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Controlled dephasing of electrons by
non-gaussian shot noise

IZHAR NEDER1*, FLORIAN MARQUARDT2, MOTY HEIBLUM1, DIANA MAHALU1 AND VLADIMIR UMANSKY1

1Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
2Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience, Ludwig-Maximilians-Universität München,
80333 München, Germany
*e-mail: izhar.neder@weizmann.ac.il

Published online: 3 June 2007; doi:10.1038/nphys627

In a ‘controlled dephasing’ experiment1–3, an interferometer
loses its coherence owing to entanglement of the interfering
electron with a controlled quantum system, which effectively
is equivalent to path detection. In previous experiments, only
partial dephasing was achieved owing to weak interactions
between many detector electrons and the interfering electron,
leading to a gaussian-phase randomizing process4–11. Here, we
report the opposite extreme, where interference is completely
destroyed by a few (that is, one to three) detector electrons,
each of which has a strong randomizing effect on the phase.
We observe quenching of the interference pattern in a periodic,
lobe-type fashion as the detector current is varied, and with a
peculiar V-shaped dependence on the detector’s partitioning. We
ascribe these features to the non-gaussian nature of the noise,
which is also important for qubit decoherence12. In other words,
the interference seems to be highly sensitive to the full counting
statistics of the detector’s shot noise13–16.

Our system is based on the previously developed electronic two-
path Mach–Zehnder interferometer (MZI)17–20. Here, we use two
edge channels in the integer quantum Hall effect regime, at filling
factor ff = 2 (see Fig. 1). The inner edge channel was partitioned
and served as a which-path detector. Other than that, the device
and the measurement technique were similar to those described in
refs 17–19. The MZI was fabricated within a high-mobility two-
dimensional electron gas. The two paths were formed by splitting
the outer edge channel with a quantum-point-contact constriction
QPC1. After enclosing a magnetic flux, the two paths joined in
QPC2 and interfered. Metallic ohmic contacts served as sources S1,
S2 and S3 and drains D1 and D2. Changing the enclosed flux by
1Φ (via the modulation gate, MG) changed the Aharonov–Bohm
phase ϕ = 2π1Φ/Φ0 (Φ0 = h/e the flux quantum)21, leading to
phase-dependent transmission coefficients; for example, from S2
to D2:

TS2−D2 ≡ TMZI =
∣∣tQPC1tQPC2 +eiϕrQPC1rQPC2

∣∣2
= T0 +Tϕ cosϕ, (1)

with t and r being the corresponding transmission and reflection
amplitudes. The measured visibility, defined as ν = Tϕ/T0, ranged
from 30% to 60% (refs 17–19). We attribute the non-ideal visibility
to phase fluctuations owing to external noise10.

The inner edge channel served as a path detector (see
Fig. 1, caption). When QPC0 was tuned to partition the detector
channel (which was biased, Vdet = VS3), electrons in the upper
path of the interferometer became entangled with those in

the detector, resulting in a lower visibility. This dephasing
process can be considered as ‘path detection’9 or, alternatively,
as phase scrambling owing to potential fluctuations in the
partitioned detector channel22. The interaction between the inner
and the outer channels was characterized before the actual
dephasing experiment by first fully transmitting and then fully
reflecting the biased inner edge channel emanating from S3
(with QPC0). Full transmission (TQPC0 = 1) did not lead to
an observable effect on the Aharonov–Bohm oscillations of the
MZI as a function of VS3 (Fig. 2a). However, full reflection
(RQPC0 = 1) had a strong effect on the phase of the interference
pattern, which varied linearly with VS3 (reaching ∼2π for
Vdet ∼ 19 µV), but with nearly no effect on the visibility
(Fig. 2b). From this, we can estimate that a mere n = 1–3
electrons suffice to quench the interference for Vdet ∼ 19 µV and
an interferometer dwell time τ = L/vg (with L ≈ 10 µm and
vg = (3–10)×106 cm s−1). This strong coupling between the edges
sets the present experiment apart from previous ones. Note that
total dephasing using an adjacent edge channel was also achieved
in a quantum dot23.

