bidirectional
grammars is the concept of NTS grammar; cf. Chapter I. Furthermore, in
Chapter IV we showed that the family of RCB/RA/B/f languages equals the
family of recursively enumerable languages, even without using control
languages or terminal reductions. This observation gives rise to the intro-
duction of fair NTS grammars, formally defined as follows.

Let G = (V, Σ,P,M) be a context-free grammar with initial set M. We
define the relation ⇒ fr on V ∗ by

α ⇒ fr β if α ⇒ β by a production in Pf , where α,β ∈ V ∗ .

142 Chapter VII

Then we define the relation ⇔ fr on V ∗ by

α ⇔ fr β if α ⇒ β or β ⇒ fr α, α, β ∈ V ∗ .

For each A in V − Σ we define LRiii fr (G,A) = {w ∈ V ∗ c A ⇔ fr
∗ w}.

A fair NTS grammar is defined as a context-free grammar G =
(V, Σ,P,M) with initial set M such that for each nonterminal A in V − Σ, we
have

LRiii fr (G,A) = Lii(G,A).

Cf. Section I.2.3 for the definition of Lii(G,A).

A context-free language is a fair NTS language if it can be generated
by a fair NTS grammar G.

The concepts of NTS grammar and fair NTS grammar differ in the
sense that we can find a context-free language which is a fair NTS language,
but not an NTS language. Viz., the language

L 0 = {a nb n c n ≥ 1}∪ {a nb 2n c n ≥ 1}

is both not deterministic and not congruential, and therefore not an NTS
language; cf. [BoaSen]. The context-free grammar with initial set {A,B}

G = ({A,B,a,b},{a,b}, P, {A,B}),

where P consists of the productions A → aAb, A → ab, B → aBbb, and
B → abb, is a fair NTS grammar generating L 0 . Moreover, we easily see
that each NTS grammar is a fair NTS grammar as well.

We conclude this section with a few questions.

g Do fair NTS grammars possess a “disjoint syntactic category”-like pro-
perty?

g Does there exist a context-free language that cannot be generated by a
fair NTS grammar?

2.3. Some Possible Applications

2.3.1. Relational Databases

Some ideas on RCB G grammars − developed in this thesis − may possibly
be applied in the theory of relational databases, particularly to the problem
of query optimization*. For some elementary terminology on relational
hhhhhhhhhhhhhhhh
* I am indebted to P.M.G. Apers for a discussion on this subject.

Conclusions and Suggestions for Further Research 143

databases used in the sequel, we refer to [Ala].

Query optimization is always performed with respect to some cost
function which heavily depends on the amount of data that has to be
transmitted, especially in case of distributed databases. As an example, con-
sider the (elementary) transformation of the query πA(R |><|F S) into
πAR(R) |><|F πAS(S), where π is the projection operation, and |><| is the join
operation, R and S are relations, F is a logical condition, and A, AR, AS are
sets of attributes. The resulting query has in general a lower cost, for the
amount of data to be transmitted in order to be joined together is decreased
by first applying the projection operations to the (local) databases. However,
this transformation is only permitted in case Attr (F) ⊆ A holds. Here
Attr (. .) denotes the set of attributes which occur in the argument. The
argument F of Attr (F) may be a condition or a relation. Then the sets AR
and AS are determined by AR = A −Attr (S), and AS = A −Attr (R). Now it
may be interesting to apply the idea of testing as it occurs in RCB G gram-
mars in order to check whether or not the premise Attr (F) ⊆ A is fulfilled.
Remember that “testing” by an RCB G grammar is performed by a control
sequence π

h
π under the block mode. Another problem is whether we can

construct the sets AR and AS by means of bidirectional rewriting.

The transformation mentioned above can also be applied in reversed
order, under appropriate conditions. Viz., we may transform the query
πAR(R) |><|F πAS(S) into πA(R |><|F S), provided that A = AR ∪ AS holds.
Notice that in general this transformation increases the cost of the query.
Almost all of the elementary query transformations are possible in both
directions, under specific conditions. By rearranging a query by such
transformations one hopes to achieve a query with minimal cost. It may turn
out that, by first applying some transformations which increase the cost of
intermediate queries, transformations may become applicable which reduce
the cost of the ultimate query below the one of the initial query. This sug-
gests that a bidirectional approach on this level of query optimization may
be possible too.

2.3.2. Program Schemes

Another application of RCB G grammars may be found in the theory of pro-
gram schemes*; cf. [Eng, Gre75], to which we also refer for unexplained ter-
minology, definitions and notation. Program schemes are obtained from
(computer) programs by replacing their instructions by instruction symbols.
Thus in program scheme theory we focus our attention to the control
hhhhhhhhhhhhhhhh
* I thank P.R.J. Asveld for this suggestion.

144 Chapter VII

structure of programs. Each program scheme represents a family of pro-
grams. To obtain a program from a program scheme, instruction symbols
ought to be interpreted in some way.

As an example, consider the following program scheme Q, informally
defined by

Q : while p (x) do x : = f (x) od; x : =g (x)

where p is a partial identity, with p
h

as its complement. For instance, let
p (x) = x if and only if x > 0, let f and g be the predecessor and the successor
function, respectively. Under this interpretation with semantic domain equal
to IN, Q results in a program that computes the constant function q (x) = 1 for
each x ∈ IN. With each program scheme Q corresponds a language L (Q)
called the L-scheme (language viewed as a program scheme; cf. [Eng]) and it
equals the set of all possible computations of Q. In case of our example pro-
gram scheme, L (Q) is equal to gp

h
(fp)∗ x. It is known that if a program

scheme Q can be represented by a so-called flow-chart, then L (Q) is a regu-
lar language, and if Q is a recursive program scheme, then L (Q) is a
context-free language. In the example mentioned above, the symbol x can
be considered as a kind of end marker of the sentences in L (Q). If we strip
this symbol from the words of L (Q) its structure is still maintained. This
also holds for recursive program schemes.

If we allow more than one variable, but still restrict ourselves to unary
predicate (or test) symbols, then the corresponding L-schemes are tree
languages. For instance, consider the following recursive program scheme
U with two variables.

x : =a; y : =b; S; k (x,y)

where S is the recursive procedure defined by

S : if p (x) then x : = f (x); y : =g (y);

call S;

y : =h (y); return

else return

The tree language corresponding to U equals {k (p
h

(fp)na, h ng nb) c n ≥ 0}.

Note that the symbols a and b are leaves of the trees in L (U). We can
consider leaves of a tree as end markers of a tree. This is consistent with
strings viewed as monadic (non-branching) trees.

When we allow more general (binary, ternary, ..) predicate symbols, it
is hard or even impossible to consider a test like p (x,y,z) as a (unary) partial

Conclusions and Suggestions for Further Research 145

indentity. This was one of the reasons why in [Asv78, AsvEng79] nondeter-
minism in program schemes has been studied, rather than the modeling of
(non-unary) tests. A partial solution to this problem may be as follows. We
try to transform program schemes into equivalent (controlled) bidirectional
extended linear basic (tree) grammars, in which a test p (x 1 , . . . ,xn) is
replaced by a (grammatical) test π

h
π, where the production π is either of the

form I.2.4.5(i) or I.3.3.(i), depending on the respective grammar model.
Because p (x 1 , . . . ,xn) is an uninterpreted test, the precise definition of the
production π depends on the interpretation which has to be applied to the
corresponding program scheme. It cannot be expected that a grammatical
test π

h
πcan model each possible interpretation of a test p (x 1 , . . . ,xn). There-

fore, this approach can only provide a partial solution to this problem.

