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Abstract

Knowledge representation is a long-standing research area of computer science that
aims at representing human knowledge in a form that computers can interpret. Most
knowledge representation approaches, however, have suffered from poor user inter-
faces. It turns out to be difficult for users to learn and use the logic-based languages
in which the knowledge has to be encoded. A new approach to design more intuitive
but still reliable user interfaces for knowledge representation systems is the use of
controlled natural language (CNL). CNLs are subsets of natural languages that are
restricted in a way that allows their automatic translation into formal logic. A num-
ber of CNLs have been developed but the resulting tools are mostly just prototypes
so far. Furthermore, nobody has yet been able to provide strong evidence that CNLs
are indeed easier to understand than other logic-based languages.

The goal of this thesis is to give the research area of CNLs for knowledge represen-
tation a shift in perspective: from the present explorative and proof-of-concept-based
approaches to a more engineering focused point of view. For this reason, I introduce
theoretical and practical building blocks for the design and application of controlled
English for the purpose of knowledge representation. I first show how CNLs can be
defined in an adequate and simple way by the introduction of a novel grammar nota-
tion and I describe efficient algorithms to process such grammars. I then demonstrate
how these theoretical concepts can be implemented and how CNLs can be embed-
ded in knowledge representation tools so that they provide intuitive and powerful
user interfaces that are accessible even to untrained users. Finally, I discuss how the
understandability of CNLs can be evaluated. I argue that the understandability of
CNLs cannot be assessed reliably with existing approaches, and for this reason I in-
troduce a novel testing framework. Experiments based on this framework show that
CNLs are not only easier to understand than comparable languages but also need
less time to be learned and are preferred by users.
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CHAPTER 1

Introduction

❛❛ Knowledge is power. ❜❜

Francis Bacon [9]

❛❛ I am convinced that the unwritten knowledge
scattered among men of different callings surpasses
in quantity and in importance anything we find in
books, and that the greater part of our wealth has
yet to be recorded. ❜❜

Gottfried Leibniz [97]

As the quotations of these famous men show, knowledge is considered one of the
greatest goods of mankind, but also something fragile and hard to record. Recording
and representing human knowledge with the help of computers is the topic of this
thesis. Many attempts on this problem failed in the past, maybe because too little
attention was paid to how human knowledge has always been represented: in natural
language.

Controlled natural languages (CNLs) have been proposed to allow humans to
express their knowledge in a natural way that can also be understood by computers.
CNLs are artificially defined subsets of natural language — e.g. English — with the
goal to improve the communication between humans and computers.
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The use of CNL for formal knowledge representation has been investigated by
many different research groups and a variety of systems have emerged. The majority
of them, however, never left their prototype status and — to my knowledge — none
of them could yet find broad industrial usage. In order to bring this development
forward, this thesis introduces reusable and reliable methodologies that facilitate
the definition, deployment, and testing of such systems. My objective is to give
this research area a shift in perspective: from the present explorative and proof-of-
concept-based approaches to a more engineering focused point of view.

The remainder of this chapter is organized as follows. First, the approach of using
CNL for knowledge representation is motivated (Section 1.1). Afterwards, a hypothe-
sis is established and the structure of the overall approach is introduced (Section 1.2).
Finally, an outline of the content of the remaining chapters is given (Section 1.3).

1.1 Motivation

We live in a world where computers become more and more prevalent. The number
of people who have to deal with computers in their everyday life has dramatically
increased over the past decades. While 24% of the employed population, for example,
used a computer at work in the USA back in 1984, this number has more than doubled
in only 13 years reaching 51% in 1997 [49]. I would claim that we are not very far
from the point where virtually everybody needs to directly interact with computers
on a daily basis.

People’s education in computer science, however, could not keep up with the
rapid raise of computers. While twice as many people used a computer at work in
the USA in 1997 compared to 1984, the number of people passing their bachelor’s
degree in computer science has shrank from more than 32’000 to less than 26’000
students during the same period of time [47]. Luckily, this figure increased again in
later years so that about 43’000 students earned their bachelor’s degree in computer
science in 2006. Nevertheless, this number is still very low, corresponding to less than
0.1% of the employed population.

Thus, while more and more people need to deal with computers in their everyday
life, the percentage of people with a higher education in computer science remains
very low. The presented data covers only the USA but the situation of professional
computer use and higher computer education can be assumed to be similar in other
western countries. As a consequence, more and more people with no particular back-
ground in computer science need to interact with computers.

This situation raises the need to communicate with computers in an easy and
intuitive way that does not require special education of the human user. However,
the fact that humans and computers utilize completely different kinds of languages is
a major hindrance for the efficient communication between the two. Computers use
formal languages (like programming languages and logic-based ontology languages)
while humans express themselves in natural languages (like English).
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The most straightforward solution to this problem is to write computer programs
that are able to process natural language in a sensible way. Despite some early success
stories in this research area (e.g. SHRDLU by Terry Winograd [178]), the general
task of natural language processing (NLP) turned out to be an extremely difficult
problem. A large amount of research has been directed to this problem over decades.
Despite the fact that notable progress has been made on particular subproblems (see
[35] or [81] for an overview), computers still fail to process natural language in a
general and reliable way.

The second BioCreative contest [90] that took place in 2008 nicely illustrates
the difficulty of NLP with the current state-of-the-art technologies. This contest
contained a seemingly simple task called “interaction pair subtask” that was about
finding protein interactions mentioned in biomedical literature. 16 teams of leading
scientists participated with their NLP systems. The best performing systems reached
precision and recall scores between 30% and 40%. Thus, the systems failed to find 60%
to 70% of the interaction pairs in the text, and 60% to 70% of the found interaction
pairs were incorrect. This shows that NLP is very far from being a solved problem.
Today, computers are simply unable to interpret natural language reliably.

While computers fail to understand natural languages, humans are known to
have a hard time learning formal languages. For example, many web users fail to
properly use even very simple boolean operators in search engines [76]. Also people
using logic languages professionally often have difficulties. For example, users of the
ontology language OWL often mix up fundamental concepts of logic like existential
and universal quantification [136].

Altogether, this results in the obvious problem that humans and computers have
to communicate but neither speaks the language of the other.

The use of graphical diagrams can solve this problem up to a certain degree. Prop-
erly designed diagrams can be understood without training. At some point however,
when it comes to representation of complex situations, this does not work anymore.
Graphical diagrams lose their intuitive understandability if they become too com-
plex. For example, Kaufmann and Bernstein [88] describe a study where four user
interfaces (query interfaces for the Semantic Web) were compared, three that are
natural language based and one based on graphical diagrams, with the result that
the users who used the graphical interface had the lowest performance by all means.

The approach that will be pursued within this thesis is to solve this problem
by designing intermediary languages that are based on formal logic — and thus are
understandable for computers — but look like natural language. The underlying idea
is that statements in formal logic can always be expressed in a natural way. Consider
John Sowa’s statement [158]:

❛❛ Although mathematical logic may look very different from ordinary
language, every formula in any notation for logic can always be translated
to a sentence that has the same meaning. ❜❜

Natural language is a superset of logic in terms of expressiveness, and thus everything
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that can be stated in logic can also be stated in a sentence of natural language. As
a consequence, it is possible to define subsets of natural language in a way that
the valid sentences of the language can be mapped deterministically to formulas of a
given logic formalism. Such languages are called controlled natural languages (CNLs).

On the one hand, a CNL looks like a natural language and is intuitively un-
derstood by the human speakers of the respective natural language. On the other
hand, a CNL is restricted in such a way that computers can process and interpret it.
The idea is to define languages that share the intuitive human understandability of
natural languages with the processability of languages based on formal logic.

This thesis focuses on English as the underlying natural language of CNLs. The
reasons for this are that English has a relatively simple structure (especially its
morphology), is widely spoken around the globe, and is the common language in the
academic world.

1.2 Hypothesis and Approach

The purpose of this thesis is to provide building blocks for the proper definition and
application of controlled English to be used for the representation of knowledge. This
approach is based on the following hypothesis:

Controlled English efficiently enables clear and intelligible user

interfaces for knowledge representation systems.

