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Preface

Most grammar models contain a set of rewriting rules of some kind, e.g.
string-rewriting rules or term-rewriting rules. These rules are applied in one
direction only. Usualy, in a grammar two or more aphabets are dis-
tinguished. In general the language generated by a grammar is defined as the
set of words (over some distinguished aphabet) that can be obtained by
applying the rewriting rules in a unidirectional way, starting from some
designated symbol, the start symbol.

In a Thue system the rules are applied in both directions. However, a
Thue system possesses asingle aphabet. And thereis no standard definition
of the language associated with a Thue system.

Therefore it seemed interesting to study grammar models in which the
rewriting rules can be applied in both directions, while maintaining the clas-
sical language definition. In this thesis we investigate such bidirectional
variants of context-free grammars (Chapters 11-1V) and (extended) linear
basic grammars (Chapters V-VI). We focus attention to closure properties,
grammatical transformations (that result in a weak Chomsky normal form),
parsing algorithms, and determining the language generating power of these
grammatical models.

Another motive for studying bidirectionality in grammar models stems
from NTS or nonterminal separating grammars — one of the most well-
known types of grammar that satisfies the “disjunct syntactic categories pro-
perty”. NTS grammars are based on context-free grammars and on the con-
cept of bidirectionality. It is straightforward to extend the NTS definition to
macro grammars; cf. Appendix A.

Our main results are in Chapters 11-VI1. They are preceded by an Intro-
duction (Chapter 1) and followed by Chapter VII which consists of conclud-
ing remarks and a few areas of computer science in which our results may be
applied.

The subject of thisthesisis rather new and — in our opinion — it consti-
tutes an interesting way of specifying languages. Therefore, there are at this
moment more open questions than results. Particularly, the need of applica
tionsis conspicuous.



Acknowledgements

| am indebted to Peter Asveld for his contribution to both content and form
of thisthesis. His criticism, knowledge and ideas were of great value to me.
Thanks are due to Anton Nijholt and Leo Verbeek for reading the
manuscript and for their constructive remarks. | also want to thank Henk
Alblasfor his participation in the begeleidingscommissie.

| am grateful to Rieks op den Akker for some discussions on a few
topicsin this thesis. Thanks also to the members of the vakgroepen TIF and
SETI for a nice working atmosphere. In this respect | like to mention Char-
lotte Bijron, Maarten Fokkinga, Thérese ter Heide-Noll, Alice Hoogvliet-
Haverkate, Jan Kuper and Joke Lammerink, and, last but not least, my room-
mates Jan Molenkamp, Paul Oude Luttighuis and Gert Veldhuijzen van Zan-
ten.

The research resulting in this thesis has been made possible by a grant
(nr. 612-316-012) from the Netherlands Organization of Scientific Research
(NWO), to which | am grateful. | also thank the Department of Computer
Science of the University of Twente for its additional support.

Vi



Contents

Chapter | —Introduction
1  Specifying Formal Languages
2 Preiminaries
2.1 Rewriting Systems
2.2 Thue Systems
2.3 NTS Grammars
2.4 Macro Grammars
3 Regularly Controlled Bidirectional Grammars
3.1 Control on Grammars and Rewriting Systems
3.2 Modes of Derivation for RCB Grammars
3.3 RCB Extended Linear Basic Grammars
4 Outline of ChaptersI1-VII
4.1 Regularly Controlled Bidirectional Grammars
4.2 Time-Bounded Regularly Controlled Bidirectional Grammars
4.3 Generating Power of RCB/RA Grammars
4.4 Regularly Controlled Bidirectional Extended Linear Basic Grammars
4.5 Regularly Controlled Bidirectional Linear Basic Grammars
4.6 Concluding Remarks
4.7 Historical Remarks

Chapter |1 —Controlled Bidirectional Grammars
Introduction

Definitions and Examples

Closure Properties

Grammatical Transformations

Linear and Left-Linear RCB Grammars
Arbitrary Families of Control Languages

hapter 111 — Time-Bounded Controlled Bidirectional Grammars
Introduction
Definitions, Examples and Elementary Properties
Closure Properties and Normal Form
Parsing ARCB Languages
Concluding Remarks

hapter 1V — Generating Power of RCB/RO Grammars
Introduction
Preliminaries
The Main Result
Time-Bounded A-free RCB Grammars
Modes of Derivation
Concluding Remarks

OO, WNEFEFO ORWNEO OOOMMWDNLER

1
1
14
18
22
27
27
29
30
31
31
32
32

AP OO PAPER

33

38
43
48
51

55
56
60
65
73

7
78
79

85
87

Vii



viii

Contents

Chapter V — Regularly Controlled Bidirectional Extended Linear Basic
Grammars

NFRPO DwNPRPO) OO wWN R

Introduction

Regularly Controlled Bidirectiona (m,K)-elb Grammars
Properties of RBLB; ¢ (K) Languages

Generating Power of (r, f, m,REG,K)-belb Grammars
Free Rewriting of Nonterminals and Language Names
Concluding Remarks

hapter VI — Regularly Controlled Bidirectional Linear Basic Grammars

Introduction

Regularly Controlled Bidirectional Linear Basic Grammars
Generating Power

Concluding Remarks

hapter VII — Conclusionsand Suggestionsfor Further Resear ch

Conclusions

Suggestions for Further Research

2.1 Application of Thue System Theory to RCB Grammars
2.2 Fair NTS Grammars

2.3 Applications

Appendix A — Nonterminal Separating Grammars

1  Introduction
2 Preliminaries

2.1 UNR-Macro Grammars

2.2 The NTS Property for Context-Free Grammars
3 TheNTS Property for Macro Grammars

3.1 Definitions

3.2 Properties of NTS Macro Grammars

3.3 The Pre-NTS Property for Macro Grammars
4  Concluding Remarks
References
Gearfetting

Samenvatting

89
90
96
108
116
123

125
126
130
133

135
136
137
141
142

147
147
147
149
150
150
151
153
155

157

163

165



CHAPTER |

| ntroduction

1. Specifying Formal Languages

Formal language theory deds with languages and with devices which
represent languages in a finite fashion. A language is a set of words over
some alphabet. By an alphabet we mean a finite set of symbols. A word
over an alphabet T is an element of the free monoid =" generated by ¥ under
concatenation, and with the empty word, denoted by A, asits two-sided iden-
tity. A word isalso called astring.

We can distinguish two methods to specify a language. The first
method describes how words ought to look like in order to belong to the
language. Such a property specification can be stated in first-order predicate
logic and will be agebraic and “static” of nature. For example, we can
describe the language of “doubled sentences’ or “copies’ over the alphabet
by Lo ={x|x=ww, wiX “}, which can be shortened to {ww |wX -}.

However, formal language theory is much more concerned with
another, second method of specifying languages. Instead of giving a
description, one can introduce a device that determines a language in an
active way. The active part of such a device uses rewriting rules. A rewrit-
ing rule, which is an ordered pair of words, tells us how to obtain one string
from another. The rewriting of a given word to another by arewriting rule is
called the application of that rewriting rule to the given word. For example,
the rewriting rule (aa,ab) rewrites aaab into abab or aabb. A rewriting sys-
tem over some alphabet is a set of rewriting rules. Thus a rewriting system
isin fact arelation over the set of words over some al phabet.

We can define a language by means of a rewriting system either in a
generating or in an accepting way. In the resulting generating device we
start from a given set of initial words. The language generated by such a
device consists of all words which can be obtained by the successive appli-
cation of zero or more rewriting rules to some initial word. On the other
hand, an accepting device has, apart from rewriting rules, a set of halting
words. The language accepted — or recognized — by an accepting device is
the set of al words which can yield some halting word by successively
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applying (zero or more) rewriting rules.

Intuitively, these concepts of generating and accepting seem to be dual
to each other. Indeed, these concepts can be defined without much effort
such that the language associated with an accepting device equals the
language produced by a corresponding generating device of which the set of
initial words is equal to the set of accepting words. This generating device
has as its set of rewriting rules the (set-theoretical) converse of the set of
rewriting rules of the accepting device. (Remember that a rewriting system
over X is some relation over IY). Then the dual proposition, replacing
“accepting” by “generating” and “initial” by “halting” and vice versa, also
holds.

Rewriting systems are applied in many areas of computer science. For
instance programming languages, parsing theory, specification languages
etcetera. In most of these cases the unidirectional character of rewriting
gives sufficient power to be useful in these areas. For instance, there is a
huge amount of theory on phrase-structure grammars, finite state automata,
Turing machines, etcetera, each of which can be considered as a particular
type of rewriting system. However, in fields like theorem proving and pro-
gram transformation there is a need to use rewriting rules in a reversed way
too. This can be obtained by joining together a set of rewriting rules and its
converse. The resulting system is a Thue system [Thu]. In fact, in a Thue
system it is not necessary to add for each rewriting rule (u,v) its inverse
rewriting rule (v,u) because the latter is assumed to be available in a Thue
system. Therefore, arewriting system is sometimes called a semi-Thue sys-
tem. So, in a Thue system T the rewriting of a string w is performed by
applying arewriting rule (u,v) in T or itsinverse (v,u).

A Thue system induces an equivalence relation as follows. Two words
are equivalent by the Thue system T if they can be rewritten into each other
by the rewriting rules of T. Actualy, this is a congruence relation with
respect to concatenation. A word z is a reduct of a word x in case z is
obtained from x by applying only length-decreasing rewriting rules, i.e.,
rewriting rules (u,v) in T with |u|>|v|. A word isirreducible if no length-
decreasing rewriting rule is applicable to it. A Thue system T is called finite
if Tisafinite set.

In the theory of Thue systems a traditional topic is the so-called word
problem. Thisis the problem of deciding whether or not two words over the
alphabet are equivalent with respect to the rewriting rules of the Thue sys-
tem. The study of Thue systems is also motivated by regarding Thue sys-
tems as an instrument to define formal languages. A Thue system has the
Church-Rosser property if each two equivalent words have a common
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unique irreducible reduct. Thue systems obeying the Church-Rosser pro-
perty received — and still receive — alot of attention. The main reason is that
congruence classes of finite Church-Rosser Thue systems — i.e., finite Thue
systems which have the Church-Rosser property — are languages recogniz-
able by a deterministic linear-bounded automaton. This is the approach
taken by Nivat and othersin the 1960s and 1970s; cf. [Niv, Ber].

If we define languages by Thue systems analogously to the way in
which we define languages by rewriting systems, then we cannot distinguish
between the generating and the accepting way of defining languages, due to
the bidirectional character of Thue systems. However, in this thesis we
study Thue systems of a specia kind, which we call bidirectional grammars.
A bidirectional grammar is a generating device obtained by taking the set of
productions of a context-free grammar as the defining set of rules for a Thue
system. Then we define languages analogously to the case of phrase-
structure grammars, i.e., we derive sentential forms starting from an initial
symbol (or a set of initial words) by applying productions and their
corresponding inverse productions, called reductions. The generated
language is defined as the set of sentential forms over aterminal alphabet.

Bidirectional grammars happen to be powerful generating devices.
Therefore we restrict their power in a natural way. Essentialy, this restric-
tion consists of two parts. First, we use a control language over the rules -
i.e., over the productions and reductions — and secondly, we attach a selec-
tion mechanism to a bidirectional grammar such that a rule can be applied to
at most one substring of a sentential form. The introduction of a control
language will in fact increase the generating power of bidirectional gram-
mars. However, it also turns out to be an enormous help in establishing vari-
ous theorems concerning (controlled) bidirectional grammars. In addition, it
emphasi zes the generative character of bidirectional grammars.

The remaining part of this chapter is organized as follows. In Section
2 some technical preliminaries are introduced, in order to make this thesis
self contained. Most concepts introduced in this section such as rewriting
systems, Thue systems, and macro grammars, are well known, and they are
recalled here to establish our notation. However, the concept of NTS gram-
mar (or nonterminal separating grammar) may need some more attention.

In Section 3 we introduce the concept of regularly controlled bidirec-
tional grammar, based on either context-free or on macro grammars. In Sec-
tion 4 Chapters 11-V1I are outlined.
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2. Prdiminaries

In this section we first consider rewriting systems and Chomsky grammars
(82.1). Then we recall the basic concepts related to Thue systems (82.2).
Finally, we discuss nonterminal separating — or NTS — grammars (82.3) and
macro grammars (82.4) in somewhat more detail.

2.1. Rewriting Systems

Definition 2.1.1. A rewriting system R on the alphabet = is a set of rewrit-
ing rules. A rewriting rule is an ordered pair (u,v) in ="x =". A rewriting
rule or production (u,v) acts in one direction only, i.e., an occurrence of uin
astring may be rewritten to v but not vice versa. The derivation relation O &
(or O "if Ris known from the context) is the transitive and reflexive closure
of the single-step or direct derivation relation [0 g (or ') defined by

Or={(xy)E x=Z"|0(u,v) OR, Owy,WoE “.x =wyuw, 0y = wiwo}.
]

A rewriting system can be used in two ways. One way is to define a
language to be the set consisting of all words over a given aphabet which
can be rewritten to agiven word (or to a member of a given set of words). A
word may initially be concatenated with some additional words before the
actual rewriting starts; cf. Example 2.1.3. A device of this kind is called a
recognition device. The other, dual, method is to define a language by the
set of all words over agiven aphabet Z (= (£ ) that can be obtained by start-
ing from a given word (or a given set of words) and then applying zero or
more rewriting rules. This kind of device is called a generative device or
grammar. Each string obtainable from the starting word (or set of words) is
called a sentential form. By a sentence we denote a sentential form in which
only symbols from X occur. This approach resulted, among others, in the
notion of phrase-structure grammar and related grammatical models by
Chomsky in [Cho56, Cho59].

Definition 2.1.2. A phrase-structure grammar G is a 4-tuple (V, Z,P,S),
where

° V - the vocabulary — and Z - the terminal alphabet - are finite apha-
bets with Z 0V. The elements of V-2 and X are called nonterminals
and terminalss, respectively.

° The start symbol Sisan element of V-Z.

e Pisafinite set of ordered pairsin (V"= xV". Elements of P are
called productions.*

* Productions are also called rules. But in the sequel we will use the word “rule” in a
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The language L (G) generated by G is defined by
L(G)={wX "|SO "w},
where O " is the derivation relation associated with the rewriting system P
on V. It is a wel-known fact that the family of languages generated by
phrase-structure grammars equals the family of recursively enumerable
languages. O
Example 2.1.3. A finite state automaton M = (Q, Z,9,qg,F), where
- Q isthefinite set of states,
- Zistheinput aphabet,
- (g istheinitial state (qoQ),
—  Fistheset of accepting states (F 00 Q),
- 0:QxX - Qistransition function,
is usually defined as a machine that accepts the language
L (M) ={wX ”|5'(q0,w) OF},

whered': Qx 3" _ Qistheextension of & defined for al qin Q by

0'(q.A)=q,

%'(0,a) = d(q,a),

0'(q,as) = 5'(5(a,a),s),
with alX and sX Y, cf. [Har] for details. However, M may also be con-
sidered as a rewriting system; particularly, as arecognition device. Then the
language accepted by M is defined by

L(M)={wX "|gowD g, qOF},
where O " is the derivation relation associated with the rewriting system P
on QL[X . The set of rewriting rules P isformed by
{(pa,q)|d(p.a)=q, p,q0Q, aX }. O

Example2.1.4. The dua concept of a phrase-structure grammar is the
analytical grammar, introduced by Salomaa [Sal 73], which is another exam-
ple of arecognition device. Itisad4-tuple (V, Z,P,S) which differs from the
4-tuple defined in Definition 2.1.2 in the definition of P, which now is a
finite subset of VU (VP-2Y). An anaytica grammar G =(V, Z,P,S)
possesses an underlying rewriting system P on V which induces the relations
O, i.e., one-step derivation and O U, the reflexive and transitive closure of

different way.
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[0 . The language L (G) recognized by the analytical grammar G is defined
by
L(G)={wX "|wO "s}.

It is easy to show [Sal 73] that phrase-structure grammars and analyti-
cal grammars are equivalent with respect to descriptive power, i.e., for each
phrase-structure grammar Gy we can find an analytical grammar G, such
that L (Gg) =L (G1) and vice versa. O

Example 2.1.5. A context-sensitive grammar is a phrase-structure grammar
G =(V, Z,P,S) in which each production is of the form (a AB,a u), where
a,BOVY, Ain V-3 and uV* with the possible exception of the production
S - A. However, if this production does occur in P, the symbol S does not
occur in the right-hand side of any production in P. A language L is called
context-sensitive if there exists a context-sensitive grammar G such that
Lo =L (G). Wedenote the family of context-sensitive languagesby CSL. O

2.2. Thue Systems

Rewriting systems, and consequently the derived generative and analytical
grammars, act into one direction, i.e., given a rewriting rule (u,v) we cannot
rewrite a substring v of a word w to u, unless the rewriting rule (v,u) is an
explicit element of the rewriting system too. And in case of generative and
analytical grammars, adding such reversed rewriting rules is simply not
alowed for each rule, due to the definition of their respective set of rewriting
rules. The extension of such unidirectional devices to their corresponding
bidirectional variants is a natural one, and in case of rewriting systems this
leads to the concept of the well-known Thue system, named after the
Norwegian mathematician and logician Axel Thue, who studied such sys
tems at the beginning of the twentieth century [Thu]. Thue systems were
one of the first known systems in which rewriting of strings of symbols was
the main objective of research, long before the advent of Chomsky’s gram-
matical model.

Definition 2.2.1. A Thue system T on the alphabet = is a set of ordered pairs
(u,v) of strings over =. If = is known from the context, we can denote a
Thue system by its set of rewriting rules T. We can rewrite a string w by
(u,v) in T if either u or v occurs in w and then the result of rewriting wisthe
string w' obtained from w by replacing an occurrence of the string u [or v,
respectively] by the string v [u, respectively]. Then wewritew < tw'. O

Remark that = 1 is arelation on =Y, Moreover, note that a rewriting
system R on = induces a Thue system on =, in the sense that the rewriting
system ROR on =, where R is defined by R= {(v,u)|(u,v) OR}, (or, in
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other words, R is the converse of R) is strongly equivalent to the Thue sys
tem Ron =. A rewriting system Ris strongly equivalent to a Thue system T
if

(i) for each rewriting rule (u,v) in T both (u,v) aswell as (v,u) isin R, and
(ii) for each rewriting rule (u,v) in R either (u,v) or (v,u) isinT.

The alternative name of semi-Thue system for a rewriting system stems
from this observation. In turn, a Thue system T on = induces two rewriting
systems T and T (both on =). Observe that the derivation relation of the
rewriting system T, denoted by O ¥, is the converse of the derivation relation
O 7 of the rewriting system T. In addition, by - { (or = “when T is under-
stood) we denote the derivation relation of the Thue system T. The relation
« Yisthe reflexive and transitive closure of < 1. Notethat - 7 equals the
corresponding relation for T. This derivation relation < Y is a congruence
relation on =" with respect to concatenation. We denote the congruence
class (modulo T) of aword x by

[X]t ={wE "Y|x = fw}.

A rewriting rule (u,v) in T is called length-decreasing if |u|>|v].

Define the set of descendants of aword x by

AF(x) ={wE "|xO fw}.

For a language Lo[E Y, we define AF(Lo) = O{AF(X)|xOLo}. Define the
relation ~ton="x="by x ~ryifx=qyand |x|>|y|. Thenxisirredu-
cible (modulo T), if thereisnoy such that X — 1 y. The set IRR(T) denotes
the set of irreducible words over = by T. The domain and range of a Thue
system are defined by dom(T)={u|Ov.(uv)OT} and range(T)=
{v|Ov.(uv)OT}, respectively.

A Thue system T is called monadic, if each (u,v) in T is length-
decreasing and range(T) (EO {A},i.e, |v|<1. A monadic Thue system T
isspecial if for each rule (u,v) in T, we havethat v = A.

Example 2.2.2. Consider the Thue system T ={(baa,ab)} on {a,b}. Let

Lo be the regular set {b}{a}". Then the descendants of L by the rewriting
system T are given by

AT(Lo) ={a"ba™ 2" |0<2n<m},

and the irreducible words of the Thue system T are given by the set
IRR(T) ={a}{b,ba}". Thenwe have

AT(Lo) n IRR(T) ={a"b, a"ba|n=0}. O
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Nowadays, Thue systems still obtain widely attention from computer
scientists, algebraists and logicians; cf. [Boo87] for an overview. Thue sys-
tems can be used in various ways to define formal languages; cf. [Boo82,
BooJanWra, McNNarOtt].

In a bidirectiona grammar based on a (well-known) unidirectiona
grammar of some type, the set of rewriting rules is also formed by the union
of the set of productions P of the unidirectional grammar (called the under-
lying grammar) and its converse P. In the sequel we call an element of P a
reduction and an element of PP arule. The extension of the concept of
phrase-structure grammar (or, equivalently, analytica grammar) to the
bidirectional case has obtained little attention. This can be explained by the
fact that even restricted subclasses of the set of phrase-structure grammars
give rise to a dramatic growth of generating power, when extented in the
bidirectional way. As an example we consider the case of context-free
grammars.

Definition 2.2.3. A context-free grammar is a phrase-structure grammar
G =(V, Z,P,S) which obeys the additional restriction PO(V-2)xVY. A
production of the form (A,w), with AV -3 and wOV"Y, is called a context-
free production. A context-free grammar with initial set M is like a
context-free grammar a4-tuple G = (V, Z,P,M), where M isalanguage. The
language generated by the context-free grammar with initial set M, G =
(V, Z,P,M) isdefined by

L(GM)={wX "0 M.a0 w}.

Note that we can also define L (G) by L(G) =L (G,{S}). In addition,
CFL denotes the family of context-free languages. O

In the sequel we will apply the convention of denoting a rewriting rule
(u,v) in arewriting system Rby u - grv. Moreover, arewriting rule (u,v) in
a Thue system will T be denoted by u « tv. Asusual, the subscripts Rand T
can be omitted if they are known from the context.

Example2.2.4. Consider the bidirectional context-free grammar G =
(v, z,P,S), whereV ={A,B,D,E,Sa,b,c}, Z ={a,b,c}, and P consists of

TH =S - abc, Ty =B - bDbc,
m =S - abD<, 5 =B - bbc,
T, =A - bDa, T = E - bDbb,
T3, =A - abD, T, =E - bbb.

We note that, when considered as a unidirectional context-free gram-
mar, G is not reduced, i.e., there are nonterminals (viz. A, B, and E) which
will never occur in some unidirectional derivation from S, and there are also
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nonterminals (viz. A and D) for which there is no derivation which yields a
terminal string. In fact, the language generated by the unidirectional gram-
mar G isequal to {abc}.

We will show that G, considered as a bidirectional context-free gram-
mar, generates {a"b"c" |[n=1}. First, a sentential form (abD)"abcc" (n=0)
is generated. To this string are applicable the sequences T, 1 and TTy. By
TLT atermina b is moved to the right side of aterminal a. If T, becomes
applicable, followed by 115, then the second terminal b from the right side of
the sentential form has been put at its right position. In addition, the
sequence TTE becomes applicable in case a terminal b has been moved by
several applications of sequences T, Ti; to the right side, until it encounters —
only separated by a nonterminal D — his colleague terminals b which are
dready at their right position. For instance, a derivation of a*b*c* may be
performed as follows.

S0 ™ abDabDSce [ ™ abDabDabece [ ™™ aabDbDabcce

0 ™ aabDbDSce [ ™ asbDbDabDSceel] ™ aabDbDabDabecce
0 ™™ aabDbDaabDbccee] ™™ aabDbDaabbeece

0 (™" aaaabDbDbbcecel ™™ aaaabbbbecce O

2.3. NTSGrammars

In [Bog] it was shown that the family of languages generated by bidirec-
tional context-free grammars with initial context-free language — thus apply-
ing the context-free productions in both a productive as well as in a reduc-
tive fashion, starting from a context-free initial set — equals the family of
recursively enumerable languages. In the unidirectional case we have that
the family of languages generated by context-free grammars with initia
context-free language equals the family of context-free languages.

However, in the same paper Boasson introduces an interesting type of
grammar, involving bidirectional rewriting. He defines a subfamily of the
family of context-free languages, the family of the so-called nonterminal
separating or NTS languages, as follows. Let G be a context-free grammar
(V, Z,P,S). Denote by 0" the (usual) derivation relation on V" defined by
P. We construct a Thue system on V induced by P by taking the set of
rewriting rules equal to P. For each set of nonterminals M OV -Z the fol-
lowing sets are defined.

° Denote the set of words over 2 derivable from M by G as
L(GM) ={wX "|OAOM .AD Bw}.
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Note that this set equals the language generated by the context-free
grammar with initial set M.

° The set of sentential forms generated by G from M is denoted by
L(GM)={wOV"|DAOM . A pw}.

° The set of words over V derivable from M by the Thue system P, i.e.,
by both productions and corresponding reductions, equals

LR(GM) ={w OV"|DAOM . A = pw}.

If M equals a singleton set {A}, then we write L (G,A), L(G,A), and
LR(G,A), respectively.

A context-free grammar is called nonterminal separating (or NTS) if
for each A in V-2, we have LR(G,A) =L(G,A). A context-free language
Lo is NTSif there exists an NTS grammar G = (V, Z,P,S) and a set M with
MOV-2, such that Lo =L (G,M). In that case we write G =(V, Z,P,M)
rather than G = (V, Z,P,S). NTS languages are congruential and acceptable
by a deterministic pushdown automaton [BoaSén]. A language L over Z is
congruentia if Lq is the union of congruence classes generated by some
congruence over X~ with respect to concatenation. In fact, in an NTS gram-
mar G = (V, Z,P,M) for each AV - X the language L (G,A) is a congruence
class induced by a finitely generated congruence over 2, which isinduced in
itsturn by G; cf. [BoaSén] for details. An NTS grammar G has the property
that for each two nonterminals A and B, either L(G,A)n L(G,B) =0 or
L (G,A) =L (G,B) holds. This latter property, the so-called Digjoint Syntac-
tic Category property (DSC), isalso used in texts on (paralel) parsing [Lan].

Example2.3.1. The language {a"b" |[n=0} is an NTS language. This can
be shown as follows. Consider the context-free grammar G equal to
{Sab},{ab},P,S), where P equals {S - a%h, S - ab}. Then we have
L(G) =L(G,S)={a"b"|n=0}. Observethat

L(G,S) =L (G,S) 0{a"s" |n=0}.

Each rule in POP is applicable to some w in L(G,S). In each case the
resulting string isin L(G,S). ThusLR(G,S) =L(G,9S). O

It is easy to show that the language L1 ={a"b" [n>1}0{a"b?"|n>1}
can be generated by a context-free grammar that possesses the DSC pro-
perty. But L, isnot an NTS language [BoaSén].

From the DSC-property and the fact that NTS languages are deter-
ministic context-free languages one would expect some nice parsing proper-
ties and efficient recognition algorithms based on NTS grammars. However,
the regular language {a}* can be generated by the NTS grammar
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({A,a},{a}.{A - AA A - a}, A) which hardly possesses any efficient or
elegant parsing properties. For instance, with respect to Earley’s algorithm
[Ear], sentences of this language will be recognized in time proportional to
n3. We did not succeed in obtaining particular and interesting parsing pro-
perties for NTS or DSC grammars. So, the question whether there exists
more elegant and efficient parsing strategies for NTS or DSC languages
remains open.

To conclude this section we note an interesting application of the
theory of NTS languages in [FUIVag]. In this paper Fulop and Vagvolgyi
prove that the family of congruential languages coincides with the family of
recognizable tree languages. This theorem was originally stated, without a
proof, by Kozen [Koz]. For additional papers on NTS languages we refer to
[AutBoaSen77, AutBoaSénd4, Séen8l, Séen8s, Séendg, Boo8l, Fro].

2.4. Macro Grammars

Apart from bidirectional grammars with an underlying context-free gram-
mar, we can also take other types of grammar as underlying grammar. In
this thesis we also consider bidirectional grammars based on (variants of )
macro grammars.

Macro grammars have been introduced by Fischer in [Fis68a] as a gen-
eralization of context-free grammars. The difference with context-free
grammars is that in a macro grammar we associate with each nontermina a
nonnegative number of arguments. We take arguments from the set of terms
build up from nonterminals, terminals, and variables. Therefore we can con-
sider a macro grammar as a particular kind of term rewriting system. In
order to define macro grammars in a precise way we use the concepts of
ranked alphabet, and term over aranked al phabet.

A ranked alphabet A is an alphabet of which each symbol is provided
with a nonnegative integer, called its rank. The ranked alphabet A is parti-
tioned into sets A; consisting of those symbols with rank equal to i. Thus
A=0a; andif i 2], then A nAj = 0. Let PC be a set of punctuation sym-
bals, consisting of the left and right parenthesis and the comma symbol.

Definition 2.4.1. Let A be aranked alphabet. The set T(A) of terms over A
isthe smallest set of strings over A [1 PC such that

@ AoL{AOT(A);

(b) ifty, t,0T(A), thentt,OT(A);

() iIfAR ,andty,...,ty,0T(A), thenA(ty,...,tn) OT(A). O
We will write A instead of A() if A hasrank zero, thusif A .
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Definition 2.4.2. A macro grammar G is5-tuple (®,2,X,P,S), where ® isa
ranked alphabet of nonterminals, X is an alphabet of terminals, X is a finite
set of variables, and Sis an element of ®,, called the start symbol. It is
understood that each terminal and variable has rank zero and that the sets ®,
2 and X are mutually digoint. The set P consists of productions which have
the form A(X4, ...,%X,) — t with A[® ,, the variables x4, ...,x, are distinct
elements of X, andtisan element from T (Z O{X4, ..., X} [P ). O

We need the following terminology to define several modes of deriva-
tion for amacro grammar. A string T isasubtermof aterm o if Tisaterm
and 1 isasubstring of 0. A subterm t of o occurs at top level if there exist
subterms 1; and 1, such that 0 =14TT,. A term over Z[® that is a string
over X isan expanded term.

Definition 2.4.3. Let G = (®,Z,X,P,S) be amacro grammar and let o and T
betermsover Z [ .
Thenwewrite g O o T if
° thereisanonterminal A from ®,, and terms &, ...,§, over 2 [ such
that A(&q,...,&,) isasubtermontoplevel ino;
° A(Xq,...,X3) — tisaproduction fromP ;

° T isobtained from ¢ by replacing the designated term A(&4, ...,&,) by
t'. The term t' is the result of substituting the terms &4, ...,§, for
X1, .-+, Xp iNt, respectively.
The relation O o on T(Z X ) represents the Ol-derivation mode,
(“outside-in”) which can be considered as expanding macros by outermost
callsfirst.

Secondly, wewritec [0 |oT if

° there is a nontermina A from @, and there are expanded terms
&1, ....¢poverzand A(&y,...,&,) isasubtermof o;

° A(X1,...,%X,) - tisaproductionfromP;
° T is obtained from o in the same way as formulated in the definition of

The relation 0o on T(Z[% ) represents the |O-derivation mode,
(“inside-out”) which can be considered as expanding macros by innermost
calsfirst.

The reflexive and transitive closure of O o [0 0] is denoted by O g,
[0 |5, respectively]. O
An Ol-macro [|O-macro] grammar is a macro grammar provided with

the mode of derivation Ol [IO, respectively]. In the sequel, m denotes a
mode of derivation. The language L,,(G) generated by an m-macro grammar



Introduction 13

G =(®,%,X,P,S)istheset {wX "|SO pw}. Thesets Ol and 10 denote the
families of languages generated by Ol and |O-macro grammars, respectively.
It isawell-known fact that Ol and IO are incomparable [Fis68a]. Both fami-
lies properly include the family of context-free languages and they are prop-
erly included in the family of context-sensitive languages.

Example 2.4.4. [Fis68a]. Consider the macro grammar G defined by G =
(P,Z,X,P,S), where @ ={SAF,G}, Z={0,1,c}, X={x}, and P consists
of the productions

S - F(A), G(x) - X,
F(X) - F(xA), A -0,
F(X) - G(x), Ao L

G(X) - xcG(x),

This macro grammar generates under the Ol-mode the language of
equal length substrings, i.e.,

Loi(G) ={wicws...cw, W 0{0,1} 7,

w; |=m, 1<i<n, nmz=1}.

Under the 10-mode the grammar G generates the language
Lio(G) ={w(cw)"|n=0, w{0,1} *}. O

A basic term over Z [ is a term in which no nonterminal appears
within an argument list of another nonterminal, i.e., al macros are non-
nested. A linear basic term isabasic term in which at most one nonterminal
occurs. Then a [linear] basic grammar is a macro grammar in which the
right-hand side of each production isa[linear] basic term. Asadirect conse-
guence we have that providing linear basic grammars with the Ol and 10-
mode of derivation results in two equivalent types of grammars, i.e,
Lo (G) =L,0(G), where G is alinear basic grammar. So we can speak of
linear basic languages without specifying the mode of derivation. Further-
more, the family of linear basic languages, denoted by LB, is properly
included in Ol n 10 [Fis68a], and it equals the family of EDTOL (Extended
Deterministic Tabled O Lindenmayer) languages [Dow].

According to Fischer [Fis68a], we can assume that each production in
alinear basic grammar has a specia form.

Definition 2.4.5. A linear basic grammar G = (®,%,X,P,S) is in standard
linear formif each production from P has one of the forms

) AXq, ... %) - B(wq,...,w), or
i) A, .- Xy) - W,
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wherew, wy, ...,w, arewordsover ¥ [{Xq, ..., Xp}. O

Theorem 2.4.6. [Fis68a]. For each linear basic grammar one can con-
struct effectively an equivalent linear basic grammar in standard linear
form. O

It is also possible to define the NTS property and related concepts such
as the DSC property for macro grammars; cf. Appendix A, where also afew
characterization results — similar to those for context-free languages — have
been established.

3. Regularly Controlled Bidirectional Grammars

In this thesis we introduce new grammar models by restricting bidirectional
context-free grammars and macro grammars. These grammar models are
obtained by restricting the set of possible derivations of abidirectional gram-
mar. This has been inspired by the observation that context-free NTS gram-
mars are in genera highly ambiguous. See, e.g. the context-free NTS gram-
mar generating the language { a} * mentioned above. In addition, we observe
that each context-free grammar is a specia kind of macro grammar. There-
fore, in case of bidirectional macro grammars we restrict ourselves to under-
lying macro grammars which are (variants of ) linear basic grammars.

In order to decrease the number of derivations, we can modify bidirec-
tional grammars with respect to several aspects. First, we can restrict the set
of subwords of a sentential form that can be rewritten by a rule of the gram-
mar. Secondly, we can prescribe in which order rules ought to be applied,
starting from an initial sentential form. This means that a control mechan-
ism is applied to the derivation of sentences. In that case there is a differ-
ence between whether or not we continue with the next rule designated by
the control mechanism in case the previous rule is not applicable. And
thirdly, we can exclude certain reductions from the set of rules.

3.1. Control on Grammarsand Rewriting Systems

First we discuss the notion of control. The idea of controlling the applica
tion of productions (in a unidirectional grammar) is well known. In order to
refer in an explicit way to productions of a grammar, in many grammar
models in which some control mechanism is used, a unique name or label is
attached to each production.

We can distinguish two main approaches to this subject. In an impli-
citly controlled grammar the control mechanism is incorporated in the pro-
ductions of such a controlled grammar. Contrary to this type of grammar we
have explicitly controlled grammars, in which by a separate language over
labels (or productions) the order of application of the productions is
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specified in advance.

A representative of the former type is found in the programmed gram-
mars, introduced and investigated by Rosenkrantz [Ros]. In a programmed
grammar each ( phrase-structure) production is labeled, and with each pro-
duction there are associated two set of labels Sand F. After the application
of a production to a sentential form the next production to be applied has to
be chosen from S (for Success). If a production cannot be applied, alabel of
arule to be tried next for application has to be picked from F (for Failure).
In addition, the actual application has to be performed as far as possible to
the left-side of the current sentential form (left-most rewriting).

Other typical examples of implicitly controlled grammars are matrix
grammars [Abr], state grammars [Kas|] and ordered grammars [Fri]. Also
indexed grammars [Aho] can be reckoned to this kind of grammar.

However, more abundant in the literature are explicitly controlled
grammars. This may perhaps be explained by the more general approach in
explicitly controlled grammars. Animplicitly controlled grammar induces a
subset of words over the set of productions. Due to the specific character of
the particular control mechanism, one can only obtain these subsets that
belong to restricted families of languages. In addition, the motivation for a
particular control mechanism is often rather poor [Kha744a). In case of expli-
citly controlled grammars one can specify in advance any language family
from which the control language ought to be taken. One example is the con-
trolled grammar introduced and studied by Salomaain [Sal69, Sal 70, Sal73].

In Salomaa s controlled grammars we use a phrase-structure grammar
G =(V, Z,P,S) and a contral language over the set of productions P. Con-
trol words are interpreted in two ways. In both interpretations each produc-
tion 1tin a control word ought to be applied. In the first sense, the derivation
is blocked in case this is not possible. Secondly, in a broader sense, if Ttis
not applicable, then we first check whether Ttoccursin a previoudly specified
checking set F (FOP). Only if 1t does, we continue with the next produc-
tion in the control word, otherwise the derivation is blocked. In addition,
there are no restrictions on the choice of which string in a sentential form
ought to be rewritten by an applicable production (free application).

Another grammar model in which (explicit) control languages are
used, is the one of Ginsburg and Spanier in [GinSpal. In this thesis we start
from this grammatical model.

In the model of Ginsburg and Spanier a controlled phrase-structure
grammar consists of a phrase-structure grammar G = (V, Z,P,S) and a con-
trol language C. The control acts on the left derivations induced by G. The
relation 0 g . on V' xVPis defined by



16 Chapter |

xOgLy if xOgy and there are words t,u,v,w in V5 such that x = uw,
y =utw,anduX ".

The statement x[ g y can be paraphrased as “The word y is left
derived from the word x in a single step by the grammar G”. The subscript
G can be omitted if G is known from the context. The transitive and
reflexive closure of 0 | is denoted by O {!. The language of al words over
=" which can be obtained by aleft derivation induced by G is defined by

Lie(G) ={wX “|SO fw}.
It iswell known that for each phrase-structure grammar G, L,(G) isa
context-free language [Mat].

To obtain controlled left derivations, we consider for each [P the
relation O [T on VPx V| defined by

xO [y if the single left derivation step xO | y is performed by the pro-
duction Tt

Let C be a control language —i.e., COP" - and ¢ be a control word in
Cwithc =1y ..., for somen (n=0). Then the relation 0 § on V-V is
defined by

(i) if c equalsthe empty word, then x 0 §x, for each x OV,
(i) otherwise, xO fy if and only if there exists words wy OV (1<i<n-1),
with
xO o0 o0 oy, 0 .
If Cistaken from alanguage family K, then the pair (G,C) is called a

K-controlled phrase-structure grammar. The language generated by (G,C) is
defined by

Lit(G,C) ={wX "|OcOC. SO fw}.

Example3.1.1. Consider the phrase-structure grammar G =(V, Z,P,S),
whereV ={SD,#,a}, Z ={#,a}, and P is defined by

TIOZS—’#S'&E T[3:aD—>Daa,
m=S - a%x, Yy =#D - #,
=% - DS 5=S% - #

We define the regular control language C over P by
C = {om(1eTd'T) s [n21, mk=0}.

Then we have that L(G,C) ={#a”2"#\n2 1}, which can easily be
checked. O
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In [Kha74a, Khar4b] linear context-free grammars controlled by
context-free languages are investigated within this framework. [A linear
context-free grammar or LCFG is a context-free grammar in which the
right-hand side of each production contains at most one nonterminal. Furth-
ermore, LCFL denotes the family of linear context-free languages]. Khab-
baz defines the hierarchy of languages families{ L ,|n=0} by

(i) Lo=CFL,

(i) Lp+1 =CTRL(LCFG, £ ,),
where CTRL (LCFG, £) denotes the family of languages generated by . -
controlled linear context-free grammars. Then he showed that this hierarchy

is a proper one and lies in the family CSL of context-sensitive languages,
i.e,

CFL=ro0.,0£,0...0CS..

In [DusPar] it was shown that £ ; = LIND, the family of linear indexed
languages [Aho].

Greibach investigated such controlled phrase-structure grammars (with
left-most rewriting) from another point of view [Gre77]. There, for each
type of phrase-structure grammar G, CTRL(G,..) is considered as an
operator on language families; so it maps a language family £ onto another
language family CTRL ( g,£). Within this framework, the results of Khab-
baz are special instances.

Besides this concept of controlled grammar introduced by Ginsburg
and Spanier, similar approaches are possible. We mention the control
mechanism on ETOL-systems, cf. eg. [GinRoz, Nie, Asv77], which can
also be applied to context-free grammars as well as to so-called high-level
(macro) grammars with outside-in (OI) derivation mode [Vog]. In these
grammatical models the application of the productions is in a paralel
fashion, rather than the strictly sequential left-most derivation.

Finally, the notion of control applied to rewriting systems has also
been investigated in the literature. For example, in [Chot] controlled rewrit-
ing systems are defined as a triple (P, =,R), where P is a rewriting system
over the aphabet = and R is a regular language over =. Then a derivation
relation U p | is defined by
xOpLy if xOpy and there are words t,u,v,w in =Y such that x = uww,

y =utw, v - tOPand uR.

Controlled rewriting systems generalize left derivations in a phrase-
structure grammar, since a phrase-structure grammar with left derivations
can be represented by a controlled rewriting system (P,V, Z5).
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3.2. Modesof Derivation for RCB Grammars

In our approach, a controlled bidirectional grammar is a pair (G,C) consist-
ing of a (unidirectional) grammar G =(V, Z,P,S) together with a control
language C over the productions from P and reductions induced by P.
Together with a controlled bidirectional grammar we define some modes of
derivation. In this thesis we mainly investigate controlled bidirectional
grammars provided with aregular control language.

For a context-free grammar G = (V, Z,P,9), let P be the set of reduc-
tionsinduced by P, i.e.,

P ={m|nP},
wherefor each tequal to A - o therule Ttisdefined by o — A.