146 Chapter VII

APPENDIX A

Nonterminal Separating Macro Grammars

1. Introduction

In this Appendix we generalize the NTS (or nonterminal separating) pro-
perty − originally defined for context-free grammars [Boa]; cf. Section I.2.3
− to macro grammars (Section I.2.4). Then we prove a few characterization
results for NTS macro grammars that are analogues of similar results origi-
nally established for NTS context-free grammars. We conclude this subject
with a few conjectures an an open problem.

In Section 2 we provide the necessary notions, elementary results and
terminology on macro grammars and on context-free grammars that satisfy
the NTS condition. Section 3 is devoted to the definition of NTS macro
grammar and some of their properties as far as they extend the correspond-
ing results on NTS context-free grammars. We restrict our attention to char-
acterization results of the NTS property for m-macro grammars where m is a
mode of derivation, i.e., m equals either “outside-in” (or OI), “inside-out” (or
IO) or “unrestricted” (or UNR). Finally, Section 4 contains some conclud-
ing remarks, open problem, and conjectures.

2. Preliminaries

2.1. UNR-Macro Grammars

Apart from the modes outside-in (OI) and inside-out (IO) (Section I.2.4) we
distinguish another mode of derivation for macro grammars; cf. [Fis68a].

In the unrestricted mode (UNR) an occurrence of a nonterminal
together with its arguments is expanded according to a production by replac-
ing the nonterminal and its arguments by the right-hand side of that produc-
tion in which the arguments have been substituted for the corresponding
variables.

Definition 2.1.1. Let G = (Φ,Σ,X,P,S) be a macro grammar and let σ and τ
be terms over Σ ∪ Φ . Then we write σ ⇒ UNRτ if

148 Appendix A

g there is a nonterminal A from Φn and terms ξ1 , . . . ,ξn over Σ ∪ Φ such
that A (ξ1 , . . . ,ξn) is a subterm of σ ;

g A (x 1 , . . . ,xn) → t is a production from P ;

g τ is obtained from σ by replacing the designated term A (ξ1 , . . . ,ξn) by
t ′. The term t ′ is the result of substituting the terms ξ1 , . . . ,ξn for
x 1 , . . . ,xn in t, respectively. The term t ′ is denoted by
t [ξ1/x 1 , . . . ,ξn/xn].

The relation ⇒ UNR on T (Σ ∪ Φ) represents the UNR-mode of deriva-
tion, which can be considered as expanding macros without any ordering, or
without regarding the depth of nesting of the call. `

Let ⇐ m be the converse of ⇒ m , i.e., for all σ,τ ∈ T (Σ ∪ Φ), σ ⇐ mτ
holds if and only if τ ⇒ mσ. And let ⇔m be the union of ⇒ m and ⇐ m . The
reflexive and transitive closures of ⇒ m , ⇐ m and ⇔m are denoted by ⇒ m

∗ ,
⇐ m

∗ and ⇔m
∗ , respectively. In case σ ⇐ m

∗ τ [σ ⇐ mτ] we say that σ reduces
[directly] to τ.

It is easy to see that ⇔m
∗ is a congruence relation with respect to con-

catenation. Obviously, it is an equivalence relation and the congruency fol-
lows from the observation

σ ⇔m
∗ τ and α ⇔ m

∗ β imply σ α ⇔ m
∗ τ β.

For m = UNR this is trivial and in the case of m = OI or m = IO it fol-
lows from the fact that concatenation does not cause any additional nesting.
In the sequel an m-macro grammar will have a finite set M (M ⊆ Φ 0) of ini-
tial symbols of rank 0 instead of a single initial symbol; cf. the definition of
NTS context-free grammar in Section I.2.3.

Analogously to m = OI and m = IO we define the language generated
by an UNR-macro grammar as follows.

Definition 2.1.2. The language generated by a UNR-macro grammar G =
(Φ,Σ,X,P,M) with an initial set M (M ⊆ Φ 0) is defined by

L UNR(G) = {w ∈Σ ∗ c ∃ S ∈ M . ⇒ UNR
∗ w}.

By UNR we denote the family of languages generated by UNR-macro gram-
mars. `

In [Fis68a] Fischer proved the equality OI = UNR, and so the families
IO and UNR are incomparable.

In the sequel many of our results are restricted to macro grammars
which possess the property that every term derived by the macro grammar
has a derivation that ultimately yields a string over the terminal alphabet.
These macro grammars are called admissible macro grammars [Fis68a].

NTS Macro Grammars 149

This property is defined as follows.

Definition 2.1.3. An m-macro grammar G = (Φ,Σ,X,P,M) with initial set M
(M ⊆ Φ 0) is admissible if

g either Φ = Z and P = ∅ ,

g or

(i) for each A ∈Φ , there exists a sentential form of G in which A
occurs,

(ii) for each A ∈Φ n (n ≥ 0) and each σ1 , ...,σ n ∈Σ ∗ there exists a
string w over Σ such that A (σ1 , ...,σn) ⇒ m

∗ w. `

In [Fis68a] it is shown that for each m-macro grammar there exists an
equivalent admissible m-macro grammar.

Example 2.1.4. Let L 0 ⊆ {0,1}∗ be the language consisting of those words
in which the number of 1’s is equal to 2n for some n ≥ 0. L 0 is generated by
the OI-macro grammar G = (Φ,Σ,X,P,M) with with initial set M = {S,A},
Φ = Φ0 ∪ Φ 1 , Φ0 = {S,A}, Φ1 = {B}, X = {x}, Σ = {0,1} and P consists of
the rules

S → B (A), A → 0A,
B (x) → B (xx), A → A 0,
B (x) → x, A → 1.

In [Fis68a] it has been shown that L 0 cannot be generated by any IO-macro
grammar. Notice that G is admissible. `

2.2. The NTS Property for Context-Free Grammars

NTS or nonterminal separating grammars have been introduced by Boasson
[Boa]; cf. Section I.2.3. Remember that a context-free grammar possesses
the NTS property if its set of sentential forms is invariant when we apply the
productions in both directions, i.e., when we use apart from its productions
the corresponding reductions too. We recall the following principal result
on NTS grammars.

Proposition 2.2.1. [Boa, BoaSén]. Let G = (V, Σ,P,M) be an NTS grammar.
Then for all A and B in V − Σ, we have either Lii(G,A) ∩ Lii(G,B) = ∅ or
Lii(G,A) = Lii(G,B). `

This property motivates the name of the concept defined in Section
I.2.3. However, the converse of Proposition 2.2.1 does not hold; e.g.,
{a nb n c n ≥ 1}∪ {a nb 2n c n ≥ 1} is not an NTS language [BoaSén], but it is easy
to show that this language can be generated by a grammar that possesses the
Disjoint Syntactic Category property; cf. Section I.2.3.

150 Appendix A

On the other hand NTS grammars can be characterized in the following
way.

Theorem 2.2.2. [BoaSén, Sén85]. Let G = (V, Σ,P,M) be a context-free
grammar with initial set M. G has the NTS property if and only if for all
A,B ∈ V − Σ and for all α,β,u ∈ V ∗ the following implication holds.

If A ⇒ ∗ α u β and B ⇒ ∗ u, then A ⇒ ∗ α B β . `

3. The NTS Property for Macro Grammars

3.1. Definitions

We use the following notational conventions. Usually, (σ1 , . . . ,σn) is abbre-
viated to (σ

→
(n)). The subscript (n) is necessary to distinguish for example

A (x→(n)) and B (x→(k)). Only if no confusion is possible we write x→. For
A ∈Φ , A (x→) is the left-hand side of a production; so A (x→) = A if A ∈Φ 0 .