This general hypothesis will be tested on the basis of the following questions covering
different aspects:

1. How should controlled English grammars be represented?

2. How should tools for controlled English be designed?

3. How can the understandability of controlled English be eval-

uated?

4. Is controlled English indeed easier to understand than other

formal languages?

The last question is crucial. The complete approach loses its legitimation if this
question has to be answered with “no”.

Figure 1.1 shows a graphical representation reflecting the layout of the overall
approach. It shows that the contribution of this thesis can be subdivided into the
three aspects of definition, deployment and testing of controlled English.

The definition aspect is covered by the study of how the syntax of controlled
English languages can be defined in an appropriate way, so they can be used conve-
niently within knowledge representation tools. The deployment aspect is discussed
on the basis of several tools that have been implemented and that demonstrate how
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Figure 1.1: This figure show the layout of the overall approach of this thesis. The covered
aspects are definition, deployment and testing of controlled English. Within these aspects,
contributions can be categorized on an orthogonal dimension into theory, application and
evaluation. Each of the three aspects is covered by a chapter of this thesis. The language
definition aspect is covered by a chapter about grammars for controlled English. The chapter
about tools targets the language deployment aspect. The language testing aspect, finally,
is covered by a chapter about how the understandability of CNLs can be evaluated.
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user interfaces using controlled English can be designed in a proper way. In terms
of testing, a framework is introduced that enables the tool-independent and reliable
evaluation of human understandability of controlled English.

For each of the three aspects (i.e. definition, deployment and testing), theoret-
ical foundations, practical applications, and evaluation results are described. The
theoretical parts introduce new notations and frameworks in cases where existing
approaches are not suitable for the domain of CNLs. The practical application of
these theoretical foundations is demonstrated on the basis of the language Attempto
Controlled English (ACE) and on the basis of prototypical tools that make use of
ACE. Evaluations in the form of technical experiments, human subject experiments,
and case studies have been performed and the results will be presented and discussed.

Even though this thesis concentrates on English and on knowledge representation,
the discussed approaches should be general enough to be applied to controlled subsets
of other natural languages and to other problem areas, e.g. specifications and machine
translation.

1.3 Outline

This thesis consists of six chapters. Following this introductory chapter, Chapter 2
entitled “Background” describes the background of the fields of controlled natural
language and knowledge representation. A special focus is given to the language
ACE.

Chapters 3 to 5 contain my own scientific contribution. Chapter 3 “Grammar”
introduces a grammar notation called Codeco, in which controlled natural languages
like ACE can be defined in a concrete and declarative way. Chapter 4 “Tools” demon-
strates how tools can be designed that use controlled English. This is shown on the
basis of three concrete tools that I developed — ACE Editor, AceRules and AceWiki
— all of which make use of ACE. In the case of the AceWiki system, the results of sev-
eral small usability studies are described. Chapter 5 “Understandability” introduces
a novel testing framework for CNLs called ontographs. Within this framework, the
understandability of languages like ACE can be evaluated and compared in human
subject experiments. The results of two such experiments are described.

Chapter 6 “Conclusions and Outlook” draws the conclusions from the results
described in the chapters 3 to 5 and contains a brief look into the future of controlled
English and knowledge representation.

The appendix of this thesis, finally, consists of two parts. Appendix A contains the
ACE Codeco grammar that defines a large subset of ACE in a formal and declarative
way. Appendix B contains the resources that have been used for two experiments
based on the ontograph framework.



CHAPTER 2

Background

In this chapter, the background and the state of the art in the fields of controlled
natural language and knowledge representation are described. CNLs in general are
discussed first: how they emerged and what kind of CNLs exist (Section 2.1). Then,
a closer look is taken at the language Attempto Controlled English that is the lan-
guage to be used throughout this thesis (Section 2.2). Finally, the field of knowledge
representation is introduced with a special focus on expert systems and the Semantic
Web (Section 2.3).

2.1 Controlled Natural Languages

Roughly speaking, controlled natural languages (sometimes simply called “controlled
languages”) are artificially defined languages that coincide with (or are at least close
to) a subset of a particular natural language [180]. Many different languages of this
kind exist today, at different stages of maturity. Pool [128] counts 41 projects that
define controlled subsets of English, Esperanto, French, German, Greek, Japanese,
Mandarin, Spanish and Swedish.

Below, the different types of CNLs and their historical background are described.
Then, an overview of the state of the art is given and an important problem of
CNLs — the writability problem — is discussed. Finally, existing CNL editors are
introduced and described, and general design principles for CNLs are discussed.
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2.1.1 Types of CNLs

In general, two directions of CNLs can be identified. On the one end of the scale, there
are CNLs that are intended to improve the communication among people, especially
among non-native speakers. Such languages are not mainly designed towards good
processability by computer but towards good understandability by human readers.
They have no formal semantics and are usually defined by informal guidelines.

On the other end of the scale, there are CNLs that are completely unambiguous
and have a direct mapping to formal logic. These languages are designed to improve
the communication between humans and computers, for example for querying or
editing knowledge bases. Such languages can be defined by formal grammars.

These two forms of CNLs have different goals and can look very different. O’Brian
[120] compares CNLs of different types and comes to the conclusion that no common
core language can be identified. However, many intermediate stages between these
two general directions of CNLs exist — from informal over semi-formal to completely
formal semantics — which makes it hard to draw a strict line between them.

Furthermore, every CNL that is designed to improve human–computer commu-
nication can also be used for communication between humans; and controlling a
language for enabling a better communication between humans does potentially also
improve the computer processability. For these reasons, it makes sense to use the
term “controlled natural language” in a broad sense for all such languages and not
to introduce different names for them. However, this thesis clearly focuses on the
second type of CNLs, those that are unambiguous and can be translated into logic.

Another direction of CNLs are the ones that are defined to improve machine
translation (see e.g. [109, 5]). Such languages are designed to be computer-processable
but they do not need to have an explicit formal semantics. It is sufficient to define
connections between the controlled subsets of different natural languages that enable
the automatic translation from one language into the other.

The term “controlled natural language” is related to the term of “fragments
of natural language” or simply “fragments of language” (see e.g. [131]). Whereas
CNLs are designed to improve communication (either computer–human or human–
human), fragments of language are defined to study the language, e.g. to study the
computational properties of certain linguistic elements. While the goal is completely
different, the resulting sublanguages can look very similar.

2.1.2 History of CNLs

Controlled natural languages can be considered as old as logic itself. Aristotle’s syl-
logisms [7] are arguably the first controlled natural language being defined around
350 B.C. Aristotle found that there are certain patterns of pairs of statements like
“all A are B” and “all B are C” for which a third statement “all A are C” must
necessarily follow no matter which words are assigned to A, B and C.
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It took more than 2000 years before syllogisms were superseded by first-order
logic based on the work of Frege [48] in 1879. From that point on, logic was no
longer mainly written in natural language but in “unnatural” formulas that make
use of logical variables. While this progress was seminal for the study of logic, it
also had the downside that logical formulas could no longer be read and verified by
anybody, but were readable only by people educated in logic.

In the 20th century, several controlled subsets of natural languages — mostly
English — have been defined with the goal to improve communication among people
around the globe. One of the first of them was Basic English [121], which was pre-
sented in 1932. It restricts the grammar and makes use of only 850 English words.
It was designed to be a common basis for communication in politics, economy and
science. Other examples include Special English1, which is a simplified English used
since 1959 for radio and television news, and SEASPEAK [161], which is an inter-
national language defined in 1983 for the communication among ships and harbors.

Starting from the 1970s, controlled subsets of English have been defined for more
technical subjects. Companies like Caterpillar [172], Boeing [72], IBM [14], and oth-
ers [4] defined their own subsets of English that they used for their technical docu-
mentation. The goal was to reduce the ambiguity of their documents and to prevent
misunderstandings, especially for non-native readers. This effort was driven by the
increasing complexity of the technical documentation and the increased activity over
language borders. Such kinds of languages are still used today, e.g. in the form of ASD
Simplified Technical English2. However, these languages are designed to improve only
human–human communication, have no focus on computer processability, and have
no formal semantics.