Definition 3.2.1. A regularly controlled bidirectional grammar or RCB
grammer (G, C) consists of

e  acontext-free grammar G = (V, Z,P,S), called the underlying context-
free grammar of (G,C), and

° aregular language C over PO P. The language C is called the control
language of (G,C).

Recall that amember of PO P iscalled arule of (G,C). O

The modes of derivation under consideration are constructed from
three submodes, each of which has two possible instances. With each mode
of derivation m we have a corresponding derivation relation O . Using
these derivation relations O , we define with each RCB grammar (G,C) an
RCB/m language L,(G,C). Then a language L(G,C) is said to be gen-
erated by an RCB grammar (G, C) under mode m, or — in other words — by
an RCB/m grammar.

The first submode is application from the right. This submode restricts
the way of selecting the substring in a sentential form which ought to be
rewritten by the current rule in the control word. With respect to this sub-
mode we distinguish two mode instances, RS and RA.

Definition 3.2.2.

° Let a beastring in VP and r arulein PO P. In the right-most string
or RS- mode the right-most occurrence of the left-hand side of r is
selected as the string that ought to be rewritten, under the condition
that the string to the right of this occurrenceisin ="

° Let o beastringin V2 and r arulein PO P. In the right-most applica-
ble or RA-mode the right-most occurrence of the left-hand side of r in
o is selected as the substring that has to be rewritten. O



Introduction 19

Note that in Chapter 11, I11, and IV two dlightly different submodes are
defined. However, the results obtained are similar; cf. Chapter IV Section 5
for adiscussion of the differences.

As an example, in the string Baa, the rule a — A can only rewrite the
right-most a under RS-mode, viz., Baall &g’ ABaA. This also holds under
the RA-mode. The rule a - A is not applicable to the string aBA under
RS-mode, but it does under RA-mode, viz., aBAO & AABA. So we have
that

aBAO &~ AR - apaRy,

Remark that a derivation like aB [ ﬁ‘f AaBA, where m equals RS or RA, is
consistent with Definition 3.2.2.

The RA-mode as defined in our bidirectional grammar model isin fact
the direct incorporation of right-most rewriting into Thue systems. In
[NarOtt] a similar mode of rewriting has been defined for Thue systems. It
will be clear that the RS-mode, when restricted to (unidirectional) phrase-
structure grammars, is the right-most analogue of left-most rewriting in
phrase-structure grammars. The choice for selecting the substring to be
rewritten from the right end of the sentential form is of course arbitrary. An
approach based on selecting from the left end is aso possible and yields
similar results. We see that in studying bidirectional grammars together
with right-most rewriting and the concept of control, we work in the tradi-
tion of [GinSpa].

The second submode is concerned with the continuation of the deriva-
tional process in case this process is confronted with a non-applicable rule
during the application of a control word to an initial sentential form. We
investigate two natural instances.

In the block mode (B-mode) the derivation is stopped in case the
current rule in the control word is not applicable. Then the application of
this control word will give no contribution to the set of sentential forms. In
the skip mode (S mode) we discard the non-applicable rule, and try to apply
the next rule in the control word. It follows that in S-mode the application
of a control word to an initial string always will result in some sentential
form. Note that the B and S-mode coincide in the approach of Salomaa
[Sal69, Sal70, Sal73] with a checking set F equa to 0 and V-2, respec-
tively. In addition, notice that in the approach of Ginsburg and Spanier the
B-mode is used. So, our approach is a combination of the approaches in
[GinSpa] and [Sal69, Sal 70, Sal73].

The third submode arises from the following consideration. In the set
of productions P of a context-free grammar G = (V, Z,P,S) we distinguish
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productions of the form A _ 1, with T[X Y, from productions of the form
A - o, with o OV"- 2" These productions are called termina and nonter-
minal productions, respectively. Consequently, in the set of rules P P of
an RCB grammar G = (V, Z,P,S), reductions associated with terminal pro-
ductions are called terminal reductions.

Obviously, termina reductions — considered as independently intro-
duced rewriting rules, i.e., independent of the associated terminal produc-
tions — do not fit in the concept of phrase-structure grammar; cf. Definition
2.1.2. So the strict distinction between terminals and nonterminals, as it is
expressed in the restrictive form of phrase-structure grammar productions, is
lost. As a consequence, we obtain a Thue system to which a control
mechanism is applied, and in which we only distinguish a special — terminal
— aphabet. We remark that in such a controlled Thue system the adjective
“controlled” ought to be distinguished from “controlled” as it is used in the
controlled rewriting systems defined by Chottin [Chot].

Now, the third submode consists of alowing only certain types of
reductions from the set of rules. It is likely that this will influence the gen-
erating power of (controlled) bidirectional grammars. We study two sub-
mode instances, motivated by the observations on terminal reductions men-
tioned above.

First, in the general mode, abbreviated by g-mode, each reduction is
allowed, i.e. the control language is included in (P |5)D. Secondly, in the
fair mode, abbreviated by f-mode, we only allow nonterminal reductions.
We call this submode instance fair for it respects the distinction between ter-
minals and nonterminals. Then we are dealing with controlled phrase-
structure grammars of a specia kind. By fair reductions we mean reductions
of theform o — A, 6 OVP-2". The set of the corresponding fair (or nonter-
minal) productions is defined by P; ={A - ¢ OP|c OV -3". Then we
can assume without loss of generality that the (regular) control language of
an RCB grammar provided with the fair mode is included in the set
(PO Py)™ cf. Section 2 of Chapter I1.

Now we combine instances of submodes to form composite modes, or
modes for short. Each submode has two instances so that we can form eight
modes. These are RS/B/f, RSB/g, RS/S/f, RS/S/g, RA/B/f, RA/BI/g,
RA/S/f, and finally RA/S/g. Furthermore, we use the following convention.
If we do not specify one or more submode instances, then we assume that in
each position of “../../..” both of the corresponding possible instances are
involved. For example, “RS/f-mode’ means “RS/B/f and RS/S/f-mode’”.

With each (composite) mode m and each rule r in P[J P we define a
derivation relation.
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Definition 3.2.3. Let m be the mode a/B/y and let r be a rule. Then the
derivation relation O §, over V™% /P is defined by

xO apyY

if  either r is applicable to the string x with respect to a and y and the
resultisthe string y,

or r is not applicable to x with respect to a and y, and moreover 3 =S

andx =v. O

The definition of the relation O §,, where ¢ O(P O P)", can be derived
in a straightforward way from the definition of O |,;; cf. p. 16. Then the
language generated by the RCB/m grammar (G,C) - i.e., the RCB grammar
(G,C) under mode m - is defined by

Ln(G,C) ={wX "|OcOC.SO w}.

To show the differences between the various modes we present the fol-
lowing example of an RCB grammar (G, C) that yields for each mode a dif-
ferent language.

Example 3.2.4. Consider the RCB grammar (G,C), where G = (V, Z,P,S),
withV ={SAB,D,E,a,b,d,e}, = ={a,b,d,e} and P consists of

T =S - AaBe, ;=D - d,
™=A - a, ;=D - aB,
T[3:A—>b, T[7:E—>e,
=B - b, Tgs=E - d

Define the control language C by
C= {T[l}{HZ!ﬁ?}{T'éi;[G}{;[ZlTM!TES}{T[Sl)\}-

We observe that C consists of 24 (=2[2[3[2) control words. This
control language C derives, when applied to G, for each mode m a different
language. All these languages are listed below, where we only show those
derivations that yield terminal strings. In addition, we assume that T has
already been appliedto S.

e Lpspi(GC)=0.

In each control word in C, the occurrence of T, or Ty causes blocking.
e  Lggp/y(G,C)={babd}.

Now Tt is allowed, and we have the derivation

AaBe[] " AaBE [0 ™ AaBdJ ™ Aabd O ™ babd.
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*  Lggg(G,C) ={bde babe}.

Non-applicable rules can be skipped. This gives us the following
derivations.

AaBe [l (™™ AaBel] ™ AaBe ] ™ Aabel] ™babe,

and
AaBe [ "™ agaBel] ™ ADe ] ™ Adel] ®bde.

e Lrsisg(G.C) = {babd,bde,babe}
By coincidence, we have Lgs;s/q(G,C) = Lrsig/g(G,C) U Lrs/s/t (G, C).
e  Lrami(G,C)={ade}.

Now the occurrence of T, in each control word from C is applicable,
and we obtain

AaBe[] ™®aaBel] ™aDel] ™ade.

e Lrapig(G,C)={babd,ade}.

In addition to all words from Lras/t (G,C) we have under this mode
the derivation

AaBe[] ""AaBE [0 ™ AaBdJ ™Aabd ] ™ babd.

° Lrassif (G,C) ={ade,bde,aabe, babe} .

Skipping rules gives the following additional derivations, when com-
pared with Lga s/ (G,C).

AaBe[] "AaBe ™ AaBel] ™ Aabel] " babe,
AaBe[1 ™ AaBel] ™ ADe[] ™Adel] " bde,
AaBe[] ™®aaBel] ™aaBel] ™aabe.

° Lrassig(G,C) = { bade, aabe, babd} .

Apart from the derivations of each word from Lra/g/4(G,C) we havein
addition

AaBe[] ™aaBel] ™aaBell ™aabe. O

3.3. RCB Extended Linear Basic Grammars

In case we replace the underlying context-free grammar of an RCB grammar
by a macro grammar, we obtain a regularly controlled bidirectional term
rewriting system. In this thesis we will concentrate on linear basic



Introduction 23

grammars as the underlying grammar. This is due to the fact that context-
free grammars are a special kind of macro grammars, and that for some
modes m the family of RCB/m languages is equal to the family of recur-
sively enumerable languages. Recall that LB is incomparable with CFL
[EhrRoz]; so taking linear basic grammars as underlying grammars may
result in new, interesting language families.

As a generalization of linear basic grammars “extended linear basic
grammars’ (or “elb grammars’) have been introduced. Starting from [Dow]
where the words w, wq,...,w, in the standard linear form have been
replaced by finite languages over ~ [0{ X4, ...,X,}, via[EngSchVanL] where
regular languages have been used instead of finite languages — however,
resulting in no additional generating power — the ultimate extension possible
in this way of generalizing the concept of linear basic grammar was defined
in [AsvEng79] in which K-elb grammars have been introduced by replacing
each word w, wyq, ..., W, by a language from a given, arbitrary family of
languages K. The precise definition of this latter grammatical model is as
follows.

Definition 3.3.1. Let K be afamily of languages. An extended linear basic
K grammar or K-elb grammar isa6-tuple (®,¥,2,X,P,S) where

. ® isaranked alphabet of nonterminals,

° Y isaranked aphabet of language names,

° > isaterminal alphabet,

° Xisafinite set of variables,

° S[®  isthe start symboal,

° P isafinite set of productions. Each production has one of the follow-
ing forms.

AlXy, .. %n) = B(W (X)), - W(X), (i)

where Al® ,, (n=0), B[® | (k=1), and X is the abbreviation of x4,
. Xp. Thus ¥ , (1<i<k). If A=S then production (i) is a so-
caled initial production.

AXq, - X)) = W(Xg, -e 0 X)), (i)
where Al® —{S} andp @ ,.
W (X1, .-+ ,%) - Lo, (iii)

where @ , and LoO(Z O{Xq, ...,%}) isalanguagein K.

Moreover, we require that for each language name  from W there is
exactly one production of the form (iii) in P. O
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We apply the same conventions on notation as we did in Definition
24.2,i.e,thelist x4, ...,X, consists of distinct elements of X, the sets ®, W,
2 and X are mutually digoint, variables and terminals have rank zero, and if
Aiisan element of either ® or Wy we write A instead of A().

In Definition 3.3.1 we demand that k=1 in a production of the form (i),
wheresas in the original definition in [AsvEng79] k>0 is permitted. How-
ever, we obtain no loss of generality; cf. Section V.2.

Notice that each word w, wq,...,wy in the standard linear form is
replaced by a language name W(X1,...,%1), Wi(X1, ..y Xq)s -o-s
We(Xq, ...,X%q), respectively. These language names constitute a specia
ranked alphabet. We associate to each language name () a unique produc-
tion of theform Y (x4, ...,%,) - Lo, where Ly isalanguage from the family
K with Lo O(Z0{X1,...,X%.})". Asin [Asv78, AsvEng79] this approach
allows us to make a distinction between Ol and 10-derivations in a natural
way. In particular, this implies that for many instances of the family K, the
generating power of K-elb grammars depends on the mode of derivation.

The relation of K-elb grammars with macro grammars can be obtained
in a natural way when we treat a K-elb grammar G = (®,W,%,X,P,S) as a
macro grammar G' with a countable (rather than afinite) number of produc-
tions. Viz., let G’ be the macro grammar (® W ,Z,X,P’,S) where the
(countable) set P’ of productionsis determined by G as follows.

(1) Each production in P of the form 3.3.1(i) or 3.3.1(ii) isalsoin P'.

(2) For each production Y (X1, ...,X,) — Lg of the form 3.3.1(iii) in P, P’
contains the (countable number of ) productions
PY(Xq, ..., %) - WforeachwinLg.

Now we can provide this countable macro grammar G’ with either the
Ol-mode or with the 10-mode of derivation. In this indirect way one can
define a K-elb grammar with the Ol or 10-mode of derivation. Viz., an
(m,K)-elb grammar G is a K-elb grammar provided with the mode m if the
corresponding G’ is an m-macro grammar with a countable set of produc-
tions. The language L(G) generated by G is defined by Ly,(G) = L (G').
The set LB,(K) denotes the family of languages generated by (m,K)-elb
grammars.

We illustrate the concepts defined above by the following example.
Let FIN be the family of finite languages.
Example 3.3.2. Consider the (m,FIN)-elb grammar G defined by G =

(CD!LIJ121X’P!S)! where ® ={81A}1 W ={lIJ01l-|J11LIJ2!qJ31L|J4}! X :{va}v 2=
{0,1} and P consists of the productions

TTOZS_’A(L'JO!'“IJ].)! T[4:l-pl —’{011}7
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T =AKY) - A(W(xY).Ws(xy)), T =Ua(xy) - {y},
T =AXY) — Yalxy), T = Wa(x,y) — {yx},
T[3=LIJO - {011}1 T[7='~IJ4(X1y) - {y}
One can verify that
(i) Lio(G)=0{hy(Lo)|uVvZ },
where for each u,viZ the length-preserving homomorphism hy,:% - Z is
defined by h,(0) =u and h,(1) =v. Thelanguage Ly equals

{1, 10, 101, 10110, 10110101, 1011010110110, ...... },

which is the set of Fibonacci words over the aphabet {0,1}. These Fibo-
nacci words are given by the sequence f: IN — = defined by

fo=1; f1=10; fo+o=f,41fq, foreachn (nz=0).
(i) Loi(G)=0(Lo)=0{{0,|n>1},
where the length-preserving substitution ;= — 2* is defined by ¢ (0) = =

and 0(1)=%. And F, is the nth Fibonacci humber; i.e., Fqg=0, F{ =1,
Frnio =Fn+ Fnh4q foreachn (n=0).

In proving (i) we first observe that for all wy, w,X ” we have

AWwq,Wp) O 15 A W2, Wow) 6h)
and
Awq,W,) 0 187 Ws. (2

These subderivations can be used to prove by induction that
A0,)0 % f,, foraln (n=0), 3)
whered, = (M TET;)" LTy, for al n (n=0).
It is straightforward to show that
{wX Y|A(0,1) 0 dw} =Lo.

Then it follows that for all u,vX ,
{WIX "|A(u,v) O Hw} = hy(Lo).

Property (ii) easily follows from the former, considering the linear
character of G. O

We define regularly controlled bidirectional (m,K)-extended linear
basic grammars, or (m,REG,K)-belb grammars, by a tuple (G,C, ¢), where
G =(9,¥,z,X,P,S) isan (mK)-elb grammar. The symbol ¢ does not occur
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in ®, W, ¥ or X. We use ¢ in order to define P, the set of reductions
corresponding to productionsin P. We associate with a production 1tin P of
the foom P (X ) - Lo — cf. Definition 3.3.1(iii) — i.e., a (countable) set of
productions { (X ) - t|tOLg}, a corresponding set of reductions, defined
by {t - W(y1,....Yn) [tOLo}, wherey, is equal to x; in case x; occursin t,
and otherwise y, equals the symbol ¢ (1<i<n). Note that (v, ...,Yn)
depends on t. This set of reductions is also denoted by Tt or even by
Lo — W(X ). Notethat Lo = O implies that both Ttand Ttare empty.

For example, let Ttequal Y (X,y,z) — {axaz, yz}. Then 11 denotes the
set {Y(xy,2) - axaz, Y(x,y,z) - yz}, and the corresponding set of reduc-

tions is {axaz —» Y(x ¢,2),yz - Y(¢y,2)}. Therefore the reduction Tt
associated with 1tis denoted by {axaz,yz} - Y (Xx,y,2).

If Ttis of the form 3.3.1(i) or 3.3.1(ii), then Ttis defined by the rewrit-

ing rule B(Yy(X),...,0(X)) - A(X) and Y(X) - A(X), respec-
tively. Then P isdefined by P = {t| 1 [P} asusual.

Finaly, Cin (G,C, ¢) isaregular control language with CI (P O P)".

In Chapter V (m,REG,K)-belb grammars are provided with a deriva
tion mode which corresponds to RS/B/f-mode defined for RCB grammars.
The resulting grammars are the so-called (r, f, m,REG, K)-belb grammars.

Example 3.3.3. Consider the (r,f, OI,REG, ONE)-belb grammar (G,C),
where ONE equals the family ONE of all languages consisting of one word,
together with the language U, or formally, ONE = ONE{O}. We define
the (OI,ONE)-elb grammar G by G =(®,¥,{0,1},X,P,S), with X ={x},
® ={SAB,D}, ¥ ={W,Ps,W3,Ws,Ps}, and P consists of the productions

H=S - A(Yy), =B - Y,

T =AX) - A(P2(x)), =B - D(Wy),
T =A(X) - W3(x), g =D (X) - W4(x),
3 = P3(x) - {x}, Ty = Yy(x) — {Ox},
Ty = Pa(X) - {xx}, Ty =D (X) - Ws(X),
5 =Y — {1}, T4y = Ys(X) - {xO}.

First, astring A(Wo(...(Wa(Wq))...)) is generated, with n occurren-
ces of the language name ), (n=0). Then by the productions 11, and 15, fol-
lowed by a sequence of productions 1y, we obtain a string with two language
names J; at the right end. After each of these Yi;’s has been rewritten into
terminal strings in 0”10, we continue to apply productions 1. This yields
again two ;’s from which strings in 0710" can be derived. This continues
until acompletely terminal string is obtained. The total number of language
names ; that show up during this derivation equals 2".
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Each y; generates some string in 0510? by the following sequences of
rules. Letcq =Tk, C» = THTHTRT, and C3 = TETHTETY,. Then

W10 o, Wi0 7% 00wy, and W0 /% o ;0.

As t_he control language we take the trivial control language, i.e.,
C=(POP)". Wehave

L 1 0(G,C) ={w D{O,l}D\the number of 1'sinw is apower of 2},

which can easily be checked. Cf. [Fis68a], where it has also been proved
that this language can be generated by an Ol-macro grammar but not by an
IO-macro grammar. O

4. Outline of Chapters!l-VII

Instead of the RS-mode the dightly different RN-mode is introduced in
Chapter 11-1V, and instead of the RA-mode the related RO-mode is studied.
However, the results we have obtained in studying the RN and RO-mode
rather than the RS and RA-mode hold for the RS and RA-mode as well; cf.
Chapter 1V, Section 5. Therefore, in this section we present our results of
the Chapters I1-1V in terms of the RS-mode and the RA-mode.

4.1. Regularly Controlled Bidirectional Grammars

In Chapter Il we investigate RCB/m grammars, where m ranges over various
modes of derivation. First, it is shown that for each mode m, the family of
RCB/m languages includes the family of context-free languages ( Proposi-
tion 11.2.4(1)). In addition, if m equals the mode RS/B/f, then it is shown
that the family of RCB/m languages precisely equals the family CFL of
context-free languages ( Proposition 11.2.4(2)).

Section 11.3 is devoted to establishing closure properties of the families
of RCB/m languages. First, the closure properties of the family of
RCB/RS/B/f languages needs no further investigation, since this family is
equal to CFL. Concerning the other modes we have the following results.

° The families of RCB languages are closed under (marked) union.

° The family of RCB/RA/B/f languages and the family of RCB/RS/S/f
languages are closed under marked concatenation, marked Kleene +,
and marked Kleene O

° The family of RCB/RA/S/f languages is closed under marked concate-
nation.

° The families of RCB/RA/f languages are closed under concatenation.
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° The family of RCB/RA/B/f languages is closed under Kleene +, and
Kleene [

With respect to the families of RCB/RA languages we have that these
families are

° closed under intersection with regular sets,
° closed under context-free substitution,
e  closed under inverse homomorphism.

As a corollary, the family of RCB/RA languages is closed under
homomorphism. Furthermore, we have the following.

° The family of RCB/RA/B/f languagesis closed under substitution.

In establishing these results we use classical proof methods, however,
combined with special arrangements in order to handle the presence of
reductions, control languages and rewriting from the right (either RA or RS).
A typical example is the proof of the closure of the RCB/RA/B/f language
family under substitution.

In Section I1.4 we establish a norma form theorem for RCB/RS/B/f
grammars. For context-free grammars we have the well-known Chomsky
Normal Form (CNF). With respect to RCB/RS/B/f grammars we introduce
the weak Chomsky Normal Form. A context-free grammar G = (V, Z,P,S)
is in weak CNF if each production in P is either of the form A - XY or
A - a,whereXandYareinVandaX O {A}. Recall that inthe usua CNF
the symbols X and Y ought to bein V-2Z. Now an RCB/RS/B/f grammar is
in weak CNF if its underlying context-free grammar is in weak CNF. We
show that each RCB/RS/B/f grammar can be transformed into an
RCB/RS/B/f grammar in weak CNF that generates the same language.

The most interesting result of Section 11.5 is the existence of a very
simple normal form for RCB/f grammars which have a left-linear [or linear]
context-free grammar as their underlying grammar. We show that each such
LLRCB/f [LRCB/f, respectively] grammar can be transformed into an
equivalent LLRCB/f [LRCB/f, respectively] grammar that has the following
properties. Its nonterminal alphabet consists of one symbol only, and each
control word in the control language ends with a terminal production.
Finally, in Section 11.6 we generalize our results to controlled bidirectional
context-free grammars with control languages from an arbitrary family of
languages, rather than from the family of regular languages.
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4.2. Time-Bounded Regularly Controlled Bidirectional Grammars.

In Chapter I11 we continue our investigation of RCB grammars. We observe
that in an RCB/m grammar (G,C), where G =(V, Z,P,S), there may be
sequences of rules ¢ such that for some words w over V, we have that
w 0 fw. Consequently, if we have astring d over PO P with SO 4w, and a
string e over PO P such that all strings of the form dc"e are in C, and
SO %w with wiX  then it is hard to construct a parser or a recognizer for
this RCB/m grammar that terminates for each input string. It is unclear
whether or not it is possible to transform in an effective way an RCB gram-
mar into an equivaent RCB grammar without such “cycles’ in the control
language. At this moment no such transformations — which may yield a
linear or a polynomial bound on the length of the derivation — are known.
The construction of these transformations will probably depend on the mode
of derivation under consideration.

In order to get round this unsolved problem, we use the idea of time-
bounded grammar to obtain a bound on the derivation length which only
depends on the length of the derived sentence by means of some bounding
function. Let (G,C) be an RCB/m grammar. We first define a partial func-
tion tg,cy from V" to IN which assigns to a string w the length of the shor-
test control word that derives w by (G,C), if such a control word exists.
Then we define the time function T g ¢ of an RCB grammar as the function
from IN to IN which assigns to every n[IN the maximal value of t g cy(w)
over all strings w from 2" for which there exists a control word ¢ with
SO “w. If thereis no such string, T g c)(n) will be undefined. Furthermore,
a function @:IN - IN is referred to as a bounding function of (G,C) (or
(G,C) is bounded by ¢) if for any natural number n, if T g cy(n) is defined
then T (g cy(n) < @(n).

Time-bounded grammars have originaly been introduced in [Gla] to
describe the derivational complexity of genera phrase-structure grammars.
In [Boo71] bounding functions have been used to generate particular
language families; thus Chapter 111 may also be considered as an extension
of [Boo71].

In this framework it is now possible to write parsers for ¢-bounded
RCB/m grammars (G, C) in the following way (mis any mode of derivation).
We parse the input string wiX Y with n =|w | in a bottom-up way (which is
forced by the mode of derivation which will rewrite at the right-hand side of
astring), following in reverse the control language C. We increase a counter
each time we can apply arule (i.e., a production or a reduction) according to
this control language C. As long as this counter does not exceed @(n) we
perform the normal parsing actions [AhoUll, Sud], (however, with some
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extensions, due to the fact that we have to deal with reductions in the control
language as well); otherwise we have to backtrack. Now the fact that (G,C)
is bounded by ¢ guarantees that after along enough but bounded backtrack-
ing process, the parser can decide whether or not w is an element of
Ly(G,C). For each mode m, the time and space complexity turn out to be
exponential and linear in @?(n), respectively.

Section [11.2 contains the definition of time-bounded RCB grammars,
together with some properties and examples. Here we restrict ourselves to
RCB grammars (G,C) in which the underlying grammar G has no A-
productions. These grammars are referred to as ARCB grammars. For each
class @ of bounding functions we define ®,,, as the family of languages gen-
erated by ARCB grammars under mode m which are bounded by bounding
functions from ®. For ® we will mainly take POLY, POLY (k) and LIN
which are the families of polynomial functions, of polynomial functions up
to degree k and of polynomial functions of degree 1 (linear functions),
respectively, all polynomials having coefficients greater than or equal to
zero.

Section 111.3 is devoted to some closure properties of a few families
®,,. Depending on the mode of derivation we can show the regular closure
properties (union, concatenation, Kleene +), intersection with a regular set,
A-free context-free substitution and substitution. In this section we also
establish aweak CNF for bounded ARCB grammars for one particular mode.

In Section 111.4 we construct parsers for ¢-bounded ARCB/m
languages. These constructions are performed for a few characteristic
modes. The worst-case time complexity of the parser for the RN/B/f-mode,
which induces the smallest language family, is already exponential. Finaly,
Section 111.5 contains some concluding remarks.

4.3. Generating Power of RCB/RA grammars.

In Chapter IV we investigate the generating power of RCB/RA grammars.
Actually, RCB/RO grammars are investigated; cf. Section IV.5. We show
that the (four) families of RCB/RA languages are all equal to the family of
recursively enumerable languages. Thisis obtained by simulating some Tur-
ing machine, by an RCB/RA/B/f grammar (G,C). The idea is to simulate
each step of the Turing machine computation by a sequence of a single
reduction followed immediately by an associated production. Actualy, the
control language C of the constructed RCB/RA/B/f grammar can be the
trivial one, viz., C = (PO P)".

In Section 1V.4 we have tried to incorporate the ideas of Section V.3
into a possible proof of the conjecture POLY = NP, where POLY is as
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defined in Chapter 111 and NP is the family of A-free languages acceptable
nondeterministically in polynomial time. This attempt gave no final results,
leaving the conjecture unresolved.

Finally, in Section V.5 we discuss the differences and correspon-
dences between the modes RA and RS defined in Chapter | and the modes
RO and RN defined in Chapter 11.

4.4. Regularly Controlled Bidirectional Extended Linear Basic Gram-
mars

In Chapter V we introduce bidirectional regularly controlled (m,K)-elb
grammars or (m,REG,K)-belb grammars. In Section V.2 we formally define
for (m,REG,K)-belb grammars the RS/B/f-mode of derivation. We call the
resulting grammars (r, f, m, REG, K)-belb grammars.

Closure properties of the corresponding family RBLB; ¢ (K) are esta-
blished in Section V.3. It is shown that for both modes Ol and 10 and under
weak assumptions on the family K, the family RBLB; ; »(K) is closed under
the regular operations (union, concatenation, and Kleene +). Furthermore,
we establish that if K is anontrivial family of languages closed under ngsm-
mappings, then RBLB; ; o(K) is a full substitution-closed AFL. We also
proof — under appropriate conditions on K — that the family RBLB;  |0(K) is
closed under intersection with regular languages and deterministic substitu-
tion; hence this family is a full QAFL (in the sense of [AsvEng79]) closed
under deterministic substitution.

Section V.4 is devoted to determining the language generating capacity
of (r,f,m,REG,K)-belb grammars. We show that the language families
RBLB; o (LNE) and RBLB; ; o (Ol) are equal to the family OI of OI-
macro languages, and that the family 10 of 10-macro languages is included
in the family RBLB; ; |o(ONE). Moreover, we show that the family Ol is
unequal to the family RBLB; 1 o(CNE).

In Section V.5 we study (m, REG, K)-belb grammars provided with free
application of rules, maintaining the restriction of alowing fair reductions
only . Then we show that the family of languages generated by these so-
called (f,m REG,K)-belb grammars equals the family of recursively enu-
merable languages.

4.5. Regularly Controlled Bidirectional Linear Basic Grammars

Linear basic grammars can also serve as underlying grammars in the frame-
work of (regularly) controlled bidirectional grammars. In Chapter VI we
define regularly controlled bidirectional linear basic grammars as a tuple
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(G,C, ¢), which consists of a linear basic grammar G = (®,2,X,P,S); cf.
Definition 2.4.5, a symbol ¢, and a control language C over P P, where P
is defined analogously to the case of (m REG,K)-belb grammars. Il.e, if Tt
equals a production Y (X4, ...,X,) - tin P, where t is either a term of the
form B(wq,...,Ww) or a string w in (Z0X)", then T is defined by
t - Y(Xq1,...,%,), Wherey; isequal to x; in case x; occursin t and otherwise
y; equals ¢ (1<i<n). Then P is defined by P ={m|tCP}. The resulting
grammars are called (m,REG)-blb grammars.

We study (m,REG,K)-blb grammars under the RS/B/f-mode, which
results in (r, f, m,REG)-blb grammars, or ( f, REG)-blb grammars, as will be
explained in Section VI.2. We present some interesting examples of
(f, REG)-blb grammars and show that each recursively enumerable language
L o over some alphabet = can be obtained by intersecting some ( f, REG)-blb
language (over an alphabet I with ' (Z ) with ="

4.6. Concluding Remarks

In the final Chapter VII we draw some conclusions from the results
presented in this thesisin Section VI1.1. Some applications are discussed in
Section V1.2, and in Section VI1.3 we suggest some interesting topics for
further research.

4.7. Historical Remarks

Chapter Il — VI of this thesis and the appendix have appeared in various
media, sometimes in a dightly different form. These chapters differ in their
introduction from the origina publication. Some other chapters have
(dlightly) modified sections too, as compared with their first, original form.

Chapter |1 — Regularly controlled bidirectional grammars — stems from
the paper [Hog89a] with the same title published in Internat. Journal of
Computer Math. In its present form, Sections 11.3 and 1.4 contain some
additions, and Section 11.5 has completely been rewritten. The main results
of this chapter also appeared in [Hog884].

Chapter 111 will be published in nearly the same form in Internat. Jour-
nal of Computer Math. (to appear). Chapters IV and V originate from two
reports of the Department of Computer Science, viz. [AsvHog], which was
written together with Peter Asveld, and [Hog89b], respectively. Chapter VI
appeared as[Hog90].

Finally, an earlier version of Appendix A has been published in
P.R.J. Asveld & A. Nijholt (Eds.): Essays on Concepts, Formalisms, and
Tools (1987), C.W.I. Tract no. 42, Centre for Mathematics and Computer
Science, Amsterdam [Hog884].
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Controlled Bidirectional Grammars

1. Introduction

In this chapter we investigate RCB grammars, i.e., context-free grammars
the rules of which can be used in a productive and in a reductive fashion,
where the application of these rulesis controlled by a regular language. We
distinguish several modes of derivation for this kind of grammar. The
resulting language families (properly) extend the family of context-free
languages. In Section 2 various modes of derivation are introduced. Note
that the modes used in this chapter differ from the modes defined in Chapter
I. However, the obtained results will be similar; cf. Section V.5 for a dis-
cussion of the differences.

In Section 3 we establish some closure properties of the language fami-
lies defined by RCB grammars. These closure properties consist of the regu-
lar ones (union, concatenation, and Kleene +) and closure under homomor-
phism, inverse homomorphism, intersection with a regular set, and (regular
or context-free) substitution. In Theorem 3.6 the most important results are
summarized in AFL-terminology as follows. The family of RCB/RO/B/f
languagesisafull AFL (Abstract Family of Languages) closed under substi-
tution. The family of RCB/RO/S/f languages is a full semi-AFL closed
under concatenation. And the family of RCB/RO/g languages is a full
semi-AFL.

In Section 4 we introduce the notion of “weak Chomsky Normal
Form”. Thisisavariant of the Chomsky Normal Form in which productions
of theform A - XY with Xor YIX areallowed. The main result of this sec-
tion shows that every RCB/RN/B/f language can be generated by an
equivalent RCB/RN/B/f grammar in this particular normal form.

Linear and left-linear RCB grammars — abbreviated by LRCB and
LLRCB grammars, respectively — are studied in Section 5. Besides some
closure properties of the corresponding language families, we also establish
a norma form for some modes of derivation. In this normal form an
(L)LRCB grammar has asingle nonterminal in its underlying grammar only.
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Section 6 is mainly devoted to the generalization to arbitrary control
languages rather than regular ones. In this way it becomes clear which pro-
perties of the (regular and arbitrary) control languages are needed to prove
the results of the previous sections.

2. Definitions and Examples
For completeness sake werecall Definition 3.2.1 of Chapter I.

Definition 2.1. A regularly controlled bidirectional grammar or RCB gram-
mer (G,C) consists of

- acontext-free grammar G = (V, Z,P,S), caled the underlying context-
free grammar of (G,C), and

- aregular language C over P P. The language C is called the control
language of (G,C). O

Before defining the language generated by an RCB grammar (G,C),
we first consider several modes of derivation, i.e., waysin which productions
and reductions are applied to a sentential form of the underlying context-free
grammar G, according to a word from the control language C. For each
mode m, this resultsin a particular derivation relation O ,,. Then using these
derivation relations, we will associate to each mode mthe language L,(G,C)
generated by (G,C) under mode m. Roughly spoken, a terminal word w
belongs to L,(G,C) if and only if it can obtained by means of applying a
sequence of productions and reductions from P [ P starting with S, accord-
ing to some control word in the control language C. In the sequel a member
of P P will becalled arule of (G,C).

First we introduce two ways of selecting the nonterminal symbol from
astring a in V" to which a production Tt has to be applied, viz.

(1) RN-mode: determine the right-most nonterminal symbol of a,

(2) RO-mode: determine the right-most occurrence of the left-hand side of
Ttin Q.

The choice for determining the selected nonterminal symbol from the right
end of a isarbitrary. Clearly, an analogous approach based on the nontermi-
nal symbol selected from the left end is possible too and yields similar
results. Let 1tbe aproduction from P equal to A — ¢ and let m be either RN
or RO. Now if the nonterminal selected by the mode min a particular sen-
tential form a is equal to the left-hand side A of 11, then we say — as usual —
that Ttis applicable to a, and we write app,,( T,a,3) in case B is the result of
replacing that selected occurrence of A in a by the right-hand side o of 1t
Next we call a reduction p, with p = Ttfor some 1t [P, applicable to a string
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o if there exists a string B with app,(mB,a), in case we also write
appm(p,a,B). 1t will beclear that thereis at most one such a string f3.

It may happen that in RN-mode the selected nonterminal is not equal
to the left-hand side of a production 11, and in both modes it may not even
occur. With respect to reductions, in RO-mode it is possible that, when
applied to a sentential form o, we cannot find a substring o equal to the left-
hand side of the reduction to the right of the right-most occurrence of the
nonterminal symbol, if any is present. And in RN-mode, there may be no
substring ¢ of a such that to the right of this o only terminals occur. In
these cases a production or areduction is not applicable to a sentential form.
Then we can follow two different strategies, giving us two additional mode
instances independent of the nonterminal-selecting modes. In the block
mode ( B-mode ) we do not allow to apply any rule to a once we have tried
to apply a rule which was not applicable to a. In this mode the derivation
relation O [,,g — Wherer isarule, i.e, either a production or a reduction —
holds between strings a and B over V if appy(r, a,B) holds. In the skip
mode ( Smode ) we still may apply rules to a after we have tried to apply a
non-applicable rule with respect to a and m. In this mode the derivation
relation O f,s holds between a and B, if either appy(r,a,B) or
= appm(r, a,B) o= holds. Thus in B-mode applying a rule to a string
over V may give no result, whereas in S-mode we will always end up with
some string from V",

Next we define for x (P O P)" the relation O %, which is the analogue
of O "in uncontrolled grammars. In this notation mis a combination of dif-
ferent kinds of modes, separated by /’s, for instance RO/S or RN/B. This
notational convention will also be applied to other mode instances to be
defined in the sequel. Now letx =r4...r, (n20, ;0P P for 1<i <n). Then
a0 %8 holdsif there exists strings a; OV (1<i <n-1), with

a0 mor0 o0 - apa0 mB.

With respect to applying a reduction p (p DI5) we distinguish the g-
mode and the f-mode as they are introduced in Chapter I. An RCB grammar
in f-mode is in fact a special kind of a controlled phrase-structure grammar;
cf. the proof of Proposition 2.4.(2). The distinction between f-mode and g-
mode is also important when one considers chain rule deletion and when one
studies LRCB and LLRCB grammars, i.e.,, RCB grammars of which the
underlying grammar is linear and left-linear, respectively; cf. Section 5.

Thus each RCB grammar will be provided with three different types of
modes, each of which may take one out of two values. RN versus RO, B
versus S, and g versusf. Inthe sequel we will combine these mode valuesin
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an obvious fashion which results in notations like “RN/B/f-mode”, and in
concepts as “RCB/RO/S/f grammar”. If we do not specify a mode instance
in a proposition or example, then we assume that it applies to both instances.
For example, “RN/f-mode” means “RN/B/f-mode and RN/S/f-mode”. Thus,
in principle we now have 8 different types of grammars. However, not al
these combinations of modes are equally important. Some interesting results
will be established for certain mode combinations only; cf. Sections 3, 4 and
5. Wewill return to this matter in Section 6.

For each of the concrete modes of derivation, introduced above, we can
now define the language generated by an RCB grammar under that particular
mode.

Definition 2.2. Let (G,C) be an RCB grammar with underlying context-free
grammar G = (V, 2,P,S) and control language C O (PO P)". For each mode
m, the language L., (G,C) generated by (G,C) under mode m is
Lm(G,C) ={wX "|SO ¥, w, for somexC}. O

In the following example the differences between the four possible
combinations of mode instances of two modes are shown. We study the
mode instances RO and RN together with the S-mode and B-mode, and we
show that these modes are mutually independent.

Example 2.3. Consider the following RCB grammar (G,C) with G =
({SAB,a,b},{a,b},P,S)and P consistsof T;, =S . AB, T, = A _ a, T =
B A m™m=A_- AA T5=A - b. As the control language we take C =
{cq,¢,} with ¢; = TLTRMTE and ¢, = T TLTRT,. With every combina-
tion of mode instances mentioned above, together with the g-mode, we
obtain a different language.

Lrnieig(G,C) = 0. This equality holds because in both control
words the application of 15, causes blocking.

Lrnysig(G,C) ={b}. Now T, is skipped, so we have the derivations
SO Rivssigh and SO RysigAa. -

Lro/s/ig(G,C) ={aa}. In this setting, T, is applicable. But 1y in ¢4

causes blocking, and ¢, gives SO Ro/s/ga2.
Lrossig(G,C) ={aa,ab}.  Now Ty isskipped in ¢4, and so SO gosjgab. O
The generating power of RCB grammars turns out to be rather strong.
For instance, the family of context-free languages is included in the family
of RCB/m languages, independently of the mode m.

Proposition 2.4. (1) The family of context-free languages is included in the
family of regularly controlled bidirectional languages for each mode of
derivation.

(2) The family of RCB/RN/B/f languages coincides with the family of
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context-free languages.

Proof. (1) Let G =(V, %,P,S) be a context-free grammar. Then L (G) =
Lm(G,C) for each mode m, where (G,C) is the RCB grammar with C = P".

(2) Because of (1) we only ought to prove the inclusion from left to right.
In [GinSpa] the family of languages Lo(G) generated by phrase-structure
grammars G and control languages C has been investigated. In our notation
the mode of derivation used in [GinSpa] reads LN/B where LN abbreviates
left-most nonterminal (cf. RN-mode), or even, LN/B/f since in [GinSpa] no
reductions are considered. For each RCB/RN/B/f grammar (G,C) with
G=(V,%Z,P,S) we now consider the phrase-structure grammar G'=
(V,Z,P',S) where P'= PO{a - B|B — aOP, aOVHV-Z)V} and we
modify C accordingly into C'. Then L(G,C) =L/ (G') provided in the
latter case we take the RN/B/f-mode instead of the LN/B/f-mode. By a
“right-most nonterminal” variant of Corollary 1 to Theorem 2.1 from
[GinSpa] we obtain that L/ (G'), and hence L (G,C), is context-free. O

For some concrete modes, one can easily show that the generating
power of RCB grammars increases as compared with the underlying gram-
mar. Thisfact isillustrated by the following examples.