Definition 3.1.1. Let G = (Φ,Σ,X,P,M) be an m-macro grammar with initial
set M. Then the language generated by G is

Lm(G,M) = {w ∈Σ ∗ c ∃ S ∈ M . S ⇒ m
∗ w},

and for each t ∈ T (Σ ∪ X ∪ Φ),

Lm(G,t) = {w ∈ (Σ ∪ X)∗ c t ⇒ m
∗ w},

Lii m(G,t) = {ω ∈ T (Σ ∪ X ∪ Φ) c t ⇒ m
∗ ω},

LRiii m(G,t) = {ω ∈ T (Σ ∪ X ∪ Φ) c t ⇔m
∗ ω}. `

We are now ready to define the nonterminal separating property for m-
macro grammars.

Definition 3.1.2. An m-macro grammar G = (Φ,Σ,X,P,M) with initial set M
has the NTS property or G is an NTS m-macro grammar, if for all n ≥ 0, for
all A ∈Φ n , and for all {x 1 , . . . ,xn}⊆ X,

LRiii m(G,A (x→)) = Lii m(G,A (x→)). `

Here we consider the variables x 1 , . . . ,xn as members of a terminal alphabet
Σ ′ with Σ ⊆ Σ ′ , according to Fischer [Fis68a]; cf. also [EngSchVanL].

Proposition 3.1.3. Let G = (Φ,Σ,X,P,M) be an NTS m-macro grammar
with initial set M. Then for all n,k ≥ 0, A ∈Φ n , B ∈Φ k, {x 1 , . . . ,xn}⊆ X,
{x 1 , . . . ,xk}⊆ X, either

Lii m(G,A (x→(n))) ∩ Lii m(G,B (x→(k))) = ∅

or

NTS Macro Grammars 151

Lii m(G,A (x→(n))) = Lii m(G,B (x→(k))).

Proof. Let ω be an element of Lii m(G,A (x→(n))) ∩ Lii m(G,B (x→(k))). Then
A (x→(n)) ⇒ m

∗ ω and B (x→(k)) ⇒ m
∗ ω. This implies that we have A (x→(n))

⇔m
∗ B (x→(k)). With the NTS property of G we obtain A (x→(n)) ⇒ m

∗ B (x→(k))
and B (x→(k)) ⇒ m

∗ A (x→(n)). From this we can conclude that the equality
Lii m(G,A (x→(n))) = Lii m(G,B (x→(k))) holds. `

We see that NTS m-macro grammars also share a kind of “disjunct
syntactic categories” property (or “nonterminal separating property”) as
context-free grammars; cf. Proposition 2.2.1.

Example 3.1.4. Consider the linear basic macro grammar G = (Φ,Σ,X,P,M)
with Φ = Φ0 ∪ Φ 3 , Φ0 = {S} = M, Φ3 = {A}, X = {x,y,z}, Σ = {a,b,c, [,],#},
and P consists of the productions

S → A (λ,λ,λ)
A (x,y,z) → A (ax,by,cz)
A (x,y,z) → [x#y#z]

The language generated by G is L (G,M) = {[a n#b n#c n] c n ≥ 0}, and
Lii(G,S) = {S}∪ {A (a n ,b n ,c n) c n ≥ 0}∪ L (G). Because A (a n ,b n ,c n), (n ≥1)
only reduces to terms A (a k,b k,c k) with 0 ≤ k < n, and [a n#b n#c n] only
reduces to A (a n ,b n ,c n), we have Lii(G,S) = LRiii(G,S). A similar argument
for A (x,y,z) yields Lii(G,A (x,y,z)) = LRiii(G,A (x,y,z)). Thus G is an NTS
macro grammar. `

We see also that in case Φ = Φ0 and, consequently, G is a context-free
grammar with initial set M, Definition 3.1.2 corresponds to the definition of
the NTS property for context-free grammars; cf. Section I.2.3.

3.2. Properties of NTS Macro Grammars

This section is devoted to some results which generalize Theorem 2.2.2 to
m-macro grammars. To facilitate formulation and proofs we use the follow-
ing notation.

Definition 3.2.1. Let G = (Φ,Σ,X,P,M) be an m-macro grammar with initial
set M. Then G has property Π (m) if for all nonterminals A ∈Φ n , B ∈Φ k,
and terms u, α u β in T (Σ ∪ X ∪ Φ), with {x 1 , . . . ,xn}⊆ X and σ

→
(k) ∈

T k(Σ ∪ X ∪ Φ) the following implication holds.

If A (x→(n)) ⇒ m
∗ α u β and B (σ

→
(k)) ⇒ m

∗ u, then A (x→(n)) ⇒ m
∗ α B (σ

→
(k)) β. `

First, we note that property Π (m) is a natural extension of the property
mentioned in Theorem 2.2.2 in the sense that if Φ = Φ0 , i.e., G is context-
free, the two properties coincide. To establish Theorem 3.2.3 we need the

152 Appendix A

following lemma.

Lemma 3.2.2. Let G be an admissible m-macro grammar. Let ω, ψ be
terms from T (Σ ∪ X ∪ Φ). Then ω ⇒ UNRψ implies ω ⇔OI

∗ ψ as well as
ω ⇔IO

∗ ψ. As a consequence we have ω ⇒ UNR
∗ ψ implies ω ⇔m

∗ ψ for both
m = OI and m = IO.

Proof. Let ω be a term α A (σ
→

) β with A ∈Φ n (n ≥ 0), σ
→

∈ T n(Σ ∪ X ∪ Φ).
Furthermore, let ω ⇒ UNRψ hold, using the production A (x→) → δ (x→),
where δ (x→) is in T (Σ ∪ X ∪ Φ), i.e., ψ = α δ(σ

→
) β.

Let m = OI. First we have α A (σ
→

) β ⇒ OI
∗ α ′A (σ

→
) β ′. This is the

string obtained from ω such that every term A (σ
→

) is on top level. Next we
derive α ′A (σ

→
) β ′⇒ OI

∗ α ′δ (σ
→

) β ′. Now all new occurrences of δ (σ
→

) are
on top level; so we can write

α ′δ (σ
→

) β ′⇐ OI
∗ α δ (σ

→
) β.

Let m = IO. This is similarly to the case m = OI. We use the deriva-
tions A (σ

→
) ⇒ IO

∗ A (t→), A (t→) ⇒ IO
∗ δ (t→) and δ (t→) ⇐ IO

∗ δ (σ
→

), where t→

is in (Σ∗)n . `

Theorem 3.2.3. Let G be an admissible m-macro grammar. Then G is an
NTS m-macro grammar if and only if G has property Π (m).

Proof. First we prove the if-part. We have to show for G satisfying Π (m)
that for each A ∈Φ n (n ≥ 0), Lii m(G,A(x→)) = LRiii m(G,A (x→)). The inclusion
from left to right (⊆) is trivial. To establish the converse inclusion (⊇), we
ought to prove that A (x→) ⇔m

∗ t implies A (x→) ⇒ m
∗ t. This is done by induc-

tion on the length of ⇔m
∗ .

Basic step (p = 0). A (x→) ⇔m
0 t implies A (x→) ⇒ m

∗ t trivially.

Induction step. As induction hypothesis we take A (x→) ⇔m
p t implies

A (x→) ⇒ m
∗ t. Consider A (x→) ⇔m

p +1t. We distinguish two cases.

Case 1. A (x→) ⇔m
p t ′⇒ mt. Obvious.