Also in the 1970s, natural language interfaces to databases had become popu-
lar [70, 174], which also led to the study of controlled natural languages in this con-
text [113]. Arguably because of insurmountable NLP problems, the research drifted
away again from this topic and together with the approaches using full natural lan-
guage also the CNL-based approaches disappeared.

The programming language COBOL is worth a special mention here even though
it cannot be considered a CNL in the strict sense. Emerging in the late 1950s, it is one
of the oldest programming languages but still one of the most widely used today [110].
COBOL is oriented towards business and administration systems and uses a large
set of keywords that should make COBOL code resemble natural language and thus
easier to understand. Nevertheless, programs in COBOL still look very artificial and
cannot be understood without training.

Even though the general approach was proposed already in the 1970s [154], it was
only in the mid 1990s when languages like Attempto Controlled English were actually
implemented trying to control natural languages in a way, so they can be mapped
directly to some sort of formal logic. This can be seen as an act of revitalizing

1http://www.voanews.com/specialenglish/
2http://www.asd-ste100.org/

http://www.voanews.com/specialenglish/
http://www.asd-ste100.org/
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the spirit of the early times of logic where logical statements were expressed in
natural language. The goal is to make logic again understandable for people with no
particular education in logic.

2.1.3 CNL: State of the Art

The following survey of the state of the art of CNLs focuses on the formal and
unambiguous languages excluding the ones that are solely designed for human–human
communication and are thus not essential for this thesis. The existing CNLs of the
first kind can be roughly subdivided into general-purpose languages, business rule
languages, and languages developed specifically for the Semantic Web.

2.1.3.1 General-Purpose CNLs

General-purpose CNLs are developed without a specific application scenario in mind.
They are designed to be usable by third parties in their own application areas.

Attempto Controlled English (ACE) is a mature general-purpose controlled En-
glish that comes with a parser that translates ACE text into a logic-based represen-
tation. It is the language that is used throughout this thesis and for this reason, it
will be described in more detail in the next section.

PENG (Processable English)3 is a language that is similar to ACE but adopts
a more light-weight approach in the sense that it covers a smaller subset of natural
English. It is designed for an incremental parsing approach and was one of the first
languages used within a special editor with lookahead features to tell the user how a
partial sentence can be continued. Such editors will be discussed in more detail later
on.

Common Logic Controlled English [157] is a further subset of English — similar to
ACE — that has been designed as a human interface language for the ISO standard
Common Logic4.

Formalized-English [104] is another proposal of a CNL to be used as a general
knowledge representation language. It has a relatively simple structure and is derived
from a conventional knowledge representation language. Formalized-English still con-
tains a number of formal-looking language elements and is thus not a strict subset
of natural English.

Computer Processable Language (CPL) [32] is a controlled English developed
at Boeing. Instead of applying a small set of strict interpretation rules, the CPL
interpreter resolves various types of ambiguities in a “smart” way that should lead
to acceptable results in most cases. Thus, CPL can be considered more liberal than
the other four languages.

3see [148] and http://web.science.mq.edu.au/~rolfs/peng/
4http://cl.tamu.edu/

http://web.science.mq.edu.au/~rolfs/peng/
http://cl.tamu.edu/
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2.1.3.2 CNLs for Business Rules

Business rule systems allow companies to explicitly and formally define the rules
of their business and are an interesting application area of CNLs. Business rules
typically need to be approved and followed by people with no particular background
in knowledge representation or logic and for this reason it is important to have an
intuitive representation as CNLs can offer. There are some CNLs that have been
defined for this particular problem area.

RuleSpeak and SBVR Structured English [149, 159] are two such CNLs defined
by the SBVR standard (“Semantics of Business Vocabulary and Business Rules”).
These languages are defined informally by sets of guidelines based on experiences of
best practice in rule systems. They are not strictly formal languages, but they are
connected to the semantics definition of the SBVR standard.

2.1.3.3 CNLs for the Semantic Web

Recently, several CNLs have been proposed that are designed specifically for the
Semantic Web and that can be translated into the Web Ontology Language (OWL).
The vision of the Semantic Web will be introduced in more detail in Section 2.3.2.

Rabbit [69] is one of these languages. It has been developed and used by Ordnance
Survey, i.e. Great Britain’s national mapping agency. Rabbit is designed for a specific
scenario, in which it is used for the communication between domain experts and
ontology engineers in order to create ontologies for specific domains.

The Sydney OWL Syntax [38] is a second example. It is based on PENG and
provides a bidirectional mapping to OWL. Thus, statements in the Sydney OWL
Syntax can be translated into OWL expressions, and vice versa.

CLOnE (Controlled Language for Ontology Editing) [166, 57] is a third example
of a CNL that can be translated into OWL. It is a simple language defined by only
eleven sentence patterns which roughly correspond to eleven OWL axiom patterns.
Due to its simple design, only a small subset of OWL is covered.

Lite Natural Language [10] can be mentioned as a fourth example. It maps to
DL-Lite, which is a logical formalism optimized for good computational properties
and which is equivalent to a subset of OWL.

Furthermore, ACE has also been applied to the area of the Semantic Web and
can be mapped to OWL [82], and Schwitter et al. [145] show a comparison of the
three languages Sydney OWL Syntax, Rabbit, and ACE.

2.1.4 The Writability Problem of CNLs

One of the biggest problems — if not the biggest problem — of CNLs is the difficulty
to write statements that comply with the restrictions of the language. Many differ-
ent researchers working on CNLs encountered this problem. For example, Power et
al. [129] write
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❛❛ The domain expert can define a knowledge base only after training in
the controlled language; and even after training, the author may have to
try several formulations before finding one that the system will accept. ❜❜

and Schwitter et al. [146] state:

❛❛ It is well known that writing documents in a controlled natural lan-
guage can be a slow and painful process, since it is hard to write docu-
ments that have to comply with the rules of a controlled language [...]. ❜❜

Thus, the problem of writing texts in a CNL is a well-known problem, even though
it does not yet have a generally accepted name. I will call it the writability problem
of CNLs.

CNLs are designed to be intuitively understood by the speakers of the respective
natural language. However, readability and writability are two completely different
problems. In order to be able to read a language, one does not need to know the cov-
erage with respect to the natural language. Writing syntactically correct statements
without tool support is much more complicated because the user needs to learn the
syntax restrictions, which are in many cases not trivial to explain. In some sense, this
writability problem can also be encountered when learning foreign natural languages.
Reading and understanding a foreign language is much simpler than writing texts of
the same quality.

Three approaches have been proposed so far to solve the writability problem
of CNLs: error messages, predictive editors, and language generation. These three
approaches will now be introduced, and they will be illustrated by examples from
the literature.

2.1.4.1 Error Messages

The most straightforward way to deal with the writability problem is simply to have
a parser that provides good error messages. In this case, users are supposed to learn
the restrictions of the language and should then write statements freely. In the case
parsing fails (because the statement is not a correct statement of the respective CNL),
the CNL system tries to determine why the statement is not parsed. This cause is
then reported to the user together with one or more suggestions how the problem
can be resolved in the form of canned text. The user then has to reformulate the
statement and submit it again to the CNL system. This goes on until the statement
follows the syntactic restrictions of the CNL.

The hardest part of this approach is to track down the exact cause of the error
and to give sensible suggestions. The input can potentially be any sentence of the
underlying natural language. This entails all kinds of problems that come with the
processing of natural language, i.e. problems that CNLs actually should remedy.

ACE and its parser were designed according to the error message approach until
the development of the ACE Editor (see Section 4.2) began. It simply turned out
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to be very difficult to provide good error messages. Nevertheless, many CNLs adopt
this error message approach including CPL, Rabbit and CLOnE.

CPL probably has the most sophisticated implementation of the error messages
approach. Clark et al. show how users of CPL are supported by an advice system
that can trigger more than 100 different advice messages [31]. They give a concrete
example that illustrates the error messages approach: If the user enters the incorrect
CPL sentence

The initial velocity of the object is 17.

where the measurement unit is missing then — according to Clark et al. — the fol-
lowing error message (they call it “advice message”) is returned by the CPL system:

Always specify a unit for numbers (e.g., “10 m”, not “10”). Use the word
“units” for dimensionless units. e.g., Instead of writing: “The velocity is
0.” write “The velocity is 0 m/s.”