Example 2.5. Consider the RCB/g grammar (G,C) with G =(V, Z,P,S),
V={S}x , Z={ab,c}, and P ={m, ™, 1,14, T, T4, T}, the set of pro-
ductions, defined as Ty =S - abc, =S - a, Th=S - aa, TL =S - b,
;=S - bb, l5=S - ¢, and Ty =S - cc. As the control language we
teke C = T (LT TET6Ty)". Then Ly(G,C) ={a"b"c"|n=1}, as essly
can be checked. Note that P contains only terminal productions. O
Example 2.6. [Sal73]. The language in Example 2.5 is also generated by
the RCB/RO/f grammar (Gg,Cy) with Gy =(V, Z,P,S), where ~ ={a,b,c},
V={SA,B,C}[X , and P consists of the productions ; =S - ABC, T, =
A - Aa, =B - Bb, y;=C - Cc, 5=A-a Tgx=B - b, 1=C - C.
The control language Cj is given by (1Y) 5Ty, Note that no
reductions occur in any derivation of (Gg,Cy). O

Example 2.7. The language {a"b"c" |[n=1} can aso be generated by an
RCB/RN/Sf grammar (G1,C,). Define G, =(V, %,P,S) by Z ={a,b,c},
andV =X [{A,D,S}. Theset of productions Pis{t |0<i <5} with

THh =S - abc, T, =A - abD,
m =S - abD<, Ty =A - bDb,
T, =A - bDa, 5 =A - bb.

By the regular expression T (T Ty TE)™ we define the control language
Cq. It can easily be checked that Lgyjsi(G1,Cq1) equals the desired
language. O
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3. Closure Properties

In this section we establish some closure properties of the family of
languages generated by regularly controlled bidirectiona grammars. In the
sequel of this section we assume that L; (i = 1) is alanguage generated by an
RCB grammar (G;,C;) with G; =(V;,2;,P;,S). In addition we assume that
Nin Nj =0 if i#], whereN; =V;—Z; for every i > 1.

If not stated otherwise the results in this section hold for every combi-
nation of modes introduced in the previous section. By Proposition 2.4.(2)
the family of RCB/RN/B/f languages inherits all closure properties of the
context-free languages. Therefore we mainly focus our attention in this sec-
tion to modes different from RN/B/f.

Proposition 3.1.
e  Thefamilies of RCB languages are closed under (marked) union.

e  The families of RCB/B/f languages and the family of RCB/RN/Sf
languages are closed under marked concatenation, marked Kleene +,
and marked Kleene O

° The family of RCB/RO/Sf languages is closed under marked concate-
nation.

. The families of RCB/RO/f languages are closed under concatenation.

° The family of RCB/RO/B/f languages is closed under Kleene +, and
Kleene O

Proof. Union. We construct an RCB grammar (G,C) from (G,,C,) and
(G,,C,) such that L(G,C)=L.0L,. Consider the grammar G =
(V]_D VzD{S},Z 1[2 2,P,S) where SDV]_D V2, P= P]_D PzD{'r[l,T[z}, and
=S-S5 (i =12). Define the regular control language C by C =
{m}C,0{m}C,. ThenL(G,C)=L(G,,C1)0L(G,,Cy).

Marked concatenation. Consider the RCB/f grammar (G,C) for L1#L, with
#X 1[X , defined as follows. Let G be the context-free grammar
(V, Z,P,S) whereV =V, 0OV,0{S#}, Z =%, [ ,0{#}, Sisanew symbol
not occurringin V{0 V,, and P =P 0 P,0{11p} with1y =S - S1#S,. As
the regular control language we take C ={m}C,C,. Then we have
L(G,C) = L(Gl,cl)#L(Gz,Cz).

Marked Kleene +. Define the RCB/B/f or RCB/RN/S/f grammar (G,C)
which generates (L#)", by G=(V,0{S#},%,0{#},P,S) with P=
P]_D{Tl'o,T[l}, SDVl, #IX 1, Th =S . Sl#v and M = S SS]_# Take as
regular control language C = ({14} C1)Y{m} C1. ThenL(G,C) = (L #)".
Marked Kleene 0 (L,#)" is aso an RCB/B/f or an RCB/RN/S/f language.
This follows from a simple change in the last construction; viz. define an
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additional element T, of P by T, =S - A, and take as control language C =
{m}C)Ym}CO{m}.

The corresponding “unmarked” results for families of RCB/RO/f and
RCB/RO/B/f languages are obtained in each case by considering # to be a
nonterminal instead of a terminal symbol. In addition, P is extended with
the production T =# — A. Finaly, the control languages are concatenated
(to the right) with Ty, { 7w} * and {1} 7, respectively. O

The well-known proof to show closure under concatenation does not
work for RCB grammars. Viz. consider the RCB grammars (G4,C;) and
(G2,C2) where Gy =(V1,21,P1,S1), G2=(V2,22,P2,S;), Z;={ab},
\A :{Sl,A,B}[Z 1, Vo :{Sz}[z 2,22 :{b} The rules of P, and P, are

P1 P2
Ty S; - AA THq S, - b
T4 B - Ab
T3 A a
Ty B-b
Ths A-B

whereas Cy ={Ty1 T3 T4 TusThg, Th1 ThaTysTyoTha} and Cp ={my} are
the control languages. To generate L (G1,C1)L (G,,C,) we can simply take
as a candidate the grammar (G,C) with G =(V, 2,P,S), V =V, 0V,{ S},
2= ,,P=P0P,{mg}, wherey =S - $;S, and C ={my} C,C;4.
However, we do not reach our aim with this construction. For it is easy to
see that Ls(G1,C1) ={ba,aba}, and Lrn/s(G2,C2) = Lrnis(G2,C2) ={b},
but Lrn/s(G,C) = {bb,abab}.

Analogous counterexamples to show that these closure properties hold
for certain modes only can easily be constructed.

Proposition 3.2. The families of RCB/RO languages are closed under inter-
section with regular languages.

Proof. Let L;=L(G4,C;) and R be a regular language, and let
(Q, Zr,0,q0,F) be a deterministic finite automaton which accepts the rever-
sal of R, We construct an RCB/RO grammar (G,C) with G =(V, Z,P,S)
such that L;n R=L(G,C). The set of nonterminals N will be defined as
follows. N contains two new symbols Sand Z (S§Z0V,4) and al triples of
the form (u,A,t) where u,t 0Q and ACV,O{A}. To complete N we add a
symbol A; for every alX ;[0{A}. The set ¥ of terminas of G equals
21n Zg. In order to define P we use the following notational conventions.
For each x OV, with X = X5 ... Xy, (M=0), 0V, (1<i<m), we define

X ={(P0,X1,P1) - - - (Pm=1,%m:Pm) |Pi0Q, 0<i<m},
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N={(Po.\.p1) |Po.p10Q},

and for every p,qin Q
%5 = {(P.X1,P1) .- (Pm-1.%m. ) | P OQ, 1i<m-1},
X ={(p. L))

We denote an element from X by X(po,...,Pm). Consider for every
T=A > ainPq,

Pr={(pAQ) -t
and for every al@ {0O0{A},
Pa:{(paaaQ) - a pquQv 6(q!a):p}

Because P, =0 whenever alX ;-%, we define Py = {P,|aX 0 {A}}.
Now we define the set P of productions of G by

P =Po0P:0P:0Ps O 0{Py|mP}

p.q0Q, t@g}

where
PO :{S - Z(U,Sl,qo)‘UDQ},
Pe={Ay - Z(uat)|u=05(a), udF, alX ;0{A}},
Pe ={Ay - alal@Z O {A}}.

Consider the finite substitution o: P,0P; — 2PIP) defined by o (11) = P,
and o (1) = Py, for each T [P;. Finaly, we define the control language C
by C =Po0 (C1) PePeP¥.

The fact that (G,C) exactly generates L1 n Ris shown as follows. Let
T =PePeP¥ and let wOL (G,C). Then there exist y0Pg, d@ (C;) and
t OT such that SO ggtw. Applying 1 Yields that there are p0Q, d o (C1)
and t OT, such that Z(p,Sy,q0) 0 &w. From the definition of o (C,), thisd
yields p,p1,-.-,Pm-1 in Q such that there exist tOT and vOL; with
Zv(p,p1, .-, Pm-1,00) O kow. Following the definitions of Pg, Pg and P¥,
we see that thisimplies that pOF, v =wand wlL;n R. The second part of
the proof is obtained by traversing this argument in the opposite direction. [

Proposition 3.3.
(a) The family of RCB/RO/B/f languages is closed under substitution.

(b) The families of RCB/RO languages are closed under context-free substi-
tution.

Proof. (a) Let L1 =L (G4,C1) be an RCB/RO/B/f language and let ¢ be an
RCB/RO/B/f-substitution 0:5; — 2. Assume that 5; ={ay,...,an}.
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Then for each alX ,, there exists an RCB/RO/B/f grammar (G,,C,) with
Gz =(Va,2,P4,S) such that L (G,,C,) =a(a). We assume that for every
alX 3, NynVa=0 and that N n Ny =0 if i#] for every 1<i, j<n.
Define alphabets A={S, ,...,S} and Q={Z,,...,Z,}. Furthermore,
consider an isomorphismi :V; — N;[Q defined by

i(A)=A foreach Ain Ny,
i(@)=2, foreachain Z;.

Let U={A - a|AON3,ad(N;[Q )7}. Then we introduce a control set
T=0{Cs]a 1} and a homomorphism h:P;0P; — UOU defined as
follows

h(A-a)=A-i(a),
h(a - A)=i(a) » A

Now we can define the RCB/RO/B/f grammar (G,C) which generates the
language o (L 1) by G =(V, Z,P,S) where
- V=D{Va\a[§[ JON QO {Z}
- P=0{PylaX 1}0h(Py)OPz0{Z - A} with
PZ :{Za N ZSa\a[X 1},
- S= S]_
andC =h(C,)PJTHZ - A}F

(b) The construction for the proof of Proposition 3.3(b) is nearly the
same as the one for the proof of 3.3(a) except for the following details. The
language L 1 is an RCB/RO language and the substitution is a context-free
substitution. The grammars (G,,C,) for o (a) are RCB/RO grammars with
C, = PL. Furthermore, we do not need a nonterminal Z which is therefore
omitted. Then we write U as {A - a|AON;,a0(N;@ )} and P =
U{P,|aX 1}0h(Py). Consequently, {Z — A} isleft out of P and the iso-
morphism i isdefined asi :V; — N.[A withi(A) =A, for each ALIN, and
i(@)=S,, foreachalX ;. Asthe control language C wetake h(C;) T".

In order to substantiate our claim that o(L,) =L (G,C), we only give
an informal sketch of the correctness of the construction from which one
may provide a formal proof. We use the nonterminal Z to prevent interac-
tion between neighbor partsin a sentential form. This interaction may occur
(in case we omit these Z's) when we apply T to a string S,S, for instance.
Take some c4,c,0C, (C,0T) such that ¢, applied to S, gives no termina
string, and ¢, applied to S, yields aterminal string w,. Now it may happen
that after applying ¢, to S,S, and then ¢4 to S,w, we can apply some reduc-
tion occurring in ¢, to an intermediate string xw, which uses some terminal
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symbols of w,. Then it might happen that c,c, applied to S,S; will yield a
terminal string which is not in L(G,,C,)L(G,,C,), thus violating
o(aa) =o(a)o(a). Note that introducing these Z's in order to avoid these
interactions properly works for the RO-mode only. The f-mode is of course
necessary to prevent terminal reductions which may be applied at the wrong
placesin a sentential form derived by (G,C). Anaogously, this construction
is restricted to the B-mode because the S-mode combined with the RO-mode
may lead to similar counterexamples as mentioned above. In that case rules
may be applied to the wrong sentential forms although they are separated by
Zs.

The correctness argument for the proof of 3.3(b) is easier, since in the
derivations according to (G,,C,) only productions are used, and the control
languages C, are equal to PJ for each ain Z;. Together with the assumption
that the nonterminal alphabets of the grammars G, are mutually digoint it is

straightforward to provethat L (G,C) = a(L (G1,C1)). O
Corollary 3.4. The families of RCB/RO languages are closed under
homomor phism. O

Proposition 3.5. The families of RCB/RO languages are closed under
inverse homomor phism.

Proof. It is sufficient to prove that RCB/RO languages are closed under
intersection with a regular language, regular substitution and union with a
regular language; cf. [Gin] Proposition 3.7.1 and its Corollary. The latter
fact follows from the observation that the regular languages form a subset of
the RCB languages; cf. Proposition 2.4.(1). The other premisses are proven
in Propositions 3.2 and 3.3. O

A family of languages is caled nontrivial if it contains a language
which differs from O and from {A}. Recall that afull semi-Abstract Family
of Languages or full semi-AFL (cf. [Gin] for this and the following related
concept) is a nontrivial family of languages which is closed under union,
homomorphism, inverse homomorphisms and intersection with regular
languages. Furthermore, a full Abstract Family of Languages or full AFL is
afull semi-AFL which is also closed under concatenation, and Kleene +.

These concepts alow us to summarize some closure properties in the
following form.

Theorem 3.6.
° The family of RCB/RO/B/f languagesis a full AFL closed under substi-
tution.

° The family of RCB/RO/Sf languages is a full semi-AFL closed under
concatenation.
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° The families of RCB/RO/g languages are full semi-AFL's.

Proof. These results follow immediately from Propositions 3.1, 3.2, 3.3, 3.5
and Corollary 3.4. ]

We define a ARCB grammar to be an RCB grammar of which the
underlying context-free grammar G has no A-productions, i.e. G is A-free.

Proposition 3.7.
e  Thefamilies of ARCB languages are closed under (marked) union.

° The families of ARCB/f languages are closed under marked concatena-
tion.

° The families of ARCB/B/f languages and the family of ARCB/RN/S/f
languages are closed under marked Kleene +.

° The families of ARCB/RO/f languages are closed under concatenation.
. The family of ARCB/RO/BI/f languagesis closed under Kleene +.

° The families of ARCB/RO languages are closed under intersection with
regular languages, and A-free context-free substitution.

° The family of ARCB/RO/B/f languages is closed under substitution.

Proof. These statements follow immediately from the constructions used in
proving Propositions 3.1, 3.2, 3.3 and 3.5. However, the results concerning
closure under concatenation and closure under Kleene + are obtained in a
way different from the method used in Proposition 3.1. We consider # to be
a nonterminal symbol too, but now P is extended with productions of the
form A, - a# and A, - a with alX ;. le, let © = {A; - a#|alX 1},
W ={A, - alalX ;}, wherethe nonterminals A, do not occur inV,0V, or
V1, respectively. Consequently, V is extended with { A, [aX }. FlnaIIy, the
control languages are concatenated (to the right) with O©W and © lIJD
respectively. To prove closure under substitution of the family of
ARCB/RO/B/f languages we use this method too in order to replace the pro-
duction Z — A used in the proof of Proposition 3.3. O

4, Grammatical Transformations

In this section we study certain transformations on RCB grammars with the
purpose to obtain normal forms for RCB grammars. First we introduce the
notion of “weak Chomsky Normal Form”.

Definition 4.1. A context-free grammar G = (V, Z,P,S) isin weak Chomsky
Normal Form or in weak CNF if each production of P has one of the follow-
ingforms: A - XYor A - awithAON(N=V-%),whereX,YOVandais
in Z0{A}. An RCB grammar (G,C) is in weak CNF if its underlying
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grammar G isin weak CNF. O

We alow X or Y to be an element of %, contrary to the usual Chomsky
Normal Form where X and Y ought to be members of N only.

To transform an RCB grammar into a weak CNF RCB grammar it is
not sufficient to transform the underlying grammar only, but we also ought
to modify the corresponding control language. To obtain a weak Chomsky
Normal Form for an RCB grammar (Gg,Cq), we first transform it into an
equivalent RCB grammar (G1,C) in which G; has no chain rules. It turns
out that this transformation works properly for one combination of modes
only.

Definition 4.2. Let N be a set of nonterminal symbols. A chain rule is a
rule A - B with A/BON, and CH (N) is the set of all chain rules which can
be formed with elements from N. O

Lemma4.3. Let (Gg,Cy) be an RCB/RN/B/f grammar. Then there exists an
equivalent RCB/RN/B/f grammar (G1,C,) such that G, possesses no chain
rules.

Proof. The idea of the proof is based on similar arguments in [AsvVanL,
Asv80] for parallel rewriting systems. Viz. we construct a nondeterministic
generalized sequential machine (or ngsm) T = (Q,P,,Po,9,q0,QF) such that
C.= T(Co) and G, = (Vo,ZO,Pl,So), with

P, ={A - w/AONy,A - w Py},

and P, hasno chain rules. Because the family of regular languagesis closed
under ngsm-mappings, C; is a regular language too. Cf. Chapter V,
Definition 4.2, for a precise description of ngsm’s and hgsm-mappings.

Each state of T is an ordered pair (X,Y) where X is equal to the right-
most nonterminal which appeared in the sentential form by the last non-
chain rule in the derivation from S or it is equal to Sitself. The variable Y
contains the nonterminal to which X is rewritten by means of a nonempty
consecutive sequence of chain rules. The case Y = A denotes that X is not
rewritten by chain rules or that it is rewritten by such rules to X itself. The
nondeterministic character of T appears when a nonterminal is rewritten to a
terminal string. In that case another nonterminal becomes the right-most
nonterminal which T ought to guess nondeterministically. The ngsm T aso
ought to guess whether or not a reduction which is not a chain rule can be
applied.

Before giving the formal description of T we introduce the following
notation. Let (G,C) be an RCB grammar, r be arule of (G,C) and let X [IN.
By R(a) we denote the right-most nontermina of a if aOV™ 3" and
R(a)=Aif alX " Letlhs(r) and rhs(r) denote the left-hand side and the
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right-hand side of r respectively. We write ry to denote the rule
([X/R(Ihs(r))]Ihs(r)) - rhs(r), where [X/R(a)]a denotes the string
obtained from a by substituting X for the right-most nonterminal of a.
Furthermore, we define the set RN (r) as {R(rhs(r))} if rhs(r) OVP-2"and
RN(r) = NO{A} if rhs(r) X “. Finaly, we will use a function act: Q — N
defined by

act((X,Y)) =X if Y=A and
act((X,Y))=Y otherwise.

Now act ((X,Y)) =R(lhs(r)) is a necessary condition for r to be applicable,
and in most cases also sufficient, except when r 0Py — CH (No).
Formally, the ngsm T is defined as follows.
-  Thesetof statesisQ ={(X,Y) | X,YONoO{A}},
- theinput alphabet is P, = P Py,
—  the output alphabet equals
Po = Po Po{ry|rOPo0Pg, XONg}—CH (No),

-  theinitia stateisqg = (Sp,A ),

- theset of final statesis Qg ={(A,A)},

—  thetransition mapping 5: Qx P, — 22 isdefined by

d((X,Y),r) =
{((Z A),r)|Y=A, ZORN(r), r OCH (No), R(lhs(r)) = X} O
O{((Z, N),rx) | YZA, ZORN(r), r ICH (Ng), R(Ihs(r)) =Y} O
O{((X, A),A)[ X =rhs(r), r OCH (Np), Ihs(r) = act ((X,Y))} O
O{((X,rhs(r)),A) | X#rhs(r), r OCH (No), lhs(r) = act (X, Y))}.

Notethat Y#A implies X# A, and consequently ry is defined.

The correct behavior of T iseasily checked. We will only prove for the
B-mode that T behaves correctly when it has to guess. Assume that every
ruler inacontrol string is applicable. If r iswrongly considered to be appli-
cable, then — because of the block mode — the output ¢’ of T will block the
derivation controlled by c¢', whenever it tries to apply r. This also holds
whenever it triesto apply ry, which implies YZA. We distinguish two cases.

a. Ifrisaproduction or r OCH (Ny), then T produces no output if r is not
applicable in the original derivation determined by the control word c,
because act ((X,Y)) # R(Ihs(r)).
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b. In caser is a reduction p and pOOCH (Ng), then T ought to guess
whether p is applicable or not in the origina derivation. If p is
wrongly considered to be applicable, then we have the following situa-
tion: p is not applicable to a string o with a = uYv, udv", viX “ and
SO Pa, where b is such that there exists an d with bd 00C, and finally
R(lhs(p)) =Y =act((X,Y)) =R(a). The latter holds because T has
produced pyx. Then SO T®uXy, and R(lhs(px)) = X = R(uXv). How-
ever, this condition, with X replaced by Y, was apparently not sufficient
for p to be applicable, so py is not applicable to uXv.

T also ought to guess the new right-most nonterminal, after a terminal pro-
duction has been processed by T. Let r be the next rule in the control word c
from C4, i.e, let c =cqrc,. Furthermore, let B be equa to R(w), where
SO “w. Note that B may be equal to A. Suppose the new right-most nonter-
minal is wrongly guessed to be B' instead of the correct B. Then the new
state of Tis(B',A). If B' = A, then we have wrongly reached the final state
(A,\), and so the output ¢’ produces a string not in =-. Now, if B'OV -2,
then we can distinguish two cases.

a r is a production T=A - a. We may suppose A=B'. Let c'=
c'qrc’, be a produced output of T. Then ¢’ will give no contribution
to L (G,C). When applying mtto w (with SO C'1w) the derivational pro-
cess is blocked, because A =B'# B and B is the actual right-most non-
terminal at that moment.

b. risareductionp, andinfactitisafair reduction. Therefore the appli-
cability of p depends on B, which is essential. Suppose p is inapplica
ble in the original derivation. In T we suppose p to be applicable, so
B'=R(lhs(p)). But then the output c¢' of T will cause blocking in
applying p at this place — i.e., after the application of C'; in c’, if
pOCH (Ng). If pOCH(Ng), then T has constructed a production
B’ - @with @ ONg at this place, which will also give blocking. O
For the RN/S/f-mode we are faced with the following difficulties. An

eventual ngsm Tg for the RN/S/f-mode will have a transition mapping dg

with a least the set {((X,Y),A)|act((X,Y))ZR(lhs(r)), r OCH (No)}
included in ds((X,Y),r). If we extend the mapping & used at the RN/B/f-
mode with this set to obtain dg, then we have to dea with the following
example. Let GO = (Vo,ZO,Po,S) with VO :{A,B,S}[Z 0 ZO :{a,b}. The

production set Py consists of Ty =B - aS ™ =B - A T4 =S - A,

m=A-bS 1m;,=S-a With C consisting of the control word

C=TyTLbTRTLTE We obtain SO Sba. However, in processing ¢ by Tg we

have act ((S A )) = R(lhs(1y)). So we assume T, to be applicable, which will

lead to Tg(c) =¢' =Ty T, where Ty g =B - bS, and thus ST ¢'a. The
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correct output of Tg(c) ought to be T4 Tt sTis.

The proof technique of Lemma 4.3 probably works for the RN-mode
only, viz. in case of the RO-mode we would need states (in the ngsm T) of
the form ((A1,B1), ...,(A,,By)) with Ny ={A4, ... A} and B;ON,O{A}.
If we process a production =B - [B with some A; occurring in 3, but
A #B, then we ought to remember both (A;,B;) —i.e., the current value — as
well as the new value (A;,A) in case 1T has been applied right to the right-
most A;. Because of recursion this may lead to an infinite set of states which
is not allowed for ngsm's.

Similarly, the restriction to the f-mode is essentia in the proof of
Lemma 4.3. Since in the RN/g-mode it may happen that a reduction
a - A, (aX Y introduces a nonterminal right from the right-most nonter-
minal. Then we ought to store the current state (A;,B;) besides the new state
(Aj,A). Again this may lead to an infinite state set.

By means of Lemma 4.3 we are able to prove the following normal
form theorem.

Theorem 4.4. For every RCB/RN/B/f grammar (G1,C;) there exists an
equivalent RCB/RN/B/f grammar (G, C) in weak CNF.

Proof. By Lemma 4.3 we assume that G, has no chain rules. Let P; =
{my,...,m,} be the set of productions of G, with 4 =A; - Bj 1...Bj .
Let P be constructed as follows. Starting with the empty set, adjoin every
production of P, to P which has aright-hand side with alength smaller than
three. Next, for every ;0P with m=3, construct m —1 new productions
from this production as follows. We take 1 ; =A - B 1Dj 1, T§ 2=
Di,l — Bi,ZDi,Z! coey Thm-1 = Di,m—Z - Bi,m—lBi,m- We assume that the
D;,;'s are distinct from each other, and that these D; ;’s constitute the set D.
The productions 5 j will be adjoined to P. Now we define a homomorphism
h:P; — PY with h(m;) =1 if m<2 and h(m) = T 1,...,Thy If M>3.
Furthermore, for a reduction TP, we define h(1t) = h(11), using TT= T Tt
for every 1P 4. Findly, wetakeC =h(C4)and G =(V,0D, 21,P,S;).

Verifying the correctness of this construction is left to the reader as an
easy exercise. O

It is unlikely that the arguments used in establishing Lemma 4.3 and
Theorem 4.4 can be modified to obtain an RCB/RN/B/f grammar in the
usual Chomsky Normal Form, because of productions of the form A - af
with o X 1 and BOV] - Z}. For then we ought to remember to insert pro-
ductions F, — a, alX ; in the new control word after inserting productions
which will derive 3. Because this may get nested up to any level, an ngsm-
mapping is not able to handle this.
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It is an interesting question whether we can characterize some of the
language families defined by a type of RCB grammar in terms of an other
one. The next proposition shows that under some conditions we can con-
struct an equivalent RCB/RO/S grammar in f-mode from an RCB/RO/S
grammar in g-mode.

Proposition 4.5. Let (G4,C4) be a ARCB/RO/S/g grammar. Then there
exists an RCB/RO/Sf grammar (G,C) that generates the same language as
(Gllcl)-

Proof. Let V=V [0{SZ} be the new alphabet of the grammar (G,C),
where Sand Z do not occur in (G1,C1). Define amapping

Vi - (Vi{Zh) Vv,

by {(a)=aif adV,, and {(ax) =aZ{(x) if adV, and xOV7i. Let P be
the new production set of G with

P={A - Z(a)|A - aOPy} O{S - ZS:Z, Z - A} O
O{A - Za, A - ZA|A - aOPy, alX ,}.
Next we define a homomorphism h: P;0P; - (POP) asfollows

h(A - a)=A - J(a) if A - aOP;
h(a - A)={(a) - A if |[a|>1or

a0V-3; } ifa - AOP,
h(a - A)=(Za - A)(A - ZA)  ifalX

Now we define the RCB/RO/S/f grammar by (G,C) with G =(V, Z1,P,S)
and C ={S - ZS;Z}h(Cy) (Z - M)~

That the construction is correct can be seen from the fact that for all
strings o, B OVZ and rule r OP,0 P, we have approssig(r, a,B) if and only
if appro/s/s(h(r), Z¢(a)Z, Z{(B)Z) holds. This latter formula is defined
by appm(r1r2,a,B) if and only if [y (@ppm(r 1,a,y) Dappm(r 2, Y, B))- O

5. Linear and Left-Linear RCB grammars

This section is devoted to the study of RCB grammars of which the underly-
ing grammar is linear or left-linear. The major part of the resultsin this sec-
tion consists of straightforward consequences of propositions established in
Sections 3 and 4.

Definition 5.1. If the underlying context-free grammar G of an RCB gram-
mar (G,C) happens to be linear, then we call (G,C) alinear RCB grammar
or LRCB grammar. And (G,C) is aleft-linear RCB grammar or an LLRCB
grammar if Gisaleft-linear grammar. O
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All the modes of derivation introduced in Section 2 are applicable to
LRCB and to LLRCB grammars as well. However, the grammar types
LRCB/RN/B/f and LRCB/RO/B/f, as well as the types LRCB/RN/S/f and
LRCB/RO/S/f are strongly equivalent. This equivalence is due to the fact
that fair reduction maps linear sentential forms into linear sentential forms,
in which case the difference between RN-mode and RO-mode vanishes. The
same remark appliesto LLRCB grammars.

For LRCB/f and LLRCB/f grammars we can establish a very simple
normal form.

Proposition 5.2. Let (G,C) be an LRCB/f or an LLRCB/f grammar. Then
there exists an equivalent LRCB/f or an LLRCB/f grammar (G,C), respec-
tively, which only possesses one nonterminal symbol, and each control word
from C ends with a terminal production.

Proof. Let (G,Cp) bean LRCB/f or an LLRCB/f grammar. For this type of
grammar we can easily construct, using a gsm, a grammar (G,C';) where
C', issuch that for every two consecutive rulesr, and r, in a control word
cC’'q, wehave R(rhs(r 1)) = R(Ihs(r,)), and that the last rule of each con-
trol word in C'q isatermina production. Note that due to the B-mode and
S-mode, we actually need two gsm’s. (Cf. Lemma 4.3 for the definition of
R. In this case R yields the nonterminal of a string a X "(V-2)=", and
R(a)=Aif alX ") If we replace each nonterminal in every rule occurring
in G and C'; by the start symbol Sy we obtain a grammar (G,C,) which
possesses one nonterminal symbol. This latter step is now possible because
the remaining nonterminals in (G,C'4) have astheir single task to indicate at
which position in a sentential form a rule ought to be applied. This can be
performed by one unique nonterminal as well. O

The obtained normal form will be called the 1-normal form.

Proposition 5.3. The family of [left-] linear context-free languages is
included in the family of [left-] linear regularly controlled bidirectional
languages for each mode of derivation. O

Clearly, the first construction in the proof of Proposition 3.1 aso
appliesto LRCB grammars. Therefore we have

Corollary 5.4. (1) The families of LRCB languages are closed under
(marked) union.

(2) The families of LRCB and LLRCB languages are closed under union
with aregular set.

Proof. (2) It is easy to see that the regular languages form a subset of the
LLRCB languages. O
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Proposition 5.5. The families of LRCB/Sf languages are closed under
mar ked concatenation, marked Kleene + and marked Kleene (1

Proof. Let G =(V, Z,P,S) be a context-free grammar. We will use the fol-
lowing homomorphismh:P - PO{A - S;a|A - aOP} defined by

h(A - a)=A - a if a OVHV-2)V"

h(A - a)=A - S;a  ifalX
In addition, define h(1t) = h (1) for each 11 CP.
Marked concatenation. Let (G4,C;) and (G,,C,) be LRCB/S/f grammars
generating the languages L, and L,, respectively. Define the LRCB/S/f
grammar (G,C), which will generate L,#L,, as follows. G is the linear
context-free grammar (V, £,P,S;) with V=V, 0V,0{# 0{D,|aX ,},
>=5[F ,0{#}. Let Ty; be the production S; - S;#. Furthermore, let
PL.={Dy - aS;|aX ,}, Pr={D,; - S;a|alX ,}, and define the produc-
tion set P by P=P,0h(P,)0P_0OPgrL{1T:}. Now define the control
language C by C = h(C,)(P_Pgr)™P {T}C;. Note that the last occurrence
of P_ in each control word ¢ in C has the effect that if the nonterminal S;
has not been moved to the ultimate left position of the sentential form by
some word in (P_Pg)", then this P, is applicable, and all rules in {1} C;
will be skipped. As a result no termina string is generated. Then
L(G,C) = L]_#Lz.
Marked Kleene +. Let (G1,C1) be a LRCB/Sf grammar generating L ;.
Assume that (G1,C,) isin 1-norma form. Let G be the linear context-free
grammar (V, £,P,S;), whereV =V, O{#}0{D, |alX ;},Z =%, 0{#} and P
is defined as follows. Let iy =S; - Si#, and P ={D, - aS;|aX 1},
Pr={Das - SialalX ;}. Then define the set of productions P by P,0
h(P,)OP OPrO{m:}. With the control language C defined by C =
{1} (h(C1)(PLPR)PL{T:})"C1, weobtain L (G,C) = (L1#)".
Marked Kleene [1 This follows immediately from a small change in the last
construction; viz. definem, =S; - AandtakeC'= CO{m}. d

Concerning the LLRCB languages we have the following results.
Proposition 5.6.
e  Thefamilies of LLRCB languages are closed under (marked) union.

. The families of LLRCB/f languages are closed under marked concate-
nation, marked Kleene + and marked Kleene [

Proof. Union. Cf. the proof of Proposition 3.1.

To prove the other properties we use the same constructions as in Pro-
position 5.5. Due to the fact that G is left-linear, we will not need the sets
{Dy|laX i} (i=1,2), P_ and Pg in (G,C). Therefore these closure
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properties do aso hold for the families of LLRCB/B/f languages. O

Many of the constructions used in Section 3 fail to work in the LRCB
and LLRCB case. Therefore we have less results for these language fami-
lies. However, the families of LRCB/f languages and of LLRCB/f
languages turn out to be closed under reversal.

Proposition 5.7. The families of LRCB/f languages and of LLRCBI/f
languages are closed under reversal.

Proof. Let (G1,C;) be an LRCB/f grammar which generates the LRCB/f
language L ;. Define ahomomorphismhon P00 P4 by

h(A - w)=A _ wR for each production A — w
h(w -~ A)=wR _ A for each reductionw — A

where R is the reversal operation. When we define G = (V1,Z1,h(P1),S1)
and the regular control language C = h(C,), wehave L (G,C) = L}.

Clearly, the same construction also applies to LLRCB/f grammars.
However, in this case the resulting underlying grammar G is a right-linear
context-free grammar. Using standard methods it is now easy to construct
an LLRCB/f grammar generating LY. O

6. Arbitrary Families of Control Languages

In this paper we extended regularly controlled context-free grammars to reg-
ularly controlled grammars with context-free rules which may be applied in
a productive as well as a reductive fashion. In this approach we dis-
tinguished several (combinations of) modes of derivation. Some of these
combinations have originally been introduced in the literature, i.e., the RN-
mode in [GinSpa] (actually the LN-mode, cf. Proposition 2.4.(2)) and the
B-mode and S-mode in [Sal69, Sal70, Sal73] using somewhat different
names. The introduction of the RO-mode has been inspired by the proof to
establish closure under intersection with aregular set; cf. the proof of Propo-
sition 3.2. A similar observation can be made for the f-mode with respect to
closure under substitution; cf. the proof of Proposition 3.3. However, the
latter mode has also a justification in itself, for in g-mode some terminals
play the part of “pseudo-nonterminals’, i.e., they are in the terminal aphabet
of the grammar but they can act as a nonterminal, for example a reduction
a — A, which is not a phrase-structure rule; cf. Example 2.5. This
phenomenon obscures the distinction between terminal and nonterminal
symbolsin grammatical models.

The closure properties established in Section 3 are summarized in
Table 1. We can make the following observations from Table 1. First, we
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Closure properties of RCB languages.
RN RO
B S B S

flg|flglflg|flg
union + + + +
marked union + |+ |+ + | + | +| +
concatenation + + +
marked concatenation + + + +
Kleene + + +
marked Kleene + + + +
Kleene O + +
marked Kleene O + + +
homomorphism + + |+ + | +
intersection with aregular set || + + |+ | +| +
context-free substitution + + |+ | + | +
union with aregular set + |+ |+ +| +| +] +] +
inverse homomorphism + + | + | +| +
substitution + +
substitution into aregular set || + +

Tablel.

ought to remark that a table entry which is empty does not mean a negative
result, but a problem not yet solved. Concerning the positive results, we see
that the combination of the modes B and f enables us to prove al the closure
properties listed in the table. Intuitively, thisis because in combination with
the RO-mode other mode instances can cause “side effects’ such asin case
of the mode instances S or g. In addition we have the result of Theorem 4.4,
which gives us a useful norma form for RCB/RN/B/f grammars. These
facts make the B/f-mode the most promising combination of modes, espe-
cialy the RN/B/f-mode.

In establishing the closure properties of RCB languages we used some
(closure) properties of the family of regular languages (“ over the a phabet of
productions and reductions’). If we generalize from the family of regular
languages we ought to know which of these properties are needed to obtain
these closure properties of RCB languages. Let C denote an arbitrary family
of control languages. Then, for instance, closure under (marked) union is
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Closure property

Closure properties

of CB languages of C
(marked) union marked union
concatenation concatenation, left and right-marking
marked concatenation concatenation, left-marking
Kleene + concatenation, left-marking, Kleene []

Kleene +

marked Kleene + concatenation, left-marking, Kleene O

Kleene O union, concatenation, left-marking,
Kleene O
marked Kleene O union, concatenation, left-marking

intersection by aregular set union, concatenation, Kleene [J
reversal, finite substitution

union, concatenation, Kleene O
homomorphism

union, concatenation, Kleene [J
homomorphism

union, concatenation, Kleene [J
homomorphism

union, concatenation, Kleene O
homomorphism

PYOC

union, concatenation, Kleene O
reversal, finite substitution, P“C1C
union, concatenation, Kleene [J
marked union, left and right-marking

homomorphism

regular substitution
context-free substitution
substitution

union with aregular set
inverse homomorphism

substitution into aregular set

Table 2.

provable if C is closed under marked union, as one can see from the proof of
Proposition 3.1. In Table 2 results are shown based on the analysis of the
proof of each closure property. Because C is no longer equal to the family
of regular languages, we generalize RCB grammars to Controlled Bidirec-
tional grammars (CB grammars). Besides the properties of C, also a specific
combination of modes is necessary to establish each closure property for CB
languages. These modes are not included in the table, but can be extracted
in adirect way from the results in Section 3. We conclude this subject with
afinal remark about the mode RN/B/f. Since most of the closure properties
of the family of RCB/RN/B/f languages heavily depend on C being the fam-
ily of regular control languages, cf. Proposition 2.4.(2), we cannot expect to
maintain all the closure properties if we generalize to an arbitrary family C
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of control languages.

To obtain closure properties for the family of C-controlled bidirec-
tional languages we often need closure under left or right-marking. A family
of languages @ is closed under left- or right-marking if for every language
Lol also {#}Lgl® and L{#}® , respectively, where # does not occur
in the alphabet of L.

Consequently, we can aso generalize Theorem 3.6 in the following
way.
Theorem 6.1. Let C be a family of control languages such that for every
alphabet P, we have P"OC.

° The family of CB/RO/Sg languages is a full semi-AFL if C is closed
under union, concatenation, Kleene [J reversal and finite substitution.

. The family of CB/RO/Sf languages is a full semi-AFL closed under
concatenation if C is closed under union, concatenation, Kleene [ | eft
and right-marking, reversal and finite substitution.

° The family of CB/RO/BI/f languages is a full AFL closed under substi-
tution if C is closed under union, concatenation, Kleene + and [J left
and right-marking, reversal and finite substitution. O

Similarly, as a generalization of Theorem 4.4 we have the following
result.

Theorem 6.2. Let C be a family of control languages closed under ngsm-
mappings. Then for each CB/RN/B/f grammar (G1,C;) with C;0C we can
obtain an equivalent CB/RN/B/f grammar (G,C) in weak Chomsky Normal
Form (and COC). O
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Time-Bounded Controlled
Bidirectional Grammars

1. Introduction

Due to the occurrence of reductions it is possible to have in an RCB gram-
mar (G, C) nonempty control strings d and ¢ with properties as already men-
tioned at the beginning of Section 1.4.2, viz., there exists a string w with
SO 9wand w O Sw. When ¢ occurs as part of the control language C, it is
hard to construct parsers that terminate for each input string. Till now, no
transformations are known that transform in an effective way an RCB gram-
mar (G,C) into an equivalent RCB grammar (G',C') without this undesir-
able behavior. In particular, we are therefore unable to establish a linear or
even apolynomial bound on the derivation length of an RCB grammar.

The problem sketched above raised our interest in the derivational
complexity of RCB grammars. So we use concepts as bounding function
and time-bounded grammars in order to describe this complexity. For these
time-bounded RCB grammars we are able to design parsing algorithms
indeed.

This chapter is organized as follows. In Section 2 we recal the
definition of time-bounded RCB grammars, together with some properties
and examples. We restrict ourselves to ARCB grammars (G,C), i.e., RCB
grammars (G, C) in which the underlying grammar G has no A-productions.

In Section 3 closure properties of a few families of time-bounded
ARCB languages are established. In this section we also prove the weak
Chomsky Normal Form (cf. Section I1.4) for time-bounded ARCB grammars
under the RS/B/f-mode.

Section 4 is devoted to the construction of parsers for @-bounded
ARCB/m languages. We perform these constructions for afew characteristic
modes. The worst-case time complexity of the parser for the RN/B/f-mode,
which induces the smallest language family, is aready exponential.
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Section 5 contains concluding remarks, and some generalizations to
arbitrary families of control languages and to less restricted families of
bounding functions.

2. Definitions, Examples and Elementary Properties.

First, we introduce time-bounded RCB grammars of which we give some
examples. Then we establish some properties of time-bounded RCB gram-
mars and their languages. For all unexplained notations and concepts from
parsing theory used in this chapter, we refer to standard texts like [AhoUll,
Har, Sud].

We start with another example of an RCB language to which we will
return in Example 2.6 and in the proof of Proposition 2.9.

Example 2.1. The language {a? |n>0}, which is not context-free, can be
generated by an RCB/RN/S/f grammar (G,C). Take G =(V, Z,P,S) with
V ={SAB,D,E,F,GH,a}, Z={a} and P consists of the following produc-
tions.

H=S- 3 m=S- aa, b =S - aAaa, TR =A - aA
Ty =B - aAa, ;=B - AD, s =D - aaFE, ;=D - Ea,
Tg=F - aE, TH=F > a, T =G - aA, T =H - Aa,
T, =H - a

The control language C is defined by
C = {0} O{ 1y} O{ e 15Ty Ti5 T (T, T T Th6) Ty Tl 1 T2 Thp) '}

The grammar (G,C) works as follows. For m=2 it produces a string
a™ 1Aaa by applying o2 to S Next, Ty TiT; rewrites aAa into AaaE.
So one a to the left of A is removed and one a to the right of A is doubled.
By (TyTTT,)" the nonterminal E moves to the right, doubling each a it
encounters. As a consequence, a*AaY with x=1 and y=2 is rewritten into
a*"1Aa?. Finaly, the sequence Ty T, Ty, checks if there are no more
occurrences of a to the left of A, in which case aterminal string is produced.
Now it will be clear that this string is of the form aZ", with m=2. Together
with the productions 11, and 1y we obtain the intended language. O

In introducing (time-)bounded RCB grammars we first define the time
function T (g cy of an RCB grammar (G,C). This time function T c) isa
(partial) function such that for any n>0 for which T ) is defined,
T(c,c)(n) bounds the length of the shortest control words that derive all
strings of length equal to n which are generated by (G,C). This is a
modified version of the origina definition by Gladkii [Gla] for general
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phrase-structure grammars which has been investigated by Book [Boo71].
First, we define the (partial) function t g c) which assigns to a string w the
length of the shortest control word deriving w by (G,C) if such a control
word exists. In the sequel we only consider ARCB grammars, i.e., the under-
lying context-free grammar G has no A-productions at all; cf. Section 11.3.