Case 2. A (x→(n)) ⇔m
p t ′⇐ mt. Suppose that t ⇒ mt ′ by the derivation

step B (σ
→

(k)) ⇒ mu. Furthermore, let t = α B (σ
→

(k)) β, t ′ = α u β with terms
α u β, u, B (σ

→
(k)) in T (Σ ∪ X ∪ Φ). By the induction hypothesis we have

A (x→(n)) ⇒ m
∗ t ′. Applying Π (m) to A (x→(n)) ⇒ m

∗ α u β and B (σ
→

(k)) ⇒ mu we
obtain A (x→(n)) ⇒ m

∗ α B (σ
→

(k)) β = t. This completes the induction and the
proof of the second inclusion.

To prove the only if-part we need the following. Let G be an NTS m-
macro grammar. Then for all terms u and α u β in T (Σ ∪ X ∪ Φ), nontermi-
nals B in Φk, and vectors of terms σ

→
(k) in T k(Σ ∪ X ∪ Φ),

B (σ
→

(k)) ⇒ m
∗ u implies α B (σ

→
(k)) β ⇔m

∗ α u β.

NTS Macro Grammars 153

It is easy to see that for m = IO and m = UNR this holds even without
G being NTS and with ⇒ m

∗ instead of ⇔m
∗ . For m = OI we obtain this

implication as follows. If B (σ
→

(k)) ⇒ OI
∗ u holds, then B (σ

→
(k)) ⇒ UNR

∗ u holds
trivially. Thus we have α B (σ

→
(k)) β ⇒ UNR

∗ α uβ and by Lemma 3.2.2 we
obtain α B (σ

→
(k)) β ⇔OI

∗ α u β. Note that because G is NTS, we now can even
prove the stronger implication

B (σ
→

(k)) ⇒ OI
∗ u implies α B (σ

→
(k)) β ⇒ OI

∗ α u β.

Now, if we have A (x→(n)) ⇒ m
∗ α u β and B (σ

→
(k)) ⇒ m

∗ u, then we obtain
A (x→(n)) ⇔m

∗ α B (σ
→

(k)) β. Since G is NTS with respect to m, we conclude
that A (x→(n)) ⇒ m

∗ α B (σ
→

(k)) β. `

3.3. The Pre-NTS Property for Macro Grammars

Closely connected to the NTS property for context-free grammars is the
pre-NTS property [Boa, BoaSén, Sén81]; informally, the pre-NTS property
equals the NTS property formulated for terminal strings only. It is still an
open problem whether these two properties are equivalent for context-free
grammars [Boa, BoaSén, Sén81].

In this section we introduce and study the pre-NTS property for m-
macro grammars.

Definition 3.3.1. Let G = (Φ,Σ,X,P,M) be an m-macro grammar with with
initial set M (M ⊆ Φ 0). Then G is pre-NTS or G has the pre-NTS property if
for all A ∈Φ n (n ≥ 0), and {x 1 , . . . ,xn}⊆ X,

Lm(G,A (x→)) = LRm(G,A (x→))

where LRm(G,A (x→)) = LRiii m(G,A (x→)) ∩ (Σ ∪ X)∗ . `

Definition 3.3.2. Let G = (Φ,Σ,X,P,M) be an m-macro grammar with initial
set M (M ⊆ Φ 0). Then G has property π(m) if for all A ∈Φ n (n ≥ 0), B ∈Φ k,
u ′, α u β ∈ (Σ ∪ X)∗ , {x 1 , . . . ,xn}⊆ X, and τ

→
∈ T k(Σ ∪ X ∪ Φ), the following

implication holds.

If A (x→) ⇒ m
∗ α u β, B (τ

→
) ⇒ m

∗ u, and B (τ
→

) ⇒ m
∗ u ′,

then A (x→) ⇒ m
∗ α u ′β. `

We want to prove the equivalence of Definition 3.3.1 and Definition
3.3.2. It turns out to be the easiest way to do this by introducing a second
property ρ (m) which is equivalent to both of them.

Definition 3.3.3. An m-macro grammar G = (Φ,Σ,X,P,M), has property
ρ (m) if for all nonterminals A in Φn (n ≥ 0), terms t in T (Σ ∪ X ∪ Φ), and

154 Appendix A

strings u and u ′ in (Σ ∪ X)∗ the following implication holds.

If A (x→) ⇒ m
∗ u, t ⇒ m

∗ u, and t ⇒ m
∗ u ′, then A (x→) ⇒ m

∗ u ′ ,

where {x 1 , . . . ,xn}⊆ X. `

Theorem 3.3.4. Let G be an admissible m-macro grammar. Then the fol-
lowing statements are equivalent.

(1) G is pre-NTS with respect to m,
(2) G has property π(m),
(3) G has property ρ (m).

Proof. (1) ⇒ (2). Suppose there exist derivations B (τ
→

) ⇒ m
∗ u, B (τ

→
) ⇒ m

∗ u ′
and A (x→) ⇒ m

∗ α u β for u ′, α u β ∈ (Σ ∪ X)∗ . Because α u β is a word over
Σ ∪ X there is no distinction between the three modes of reduction from
α u β. Therefore we have A (x→) ⇒ m

∗ α u β ⇐ m
∗ α B (τ

→
) β. Now in α B (τ

→
) β,

B (τ
→

) is on top level, so we continue with α B (τ
→

) β ⇒ m
∗ α u ′β which is a

word over Σ ∪ X. Thus A (x→) ⇔m
∗ α u ′β and, as G is pre-NTS with respect

to m, A (x→) ⇒ m
∗ α u ′β. Hence G has property π(m).

(2) ⇒ (3). Let A (x→) ⇒ m
∗ u, t ⇒ m

∗ u and t ⇒ m
∗ u ′. Obviously, it is possible to

write t as a unique sequence of terms, viz. t = t 1 . . . tk, such that no ti is a
concatenation of two or more terms. It is clear that in expanding some ti ,
none of the other terms t j is affected. So we can write u as u 1 . . . uk and u ′
as u 1 ′ . . . uk ′ with ti ⇒ m

∗ ui and ti ⇒ m
∗ ui ′, respectively. Now we have for some

i (1≤ i ≤ k) that A (x→) ⇒ m
∗ u 1 . . . ui . . . uk, ti ⇒ m

∗ ui , ti ⇒ m
∗ ui ′, and with π(m)

we obtain A (x→) ⇒ m
∗ u 1 . . . ui ′ . . . uk. We apply this argument to each ui con-

secutively, which finally yields A (x→) ⇒ m
∗ u 1 ′ . . . uk ′ = u ′, i.e., we obtain the

desired result.

(3) ⇒ (1). We have to show LRm(G,A (x→)) ⊆ Lm(G,A (x→)), which we do
by induction on the number of reduction steps in A (x→) ⇔m

∗ w, with w in
(Σ ∪ X)∗ . We denote this by ⇔m

∗ n which means that α ⇔ m
∗ nβ holds if and

only if α ⇔ m
∗ β in which n reduction steps have been used.

Basic step (n = 0). A (x→) ⇔m
∗ 0w directly implies A (x→) ⇒ m

∗ w.

Induction step. As induction hypothesis we have A (x→) ⇔m
∗ nw implies

A (x→) ⇒ m
∗ w. Let A (x→) ⇔m

∗ n +1w. To show that A (x→) ⇒ m
∗ w we look at the

last reduction step in A (x→) ⇔m
∗ n +1w. We write this as

A (x→) ⇔m
∗ nt ⇐ mt ′⇒ m

∗ w.

Because G is admissible there is a word u ∈ (Σ ∪ X)∗ with t ⇒ m
∗ u.

Applying the induction hypothesis we obtain A (x→) ⇒ m
∗ u, with t ′⇒ m

∗ u, and
t ′⇒ m

∗ w together with property ρ (m) this yields A (x→) ⇒ m
∗ w. `

NTS Macro Grammars 155

4. Concluding Remarks

In the previous section we generalized some characterizations of NTS and
pre-NTS context-free grammars to corresponding statements for (pre-) NTS
m-macro grammars. On the other hand one wants results that are specific for
NTS macro grammars in the sense that there is no analogue for context-free
grammars. Or, in other words, results that are due to the fact that we deal
with macro grammars rather than context-free grammars.