In this example, the error messages approach works out nicely. However, more com-
plex cases are much harder to cover.

2.1.4.2 Predictive Editors

A different approach to solve the writability problem of CNLs are editors that are
aware of the grammar of the respective CNL and that can look-ahead within this
grammar. Such editors are able to show what kind of words or phrases can follow a
partial sentence. In this way, users can create a CNL statement in small steps, and
are guided by the editor at every point on how the statement can be continued until
it is complete.

The basic idea of predictive editors is not very new. It was proposed already in
the 1980s by Tennant et al. [169]. They describe a system that enables users to write
natural language queries to databases in a controlled way.

The language PENG is an example of a CNL that has been designed from the
beginning to be used in predictive editors. Schwitter et al. [146] introduce the pre-
dictive editor ECOLE that is used to write PENG statements and they give the
following example that illustrates how predictive editors work:

A [ adjective | common noun ]

A person [ verb | negation | relative sentence ]

A person lives [ ’.’ | prepositional phrase | adverb ]

The user starts writing a sentence by choosing the article “a” and the system tells
the user that the text can be continued by either an adjective or a common noun.
Choosing the common noun “person” in a next step, the system returns that a verb,
a negation, or a relative sentence can be added. The interaction between user and
predictive editor goes on in this way until the sentence is finished.
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Using the ACE Editor (to be presented in Section 4.2), ACE can be used according
to the predictive editor approach too.

The hardest problem with this approach is to define the grammar of the CNL in
a form that is processable by the editor, so the editor can look-ahead and inform the
user how the statement can be continued.

2.1.4.3 Language Generation

Finally, the language generation approach tries to solve the writability problem by
fully relying on CNL generation in a way that makes CNL analysis unnecessary [130].
The basic idea is that a (possibly incomplete) statement in a CNL is shown to the
user together with possible actions to modify the model that underlies the statement.
If a certain modification action is performed by the user, a new CNL statement is
generated that reflects the updated model. In this way, CNL statements can be built
incrementally without allowing the user to directly modify the text.

This approach is also known as conceptual authoring or as WYSIWYM that
stands for “What You See Is What You Meant” [129]. Analogous to the “What
You See Is What You Get” approach of word processors that allow users to edit
a text on the character level and immediately show a graphical representation, a
WYSIWYM editor allows users to edit a formal knowledge base on the semantic
level and immediately shows a representation in a (controlled) natural language.

Again, for illustration purposes a concrete example is very helpful. Power et al.
give the following example [129]: A user may start with the general and incomplete
statement

Do this action by using these methods.

where the user can click on “this action” or on “these methods”. By clicking on
“this action”, the user can choose from several actions, for example “schedule”,
which changes the underlying model. On the basis of the updated model, a new text
is generated:

Schedule this event by using these methods.

By clicking on “this event”, the user can choose from different events, for example
“appointment”, which leads to the following situation:

Schedule the appointment by using these methods.

This process goes on until the statement is completed. Important is that the user
does not have direct control of the text but can change it only by manipulating the
underlying model by given modification actions.

The problem with this approach is that it does not produce an independent lan-
guage but one that highly depends on very specific tools. Due to the missing parser,
the resulting CNL is basically a visualization language and not a real knowledge
representation language.
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2.1.4.4 Writability Problem Summary

In summary, each approach has its own assets and drawbacks. In my view, however,
the predictive editor approach is the one with the most promise to solve the writabil-
ity problem of CNLs. The error messages approach has the serious downside that
ultimately full natural language has to be processed, which is known to be very dif-
ficult. The language generation approach, on the other hand, is problematic because
the resulting CNL highly depends on specific tools and actually is just a visualization
language. While the predictive editor approach is challenging too, the problems are
rather technical than fundamental. Later chapters will show how the problems of
predictive editors can be solved, and once they are solved this approach turns out to
be very elegant and reliable.

For these reasons, this thesis will focus on the predictive editor approach and the
other two approaches will not be further investigated.

2.1.5 CNL Editors

In any case, proper tool support is needed to solve the writability problem of CNLs
and indeed many different CNL editors exist.

One example — that has already been mentioned before — is ECOLE [146], an
editor for the language PENG. It is a predictive editor in the sense that it looks
ahead within the grammar and shows what word category can come next. ECOLE
can show the partial syntax tree and a paraphrase of the partial sentence at each
point of the sentence creation process. Additionally, the semantic representation is
dynamically created and can be shown to the user. Furthermore, ECOLE is able to
inform the user after every new sentence regarding its consistency and informativity
with respect to the previous sentences.

Another example is the GINO system [12], an ontology interface tool. Ontologies
can be queried by formulating questions in a dedicated CNL. GINO can also be used
to extend an existing ontology. However, such additions are only triggered by the
CNL and the actual definition is done in a form-based way without using the CNL.

Namgoong and Kim [115] present another CNL tool that includes a predictive
editor and is designed specifically for knowledge acquisition. Their application area
is the biological and medical domain. In contrast to most other predictive editing
systems, their tool can also handle anaphoric references.

Other predictive editors are presented by Bringert et al. [21], a simple one called
“Fridge Poetry” and a more sophisticated one that can translate the created text
directly into controlled subsets of other natural languages.

ROO (Rabbit to OWL Ontology construction) [43] is an editor that builds upon
the Protégé ontology editor and that uses the language Rabbit. ROO allows entering
Rabbit sentences, helps to resolve possible syntax errors, and translates the sentences
into OWL. The ROO tool is a part of a whole methodology allowing domain experts
and knowledge engineers to work together in an efficient way.



24 CHAPTER 2. BACKGROUND

Several tools have been developed in the context of the CLOnE language. The
ROA editor [41], for example, is a tool that focuses on round-tripping, i.e. on parsing
CNL into a logical form and on verbalizing this logical form again in CNL. Inglesant
et al. [75] present another CNL editor inspired by CLOnE.

ACE View [83] is a plugin for the Protégé ontology editor based on ACE. ACE
View enriches Protégé with alternative interfaces based on controlled natural lan-
guage to create, browse and modify the ontology. Furthermore, questions in ACE
can be used to query the asserted as well as the automatically entailed content of
the ontology.

Interestingly, the approach of CNL and predictive editors has also been applied
to adventure games [101].

Chapter 4 will introduce more tools that use ACE and that have been imple-
mented within the scope of this thesis, a general editor (ACE Editor) and two more
specific tools (AceRules and AceWiki).

2.1.6 Design Principles for CNLs

Many different CNL approaches and languages exist, but there seem to be some gen-
erally accepted design principles. The four general principles of clearness, naturalness,
simplicity and expressivity can be identified, even though there are no agreed names
for them so far. Clark et al. [33], for example, describe the two opposing concepts of
naturalness and predictability. Their term predictability covers the two principles of
clearness and simplicity as described here.

Clearness means that all statements of a certain CNL should have a clear meaning.
Thus, the meaning of the statements should be describable in a systematic and
coherent way, for example by a strictly defined mapping to some kind of formal
logic. Clearness also means that a CNL should contain as little ambiguity as
possible or no ambiguity at all in the best case.

Naturalness means that the statements of a CNL should look like a certain natural
language. Thus, the statements of the CNL should be acceptable and intuitively
understandable for the speakers of the respective natural language and this
understanding should fit the defined meaning of the CNL (or should fit the
possible meanings in the case of ambiguity).

Simplicity means that a CNL should be easy to describe. Thus, it should be easy
to detect — for both humans and machines — whether a certain statement is
part of the given CNL or not. Simplicity also implies that the respective CNL
is easy to teach and learn.

Expressivity means that a CNL should semantically cover as much as possible of
the respective problem domain: the more situations or problems describable in
the CNL the better. For general-purpose CNLs that do not target a specific
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problem domain, the semantic coverage should be as broad as possible with
respect to all possible problem domains.