When QPC0 was tuned to partition the inner channel
(0 < TQPC0 < 1), the visibility diminished as Vdet increased. Figure 3
shows the dependence of the visibility on TQPC0 (partitioning)
for three different detector voltages. As the bias VS3 increased,
the visibility turned from a smooth parabolic curve to a sharp,
V-shaped dependence, with a minimum at TQPC0 ∼ 0.5. The
dispersion among the experimental points at higher bias resulted
from resonances in TQPC0 (see inset). We argue below that the
V-shaped dependence is a signature of the non-gaussian nature of
the detector noise.

We first study a simple model where exactly one electron in the
detector scrambles the phase of an interfering electron. Detector
electrons were injected with a probability RQPC0 = 1 − TQPC0 into
the channel that interacted with the interferometer. Depending on
the presence or absence of a detector electron, the extra phase, δϕ,
acquired by an interfering electron fluctuated between two values:
δϕ = γVdet (γ = (2π/19) rad µV−1, from Fig. 2b) and δϕ = 0,
respectively. Averaging the cos ϕ term in equation (1) over the two
possibilities leads to a visibility2,14:

v =
∣∣〈eiδϕ

〉∣∣ = ∣∣TQPC0 +RQPC0eiγVdet
∣∣. (2)

Equation (2) does not have fitting parameters, so it can be
compared directly with the experimental results. Moreover, for
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Figure 1 Schematic diagram of the Mach–Zehnder interferometer and the detector. (A scanning electron micrograph of the fabricated structure is given in ref. 19.)
The two channels, injected from each source, S2 and S3, propagated towards QPC0, which was tuned to fully transmit the outer channel but partly transmit the inner one.
Consequently, two channels impinged on QPC1 from the right: a full outer (interferometer) channel (from S2) and a partitioned inner ‘detector’ channel (from S2 and S3).
QPC1 and QPC2 fully reflected the inner channel and partly transmitted the outer channel (generally T= R= 0.5). The presence of an electron in the upper path of the
interferometer affected the phase of the electrons in the detector channel, and vice versa, by Coulomb repulsion.

small γVdet the right-hand side of equation (2) can be expanded
to second order:

v ≈ 1−
1

2
(γVdet)

2TQPC0(1−TQPC0)

≈ exp

{
−

1

2
(γVdet)

2TQPC0(1−TQPC0)

}
.

This is the so-called gaussian approximation, which depends
exponentially only on the second moment of the shot noise,
TQPC0(1−TQPC0).

The two dotted lines in Fig. 3a are best fits of a gaussian model
to the data, v ∝ e−αTQPC0 (1−TQPC0 ), at detector bias Vdet = 4.5 µV
and 9.5 µV (the fitting parameter, α, was changed at each
bias). For small bias, the induced phase is small (γVdet < π/2)
and both equation (2) and the gaussian approximation with
α = (1/2)(γVdet)

2 agree well with the experimental data seen
in Fig. 3a. However, for larger biases, the shape predicted
by equation (2) deviates markedly from the smooth gaussian
approximation, and has a V-shaped dependence: v = |1 − 2TQPC0|

for γVdet = π (Vdet = 9.5 µV). Although at this voltage the actual
measured data can still be fitted reasonably well by the gaussian
model, the fits fail (for any α) at the even higher detector voltage
of Vdet = 15 µV (shown in Fig. 3b). The V-shaped behaviour is
now more obvious (occurring at a higher voltage than predicted
by equation (2)).

Another prediction of equation (2) is an oscillatory dependence
of the visibility on bias (the coherence should be completely
recovered at γVdet = 2πn). Figure 4a shows the dependence of
the measured visibility and the average phase shift on detector
bias (at TQPC0 ∼ 0.5). Whereas in Fig. 3 of ref. 19 the visibility
was found to decay monotonously with Vdet, here we found,
in a region of QPC0 gate voltages that was relatively smooth
and free of resonances, a non-monotonous decay. The visibility
dropped to zero at Vdet = 15 µV (instead of at 9.5 µV according to
equation (2)), increased afterwards to reach another, yet smaller,
maximum at Vdet = 22 µV, and finally vanished at a higher bias.
Moreover, the phase of the Aharonov–Bohm oscillations increased
monotonously with Vdet (see Fig. 4b): 〈δϕ〉 = RQPC0γVdet, but
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Figure 2 The effect of the inner edge channel on Aharonov–Bohm oscillations
in the outer edge channel. a, When the inner (‘detector’) channel—injected by
S3—is fully transmitted by QPC0 (TQPC0 = 1), the phase and visibility at the outer
(interferometer) channel are not affected by biasing S3. b, When the inner channel is
fully reflected by QPC0 (RQPC0 = 1, TQPC0 = 0) and flows parallel and in close
proximity to the outer channel upper path, the phase is highly sensitive to the
applied bias Vdet on S3, shifting smoothly with dϕ/dVdet ∼= 2π/19 µV (plotted here
modulo 2π), whereas the visibility remains almost constant.

underwent a π-phase slip when the visibility reached zero, as
expected qualitatively from equation (2).