Definition 2.2. For any ARCB grammar (G,C) and every w L (G,C), where
L(G,C)= {wOV™ |OcOC. SO °w}, let t(g c)(w) be the least integer k such
that there is a control word ¢ JC deriving w with |c |=k or, equivalently,

t,c)(w) =min{|c||SO ‘w, cOC} O

The function t g c) is partial recursive function. This is easy to show by
modifying asimilar proof from [Boo71].

Definition 2.3. For every ARCB grammar (G,C) the time function
T.c):IN - IN isthe function determined by

max{t g, c)(w)|Cc. SO ‘w, wOV"} if L(G,C)n 2" £ 0
T =

undefined otherwise.

O

Originaly the time function T of a phrase-structure grammar G has
been introduced to serve as a measure of its derivational complexity, cf.
[Gla). In[Boo71] Book used time functions “to define families of languages
based on “bounds’ on derivational complexity”. In this paper we use time
functions in a similar way, viz. to restrict the possible control languages C
which can generate some language L o, when given an underlying context-
free grammar G. For some function @:IN - IN, context-free grammar G
and two control languages C,, C, it is possible to have L(G,C,) =
L(G,Cy)=Lg and On.Tgc, (N)<@(n) but not On.Tgc, (N)< @(n).
The function @ will be called a bounding function.

Definition 2.4. A function @ is a bounding function if it is a nondecreasing
total recursive function with the property that there is a positive integer k
such that for all x, @(x) =x/k and such that for all x=0, @(x) =0. O

Let & denote a family of bounding functions. In this paper we will
consider mainly the following families of bounding functions. POLY,
POLY (k) with k=1 and LIN which are the families of polynomial functions,
of polynomial functions up to degree k and polynomial functions of degree 1
(linear functions), respectively, al polynomials having coefficients greater
than or equal to zero. Notethat POLY (1) = LIN.

For a partial function F:A - B we write F(a) | whenever F(a) is
defined and F () 1 otherwise.
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Definition 2.5.

(8 A ARCB grammar (G,C) is bounded by afunction ¢ if for any natural
number n, if Tg c)(n) ! then Tg cy(n)<@(n).

(b) A ARCB language L g is bounded by a function ¢ if there is a ARCB
grammar (G, C) generating L o which is bounded by ¢.

The family of ¢@-bounded ARCB/m languages, denoted by L ,(¢), con-
sists of those languages for which there is a ARCB/m grammar (G, C) that is
bounded by ¢. For each class ® of bounding functions, and for each mode m
the family of ®-bounded ARCB/m languages — denoted by ®,, — equals
U{Lm(@) 0@ }. O
Example 2.6. The grammar (G,C) of Example 2.1 is bounded by @: n 5n.
This is shown as follows. For each nIN there is at most one string w from
L (G,C) with length n. Furthermore, every string wL (G,C) has length 2™,
for some mOIN. Since SO ™a and SO ™aa, we have 1< (1), and 1< ¢(2).
We aso have the derivation SO ™™ a™ 'Aaa, m>2, with LTy 2=
m-1. Let A denote the set { Ty T Tl (T TR T Tl) Ty o Tl Ty Ty} and let d A .
Then for y>2 we have

aAaY[ 9a?,

with |d |=4y+7,
a™laa¥d 9™ 2Aa%, m>2

where |d |=4y+7 implies that the sequence T;TTpTl has been repeated y
times. If we combine these facts we obtain that there exists an eJ(P 0 P)"
with

s m m-1 .
SO™% a™lAaad®a?’, ed U andle|= T (42'+7),
i=1
so that there exists a c0C with SO %?", |c|2m-1+7m-7+42"-8=
4(2™+2m-4), (m=2). Now we have [0m=2.52">4(2M+2m-4) which
gives us the linear bounding function @:nw 5n. A “sharper” bounding
functionisof course : 11 1, 21> 1, ni> 4(n+2[logn|-4), wheren=3. [

A useful property for @-bounded ARCB languages is the following
characterization, of which the proof is straightforward.

Lemma2.7. Let (G,C) bea ARCB grammar. Then for each mode mthe fol-
lowing statements are equivalent.

(1) L(G,C) isbounded by q.
(20 OwOL(G,C).OcOC. (SO wO|c|<so(|w])). O
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Let CFL [ACFL] denote the family of [A-free] context-free languages.
The following lemma is a simple modification of Proposition 11.2.4.(2); the
proof is also a straightforward variation of the original proof.

Lemma 2.8. The family of ARCB/RN/B/f languages coincides with the fam-
ily ACFL. O

Concerning the various families of bounding functions @ discussed
above we have the following result, where ARCB/m denotes the family of
languages generated by ARCB/m grammars.

Proposition 2.9.

(@ For every family @ of bounding functions, and for all modes m, we
have ®,,[A RCB/m.

(b) For all modes m, we have ACFL O LIN,,0 POLY (K),, 0 POLY,,.
(¢) For all modes m # RN/B/f, we have ACFL O LIN,,.

Proof. (a) is trivial, and for (b) we use for the first inclusion the fact that
every A-free context-free language can be generated by a ARCB/m grammar
(G,PY). Without loss of generality we may take G in standard 2-form, i.e.,
al productions have one of the following three forms. A - a, A - aB,
A - aBC, withalX , where Sdoes not occur at the right-hand side of a pro-
duction. From thisthe result easily follows. The other inclusions aretrivial.

Finally, (c) can be proved by using the language L, ={a"b"c" |[n=>1}
in case of the modes g and RO/f. For these modes simple RCB/m grammars
have been constructed in Chapter |l which generate Ly. These grammars
can easily be shown to be linearly bounded ARCB/m grammars. For the
mode RN/S/f Example 2.6 establishes the resullt. O

In Example 11.2.7 a ARCB/RN/S/f grammar has aso been constructed

that generates L. However, that grammar is bounded by a polynomial of
degree two.
Remark. The case of @, versus RCB/m leads to the proper inclusion
®,,00 RCB/m, which is shown by considering the language { A} which can be
generated by an RCB/m grammar with a single production rtequal to S - A
and C ={1}. However, by definition ARCB/m grammars cannot have A-
rules. Consequently, ®,, isaA-free family of languages. O
Corollary 2.10. ACFL = LI Nrn/B/F = POLY(k)RN/B/f = POLYgrn/B/t-

Proof. Thisfollows directly from Proposition 2.9(a) and Lemma 2.8. O
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3. Closure Propertiesand Normal Form.

In this section we investigate the closure properties of some families of
time-bounded ARCB languages. In addition a normal form for some gram-
mars will be established. If not stated otherwise the results in this section
hold for every combination of modes mentioned in the previous section.

By Corollary 2.10 the family ®gy/g/s (P =LIN, POLY (k) or POLY)
shares al closure properties of the A-free context-free languages. Therefore
we restrict our attention to modes different from RN/B/f. Cf. Table 1in Sec-
tion 5.

In the sequel we suppose that (G;,C;) are ARCB grammars, where G; =
(Vi,Zi,P;,S), which are bounded by some @ OPOLY (k) (i =1,2). In addi-
tion L; denotes the language generated by (G;,C;), i.e.,, L; =L (G;,C;). Furth-
ermore, N; equalsthe set V; — %, i.e., the set of nonterminals of G;.

Proposition 3.1. Let ® be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the following statements hold.

° For all modes m, the families ®,, are closed under union.

° The families ®g /s and the family ®gy,s/s are closed under marked con-
catenation and marked Kleene +.

° The families ®; are closed under marked concatenation.
° The families ®rp /s are closed under concatenation.
° The family ®ro/g/s is closed under Kleene +.
Proof. Union. We construct a ARCB grammar (G,C) from (G4,C;) and
(G,,C,) such that L(G,C)=L.0L,. Consider the grammar G =
(V1|:| VZD{S},ZlDZ 2,P,S) where SV, 0V,, P=P,0 sz{nl,ﬂz}, and
=S~ S (i=12). Define the regular control language C by C =
{T[l}C1D{T[2}C2. Then L(G,C) = L(Gl,Cl) U L(Gz,Cz). To show that
(G,C) isa ®-bounded ARCB grammar we write

T(G,C) (n)<1+ max{T(GhCi)(n) ‘ i=1,2}.

Now it is clear that for @ = POLY,,(K) it holds that there exists a ¢ [@ with
T.c)(n)=o(n).

Marked concatenation. The proof for this case is left to the reader as
an exercise.

Marked Kleene +. Define the ARCB/B/f or ARCB/RN/S/f grammar
(G,C) which generates (L1#)", by G = (V,0{S#},Z,0{#},P,S) with P =
PlD{Tfo,T[l}, SDV]_, #IX 1, Th =S . Sl#v and M = S $l# Take as
regular control language C = ({T;}C1){15}C1. Then L(G,C) = (L #)".
We show that (G,C) isa POLY (k),, grammar (with the proper modes m) as
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follows. Forl=1,s =1, let

Write ¢, JPOLY (k) as

k .
@i(n) = Y an’
j=0

where a> 0 and a; 20 (0<j < k). Then we have

[ [ kK k |
TeoMs X (1+@us)= Z A+ T gs) =1+ 3 g Y sf<
i=1 i=1 =0 j=0 i=1

<+ 3 a(3 ) +ao(l -1 < @) +n(ag+1),
=0 =1

which compl etes the proof.

The corresponding “unmarked” results are obtained in each case by
considering # to be a nonterminal instead of aterminal symbol. In addition,
P is extended with productions of theform A, - a#and A, —» awithalX ;.
le let A={A, - at#t|alX 1}, Q={A; - a|aX 1}, where the nontermi-
nals A, do not occur in V0 V5. Fipglly, the control languages are con-
catenated (to the right) with AQ and A Q" respectively. Even in the proof
of closure under Kleene + this construction adds only a linear contribution to
the time function. For the remaining families LIN and POLY the results fol-
low in asimple way from the case ® equals POLY (k) O

Proposition 3.2. Let ® be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the families ®ry are closed under intersection
with regular languages.

Proof. The closure under intersection with regular languages has been
shown in Chapter Il for RCB/RO languages by means of the well-known
“triple” construction. Here we use the same construction, however, with
some minor modifications due to the fact that we have to deal with
ARCB/RO grammars. Starting from a ARCB/RO grammar (G;,C4) and a
determinigtic finite automaton (Q, Zg,0,0qg,F) which accepts the reversal of
aregular language R this construction results in a ARCB/RO grammar (G,C)
that generates L(G1,C1)n R Here G =(V, Z,P,S) with Z=%nZg and
V =N[Z . Nisthe set of nonterminals defined as follows. N contains two
new symbols Sand Z (SZ[V,) and al triples of the form (u,A,t) where
u,t0Q and AV,. To complete N we add a symbol A, for every alX ;.
The set P of productions of G is defined by

P :P()D PFD PED PzD D{PH‘T[EP]_}



62 Chapter 111

The control language of (G,C) isgiven by
C =Py0(C1)PePeP%,
where
Po={S - Z(u,S1,q0) [u0Q},
Pr={As - Z(uat)|lu=95(a), ulF, alX 1},
Pe={Ay - alalX },
Ps=U{Pa|alX },
with, for every alX 4,
Pa={(p.aq) - alp,qUQ, d(q,a) =p}.

The finite substitution o:P;0P; — 2POPY s defined by o (1) = P, and
o(m) =Py foreachmOP,. Theset P, isdefined forevery m=A - ainPy
by

Pr={(p,AQ) - t|p,q0Q, t@ g}

wherefor every p,qin Q
%o ={(PX1,P1) - (Pm-1%m @) [POQ, 1<i<m},

Let (G1,C1) be a ARCB/RO grammar that is bounded by ¢, where
@ OPOLY (k). Then (G,C) is a POLY (k)-bounded ARCB/RO grammar,
since T(g c)(nN) <1+ @ (n) +1+1+(n-1) = @, (n) +n+2; cf. the definition of
C. From this the corresponding statements for the families LIN and POLY
follow immediately. O

Proposition 3.3. Let @ be a family of bounding functions equal to LIN,
POLY (k) or POLY. Then the following closure properties hold.

(a) The family ®ro/g/s is closed under substitution.

(b) The families ®rp are closed under A-free context-free substitution.

Proof. (a) Let L; =L (G4,C4) be a ARCB/RO/B/f language and let o be a
ARCB/RO/B/f-substitution 0:5; — 2. Next, let £; ={ay, ...,a,} and for
each alX {, let (G4,C;) be a ARCB/RO/B/f grammar with G, =
(Va,2,P4,S;) such that L(G,,C,) =o(a). Assume that for every alX 1,
NinVa=0 and that Ny n N, =0 if i #j for every 1<i, j<n. Define
aphabetsA={S,,...,.§ } and Q={Z, ,...,Z, }. Let T be the control set
U{Cs|aX 1}, and U ={A - a|AON;,a0(N;[@Q )"}. We use the iso-
morphismi:V; - N{[Q defined by

i(A)=A foreach Ain Ny,
i(@)=2, foreachainZ;
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to define ahomomorphism h:P;0P; — U U asfollows
h(A - a)=A - i(a),
h(a - A)=i(a) - A
Now we can define the ARCB/RO/B/f grammar (G,C) which generates the
language o (L) by G =(V, Z,P,S), where
- V=[{Vy|aZ }ON; A DO {Z}O{As]aX }
- P=[{PylaX 1}0h(P)IP;BM™W with
Pz={Zy - Z§|alX 4},
©={A, - Za|aZ },
W={A, - alalX )
- S=S5;
and C =h(C,)PIT® W7,
The proof is completed as follows. Let (G1,C;) be bounded by @,
where ¢, OPOLY (k) and

k .
@o(p)= 3 g p’
j=0
and let for all X ; the languages o (a) be bounded by ; with
Y; OPOLY (k) and

K _
Wi(p) = 3 by p’

j=0
where 1<i<n. Let F beabounding function, F OPOLY (k), determined by

k .
F(p)= % bp’
j=0
where b; = max{lby; |1<i<n}. Let v=a,(y...a,q) with 121 and u a func-
tion from IN* to {1, ...,n}. Furthermore, let w =wy...w =0(v) such that
Ws[0 (8y(), 1£s<I. Now with C = h(C;) PT-O W we can write

|
Teo(W)=s@()+1+ X Wy ((ws]) +1+l
1

@)+ IZF(\WS\)+3|

s=1
<@ () +F(|w|)+bo(l-1)+3l.

The latter inequality is obtained by using the same method as in the proof of
closure under marked Kleene +. With
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|
1< > |ws|
s=1

the result follows immediately.

(b) The construction for the proof of Proposition 3.3(b) differs only
from the proof of 3.3(a) in the following details. The language L, is a
ARCB/RO language and the substitution is a A-free context-free substitution.
The grammars (G,,C,) for o (a) are ARCB/RO grammars with C, = P5. As
amatter of fact, we do not need a nonterminal Z which is therefore omitted.
Consequently, ©, W, Pz and Q are left out of (G,C) and P is equa to
O{Ps|a 1}0h(P;). WedefineU as{A - a|AONs,a0(N;@ )5 and
the isomorphism i is defined by i:V; - N{[A with i(A)=A, for each
AON; and i(a) =S,, for each alX ;. As the control language C we take
h(C,) T". Now the final steps of the proof are analogous to the case of sub-
stitution.

If ® equalsLIN or POLY, then the result follows from ® = POLY (k) as
acorollary. O

In Chapter 11, Definition 4.1 we introduced the weak Chomsky Normal
Form (CNF). This definition can be adapted to time-bounded ARCB gram-
mars in the obvious way. The time-bounded variant of Theorem 11.4.4 reads
asfollows.

Proposition 3.4. Let ® be a family of bounding functions. If ® is equal to
LIN, POLY (k) or POLY, then for every ®gy;p/s grammar (Gg,Cy) there
exists an equivalent @y s grammar (G, C) in weak CNF.

Proof. Let (Gg,Cy) be bounded by some @@ . The first step consists of
transforming this grammar into an equivalent grammar (G,,C;) without
chain rules. Thisis effected by incorporating chain rules into the other non-
chain rules, whereas C; =T(Cy) for some nondeterministic generalized
sequential machine mapping T; cf. Lemma 11.4.3 for the details of this con-
struction. Since |T(x)|<|x| for each control word X, (G1,C1) will also be
bound by ¢@,. From this grammar we obtain the fina grammar (G,C) by
“splitting” each rule of (G1,C) into smaller rules having a right-hand side
of length less than or equal to two. This is achieved by the following con-
struction. We assume that G; hasno chain rules. Let P, = {1, ...,m,} be
the set of productions of G, with 4 =A; - B; 1...B; . Let P be con-
structed as follows. Starting with the empty set, adjoin every production of
P, to P which has a right-hand side with a length smaller than three. Next,
for every ;0P with my=3 construct m—1 new productions from this pro-
duction as follows. Teke 1 1 =A - B; 1D 1, 5 2=D; 1 - B;j 2Dj 2, ...,
T m-1 = Dim-2 - Bim-1Bi,m. We assume that the D; ;’s are distinct from
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each other, and that these D; ;’s congtitute the set D. The productions Tg
will be adjoined to P. Now we define a homomorphism h:P; — P with
h(m)=m if m<2and h(T§) =15 1...T5 -1 if m=3. Furthermore, for a
reduction TP, define h(m) =h(m), using mt=1T1 for every T T1OP;.
Finally, we take C =h(C,) and G =(V,0D, Z1,P,S;). Now let M be the
maximum value of the length of a right-hand side of a rule of (G,Cy).
Then we have T g, c)(n) < (M-1) g(n) if M=3 and T g cy(n) < @(n) other-
wise. Hence (G,C) isbounded by (M —1) @¢y. Thiscompletesthe proof. [

4. Parsing ARCB Languages.

In this section we present depth-first bottom-up parsing algorithms for some
®,, languages where @ is a family of bounding functions. Although the
algorithms are modifications of a well-known backtrack agorithm, the pres-
ence of reductions introduces some principal differences when compared
with the usual bottom-up parsing algorithms for context-free languages. In
the “normal case” of bottom-up parsing, a correct sequence of productions
which rewrites Sinto a string w is determined by applying reduce and shift
operations to the input string w. In our framework, where reductions may
occur in the control language, we also ought to apply produce operations.
This means that a reduction a - A in the control language causes the pars-
ing algorithm to rewrite the right-most nonterminal of the current sentential
forminto a, at least if this right-most nonterminal is equal to A. We say that
arule j is applicable (with respect to the parsing algorithm) to a string a if
there is astring B such that appm(j,a,B) (assuming, of course, that 1= T, for
each 1tin P). In other words, a production in the control language will cause
areduce operation at the parsing process; a reduction in the control language
will cause a produce operation. The presence of reductions has also the
effect that we cannot use lookahead to obtain faster algorithms, at least not
in a straightforward way asin the case of ordinary context-free parsing. This
can be illustrated by the following observation, concerning the RN-mode. A
produce operation rewrites a nonterminal A into a string o according to a
reduction a — A in the control language. In this case, the longest postfix of
o which consists entirely of terminals ought to be considered as a string of
terminals that have not yet been involved in the parsing algorithm by shift
operations.

All agorithms in this section are bottom-up parsers. Thisis due to the
fact that in RCB grammars we rewrite the right-most nonterminal, i.e., we
consider right-most derivations. In case of the corresponding “LN-mode’
(Left Nonterminal) a top-down parser would be needed. First we present a
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parsing algorithm for the mode RN/B/f. The algorithm is inspired by the
depth-first bottom-up parsing algorithm presented in [Sud]. Asin [Sud], we
use a stack (here represented by T) to handle the backtrack information.

Algorithm 4.1. A depth-first bottom-up parser for ARCB/RN/B/f languages.

input: — A-free RCB/RN/B/f grammar (G, C) represented by aA-free
context-free grammar G = (V, Z,P,S), and a deterministic
finite automaton M = (Q, A,3,qo,F), with AP O P,
that accepts CR, i.e,, the reverse of C.
- stringwX ", wherew =w; ...w,, N1, WX .
— bounding function @.

output: — acontrol word (aparse) ¢ with ¢ derivingw from S
if suchacin C exists, otherwise areject message.

1. K = @(n)
PUSH([A,w, 0,0,A,q0],T)

2. repeat
[uv,it,c,q] := POP(T)
dead end := false
r epeat
Find thefirst rule j with j > i that satisfies
i) jOFollow(q)
i) j =xAy - zwithu =pzandx,pOV", zOV*, yX "
i f thereissuchaj then
PUSH([u,v,],t,c,q], T)
u := pxAy
rearrange(u,v)
i =0
ti=t+1
q :=9(qj)
c:=jc
end if
i f thereisnosuchj t hen
if v£A then
shift(u,v)
i:=0
el se
dead end := true
end if
end if
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until (u=Sandv=AandqlF) or dead end or t =K
until (u=Sandv=AandqUF) or EMPTY(T)

3. if EMPTY(T) then reect el se output(c) O

The agorithm works asfollows. Asalready stated, astack T isused to
manage the information where to continue with the parsing algorithm in case
we have to backtrack from a wrong parsing decision. To this end each ele-
ment of the stack consists of six items. The first and second item are strings
from V" which constitute — when concatenated — the string on which the
latest rule has been applied. The first item is associated with the variable u
and the second with the variable v. The algorithm is organized in such away
that, after each operation on u, the pair (u,v) is rearranged (if necessary) into
the pair (u’,v') such that u'v’' = uv, u'OVH(V-2) and viI ". Throughout
this section, we suppose that this rearranging is performed by a procedure
rearrange(u,v). So the variable v contains a string from =" during the entire
parsing process. This string v represents more or less the input which has
not yet been processed. Because we aso have to deal with reductionsin the
control language, v may even become longer during the parsing process.
This happens in case a nonterminal A at the right side of u is rewritten to a
string with terminals at the right side, according to the application of some
reduction in the control word from C. After the PUSH operation, these ter-
minals are adjoined to the left side of v. As aready mentioned, this is per-
formed by rearrange(u,v). The sixth item, associated with the variable q, is
a state of the deterministic finite automaton M. With each state s we associ-
ate a set Follow (s) which is defined by

Follow(s) ={i OPO P |Op.5(s,i) = p},

i.e, this set is formed by al label names of the outgoing arcs of the state s.
The third item, associated with the variable i, gives us the index of the latest
rule which has been tried. We represent each rule from P P by a number
from1...2P|. Theni indicates that the next rule that will be tried, ought
to have an index greater than i. If i =0, then no rules have yet been tried
after entering the state g. The fourth item of a stack element is associated
with t. It stands for the number of rules used so far at the current path, and it
isincreased by one each time arule can be applied. If t becomes equal to the
time-bound K, no rules will be tried any more. If the stack is not empty at
that moment, then we backtrack by popping an element from the stack,
which will have an item t with t< K. Finaly, the fifth item, associated with
the variable ¢, contains the parse string, and after a successful parse of an
input string ¢ equals a control word from C which derives w.
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The algorithm starts with calculating the time-bound K from ¢ and n,
the length of the input w. The stack is initiated by pushing [ A,w, 0,0,A,q¢]
onto the stack. The body of the algorithm begins with popping an element
[u,v,i,t,c,q] from the stack T. Starting a j =i+1 we try to find the first |
smaller or equal to 2P| with j OFollow(q) and j is the index of a rule
applicable to u with respect to the parsing algorithm. [f this search is suc-
cessful, then we first put backtrack information onto the stack by
PUSH([u,Vv,],t,c,q],T). Then we perform a reduce or produce operation on
the string u, according to the type of the rule associated with j, obtaining a
new string u’. We change g to the new state g’ of M which is equal to
0(q,j), and set i equal to zero. Next we increase the counter t by one, and
theindex j is adjoined to the left of the old string c. We obtain a new “input
string” v' differing from the old string v in case we applied a produce opera-
tion B — xAy with y[X *. This is effected by rearrange(u,v). If there
exists no rule with index j>i and j OFollow(q) with j applicable to u, then
we shift one terminal symbol a from the remaining input v to the right of u
in case v #A. Hereafter we try repeatedly to find a proper rule which is
applicable to the new string ua. If v = A, then we have to backtrack, whichis
effected by chancing the value of the variable dead_end to true.

Let M be a deterministic finite automaton with a set of states Q. Then
we defineM by

M = max{ Card (Follow (q)) |qCQ}.

wherefor aset B, Card(B) denotesits cardinality.

Proposition 4.2. Let (G,C) be a ARCB/RN/B/f grammar bounded by a
bounding function ¢ and let w be a string from =* with n =|w |. Then Algo-
rithm 4.1 can decide in time O(M¥™) and in space O(@?(n)) whether or
not w is an element of L (G,C). If wlL (G,C), then the algorithm produces
also a control word c deriving w.

Proof. Suppose w(X *. Because the algorithm cuts off every possible
derivation with alength greater than @(|w|) it has to search among a finite
number of strings from (P O I5)D. Furthermore, by Lemma 2.7 the existence
of a control word cJC with length smaller than or equa to @(|w|) is
guaranteed in case wL (G,C). So the algorithm can decide in a bounded
amount of time and space whether or not wL (G,C). To be more precise, if
we count every PUSH operation as one unit of time we obtain the time and
space bounds stated above as follows. The stack will have a height of at
most @(n) elements. Each element will need an amount of space propor-
tional to @(n) because once we have recognized a nonterminal A, it is possi-
ble that this nonterminal will be rewritten by a series of reductionsa A - A
in the control language, a most @(n)—-1 times, where |a|<



Time-Bounded Controlled Bidirectional Grammars 69

max{ |y||A - yOP}. Summarizing, the algorithm will need a most
O(¢?(n)) units of space. At every node g of M, where M is the deterministic
finite automaton of Algorithm 4.1, the algorithm can make at most M wrong
tries after each shift operation. The expected number of shift operations is
proportional to @(n). Thisis due to the same reason that a stack element has
an O(@(n)) need of space. Then at each node we can perform at most
O(M®M) PUSH actions which finaly lead to a dead alley situation. So
there exist at most O (M¥™) control words the algorithm ought to check
before terminating. O

Algorithm 4.1 presented above serves as a base for other parsers.
Depending on the mode m, we modify Algorithm 4.1 in order to obtain
parsers for ARCB/m languages. We will discuss parsers for the modes
RN/B/g, RN/S/f and RO/B/f in some detail. Further modifications — yield-
ing parsersfor the remaining modes — are left to the reader as an exercise.

The agorithm for ARCB/RN/B/g languages can be obtained from
Algorithm 4.1 by chancing the part beginning at “ii) j = XAy - zwithu =pz
and . ..” up to and including “u := pxAy” into the following sequence of
instructions.

i) j =xAy - zwithu=pzandx,pOV", zOV*, yX ©
orj=x - Awithu=pAandxX *, pOV"
i f thereissuchaj then
PUSH([u,v,j,t,c,q], T)
i f jisageneral reduction t hen
(*j=x > AXI %)

u:=px
el se

u := pxAy
end if

Concerning the time and space complexity, we can easily show that for
the algorithm for ARCB/RN/B/g languages these will be of the same order as
for Algorithm 4.1. This fact indicates that the upper bounds presented in
Proposition 4.2 are probably not very tight. Cf. also the remark on the com-
plexity of the ARCB/RO/B/f-parser at the end of this section.

Next we consider a parsing algorithm for the RN/S/f-mode; cf. Algo-
rithm 4.3 below. If we compare this algorithm with Algorithm 4.1, then the
following differences are conspicuous. Stack elements have been extended
with a seventh and an eighth item. The seventh item will contain the value
of a boolean variable Skip. Skip indicates whether the agorithm ought to
skip arule of the control language. If Skip = false then we execute the same
lines as in the agorithm for the RN/B/f-mode (plus the initializing of the
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eighth item, notapp). However, at some moment, if no rule j with j>i is
applicable after shifting the entire remaining input string, we can try to skip
arule. Therefore we replace “dead end : = true” from Algorithm 4.1 by
“Sip = true; i 1= 0". To keep the administration concerning which rule
is not applicable in the context of the sentential form uv and the state q of the
determinigtic finite automaton M, we use the variable notapp. It denotes a
subset of P Py, where

Pi={a - A|A - aOP, aOV™34.

Each time anew state q' is computed from d (j,q), notapp is set to the value
PO Py, which is also the initial value of notapp. After finding an applicable
rule j we remove this rule from notapp. Thisis effected by storing this fact,
together with the other backtrack information, in the eighth item of the stack
element by PUSH([u,V, j,t,c,q,Skip,notapp—{j}],T).

Algorithm 4.3. A depth-first bottom-up parser for ARCB/RN/Sf grammars.

input: — A-free RCB/RN/S/f grammar (G, C) represented by a A-free
context-free grammar G = (V, Z,P,S), and adeterministic
finite automaton M = (Q, A,3,q,,F), with AOP O P, that
accepts CR, i.e,, thereverse of C.
- stringwX Y, wherew =w; ...w,, n21, WX .
— bounding function .
output: — acontrol word (aparse) ¢ with ¢ derivingw from S
if suchacin C exists, otherwise areject message.

1. K := @(n) B
PUSH([A,w, 0,0,A,qq,false,P 0 P¢],T)

2. repeat
[u,v,i,t,c,q,SKip,notapp] := POP(T)
dead end := fase
repeat
i f notXip then
Find thefirst rule j with j > i that satisfies
i) jOFollow(q)
ii) ] =xAy - zwithu =pz
andx,p0OV® zOvV*, yI "
i f thereissuchaj then
PUSH([u,Vv,],t,c,q,Skip,notapp—{j}], T)
u = pxAy
rearrange(u,v)
i =0
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t:=t+1
q:=905(aj)
notapp = PO P
c:=jc
end if
i f thereisnosuchj then
i:=0
if v£A then
shift(u,v)
el se
ip = true
end if
end if

el se (* Skip =true*)
Find thefirst rule j with j > i that satisfies
i) jOFollow(q)
ii) j Onotapp
i f thereissuchaj t hen
rearrange(u,v)
PUSH([u,Vv,],t,c,q,Skip,notapp],T)

i :=0
q:=0(j)
notapp = PO P
ip ;= fase

el se
dead end := true

end if

end if

until (u=Sandv=AandqOF) or dead end or t =K
until (u=Sandv=AandqUOF) or EMPTY(T)

3. if EMPTY(T) then reject el se output(c) O

So after setting the variable Skip to true in the t hen-part of the “i f
not Skip then ... el se ...” statement, we will enter the next turn of the
inner repeat loop the el se-part of the“i f not Skip then ... el se ..
statement. Because we have set i equal to 0 we can try each rule j that is not
applicable at the current string uv. If we find such a j, then we first ought to
perform rearrange(u,v). This is because v may be equal to A due to shift
operations. Then we store these new u and v together with the other back-
track information (j,t,c,q,Skip,notapp) by pushing them onto the stack T
(where Skip has the value true). The variable i is set to 0, Skip to false and
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we compute the new state q" by 8(q,j). Furthermore, in this new context
consisting of uv and q', notapp is initialized by PO P;. Of course, no rule
can be concatenated to the control string already found. Also the time
counter t will not be increased. If there are no rules left that are not applica-
ble, this path has been exhausted and we have reached a dead end situation.

Algorithm 4.3 can make at each node g of M at most 2 wrong deci-
sions after each shift operation. This results in a time complexity of
O((2M)¥™). The space complexity is of the same order as in Algorithm
4.1; cf. the proof of Proposition 4.2.

As alast example of ARCB/m-parsers we discuss the case in which m
is equal to RO/B/f. In this mode, rules can be applied more freely than in
the mode RN/B/f. This means that we ought to weaken the corresponding
condition in Algorithm 4.1. Viz., we change

ii)j =xAy - zwithu =pzandx,pOV" zOV* ,yX "
into
ii) j =xAy - zwithu =pzsand x,p,sOV",zOV* ,yX "
and either ((x =Aandy =) and A doesnot occur in s)

or ((x#Aory#A)andzdoesnot occurins)

In addition, we change “u := pxAy’ from Algorithm 4.1 into
“U 1= pxAys'.

The time and space complexity of this modified agorithm is of the
same order as in Algorithm 4.1. This is due to not taking into account the
time needed to check for the applicability of arule j from Follow(q). This
latter test is expressed in condition ii) occurring in the various agorithms. It
isjust this condition that depends on the mode under consideration.

In the agorithms presented above, some improvements are possible.
Viz. we do not need to push backtrack information onto the stack if it hap-
pens that Follow (q) possesses only one element. Furthermore, for each pair
u and v just popped from the stack, we observe that, once we have shifted
from v to u, we do not need to check for the applicability of reductions from
Follow(qg). Another improvement is the following. It is possible for a state
g that al productionsin Follow (q) are fair productions, i.e., their right-hand
side is an element of VI(V-X)V". Then after a (bounded) number of shift
operations, depending on the set Follow(q), no further shift operations are
needed. This is because the length of the longest postfix, consisting of ter-
minals only, of the right-hand side of a production 1T has a maximal value on
the set Follow(q). In the same way, whenever there are aso termina
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productions in Follow (q), we need only to check for the applicability of ter-
minal productions on the intermediate string uv (with respect to the parsing
algorithm) after a bounded number of shift operations.

These possible improvements show that the derived upper bounds for
the time and space complexity are probably not very tight. Thusit is likely
that a more careful analysis will yield better upper bounds for the improved
parsing algorithms.

5. Concluding Remarks.

In this chapter we extended the idea of time-bounded grammars, as intro-
duced in [Boo71, Gla], to the concept of ARCB grammar. We showed that
for the mode RN/B/f we have ®gy g/ = ARCB/RN/B/f = ACFL, where @ is
equal to POLY, POLY (k), or LIN. We aso constructed parsers for some of
the modes. In Table 1 we summarize the closure properties established in
Section 3. In thistable, an entry which is empty indicates an open problem;
aplus means a positive result.

Closure properties of ®,,, languages
with & equal to POLY, POLY (k) or LIN.
RN RO
B S B S
flglf|lgl|f|lg|f|g
union + |+ |+ |+ +| +| +| +
concatenation + +
marked concatenation + + +
Kleene + + +
marked Kleene + + + +
intersection with aregular set + + | + |+
A-free context-free substitution || + + | + |+
substitution + +
Table 1.

Note that the positive results for the mode RN/B/f are due to the fact
that A\CFL = Drn/B/f with @ as above.

The closure properties for ®,,, languages, with ® equa to POLY,
POLY (k) or LIN, can aso be established for other language families based
on more general control languages and on less restricted families of
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Op22.0p q,...,Yp@ L@ .0On.@(n)=max{P;(n)|1<i<p}
[ 1, W@ L@ .0On.(@(n)=max{Py(n),P2(n)}

[ W@ .An.(@(n)+Y(n)) @

p@ ,0c=0.An.(@(n)+c) P

p@ ,0c,d=20.An.(@(n)+dMm+c) D

¢ and d are natural numbers.

Table 2.

bounding functions. Let C denote an arbitrary family of control languages
and @ an arbitrary family of bounding functions. Then for each closure pro-
perty it is possible to list simple properties of C and of ® which imply a cer-
tain closure property of the family of languages generated by ®-bounded C-
controlled grammars. Results of this type — which can easily be provenin a
way similar to the proofsin Section 3 — arein Table 3.

Assumptions Assumptions || Closure property
onC on® of ,(C)

marked union Mo, Og union
concatenation, O, O concatenation
left and right-marking
concatenation, Og, O marked
left-marking concatenation
concatenation, Kleene +, (o8] Kleene +
Kleene J left-marking
concatenation, 01 marked Kleene +
Kleene [J left-marking
union, concatenation, (o} intersection by a
Kleene [ reversa, regular set
finite substitution
union, concatenation, d, a A-free context-free
Kleene [0 homomorphism substitution
union, concatenation, K, d, 0y substitution

Kleene [0 homomorphism

Table 3.

The meaning of the assumptions on the family of bounding functions

® mentioned in Table 3 are listed in Table 2. For a precise definition of
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closure under left and right-marking we refer to Section 11.6. With each clo-
sure property mentioned in the table a specific set of modes is necessary to
obtain a proper result. This set can be found in the corresponding proposi-
tion from Section 3. Since C now replaces the family of regular languages,
we are dealing with A-free C-controlled bidirectional grammars (ACCB
grammars) rather than ARCB grammars. Then ®,,( C) denotes the family of
languages generated by ACCB/m grammars that are bounded by some
bounding function from ®. For an arbitrary family C of control languages,
Lemma 2.8 and Corollary 2.10 no longer hold. Under which conditions on
C, the family ®gy/p/f(C) — with @ equal to POLY, POLY(K) or LIN -
shares al closure properties of the family ACFL, remains therefore an open
problem. Note that Table 3 only provides a partial answer to this question.
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CHAPTER IV

Generating Power of RCB/RO Grammars

1. Introduction

One aspect of the derivationa processin RCB grammars is the selection of
the termina that has to be rewritten — if possible — by the next rule
prescribed by the control word. In Chapter |11 the right-occurrence or RO-
mode has been introduced. We introduced this rather “exctic” way of
rewriting in order to establish some closure properties of the corresponding
family of RCB languages, viz. closure under homomorphism, inverse
homomorphism, intersection with a regular set, and under context-free sub-
dtitution. Now the main result of this chapter is, that if the mode of deriva-
tion m includes this RO-mode instance, then the resulting language family
equals the family of recursively enumerable languages. And so this family
inherits all (closure) properties of the family of recursively enumerable
languages. But the proofs in Section 11.3 for the RO-mode remain to have
some interest since they deal with rules rather than with productions only.

This chapter is organized in the following way. In Section 2 we recall
some definitions concerning Turing machines and related concepts in order
to fix our notation. Section 3 is devoted to the proof the main result con-
cerning the generating power of RCB grammars provided with the RO-
mode. Some consequences of this result are mentioned in Section 4; viz. the
time-bounded RCB/RO grammars of Chapter 111 are weaker than ordinary
RCB/RO grammars with respect to generating power. This follows from the
fact that time-bounded RCB languages are recursive; cf. Chapter I11. Then
in Section 5 we discuss the difference between the RS-mode and RA-mode
introduced in Chapter |, and the RN-mode and RO-mode introduced in
Chapter 1I. We show that the RA-mode has the same generating power as
the RO-mode. Finally, Section 6 contains some concluding remarks and
open problems.
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2. Prdiminaries

We refer to [Har, HopUII79] for al unexplained notations and concepts from
forma languages and complexity theory. Another useful standard text is
[Sal73]. First, werecall some basic definitions and terminology with respect
to Turing machines.

Definition 2.1. A deterministic single-tape Turing machine is a 7-tuple

A=(Q, %,I,B,d,q9,F), where

° Q isafinite nonempty set of states,

° 2 isafinite nonempty set of input symbols,

° I" isafinite nonempty set of work symbolsand 2 [T

° BII-% istheblank symbal,

° qoUQ istheinitial state,

° F O Q isthe set of final or accepting states,

° disapartia mapping from Qx T into Qx I x{-1,0,1}. This mapping
is called the transition function. O

From the so-called instantaneous description of a Turing machine A we
can infer in what state A is, the contents of its tape, and the head position on
thetape. WeassumeQnl =0.

Definition 2.2. An instantaneous description or ID of a deterministic
single-tape Turing machine A equal to (Q, ,I",B, d,qq,F) is any element of
r“Qr+. Aninitial 1D is an ID of the form gow with wiX *O{B} and an
accepting ID is any element of TF I+, O
Inan ID aqf, the symbol g represents the state in which the Turing
machine is. The string a3 denotes the contents of the tape such that the
head is scanning the first symbol of f3.
Definition 2.3. Let A=(Q, ,I",B, 8,q¢,F) be a deterministic single-tape
Turing machine. The transition relation |— on rHQr+ is defined as fol-
lows. Let x,y be ID’s, where x = aagbp and y =o' q'f' with aa, o'l ©,
alld {A}, and bB,B'M *. Furthermore, let d(q,b) =(p,c,d). Then A
rewrites b into ¢ and moves one position to the right [left] if d =+1 [-1,
respectively], and if d = 0 the position of the head does not change. Now we
write X —y if and only if
° p=q' and
° (d=+landa’'=aacandB'=[B) or
(d=-1landa'=a and'=acf) or
(d=0anda’'=aaandB'=cp).
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Asusud, ' denotesthe reflexive and transitive closure of —. O

Definition 2.4. Let A=(Q, %,I",B, 8,q¢,F) be a deterministic single-tape
Turing machine and wX *J{B}. The Turing machine A accepts w (when
wX *)or Aaccepts A (whenw = B) if

qow " agp for someqLF.

The set of all win =" accepted by A is called the language accepted by A:; it
is denoted by T(A). Thus T(A) ={wX "|A acceptsw}.

A language L is called recursively enumerable, if Lo =T (A) for some
deterministic single-tape Turing machine A. The family of recursively enu-
merable languages is denoted by RE. O

It iswell known [Har, HopUII79, Sal 73] that the family of recursively
enumerable languages is equal to the family of Chomsky type-0 languages
or phrase-structure languages.

3. TheMain Result

The proof of Proposition 3.1 has been inspired by the proof of Lemma 9.5.2
in [Har] which establishes the equality of the family of phrase-structure
languages and the family of the recursively enumerable languages. In that
proof some arbitrary phrase-structure productions rather than context-free
productions play of course an essential part. In order to show that for certain
modes m, RCB/m grammars are able to generate all recursively enumerable
languages we have to simulate arbitrary phrase-structure productions by a
combination of context-free productions and reductions. The idea of the
proof below is that we simply replace each of these phrase-structure produc-
tions by a reduction immediately followed by a production such that these
two rules have the same effect as that single phrase-structure production.

For each mode m, let L, denote the family of languages generated by
RCB/m grammars.

Proposition 3.1. AlanguageL g isan RCB/RO languageif and only if L is
recursively enumerable. Equivalently, Lro = RE.