These four principles are often in conflict with each other. This means that no CNL
can completely satisfy all four principles. Examples of such conflicts that should also
clarify the four principles are given below.

Clearness can conflict with naturalness when one has to decide whether a CNL
should use a linguistic structure that is natural but ambiguous or an alternative
structure that is less natural but also less ambiguous. For example, ACE defines that
prepositional verbs have to attach their preposition using a hyphen (e.g. “John waits-
for Mary”) in order to distinguish it from the reading where the preposition introduces
an independent prepositional phrase (e.g. “John waits for no reason”). Thus, ACE in
this case sacrifices some naturalness for achieving a clear and unambiguous language.

In the same way, clearness can be in conflict with simplicity in cases where an
ambiguous structure could be replaced by an unambiguous but more complicated one.
For example, instead of using just “or” that can be meant inclusively or exclusively,
one could define that every occurrence of “or” must be followed by either “or both” or
“but not both” to disambiguate the two possible readings. This would be a sacrifice
of simplicity for the sake of clearness.

Clearness obviously also conflicts with expressivity. For simple statements like
for example “every mammal is an animal” it is relatively simple to come up with a
systematic and clear definition of its meaning, e.g. by a mapping to common first-
order logic. If more complex matters should be expressible, however, like for example
“a study has proven that at least 50% of the population who was in jail more than once
during their childhood consider suicide at some later point of time in their lives” then
the clear and systematic description of the meaning becomes obviously very difficult
and can probably not be expressed in standard first-order logic.

Naturalness can conflict with simplicity. Natural linguistic phenomena that are
complicated to describe can be represented in a CNL in a simplified way leading
to a less natural but simpler language. For example, in the context of a negation
one would usually use “anything” and not “something”, e.g. “John does not drink
anything”. However, for the sake of simplicity a CNL can be defined in a way that
“something” has to be used in all cases, which is not perfectly natural but simpler.
ACE, for example, makes use of this simplification and does not support “anything”.

Naturalness conflicts with expressivity in cases where no fully natural solution
can be found to achieve a certain degree of expressivity. Variables — as used by ACE
for example — can be used to support arbitrary references, e.g. “a person X teaches
a person Y and the person X is not a teacher”. Variables are not fully natural but they
improve the expressivity of the language.

Finally, the conflict between simplicity and expressivity is quite obvious. The
more expressive a language is, the more syntactic structures it must provide to ex-
press things, and consequently the more complex the language description gets. For
example, modal statements can be expressed by modal verbs like “can” and “must”.
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However, this requires that one has to define how these modal verbs have to be used
and how they interact with other structures like negation or questions.

All these trade-offs have to be considered when defining a new controlled natural
language and thus every CNL has to be positioned somewhere by means of clearness,
naturalness, simplicity and expressivity.

2.2 Attempto Controlled English (ACE)

After all these general discussions, let us turn to a concrete example of a CNL: At-
tempto Controlled English (ACE) [50, 42]. ACE is the language that is used through-
out this thesis, and for this reason it will be given special attention.

ACE is one of the most mature controlled natural languages and has been under
active development for more than 14 years since its development began in 1995.
ACE was first introduced by Fuchs and Schwitter [54] and since then, more than 40
scientific papers have been published by the Attempto group5. Today, Google Scholar
lists almost 500 articles containing the term “Attempto Controlled English”6, which
makes it probably the most widespread CNL in academia.

ACE is a general-purpose CNL that is not restricted to a certain domain. The
vocabulary is exchangeable and can thus be adapted to specific problem areas. For
certain syntactic structures (e.g. plurals), the logical representation is deliberately
underspecified, which gives some freedom to applications in the sense that they can
use the structures in a manner most useful for the respective application area.

The Attempto Parsing Engine (APE) is the reference implementation of ACE and
translates ACE texts into logic. The source code of APE is freely available under an
open source license.

I had the privilege to be a member of the Attempto group for the last five years
and to make contributions towards the further development of the language ACE
and its applications.

In what follows, I will introduce the basic features of the syntax and semantics
of ACE and I will outline some of its application areas. Please note that all current
and past members of the Attempto group have to be credited for what I will describe
here.

2.2.1 Syntax of ACE

The syntax of ACE is defined in a general and informal way by a number of construc-
tion rules [1] and in a more detailed, semi-formal way by the ACE syntax report [3].
The only fully formalized syntax definition of the full language of ACE is the gram-
mar of the parser APE. A formal and declarative grammar of a large subset of ACE

5http://attempto.ifi.uzh.ch/site/pubs/
6http://scholar.google.com/scholar?q=%22Attempto+Controlled+English%22 (retrieved in

November 2009)

http://attempto.ifi.uzh.ch/site/pubs/
http://scholar.google.com/scholar?q=%22Attempto+Controlled+English%22
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has been developed within the scope of this thesis. This grammar will be introduced
in the next chapter and is shown in Appendix A.

Below, I give a quick and informal overview of ACE, covering most but not all of
its language features.

Words

ACE basically contains two types of words: function words and content words. While
function words are built-in and cannot be changed, content words can be defined and
modified by the user with a simple lexicon format.

“If”, “every”, “or” and “is” are some examples of function words. Content words
can be defined in six categories: nouns, proper names, verbs, adjectives, adverbs and
prepositions. They can be defined freely but they are not allowed to contain blank
spaces. For example, instead of “credit card” one has to write “credit-card”.

Noun Phrases

In the simplest case, a noun phrase consists of a countable noun (e.g. “country”), a
mass noun (e.g. “water”), or a proper name:

a country
some water
the city
Switzerland
the Earth

Note that nouns always need a determiner like “a”, “some” or “the”. ACE also
supports plural noun phrases:

some countries
the cities
5 customers

Furthermore, indefinite pronouns are function words that act as noun phrases:

something
somebody

Numbers and string are also considered noun phrases:

1200
“swordfish”

Measurement units like “m” or “kg” can be used to define certain quantities:

200 m
3 kg of salt
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Nouns can be directly modified by adjectives, which can be in positive, comparative
or superlative form:

some landlocked countries
a richer customer
some most important persons
some fresh water

Nouns can be followed by an of -phrase, i.e. a prepositional phrase using the prepo-
sition “of”:

a customer of John

Furthermore, nouns can be preceded by a possessive noun phrase that ends with the
Saxon genitive marker “’s” or just “’”:

John’s customer
Paris’ suburbs

Verb Phrases

Verb phrases can use intransitive, transitive and ditransitive verbs in simple present
tense:

Mary waits
some men see Mary
Bill gives a present to John

In the case of transitive and ditransitive verbs, passive voice can be used:

Mary is seen by some men
a present is given to John by Bill
John is given a present by Bill

Note that the subject must be explicitly defined using “by”. Transitive verbs can
take subordinated sentences as their complement:

Mary knows that a customer waits

Furthermore, the copula verb “be” can be used to construct verb phrases:

Switzerland is a country

The copula can also be used together with adjectives in positive, comparative or
superlative forms:

John is rich
some customers are richer
Switzerland is located-in Europe
Mary is most fond-of Bill
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Adjectives with prepositions like “located-in” and “fond-of” are called transitive ad-
jectives, because they require a complementing noun phrase, as transitive verbs do.
Furthermore, such verb phrases using adjectives can use the constructs “as .... as”
and “more ... than”:

John is as rich as Mary
John is more fond-of Mary than Bill
John is more fond-of Mary than of Sue

All kinds of verb phrases can be modified by adverbs, which can stand in front of
the verb or at the end of the verb phrase:

John manually connects some cables
a customer waits patiently

In the same way as adverbs, prepositional phrases can be used to modify verb phrases:

a customer waits in Zurich

Relative Clauses

Nouns, proper names, and indefinite pronouns can have a relative clause containing
an arbitrary verb phrase:

something that contains some water
John who is rich
some products which are bought by Mary

Relative clauses start with the relative pronoun “that”, “which” or “who”.