A first example of such a result shows that NTS “reduced macro gram-
mars”, i.e., admissible NTS macro grammars with no initial symbols in the
right-hand sides of their productions, are argument-preserving.

Recall that an m-macro grammar G = (Φ,Σ,X,P,M) with initial set M
is called argument-preserving if each production in P is argument preserv-
ing. And a production A (x→) → t from P is argument-preserving if each
variable xi (1 ≤ i ≤ n) occurs at least once in the term t; cf. Definition V.2.4.

Proposition 4.1. Let G = (Φ,Σ,X,P,M) be an admissible NTS m-macro
grammar, with no elements of M occurring in the right-hand side of any pro-
duction. Then G is argument-preserving.

Proof. Suppose we have a production A (x 1 , . . . ,xn) → t where A ∉Φ 0 ,
which is not argument-preserving, say xi does not occur in t, 1 ≤ i ≤ n. Sup-
pose further that we have obtained a word ω in T (Σ ∪ Φ) derived from
some S in M on which this rule is applicable. Writing the term ω as
α A (σ1 , . . . ,σn) β we derive

α t [σ1/x 1 , . . . ,σi −1/xi −1 ,σi +1/xi +1 , . . . ,σn/xn] β,

where t [. . .] means that each occurrence of xi has to be substituted by σi

(1 ≤ i ≤ n). This last term however is, for instance, for some B in M reducible
to α A (σ1 , . . . ,σi −1 ,B, σi +1 , . . . ,σn) β, which we write as ω(B). So we
have S ⇔m

∗ ω(B). Since G is NTS, we obtain S ⇒ m
∗ ω(B). But no production

rule can ever introduce a B from M in a sentential form. Thus we cannot
derive such a term ω(B) from S. `

The following statement is much more interesting. However, we are
unable to prove it and therefore we formulate it as

Conjecture 4.2. Each admissible NTS IO-macro grammar generates a
basic macro language. `

The first easy step in proving this conjecture, consists of the following
observation.

Lemma 4.3. Let G = (Φ,Σ,X,P,M) be an admissible NTS IO-macro gram-
mar. Then for all A ∈Φ ,

LiiUNR(G,A (x→)) = Lii IO(G,A (x→)).

156 Appendix A

Proof. We only have to show LiiUNR(G,A (x→)) ⊆ Lii IO(G,A (x→)), since the
converse inclusion is trivial. Let t ∈ T (Σ ∪ X ∪ Φ) and A (x→) ⇒ UNR

∗ t. Then
we have by Lemma 3.2.2 A (x→) ⇔ IO

∗ t, and using the fact that G is NTS with
respect to IO, we obtain A (x→) ⇒ IO

∗ t. `

In order to complete the proof of Conjecture 4.2 it is sufficient to estab-
lish

Conjecture 4.4. Let G = (Φ,Σ,X,P,M) be an NTS IO-macro grammar that
contains a nested production

A (x→) → B (t 1 , . . . ,tk) (∗)

such that at least on term ti (ti ∈ T (Φ ∪ Σ ∪ X), 1 ≤ i ≤ n) contains a nonter-
minal symbol. If the term t (x→) is in L UNR(G,B (x→)), then in the derivation
A (x→) ⇒ IO

∗ t (t 1/x 1 , . . . ,tk/xk) the production (∗) has not been applied. `

Remember that macro grammars have been introduced in [Fis68a,
Fis68b] as a way to describe context-dependent aspects of the syntax of pro-
gramming languages. They are an extension of context-free grammars gen-
erating, for each mode of derivation, a family of languages in between the
families of context-free languages and of context-sensitive languages.
Though OI-macro languages are able to describe correctly the declaration
and use of program variables, they have the disadvantage of possessing an
NP-complete membership problem. For IO-macro languages the member-
ship problem is reducible in logarithmic space to the membership problem
for context-free languages [Asv81]; so it can be solved deterministically in
polynomial time or in space log2n. But IO-macro grammars seem to be less
suitable for modeling the declaration of program variables.

In Section I.2.3 we already mentioned one of the main results in
[BoaSén]; each NTS language can be accepted by a deterministic pushdown
automaton. So for context-free grammars the NTS property is a proper res-
triction with respect to language generating power.

Now the obvious question is whether this holds for macro grammars
too. More precisely, is the membership problem for NTS OI-macro or NTS
UNR-macro languages still NP-complete? In case the answer to this ques-
tion is negative, what is the complexity of membership problem for these
NTS OI-macro languages? This latter question is also interesting in case of
NTS IO-macro languages.

References

[Abr] A. Abraham: Some questions on phrase structure grammars I, Comput.
Linguist. 4 (1965) 61-70.

[Aho] A.V. Aho: Indexed grammars − An extension of context-free gram-
mars, J. Assoc. Comput. Mach. 15 (1968) 647-671.

[AhoUll] A.V. Aho & J.D. Ullman: The Theory of Parsing, Translations and
Compiling − Volume I: Parsing (1972), Prentice-Hall, Englewood
Cliffs, NJ.

[Ala] S. Alagić: Relational Database Technology (1986), Springer-Verlag,
Berlin - Heidelberg - New York.

[Asv77] P.R.J. Asveld: Controlled iteration grammars and full hyper-AFL’s,
Inform. and Contr. 34 (1977) 248-269.

[Asv78] P.R.J. Asveld: Iterated context-independent rewriting − An alge-
braic approach to families of languages (1978), Doctoral Dissertation,
University of Twente, Enschede, The Netherlands.

[Asv80] P.R.J. Asveld: Space-bounded complexity classes and iterated
deterministic substitution, Inform. and Contr. 44 (1980) 282-299.

[Asv81] P.R.J. Asveld: Time and space complexity of inside-out macro
languages, Internat. J. Comput. Math. 10 (1981) 3-14.

[Asv86] P.R.J. Asveld: Complete symmetry in D2L systems and cellular
automata, Internat. J. Comput. Math. 19 (1986) 211-223.

[AsvEng77] P.R.J. Asveld & J. Engelfriet: Iterated deterministic substitu-
tion, Acta Inform. 8 (1977) 285-302.

[AsvEng79] P.R.J. Asveld & J. Engelfriet: Extended linear macro grammars,
iteration grammars, and register programs, Acta Inform. 11 (1979)
259-285.

[AsvHog] P.R.J. Asveld & J.A. Hogendorp: On the generating power of reg-
ularly controlled bidirectional grammars, Memorandum INF-89-68
(1989), Department of Computer Science, University of Twente,
Enschede, The Netherlands.

[AsvVanL] P.R.J. Asveld & J. van Leeuwen: Infinite chains of hyper-AFL’s,
TW-memorandum No. 99 (1975), Twente University of Technology,
Enschede, The Netherlands.

[AutBoaSén84] J.M. Autebert, L. Boasson & G. Sénizergues: Langages de
parenthèses, langages N.T.S. et homomorphismes inverses, RAIRO
Inform. théor./Theor. Inform. 18 (1984) 327-344.

158 References

[AutBoaSén87] J.M. Autebert, L. Boasson & G. Sénizergues: Groups and
NTS languages, J. Comput. System Sci. 35 (1987) 243-267.

[BakBoo] B.S. Baker & R.V. Book: Reversal-bounded multipushdown
machines, J. Comput. System Sci. 8 (1974) 315-332.

[Ber] J. Berstel: Congruences plus que parfaites et langages algébriques,
Séminaire d’Informatique Théorique, Institut de Programmation
(1976-77) 123-147.