The lobe pattern of the quenched visibility observed here
resembles the lobe-type evolution of the visibility in a self-biased
(by VS2), single-channel MZI18. This similarity suggests that intra-
channel interactions (that couple an individual interfering electron
to the shot noise produced by the other electrons in the same
edge channel) play the role of inter-channel interactions here.
Other theoretical work24 also finds visibility oscillations in a closely
related model.
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Figure 3 The effect of partitioning the detector channel (by QPC0) on the visibility of the interfering signal, at three different detector bias values. Dotted lines show
the best fitted gaussian model; solid lines show the ‘microscopic’ non-gaussian predictions. As Vdet increases, the dependence of the visibility on TQPC0 turns from a smooth
one to a sharp V-shape (at Vdet = 15 µV). a, Data points and theoretical predictions for Vdet = 4 µV and 9.5 µV. The gaussian model (dotted lines) is adequate at low bias
(4 µV) and gives a reasonable fit at intermediate bias (9.5 µV). The dashed line is the V-shaped prediction of a single-detector-electron model (equation (2)) for Vdet = 9.5 µV.
Inset: The conductance of QPC0 as a function of gate voltage shows sharp resonances. This explains the lack of visibility measurements in the range 0.1< TQPC0 < 0.4 and
its dispersion at large detector bias (owing to the dependence of the resonances on bias). b, Data points and theoretical predictions for Vdet = 15 µV (data from ref. 19). The V
shape is observed experimentally, as predicted by the ‘microscopic’ non-gaussian model. The gaussian model fails for the arbitrary fitting parameter; the best fit (upper
curve) strongly overestimates the visibility at TQPC0 = 0.5 and underestimates the visibility for 0.7< TQPC0 < 0.9.
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Figure 4 The evolution of the interference pattern as a function of detector
voltage, Vdet, for a partitioned detector channel. a, Visibility evolution. b, Phase
evolution (modulo 2π). The non-monotonic behaviour of the visibility is a clear sign
of dephasing by non-gaussian noise (data: solid black line and filled circles). Dashed
lines: Prediction of the improved theoretical model, which fully accounts for the
effects of binomial shot noise, see text, equation (4). The discrepancy at negative
Vdet results from slight nonlinearity of QPC0, leading to a non-accurate RQPC0

(TQPC0 ∼ 0.5, VQPC0 = −0.0272 V; see inset of Fig. 3a).

To overcome the quantitative shortcomings of equation (2),
we now outline a more microscopic approach that predicts the
main observed features. A full description of this approach will
be provided in a subsequent publication25. We assume that every
interfering electron accumulates a random phase, δϕ, as it traverses
the upper arm of the MZI, owing to the coupling with the

fluctuating electron density in the detector channel. Treating the
detector density, ρdet, classically, the phase should be:

δϕ =

∫ τ

0

∫
u(vgt −x)ρdet(x, t)dx dt =

∫
w(x)ρdet(x)dx, (3)

where u(x) is the inter-channel interaction potential, vg is the
electron velocity in the MZI and τ is the traversal time in the
upper path. The electron density, propagating with velocity, vdet,
obeys: ρdet(x, t) = ρdet(x − vdett ,0) ≡ ρdet(x − vdett), which yields
w(x) =

∫ τ

0
u[(vg −vdet)t ′

−x]dt ′. It can be shown that equation (3)
can be used even in the quantum case (δϕ 7→ δϕ̂ and ρdet 7→ ρ̂det)
to calculate the visibility ν = |〈eiδϕ̂

〉| as long as the interfering
electron is treated in a single-particle picture. This approach
neglects Pauli blocking8, which has to be taken into account in a
phenomenological way when evaluating the visibility. We find (see
the Methods section) that the visibility is a product of factors, each
in the form of the single-particle expression of equation (2):

v =
∣∣〈eiδϕ̂

〉∣∣ = ∏
j

∣∣TQPC0 +RQPC0eiδϕj
∣∣. (4)

The phases δϕj are the eigenvalues of the matrix wk′k (the Fourier
transform of w(x)), which has been restricted to transitions
between plane-wave states k′,k within the voltage window. They
depend on the detector voltage, Vdet, and obey a ‘sum rule’:∑

j δϕj = γVdet. In the limit Vdet → 0, it can be shown that only one
non-zero eigenvalue remains and the result reduces to equation (2)
(ref. 25).