Coordination

Noun phrases, adjectives, and adverbs can be coordinated by “and”:

some customers and some managers and Mary
a rich and important customer
John works carefully and silently

Verb phrases, relative clauses, and (subordinated) sentences can be coordinated by
“and” or “or”:

a car crashes or breaks-down
a person who works or who travels
a customer waits and Mary works
John knows that a customer waits and that Mary works

Note that the relative pronoun has to be repeated for the coordination of subor-
dinated sentences. Prepositional phrases are coordinated by concatenation, i.e. no
conjunction is used:

John flies from Tokyo to Zurich
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Quantifiers

The universal quantifiers “every” and “all” can be used instead of their existential
counterparts “a” and “some”:

every country
all water

The indefinite pronouns can also have the universal form:

everything
everybody

The existential quantifiers “there is” and “there are” take a noun phrase and can
optionally be followed by the phrase “such that” that introduces a subordinated
sentence:

there is a customer
there are some products such that every customer likes the products

The universal quantifiers “for every” and “for all” also have to be followed by a
subordinated sentence:

for every product a customer likes the product
for all water a filter cleans the water

The quantifiers “at least”, “at most”, “less than”, “more than”, and “exactly” can be
used for numerical quantification:

at least 3 customers
more than 4 kg of salt
exactly 365 days

The distributive quantifier “each of”, finally, quantifies over the members of a plural
noun phrase (i.e. it enforces the distributive reading):

each of some customers
each of at most 5 products

Negation

Verb phrases can be negated by “does not”, “do not”, “is not” and “are not”:

John does not work
some customers are not rich

The quantifier “no” is the negated version of “every” and “all”:
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no country
no water

Indefinite pronouns have negative forms too:

nothing
nobody

Noun phrases using “no”, “nothing” or “nobody” can optionally be followed by “but”
and a mass or plural noun or a proper name:

nothing but meat
nobody but customers
no man but John

Furthermore, sentences can be negated by preceding them with “it is false that”:

it is false that a customer waits

Negation as failure can be represented by “not provably” and “it is not provable that”:

a customer is not provably a criminal
it is not provable that John is trustworthy

Modality

ACE has support for the modal verbs “can”, “must”, “should” and “may”:

John cannot fail
Bill must buy a car
Mary should receive a letter from John
Sue may leave

The same kind of modality can also be expressed by prefixing a sentence by one of sev-
eral fixed phrases using the special adjectives “possible”, “necessary”, “recommended”
and “admissible”:

it is not possible that John fails
it is necessary that Bill buys a car
it is recommended that Mary receives a letter from John
it is admissible that Sue leaves

Conditional Sentences

Conditional sentences consist of the two function words “if” and “then” each of which
is followed by a sentence:

if John sleeps then Mary does not work
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Complete Sentences

Complete sentences are either declarative, interrogative (i.e. questions), or imperative
(i.e. commands). Declarative sentences consist of a sentence or a sentence coordina-
tion and end with a full stop:

John sleeps and Mary works.
It is false that every customer is important.

Questions end with a question mark and can be subdivided into yes/no-questions and
wh-questions. Yes/no-questions are like simple sentences but start with an auxiliary
verb:

Is every product expensive?
Does John wait?

Wh-questions are simple sentences that contain one or more of the query words
“who”, “what”, “which”, “whose”, “where”, “when” and “how”:

Who is a customer?
Which products contain what?
Whose father is rich?
Where does John work?

Commands consist of a noun phrase followed by a comma and a verb phrase and end
with an exclamation mark:

John, give a card to every customer!

Anaphoric Pronouns

Reflexive pronouns like “herself” refer back to the subject of the respective verb
phrase:

A woman helps herself.
Mary sees a man who hurts himself.

Pronouns like “she” and “him”, to be called irreflexive, are used to establish references
to a previous element of the text that is not the subject of the respective verb phrase:

Mary waits and she sees John.
A man sees a woman who likes him.

Such pronouns are called anaphoric pronouns and they are one of different ways to
represent what is called anaphoric references or just anaphors. In ACE, anaphoric
pronouns are only allowed if they can be resolved. Every anaphoric pronoun must
have a matching element in the preceding text, i.e. “woman”, “man”, “Mary”, and
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again “man” in the four examples shown above. Such elements that are referred to by
anaphoric references are called antecedents. Antecedents can be inaccessible if they
are, for example, under the scope of negation.

The following sentences are syntactically incorrect because the anaphoric pro-
nouns cannot be resolved (sentences that are not well-formed are marked with a
star):

* John sees a woman who hurts himself.
* Mary does not love a woman and sees her.

Both sentences look incorrect or at least strange if read as natural English sentences.
In the first sentence, the reflexive pronoun “himself” does not match in gender with
the subject of its verb phrase “woman”. The second sentence is incorrect because
“her” can neither refer to “Mary” (because irreflexive pronouns cannot refer to the
subject of the verb phrase) nor to “woman” (because it is under the scope of nega-
tion).

In fact, reflexive pronouns like “himself” can in some cases of natural English
not only refer to the respective subject but to any preceding argument of the same
verb [140], e.g. “nobody tells Mary about herself”. ACE, however, makes the simplified
assumption that such reflexive pronouns can only refer to the subject.

ACE also supports possessive variants of reflexive and irreflexive pronouns, in the
form of “her”, “his”, etc. (irreflexive) and “her own”, “his own”, etc. (reflexive), as
shown by the following examples:

Mary feeds her own dog.
A man sees a woman who likes his car.

The sections 2.2.2.5 and 2.2.2.6 will show in more detail how ACE handles scopes
and resolves anaphoric references.

Variables

In order to be able to make arbitrary anaphoric references, ACE has support for
variables. Variables start with an upper case letter and may be followed by one
or more digits. Variables can occur on their own or as apposition to a noun or an
indefinite pronoun:

X
a man A
the product P1
something T

Variables can be seen as a borderline case in terms of naturalness. They can be found
in natural language (e.g. in mathematical texts) but they are rather rare in everyday
language.
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Structures like “a man A” or “something T” introduce a new variable. This is only
allowed if the respective variable is not already defined in the previous accessible text.
For example, the sentence

* A man X sees a man X.

is syntactically incorrect because the variable “X” is introduced twice.

2.2.2 Semantics of ACE

The semantics of ACE is defined by an unambiguous mapping to a logic-based rep-
resentation. The syntax restrictions of ACE — as described in the previous section
— eliminate many but not all potential ambiguities of natural English. A number
of interpretation rules [2] are applied that define in a deterministic way how the
linguistic structures that could be ambiguous in full English are interpreted in ACE.

ACE texts are represented by an extended version of discourse representation
structures (DRSs). DRSs build upon discourse representation theory [85], which is a
theory for the formal representation of natural discourse. Such DRSs can be mapped
in a direct and simple way to first-order logic. The DRSs produced by APE use an
extended syntax to represent negation as failure and the different kinds of modality.

Below, the DRS language that is used to represent ACE texts is introduced. After
that, some interesting topics are explained concerning the semantic representation
of ACE: prepositional phrases, plurals, scopes, and anaphoric references.

2.2.2.1 Discourse Representation Structures for ACE

In this section, I briefly introduce the DRS notation and sketch how ACE texts
are mapped to DRSs. For a comprehensive description of this mapping consult the
Attempto DRS report [51].

DRSs consist of a domain and of a list of conditions, and are usually displayed
in a graphical box notation:

Domain

Condition1
...
ConditionN

The domain is a set of discourse referents (i.e. logical variables) and the conditions
are a set of first-order logic predicates or nested DRSs. A reified (i.e. “flat”) notation
is used for the predicates. For example, the noun phrase “a country” that normally
would be represented in first-order logic as

country(A)

is represented as

object(A,country,countable,na,eq,1)
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relegating the predicate “country” to the constant “country” used as an argument
in the predefined predicate “object”. In that way, the potentially large number of
predicates is reduced to a small number of predefined predicates. This makes the
processing of the DRS easier and allows us to include some linguistic information,
e.g. whether a unary relation comes from a noun, from an adjective, or from an
intransitive verb.

Nouns are represented by the object-predicate:

John drives a car and buys 2 kg of rice.

A B C D

object(A,car,countable,na,eq,1)
predicate(B,drive,named(’John’),A)
object(C,rice,mass,kg,eq,2)
predicate(D,buy,named(’John’),C)

Adjectives introduce property-predicates:

A young man is richer than Bill.