[Boa] L. Boasson: Dérivations et réductions dans les grammaires algé-
briques, in: J.W. de Bakker & J. van Leeuwen (Eds.): 7th Interna-
tional Colloquium on Automata, Languages and Programming, Lect.
Notes Comp. Sci. 85 (1980) 109-118, Springer-Verlag, Berlin -
Heidelberg - New York.

[BoaSén] L. Boasson & G. Sénizergues: NTS languages are deterministic
and congruential, J. Comput. System Sci. 31 (1985) 332-342.

[Boo71] R.V. Book: Time-bounded grammars and their languages, J. Com-
put. System Sci. 5 (1971) 397-429.

[Boo78] R.V. Book: Simple representation of certain classes of languages, J.
Assoc. Comput. Mach. 25 (1978) 23-31.

[Boo81] R.V. Book: NTS grammars and Church-Rosser systems, Inform.
Process. Lett. 13 (1981) 73-76.

[Boo82] R.V. Book: Confluent and other type of Thue systems, J. Assoc.
Comput. Mach. 29 (1982) 171-182.

[Boo83] R.V. Book: Decidable sentences of Church-Rosser congruences,
Theor. Comput. Sci. 24 (1983) 301-312.

[Boo87] R.V. Book: Thue Systems as rewriting systems, J. Symb. Comp. 3
(1987) 39-68.

[BooJanWra] R.V. Book, M. Jantzen & C. Wrathall: Monadic Thue systems,
Theor. Comput. Sci. 19 (1982) 231-251.

[Cho56] N. Chomsky: Three models for the description of languages, IRE
Transactions on Information Theory 2 (1956) 113-124.

[Cho59] N. Chomsky: On certain formal properties of grammars, Inform.
and Contr. 2 (1959) 137-167.

[Chot] L. Chottin: Strict deterministic languages and controlled rewriting
systems, in: H.A. Maurer (Ed.): 6th International Colloquium on Auto-
mata, Languages and Programming, Lect. Notes in Comp. Sci. 71
(1979) 104-117, Springer-Verlag, Berlin - Heidelberg - New York.

References 159

[Cul] K. Culik II: A purely homomorphic characterization of recursively
enumerable sets, J. Assoc. Comput. Mach. 26 (1979) 345-350.

[Dow] P.J. Downey: Formal languages and recursion schemes, Ph.D. Thesis
TR 16-74 (1974), Center for Research in Computing Technology, Har-
vard University, Cambridge, Mass.

[DusPar] J. Duske & R. Parchmann: Linear indexed languages, Theor. Com-
put. Sci. 32 (1984) 47-60.

[Ear] J. Earley: An efficient context-free parsing algorithm, Comm. Assoc.
Comput. Mach. 13 (1970) 94-102.

[EhrRoz] A. Ehrenfeucht & G. Rozenberg: On context-free languages not in
EDTOL, RAIRO Inform. théor./Theor. Inform. 11 (1977) 273-291.

[Eng] J. Engelfriet: Simple Program Schemes and Formal Languages, Lect.
Notes Comp. Sci. 20 (1974), Springer-Verlag, Berlin - Heidelberg -
New York.

[EngSch] J. Engelfriet, E.M. Schmidt: IO and OI (I), J. Comput. System Sci.
15 (1977) 328-353.

[EngSchVanL] J. Engelfriet, E.M. Schmidt & J. van Leeuwen: Stack
machines and classes of non-nested macro languages, J. Assoc. Com-
put. Mach. 27 (1980) 96-117.

[EngRoz] J. Engelfriet & G. Rozenberg: Fixed point languages, equality
languages, and representation of recursively enumerable languages, J.
Assoc. Comput. Mach. 27 (1980) 499-518.

[Fis68a] M.J. Fischer: Grammars with macro-like productions, Ph.D. Thesis
(1968), Harvard University, Cambridge, Mass.

[Fis68b] M.J. Fischer: Grammars with macro-like productions, Proc. 9th
Ann. IEEE Symp. on Switching and Automata Theory (1968) 131-142.

[Fri] I. Friś: Grammars with partial ordering of the rules, Inform. and Contr.
12 (1968) 415-425.

[Fro] Ch. Frougny: Simple deterministic NTS languages, Inform. Process.
Lett. 12 (1981) 174-178.

[FülVág] Z. Fülöp & S. Vágvölgyi: Congruential tree languages are the
same as recognizable tree languages − A proof for a theorem of
D. Kozen, Bull. Europ. Assoc. for Theor. Comp. Sci. No. 39 (1989)
175-185.

[Gin] S. Ginsburg: Algebraic and Automata-Theoretic Properties of Formal
Languages (1975), North-Holland, Amsterdam.

160 References

[GinRoz] S. Ginsburg & G. Rozenberg: T0L schemes and control sets,
Inform. and Contr. 27 (1975) 109-125.

[GinSpa] S. Ginsburg & E.H. Spanier: Control sets on grammars, Math. Sys-
tems Theory 2 (1968) 159-177.

[Gla] A.V. Gladkii: On the complexity of derivations in phrase-structure
grammar. Algebri i Logika Sem. 3 nr.5-6 (1964) 29-44 (in Russian).

[Gre75] S.A. Greibach: Theory of Program Structures: Schemes, Semantics,
Verification, Lect. Notes Comp. Sci. 36 (1975), Springer-Verlag, Ber-
lin - Heidelberg - New York.

[Gre77] S.A. Greibach: Control sets on context-free grammar forms, J. Com-
put. System Sci. 15 (1977) 35-98.

[Har] M.A. Harrison: Introduction to Formal Language Theory (1978),
Addison-Wesley, Reading, Mass.

[Hog87] J.A. Hogendorp: Nonterminal separating macro grammars, in:
P.R.J. Asveld & A. Nijholt (Eds.): Essays on Concepts, Formalisms,
and Tools (1987) 77-87, C.W.I. Tract no. 42, Centre for Mathematics
and Computer Science, Amsterdam.

[Hog88a] J.A. Hogendorp: Controlled rewriting using productions and
reductions, Proceedings of Computing Science in the Netherlands −
1988 (1988) 479-494.

[Hog88b] J.A. Hogendorp: Time-bounded controlled bidirectional gram-
mars, Memorandum INF-88-60 (1988), Department of Computer Sci-
ence, University of Twente, Enschede, The Netherlands. To appear in
Internat. J. Comput. Math..

[Hog89a] J.A. Hogendorp: Controlled bidirectional grammars, Internat. J.
Comput. Math. 27 (1989) 159-180.

[Hog89b] J.A. Hogendorp: Regularly controlled bidirectional extended
linear basic grammars, Memorandum INF-89-69 (1989), Department
of Computer Science, University of Twente, Enschede, The Nether-
lands.

[Hog90] J.A. Hogendorp: Regularly controlled bidirectional linear basic
grammars, Memorandum INF-90-40 (1990), Department of Computer
Science, University of Twente, Enschede, The Netherlands.

[HopUll69] J.E. Hopcroft & J.D. Ullman: Formal Languages and Their
Relation to Automata (1969), Addison-Wesley, Reading, Mass.

[HopUll79] J.E. Hopcroft & J.D. Ullman: Introduction to Automata Theory,
Languages, and Computation (1979), Addison-Wesley, Reading,
Mass.

References 161

[Kas] T. Kasai: An hierarchy between context-free and context-sensitive
languages, J. Comput. System Sci. 4 (1970) 492-508.

[Kha74a] N.A. Khabbaz: A geometric hierarchy of languages, J. Comput.
System Sci. 8 (1974) 142-157.