Choosing the Fourier transform of w(x) as a lorentzian, with
its full-width at half-maximum as the single fitting parameter
(∆ = 12.4 µeV; the height being deduced from the observed value
of γ), we plotted in Figs 3 and 4 the calculated visibility from
equation (4). The plot reproduced the phase slip and zero visibility
at Vdet = 15 µV, the second lobe and the eventual decay at higher
detector voltages. As more than one detector electron participated
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in the dephasing process, the largest eigenvalue, δϕ1, becomes
smaller than γVdet (because of the ‘sum rule’), such that the zero
visibility (when δϕ1 =π) is reached at a higher Vdet than predicted
by equation (2). Although the quality of the fit is good, it may be
improved further if w(x), determined by the microscopic physics
of the edge channels, were known more precisely. We may conclude
that for Vdet < 6 µV a single detecting electron dephases the MZI,
whereas at Vdet ∼ 30 µV the number is at most three.

In summary, we presented a unique behaviour of an electron
interferometer coupled to a which-path detector. Very strong
interactions between electrons in both systems led to dephasing
by the characteristic binomial, non-gaussian, shot noise in the
detector. The dephased visibility had a linear, V-shaped dependence
on the partitioning of the detector’s current, and non-monotonic,
periodic, lobe pattern decay as a function of the detector current.
This entanglement between nearly single pairs of electrons may
be exploited (in future experiments) to test Bell’s inequalities in
a system where the detector channel is replaced by another two-
path interferometer26–28.

METHODS

SAMPLE AND MEASUREMENTS
The edges of the sample are defined by plasma etching of a GaAs–AlGaAs
heterostructure, embedding a high-mobility two-dimensional electron gas,
80 nm below the surface. Two edge channels are formed by applying a
perpendicular magnetic field of ∼3 T, leading to a filling factor of 2 in the bulk
(electron temperature ∼15 mK). Transmission of the outer channel to D2 is
measured by applying ∼1 µV at ∼1 MHz at S2. The signal at D2 (see Fig. 1),
filtered by a cold resonant circuit tuned to 1 MHz with a bandwidth of 30 kHz,
is amplified by a low-noise preamplifier at 4.2 K. Note that the inner, small,
ohmic contact (3×3 µm2) serves as both D1 and S1. The inner contact was
grounded using an air bridge, which had no influence on the transport of the
two edge channels underneath.

EVALUATION OF VISIBILITY
Being a many-particle quantum device, the detector’s density cannot be
expressed either as a classical function or in a single-particle language. Hence,
equation (3) should be rewritten in terms of detector electron operators, d̂k ,
and the matrix elements of w(x) with respect to a plane-wave basis:

δϕ̂ =

∑
k,k′

wk′k d̂+

k′ d̂k .

The occupation of each k state fluctuates independently with
nk′k ≡ 〈d̂+

k′ d̂k〉 = nkδk′k , with nk = 1/RQPC0/0 (at zero temperature) for k
below/within/above the detector voltage window EF < E(k) < EF + eVdet.
It now becomes possible to express the expectation value of the many-body
operator, eiδϕ̂ , in terms of a determinant involving the matrices wk′k and nk′k

(ref. 16): 〈
eiδϕ̂

〉
= det

[
1+ (eiw

−1)n
]
. (5)

Equation (5) can be evaluated numerically. It converges in the limit of a large
normalization volume and large upper or lower cutoffs in k. However, this
expression leads to a suppressed visibility even at zero temperature and
Vdet = 0, which is an artefact of neglecting the Pauli blocking (which prevents
the interfering electrons from scattering into occupied states below EF). This
can be cured approximately either by rescaling the visibility by a factor

independent of Vdet (setting it to 1 at Vdet = 0), or by restricting the matrix
elements wk′k to transitions only within the detector voltage window. The latter
approach provides a further simplification of equation (5) and yields
equation (4) of the main text.
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