Proof. Let Lo be equal to T(A), the set of strings in " accepted by the
deterministic single-tape Turing machine A, where A =(Q, Z,I",B, 8,9, F).
Furthermore, we assume that &(g,a) = O for each g in F. First, we construct
an RCB grammar (G,C) with G = (V, Z0{$},P,S) such that Lgo(G,C) =
{$}Lg. This RCB grammar (G,C) starts with producing nondeterministi-
cally a coded version of aword x in . Then it simulates the computation
of Aoninput x. In casethis simulated computation of A on input x reaches a
final state, then (G,C) will yield $x as the string it generates.
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We define the alphabet V of G by
V=3 0{$}0V,e0V;0V,0V30{SU,Wg,W}0Q
where
Vo =(ZU{A})xT,
Vi =Qx(ZO{A}) xT,
Vo =(ZO{A}) xTxQx(ZO{A}) xT,
Vi ={W,|aX }.
The set P isthe union of afinite number of mutually disjoint sets, each
of which consists of a finite number of productions. This subdivision of the

elements of P facilitates the description of the way in which (G,C) simulates
the computations according to A.

The subsets {4, 15, 15,1y, T}, Pss, Pgr and Pg_ of P consist of pro-
ductions that initialize the simulation of the Turing machine A. These pro-
ductions are defined by

m =S > S(A,B), ™ =S - WgU(A,B),
T[3=U—>$, T[4=W—>W$$,
5 =W - $qo.

Furthermore,

Pss ={U - (aa@)U|aX },

P$R:{W - (a!a)$‘a[z }1

Pg. ={W, - $(a.a)|aX }.
In the next six subsets of P — to be defined below — the set P,
(i =-1,0,1) consists of the productions that are necessary to start a simula-
tion of an i-step of the Turing machine A. In fact, only reductions from P;

will be used. Then the rulesin the corresponding set P; will actually com-
plete that simulation.

Poi={(p.aD) -~ p(aD)[aZd {A},pdQ DI ,

DED , Oq0Q.3(p.D) =(q.E, 0)},
Po={(p.aD) -~ d@E)|aZ0 {A},p,q0Q, D,EM ,5(p,D)=(a,E, 0)},
P11 ={(p.aD) - p(abD)[aZd {A},pdQ DI ,

DET ,O0q0Q.3(p.D) =(q.E 1)},
P1={(p.aD) - (aE)qlaZ O {A}, p,q0Q, D,ET ,8(p,D)=(q,E 1)},
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P_11={(b,H,p,a,D) - (b,H)p(a,D)|abX O {A}, pUQ,D,HI ,
DED , 0gqlQ.o(p,D) =(q,E -1},
a,bXO {A}, p,qUQ,

D,EHI , d(p,D) =(q,E, -1)}.

P—l :{(b,H,p,a,D) - q(b!H)(a!E)

Once we reach afinal state in the ssimulation of the Turing machine A,
the next four subsets of P take care of generating the terminal string that has
apparently been accepted by (the ssimulation of) the Turing machine.

Pr={(a,aD) - q(aD)|q0F, aZd {A}, DT },

PL={(a,aD) -~ (&D)qlqlF, aX0 {A}, DI },

Ps ={(q.a,D) - aq|qOF, a0 {A}, DT },

Px={q - A|qOF}.

Finally, we define the control language C of (G,C) by C = (PO I5)D.

A consequence of the equality C =(POP)Y is that the generating
power of the B and S-mode will be equal. This is due to the fact that if we
have some control string ¢ in C such that SO go,s/f W, then the string ¢’
obtained from ¢ by removing each skipped rule has the property SO &o/g/sW
andc'CIC.

The construction sketched above works as follows. If the Turing
machine A accepts the string a; ... a,, then it will stop after a finite compu-
tation. During this computation A uses, apart from the n cells on which the
input has been written, some number of additional cells — say k (k=0) - to
theright of the input. Now we can only start a derivation of (G,C) by apply-
ing k times (k>0) the production Ty =S - S(A,B) to S followed by T3, in
order to remove S This production is followed by zero or more applications
of productions of the form U - (a,a)U with alX , and a single application
of the production U - $. Thus there exists a control string c; in
{m} Y} P¥s {Ts} such that

SO Rof Ws(az,a1) .- (8, @) $(A,B),  (n+k=1).

The string obtained by this subderivation will be denoted by a, .
By zero or more applications of pairs of the form (a,a)$ - W, and
W, - $(a,a) with alX , and followed by the application of 1y and 15 we
observe that there exists a control string ¢, in (PggP g )™{ 4T} such that
dn kD Rosr $do(@1,a1) ... (Bn,an) (MB), (N +k=1). ()

The string obtained by this subderivation will be denoted by wy, k.
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Note that inserting productions and reductions from Pys OPgr[
Ps {™, T, 5,7y, T5} in c; does not result in other, “undesirable” deriva-
tions.

Next we can simulate the actions of A by applying rules from P; | and
P; (i =-1,0,1) to wy k. The position of the head of A is given by the posi-
tion of the nonterminal q in the string. 5Q| Po smulates an action of A with
no head movement, I51,| P, takes care of a movement to the right A, and
finally |5_1,| P_, performs an action of A in which the head is moved to the
left. At each moment of time there occurs at most one nonterminal g from Q
in the sentential form. Therefore, reductions from Pg,, Py, and P_y, will
always be applied to the correct substring. Note that these sets consist of fair
reductions only. Due to these observations we have the following subderiva-
tions. Thereexist OP; P (i = -1, 0, 1) such that

e p@D)0Ra(aE)
for each p,q0Q, alX O {A} and D,EM suchthat &(p,D) =(q,E, 0).
e p(@D)0Ro(aE)q
for each p,qU0Q, alX O {A} and D,EMM suchthat &(p,D) =(q,E, 1).
e (bH)p@D)DrSxa(bH)@E)
for each p,q0Q, a,bX 0O {A} and D,EHIT such tha &(p,D)=
(9,E, -1).

Apart from these subderivations we also have that there exist control
wordsdg, €g in Pg P such that

p(a,D) 0 R p(a,D)

and

p(aD) 0 o (p,a,D).

These latter two subderivations represent wrong guesses of the gram-
mar (G,C) in the smulation of the Turing machine. However, they will not
yield additional terminal strings. The first one for obvious reasons, and
(p,a,D) can only be rewritten by one specific production from Py. Analo-
gous observations can be made with respect to P, P, and P_; ,P_;. We
can show by induction on the number of Turing machine moves that if

Qo1 ---8n A X1 X -10 %+« - Xk
then for some string cin (D{I5i||D Pli= -1,0,1})” we have
Q"I,k[l %O/f$(alvxl) . -(ar—l,xr—l)q (al’lxl’) " '(aﬂ+k!xn+k) (2)
whereg =A (i>n)and X[IT (1<i<n+Kk). Let the derived string in (2) be
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denoted by XDtk
If a nonterminal symbol q from F appears in %‘ak then only rules

from Pg, P, are applicable. Then it will be clear that there exists some con-
trol string d in (Pr0 P 0 PgO PO P )" such that

XD4D o $as ... 200 ®

By applying a single rule from P, to this latter string we obtain the terminal
string $a; ... ay.

Thus {$} T(A) OLgo/s (G,C). The converse inclusion can be proved
by induction in asimilar way. Notethat if qo0F, then Lo/t (G,C) = =~

For each Turing machine A we have constructed RCB/RO/S/f and
RCB/RO/B/f grammars that generate {$} T (A). These grammars are trivi-
ally RCB/RO/S/g and RCB/RO/B/g grammars too, respectively. However,
in these latter two cases we have to define C by C = (PO Py)”, where Py is
the set of fair reductions induced by P. Note that this control language can
be used for both the B and the S-mode; cf. the remark at the end of the con-
struction of P.

Next we define a homomorphism h:>0{$} - =" by h($)=A and
h(a)=aforeachain XZ. Sincethe families of RCB/RO languages are closed
under homomorphism (Proposition 3.3.b in Chapter 1), we can effectively
construct an RCB/RO grammar (Gg,Cg) such that

Lro(Go,Co) =h(Lro(G,C)) =h({$} T(A)) =h({$}Lo) = Lo.

This concludes the proof of the implication from right to left in 3.1.
The converse implication can be proved using Church’s Thesis. O

In the construction applied in the proof of Proposition 3.1 we defined
the control language C equal to (PO I5)D for the RO/B/f and the RO/S/f-
mode. Thus we actually constructed an uncontrolled bidirectional grammar.
Therefore, from the proof of Proposition 3.1 we obtain immediately the fol-
lowing consequence in which we use the concept of B grammar. A bidirec-
tional grammar or B grammar is an RCB grammar (G,C) which satisfies
c=(POP)".

Corollary 3.2. A language L is recursively enumerable if and only if the
language { $} L  is a B/RO/f language. O

From 3.1 and 3.2 it follows that providing B/RO/f grammars with con-

trol languages does not result in additional language generating power.

Both 3.1 and 3.2 are examples of characterizing the recursively enu-
merable languages in terms of rather simple means. We only use context-
free rules but in both a productive and a reductive way. So the main results
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of this section belong to a large class of similar characterizations of which
[Asv86, BakBoo, Boa, Boo78, Cul, EngRoz, Sav] are afew instances only.

4. Time-Bounded A-free RCB Grammars

For the definition of A-free RCB or ARCB grammar we refer to Section 111.3.
The notions of bounding function, time-bounded ARCB grammar as well as
the classes ®,,,, POLY,,, POLY (k),, with k=1, and LIN,, (mis a mode) have
been introduced in Section 111.2. For each mode m and each bounding func-
tion @, let L (¢) denote the family of languages generated by ARCB/m gram-
mars that are bounded by @. Then we have that ®,, = LI{L (9) | @ }.

Now we are ready to formulate a consequence of Proposition 3.1. It
shows that for each mode m that includes the RO-submode, providing
RCB/m grammars with a time bound is areal restriction in the sense that it
resultsin aless powerful grammar model.

Corollary 4.1.

(1) For each bounding function @, L ro(¢) is a proper subfamily of L go.

(2) For each family @ of bounding functions, ®roldLgo, i.€, Pro is a
proper subfamily of the family of RCB/RO languages.

Proof. In Chapter 11l parsing algorithms for ®ro languages have been out-
lined. Since these algorithms terminate for each input, it follows that all
languagesin ®r arerecursive. O

Actualy, we can dightly improve upon Corollary 4.1, for which we
need the following concepts and notations. Let NTIME(¢q) be the family of
A-free languages which are accepted by multi-tape nondeterministic Turing
machinesin time @: IN - IN. Asusual NP is defined by

NP = {NTIME(n%)|dOIN},

i.e, NP isthe family of A-free languages acceptable nondeterministically in
polynomial time.

Proposition 4.2. (1) Let Ly be a ARCB language bounded by a function
@:IN= IN. Then LoONTIME(¢?).
(2) POLY ONP.

Proof (sketch). (1) Using a 2-tape nondeterministic Turing machine each re-
writing step can be simulated in a constant number of steps. Looking for the
prescribed substring to be rewritten requires an amount of time which does
not exceed c. @(n) for some c =1, where n is the length of the stringin L to
be accepted. Therefore, the total timeisin O(¢?). Note that this crude time
bound holds for al different modes.

(2) Thisfollows from (1) and the fact that the class of polynomials over IN
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is closed under squaring. O

It remains an open question whether a kind of converse of Proposition
4.2(2) holds, i.e., whether there exists a mode m such that NP 00 POLY,,.
The problem in establishing such an inclusion is twofold. First, we have to
simulate nondeterministic Turing machine computations by RCB grammars.
This is the easy part since in the proof of Proposition 3.1 we can replace the
control language C = (PO P)" by

{1} Y} PS5 {16} (PsrPs ) {TuTs} (P, P10 Pg, Po Py, P1) Y (PrO
P.OPROP.OPs)™P,.

and simulate all nondeterministic transitions of A in a straightforward way.
But the hard part is, of course, to do this simulation with aA-free RCB gram-
mar, since in general we have k#0, i.e., A needs more than n tape cells for
its computation. Therefore, some substantial amount of erasing seems to be
inevitable. Probably, it is easier to show that NTIME(n) O LIN.

5. Modesof Derivation.

In this section we discuss some differences between the RO-mode and RA-
mode and between the RN-mode and the RS-mode; cf. Sections 1.3.2 and
1.2

When we apply a production to a sentential form with respect to the
RO-mode, only one terminal can be rewritten. This is not reflected in the
case of applying areduction under RO-mode. In this latter case there is pos-
sibly more than one substring that can be rewritten. For example, in the
string aBa the reduction a — A is applicable to both a's, i.e, we have
aBall &5 “aBA and aBall &5 “ABa.

The RA-mode has the property that when arule is applicable to some
sentential form, then precise one substring of this sententia form can be
rewritten. In the example presented above, only the a on the right can be
rewritten, i.e., aBall &5 “aBA. There is another difference with the RO-
mode, viz., aBAO &x° AABA does hold, in contrary to the RO-mode which
does not permit this derivation. However, the generating power of the RA-
mode is the same as the RO-mode.

Proposition 5.1. A language L is an RCB/RA language if and only if L is
recursively enumerable; i.e., Lgra = RE.

Proof. In the construction in the proof of Proposition 3.1, the left-hand side
of each reduction occurs at most once in each possible sentential form.
Therefore the derivation according the RO-mode and the RA-mode will have
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the same effect with respect to this particular grammar. O

In case of ordinary context-free grammars the RO-mode and RA-mode
are aso equivaent of course. Definition 1.3.2.2 (RA-mode) uses the same
condition as the RO-mode, but now this condition also applies to reductions
as well. Another reason to prefer the RA-mode rather than the RO-mode
shows up if we express both modes in the terminology of Thue systems.
Consider P as a Thue system with alphabet V and the relation = p is defined
asin Definition 1.2.2.1. Then we have

xuy O ga Yxvy if and only if
® XUy =pXvy
° u occursin uy only once
° ifu=Atheny = A
The RO-maode can be expressed in asimilar way as follows.
xuy O go” Yxvy if and only if
® XUy =pXvy
° ifuisinvV-2x
then u does not occur iny
else v does not occur iny.
Clearly, thisis aless elegant property than in case of the RA-mode.

We can aso use this description of the RO-mode and RA-mode both
for the RN-mode and RS-mode. Let 2 0V. The RN-mode can be described
by

xuy O gy Yxvy if and only if

* XUy =pXvy

° yx ©
This allows us to write Baa [ &g BAa, as well as Baall &yjg BaA, where
one would expect only the latter possibility. In the RS-mode at most one

substring can be rewritten. In the terminology of Thue systems the RS-mode
mode is characterized by

xuy O gs” Vxvy if and only if

e XUy =pXvy
° u occursin uy only once
° yx =

° ifu=Atheny =A.
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It is obvious that the following holds.

Proposition 5.2. The modes RN and RS are equivalent when combined with
the f-mode. Consequently, L rs/s = Lrn/t, @nd for each family @ of bounding
functions we have ®gg/s = Pry/s-

Proof. Restricted to the f-mode, in the characterizations of both the RN- as
the RS-mode the string u hasto contain at least one nonterminal. O

So the families of RN/B/f and RN/S/f languages are equal to the fami-
lies of RS/B/f and RS/S/f languages, respectively. For the other RN-modes
it may be possible that the corresponding RS variant will result in a different
language family. Viz., it might turn out that the family of RN/B/g and
RN/S/g languages are not equal to the families of RS/B/g and RS/S/g
languages, respectively. However, we observe that the properties of the
families of RN/B/g and RN/S/g languages, established in Chapter 11, aso
hold for the corresponding families of RS languages.

Proposition 5.3. The families of RSB/g and RSYSg languages are closed
under union and in particular under union with a regular set. O

6. Concluding Remarks

We showed that the families of RCB/RO- and of RCB/RA languages coin-
cide with the family of recursively enumerable languages (Propositions 3.1
and 5.2). Although it is not very difficult to simulate Turing machine com-
putations by RCB/RO grammars we organized our construction in a way
such that a minimum of control is sufficient; cf. Corollary 3.2. Our results
are summarized in Table 1 in which CFL denotes the family of context-free
languages. A question mark represents an open problem, viz. a language
family that has not yet been characterized in terms of a well-known member
of the extended Chomsky-hierarchy. These “unknown” language families
properly include CFL (Proposition 11.2.4) and are, of course, included in RE.

RO RN

f g f 9 f 9 f 9
Lm| RE | RE| RE | RE |CFL | ? ? ?

Table 1.

Whether there exist similar characterizations for the complexity classes
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. NP in terms of polynomia time-bounded RCB/RO grammars, and

. NTIME(n) in terms of linear time-bounded RCB/RO grammars
remains open; cf Section 4. Another open problem is the question whether
there exists a natural restriction on RCB/m grammars that characterizes

NSPACE(n), i.e., the family of languages acceptable nondeterministically
by Turing machinesin linear space.



CHAPTER V

Regularly Controlled Bidirectional
Extended Linear Basic Grammars

1. Introduction

In this chapter we study the concept of bidirectional application of produc-
tions — i.e, using a production of a grammar as a reduction too — with
respect to regularly controlled extended linear basic (macro) grammars
[AsvEng79]. The resulting new grammatical model is in essence equal to
the regularly controlled bidirectional context-free grammars of Chapter 1l in
which the underlying context-free grammar has been replaced by an
extended linear basic grammar. We motivate the choice of (K-)extended
linear basic grammars by the fact that for some language families K the fam-
ily of languages LB(K) is incomparable with CFL. This holds for instance
if K equals ONE or FIN and m =10, since in these cases we have LB =
LB,o(K).

The structure of this chapter is as follows. In Section 2 we introduce
regularly controlled bidirectional (m,K)-elb grammars or (m,REG,K)-belb
grammars. Then we formally define for these (m,REG,K)-belb grammars
the RS/B/f-mode of derivation. The corresponding grammars are called
(r,f,m,REG,K)-belb grammars. In addition, we introduce c-trees to visual-
ize the structure of sentential forms generated by (r, f, m,REG,K)-belb gram-
mars. These c-trees are also helpful in the proofs of Section 5. Closure pro-
perties of the family RBLB; ¢ (K) of (r,f,m REG,K)-belb languages are
established in Section 3. For both modes Ol and 10 and under weak
assumptions on the family K it is shown that the family RBLB; ¢ ,(K) is
closed under the regular operations (union, concatenation, and Kleene +).
Furthermore, we will prove that if K is a nontrivial family of languages
closed under ngsm mappings, then RBLB; ; o(K) is a full substitution-
closed AFL. Concerning the family RBLB; ; |o(K), we establish — under
appropriate conditions on K — closure under intersection with regular
languages and deterministic substitution; hence this family is a full QAFL
(in the sense of [AsvEng79]) closed under deterministic substitution. In
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Section 4 we discuss the language generating capacity of (r,f, m,REG,K)-
belb grammars. We show that the family RBLB;  o;(CINE) is equal to the
family Ol of Ol-macro languages and that the family 10 of 10-macro
languages is included in the family RBLB; ¢ o(ONE). In Section 5
(m,REG,K)-belb grammars provided with free application of rules are stu-
died. However, the restriction of allowing only fair reductions is main-
tained. Then for m =0l and for m =10 the family of languages generated
by these so-caled (f, m,REG,K)-belb grammars equals the family of recur-
sively enumerable languages. Finally, Section 6 contains some concluding
remarks.

2. Regularly Controlled Bidirectional (m,K)-elb Grammars

First, we note that in Definition 1.3.3.1(i) we required that k=1, whereasin
the original definition of (m,K)-elb grammars in [AsvEng79] k =0 is aso
permitted. However, the restriction to k=1 causes no loss of generality,
except that in our approach we need that the family K contains at least one
nonempty language. Thiswill be proved in Lemma 2.2.

Definition 2.1. An (m,K)-elb grammar G =(®,¥,%,X,P,S), is in equal
length form if there is a natural number n (n=0) such that each nonterminal
in ®iseither in ®y and equal to S, or in ®, and each language name in W is
eitherin Wy orin W,,. O
Lemma2.2. Let K be a language family that contains a nonempty language
Lo. For each (m,K)-elb grammar G, there exists an (m,K)-belb grammar
Ginegual length form such that L,,(G) = Lz(Go).
Proof (sketch). Let Gg =(P,W,Z,X,P,S) be an (mK)-elb grammar with
Xo ={X1, ..., %}. We enlarge the rank of each nonterminal unegual to Sin
®,, where k=0, and of each language name in W, where k=0, to n by
adding n—k dummy arguments. To the resulting alphabet W' we add each
language name with zero rank which occurs in an initial production of P.
The productions are changed accordingly by introducing two new language
names Y in W, and P, in Wy, with (X ) - Logand P, - Lo.

This well-known construction — e.g., cf. [Asv78] — can easily be writ-
ten out in full detail. O

Now we introduce regularly controlled bidirectional (m,K)-elb gram-
mars. They consist of an (m,K)-elb grammar provided with aregular control
language over P I P. We define the set of reductions P corresponding to P

as in Section 1.3.3. Furthermo_re, for each production 1T we define T to be
equal to Tt Anelement of P P will be called arule asin previous chapters.
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Notice that (m,K)-elb grammars provided with an arbitrary control
language over P have been studied in [Asv78, AsvEng79].

Definition 2.3. A regularly controlled bidirectional (m,K)-elb grammar or
(m,REG, K)-belb grammar isatriple (G, C, ¢) where

e Gisan(mK)-elb grammar (®,¥,>,X,P,S),
e Cisaregular language with C (PO P)",
° ¢ isaspecia symbol not occurringin ®, W, > or X.

We call G the underlying grammar of (G,C, ¢) and C is called the con-
trol language of (G,C, ¢). Sentences of C will be referred to as control
words. O

Definition 2.4. A production A(Xq,...,X,) —» t of a macro grammar is
called argument preserving [Fis68a] if each variable x; (1<i<n) occursin
the term t.

Let G=(d,W,Z,XP,S) be an (mK)-elb grammar. A production of
the form @ (xq,...,X,) - Lo in P, where Y@ ,,, is called argument
preserving if each variable x; (1<i<n) occursineachwordwfromLy. [

Note that productions of the form 1.3.3.1(i) and 1.3.3.1(ii) are argument
preserving by definition.

For an (m,REG,K)-belb grammar (G,C, ¢), with G =(®,¥,Z,X,P,S),
let and Term(G, ¢) denote the set of terms T(Z O X WO {¢}). With
each (m,REG,K)-belb grammar we associate — as usual — a derivation rela-
tion. This derivation relation formalizes bidirectional right-most rewriting;
cf. Definition 2.6.

Definition 2.5. Let (G,C, ¢) be an (m REG,K)-belb grammar, where G =
(P,¥,2,X,P,S). Let pbearulefromPOP, where a[ X ] is the left-hand
side of p, and let T beaterm in Term(G, ¢).

@ Ifa[x]isof theformZ(...),withZ[®[W , then we say that T fits
in with p in case there are argumentsty, ...,t, from Term(G, ¢) such
that T= aty,...,t,], where aftq,...,t,] is the result of substituting
thetermstq, ..., t, for x4, ..., X, ina[ X ], respectively.

(b) Ifa[x]isalanguage L,00(=0X)", i.e, pisareduction of the form
Lo - W(X), thent fitsin with p if thereis at least one string tin L
such that T=t[tq,...,t], wheret[tq,...,t,] is the result of substitut-
ingthetermstq, ...,t, for x4, ...,X, int, respectively. O

Definition 2.6. Let (G,C, ¢) be an (m REG,K)-belb grammar, where G =

(®,W,2,X,P,S). LetpberulefromP[ |5, and o, T betermsin Term(G, ¢).

Wewriteo O P T if there existsaterm uin Term(G, ¢), and strings v, x and

y over thealphabet ® WX O X0OPC such that o =xuy and t = xvy and
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e  ycontainsno symbol from® [W ,
° if Afitsinwithpthenu=y =A,
° u isthe only subterm in uy that fitsin with p,

° either pisaproduction, T isthe result of rewriting o by p, and 0 [ i1,
or pisareduction, o isthe result of rewritingt by p,andt10 ,o. O

Let CO(POP)Y be a control language. A control word ¢ in C is a
sequence of rules. The application of a sequence of rules from POP to a
term 1 is defined as the successive application of the rules which constitute
c. Viz,if c=p;...pp (n20), then wewritetO ¢, T’ if there are terms T
(0<i<n) such that To=1, T,=1' and for each i (0<i<n) 1,0 nTi+1
holds. In case a rule p; in ¢ is not applicable to the term T;, then further
application of rulesis blocked, and the application of ¢ to T yields no result,
i.e, thereisnoterm 1’ suchthat T0 1" is defined.

Definition 2.7. An (m,REG,K)-belb grammar provided with right-most
rewriting will be called an (r,m,REG,K)-belb grammar. Let (G,C, ¢) be an
(r,m,REG,K)-belb grammar with underlying grammar G = (®,¥,2,X,P,S)
and control language CUO (PO I5)D. Then the language generated by
(G,C, ¢) under the mode r,mis defined by

L, m(G,C, ¢) ={wX "|OcOC.SO ¢, w}.
The family of languages generated by (r,m,REG,K)-belb grammars is
denoted by RBLB; m(K). O

The derivation relation U  ,, defined above corresponds to the RS/B-
mode of derivation as defined in Chapter | for RCB grammars.

Example 2.8. Let L4 bethelanguage of equal length substrings, i.e.,
Ly ={X1CXs...Cx, |% O{a,b}",

X |=m, 1<i<n, nm=1}.

In [Fis684q] it is shown that this language can be generated by an Ol
macro grammar. The language L, belongs to RBLB; o (LINE), i.e, it can
aso be generated by the following (r,Ol,REG, OONE)-belb grammar
(G,C, ¢).

Define G by (®,W,Z,X,P,S), where the set of nonterminals @ is equal
to {SA,B,D,E,F,H}, and Sis the start symbol. The alphabet of language
names W equals {; |0<i<9}. The set Z of terminals is {a,b,c}, and X =
{x,y}. Finally, the set of productions P of G consists of

=S - A(p), T =F - s,
M =AX) - A(P1(X)), m3=F - Yy,
™ =A(X) - B(P2(x)), s = Yo — 0O,
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R =B(X) - Ys(x), s = Y — {a},

Ty =AX) - Wa(x), e = Y7 - {b},

T =D (X) - Y1(x), 7 =H(X) - Wa(X),
T =D (X) - E(P2(X),Wa(x)), Tug=H(X) - Ws(X),
T =E(XY) - WUs(Xy), Tho =H(X) - Wg(X),
Tg = Ws(x,y) - {xy}, Tho = Yua(x) - U,
Ty = Ys(X) — {xcx}, T = Yg(x) - {a},
Tho = Yo (X) - {X}, Ty = Yo(X) — {b}.
M =F - Yo,

The rank of the symbols in ® W are easy to infer from the produc-
tionsin P. Define the control language C by the regular expression

Tfo"[?( TT27'[37T9ﬁ4)DT[c1( 7-[10(;[5]-[67-[77-[8ﬁ17( ThgThy+ ThoThy) + ﬁ11( TyoThs+
Th3Tye)))"

First, a string A(W1(...W1(Wp)...), in which the language name i,
occurs n times, is generated by 1y} (n=>0). We represent the argument of A
by [n], where [0] represents Y),. By applying k times (k= 0) T, 15Ty, fol-
lowed by 14 we obtain the string Ws([n])c...cWs([n]), which contains k
times the symbol c. In the following we discuss the expanding of a substring
Wo([n]). By mo we derive Yo([n]) to [n], which is rewritten to
Wo([n=1]) H([n-1]) by the subsequence T T T TRy in case n>1, and to
F by the reduction Ty; in case n=0. Next, both H([n-1]) and F are
expanded to a or b by the sequences TygTh+ ThgTh, and T Th5+ Th3The,
respectively.

ThenL, (G,C, ¢) = L1, which can now be easily verified. O

Although it is straightforward to define reductions associated with pro-
ductions of the form 1.3.3.1(iii) (cf. Definition 2.6.), we do not study gram-
matical models in which such (arbitrary) reductions occur. These terminal
reductions have the effect that they alow terminals to act as some kind of
nonterminal symbol, which makes the distinction between terminals and
nonterminals unclear. We have noticed this problem already in the case of
regularly controlled bidirectional grammars that have a context-free gram-
mar asits underlying grammar; cf. Chapter Il. This restriction meansthat in
this chapter we only study the fair mode — cf. Chapter 1l — of bidirectiona
rewriting, in which we disalow terminal reductions. As a consequence, it
enables us to omit the symbol ¢. We will call this type of grammar an
(r,f, m,REG,K)-belb grammar. The family of languages generated by
(r,f, m,REG,K)-belb grammars is denoted by RBLB;, ; ,(K). Note that the
language of Example 2.8 can be generated by an (r,f, OI,REG, [ONE)-belb
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grammar.

In the remainder of this section we clarify the structure of sentential
forms generated by (r, f, m, REG,K)-belb grammars. Since the family of reg-
ular languages is closed under intersection, we can put regular restrictions on
the control language. In the sequel, we assume that the set of productions P
isthe union of the digjoint setsP 4, P, and P53, where P, P, and P53 consist
of productions of the form 1.3.3.1(i), 1.3.3.1(ii) and 1.3.3.1(iii), respectively.
Then we assume without loss of generality that for an (r, f, Ol,REG,K)-belb
grammar (G,C) with underlying grammar G = (®,W¥,Z,X,P,S), the control
language Cisincluded in

(P1P10P2P2) (P10 P10 P,P3(P20{A}))" (1)

For the same reason we can assume that an (r, f, |O,REG,K)-belb grammar
(G, C) possesses a control language C whichisincluded in

(P2P200 P3) (Po{A})(P1(P2P2) P10 P2P,) (P10 P2P3)*.  (2)

In addition, for both modes Ol and 1O we may assume that the first rule
of each control word in Cisan initial production.

The restriction to control languages which are included in (1) or (2)
becomes apparent when we inspect the structure of a sentential form occur-
ring in the derivation according to an (r, f, m, REG,K)-belb grammar (G,C).
We represent terms from Term(G) as follows. Define a c-tree as a variation
on the well-known tree structure in which now the nodes are strings over
OWIEDO XO{#}. The symbol # is used to denote the concatenation
operationin T(® MW X O X) explicitly. If Aisan element of ® W with
rank n and n= 1, then A has n descendants which are again c-trees. If anode
a is a string of symbols of rank zero, i.e, aO(P W (E0O XO{#})",
then a iscalled aleave. Asan example, theterm

A(W (x1,axab) x1,ab) P (a,b) Xy
is represented by the c-treein Figure 1.

Note that a c-tree does not represent a derivation of the grammar
(G.C).

A derivation corresponding to an (r,f, Ol, REG,K)-belb grammar con-
sists of a sequence of sentential forms which have the form

We( W1 ()W ... Woo 1Wn( Wn (1)) WaA (W (o)) Wo. ©)
The formulay; (1) isthe abbreviation of
Wit - Wirgy(tirgy) with O<is<n.
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lIJ#Xl atth a b

X1 a#Xz#b
Figure 1.

In (3) the following notational conventions are used. The symbols ;;
are language names. The number of language names may be zero, i.e., n=0.
The symbol A is either alanguage name or a nonterminal. A terminal string
is a possible sentential form, so the substring A(...) isoptional in (3). Each
t;; isalist of terms over W, each of which can be represented by a c-tree in
which each node is a language name; the leaves of each term in t;; are
language names of rank zero. In the c-tree representation of (3), shown in
Figure 2, these t;;’ s are represented by atriangle. Thetermsw; are stringsin
(=O0X)". Notethat r (i) isequal to therank of g; (i=1), and r (0) isequal to
the rank of A.

lIJ]_ # W]_ L. H# Wh-1 # l.lJn # Wh # A
lIJ11 T (1) - WUnrn) Wor - - - Wor (o)
Figure 2.

A sentential form generated by an (r,f, 10,REG,K)-belb grammar
(G,C) isof theform

Ao(Woa(tor)s - Woi, (toiy ) A1(Wra(taa), - Wi, (tai ) Aoy An(Wna(tha), -,

Wni, (Ei, )y Wi+ 15 00s Wr (n))s-oos Wr (2))s Wt 1425 -0 Wi (2))s Wi 425 -5 Wr () - (4)
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In this sentential form (4) the A;’s are nonterminals, the ;;’s denote
language names, the w;;’s are strings over Z [1 X, and each t,, denotes a list
of w;;’s the length of which is equal to the rank of y,q. Furthermore, r (i)
(O<i<n)isequd totherank of A;. The sentential form (4) is represented by
ac-treein Figure 3 in which each t;; is represented by atriangle.

Ao
Wor Woi, Ay Wi +2 Wi (0)
AN AN
P11 P, A Wi +2 Wi (1)
AN AN l
|
|
l
|
An
llJnl llJnin Wni,1+1 Wy (n)
AN AN
Figure 3.

3. Propertiesof RBLB; ; n(K)-languages

In the proofs of the following propositions we assume that L; (i=1) is a
language generated by an (r,f, m,REG,K)-belb grammar (G;,C;) with G; =
(GJ(i),‘P(i),Zi,Xi,P(i),S). Thus CD(|) and LIJ(|) are ranked alphabets, i.e.,
(D(i) = D(D(i)j and LP(i) = DLP(i)j. We assume that the sets of Ianguage
names and the sets of variables of these grammars are mutually digoint, i.e.,
i¢j Implles¢(,)n CD(J) =0, Lp(i)ﬂ LP(J) =0 and X;n Xj =[.
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Remember that a family of languages K is closed under left- [right-]
marking if for each language L in K, the language {$}L ¢ [Lo{$}, respec-
tively] is in K, where the symbol $ does not occur in the aphabet of L.
Frequently, we write $L o instead of {$} L o; cf. Section 11.6.

The family SYMBOL is defined as the family of all languages consist-
ing of a single word which is of length one, i.e., SYMBOL ={{a} |aZ .}
where 2, isacountably infinite set of terminal symbols.

Proposition 3.1. Let K be a family of languages closed under left- or right-
marking. If KOSYMBOL, then RBLB; ; ,(K) is closed under union, con-
catenation, Kleene + and Kleene [

Proof. Union. Straightforward. This even holds without the premisses on
the family K.

Concatenation. We construct an (r, f, m,REG,K)-belb grammar (G,C) from
(G1,Cy) and (G»,C5) such that L, (G,C) =L4L,. For both modes Ol and
IO we can use the same underlying grammar G. Define G equa to
(CD,LP,Zl,Xl,P,S), where ® = CD(l)BD (Z)D{S,Z}, S@ 0» D 2, and where
W=Wqy W o 0{yY,Py,Pp} suchthat Pp, P o and Y@ ,. Furthermore,
we assumethat S, Z, Y, Yy, and Y, are new symbols. The set of productions
Pisequal to P40 P 0{1y, T, TH, ™, ™} with iy = Y (X,y) - {xy}, Tz =
Z(va) - lIJ(X’y)1 o =S~ Z(L'Jl,l.l.lz), L :Sl - qu! and o= SZ - qJZ'
Note that {xy} belongsto K, as K includes the family SYMBOL, x #y, and K
is closed under left- or right-marking. Now if m = OlI, then define the con-
trol language C by 1o, 14, T,C,1 C4. Otherwise, if m = 10, then we define
Chby mmCom C T, Ty,

Kleene +. Asin the case of concatenation, we construct an (r, f, m,REG,K)-
belb grammar (G,C) from (G;,C;), that generates L. The underlying
grammar G isfor both modes Ol and 10 the same, but the control languages
are different. Viz., define G by (®,W,Z,X,P,S), where ® = ®;)[{SZ}
with S[® ¢ and Z[® »,, and where the set W is equal to W) O{W, W1, W5},
with P1, 0¥ g and Y& ,. Again S Z, y, Y4, and Y, are new symbols.
We adso assume ®yn{SZ} =0 and Wn{Y,P1,Po} =0. The set of
productions P is formed by P q0{T1y, Ty, T, TH, T}, where Tg=S - S,
TG.IJ = llJ(X,y) - {Xy}, L4 :Z(va) - lIJ(X!y)! Th = Sl nd Z(HJ]_,[IJ&), and Ty =
Si1 - 1. The control language C is equal to TrS(TrOTrZquTrlclnl)Dcl if m
is equal to OI, and in case of the 10-mode we take C equal to
Ts( o C11)"C o (17 1y)"

Kleene Ol Straightforward.

Note that in the proofs presented above the control languages have for
both modes Ol and 10 aform in accordance with (1) and (2) from Section 2,
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respectively. O
In the next proposition we show the closure under ngsm mappings of
the language family RBLB; ¢ o(K). Therefore, we recal the following
definition.
Definition 3.2. An ngsm or a nondeterministic generalized sequential
machineisa6-tuple T = (Q, Z,4A,8,q0,QF), where
° Q isafinite alphabet of states,
° > isafinite aphabet of input symbals,
e Aisafinite aphabet of output symbals,
. godQ istheinitial state,
° Qr0Q isthe set of accepting states,
e disamapping from Qx X into the finite subsets of Q x A",
Asusual, & is extended to a function from Q x =" into the finite subsets
of Qx A" asfollows.
(i) o A)={(a,A)},
(i) ForqUQ,xX "andalX ,

d(g,xa) ={(p,w) |w =w;w, and for somer inQ, (r,wy)isind(q,x)

and (p,wy) isind(r,a)}.

The mapping associated with T = (Q, Z,A,9,q9,Q¢) — caled an ngsm
mapping and denoted by T too - is the function T:=" _ 22" defined by
T(w)={z]|(q,2)8 (go,w), q0Qr}. The extension of T to a language L
over X isdefined by T(Lo) = LI{T(w)|wOL}. O

The proof of the following proposition is performed by applying the
well-known “‘triple’’ construction.

Proposition 3.3. Let K be a family closed under ngsm mappings. Then
RBLB; ¢ o (K) is closed under ngsm mappings.

Proof. Let (G4,Cq) be an (r,f, OI,REG,K)-belb grammar with G; =
(Pay, Yy, Z,X1,Pay,S1), C10(PyIPw)", and let T be an ngsm with
T=(Q, Z,A,0,00,Q). We construct an (r,f, Ol,REG,K)-belb grammar
(G,C) suchthat Ly, o(G,C) = T(L;,01(G1,C4)). Definethe set of variables X
as {Xi[pqy |1=i<[Xq|, p,q0Q}, and let Q ={qo,...,qn}. With the list
X1, ..., % We associate the list Xipq, q,]+ - - - +Xn[qu.q]» dENOtEd by X. It con-
sistsof n|Q|? different variables from X; | Q| isthe cardinality of the set Q.
Let I(X) denote

(do W do)(X), ... (an W an)(X).
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For each p,qQ, let T,y be the ngsm mapping induced by the ngsm
(Q, 20X1,20X,8",p,{q}), where 3':Qx(ZOX;) - 2Q*E0X)" js the
mapping defined by

3'(sy) ={(t.2)[(t.2) B (sy), YE }{(t,Xsep) [tOQ, X =y, yOXq}.
Furthermore, let U be the union of the sets

{(PAQK) - (PBOULX. ... lh() |AD , B® |, p.q0Q,
W ., n=0,k=1},
{(PAQ)K) -~ (PYAX)|AD ,y @ 4, n20, p,qUQ}, and
{(PYa)X) » Tog(Lo) W@ 1, p.a0Q, W(X) — LoOP}.
Define afinite substitution T: (P30 (P~ P 3 )~ — 2V2Y" by
T(S1 — A1, - W) ={(@0 S1 &) ~ (@0 A a)(Wh. ... 1) o OQe},
T(A(X) - B(o(X),....4(X))) =
{(PAQE) - (pBAWLX). ... 7&)
TA(X) - U(X)={(PAQ)X) - (pWa)X)|p.q0Q},
T(Y(X) - Lo)={(pWwa)X) - Tpq(Lo)|p.a0Q}.
Since there are no terminal reductions involved, a reduction Tt is

aways a reduction associated with an argument-preserving production of
type1.3.3.1(i) or 1.3.3.1(ii). Therefore, we can define T (1) equal to T ().

Then we define G equal to (®,W,2, X,P,S), where ® is given by

P ={S}{(pP A Q)|A® (30,p,a0Q},

Py ={(PAQ)|AD (1),,p,q0Q} foreachn(nx1),

@, =0 if thereisnonON with | =n |Q|?,
and W isgiven by

Whiop ={(pwa)| Y 30, p,q0Q}  foreachn (nz0),

W, = O if thereisnonOIN with1 =n|Q 2.

The set of productions P equals T(P () Ol Ps, where Ps is equa to
{S - (d0 S1 9r) |9r OQF}, and, finally, we define the new control language
C equal to Pst (C4). Then I—r,OI (G,C)= T(Lr,OI (G1,Cy)). L]

Remember that a family closed under ngsm mappings if and only if it
is closed under intersection with regular languages and under finite substitu-
tion; cf. Lemma 9.3 in [HopUII69]. Therefore, a direct consequence of Pro-
position 3.3 is the following result.

p.q0Q},
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Corollary 3.4. Let K be a family closed under ngsm mappings. Then the
family of languages RBLB; ¢ o) (K) is closed under intersection with regular
languages and under finite substitution. O

Next we establish closure under two types of substitution. First we
give precise definitions of substituting words for symbols in a word “non-
deterministically” (Definition 3.5) and “deterministically” (Definition 3.6).
Definition 3.5. Let K be afamily of languages and let Z; be an alphabet. A
nondeterministic K-substitution (or nK-substitution) T is a mapping from Z;
into the set of K-languages which is extended to wordsin 7 by T (A) = {A}
andt(@;...ap)=1(ay)...1t(a,), whereg;[X 1 (1<i<n), or, equivalently,

T@y...a,) ={wy...wy |W@ (g), 1<i<n}.
The mapping T is extended to languages L over 24 by
T(Lo) = U{t(w)|wOLg}. O

Notice that in case the family K equals ONE, FIN or REG, an nK-
substitution is known as a homomorphism, finite substitution and regular
substitution, respectively.