[Kha74b] N.A. Khabbaz: Control sets on linear grammars, Inform. and
Contr. 25 (1974) 206-221.

[Koz] D. Kozen: Complexity of finitely generated algebras, Proc. 9th
Annual ACM Symp. on Theory of Computing (1977) 164-177.

[Lan] L.C. Langlois: Parallel parsing of context-free languages on an array
of processors, Ph.D. Thesis (1988), University of Edinburgh, Scotland,
UK.

[LewPap] H.R. Lewis & C.H. Papadimitriou: Elements of the Theory of
Computation (1981), Prentice-Hall, Englewood Cliffs, NJ.

[Mat] G.H. Matthews: A note on asymmetry in phrase structure grammars,
Inform. and Contr. 7 (1964) 360-365.

[McNNarOtt] R. McNaughton, P. Narendran & F. Otto: Church-Rosser Thue
systems and formal languages, J. Assoc. Comput. Mach. 35 (1988)
324-344.

[NarOtt] P. Narendran & F. Otto: Some polynomial algorithms for finite
monadic Church-Rosser Thue systems, Theor. Comput. Sci. 68 (1989)
319-332.

[Nie] M. Nielsen: E0L systems with control devices, Acta Inform. 4 (1975)
373-386.

[Niv] M. Nivat: On some families of languages related to the Dyck systems,
Proc. 2nd ACM Sym. Theory Comp. (1970) 221-225.

[Ros] D.J. Rosenkrantz: Programmed grammars and classes of formal
languages, J. Assoc. Comput. Mach. 16 (1969) 107-131.

[Sal69] A. Salomaa: On grammars with restricted use of productions, Ann.
Acad. Sci. Fennicae Ser. AI. 454 (1969).

[Sal70] A. Salomaa: On some families of formal languages obtained by
regulated derivations, Ann. Acad. Sci. Fennicae Ser. AI. 479 (1970).

[Sal73] A. Salomaa: Formal Languages (1973), Academic Press, New York.

[Sav] W.J. Savitch: How to make arbitrary grammars look like context-free
grammars, SIAM J. Comput. 2 (1973) 174-182.

[Sén81] G. Sénizergues: A new class of C.F.L. for which the equivalence is
decidable, Inform. Process. Lett. 13 (1981) 30-34.

162 References

[Sén85] G. Sénizergues: The equivalence and inclusion problems for NTS
languages, J. Comput. System Sci. 31 (1985) 303-331.

[Sén89] G. Sénizergues: Church-Rosser controlled rewriting systems and
equivalence problems for deterministic context-free languages, Inform.
and Comp. 81 (1989) 265-279.

[Sud] T.A. Sudkamp: Languages and Machines − An Introduction to the
Theory of Computer Science (1988), Addison-Wesley, Reading, Mass.

[Thu] A. Thue: Probleme über Veranderungen von Zeichenreihen nach
gegeben Regeln, Skr. Vid. Kristianaia I. Mat. Naturv. Klasse, 10/34
(1914).

[VanL] J. van Leeuwen: Rule-labeled programs − A study of a generaliza-
tion of context-free and some classes of formal languages (1972), Doc-
toral Dissertation, University of Utrecht, The Netherlands.

[Vog] H. Vogler: The OI-hierarchy is closed under control, Inform. and
Comp. 78 (1988) 187-204.

Gearfetting

Yn ’e measte grammatikamodellen befettet in grammatika in samling wer-
skriuwrigels. Dizze werskriuwrigels wurde ien kant út tapast (fan lofts nei
rjochts) en wurde ek wol produksjes neamd. Yn tsjinstelling ta soksoarte u-
nidireksje grammatika’s kinne yn de yn dit proefskrift definiearre bidireksje
grammatika’s de werskriuwrigels beide kanten út tapast wurde. In wer-
skriuwrigel dy’t tapast wurdt fan rjochts nei lofts wurdt in reduksje neamd.
Hjirnei ferstean wy ûnder in rigel sawol in produksje as in reduksje.

It brûken fan werskriuwrigels yn beide rjochtingen hat ûnder frije ta-
passing fan ’e rigels (produksjes en reduksjes) in tige grutte tanimming fan
’e generative krêft ta gefolch. Om dizze tanimming yn’e hân te hâlden
wurdt oan in bidireksje grammatika in bestjoeringsmeganisme op ’e tapas-
sing fan ’e rigels yn’e foarm fan in reguliere bestjoeringstaal oer dizze rigels
taheake. Om ’e generative krêft te beheinen wurde alternative wizen fan ôf-
lieden (“modes of derivation”) bestudearre, en wol de rjochter-ôfliedingswi-
ze en de rjochterfoarkommen-ôfliedingswize. Boppedat jout it ûnderskieden
fan twa soarten fan reduksjes in twadde mooglikheid ta it beheinen fan ’e ge-
nerative krêft. Dizze twa binne de “suvere” reduksjes en de “algemiene” re-
duksjes. As lêste jout de oanwêzigens fan bestjoeringstalen oanlieding ta in
tredde gefalsûnderskieding. Nammentlik, as in rigel oanjûn troch in wurd út
’e bestjoeringstaal net tapasber is, dan kinne wy as stopje en gjin inkele sins-
foarm ôfleverje (blokkearing), as trochgean mei de folgjende rigel oandroe-
gen troch it bestjoeringswurd (oerslaan). Kombinaasjes fan dizze ôfliedings-
wizen jouwe acht ferskate gearstâlde ôfliedingswizen.

Boppesteande ôfliedingswizen wurde yn haadstik I en II definiearre.
Fierders is haadstik I ynliedend fan karakter, en befettet it in oantal technys-
ke definysjes dy’t fierder yn it proefskrift brûkt wurde sille. Ek wurde yn dit
haadstik de grammatikamodellen út ’e haadstikken II oan’ta mei IV yn’t
ramt fan de theory fan Thue-systemen brocht.

Yn haadstik II wurde regulier bestjoerde bidireksje grammatika’s ba-
searre op kontekst-frije grammatika’s bestudearre. Der wurde ôfslutingsei-
genskippen fêststeld en ek wurdt de generative krêft fan ien fan ’e gearstâlde
ôfliedingswizen, de saneamde RS/B/f-wize − rjochterôflieding, blokkearing,
en suvere reduksjes − bepaald. It docht bliken dat dizze krêft gelyk is oan dy
fan kontekst-frije grammatika’s. Foar dizze RS/B/f-ôfliedingswize kinne wy
ek in normaalfoarm-theorema bewize. Fierders wurde yn dit haadstik ek
noch regulier bestjoerde bidireksje grammatika’s op basis fan (lofts) lineêre
kontekst-frije grammatika’s ûndersocht. As lêste generalisearje wy de regu-
liere bestjoering ta bestjoeringstalen út likefolle wat foar taalfamyljes.

164

Haadstik III is wijd oan saneamde (ôfliedings)lingte-begrinsde farian-
ten fan de yn haadstik I definiearre grammatika’s. Yn dizze lingte-begrinsde
regulier bestjoerde bidireksje grammatika’s wurde allinnich dy ôfliedingen
talitten dy’t in yn it foar fêststelde lingte net te boppe gean. Dizze boppe-
grins hinget allinnich ôf fan ’e lingte fan ’e lang om let te generearjen sin.
Foar regulier bestjoerde bidireksje grammatika’s is dit wichtich omdat der
yn dit type grammatika yn ’e ôfliedingen lutsen sûnder effektive werskriuw-
ing fan (dielen fan) ’e sinsfoarm foarkomme kinne. Foar dizze lingte-be-
grinsde farianten wurde ôfslutingseigenskippen fan ’e oerienkomstige taalfa-
myljes fêststeld en wurdt in normaalfoarmstelling bewiisd. Ek binne der
foar dit type grammatika ûntleders te konstruerjen dy’t − fansels− terminear-
je foar eltse ynfier.