A B C

object(A,man,countable,na,eq,1)
property(A,young,pos)
property(B,rich,comp than,named(’Bill’))
predicate(C,be,A,B)

As shown in the examples above, verbs are represented by predicate-predicates.
Each verb occurrence gets its own discourse referent, which is used to attach modifiers
like adverbs (using modifier adv) or prepositional phrases (using modifier pp):

John carefully works in an office.

A B

object(A,office,countable,na,eq,1)
predicate(B,work,named(’John’))
modifier adv(B,carefully,pos)
modifier pp(B,in,A)

The relation-predicate is used for of -constructs, Saxon genitive, and possessive
pronouns:

A brother of Mary’s mother feeds his own dog.

A B C D

object(A,brother,countable,na,eq,1)
relation(B,of,named(’Mary’))
object(B,mother,countable,na,eq,1)
relation(A,of,B)
relation(C,of,A)
object(C,dog,countable,na,eq,1)
predicate(D,feed,A,C)

The examples so far have been simple in the sense that they contained no universally
quantified variables and there was no negation, disjunction or implication. For such
more complicated statements, nested DRSs become necessary. In the case of negation,
a nested DRS is introduced that is prefixed by a negation sign:
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A woman does not leave a country.

A

object(A,woman,countable,na,eq,1)

¬
B C

object(B,country,countable,na,eq,1)
predicate(C,leave,A,B)

The ACE structures “every”, “no”, “if ... then” and “each of” introduce implications
that are denoted by arrows between two nested DRSs.

Every man owns a car.

A

object(A,man,countable,na,eq,1)
⇒

B C

object(B,car,countable,na,eq,1)
predicate(C,own,A,B)

Disjunctions — which are represented in ACE by “or” — are represented in the DRS
by the logical sign for disjunction:

A man works or travels.
A

object(A,man,countable,na,eq,1)

B

predicate(B,work,A)
∨ C

predicate(C,travel,A)

The DRS elements introduced so far are standard elements of discourse representa-
tion theory. However, ACE uses some non-standard extensions. Negation as failure
is one of them and it is represented by the tilde operator:

John is not provably rich.

∼
A B

property(A,rich,pos)
predicate(B,be,named(’John’),A)

The modal constructs for possibility (“can”, “it is possible that”) and necessity
(“must”, “it is necessary that”) are represented by the standard modal operators
“✸” and “✷”:

Sue can drive a car and must work.
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✸
A B

object(A,car,countable,na,eq,1)
predicate(B,drive,named(’Sue’),A)

✷
C

predicate(C,work,named(’Sue’))

The modal constructs for recommendation (“should”, “it is recommended that”)
and admissibility (“may”, “it is admissible that”) are represented by the operators
“SHOULD” and “MAY”:

A machine should be safe and Mary may use the machine.

A

object(A,machine,countable,na,eq,1)

SHOULD

B C

property(B,safe,pos)
predicate(C,be,A,B)

MAY
D

predicate(D,use,named(Mary),A)

Sentences occurring as the complement of verb phrases lead to DRSs where a dis-
course referent stands for a whole sub-DRS:

John knows that his customer waits.
A B

predicate(A,know,named(’John’),B)

B :

C D

relation(C,of,named(’John’))
object(C,customer,countable,na,eq,1)
predicate(D,wait,C)

Finally, questions and commands also introduce nested boxes. The used operators
are in this case “QUESTION” and “COMMAND”:

Does a customer wait?

QUESTION

A B

object(A,customer,countable,na,eq,1)
predicate(B,wait,A)

What borders Switzerland?

QUESTION

A B

query(A,what)
predicate(B,border,A,named(Switzerland))
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Mary, drive to Berlin!

COMMAND

A

predicate(A,drive,named(Mary))
modifier pp(A,to,named(Berlin))

In the case of wh-questions, query-predicates are used to denote the things that are
asked for.

2.2.2.2 ACE in other Logic Notations

The DRS is the main output produced by the parser APE. However, the DRS rep-
resentation can be translated into various other logic notations.

DRSs using only the standard operators (i.e. negation, implication and disjunc-
tion) can be mapped to first-order logic in a very simple and straightforward way as
shown by Kamp and Reyle [85]. APE is able to produce the first-order representation
of such ACE texts.

APE also has support for the TPTP format. TPTP stands for “Thousands of
Problems for Theorem Provers” and is a library of logical problems that is used to
test reasoners [164]. This library uses a special Prolog-based notation to represent
the problems.

The non-standard extensions for possibility and necessity and for discourse ref-
erents that represent sub-DRSs can be represented in first-order logic using possible
worlds semantics [18]. However, this transformation is not implemented in APE so
far.

ACE questions can be mapped to first-order logic in the same way as declarative
sentences. The only difference is that questions cannot describe axioms but only, for
example, theorems or conjectures to be checked by a reasoner. For recommendation,
admissibility, and commands, sensible representations in first-order logic can be de-
fined but there is no standard way how to do this. Negation as failure, in contrast,
cannot be expressed in first-order logic.

Furthermore, a subset of ACE can be translated via the DRS representation into
the Semantic Web languages OWL and SWRL (Semantic Web Rule Language). This
translation is described by Kaljurand [82] and is implemented in APE, which can
produce OWL and SWRL statements in different syntactical variants. Since ACE
is more expressive than OWL and SWRL, this translation does not succeed for all
ACE texts.

2.2.2.3 Prepositional Phrases

The correct attachment of prepositional phrases is a notorious problem of natural
language processing (see e.g. [177, 40]). The problem can be best explained by looking
at the famous example
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A man sees a girl with a telescope.

where in natural English “with a telescope” can attach to “girl” or to “sees”. In the
first case, the girl has a telescope; in the second case the telescope is the instrument
used for seeing the girl.

ACE resolves this ambiguity by the definition that all prepositional phrases in
ACE attach to the closest preceding verb and cannot attach to nouns. The only
exception are prepositional phrases using the preposition “of”, which always attach
to the immediately preceding noun and cannot attach to verbs. This exception is
justified by the fact that “of”-phrases in natural English hardly ever attach to verbs.

This simple rule ensures that sentences containing prepositional phrases only have
one reading in ACE. In the example above, “with a telescope” would refer to “sees”
under the ACE semantics and give the following DRS:

A man sees a girl with a telescope.

A B C D

object(A,man,countable,na,eq,1)
object(B,girl,countable,na,eq,1)
object(C,telescope,countable,na,eq,1)
predicate(D,see,A,B)
modifier pp(D,with,C)

The last line of this DRS shows that the preposition “with” connects the see-relation
with the telescope.

In order to get the other meaning in ACE, one would have to rephrase the sen-
tence, for example by using a relative clause instead of the prepositional phrase:

A man sees a girl who has a telescope.

A B C D E

object(A,man,countable,na,eq,1)
object(B,girl,countable,na,eq,1)
object(C,telescope,countable,na,eq,1)
predicate(D,have,B,C)
predicate(E,see,A,B)

In this DRS, the telescope is connected by the have-relation to the girl.

2.2.2.4 Plurals

Plurals in natural language are known to be interpretable in numerous ways. For
example, the sentence

Four men lift three tables.

can be given at least eight readings [144]. Apart from ambiguous scopes (see the next
section), the most important issue concerning plurals is the fact that they can be
meant collectively or distributively. If the sentence

John visits four customers.
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is interpreted in a collective way then the four customers are visited together, i.e.
there is just one visit-relation between John and a group of four customers. If the
same sentence is interpreted distributively, however, then each of the four customers
is visited separately by John, i.e. there are four visit-relations in this case, one to
each of the four customers. In fact, even more possible interpretations exist, e.g. John
can have two visit-relations to two customers each.

Collective plurals are conceptually more complex than distributive ones because
collective plurals have to be represented semantically as some kind of groups that
can participate in relations. In the distributive reading, relations that syntactically
attach to plurals refer semantically to the members of the plural group so that the
plural group itself does not participate in relations.