The addition of the adjective “nondeterministic” suggests that we can
also consider deterministic substitutions [AsvEng77, EngSch]. The differ-
ence with the usual (nondeterministic) substitution — the additiona “non-
deterministic’ may be omitted — is that in a deterministic K-substitution t
we choose in advance for each letter a in 3; a fixed word w, from the
language T (a) (1 (a) is alanguage in the family K). Then in the application
of T to aword w each occurrence of a is replaced by w,. The choice of the
words w, determines a homomorphism h:¥; — 5. Therefore T(w) is
defined to be equal to the set of the images of al homomorphisms
h:Z; - Z¥suchthat h(a)isint(a). We define this formally.

Definition 3.6. Let K be afamily of languages and let X; be an alphabet. A
deterministic K-substitution (or dK-substitution) T is a mapping from %, into
the set of K-languages. It is extended to wordsin = by T(A) = {A} and

1(as...ay)={h(@y)...h(a,) |h isahomomorphism such that h(a) @ (a)
foreachalX ;}, whereg X ; (1<i<n).
The extension of T to languages L o over X, is defined by
T(Lo) = U{t(w)|wOLg}. O
From this definition it follows that T (w) = O for each word w in case

T(a) = 0 and at least one symbol a occursin w. It isaso important to note
that a dK-substitutions is not a specia case of a nondeterministic
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substitution, but they are both different generalizations of the notion of
homomorphism. In fact, a homomorphism is both a dONE-substitution and
an nONE-substitution.

Definition 3.7. A family F is closed under nK-substitution [dK-substitution]
if for each language Ly in F and each nK-substitution [dK-substitution,
respectively] T the language 1(Lg) isin F. In case the family K equals the
family F, the we say that F is closed under (n-)substitution [d-substitution,
respectively]. O

The following proposition shows that under weak assumptions on K
the family of languages RBLB; ; ¢, (K) is closed under n-substitution.

Proposition 3.8. Let K be a family closed under isomorphism such that
SYMBOL O{0O}OK. Then RBLB; ; o(K) is closed under nondeterministic
substitution.

Proof. LetL; =L, (G1,C1) bealanguage in RBLB; 1 o/ (K) , where G; =
(qJ(l),LP(]_),Z]_,X]_,P(]_),SJ_). Let2; ={aq,...,an},adleto:2; - ZZD be a
nondeterministic RBLB; 1 o (K)-substitution, such that for each a in Z; the
language o (a) is generated by the (r, f, Ol, REG,K)-belb grammar (G,,C,),
where G, = (qn(a),w(a),za,xa,P(a),si). We construct an (r,f, Ol,REG,K)-
belb grammar (G,C) with underlying grammar G = (®,W,2,X,P,S) such
that G(L 1) = Lr,o| (G,C)

Essentialy, we use the terminals in Z; of (G1,C1) as variables in
(G,C) via atransformation which associates with each a in 2, a correspond-
ing variabley, in X. Each terminal ain X; which occurs in the K-languages
at the right-hand side of the productions of type 1.3.3.1(iii) in (G1,C4) is
replaced by the variable y,. The original start symbol S; in (G4,C4) is
transformed into S} such that S; has rank N. The new start symbol Sis used
in the new initial production S — Si(W,,, ...,W,,). The other productions
of (G,C) are obtained from those in (G;,C4) by adorning them with addi-
tional variablesy, ,...,Ys,. Then throughout each derivation the language
names Y, , ...,Y,, Will be passed on downwards. By applying reductions
W, - S, followed by a control word from C, (where alX 1) in the proper
way, each alX ; in a word from L, 5(G1,C1) is substituted by the
RBLB; ¢ o (K)-language o (a). Formally, we perform the construction of
(G,C) in the following way.

Assume that the sets @,y with alX ; are mutually digoint. Let this
property hold for the sets W,y and for the sets X, too; in both cases a varies
over 2. Then the alphabets ® and W are defined by

Do = {S}0 { Py |aX 1},
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D, ={Py)|aX 1} foreachnwith1<sn<N,

Dy ={A' AP (3} 0 {P@n+n|alX 1} foreachn (n=0),
and

Lpoz{lpa‘a[z 140 D{q’(a)o\a[i 1},

W, =[{Wen|aX 1} foreachnwith1<n<N,

LI'Jn+N:{qJ’NJEJ (1)n}D{(Pn,a‘a[z 1}D |]{Lp(a)n+N \a[I 1} for each

n (n=0).

Define X =X;0{ya|aX }00U{X;|aX 1}. Let the sets Uy, Uy,
and U3 be defined in the following way, where X =(Xq,...,X,) and y =
(Ya,» -+ 1Ya,)-

Up=

{A'(X,¥) - B (Pi(X, V), Wk(X, Y ) ha, (X, ), g (X, V)|
A'l® N, B yiny ha@ neny @X 1, Y 4n, 1i<k n20},

Up ={A'(X,¥) - (X, ¥)[AD nn ' nen, n20},

Us={P'(X,¥) - i(Lo) '™ nin,W(X) - LoOPgy3, n20},

wherei : 2,0 X, - Xistheisomorphism defined by

i (X) =X if xOXq,
i(@=y, IifalX ;.

LetU :U]_D U2|:| U3|:| lelj P(p, Wherel:)z1 :{Sd - ljJa\a[X 1} and
Po={®a( gt, Y) - {Ya} |aX 1,n=0}. Define the regular substitution
93P(1) - 2 by

g(A(X) - B(W(X), ..., 0(X)) =

{A'(X,¥) - B (W1 (X, ¥ )i w Wi (X, Y ), Gha, (X, Y ) Ona (XL Y )}
g(A(Xx) - W(x)={A(X,¥) - W'(x,¥)},

g(W(xX) - L) ={(W'(X,¥) - i Lo))(PeP5,0{CalaZ 1D

We define the set Py to be equal to {y, — O |alX 1} in order to
satisfy the condition that G ought to be an (OI,K)-elb grammar. Further-
more, if Ttisin P (1)1 00 P12, then g (1) is defined as g (11) = g ().

Let =S - S1(Wa,, ..., Wa,).- ThenP isdefined by

P=U{PglaX J0{Y'(X,¥) - i(Lo)|[(W(X) - Lo)OP3}0
Ps, OPo{mo}0g(P1)10Py2) UPq.
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Finally, asthe control language we take C equal to o9 (C1). O

Werecall the following concepts. A family of languages is called non-
trivial if it contains a language which differs from O and from {A}. A full
Abstract Family of Languages or full AFL is anontrivia family of languages
which is closed under union, concatenation, Kleene +, homomorphism,
inverse homomorphism and intersection with regular languages.

Corollary 3.9. Let K be a nontrivial family closed under ngsm mappings.
Then RBLB; o (K) isa full substitution-closed AFL.

Proof. Recal that it is sufficient to prove closure under intersection with
regular languages, regular substitution and union with a regular set in order
to prove closure under inverse homomorphism [Gin]. We can easily show
by the inclusion LB, (K) O RBLB; ; o (K) that under the premisses on K the
regular languages are included in RBLB; 1 o(K). Then the statement fol-
lows immediately from Propositions 3.1, 3.3, and 3.8, and Corollary 3.4. [

For the 10-mode closure under K-substitution or even under finite sub-
stitution is unlikely. On the other hand we can establish closure under inter-
section with regular languages and under deterministic substitution.

Proposition 3.10. Let K be a family closed under intersection with regular
languages. Then RBLB; ¢ 0(K) is closed under intersection with regular
languages.

Proof. The proof is based on a modification of the technique of factored
grammars [Fis68a]. Recall that each regular set R equals the (finite) union of
a number of congruence classes which corresponds to a congruence relation
= — with respect to concatenation — over =Y of finite index; cf. [Sal73].
Starting from an (r, f, |O,REG,K)-belb grammar (G4,C;) we will construct
an (r,f, 10,REG,K)-belb grammar (G, C) such that in (G,C) we can tell just
by looking at a nonterminal or a language name to which congruence class
its arguments must belong if this nonterminal or language name ever appears
in a sentential form. We also can determine to which congruence class any
string generated by this nonterminal will belong. Therefore, we transform
the grammar (G1,C,) inthe following way. Each nonterminal and language
name is adorned with n+1 congruence classes ug, ...,U,, Where n is the
rank of that nonterminal or language name. However, an exception is made
for the start symbol S, which is left unchanged. The congruence class of
the resulting terminal string generated by the transformed nonterminal - if
any —isequal to ug.

The transformation of productions is arranged as follows. In connec-
tion with the exception made for the start symbol, the congruence class ug of
the nonterminal on the right-hand side of an initial production ought to be
taken from the finite number of congruence classes, the union of which
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equals R. The transformation of the remaining productions is such that with
respect to the nonterminal or language name to the left-hand side we can
freely choose the congruence classes ug, ...,U,. Then the congruence class
Ug of the nonterminal or language name on top level of the right-hand sideis
equal to the corresponding congruence class on the left-hand side. And in
case of non-initial productions of type 1.3.3.1(i) and productions of type
1.3.3.1(ii) the congruence class of each argument of the nonterminal on the
left-hand side determines the congruence class of the corresponding argu-
ment of the language name on the right-hand side.

Concerning the productions of type 1.3.3.1(iii) we replace the language
LbyLnRy, a,where 0 =(uq,...,uy). Theregular set R, o consists of
those wordsin (= 0{X, ...,%,})" such that substituting an element from the
congruence class u; for x; (1<i<n) results in a word from the congruence
class ug. After applying this transformation, a combination ug, ...,u, of
congruence classes combined with a production @ (X4, ...,X,) —» Lg of type
1.3.3.1(iii) gives a blocked derivation in case the intersection of the language
L and the regular set R, ¢ isempty. Viz, in that case there are no rules to
rewrite the language name [ yJ,uq, O ], and this particular guess of the gram-
mar gives no contribution to the language generated by (G, C).

It is left to the reader to check that the construction below formalizes
the ideas presented above, and that the resulting grammar (G,C) generates
the language L, |0(G1,C1) n R

Let G, = (d)(l),LIJ(l),Z,Xl,P(l),Sl) and C.0 (P(]_)D |5(1))D Let Rbea
regular language accepted by the deterministic finite automaton M =
(Q, Z,8,90,F). Therelation = on "x =" is defined by

x=y ifandonlyif 0OqOQ.d(q,x)=93(q.y).

Because R is regular, it is possible to partition =” by = into a finite
number of congruence classes. Let X7/= denote the set of congruence
classes [tq],...,[tk] induced by =, where t4,...,t; are freely chosen but
fixed representatives. Let R. beequal to {[t;] |0(go.t)) UF, 1<i<k}. Then
we have the identity R=[R.. Define the sets R, ¢, where X /=
(O<i<n) by

RUO, a - h_CI'l(UO)v
whereh ; : (2 0X;)" - Z"isthe homomorphism defined by

hg(a)=a foreachain z,
hg (%) =t for each x; in X1, wheret; equals u; =[t;].
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Notethat R, ¢ isregular.

Consider the following (r,f, 10,REG,K)-belb grammar (G,C) which
generates the language L 0(G1,C1)n R The underlying grammar G
equas (®,W¥,%,X,,P,S;), where P is given by P =g (P (). The finite sub-
gtitution g is defined in the following way for rules in P ;) of the types
1.3.3.1(G1), 1.3.3.1(%ii)) and 1.3.3.1(iii)). Let O =(uq,...,u,) and V =
(Vq,---,V%). Then
9(S1 - A(W1, - ,Wn)) ={S1 - [Aug, T J([W1,u1], - ,[Wn,un]) |

UoOR<, Uy, ...,u X Y=},
g(A(X) - B(Wi(X),....J(X))) =
{[A,Uo, l-T]()T) - [B,Uo, \T]([ l-IJl!Vl! vy ](7)’---1[¢kka, l-T]()T))‘

Ugs ..+ sUn, Ve, .. X Y=},
g(A(X) - W(xX))={[Aug, T](X) - [W,ug, T (X )|ug, ..., uX Y=},
g(W(X) - Lo) ={[WUp, G ](X) - Lon Ry, ¢ |Uo,-..,unX 7/ =}.

Since there are no termina reductions involved, a reduction Tt is
aways a reduction associated with an argument-preserving production of
type 1.3.3.1(i) or 1.3.3.1(ii). Therefore, we can define g (1) to be equa to

g(m).
The ranked aphabet ® of nonterminalsis given by

®p={[AUg, T ]|AD 30, Ug,...,UsE 7=} foreachn (n=1),
®o ={S1} O{[Aug] |[A[® (1)0={S1} , UoX /=}.

The sets W,, of language names are given for each n (n=0) by
Wy ={[Y,ug, T ]|Y gy, Ug, ..., U =}

Finally, asthe control language wetake C =g(C,). O

Although - as remarked before — for the |O-mode closure under finite
substitution is unlikely, we have closure under deterministic substitution.

Proposition 3.11. Let K be a family closed under isomorphism such that

SYMBOL O{ 0} OK. Then RBLB, ¢ ;0(K) is closed under deterministic sub-
stitution.

Proof. LetL; bean RBLB; ; jo(K)-language, i.e, L1 =L, ;0(G1,C1), where
G1= (®a),%w)21,X1,P),S1).  Let 23={ay,....an}, and let
0:3; - 2% beaRBLB; 1 o(K)-substitution, such that for each ain 3; the
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language o (a) is generated by the (r,f, 10,REG,K)-belb grammar (G,,C,),
where G, = (P, W(a), 22, Xa,P(a),S2). We construct an (r,f, 10,REG,K)-
belb grammar (G,C) with underlying grammar G = (®,W,2,X,P,S) such
that O(Ll) = Lr,|o(G,C).

The construction resembles much to the proof of Proposition 3.8. We
use the terminals in Z; of (G1,C1) asvariablesin (G,C). Thisis obtained
via the isomorphism v which associates with each a in Z; a corresponding
variable y, in X. Each termina a in Z; which occurs in the K-languages at
the right-hand side of the productions of type 1.3.3.1(iii) in (G.,C) is
replaced by the variable y,. The origina start symbol S; in (G4,C4) is
transformed into S} such that Sy hasrank N. The new start symbol Sof G is
used in the new initial production 1, equal to S — Sy(Yg,, ..., P,,). The
other productions of (G,C) are obtained from those in (G1,C4) by adorning
them with additional variablesy;, , ...,Y,,. A derivationin (G,C) starts with
the initial production, followed by a sequence of control strings from the set
U{(Wa - S))Ca|aX 1}, until we have obtained aterm in Term(G) of the
form Sj(w4, ...,wy), wherew;[d (a) (1<i<N). From then on we can fol-
low a derivation according to C;, where the construction is such that each
letter g in Z; (1<i<N) isreplaced by afixed word w; from o (g). Thefor-
mal construction is asfollows.

We assume that the sets ®,) with alX ; are mutually digoint. Let the
sets W(,) and the sets X,, where a varies over 2, possess this property too.
Then the alphabets @ and W are defined by

Do ={S}0 {DPay0laX 41},

®, = {P)|aX 1} foreachnwith 1<n<N,

Dy ={A' AP (3} 0 {P@yn+n|aX 1} foreachn (n20),
and

HJO:{an‘a[Z 130 D{Lp(a)o‘am: 1}

W, = {Wgn|al 4} foreachnwithl<n<N,

Won W' W@ qyn} O{pnalaX 130 {Wen+n|aX 1} for each

n(n=0).

Define X =X;{ya|aX (}0U{Xs|aX 1}. Let the sets Uy, Uy,
and U3 be defined in the following way, where X =(Xq,...,X,) and y =
(Ya,s---1Ya,)-

U]_:
{A'(X,¥) - B'(P1(X, ¥ ) Wk (K, Y ) @na, (X, 5 ), - @na (X, 7)) |
A'lD n+Ns B'[® K+N> %,a@ n+N: alX 1s l]Ji'IIP n+N: 1Si$k, nZO},
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Uz ={A"(X,¥) - P'(X,¥)|A nin '™ nen, n20},
Us={Y'(X,¥) - V(L) [U' ™ renP(X) - LoOP(gy3, n20},
wherev: 2,0 X, - Xistheisomorphism defined by

V(X) =X if xOXq,
v@) =y, IifalX ;.

LetU =U1|:| UzD UgD lem P(p, Wherele :{Sd - ljJa\a[Z 1} and
Po={@ha 55’ Y) - {va} |2 1,n=0}. Define the regular substitution
93P(1) 5 2 by

g(A(X) - B(W(X), ..., 0(X)) =
{A'(x,y) - B'(Wi(X,¥ )., Wk (X, ) ha, (XY ),
®ha, (X, ¥ ))Pg},
g(A(X) - W(xX)={A(X,¥) - W'(x,¥)},
g(W(x) - Lo)={w'(x,y) - v(Lo)}

In order to satisfy the condition that G ought to be an (10,K)-elb gram-
mar, we define the set P to be equal to {Y, — O |alX 1}. Furthermore, if
misinP(3)10 Py, then g (1) is defined as g (1t) = g ().

Let =S - S1(Ya,,...,Ya,). ThenPisdefined by

P=0{P@ulaX J0{w'(x,y) - v(Lo) [(V(X) - Lo) OP 3}
Ps, OPo{mo}0g(P1)10P2) OPq.

Finally, asthe control language we take C equal to
To{ (Wa ~ S) CalaX 1}79(Cy). O

Remark that it follows from Proposition 3.11 that the language family
RBLB; 1 10(K) is closed under homomorphism in case K is closed under iso-
morphism.

Recall that a language family is a full Quasi Abstract Family of Lan-
guages or full QAFL [AsvEng77], if it is a family that contains at |east one
SYMBOL-language and that is closed under the regular operations (union,
concatenation, and Kleene ), intersection with regular languages, and
homomorphism.

Corollary 3.12. Let K be a family with KO SYMBOL, and let K be closed
under left or right-marking, intersection with regular languages, and iso-
morphism. Then the family RBLB; ; o(K) is a full QAFL closed under
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deter ministic substitution. O

4. Generating Power of (r,f,m,REG,K)-belb Grammars

In this section we determine alower bound on the language generating capa-
city of (r,f,m,REG,K)-belb grammars. First, we establish some results
which are analogously to the non-bidirectional (unidirectional) case. Let the
family BLB, ; n(K) denote the family of languages generated by
(r,f,m REG,K)-belb grammars (G,C) in which C = (PU I5)D. Such uncon-
trolled bidirectional grammars are caled (r,f, mK)-belb grammars in the
sequel. Consequently, the control language C will be omitted in the pair
(G,C), so that we denote such agrammar by asingle tuple G.

Lemma4.l.
(i) RBLB; t 0(ONE)=RBLB; ; |o(FIN).
(i) BLBy t10(ONE) =BLB; 1 10(FIN).

(iii) For each family K we have BLB; ; n(K) ORBLB;  n(K), where either
m=0l orm=10.

Proof. (i). Theinclusion from left to right is obvious. The converse inclu-
sion can be shown by replacing each production Y (Xy,...,X,) —» Lo in an
(r,f, IO,REG,FIN)-belb grammar by productions (X1, ...,X,) - {n;},
where it is understood that Lo ={n4,...,Nx} for some k=0. Here k=0
means that Lo = O, in which case no replacement ought to be made. As a
consequence, each rule p in which g ( X' ) occurs I-times has to be replaced
by k' rules covering al combinations of yj’s (1<i<k) possible in p. The
corresponding alterations in the control language C are allowed, for REG is
closed under finite substitution.

(i) and (iii). Obvious. O
In the following proposition we show that the family 10 is included in
BLBs t 10(NE). With respect to an m-macro grammar G equal to
(P,%,X,P,S) we define for each A[D the finite (possibly empty) language
Lac over S0X by Lag ={n D(ZDX)D\DTDP .T=A(X) - n}. Note
that L ¢ does not depend on the mode m.
Proposition 4.2. The family 10 of 10-macro languages is included in the
families BLB; ¢ jo( ONE) and RBLB; ¢ ;o( O NE).
Proof. Let Ly be an IO-macro language generated by the grammar G4 =
(P, Z,X,P(1),S). Weassume G, isin IO standard form [Fis684]; i.e., each
production is argument-preserving and it has either the form

(i) A(X1,...Xn) » B(D(Y1s---.W1)s 22y - %), Where A[® (1), BID (3
(k=1), D@ (qy; and yq,...,¥i, 22, ..., z0X, or
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(i) A(Xq,...,%)) - N, wherenO(Z OX)".

We construct an (r, f, |O,FIN)-belb grammar G with underlying gram-
mar G = (®,W,%,X,P,S) such that L, ;0(G) =L,0(G;) as follows. Starting
from P = [, for each production 1tin P 3y we add to P a sequence of produc-
tions. If Ttis of the form (i), then we add productions pagp i Po o @d Pp it
to P, whereD'3d , (n=0) and

Pagpmt = A(X1, ..., %)) » B(Wpn(X ), Wz, (X)), ..., (X)),
Pomp = DXy, - Xa) = D(Wy, (X)), ...,y (X)),
Pom =Dn(X1, .- %) - Wpn(Xq, ... %)

If Ttis of the form (ii), then we add to P the productions 1, and 11+, Where
Th =A(X1, - %) > WaX1, -+ Xn),
T = Pa(X1, .-, %) - Lag,-

Furthermore, we add to P the elements of the set Py, consisting of all
productions Y (X4, ...,X,) - {X}, with x(OX and x occursin X. A nonter-
minal D ought to be expanded by the corresponding language name ip.
Therefore, we add to P al productions Yp( X ) — [, in case D occursin
the argument list of the right-hand side of a nested production Ttin Gj.
From the construction of P one can easily determine @ and W. We observe
that a production of the form (i) is simulated in G by some element of
{Paep it PX{PoPomp}PX. In addition, a production of the form (ii) is
simulated in G by Tia T, However, it is not necessary to provide G with a
control language in order to generate the language L. The correct order of
application is arranged implicitly by the derivation mode. Therefore, we can
take for C the trivial control language (P O P)".

So far we have shown that IO0BLB; 1 o(FIN). The conclusion now
follows from Lemma 4.1. O
Corollary 4.3. If K is a language family that includes LONE, then the fami-
lies BLB; 1 10(K) and RBLB; 1 ,o(K) both contain all 10-macro languages. [

For mequal to Ol an analogous result holds.

Proposition 4.4. The family Ol of Ol-macro languages is included in the
families BLB, ¢ o;(CJNE) and RBLB; 1 o, (ONE).

Proof. Let Ly be an Ol-macro language generated by the grammar G4 =
(P, Z,X,P(1),S). Assume G isin Ol standard form [Fis68a]; that means
that each production has either the form
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i) Ay, ---%y) - B(D1(X1, - Xn)s - - -, Di(Xq, ..., %q)) , with k,n=0,
or
(i) A(Xy,....%) - 1N, where nO(ZOX)”and n>0.

Furthermore, we assume that in G, the symbol S only occurs at the
left-hand side of productions of the form (i). Thisis no loss of generality,
since we can eventually transform the grammar G4 into the equivalent gram-
mar G, equal to ((D(z),Z,X(z),P(z),S'), where

cD(z) =CD(1)|:|{S',S"}, X'=X|:|{X}, and
P(z) = P(l)D{S' - S"(S), S"(X) — X}.

Analogously to Proposition 4.2 we construct an (r,f, Ol,[0NE)-belb
grammar G with G =(®,W,%,X,P,S) such that L, ¢,(G) =L (G;) as fol-
lows. For each nested production 1t in Py of the form (i), we add a
corresponding production 11’ to P, where 11" is defined by

A(X) - B(Wp,(X),...,.Up, (X))

Define P (1) by P (3 = {T'| Tt [P 4),Ttis of the form (i)}.

Let © be the set of all nonterminas in ®y) that occur in the argument
list at the right-hand side of a nested production of the form (i). For each D
in © we introduce a language name Yp and a production of type 1.3.3.1(ii),
viz.D(X) - Yp(X ). In addition, we define for each such D a production
of type 1.3.3.1(iii) by Yp(X ) —» 0. The two sets of al productions of the
form 1.3.3.1(ii) and 1.3.3.1(iii) obtained in this way are denoted by Po and
P, respectively. Thus

Po={D(X) - Yp(X)|D@ (y}, and
Py ={Wp(X) - OD@® (3}.
Next, we define P by
P =Pl PeOPoO{A(X) - Yn(X ), Wn(X) - {n} |A(X) - nOP )}
We take the set of nonterminals @ equal to ®(;y and the set of language
names W is defined by
Wo={Yy |A(X) - nOP), AZS}0{Yp [DO n D (3},
for each n (n=0).

The application of a nested production of the form (i) is smulated by
the corresponding production A(X' ) - B(p,(X),...,Up (X)) in G. In
case a language name ) percolates at top level, it has to be rewritten into
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the corresponding nonterminal D. Thus a termina production Tt equal to
B(X) - n,withnO(Z0OX)", in G, issimulated by the sequence of rules

(B(X) ~ Wy(X ) (W (X) ~ {n}) (PoO{A}).

The additional {A} in this sequence is necessary to cover the case in
which B has no arguments. Note that the trivial control language suffices,
i.e., we can take C equal to (PO P)". O

Corollary 4.5. If K is a language family that includes OONE, then the fami-
lies BLB; 1 o (K) and RBLB; ; o (K) both contain all Ol-macro languages. [

In the remaining part of this section we show that the language family
RBLB; 1 o (Ol) equals the family OI; cf. Theorem 4.13.

Let G be an Ol-macro grammar. Then we define the language L, o (G)
over 2" by

Lr.oi(G) ={wX "|SO fow},

where o , o/ holds if and only if B is obtained from a by a single right-
most (Ol) derivation step. The strings o and 3 are terms over the alphabet of
G. For IO and Ol-macro grammars, the right-most derivation relation can be
defined analogously to Definition 2.6. An Ol-macro grammar provided with
right-most rewriting will be called an (r,Ol)-macro grammar, and the
language L, o (G) will be called an (r, Ol)-macro language. Let Ol, denote
the family of (r, Ol)-macro languages. In addition, let Ol (REG) denote the
family of languages generated by regularly controlled (r, Ol)-macro gram-
mars. Then we can prove the following resullt.

Proposition 4.6. The family RBLB; ; o;(Ol) is included in the family
Ol (REG).

Proof. Let Ly be generated by the (r,f, OI,REG,OIl)-belb grammar
(G1,C1), where Gy =(P(y),¥,2,X(1),P(1),S). We construct a regularly
controlled Ol-macro grammar (G,C) with G =(®,Z,X,P,S) such that Ly =
Lr,01(G,C). Starting with P = we add for each rule in Py IS(l) one or
more productions to P as follows. If pOP )20 Puy20 Py, then p is
added to P. If pisin P(y)3, then p is of the form Y (x4, ...,%,) — Ly. Let
for each language name Y in ¥ the language L, be generated by some Ol-
macro grammar G, = ((DLIJ,Z O{ x4, ...,xn},Yw,Pw,Sw). We assume that
the alphabets of this finite number of grammars G, are mutually digjoint.
Then we add each production in Py to P, where Py equas
{A'(Yy.X) - t|A(Y) - tOPy}, and we define Py =L{Pj|y™@ }.
Next, we add to P productions (X ) — Sy(X ), where YW . Finally, if
the rue p is in Py, then p is a reduction of the form
B(W1(X),...,W(X)) - A(X ). First consider the case that A isin ®q.
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Then the production T, equal to B(X' ) —» Ais added to P. Secondly, if A
is in ®), (n=1), then we add productions Tz, equal to B(X) - X
(Remember that k>1.) and 1y A equal to Y;(X' ) - A(X ) toP.

Now we define P to be equal to
P20 Pay20 Pay1 0 C{W(X) - Sy(R)|W(K) - LyOPmys}OPG
D{T@lA\DB@ W, (@ LA(K) - B(WL(X ), Wk(X)) OP oy}
{1 DA O g, [ LA(X) - B(Pr(X ), k(X)) OP )}
O{Tga | 1,...,0p @ A(X) - B(P1(X),...,Yx(X ) OPy}.

Next define the regular substitution o: (P00 (P3)~Py3))” » 27
by
O(A(X) - Y(x))={A(X) - P(xX)},
o(P(x) - A(X))={Y(x) - A(X )},
O(P(X) - Ly)={W(X) > Sy(X P,
O(A(X) - B(Wi(X ), ....u(X))) ={A(X) - B(W(X), ..., 0(X )},
oB(Wi(X),....u(X)) - A(X)) ={T31Ty,a},
o(B(W1,....Y) - A) ={Ta}.

From P we obtain @ and X in a straightforward way. It easily follows
from the construction of Gthat Ly = L, o(G, 0(Cy)). O
Let the number of occurrences of a symbol ¢ in a word w be denoted
by #5(W).
Example 4.7. Consider the (r,f, Ol,REG, ONE)-belb grammar (G,C) of
Example 1.3.3.3, where G = (®,W,{0,1},X,P,S), X ={x}, C = (PO P)", and
P consists of

TH=S - A(Un), s =B - Yy,
 =AX) - A(P2(x)), =B - D(y),
T =A(X) - W3(x), g =D (X) - W4(x),
3 = Ps(X) - {x}, Ty = Yy(x) - {Ox},
TG = Yo(X) - {xx}, o =D (X) - Ws(X),
5 =Y - {1}, Ty = Ys(X) - {xO}.

According to Section 2, we have that Py = {1, T,T%}, P> = {1, T, T T},
and P; =P-(P;0P,). Now we replace production 15 by the production
Tl"5 = l-l'll — Lwl,Where

Ly, ={wD{a 1}*|#(w) = 2% k=0}.
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The resulting grammar (G',C") isan (r,f, Ol,REG, Ol )-belb grammar,
where G' = (®,¥,{0,1,a},X,P",S), with P' = P0{m} {15} and C' isthe
resulting variant of C. It is easy to see that the language generated by this
grammar equals

L, ={wO{0,La}*|lw=w;...w, k=2,120, w; isin0"a"(1a”)™ 0",
m =2",1,20}.
The language L, can be generated by the Ol-macro grammar G, =

(Py,.{L.a},Y,Py,.Sy,), where &y ={S,, ,F,H}, Y={y}, and Py con-
sists of the productions

Sy, — F(H), F(y) -, H - Ha,
The languages {u;}, with ;(X) — {u;} (2<i<5), can be generated by
Ol-macro grammars which have asingle production Sy, — U; (2<i<5).

Using the construction given in the proof of Proposition 4.6, we obtain
the following regularly controlled (r, Ol)-macro grammar (G,,C,) that gen-
eratesL 1, where G = (®(1),Z,X(1),P(1),S), and Py isformed by

P10P,0P,0{Wi(x) - Sy, (x)|2<i<B}0{Sy, (X) - U|2<i<B} 0P, O
H{y1 - Sy,,A(X) - S D(X) > B, AX) - X Pa(X) - A(X)}.

We define the regular substitution o: (P (30 (P 3y~ P1y3))"” — 27 by
o(p)={p} foreach pOPyIPRIPy,
(Y1 - Ly,) ={P1 - Sy,}Py,,
o (Wi(x) - Ly) ={(Wi(x) - Sy )(Sy, — W)} foreachi (2<i<5),
o (A(Wy) - S ={A(X) - S},
o(D (Y1) - B)={D(x) - B},
o (A(W2(x)) - A()) ={(A(X) - X)(P2(x) - A(X))}.
Finally, ®gy = O WD , O{Sy, |2<i<5}, X =XOY and as the

control language we defineC, = o (C'). O

Next we give a characterization of the family OI,(REG). This is
achieved by a proof method of Ginsburg and Spanier [GinSpa], who proved
that the family of languages generated by regularly controlled context-free
grammars provided with left-most derivation equals the family of context-
free languages. First we give the obvious right-most version of Theorem 2.1
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from [GinSpa] which is formulated in our notation.

Theorem 4.8. [GinSpa]. Let K be a family of languages closed under A-free
regular substitution. Then the family of languages generated by K-
controlled context-free grammars provided with right-most rewriting equals
the family of all languages of theformh(L,n L), whereL, isinK, L, isa
context-free language, and h is a homomor phism. O

If we replace in Theorem 4.8 “context-free” by “Ol-macro” every-
where, then an analogous statement still holds; cf. Theorem 4.11. The proof
according to [GinSpa] of Theorem 4.8 uses closure under inverse homomor-
phism of the family of context-free languages. Although this closure pro-
perty does hold for the family Ol [Fis68al, it is sufficient to have closure
under isomorphism. To prove Theorem 4.11 we need the following two
lemmas.

Lemma4.9. Ol, =Ol.

Proof. The proof is analogoudly to the context-free case, which is well
known; cf. for instance [LewPap]. O

For each OI-macro grammar G = (®,Z, X,P,S) we define the Ol-macro
grammar H (G) by (®,%1,X,P4,S), wherez; =2 P and

Pi={A(X) > nmnP, m=A(X) - n}.

Lemma4.10. Let G be an Ol-macro grammar (®,2,X,P,S) and C be a
control language over P. Then there exists a A-free regular substitution t
and a homomorphismh such that L, o (G,C) =h(L; o/(H(G))n T (C R)).

Proof. Similarly to the proof of Lemma 2.1 in [GinSpa]. Viz., the homo-
morphism h: =} - " isdefined by h(mt) = A if P, and h(a) =aif alX .
The A-free regular substitution T is defined by 1 (1) = 21} =", for each
Tt [P. O

The following theorem has been adapted from Theorem 2.1 in
[GinSpa].
Theorem 4.11. Let K be a family of languages closed under reversal and
A-free regular substitution. Then the family of languages generated by K-
controlled Ol-macro grammars provided with right-most rewriting equals
the family of all languages of the formh(L,n L)), whereL isinK, L, is
an Ol-macro language, and h is a homomor phism.

Proof. By Lemma 4.10 there exists for each control language C in K and
each Ol-macro grammar G a A-free regular substitution T and a homomor-
phism h such that L, o)(G,C) =h(L; o/(H(G)) n T(CR)). Thent(CR)isin
K. The language L, o(H (G)) is an Ol-macro language (Lemma 4.9), so
L 01 (G, C) has the proper form.
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Conversely, let L, and L, be languages over 2, where L is a K-
language and L, an Ol-macro language. Let h: =} - =5 be a homomor-
phism.

We may assume X;n Z, = [, which is shown as follows. Let a be a
distinct symbol not in =, for each ain £, and let &; ={alaX 1}. Leth;
be the isomorphism from Z; into Z; defined by h;(a) =afor eachain ;.
Then hi! is an isomorphism too. Let L; =hy%(L;) and L, =hit(Ly).
Then;n 2, =0,L;isinK, L, isan Ol-macro language [Fis68a], hh; isa
homomorphism and h(L1n L,) =hhy(Lyn Ly).

Now let Gy =(®P4,21,X1,P1,S) be an Ol-macro grammar that gen-
eratesL,. Let G, =(®d,,2,5,X4,P5,S) be the Ol-macro grammar with @, =
®,[X ; and P, =P;0{a - h(a)|aX 1}. Let the production 1, be equal
toa - h(a) for each ain X;. The homomorphism h;:P5 — X is defined
by hs(1t) = A for [P, and h3(1,) =aforain ;. Thenhz!: =} - s
a Mfree regular substitution, h3!(LY) is in K and L, o;(Go,h3t(LR)) =
h(Lin L5). Hence alanguage of the formh(L,n L5), withL, inKand L,
an Ol-macro language, can be generated by some K-controlled (r, Ol)-macro
grammar (G,C). O
Corollary 4.12. The family Ol,(REG) equals the family Ol.

Proof. Recall that the family Ol is closed under intersection with regular
sets and under homomorphism [Fis68a]. O

Theorem 4.13. The language families RBLB; ¢ o;(Ol) and BLB; ; ,(Ol)
are equal to the language family Ol.

Proof. Lemma4.1(iii), Corollaries 4.5 and 4.12, Propositions 4.4 and 4.6. [
Corollary 4.14. RBLB; ; o;(UNE) =RBLB; ; o;(Ol) = Ol.
Proof. Corollary 4.5 and Theorem 4.13. O

Of course, a similar statement holds for any family of languages K
which satisfies INE O K [0 Ol.

On the other hand, Corollary 4.14 may also be considered as a closure
property of the family Ol, viz., RBLB; ¢ o, (Ol) 0 Ol. Whether this property
is stronger or weaker than the one established in [Dow] for the family Ol
remains open.

Now we show that the family BLB; ; ,o(JNE) differs from the family
BLB; 1 o (HNE).
Proposition 4.15. The family BLB; ; ;,o(CJNE) is not equal to the family OI.
Proof. The language Lo ={1"(c1™)"|n=2"-1, m=0} is an |O-macro
language which is not an Ol-macro language [Fis68a]. The language Lo can
be generated by the (r,f, |0,REG, OONE)-belb grammar (G,C), where G =



116 Chapter V

(P,W,Z,X,P,S) isdefined by ® ={SD,F,G}, W ={y; |0<i<4},Z ={1,c},
X ={x}, and P consists of

TH =S - F (W), T =Py (x) - O,
™= - {1}, 5 =G(X) > Wa(x),
T =FX) - G(Y1(X)), Tg=Ws(x) - {x1},
R =F(X) - G(Wa(X)), To=s(x) - {xcx},
T =D(X) - Y1(x), Tho = Ya(X) - {X}.
5 =D (X) - F(W2(x)),

Finally, take as the control language the trivial control language, i.e.,
C=(PO I5)D. That (G,C) generates L can be shown in the following way.
First, aterm t,, of the form G(G(...G(F(1™M))...)) is produced, where T,
contains exactly m—1 symbols G (m=1). This can be performed by a con-
trol word Trortl(nzﬁ4rr5n8)m‘1. Then applying 11y, followed by repeat-
edly applying T4Tg yields the string 1M(c 1M)"~ L. O

Proposition 4.15 shows a typical consegquence of bidirectiona rewrit-
ing. In case of unidirectional rewriting we have that with K = ONE for both
modes Ol and 10, linear basic grammars have the same generating power;
viz. they both generate the linear basic languages. The latter equality can
also be expressed in terms of (m,K)-elb languages, i.e., let LB denote the
family of linear basic languages. Then we have LBg (ONE) =
LB,o(CJNE) =LB (= EDTOL, [Dow]). Due to the presence of bidirectional
rewriting in (mREG,K)-belb grammars we have that the family
BLB; 1 o (HNE) differs from the family BLB; ; jo( ONE).

5. Free Rewriting of Nonterminals and L anguage Names

In this section we study another grammatical model that can be derived from
(m,REG, K)-belb grammars. It is natural to investigate also (m,REG,K)-belb
grammars provided with the (usual) derivation relation which models the
free application of rules from the grammar; i.e., the restriction of right-most
rewriting will be dropped in this section. We maintain the restriction of
disallowing termina reductions. Then we prove that the corresponding
language family RBLB; (K) equals the family of recursively enumerable
languages for m =10 (Proposition 5.3) and for m = Ol (Proposition 5.4),
provided some minor conditions on the family K hold.

Definition 5.1. Let (G,C, ¢) be an (m REG,K)-belb grammar, where G =
(®,W¥,5,X,P,S). Let p berulefrom PO P, and o, T be terms in Term(G, ¢).
Wewrite o O Pt if

° either p isaproduction, o isrewritten by p, and o 0 T,
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e orpisareduction, Tisrewritten by p, and 10 0.

In addition, let ¢ be a control word in CO (PO P)Y, withc =p; ...p;,
(n=0, p{OPOP, 0<i<n). Then O &, is defined (as usua) for terms T and T’
from Term(G, ¢) by 10 U’ if there areterms 1; (0<i<n) such that 15 =T,
1, =T’ and for eachi (0<i<n), ;0 %1, holds.

Incasearule p; in cisnot applicable to the term T;, then further appli-
cation of rulesis blocked, and the application of ¢ to T yields no result, i.e.,
thereisnoterm v’ suchthat 10 ;1" is defined. O

In this section an (m,REG, K)-belb grammar will be provided with the
derivation relation introduced in Definition 5.1.

Definition 5.2. If (G,C, ¢) is an (mREG,K)-belb grammar where G =
(P,W,2,X,P,9) is its underlying grammar, then the language generated by
(G,C,¢)is

Ln(G,C, ¢) ={wX "|OcOC.SO & w},

where either m=0l or m=10. The family of languages generated by
(m,REG, K)-belb grammars is denoted by RBLB,,(K). O

Asin Section 2 and 3, only (m,REG, K)-belb grammars without termi-
nal reductions will be studied. Such grammars are called ( f, m,REG,K)-belb
grammars, and their associated family of languages will be denoted by
RBLB¢ m(K). The next propositions characterize — under minor conditions
on the family K — the families RBLB; o(K) and RBLBs ¢ (K); viz. these
families equal the family of recursively enumerable languages. The proofs
are inspired by the equivalence of Turing machines and on-line acceptors
provided with two pushdown stores as auxiliary storage. We refer to
Chapter IV, Section 2, for a precise definition of the concept of the Turing-
machine as well as related notions and terminology. Given a Turing
machine A and a mode m, we construct an (f, m,REG,K)-belb grammar
(G,C) which simulates computations of A, using an encoding of two push-
down stores in the derivation tree. These simulations (Propositions 5.3 and
5.4) heavily rely on the use of reductions, which will be no surprise, in view
of the main result of Chapter V.

Remember that RE denotes the family of recursively enumerable
languages.
Proposition 5.3. Let K be a family satisfying {{A},0}0KORE and let K
be closed under left or right-marking. Then a language L is in the family
RBLBs |0(K) if and only if Lo isrecursively enumerable.
Proof. Let Lo be equal to T(A), the set of strings in " accepted by the
deterministic single-tape Turing machine A, where A =(Q, Z,I",B, 8,q¢,F).
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Furthermore, we assume that &(qg,a) = [ for each g in F. We construct an
(f, 10,REG, ONE)-belb grammar (G,C) with G = (®,W,%,X,P,S) such that
Lo(G,C)=Ly. The grammar (G,C) generates nondeterministicaly a
representation of a word z in ¥ and simulates the computation of A on z
The Turing machine A reaches a final state with z as its input if and only if

(G,C) generates z. Let X, denote X [{A}.
We define the alphabets ® and W of G by

P ={S Ao} {Rypa,Uqpa [a0Q, DI ,alX »},

®, ={[D,a]|DI ,alX ,},
®y ={Aq},
and

Wo ={P1} 0{&q.Nq |q0Q},

Wy ={WalaX ,},
Wo ={Wa,}.
The set of variables X is defined by X = {x,y} and the set P of produc-
tions by
P ={T0, T, T, T, T, . Ty}
O{Uppa - Nq|p,q0Q, DT ,alX )}
U{Ropa - &q|P,qUQ, DI ,alX ,}
O{Uppa — [E.a](ng)
U{Ropa — [E.a](&q)
O{[D.a](x) - Ya(x)[DI ,alX )}
O{Wa(x) - {xa}[alX )}
OP:0OP:0P,0O{yy - O},
where
=S - A1(&q, W1), M =Ag - Y,
g =Ao - [B,A](Yy), Ty, =Ao - Ng,»

p,q0Q, D,EM ,aX ,}
p,q0Q, D,EM ,aX ,}

Ty, =A1(XY) — Wa, (XY), Ty =Wa, (XY) - {xv}.