Haadstik IV giet fierder mei it fêststellen fan ’e generative krêft fan de
typen grammatika’s definiearre yn haadstik I en II. Foar fjouwer fan ’e gear-
stâlde ôfliedingswizen komme wy út op de famylje fan rekursyf op te som-
jen talen. Ien jout krekt de kontekst-frije talen (haadstik II); de oare trije
binne krêfticher dan kontekst-frije grammatika’s, mar de krekte krêft is noch
ûnbekind.

Yn haadstik V wurde regulier bestjoerde bidireksje grammatika’s op
basis fan saneamde “extended linear basic” grammatika’s bestudearre. Dit
type grammatika wurdt mei ien fan ’e gearstâlde ôfliedingswizen kombinear-
re, de RS/B/f-wize. Ofslutingseigenskippen en generative krêft fan de taal-
famyljes generearre troch dit type grammatika wurde fêststeld, wat inkele
nijsgjirriche risseltaten oplevert. As lêste wurdt ek de generative krêft ynge-
fal fan “frije rigel tapassing” yn sinsfoarmen fêststeld.

Haadstik VI is feitlik in earste oanset ta in ûndersyk fan regulier be-
stjoerde bidireksje grammatika’s op basis fan “linear basic” grammatika’s.
It docht bliken dat dit nije, relatyf ienfâldiche grammatikamodel in opfal-
lende generatyfe krêft hat.

By einbeslút wurde yn haadstik VII ferskate ynteressante fragen en
suggestjes foar fierder ûndersyk formulearre. Ek jouwe wy in twatal gebie-
ten fan ’e theoretyske ynformatika oan weryn faaks mei sukses de yn dit
proefskrift ûntwikkelde grammatikamodellen tapast wurde kinne.

Samenvatting

In de meeste grammaticamodellen bevat een grammatica een verzameling
herschrijfregels. Deze herschrijfregels worden in één richting toegepast (van
links naar rechts) en worden ook wel producties genoemd. In tegenstelling
tot dergelijke unidirectionele grammatica’s kunnen in de in dit proefschrift
gedefinieerde bidirectionele grammatica’s de herschrijfregels in beide rich-
tingen toegepast worden. Een herschrijfregel toegepast van rechts naar links
wordt een reductie genoemd. Onder een regel verstaan we in het vervolg
een productie of een reductie.

Het gebruik van herschrijfregels in beide richtingen veroorzaakt onder
vrije toepassing van regels (producties en reducties) een enorme toename in
generatieve kracht. Om deze toename in de hand te houden wordt aan een
bidirectionele grammatica een besturingsmechanisme op de toepassing van
de regels in de vorm van een reguliere besturingstaal over deze regels toe-
gevoegd. Om de generatieve kracht in te perken worden alternatieve wijzen
van afleiden (“modes of derivation”) bestudeerd, te weten de rechter-aflei-
dingswijze, en de rechtervoorkomen-afleidingswijze. Bovendien levert het
onderscheiden van twee soorten van reducties een tweede mogelijkheid op
tot het inperken van de generatieve kracht. Deze twee zijn de “zuivere”
reducties en de “algemene” reducties. Tenslotte geeft de aanwezigheid van
besturingstalen aanleiding tot een derde gevalsonderscheiding. Namelijk,
als een regel aangegeven door een woord uit de besturingstaal niet toepas-
baar is, kunnen we òf stoppen en geen enkele zinsvorm afleveren (blokke-
ring), òf doorgaan met de volgende regel aangedragen door het besturings-
woord (overslaan). Combinaties van deze afleidingswijzen geven acht ver-
schillende samengestelde afleidingswijzen.

Bovenstaande afleidingswijzen worden in hoofdstuk I en II gedefini-
eerd. Verder is hoofdstuk I inleidend van karakter, en bevat het een aantal
technische definities die verder in het proefschrift gebruikt zullen worden.
Ook worden in dit hoofdstuk de grammaticamodellen uit de hoofdstukken II
tot en met IV in het kader van de theorie van Thue-systemen geplaatst.

In hoofdstuk II worden regulier bestuurde bidirectionele grammatica’s
gebaseerd op context-vrije grammatica’s bestudeerd. Er worden afsluitings-
eigenschappen bepaald en ook wordt de generatieve kracht van één van de
samengestelde afleidingswijzen, de zogenaamde RS/B/f-wijze − rechteraflei-
ding, blokkering, en zuivere reducties − vastgesteld. Deze kracht blijkt
gelijk te zijn aan die van context-vrije grammatica’s. Voor deze RS/B/f-af-
leidingswijze kunnen we ook een normaalvorm-theorema bewijzen. Verder

166

worden in dit hoofdstuk ook nog regulier bestuurde bidirectionele grammati-
ca’s op basis van (links) lineaire context-vrije grammatica’s onderzocht.
Tenslotte generaliseren we de reguliere besturing tot besturingstalen uit wil-
lekeurige taalfamilies.

Hoofdstuk III is gewijd aan zogenaamde (afleidings)lengte-begrensde
varianten van de in hoofdstuk I gedefinieerde grammatica’s. In deze lengte-
begrensde regulier bestuurde bidirectionele grammatica’s worden slechts die
afleidingen toegelaten die een vooraf bepaalde lengte niet te boven gaan.
Deze bovengrens hangt slechts af van de lengte van de uiteindelijk te genere-
ren zin. Voor regulier bestuurde bidirectionele grammatica’s is dit van
belang omdat in dit type grammatica er in de afleidingen lussen zonder
effectieve herschrijving van (delen van) de zinsvorm kunnen voorkomen.
Voor deze lengte-begrensde varianten worden afsluitingseigenschappen van
de overeenkomstige taalfamilies bepaald en wordt een normaalvorm-stelling
bewezen. Ook zijn er voor dit type grammatica ontleders te construeren die
− vanzelfsprekend − termineren voor elke invoer.

Hoofdstuk IV vervolgt met het bepalen van de generatieve kracht van
de typen grammatica’s gedefinieerd in hoofdstuk I en II. Voor vier van de
samengestelde afleidingswijzen komen we uit op de familie van recursief op-
sombare talen. Eén levert precies de context-vrije talen op (hoofdstuk II); de
overige drie zijn krachtiger dan de context-vrije grammatica’s, maar de pre-
cieze kracht is nog onbekend.

In hoofdstuk V worden regulier bestuurde bidirectionele grammatica’s
op basis van zogenaamde “extended linear basic” grammatica’s bestudeerd.
Dit type grammatica wordt met een van de samengestelde afleidingswijzen,
de RS/B/f-wijze, gecombineerd. Afsluitingseigenschappen en generatieve
kracht behorend bij dit type grammatica worden bepaald, hetgeen tot enkele
opmerkelijke resultaten leidt. Tenslotte wordt ook de generatieve kracht
ingeval van “vrije regel toepassing” in zinsvormen bepaald.

Hoofdstuk VI is in feite een eerste aanzet tot een onderzoek van regu-
lier bestuurde bidirectionele grammatica’s op basis van “linear basic” gram-
matica’s. Dit nieuwe, betrekkelijk eenvoudige grammaticamodel blijkt een
opvallende generatieve kracht te bezitten.

Tenslotte worden in hoofdstuk VII diverse interessante vragen en sug-
gesties voor verder onderzoek geformuleerd. Ook geven we een tweetal
gebieden van de (theoretische) informatica aan waarin wellicht met succes
de in dit proefschrift ontwikkelde grammaticamodellen kunnen worden toe-
gepast.