Furthermore, let
Pe ={&q - {A}|qOF},
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Py ={nq - {A}|qOF},
Ps={Ao - [aal(y;)|aZ }.
The control language C is defined by
C =ToT(TeT4) (P5T4) "My, (E10 Mo M_1E 1) MUP ESPeTia, .

The control language C can be considered to consist of three major
parts; viz.

initialization part oy (TeTy) (P Th)
simulation part (E1OMoOM_1E_y)",
termination part MEP,E5P iy, T

Before the actual simulation of the Turing machine A starts, the initial-
ization part generates a sentential form ay, , which has a corresponding c-
tree of the form shown in Figure 4, where a[X (1<i<n). If A accepts the
string a;...a,, then it will stop after some finite computation. The number k
is a guess of the number of additional cells to the right of the n input cells,
which the Turing machine A uses during this computation.

Ay
&as [B,A]
Lk
[B.A]
|
[@n,an]
[al;al]
r]qo
Figure4.

The simulation part (E;0MOM_;E_;)" simulates the computation
of the Turing machine A. The setsEq, E_1, Mg and M_4 in the simulation
part of C are defined asfollows. Let A(r,q,D,a) be an abbreviation of

rit{-1,0,1},q0Q, DI ,alX ,,JEM .0Op0Q.d(q,D)=(p,Er),
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and let [(g,E,r)]; =qand [(q,E,r)], = E. Thenwedefine
E1={(&q - Rypa)([D.al(ng) - Ugpa)(Repa — [[3(a,D)]2,al(&[5(q,0),))
(Ugpa - N[s@oy,) |A(1,9,D,a)}.

The set E; simulates a 1-step of the Turing machine A. The first rule
&q — Rqpa Of each control string in E4 issuch that D and a are guessed non-
deterministically. By the second rule ([D,a](&q) - Ugpa) this guess is
checked, and if the guess happens to be wrong the derivation is blocked.

Ms={([D,al(ng) - Ugpa)(Uqpa - [[3(a.D)]2.a]l(N5q00,))A(s.0.D,a)},

wheresequals—1 or O.
The set M simulates a O-step of the Turing machine A.

E-1={(Ng - Ugpa)([D,a](&p) - Rypa)(Ugpa — [D,al(ng))(Rypa — Eq)‘
p,qUQ, DM ,alX ,}.

The sequence M_1E_4 simulates a (—1)-step of the Turing machine A.

A1
[Dlzal] [Dn+_ka7\]
[Di_1,8 1] [Di,a]
\ \
&q Nq
Figureb.

We can show by induction on the number of Turing machine moves
that if

oz ...8 A Dy1...Dj_10D;...Dpyy,

then for some control string ¢ in the simulation part of C we have

an,kD Fowlrja-kv
where o,y is the sentential form generated by the initialization part of C,
corresponding to gpa;...a, (cf. Figure 4) and m{];k is the sentential form
associated with the c-tree represented in Figure 5, where g; = A for al i with
n+l1<i<n+k,and D;I foraliwithl<i<n+k
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If qisinF, then no rulesin the simulation part of C are applicable.
In the termination part, sequences from M{? — with M, defined by

ML ={(nq —» Ugpa)([D.al(&q) - Rypa)(Ugpa — [D,a](Ng))(Rypa — Eq)‘
gOF, DT ,aX ,},

— transform the sentential form that has been derived after the actual simula-
tion of the Turing machine A into one with a corresponding c-tree of the
form shown in Figure 6, whereqOF, and D;[T (1<i<n+K).

A1

&q [Dn+kiA]
[Dn+1,A]

\
[Dna_an]
[Dl:al]

\

Nq

Figure6.

Finally, PnE’gPET[AlTqu derivestheterminal string a;. .. a,, where
Ex ={([D.a](x) - ya(x))(Pa(x) — {xa})[alX ,,DT }.

By this construction, we have T (A) 0L, (G,C). The converse inclu-
sion can also be proved in a straightforward way. Thus, for each Turing
machine A we have constructed an ( f, |O,REG,K)-belb grammar that gen-
erates T(A). This proves the proposition from right to left. The converse
implication can be proved using Church’s Thesis. O

The construction in the proof of Proposition 5.3 can serve as a base to
prove asimilar result with respect to the family RBLB; o (K).

Proposition 5.4. Let K be a family satisfying {{A},0}0KORE, and let K
be closed under left or right-marking. Then a language Lg is an
RBLB; o (K) language if and only if L is recursively enumerable.

Proof. We give only the mgjor steps of the construction. The construction
of G=(d,¥,Z,X,P,S) and C follows the proof of Proposition 5.3 directly.
First, the initialization part of C has to generate a sentential form o,  with a
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c-tree structure as shown in Figure 7.

q‘o # q‘o'
[$A] [a1,a1]

[an,:an]
[B,A]

[B,A]
\
[EA]

Figure7.

This can be obtained easily. In general, if qQ, then qand q' are nontermi-
nasin ®;. Nonterminals of the form [D,a], where DI and alX ,, arein
W,. Furthermore, [$,A] and [£,A] are in Wy, where $, £ are new symbols
notinr.

The simulation part of C has the form (E;0 MO M_;E_;)", which is
identical to the simulation part of the control language in the proof of Propo-
sition 5.3. However, the setsE ¢, E_1, Mg and M_ are defined differently.
Let Rypa, Ugpa (UQ, DM , alX ) and A(r,q,D,a) be defined as in the
proof of Proposition 5.3. In addition, we need language names ), with
qUQ. Then

E1={(@@() - a([D.a])(x))) (@'(ID.a](y)) - Ugpa(¥))
(([D,a](x) - Rgpa(X)) (Rgpa(X) - [3(a,D)]1([[3(a,D)]2.a](x)))
(Ugpaly) = Wrs@oy, (V) (W0, (Y) - [8(a.D)]1'(y))]|
A(1,9,D,a)}.
Toobtain Mg and M_1E_1 we define Mg for sequal to —1 or O by
Ms ={(a'([D.a](y)) - Ugpa(¥))
(Ugpa(y) - [8(a,D)]1'([[8(a,D)l2.al(y)))|A(s,a,D.a)}.
Finally, E_, isdefined by
E_1={(a'(y) - a'([D,a](y))) (p([D.a](x)) - Rgpa(X))
(Rpa(X) - We(x)) (Wg(x) - a(x))[p,qlQ, DI ,alX ,}.
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Then it easily follows that a sentential form generated during the simu-
lation of the Turing machine A has a c-tree structure as shown in Figure 8.
Notethat g; = A for al i withn+1<i<n+k

oo
[Di—lflai—l] [D|,a|]
[D1,a1) Dok neid
[$A] [E£A]
Figure8.

The discussion of the termination part of C is left to the reader, as well
asthe remaining details of the proof. O

6. Concluding Remarks

In this chapter we have studied (m,K)-elb grammars provided with regular
control and bidirectional rewriting. We have shown that if K is a nontrivial
family closed under ngsm mappings, then the family RBLB; 1 o (K) is a full
substitution-closed AFL. Furthermore, if K is a family with KO SYMBOL,
and closed under left or right-marking, intersection with regular languages,
and homomorphism, then the family RBLB; ; |o(K) is a full Quasi Abstract
Family of Languages closed under deterministic substitution.

As for the generating power of these types of grammar we have seen
that the family of IO-macro languages is included in each family
RBLB; 1 10(K), whenever KD NE. And similarly, the family of Ol-macro
languages is included in each family RBLB, ; o(K), whenever K[ NE.
Furthermore, we have that the family RBLB; ¢ o (K) equals the family Ol
whenever the family K satisfies INE K JOIl. We aso would like to estab-
lish upper bounds for the families RBLB;  ,o(LNE). However, the proof
techniques applied in the Ol-case do not work for the IO-mode, since
Lemma4.10 does not hold for 10-macro grammars.

The results of Section 4 suggest that (m,K)-elb grammars provided
with RCB-rewriting generate languages of a “nonlinear” character; i.e.,
languages generated by a type of grammar provided with symbols similar to
nonterminals, such that each grammar, which generates such a language,
derives — unidirectionally — at least one sentential form which contains at
least two nonterminal-like items. It is likely that this is due to the interac-
tion between the bidirectional rewriting and the presence of language names
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nested within nonterminals, which alow to obtain such nonlinear sentential
forms. Therefore, it is interesting to study ordinary linear basic grammars
provided with RCB-rewriting; cf. Chapter VI.

Finally, with respect to Section 5 we remark that the use of control on
the application of rules is indispensable to establish that — under weak
assumptions on the family K — the family RBLB; ,,(K) equals the family of
recursively enumerable languages for bothm = Ol and m = 10.



CHAPTER VI

Regularly Controlled Bidirectional
Linear Basic Grammars

1. Introduction

In Section V.6 we suggested that it might be interesting to investigate ordi-
nary linear basic grammars as the underlying grammar type for regularly
controlled bidirectional grammars. Therefore, in this chapter we extend
linear basic grammars to regularly controlled bidirectional linear basic gram-
mars, provided with right-most rewriting, block mode and fair mode.

The structure of this chapter is asfollows. In thefirst part of Section 2
we recall some basic terminology. Then we define a regularly controlled
bidirectional linear basic grammar as a tuple (G,C,¢), where G =
(®,%,X,P,S) is alinear basic grammar, C is a control language over P P,
and ¢ is a symbol not occurring in G. The set P is formed by the reductions
corresponding to the productions in P. In regularly controlled bidirectiona
linear basic grammars there is — in genera — a difference between applying
rules from PO P in the “outside-in” (Ql) fashion or in the “inside-out” (10)
fashion. Therefore, we call the regularly controlled bidirectional grammars
based on linear basic grammars (m,REG)-blb grammars. Then we actually
investigate (m,REG)-blb grammars under the RS/B/f-mode of derivation,
where m=0l or m=10. The resulting grammar type is denoted by
(r,f,m,REG)-blb or even by ( f,REG)-blb, since it is argued that in case of
the RS/B/f-mode the mode RS does not differ from the RA-mode and even
the value of the mode m can be left unspecified.

The remaining part of Section 2 contains some examples of ( f, REG)-
blb languages. These examples give some insight in the generating power of
(f,REG)-blb grammars. Section 3 is devoted to the generating power of
(f,REG)-blb grammars. We show that for each recursively enumerable
language Ly over an aphabet X, there exists an aphabet = and some
(f,REG)-blb grammar (G,C) such that the language L (G,C) n X5 equals
Lo. Finaly, in Section 4 we draw some conclusions.
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2. Regularly Controlled Bidirectional Linear Basic Grammars

Anaogoudly to Chapter V, in which we investigated regularly controlled
bidirectional (m,K)-elb grammars, we study in this chapter the effect of reg-
ular control together with bidirectional rewriting on linear basic grammars
[Fis68a]. Recal that a linear basic grammar is a macro grammar in which
the right-hand side of each production is a linear term. In the sequel we
assume that each production in alinear basic grammar is in standard linear
form; cf. Definition 1.2.4.5. For completeness sake we repeat this
definition.

Definition 2.1. A linear basic grammar G =(®,%,X,P,S) is in standard
linear formif each production from P has one of the forms

O AXq,....X) - B(wq,...,w) or
i) AXq, . X)) = W,
wherew, W, ..., W arewordsover 2 {Xq, ...,X}. O

For each linear basic grammar we can construct effectively an
equivalent linear basic grammar in linear standard form [Fis68a]. Note that
this result has already been quoted in Theorem 1.2.4.6.

The new grammar model under consideration now consists of a linear
basic grammar provided with a control language over PO P. The set P con-
sists of the reductions corresponding to P. If 1tis aproduction in P equal to
A(Xq,...,%) - t, then tisin P and mequalst — A(yy, ...,Vn). Herey: is
equal to x; if x; occursin t, and otherwise y; is equa to ¢; cf. Chapter V.
Furthermore, for each production Tt we define Tt equal to Tt An element of
PO P will be caled arule. The symbol ¢ is of a specia kind and is not an
element of =, d® or X.

Definition 2.2. An mrregularly controlled bidirectional linear basic gram-
mar or (m,REG)-blb grammar, where mis equal to either Ol or 10, is atri-
ple (G,C, ¢) where

° Gisalinear basic grammar (®,Z,X,P,S),

e Cisaregular language with C (PO P)",

° ¢ isaspecia symbol not occurring in ®, = or X.

We call G the underlying grammar of (G,C, ¢) and C is called the con-
trol language of (G,C, ¢). Sentences of C will be referred to as control
words. O

The notion of argument preserving grammars — originaly introduced
by Fischer in [Fis68a] — has aready been defined formally in Chapter V
(Definition V.2.4). Obvioudly, this definition also applies to linear basic
grammars. In addition, we need the following concept.
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Definition 2.3. A linear basic grammar G =(®,%,X,P,S) is caled semi-
argument preserving if each production in P of the form 2.1(i) is argument
preserving. O

The symbol ¢ can be omitted from the tuple (G,C, ¢) in case each pro-
duction of G is argument preserving.

For an (mREG)-blb grammar (G,C, ¢), with G =(®,Z,X,P,9), let
Term(G, ¢) denote the set of terms T(ZOX[I$P O {¢}). With each
(m,REG)-blb grammar we associate the following derivation relation, which
formalizes bidirectional right-most rewriting; cf. Definition 2.5.

Our approach is similar to the one we developed in Chapter V. There-
fore the following definitions and comments are anything but a surprise.
Definition 2.4. Let (G,C, ¢) be an (m,REG)-blb grammar, where G equals
(®,%,X,P,S). Let p bearulefromPOP, wherea [ X ] isthe left-hand side
of p,and let T beaterm in Term(G, ¢). We say that 1 fits in with p, if there
are arguments tq, ...,t, from Term(G, ¢) such that T=a[tq,...,t,], where
aftq,...,t;] is the result obtained from a[X] by substituting the terms
ty, ..., thforxy, ..., ina[ X], respectively. O
Definition 25. Let (G,C, ¢) be an (mREG)-blb grammar, where G =
(®,5,X,P,S). Let p be rule from POP, and o, T be terms in Term(G, ¢).
Wewrite o O P T if there exists aterm u in Term(G, ¢), and strings v, x and
y over the aphabet ® [ [0 X[ PC such that o = xuy and T = xvy and

° y contains no symbol from &,

° ifu=Atheny = A,

° u isthe only subterm in uy that fitsin with p,

° either p isaproduction, T isthe result of rewriting o by p, and 0 [J i1,
or p isareduction, o istheresult of rewritingt by p,andtl ,o. [

The relation O f ,, where ¢ is a control word in (PO IS)D, can be
defined in a straightforward way; cf. Definition V.2.8. An (mREG)-blb
grammar provided with right-most rewriting will be called an (r,m REG)-
blb grammar or a right-most regularly controlled bidirectional linear basic
grammar.

Definition 2.6. Let (G,C, ¢) be an (r,m REG)-blb grammar with underlying
linear basic grammar G = (®,Z,X,P,S) and control language CO (P O P)".
Then the language generated by (G, C, ¢) under the mode (r,m) is

L. m(G,C, ¢) ={wX "|OcOC.SO ¢, w}.

The family of languages generated by (r,m,REG)-blb grammars is
denoted by RBLB; . O
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The derivation relation O, defined above corresponds to the RS/B-
mode of derivation as defined in Chapter | for RCB grammars.

It is possible to define reductions associated with terminal productions
in the obvious way; cf. Definition 2.5. However, we do not study grammati-
cal models in which such general reductions occur. Termina reductions
have the effect that they allow terminals to act as some kind of nonterminal
symbol, which obscures the sharp distinction between terminals and nonter-
minals. We have aready noticed this phenomenon several times; cf.
Chapter 1, 11, and V. Restricting ourselves — once again — to non-terminal
reductions means that we only consider the fair mode of bidirectional rewrit-
ing. Soin this chapter we aso disallow terminal reductions.

It is easy to see that each nonterminal sentential form generated by an
(r,m,REG)-blb grammar in fair mode — which we will cal an (r,f, m,REG)-
blb grammar - has a form uA(V )w, where u, w, vy, ...,V, are strings over
the terminal alphabet extended with the symbol ¢. In other words, it is
impossible to obtain nested terms. So, the distinction between Ol and 10-
mode vanishes, and therefore the symbol m can be omitted in the name of
grammar and of the language family too. We also see that at most one non-
terminal symbol can occur in a sentential form generated by such an
(r,f,m,REG)-blb grammar. Thus the symbol r can also be omitted. There-
fore we call an (r,f,m,REG)-blb grammar an (f,REG)-blb grammar for
short. In addition, the language generated by an (f,REG)-blb grammar
(G,C, ¢) isdenoted by L (G,C, ¢), and the family of languages generated by
(f,REG)-blb grammars is denoted by RBLB;. As another consequence, it is
easy to see that the following proposition holds.

Proposition 2.7. For each ( f, REG)-blb grammar (Gg,Cg,¢) there exists an
equivalent ( f, REG)-blb grammar (G,C, ¢) such that G isin standard linear
form. O

Notice that in a semi-argument-preserving (f, REG)-blb grammar
(G,C, ¢) the symbol ¢ is useless. So we will omit this symbol in semi-
argument-preserving (f, REG)-blb grammars.

Example2.8. Let L, be the language {1™(c1™)"|m=1, n=2"-1}. In
[Fis684] it has been shown that this language can be generated by an |O-
macro grammar, but not by an Ol-macro grammar. However, the language
L, can be generated by the following argument-preserving ( f, REG)-blb
grammar (G1,Cy), with G; = ({SA,B},{1,c},{xYy},P,S), where the set of
productions P consists of

T =S - A(cD), s =AX) ~ A(LX),

m =A(X) - A(cxl), 5 =A(X) - 1X,

™ =A(X) —» A(cex), 7 = A(X) - A(c1x),
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5 =B(Xy) - A(xccly), Tg = A(X) - A(Ixc1x).
T =B(xy) - A(xclycly),

The rank of the symbols in ® can be easily inferred from the form of
the productionsin P. Finally, define the control language C, by

C1 = TOT( T T+ THTL TR TY) T TG

In general, if a production 1t of the form 2.1(i) in P is argument
preserving, we call a sequence it atest. For then we observe that for each
string w to which Ttis applicable we have that « 0 ™w, and if Ttis not appli-
cable, then the derivation is blocked by definition. So, atest is able to filter
out undesired sentential forms.

That L, =L (G4,C,) isnow shown as follows. First, a sentential form
A(c™1™) (m=1) is generated by 1Ty, followed by the test T, T, whether the
argument of A starts with at least two symbols c. If this is confirmed, the
argument string s is split by T into three substrings u, cc1 and v with
u{c}” and s =ucclv. The next step isto construct from the strings u and
v, the string uc 1vc 1v, which is performed by . Initially, v equals 1™, so
that the resulting string uc1vc v is of the form cX(c1™)', where 0<sk<m
and | =2™ %1 The sequence T,T manages the case in which c1 is a
prefix of the argument of A, and TiTi; applies in case the argument of A hasa
prefix equal to 1. O
Example 2.9. The language L, defined by {w{0,1}"|#,(w) = 2", n>0},
is known to be an Ol-macro language that does not belong to the family 10
[Fis68a]. The language L, can aso be generated by the following
argument-preserving ( f, REG)-blb grammar (G,,C,), with the underlying
grammar G, = ({SA,B},{0,1},{x,y},P,S), where the set of productions P
consists of

o =S - A(D), 5 =B(xy) - A(xQy),
M =AX) - A(XX), T =AX) - X

™ =B(XYy) - A(xy),

In this case it is also straightforward to determine the rank of the sym-
bols in @ from these productions. We define the control language C, by
C = oM (TR TE) T

It is easy to see that L (G,,C5,) =L,. Note that the sequence T, has

the effect of inserting a symbol 0 somewhere in the current argument string
of A. O
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3. Generating Power

In Section 2 we showed that both RBLBs n 10 # [0 and RBLBs n Ol # [; cf.
Examples 2.8 and 2.9. The main result of this chapter — formulated in the
following proposition — shows that ( f, REG)-blb grammars possess a consid-
erable generating power indeed.

Proposition 3.1. Let 25 be an alphabet. For each recursively enumerable
language Lo over 3, there exist an alphabet ¥ and a semi-argument-
preserving ( f, REG)-blb grammar (G,C) with G =(®,%,X,P,S) and 23X
suchthat Ly =L (G,C) n Z§.

Proof. Let A =(Q, Z,I,B, 8,q9,F) be a deterministic single-tape Turing
machine such that L is equal to T(A). For a precise definition of a Turing
machine and related notions we refer to Section 1V.2. We assume that
0(g,a) =0 for each q in F and that each symbol in '-Z, occurs at least
once in some tape contents which is reachable during the computation on
some input a;...a, (n=0). We construct a semi-argument-preserving
(f, REG)-blb grammar (G,C) with G = (®,I,X,P,S) such that L (G,C) con-
tains both al sentences w over 2, with wL o as well as each tape contents
of A during the computation on w. Of course, then we obtain the equality
T(A)=L(G,C)nZ§. To this end we take the terminal alphabet of G equal
to . Next our concern is to assure that each tape symbol from -, will
occur at least once in a sentence of L (G,C). This is achieved by deriving
each possible tape contents which can occur during some (simulated) com-
putation of the Turing machine A. However, it may happen that some tape
contents, represented by 1, wholy consists of terminals from ;. Such a
string T is not necessarily an element of T (A) whenever the state of A is not
final. So t has to be excluded from the sentences generated by (G,C). This
is done by testing whether or not such a string includes a tape symbol in
-2%g. If no symbol from '—Z, occurs in T, then the derivation will be
blocked. The sets Pg | and Pg in the construction of (G,C) perform this task
in the right way. A derivation in an (f, REG)-blb grammar (G,C) starts with
producing nondeterministically a word w in Z§ as both the second and the
third argument of a nonterminal U. Then it simulates the computation of A
on input w. At each stage of the computation the grammar is able to derive
the current tape contents as a terminal string, in case this tape contents con-
tains at least one symbol in M-%,. In case this smulated computation of A
on input w reaches a fina state, then the derivation in (G,C) will yield w as
the string it generates.

By ®=V,0V;0{SU}OQU{EL, E5|DM-3% o} we define the
alphabet ® of G, whereVy =QxT andV, =VgxT.
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The set Xisequal to {X,y,z,X1,X2,Y1,Y2}. Theset P isthe union of the
finite sets P|, on, PChf Pi (l D{—l,O,l}), P_l7|, PE7|, PE, and P|:. The order
of description of these sets follows the way in which (G,C) simulates the
operation of the Turing machine A.

The subsets P, = {1, T, T} and P, consist of productions that ini-
tialize the simulation of the Turing machine A. These productions are
defined by

o= S - U()\v)\v)\)! = u (va!z) - qO(vaB!Z)!
= U((XY,2) - U(xyB,2),
and Ps, ={U (x,y,2) — U(xya,za)|alX o}.

The following five subsets of P - to be defined below — consist of the
productions that are necessary to start a simulation of an r-step of the Turing
machine A (r J{—1,0,1}).

Pen ={(p.D)(X,y,2) — p(x,Dy,2)[p0Q, DT ,
UED ,0q0Q, Or{0,1} .d(p,D) =(q,E,r)},
Po={(p,D)(xy.2) - a(x,Ey,2)[p,q0Q, D,EM ,&(p,D)=(a,E, 0)},
P1={(p,D)(xY.2) -~ a(xE,y,2)[p,q0Q, D,EM ,(p,D)=(a,E, 1)},
P_11 ={((p.D),H)Xy,2) - (p,.D)(xH,y,2)|p0Q, D,HI ,
OEM ,0q0Q.d(p,D)=(q,E, -1)},
P_1 ={((p.D),H)(xY,2) - q(x,HEY,2)|p,qlQ, D,EHI ,
d(p,D) =(a,E, -1)}.

To derive each tape contents with at least one symbol in M- X, the sets
Pe| and Pg are defined as follows.

Pe ={Eb(X1,X2,¥,2) - P(X1DX2,¥,2), Eb(XY1,Y2,2) — p(X,y1Dy2,2)
p0Q, DI-X o},

Pe ={Eb(X1,X2,¥,2) — X1DX2y, EH(X,Y1,Y2,2) — xy1Dy,|DI-X ¢}.

Note that a reduction in ISE,, can be applied if and only if the (simu-
lated) tape contents includes at least one symbol in M- %,.

Once we reach afinal state in the ssimulation of the Turing machine A,
the corresponding production in the set Pr ={m,|m, = p(X,y,2) - z pOF}
generates the terminal string that has apparently been accepted by (the simu-
lation of ) the Turing machine A.
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Finally, we define the control language C of (G,C) by
C ={m} P {161} (P, Pe0 Pen(Po P1) O P_1,P_1)(PeO{A}))".

The construction described above works as follows. Accepting an
input string a; ...a, means that the Turing machine A halts after a finite
number of transitions. Apart from the n cells on which the input has been
written, A uses an additional number of cells — say k (k=0) - to the right of
the input, in order to perform the computation on this input. Now we start a
derivation of (G,C) by the consecutive application of n (n=0) productions
from P5 to U(A,A,A), which in turn has been obtained by the initial pro-
duction 1. By applying k times (k= 0) the production T, followed by the
production 1, we obtain the sentential form on which the actual simulation
of the Turing machine A will take place. So there exists a control string ¢,
in {To}PY {mgm} such that SO “qgg(A,a;...aB%a;...a,), where
n+k=1. Theterm obtained by this subderivation is denoted by a, y.

Next we can simulate the actions of A by applying rules from P_j ,
and P; (i=-1,0,1) to a, . The current state q of A is represented by the
nonterminal g from ®3. The (values of the) first and second argument form,
when concatenated, the current tape contents, such that the position (_)f the
head of A is at the left-most symbol of the second argument. Then P¢,Pg
and P¢n P perform actions of A with no head movement and a movement of
the head to the right, respectively. In addition, P_; |P_; simulates an action
of A in which the head is moved to the left. Thus there exist control strings
CoUPcnPo, c1 0P P4, and C_1|:|P_1’| P_, such that
e p(xDy2)0“q(xEy2)
for each p,q0Q, x,yM " zX@ jand D,EDM , suchthat 5(p,D) = (q,E, 0),
e p(xDy,z)0“q(xE,Y,2)
for each p,q0Q, x,yM "z yand D,EM , suchthat 5(p,D) = (q,E, 1),
e p(xH,Dy,2) 0 “*q(x,HEY,2)
for esch p,q0Q, x,yM Y, zIX § and D,E,HI , such that &(p,D) =
(9,E, -1).

We can show by induction on the number of Turing machine moves
trlat if qoal...zznf—E bi...b_1qby...by+k, then for some string c in
(Pen(PoOP1) OP_yP_1)" wehave

ankdqby...br-1,br ... bpikiar ... an) O
whereb @ (I1<i<n+k). Letthe derived string in (0) be denoted by wp;%.



RCB Linear Basic Grammars 133

If a nontermina symbol g from F appears in wj{, then only a rule
from Pr is applicable. In that case there exists a production 15, in Pg such
that

wi90 May ... an.

Thus T(A)OL(G,C). We observe that due to the application of
sequences from ISE,.PE only tape contents containing at least one symbol
from =X, contribute to L (G,C). So, T(A) includes all strings over 2, in
L(G,C). Then it follows that T(A)=L(G,C)nZ5. This concludes the
proof. O

Aswe have aready mentioned before, no nested terms occur in senten-
tial forms derivable by (f,REG)-blb grammars. Therefore, it will be
extremely difficult, if not impossible, to find an (f, REG)-blb grammar
which can generate T(A). For in that case, the straightforward approach of
considering tape symbols in '-Z, as nontermina symbols in the intended
(f, REG)-blb grammar causes trouble. Thisis because the occurrence of two
or more tape symbols from '- Z in a tape contents will be hard to represent
in such a grammar. Remember that only one nonterminal symbol can occur
in sentential forms generated by ( f, REG)-blb grammars.

4. Concluding Remarks.

In Chapter V we have seen that the family RBLB; ; o) (ONE) of languages
generated by (r,f, OI,REG, [INE)-belb grammars equals the family Ol.
Example 2.8 showsthat RBLB;s # Ol. So this means that in general regularly
controlled bidirectional linear basic grammars have a different generating
capacity than regularly controlled bidirectional (OI,LJNE)-elb grammars.
This contrasts with the fact that in the unidirectional case we have

LB o (REG, ONE) = LB, (ONE) = LB,

where LB, (REG, JNE) denotes the family of languages generated by regu-
larly controlled (unidirectional) (O, 0 NE)-elb grammars; cf. [Asv78].

Attempts to prove closure of RBLB; under concatenation, homomor-
phism and intersection with regular sets have not been successful. We sup-
pose that this is due to the “stronger” linear character of (f, REG)-blb gram-
mars compared to (m,REG,K)-belb grammars; Section V.6. In this respect
Examples 2.8 and 2.9 become even more interesting, as well as Proposition
3.1. So establishing the precise character and expressive power of
(m,REG)-blb grammars under the various modes defined in Chapter |, par-
ticularly that of (f, REG)-blb grammars, is an obvious but intriguing prob-
lem to solve.
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CHAPTER VII

Conclusions and Suggestions
for Further Research

1. Conclusions

In the preceding chapters we introduced and studied various types of con-
trolled bidirectional grammars. All these types of grammar have been intro-
duced in the following way. Let G be some grammar type, i.e., a collection
of structurally ssimilar grammars. G may be equal to the family of context-
free grammars or the regular grammars to mention but a few concrete exam-
ples. Each grammar G of such atype G possesses a set P of productions.
After defining the set P of reductions corresponding to the set of productions
P, we form a pair (G,C) consisting of a grammar G of type g and aregular
language C over P P. This construct (G,C) is called aregularly controlled
bidirectional G grammar, or RCB g grammar. For the following instances
of G we defined the corresponding notion of RCB G grammar.

G RCB g
context-free RCB (context-free)
linear context-free LRCB
left and right linear context-free | LLRCB, RLRCB
K-extended linear basic (OI,REG,K)-belb, (I0,REG,K)-belb
linear basic (OI,REG)-hlb, (I10,REG)-blb

In addition to the RCB (context-free) grammars we also have defined a
time-bounded variant of RCB (context-free) grammars.

Furthermore, we have introduced a collection of modes of derivation
m, each of which can be attached to an RCB g grammar. We have studied
RCB (extended) linear basic grammars with respect to one derivation mode,
the so-called RS/B/f-mode. The families of languages generated by RCB
G /m grammars have been investigated with respect to closure properties,
grammatical transformations (which yield a few normal forms), generating
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capacity, and in case of time-bounded RCB (context-free) grammars, also
with respect to parsing properties.

Our results give rise to the following concluding observations. First, if
we are able to prove a closure property of the family of RCB G languagesin
a direct way, then this takes in general much more effort than in the case of
the corresponding family of uncontrolled (unidirectional) G languages.
Apart form a usually more complicated construction, due to the presence of
reductions, we heavily rely on the control language and the block or skip
mode to enforce derivations that possess the desired properties.

It is remarkable that in case of extended linear basic grammars, the
families of RBLB, ; m(K) languages — cf. Chapter V — share so many closure
properties with the corresponding families LBy,(K) (where m=0Il or
m =10); cf. [Asv77]. Together with Corollaries V.3.9 and V.3.12 this sug-
gests that (r, f, m,REG, K)-belb grammars inherit many characteristic proper-
ties of mmacro grammars. For m = Ol and ONE QK OOl thisis confirmed
by Corollary 4.14.

Concerning the generating capacity of RCB G grammars, we observe
a considerable increase of generating power, when compared with G gram-
mars; cf. Chapter 1V, Section V.4, and Chapter VI. This is not a complete
surprise, although some of the derivation modes lay severe restrictions on
the possible derivations in an RCB g grammar. Remark that the mode
RS/B/f gives no increase of generating power in case of RCB (context-free)
grammars — compared with (uncontrolled, unidirectional) context-free gram-
mars; cf. Proposition 11.2.4(1) — whereas in case of (m,REG,K)-belb gram-
mars (m =0l or m=10) it does with respect to (m K)-elb grammars; cf.
Section V.4. We see that the RA and RO-mode of derivation do not
decrease the generating power when compared to RCB grammars provided
with free application of rules; cf. Chapter 1V. Furthermore, an interesting
fact is the difference in generating capacity between ( f, REG)-blb grammars
and (r,f, OI,REG, ONE)-belb grammars, whereas the corresponding uni-
directional grammars have equal |anguage generating power; cf. Chapter VI.

2. Suggestionsfor Further Resear ch.

First of all, we are interested in the position of the families L, of RCB/m
languages, with m = RS/B/g, m = RS/S/f, and m = RS/S/g in the Chomsky
hierarchy; cf. also Section 2.1 below. The question whether for one of these
modes the family L ,, equals the family CSL of context-sensitive languagesis
intriguing. In case the answer is negative, the question can be modified.
That is, can we define some new mode of derivation m’ such that the family
Ly of RCB/m' languages equals the family CS.. Remember that
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NSPACE(n) is an alternative characterization of CSL; cf. Section 1V.6.

From Chapter IV we also recall the open problems whether there exist
characterizations for the complexity classes NP in terms of polynomial
time-bounded RCB/RO grammars, and NTIME(n) in terms of linear time-
bounded RCB/RO grammars.

Next, we suggest the investigation of (m,REG,K)-belb grammars pro-
vided with a mode which differs from RS/B/f. And the family RBLB; intro-
duced in Chapter VI has hardly been investigated. In particular, it is very
interesting to know whether this family is closed under intersection with reg-
ular languages or, at least, under intersection with =" for each alphabet 2. If
this question can be answered in a positive way, Proposition VI1.3.1 implies
the equality RBLBs = RE and consequently RBLB; inherits al (closure) pro-
perties from the family RE. The proof of Proposition VI1.3.1 contains a
feature that has its own merit. Viz., a subseguence Tt in a control word
serves as a partial identity function on strings and so it can be used as atest;
cf. Section 2.3 below for an application.

For a number of grammar types G and modes of derivation m we have
seen that the families of RCB/m G languages equa RE. Providing these
RCB/m g grammars with a time bound usually results in a family of recur-
sive languages. In this thesis we only considered time-bounded RCB/m
(context-free) grammars in Chapter 111. Of course, it is interesting to know
the effect of time bounds on the bidirectional grammatical models intro-
duced in ChaptersV and VI.

Apart from these questions we discuss in the following two sections
two topics of interest in amore detailed way.

2.1. Application of Thue System Theory to RCB Grammars

RCB grammars can be considered as regularly controlled Thue systems
together with some kind of restricted application of rules. However, thereis
another point of view possible from the theory of Thue systems. Therefore
we first introduce the following definition. Remember that a linear RCB
grammar (G,C) with G =(V, Z,P,S) isin 1-normal form if V-2 ={S} and
each control word ends with aterminal production; cf. Section I1.5.

We call an RCB grammar (G,C) an RLRCB grammar if the underlying
grammar G isright-linear.

Definition 2.1.1.

e  AnLLRCB/f grammar (G,C) isin strong 1-normal formif (G,C) isin
1-normal form and the productions of G are of the form S - S,
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S-a(@X),andS - A.

e  AnRLRCB/f grammar (G,C) isin strong 1-normal formif (G,C) isin
1-normal form and the productions of G are of the form S - aS
S-a(@X),andS - A. O

It is easy to see that the specia form of the productionsin an LLRCB/f
grammar in strong 1-normal form can be obtained in a straightforward way
by applying some specific ngsm to an LLRCB/f grammar in 1-normal form;
cf. the proof of Proposition 11.5.2.

Consider an RCB/f grammar (G,C), where G = (V, Z,P,S) is aregular
grammar, i.e., G is either aleft-linear or aright-linear context-free grammar.
Assume that G is aright-linear context-free grammar. It is easy to see that
Proposition 11.5.2 holds for RLRCB/f grammars as well. So we assume that
(G,C) isin strong 1-norma form, i.e.,, V-2 ={S}, P contains only rules of
thefoomS - aS S - a(alX ),and S - A and for each control wordcin C
we have that ¢ ends with aterminal production.

In order to prove Proposition 2.1.3 below, we cite the following result
concerning monadic Thue systems.

Proposition 2.1.2 [Boo83]. Let T be a finite monadic Thue system on Z.
For every regular set DX " the set AF(D) of descendants of D isregular. [J

In addition to Proposition 2.1.2 we note that one can effectively con-
struct from T afinite automaton which accepts the set AF(D); cf. [Boo83].

Proposition 2.1.3. The family of RLRCB/B/f languages equals the family of
regular languages.

Proof. Let L be an RLRCB/B/f language. Assumethat Ly equasL (G,C),
where (G,C) is an RLRCB/B/f grammar in strong 1-normal form. Consider
a control word ¢ in C. Then each sequence that consists of a production
T, =S - aS followed by the corresponding reduction T, =aS — S (alX )
has no net effect to the generation of the ultimately generated terminal
string.

If for some control word c in C we have SO g/ w, where w is a termi-
nal string, then each rulein cis applicable. In particular, each reductionin c
is applicable. We remark that if at least one reduction occurs in the control
word ¢, then there exists aterminal a such that the sequence T, T, does occur
in c. So we write ¢ as ¢ = ¢,TI4T,C,. Then removing the sequence T, T,
results in a control word c,c, from which it is clear that for wiX U, if
SO §,sw, then also SO gy#w. Consequently, in c;c, each reduction is
applicable too. Thus we can repeatedly apply this processto c1c, until we
will end with a control word ¢’ in P", such that SO §; w holds.
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Let ¢ be some control word that yields no terminal string when applied
to S i.e, the derivation is blocked. Because (G,C) is in strong 1-normal
form, this can only be caused by a non-applicable reduction of the form
aS - S(alX ) in c. When we repeatedly apply the process of removing
sequences of the form T, T, (aX ) sketched above to such a blocking con-
trol word c, sooner or later a sequence of the form T, T, has to show up,
whereaandbareinZ anda #b.

Let C' be the control language consisting of all control words ¢’
obtained from control words ¢ from C by removing sequences T, T, (alX ),
such that in ¢’ no sequences of that form occur. Then it will be clear that
L(G,C) =L (G,C"). Next, we construct the control language C" from C' by
removing each control word from C' in which areduction occurs. Such con-
trol words (in C') cause blocking. ThusL (G,C") =L(G,C).

The next step of the proof isto show that C" isregular, from which it
follows that L (G,C) is regular [GinSpa]. The cancellation of 1,1, suggests
that Thue systems may be helpful in gaining insight in what kind of control
languages the sets C’' and C" are. To this end we introduce the alphabets
So={ala@ }, 5y ={ajaX }, I, =3 (X ¢[T 4, and 3y = 5,00{#}. Note
that the alphabets V, 2, and Z; are mutualy disoint. Moreover, # does not
occurin VX ,. We define the isomorphismi : P I5f - 24 by

i(S-A)=#, i(S-aS)=a alX,
iS-a)=a aX, i(@S-9S=a alX.

As a consequence, for each control word c in C, i (c) ends with a sym-
bol from Zo0{#}. Furthermore, we define the finite special Thue system T
over Z; by

T={aa - tAlaX }.
Using the arguments by which we obtained the control language C’
from C, discussed above, we see that
C'=i"}A%i (C)) n IRR(T)).
Moreover, we can write the control language C" as
C" =71 (A (C) n Z(Z0{#})).

Finally, weclaim

L (G,C) =h(AF(i (C)) n ZH(Z0{#})),

where h:Z[X (0{#} - Z" is the homomorphism defined by h(#)=A,
h(a)=aandh(a)=a(alX ).
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We note that IRR(T) can be characterized by ¥ 5- ( =zdom(T) =%), thus
IRR(T) is aregular set. It follows from Proposition 2.1.2 that C', C" and
L (G,C) areregular sets. O

Remark that C" can also be defined by a (rather complicated) ngsm
mapping T, i.e, C"=T(C). SinceCisregular, s0isC".

It may be interesting to generalize this approach to LRCB/m grammars
and RCB/m grammars. This approach may also be fruitful in case of modes
different from the RS/B/f-mode. As a promising starting point we use Thue
systems in which left-most derivations are defined; cf. [NarOtt] from which
we adapt the following terminology and definitions.

Definition 2.1.4. [NarOtt]. Let T be a Thue system on =. The derivation

x 1y is caled a left-most derivation if there is a rewriting rule (u,v) in T
and stringsw and zin =" such that

° X =wuz, y =wvz, and
° whenever X =wqU424, with u;0dom(T), then

° wu is a proper prefix of wquq, or

e Wu=w;uq,andwisaproper prefix of wq, or

e w=wqandu=uj.

Then x0 1,y denotes that x[J 1y is a left-most derivation, and [] %L
denotes the reflexive and transitive closure of U 1| . Define for x in =Ythe
set of left-most descendants of x by

AP () ={y[xO 7Ly}

For a language Lo over = the set of al left-most descendants from
words of L is defined by

AT (Lo) = D{ATL() X DL} O

Let R be a rewriting system on =. Then we call x in =" r-irreducible
(modulo R) if thereisnoy in = such that x 0 ry. The set r -IRR(R) denotes
the set of r-irreducible words over = by R. A Thue system T on = is caled
reduced if for al (u,v) T we have that u and v are in r -IRR(T-{(u,v)}),
i.e.,, no rewriting rule can be rewritten on either side by any other rewriting
rule of T, when considering T as a rewriting system. As a conseguence two
different rewriting rules of T have left-hand sides differing from each other
[NarOtt]. If a Thue system T is reduced, then for each u which is not r-
irreducible (modulo T) — where T is considered as a rewriting system — there
exists aunique vin =" such that u0 1 v [NarOtt].

We can use |eft-most Thue derivations in the study of LRCB grammars
and RCB grammars as follows. Let (G,C) be an LRCB/RS/B/f grammar or
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an RCB/RS/B/f grammar, where G is the tuple (V, Z,P,S). Define the fol-
lowing Thue system T over the alphabet V{[,],;} by

afu;v] - t[u;vl]a a[X,uﬁvDPﬂlsf,
ufu;v] - tv, u - vOPOP;.

For example,
baBaa[aBa;A][bA;B] U 1 baBa[aBa;Ala[bA;B]
01 bAa[bA;B] 01 bA[bA;Blal 1, Ba.

Remark that in the second derivation step the application of
alaBa;A] - t[aBa;Ala is not alowed, since we have, following
Definition 2.1.4, wu =w,u, = baBa, where w=b, u=aBa[aBa;A], and
wq =haBandu; =alaBa;A].

Notethat T isreduced. We see that

Lrsie/i (G,.C) = A7 {Sth(C)) nZ", where

h:POP; - (VO{[],;})" is the isomorphism defined by h(p)=[u;v] if
p=u — V. Notethat we actually use T as arewriting system.

If we can determine what kind of language A%L(A) is—incaseAisa
K-language, where K is some language family — then we can achieve further
results by this approach in which we consider A%L as an operator on
language families. In particular the effect of this operator on the family
REG is one of the first problems to be studied. Furthermore, this method
may be modified in order to investigate RCB/m grammars with m equal to
RS/B/g, RS/S/f or RS/S/g.

2.2. Fair NTSGrammars

Our source of inspiration to the subject of regularly controlled bidirectional
grammars is the concept of NTS grammar; cf. Chapter 1. Furthermore, in
Chapter IV we showed that the family of RCB/RA/B/f languages equals the
family of recursively enumerable languages, even without using control
languages or terminal reductions. This observation gives rise to the intro-
duction of fair NTS grammars, formally defined as follows.

Let G =(V, Z,P,M) be a context-free grammar with initial set M. We
definethe relation O ¢ on V" by

alqPB ifalB byaproductioninP;, wherea,pOV".
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Then we define the relation < 5 on VP by
aeqPB if alB or BOqa, o, BOVE

For each Ain V-3 wedefine LR (G,A) ={wOV"|A = Fw}.
A fair NTS grammar is defined as a context-free grammar G =
(V, Z,P,M) with initial set M such that for each nonterminal Ain V-2, we
have
LR (GA) =L(G,A).
Cf. Section 1.2.3 for the definition of L (G,A).

A context-free language is a fair NTS language if it can be generated
by afair NTS grammar G.

The concepts of NTS grammar and fair NTS grammar differ in the
sense that we can find a context-free language which isafair NTS language,
but not an NTS language. Viz., the language

Lo ={a"b"|n=1}0{a"b?" |n>1}
is both not deterministic and not congruential, and therefore not an NTS
language; cf. [BoaSen]. The context-free grammar with initial set { A,B}

G =({AB,a,b},{a,b}, P,{AB}),
where P consists of the productions A - aAb, A - ab, B - aBbb, and

B - abb, is afair NTS grammar generating Lo. Moreover, we easily see
that each NTS grammar isafair NTS grammar as well.

We conclude this section with afew questions.

° Do fair NTS grammars possess a “ digoint syntactic category” -like pro-
perty?

° Does there exist a context-free language that cannot be generated by a
fair NTS grammar?

2.3. Some Possible Applications

2.3.1. Relational Databases

Some ideas on RCB G grammars — developed in this thesis — may possibly
be applied in the theory of relational databases, particularly to the problem
of query optimization*. For some elementary terminology on relational

* | am indebted to P.M.G. Apers for adiscussion on this subject.
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databases used in the sequel, we refer to [Ala].

Query optimization is always performed with respect to some cost
function which heavily depends on the amount of data that has to be
transmitted, especialy in case of distributed databases. As an example, con-
sider the (elementary) transformation of the query ma(R P S) into
Tr(R) P<E Tas(S), where 1t is the projection operation, and p< is the join
operation, R and S are rdlations, F isalogica condition, and A, AR, AS are
sets of attributes. The resulting query has in general a lower cost, for the
amount of data to be transmitted in order to be joined together is decreased
by first applying the projection operations to the (local) databases. However,
this transformation is only permitted in case Attr (F)JA holds. Here
Attr (..) denotes the set of attributes which occur in the argument. The
argument F of Attr (F) may be a condition or arelation. Then the sets AR
and AS are determined by AR = A-Attr (S), and AS = A-Attr (R). Now it
may be interesting to apply the idea of testing as it occursin RCB G gram-
mars in order to check whether or not the premise Attr (F) OA is fulfilled.
Remember that “testing” by an RCB g grammar is performed by a control
sequence Tt under the block mode. Another problem is whether we can
construct the sets AR and AS by means of bidirectional rewriting.

The transformation mentioned above can also be applied in reversed
order, under appropriate conditions. Viz., we may transform the query
TWr(R) PE Tas(S) into TW(R P S), provided that A = AR AS holds.
Notice that in general this transformation increases the cost of the query.
Almost al of the elementary query transformations are possible in both
directions, under specific conditions. By rearranging a query by such
transformations one hopes to achieve a query with minimal cost. It may turn
out that, by first applying some transformations which increase the cost of
intermediate queries, transformations may become applicable which reduce
the cost of the ultimate query below the one of the initial query. This sug-
gests that a bidirectional approach on this level of query optimization may
be possible too.

2.3.2. Program Schemes

Another application of RCB g grammars may be found in the theory of pro-
gram schemes*; cf. [Eng, Gre75], to which we also refer for unexplained ter-
minology, definitions and notation. Program schemes are obtained from
(computer) programs by replacing their instructions by instruction symbols.
Thus in program scheme theory we focus our attention to the control

* | thank P.R.J. Asveld for this suggestion.
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structure of programs. Each program scheme represents a family of pro-
grams. To obtain a program from a program scheme, instruction symbols
ought to be interpreted in some way.

As an example, consider the following program scheme Q, informally
defined by

Q: while p(x) do x:=f (x) od; x:=g(x)

where p is a partial identity, with p as its complement. For instance, let
p(x) =xif and only if x>0, let f and g be the predecessor and the successor
function, respectively. Under this interpretation with semantic domain equal
to IN, Q resultsin a program that computes the constant function g (x) = 1 for
each x[IN. With each program scheme Q corresponds a language L (Q)
called the L-scheme (language viewed as a program scheme; cf. [Eng]) and it
equals the set of all possible computations of Q. In case of our example pro-
gram scheme, L (Q) is equal to gp(fp)™x. It is known that if a program
scheme Q can be represented by a so-called flow-chart, then L (Q) is a regu-
lar language, and if Q is a recursive program scheme, then L(Q) is a
context-free language. In the example mentioned above, the symbol x can
be considered as a kind of end marker of the sentencesin L (Q). If we strip
this symbol from the words of L (Q) its structure is still maintained. This
also holds for recursive program schemes.

If we allow more than one variable, but still restrict ourselves to unary
predicate (or test) symbols, then the corresponding L-schemes are tree
languages. For instance, consider the following recursive program scheme
U with two variables.

x:=a; y:=b; S k(xy)
where Sisthe recursive procedure defined by

S: if p(x) then x:=f (X); y:=g(y);
cal S
y:=h(y); return

else return

The tree language corresponding to U equals {k (p( fp)"a, h"g"b) [n=0}.

Note that the symbols a and b are leaves of the treesin L (U). We can
consider leaves of a tree as end markers of a tree. This is consistent with
strings viewed as monadic (non-branching) trees.

When we alow more general (binary, ternary, ..) predicate symboals, it
is hard or even impossible to consider atest like p(x,y,z) as a (unary) partial
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indentity. Thiswas one of the reasons why in [Asv78, AsvEng79] nondeter-
minism in program schemes has been studied, rather than the modeling of
(non-unary) tests. A partia solution to this problem may be as follows. We
try to transform program schemes into equivalent (controlled) bidirectional
extended linear basic (tree) grammars, in which a test p(Xq,...,%,) IS
replaced by a (grammatical) test TiTT, where the production Ttis either of the
form 1.2.4.5(i) or 1.3.3.(i), depending on the respective grammar model.
Because p (X1, ...,X,) iS an uninterpreted test, the precise definition of the
production 1t depends on the interpretation which has to be applied to the
corresponding program scheme. It cannot be expected that a grammatical
test TtTT can model each possible interpretation of atest p(Xy, .. .,X,). There-
fore, this approach can only provide a partial solution to this problem.
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APPENDIX A

Nonter minal Separating Macro Grammars

1. Introduction

In this Appendix we generalize the NTS (or nonterminal separating) pro-
perty — originaly defined for context-free grammars [Boa]; cf. Section 1.2.3
- to macro grammars (Section 1.2.4). Then we prove a few characterization
results for NTS macro grammars that are analogues of similar results origi-
nally established for NTS context-free grammars. We conclude this subject
with afew conjectures an an open problem.

In Section 2 we provide the necessary notions, elementary results and
terminology on macro grammars and on context-free grammars that satisfy
the NTS condition. Section 3 is devoted to the definition of NTS macro
grammar and some of their properties as far as they extend the correspond-
ing results on NTS context-free grammars. We restrict our attention to char-
acterization results of the NTS property for m-macro grammars wheremis a
mode of derivation, i.e., mequals either “outside-in” (or OI), “inside-out” (or
10) or “unrestricted” (or UNR). Finally, Section 4 contains some conclud-
ing remarks, open problem, and conjectures.

2. Preliminaries

2.1. UNR-Macro Grammars

Apart from the modes outside-in (Ol) and inside-out (10) (Section 1.2.4) we
distinguish another mode of derivation for macro grammars; cf. [Fis684].

In the unrestricted mode (UNR) an occurrence of a nonterminal
together with its arguments is expanded according to a production by replac-
ing the nonterminal and its arguments by the right-hand side of that produc-
tion in which the arguments have been substituted for the corresponding
variables.

Definition 2.1.1. Let G = (®,Z,X,P,S) be amacro grammar and let o and T
betermsover Z[® . Then wewrite o O yngrT if
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° there isanonterminal A from ®,, and terms &4, ...,§, over Z [ such
that A(&q,...,&,) isasubterm of o;

° A(Xq,...,X3) — tisaproduction fromP ;

° T isobtained from ¢ by replacing the designated term A(&4, ...,&,) by
t'. The term t' is the result of substituting the terms &4, ...,&,, for
X1,..,%, In t, respectively. The term t' is denoted by
t[&1/X1, .. -, &nlXn]-

The relation O yyg On T(Z [ ) represents the UNR-mode of deriva-
tion, which can be considered as expanding macros without any ordering, or
without regarding the depth of nesting of the call. O

Let O, be the converse of O, i.e, for al o, tOT(ZEP ), o0 T
holds if and only if 10 ,,0. Andlet =, be the union of 00 ,, and O ,,. The
reflexive and transitive closures of O 1, O 1, and < ,, are denoted by O 3,
O & and < q, respectively. In case o0 3t [o 0 1] we say that ¢ reduces
[directly] toT.

It is easy to see that — L is a congruence relation with respect to con-
catenation. Obvioudly, it is an equivalence relation and the congruency fol-
lows from the observation

O<mtand o< B imply oo < BTp.

For m = UNR thisistrivia and in the case of m= 0Ol or m =10 it fol-
lows from the fact that concatenation does not cause any additional nesting.
In the sequel an m-macro grammar will have afinite set M (M ) of ini-
tial symbols of rank 0 instead of asingle initial symbol; cf. the definition of
NTS context-free grammar in Section 1.2.3.

Analogously to m =0l and m =10 we define the language generated
by an UNR-macro grammar as follows.

Definition 2.1.2. The language generated by a UNR-macro grammar G =
(P,Zz,X,P,M) with aninitial set M (M3 () is defined by

Lunr(G) ={wX "|0SOM .0 gnrW}-

By UNR we denote the family of languages generated by UNR-macro gram-
mars. O

In [Fis68a] Fischer proved the equality Ol = UNR, and so the families
10 and UNR are incomparable.

In the sequel many of our results are restricted to macro grammars
which possess the property that every term derived by the macro grammar
has a derivation that ultimately yields a string over the terminal alphabet.
These macro grammars are called admissible macro grammars [Fis684].
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This property is defined as follows.

Definition 2.1.3. An mrmacro grammar G = (®,%,X,P,M) with initial set M
(M3 () isadmissibleif

° ethe d=Zand P = [,
e O
(i) for each A[® , there exists a sentential form of G in which A

oceurs,
(i) for each A® , (n=0) and each 0y,...,0,X " there exists a
string w over £ such that A(07y,...,0,) O Bw. O

In [Fis684] it is shown that for each m-macro grammar there exists an
equivaent admissible m-macro grammar.

Example 2.1.4. Let L, 0{0,1}” be the language consisting of those words
in which the number of 1'sis equal to 2" for somen=0. L is generated by
the Ol-macro grammar G = (®,Z,X,P,M) with with initia set M ={SA},
O =y |, g ={SA}, P, ={B}, X={x}, £={0,1} and P consists of
therules

S - B(A), A - 0A,
B(X) - B(xx), A - AQ,
B(X) - X, Ao L

In [Fis684d] it has been shown that L cannot be generated by any |O-macro
grammar. Noticethat G isadmissible. O

2.2. The NTSProperty for Context-Free Grammars

NTS or nonterminal separating grammars have been introduced by Boasson
[Boa]; cf. Section 1.2.3. Remember that a context-free grammar possesses
the NTS property if its set of sentential formsis invariant when we apply the
productions in both directions, i.e., when we use apart from its productions
the corresponding reductions too. We recall the following principal result
on NTS grammars.

Proposition 2.2.1. [Boa, BoaSén]. Let G = (V, Z,P,M) be an NTS grammar.
Then for all A and B in V-2, we have either L(G,A)n L(G,B)=0 or
L(G,A) =L(G,B). a a O

This property motivates the name of the concept defined in Section
1.2.3. However, the converse of Proposition 2.2.1 does not hold; e.qg.,
{a"b"|n>1}0{a"b?"|n>1} isnot an NTS language [BoaSén], bui it is easy
to show that this language can be generated by a grammar that possesses the
Digoint Syntactic Category property; cf. Section 1.2.3.
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On the other hand NTS grammars can be characterized in the following
way.
Theorem 2.2.2. [BoaSén, Sén85]. Let G =(V, Z,P,M) be a context-free
grammar with initial set M. G has the NTS property if and only if for all
A,BOV-Z>andfor al a,B,u OvH the following implication holds.

If AD "aup and BO "u, then AO Mo Bp.

3. TheNTSProperty for Macro Grammars

3.1. Definitions
We use the following notational conventions. Usudly, (o4, ...,0,) isabbre-
viated to (E(n)). The subscript (n) is necessary to distinguish for example
A(Xm)) and B(X (). Only if no confusion is possible we write X'. For
Al® , A(X ) istheleft-hand side of aproduction; so A(X ) =Aif AlD .
Definition 3.1.1. Let G = (®P,Z,X,P,M) be an mmacro grammar with initial
set M. Then the language generated by G is
Ln(G,M) ={wX “|0SOM . SO Fw},
andforeachtOT(Z O X[ ),
Ln(G,t) ={wOE O X)”|t0 pw},
Lm(Gt) ={0OT(EOXE )|t0 qw},
LRn(G,t) ={w OT(ZOXE® )|t = no}. O
We are now ready to define the nonterminal separating property for m-
macro grammars.

Definition 3.1.2. An nmrmacro grammar G = (®,Z, X,P,M) with initia set M
has the NTS property or G is an NTS m-macro grammar, if for all n>0, for
al Al® ,,andforal {xq,...,.%,}OX,

LRm(GA(X ) =L m(GA(X ). O

Here we consider the variables x4, ...,X, as members of aterminal alphabet
>'withZ[X' , according to Fischer [Fis68a]; cf. also [EngSchVanL].

Proposition 3.1.3. Let G =(®,%,X,P,M) be an NTS m-macro grammar
with initial set M. Then for all n,k=0, Al® ,, B[® |, {Xq,...,X,} 00X,
{X1,...,%}0X, either

L m(GA(Xn)) nLn(GB(X)) =0

or
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L m(G,A(Xn))) =L m(G,B(X))-

Proof. Let w be an element of L (G,A(X))) N Lm(G,B(X)). Then
A(RXm) O mw and B(X k) O mw. This implies that we have A(X ()
= mB(X ). With the NTS property of G we obtain A( X)) 0 mB (X )
and B(X )0 r%A()?’(n)). From this we can conclude that the equality
L m(G,A(X(n))) =L m(G,B( X)) holds. O
We see that NTS mrmacro grammars also share a kind of “digunct
syntactic categories’ property (or “nonterminal separating property”) as
context-free grammars; cf. Proposition 2.2.1.
Example 3.1.4. Consider the linear basic macro grammar G = (®,2,X,P,M)
with @ = Q[ 3, Py ={S} =M, 3 ={A}, X ={xy,2}, Z ={a,b,c, [,],#},
and P consists of the productions

S AMNAN)

A(xY,2) - A(ax,by,cz)

A(xY,z) - [xty#z]
The language generated by G is L(G,M)={[a"#b"#c"]|n=0}, and
L(G,S) ={S}{A(a",b",c™)|n=0} 0L (G). Because A(a",b",c™), (n=1)
only reduces to terms A(a¥,b¥,ck) with 0<k<n, and [a"#b"#c"] only
reduces to A(a",b",c"), we have L(G,S) = LR(G,S). A similar argument
for A(x,y,2) yields L(G,A(x,y,2)) = LR(G,A(x,y,z)). Thus G is an NTS
macro grammar. o O

We see also that in case @ = &y and, consequently, G is a context-free

grammar with initial set M, Definition 3.1.2 corresponds to the definition of
the NTS property for context-free grammars; cf. Section 1.2.3.

3.2. Propertiesof NTSMacro Grammars

This section is devoted to some results which generalize Theorem 2.2.2 to
m-macro grammars. To facilitate formulation and proofs we use the follow-
ing notation.

Definition 3.2.1. Let G = (®,Z,X,P,M) be an ntmacro grammar with initial
set M. Then G has property M (m) if for al nonterminals A[® ,, B[® ,
and terms u, auP in T(ZOXDE ), with {X1,...,.%}0X and g0
TKEZ O X ) thefollowing implication holds.

If A(X@my) D0 mauP and B(Gg) O huthen A(K) 0 RaB(0g)B. O

First, we note that property I (m) is a natural extension of the property
mentioned in Theorem 2.2.2 in the sense that if ® = &, i.e, G is context-
free, the two properties coincide. To establish Theorem 3.2.3 we need the
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following lemma.

Lemma 3.2.2. Let G be an admissible mmacro grammar. Let w, Y be
terms from T(ZOXE ). Then wOyngY implies w < g P as well as
w < bP. As a consequence we have w O JyrWP implies w < By for both
m=0l and m=10.

Proof. Let w be aterm a A(o)p with A , (n=0), c OT" (SO X ).
Furthermore, let wOyngrW hold, using the production A(X ) - 8(X),
where3( X )isinT(ZOXEP ),i.e, y=ad(0)p.

Let m=0Ol. First we have aA(c)B0 8 a'A(c)B'. This is the
string obtained from w such that every term A( 0 ) is on top level. Next we
derive a’A(0)B'0 g,a'd(0)B’. Now al new occurrences of 3( 0 ) are
on top level; so we can write

a'd(0)B'0Gad(o)p.

Let m=10. Thisis similarly to the case m = Ol. We use the deriva-
tionsA(0) O [BA(T ), A(T)OB3(t)andd(t )0 [5d(0), where T
isin (Z9)". O
Theorem 3.2.3. Let G be an admissible mmacro grammar. Then G is an
NTSm-macro grammar if and only if G has property I (m).

Proof. First we prove the if-part. We have to show for G satisfying 1 (m)
that for each A[® , (n=0), L n(G,A(X )) =LRn(G,A(X)). Theinclusion
from left to right (0J) is trivial. To establish the converse inclusion ([), we
ought to prove that A(X ) < LtimpliesA(X )0 Lt. Thisis done by induc-
tion on the length of < 5.
Basicstep (p =0). A(X ) < StimpliesA(x )0 Lt trivialy.
Induction step. As induction hypothesis we take A(X ) < Rt implies
A(X )0 qt. Consider A(X) < &™t. We distinguish two cases.

Casel A(X) < ht'0 nt. Obvious.

Case2. A(X () < ht'0 mt. Suppose that tO nt' by the derivation
step B(Ggy) 0 mu. Furthermore, let t = aB(0gy) B, t' = aup with terms
aup, u, B(B(k)) in T(XOX[ ). By the induction hypothesis we have
A(X @) O Ht'. Applying M (m) to A(X @) O motuP and B(0gy) 0 mu we
obtain A(X ) O 2 aB( 8(k)) B =t. This completes the induction and the
proof of the second inclusion.

To prove the only if-part we need the following. Let G bean NTS m-
macro grammar. Then for all te'msu and auf in T(X O X ), nontermi-
nals B in ®y, and vectors of terms G in TXE O X3P ),

B(Gg) 0 mu implies aB(0gy)B < moup.
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It is easy to see that for m =10 and m = UNR this holds even without
G being NTS and with O 5 instead of < 3. For m =0l we obtain this
implication as follows. 1f B( GO giu holds, then B( Gy) 0 fnrU holds
trivialy. Thus we have o B( 0g) B0 UnrO UB and by Lemma 3.2.2 we
obtain a B( 3(|<)) B < g o up. Notethat because G is NTS, we now can even
prove the stronger implication

B(E(k))D (D)|U Implles GB(a(k))BD Ic:|)|aUB.

Now, if we have A( X)) O mauP and B(Ggy) 0 mu, then we obtain
A(Xm)) = Lo B( 8(k)) B. Since G is NTS with respect to m, we conclude
that A( X)) 0 ma B( 0g) B. O

3.3. ThePre-NTSProperty for Macro Grammars

Closely connected to the NTS property for context-free grammars is the
pre-NTS property [Boa, BoaSén, Séen8l]; informally, the pre-NTS property
eguals the NTS property formulated for terminal strings only. It is still an
open problem whether these two properties are equivalent for context-free
grammars [Boa, BoaSén, Séen8l].

In this section we introduce and study the pre-NTS property for m-
macro grammars.

Definition 3.3.1. Let G =(®,Z,X,P,M) be an nrmacro grammar with with
initial set M (M o). Then Gispre-NTSor G hasthe pre-NTS property if
foral A[® , (n=0), and {Xq, ..., X} OX,

where LRy(G,A(X )) =LRn(G,A(X ) n (ZOX)". O
Definition 3.3.2. Let G = (P,Z,X,P,M) be an m-macro grammar with initial
set M (M® (). Then G has property 1t(m) if for all Al® ,, (n=20), B[® |,
u’, auBOEOX), {Xq,...,%}0X, and T OT¥E O X3 ), the following
implication holds.

If A(x)OSaup, B(T)ORu, and B(T)O LHu’,
then A(X)0O Qou'B. O
We want to prove the equivalence of Definition 3.3.1 and Definition

3.3.2. It turns out to be the easiest way to do this by introducing a second
property p (m) which is equivalent to both of them.

Definition 3.3.3. An mrmacro grammar G = (®,Z,X,P,M), has property
p(m) if for al nonterminas A in ®, (n=0), teemstin T(Z QX[ ), and
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stringsu and u’ in (= O X)" the following implication holds.
If A(X)ORu, tORu, and tORu', then A(X)DO Ru',
where{xq, ...,X,t O X O

Theorem 3.3.4. Let G be an admissible mmacro grammar. Then the fol-
lowing statements are equivalent.

(1) Gispre-NTSwith respect tom,
(2) G hasproperty t(m),
(3) G hasproperty p(m).

Proof. (1) O (2). Suppose there exist derivations B(T) 0 Lu, B(T) O L’
and A(X )0 Haup for u’, auB 0= OX)". Because auf is aword over
> O X there is no distinction between the three modes of reduction from
auf. Thereforewehave A(X )0 B auBORaB(T)PB. NowinaB(T)B,
B(T) is on top level, so we continue with aB(T)B O Hau’'p which is a
word over SOX. Thus A(X ) = hou’B and, as G is pre-NTS with respect
tom, A(xX )0 Jau'B. Hence G has property 1t(m).

(20 (3). Let A(x )0 Hu, tO Huand tO Hu'. Obvioudly, it is possible to
write t as a unique sequence of terms, viz. t =t;...t, such that no t; isa
concatenation of two or more terms. It is clear that in expanding some t;,
none of the other terms t; is affected. So we can writeu asu; ...ug and u’
asuy’...u’ witht;0 hu and t;0 Hu;’, respectively. Now we have for some
i (1i<k) that A(X)O R ug...u...u, 0 Ju, 0 By, and with 1t(m)
weobtan A(X )0 Ruy...4" ...u. Weapply thisargument to each u; con-
secutively, which finally yields A(x )0 Quq'...u ' = U', i.e., we obtain the
desired result.

(3) I (2). We have to show LR (G,A(X ))OL(G,A(X)), which we do
by induction on the number of reduction steps in A(X ) < Lw, with w in
(ZOX)". We denote this by - ' which means that a < B holds if and
only if a < L in which n reduction steps have been used.

Basic step (N =0). A(X) < Pwdirectly impliesA(X )0 Qw.

Induction step. As induction hypothesis we have A(X ) < F'w implies
A(X)ORw. Let A(X) = 1w, To show that A(x )0 Hw welook at the
last reduction stepin A( X ) < 1w, Wewrite thisas

A(X) = MO t'0 Rw.
Because G is admissible there is a word uJ(Z O X)" with tO Lu.

Applying the induction hypothesis we obtain A( X ) 0 Hu, with t'0 Hu, and
t'0 Lw together with property p (m) thisyields A(X ) O Rw. O



NTS Macro Grammars 155

4. Concluding Remarks

In the previous section we generalized some characterizations of NTS and
pre-NTS context-free grammars to corresponding statements for (pre-) NTS
m-macro grammars. On the other hand one wants results that are specific for
NTS macro grammars in the sense that there is no analogue for context-free
grammars. Or, in other words, results that are due to the fact that we deal
with macro grammars rather than context-free grammars.

A first example of such aresult showsthat NTS “reduced macro gram-
mars’, i.e., admissible NTS macro grammars with no initial symbols in the
right-hand sides of their productions, are argument-preserving.

Recall that an m-macro grammar G = (®,Z,X,P,M) with initial set M
is called argument-preserving if each production in P is argument preserv-
ing. And a production A(X ) - t from P is argument-preserving if each
variable x; (1<i<n) occurs at least oncein theterm t; cf. Definition V.2.4.

Proposition 4.1. Let G =(®,Z,X,P,M) be an admissible NTS m-macro
grammar, with no elements of M occurring in the right-hand side of any pro-
duction. Then G is argument-preserving.

Proof. Suppose we have a production A(Xq,...,X,) — t where A® g,
which is not argument-preserving, say x; does not occur int, 1<i<n. Sup-
pose further that we have obtained a word w in T(Z[ ) derived from
some S in M on which this rule is applicable. Writing the term w as
aA(0q,...,0,) B wederive

Gt[0'1/X1, . aoi—llxi—lao-i+1/Xi+11 . ,O'n/Xn] B,

where t[...] means that each occurrence of x, has to be substituted by o;
(1<i<n). Thislast term however is, for instance, for some B in M reducible
to a A(0q,...,0i-1,B, Gi+1,...,0,) B, which we write as w(B). So we
have S = Jw(B). Since GisNTS, we obtain SO Fw(B). But no production
rule can ever introduce a B from M in a sentential form. Thus we cannot
derive such aterm w(B) from S. O

The following statement is much more interesting. However, we are
unable to proveit and therefore we formulate it as

Conjecture 4.2. Each admissible NTS |O-macro grammar generates a
basic macro language. O

The first easy step in proving this conjecture, consists of the following
observation.

Lemma4.3. Let G =(®P,Z,X,P,M) be an admissible NTS |O-macro gram-
mar. Thenfor all A[®
Lunr(GA(X ) =L 10(GA(X)).
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Proof. We only have to show Lynr(G,A(X )) UL o(G,A(X )), since the
converseinclusion istrivial. LettOT(ZOXI )and A(X )0 gart. Then
we have by Lemma3.2.2 A(X ) - pt, and using the fact that G is NTS with
respect to 10, we obtain A( X ) O [t O

In order to complete the proof of Conjecture 4.2 it is sufficient to estab-
lish
Conjecture 4.4. Let G =(®,%,X,P,M) be an NTS |O-macro grammar that
contains a nested production

A(X) > B(tg,...,t) (m]

such that at least onterm t; (0T (P X0 X), 1<i<n) contains a nonter-
minal symbol. Ifthetermt(X )isinLynr(G,B(X )), thenin the derivation
A(X) O Bt (ty/Xq, . .., t/x) the production (O has not been applied. O

Remember that macro grammars have been introduced in [Fis68a,
Fis68b] as away to describe context-dependent aspects of the syntax of pro-
gramming languages. They are an extension of context-free grammars gen-
erating, for each mode of derivation, a family of languages in between the
families of context-free languages and of context-sensitive languages.
Though Ol-macro languages are able to describe correctly the declaration
and use of program variables, they have the disadvantage of possessing an
NP-complete membership problem. For 10-macro languages the member-
ship problem is reducible in logarithmic space to the membership problem
for context-free languages [Asv81]; so it can be solved deterministically in
polynomial time or in space log?n. But |0-macro grammars seem to be less
suitable for modeling the declaration of program variables.

In Section 1.2.3 we aready mentioned one of the main results in
[BoaSén]; each NTS language can be accepted by a deterministic pushdown
automaton. So for context-free grammars the NTS property is a proper res-
triction with respect to language generating power.

Now the obvious question is whether this holds for macro grammars
too. More precisaly, is the membership problem for NTS Ol-macro or NTS
UNR-macro languages still NP-complete? In case the answer to this ques-
tion is negative, what is the complexity of membership problem for these
NTS Ol-macro languages? This latter question is also interesting in case of
NTS IO-macro languages.
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Gearfetting

Yn 'e measte grammatikamodellen befettet in grammatika in samling wer-
skriuwrigels. Dizze werskriuwrigels wurde ien kant Ut tapast (fan lofts nei
rjochts) en wurde ek wol produksjes neamd. Yn tgjinstelling ta soksoarte u-
nidirekge grammatika’ s kinne yn de yn dit proefskrift definiearre bidirekse
grammatika's de werskriuwrigels beide kanten Gt tapast wurde. In wer-
skriuwrigel dy’t tapast wurdt fan rjochts nei lofts wurdt in redukse neamd.
Hjirnei ferstean wy Gnder in rigel sawol in produksie asin reduksje.

It briken fan werskriuwrigels yn beide rjochtingen hat Gnder frije ta
passing fan e rigels (produksjes en reduksjes) in tige grutte tanimming fan
‘e generative kréft ta gefolch. Om dizze tanimming yn’'e han te haden
wurdt oan in bidirekge grammatika in bestjoeringsmeganisme op 'e tapas-
sing fan'eriges yn'e foarm fan in reguliere bestjoeringstaal oer dizze rigels
taheake. Om ’e generative kréft te beheinen wurde aternative wizen fan of-
lieden (“modes of derivation”) bestudearre, en wol de rjochter-6fliedingswi-
ze en de rjochterfoarkommen-6fliedingswize. Boppedat jout it Gnderskieden
fan twa soarten fan redukgesin twadde mooglikheid ta it beheinen fan’e ge-
nerative kréft. Dizze twa binne de “suvere” reduksjes en de “agemiene’ re-
duksies. Asléste jout de canwézigens fan bestjoeringstalen oanlieding tain
tredde gefalsiinderskieding. Nammentlik, asin rigel oanj0n troch in wurd Gt
'e bestjoeringstaal net tapasber is, dan kinne wy as stopje en gjin inkele sins-
foarm 6fleverje (blokkearing), as trochgean mei de folgjende rigel oandroe-
gen troch it bestjoeringswurd (oerslaan). Kombinaages fan dizze ofliedings-
wizen jouwe acht ferskate gearstal de ofliedingswizen.

Boppesteande 6fliedingswizen wurde yn haadstik | en 11 definiearre.
Fierdersis haadstik | ynliedend fan karakter, en befettet it in oantal technys-
ke definyges dy’t fierder yn it proefskrift brikt wurde sille. Ek wurde yn dit
haadstik de grammatikamodellen Ut *e haadstikken Il oan’ta mei 1V yn't
ramt fan de theory fan Thue-systemen brocht.

Yn haadstik |1 wurde regulier bestjoerde bidirekse grammatika's ba-
searre op kontekst-frije grammatika s bestudearre. Der wurde 6fslutingsei-
genskippen féststeld en ek wurdt de generative kréft fan ien fan e gearstélde
ofliedingswizen, de saneamde RS/B/f-wize — rjochteréflieding, blokkearing,
en suvere reduksjes — bepaald. It docht bliken dat dizze kréft gelyk is oan dy
fan kontekst-frije grammatika's. Foar dizze RS/B/f-0fliedingswize kinne wy
ek in normaalfoarm-theorema bewize. Fierders wurde yn dit haadstik ek
noch regulier bestjoerde bidireksje grammatika's op basis fan (lofts) lineére
kontekst-frije grammatika s Gndersocht. As léste generalisearje wy de regu-
liere bestjoering ta bestjoeringstalen Ut likefolle wat foar taalfamyljes.
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Haadstik 111 is wijd oan saneamde (0fliedings)lingte-begrinsde farian-
ten fan de yn haadstik | definiearre grammatika’'s. Y n dizze lingte-begrinsde
regulier bestjoerde bidireksje grammatika' s wurde allinnich dy 6fliedingen
talitten dy’t in yn it foar féststelde lingte net te boppe gean. Dizze boppe-
grins hinget alinnich 6f fan "e lingte fan 'e lang om let te generearjen sin.
Foar regulier bestjoerde bidireksie grammatika's is dit wichtich omdat der
yn dit type grammatika yn ’ e ofliedingen lutsen siinder effektive werskriuw-
ing fan (dielen fan) 'e sinsfoarm foarkomme kinne. Foar dizze lingte-be-
grinsde farianten wurde 6fslutingseigenskippen fan ' e oerienkomstige taalfa-
myljes féststeld en wurdt in normaafoarmstelling bewiisd. Ek binne der
foar dit type grammatika Ontleders te konstruerjen dy’t — fansels— terminear-
jefoar eltse ynfier.

Haadstik IV giet fierder mei it féststellen fan ' e generative kréft fan de
typen grammatika s definiearre yn haadstik | en 1. Foar fjouwer fan’ e gear-
stalde ofliedingswizen komme wy Ut op de famylje fan rekursyf op te som-
jen talen. len jout krekt de kontekst-frije talen (haadstik I1); de oare trije
binne kréfticher dan kontekst-frije grammatika' s, mar de krekte kréft is noch
Gnbekind.

Yn haadstik V wurde regulier bestjoerde bidirekse grammatika's op
basis fan saneamde “extended linear basic” grammatika's bestudearre. Dit
type grammatika wurdt mei ien fan ' e gearstalde 6fliedingswizen kombinear-
re, de RS/B/f-wize. Ofdutingseigenskippen en generative kréft fan de taal-
famyljes generearre troch dit type grammatika wurde féststeld, wat inkele
nijsgjirriche risseltaten oplevert. Asléste wurdt ek de generative kréft ynge-
fal fan “frije rigel tapassing” yn sinsfoarmen féststeld.

Haadstik VI is feitlik in earste oanset ta in Ondersyk fan regulier be-
stjoerde bidireksie grammatika's op basis fan “linear basic” grammatika's.
It docht bliken dat dit nije, relatyf ienfaldiche grammatikamodel in opfal-
lende generatyfe kréft hat.

By einbedlit wurde yn haadstik VII ferskate ynteressante fragen en
suggestjes foar fierder Gndersyk formulearre. Ek jouwe wy in twatal gebie-
ten fan 'e theoretyske ynformatika oan weryn faaks mei sukses de yn dit
proefskrift Gntwikkel de grammatikamodellen tapast wurde kinne.



Samenvatting

In de meeste grammaticamodellen bevat een grammatica een verzameling
herschrijfregels. Deze herschrijfregels worden in één richting toegepast (van
links naar rechts) en worden ook wel producties genoemd. In tegenstelling
tot dergelijke unidirectionele grammatica’s kunnen in de in dit proefschrift
gedefinieerde bidirectionele grammatica's de herschrijfregels in beide rich-
tingen toegepast worden. Een herschrijfregel toegepast van rechts naar links
wordt een reductie genoemd. Onder een regel verstaan we in het vervolg
een productie of een reductie.

Het gebruik van herschrijfregels in beide richtingen veroorzaakt onder
vrije toepassing van regels (producties en reducties) een enorme toename in
generatieve kracht. Om deze toename in de hand te houden wordt aan een
bidirectionele grammatica een besturingsmechanisme op de toepassing van
de regels in de vorm van een reguliere besturingstaal over deze regels toe-
gevoegd. Om de generatieve kracht in te perken worden alternatieve wijzen
van afleiden (“modes of derivation”) bestudeerd, te weten de rechter-aflei-
dingswijze, en de rechtervoorkomen-afleidingswijze. Bovendien levert het
onderscheiden van twee soorten van reducties een tweede mogelijkheid op
tot het inperken van de generatieve kracht. Deze twee zijn de “zuivere”
reducties en de “algemene” reducties. Tendlotte geeft de aanwezigheid van
besturingstalen aanleiding tot een derde gevalsonderscheiding. Namelijk,
als een regel aangegeven door een woord uit de besturingstaal niet toepas-
baar is, kunnen we of stoppen en geen enkele zinsvorm afleveren (blokke-
ring), of doorgaan met de volgende regel aangedragen door het besturings-
woord (overslaan). Combinaties van deze afleidingswijzen geven acht ver-
schillende samengestel de afleidingswijzen.

Bovenstaande afleidingswijzen worden in hoofdstuk | en Il gedefini-
eerd. Verder is hoofdstuk | inleidend van karakter, en bevat het een aantal
technische definities die verder in het proefschrift gebruikt zullen worden.
Ook worden in dit hoofdstuk de grammaticamodellen uit de hoofdstukken 11
tot en met |V in het kader van de theorie van Thue-systemen geplaatst.

In hoofdstuk 11 worden regulier bestuurde bidirectionele grammatica’'s
gebaseerd op context-vrije grammatica’ s bestudeerd. Er worden afsluitings-
eigenschappen bepaald en ook wordt de generatieve kracht van één van de
samengestelde afleidingswijzen, de zogenaamde RS/B/f-wijze — rechteraflei-
ding, blokkering, en zuivere reducties — vastgesteld. Deze kracht blijkt
gelijk te zijn aan die van context-vrije grammatica’s. Voor deze RS/B/f-af -
leidingswijze kunnen we ook een normaalvorm-theorema bewijzen. Verder
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worden in dit hoofdstuk ook nog regulier bestuurde bidirectionele grammati-
ca's op basis van (links) lineaire context-vrije grammatica’s onderzocht.
Tenslotte generaliseren we de reguliere besturing tot besturingstalen uit wil-
lekeurige taalfamilies.

Hoofdstuk 111 is gewijd aan zogenaamde (afleidings)lengte-begrensde
varianten van de in hoofdstuk | gedefinieerde grammatica's. In deze lengte-
begrensde regulier bestuurde bidirectionele grammatica’ s worden slechts die
afleidingen toegelaten die een vooraf bepaalde lengte niet te boven gaan.
Deze bovengrens hangt dechts af van de lengte van de uiteindelijk te genere-
ren zin. Voor regulier bestuurde bidirectionele grammatica's is dit van
belang omdat in dit type grammatica er in de afleidingen lussen zonder
effectieve herschrijving van (delen van) de zinsvorm kunnen voorkomen.
Voor deze lengte-begrensde varianten worden afsluitingseigenschappen van
de overeenkomstige taalfamilies bepaald en wordt een normaalvorm-stelling
bewezen. Ook zijn er voor dit type grammatica ontleders te construeren die
- vanzelfsprekend — termineren voor elke invoer.

Hoofdstuk IV vervolgt met het bepalen van de generatieve kracht van
de typen grammatica’ s gedefinieerd in hoofdstuk | en Il. Voor vier van de
samengestel de afl eidingswijzen komen we uit op de familie van recursief op-
sombare talen. Eén levert precies de context-vrije talen op (hoofdstuk 11); de
overige drie zijn krachtiger dan de context-vrije grammatica’ s, maar de pre-
cieze kracht is nog onbekend.

In hoofdstuk V worden regulier bestuurde bidirectionele grammatica’'s
op basis van zogenaamde “extended linear basic” grammatica’ s bestudeerd.
Dit type grammatica wordt met een van de samengestelde afleidingswijzen,
de RS/B/f-wijze, gecombineerd. Afduitingseigenschappen en generatieve
kracht behorend bij dit type grammatica worden bepaald, hetgeen tot enkele
opmerkelijke resultaten leidt. Tenslotte wordt ook de generatieve kracht
ingeval van “vrije regel toepassing” in zinsvormen bepaald.

Hoofdstuk VI isin feite een eerste aanzet tot een onderzoek van regu-
lier bestuurde bidirectionele grammatica s op basis van “linear basic” gram-
matica’s. Dit nieuwe, betrekkelijk eenvoudige grammaticamodel blijkt een
opvallende generatieve kracht te bezitten.

Tenslotte worden in hoofdstuk VII diverse interessante vragen en sug-
gesties voor verder onderzoek geformuleerd. Ook geven we een tweeta
gebieden van de (theoretische) informatica aan waarin wellicht met succes
de in dit proefschrift ontwikkelde grammaticamodellen kunnen worden toe-

gepast.