The default semantics of ACE defines that plurals are always interpreted collec-
tively unless they are preceded by the phrase “each of”. Thus, the example above
would be interpreted collectively and is represented as follows:

John visits four customers.
A B

object(A,customer,countable,na,eq,4)
predicate(B,visit,named(’John’),A)

This representation is underspecified in the sense that the information about the
plural phrase is present but no specific plural semantics is assigned to it. For example,
one would not be able to detect an inconsistency with the sentence “John does not visit
a customer” without additional axioms representing background knowledge about the
relation between “four” and “a”.

The distributive reading can be expressed in ACE by putting “each of” in front
of the plural phrase:

John visits each of four customers.
A

object(A,customer,countable,na,eq,4)

B

has part(A,B)
⇒ C

predicate(C,visit,named(’John’),B)

Distributive plurals are represented as implications having only the predicate “has
part” on the left hand side. Again, this representation is underspecified and leads
only to sensible reasoning results if an appropriate set of background axioms is used.

This underspecification also has the practical advantage that the plain plural
form of ACE (without “each of”) can be interpreted distributively in applications
that do not need the collective reading of plurals, sidestepping the standard ACE
semantics. This is done for example by the ACE to OWL translation [82] used by
the AceWiki system that will be introduced in Section 4.4. In this way, the excessive
use of “each of” can be avoided.
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2.2.2.5 Scopes

Quantifiers like “every” or “it is false that” and other constructs like “if ... then” and
“or” have a certain textual range of influence that is denoted as their scope. Scopes
are another difficult problem in NLP and are often ambiguous (see e.g. [74]).

Scopes are traditionally a matter of semantics, which can be seen by the fact
that scope ambiguity is usually considered semantic ambiguity [126]. However, as we
have seen in Section 2.2.1 when discussing the syntax of anaphoric pronouns and
variables, scopes in ACE also have an influence on the syntax of the language. To
be precise, scopes should actually be considered a part of the ACE syntax and not
just of the ACE semantics. This will be taken into account in Chapter 3 where a
grammar notation for CNLs will be introduced.

While scopes only have a relatively small side-effect on the syntax of ACE, they
have a big effect on the semantics. The scopes in languages like ACE correspond
to the scopes of quantified variables in first-order logic. In discourse representation
theory, they are represented as nested boxes. Scopes are relevant on the one hand for
the proper semantic representation and on the other hand for the sensible resolution
of anaphoric references.

Since scopes determine the range of influence of scope-triggering structures, re-
sulting representations heavily depend on the interpretation of scopes. For example,
the sentence

It is false that John fails and Mary succeeds.

is in natural English ambiguous with respect to the scope of “it is false that”:

(It is false that John fails) and Mary succeeds.

(It is false that John fails and Mary succeeds).

The gray subscript parentheses are not part of the language but are only used to
indicate where the scopes open and close. In the first case “Mary succeeds” is not in
the scope of “it is false that” and is not affected by the negation. In the second case
however, “Mary succeeds” is in the scope of the negation. As one of the consequences,
“Mary succeeds” can be concluded from the first sentence but not from the second
one.

In ACE, structures like “it is false that” require a subordinated sentence that can
only be coordinated by repeating the pronoun “that”. In this way, both readings can
be represented in a distinct and clear way:

(It is false that John fails) and Mary succeeds.

A

¬ B

predicate(B,fail,named(John))

predicate(A,succeed,named(Mary))
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(It is false that John fails and that Mary succeeds).

¬
A B

predicate(B,fail,named(John))
predicate(B,succeed,named(Mary))

ACE defines in a relatively simple way where scopes open and where they close.
Scopes in ACE always open at the position where the scope-triggering structure
begins, with the exception of “or” where the scope opens before the conjunct on the
left hand side of the “or”. In the case of “if ... then”, the scope opens at the position
of the “if”. Furthermore, questions and commands open scopes at their beginning.
Scopes in ACE always close at the first position where a verb phrase, relative clause,
of -phrase, possessive noun phrase, sentence, or a coordination thereof ends that
contains the scope-triggering structure. For example, in the sentence

Somebody is an ancestor of (every human) and is (not an ancestor of an
animal).

the first scope opens at the position of the scope-triggering structure “every” and
closes at the end of the respective of -phrase. The second scope is opened by “not”
and closed after the respective verb phrase. Another example is

(If a customer (who owns a house or who is rich) opens an account then the
customer is assigned-to John).

where a scope opens at the position of “if” and closes at the end of the sentence and
another scope opens before the relative clause that is the left-hand-side conjunct of
“or” and closes at the end of the respective relative clause coordination.

2.2.2.6 Anaphoric References

In ACE, anaphoric references can be established by using pronouns like “him” or
“herself”, definite noun phrases like “the country” or “the customer who waits”, or
variables like “X” possibly combined with a definite noun phrase like “the object T1”.

While anaphoric pronouns in ACE are required to be resolvable, definite noun
phrases and variables are also allowed if they cannot be resolved to an antecedent.
APE returns a warning message in these cases but generates the other outputs as
normal. If a variable “X” cannot be resolved then it is simply interpreted as if it was
“something X”. If a definite noun phrase cannot be resolved then it is treated as if it
was indefinite, i.e. using “a” instead of “the”.

Pronouns need to be resolvable to an antecedent that agrees in number and
gender. Furthermore, reflexive pronouns like “itself” or “herself” can be resolved
only to the subject of the respective verb phrase and irreflexive pronouns like “it” or
“him” can be resolved only to something that is not the subject:
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Mary1 helps herself1.
Every employee1 has a card2 and uses it2.
* Mary helps himself.
* Every employee has a card and uses him.

Every noun phrase is marked by an identifier shown as a gray subscript number in
order to clarify the resolution of the anaphoric references. The gender of content
words like “Mary” and “card” is defined by the lexicon. The examples above assume
that “Mary” is defined as feminine and “card” as neuter.

Definite noun phrases are resolved to noun phrases that are structurally identical
or a superset of the anaphoric noun phrase. For example, “card” can be resolved to
“card that is valid” but not vice versa. Some examples are

John1 has a card2 and uses the card2.
John1 has a card2 that is valid and uses the card2.
John1 has a card2 that is valid and uses the card2 that is valid.
John1 has a card2 and uses the card3 that is valid.

where the last sentence is a syntactically valid ACE sentence but “the card that is
valid” cannot be interpreted as an anaphoric reference because there is no antecedent
that is identical or a superset.

All kinds of anaphoric references have to follow the principle of accessibility.
Antecedents are only accessible for anaphoric references if they are not within a
scope that has been closed up to the position of the anaphoric reference. Proper
names are an exception in the sense that they are always accessible. For example,
the anaphoric references “himself” and “the house” of the two sentences

(Every man1 protects a house2 from (every enemy3) and (does not destroy
himself1)).

(Every man1 protects a house2 from (every enemy3) and (does not destroy
the house2)).

can be resolved to “man” and “house”, respectively, because they are not contained
in a scope that is closed up to the position of the anaphoric reference. However, “the
enemy” in the case of

(Every man1 protects a house2 from (every enemy3) and (does not destroy
the enemy4)).

cannot be resolved because the only matching antecedent is in a scope that has been
closed before the position of the anaphoric reference. The accessibility constraint
does not apply if the antecedent is a proper name. The following example is a valid
ACE text where “it” is resolved to the proper name “Switzerland”:

(No ocean1 borders Switzerland2). It2 is a landlocked country3.
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If more than one possible antecedent can be identified for a particular anaphoric
reference then the principle of proximity applies. Anaphoric references are determin-
istically resolved to the textually closest possible antecedent. Below, two examples
are shown where the anaphoric reference could in principle be resolved to two an-
tecedents but is actually resolved to the closer of the two:

John1 is a son of Bill2. He2 is rich.
A country1 attacks a small country2 and (does not attack a large country3).
The country2 wins.

The principle of proximity is needed in order to make ACE an unambiguous language.

2.2.3 Applications of ACE

Finally, a brief overview is given of the application areas in which ACE has been
applied so far.

In the beginning, ACE was designed by the Attempto group as a specification
language [54] and has in this context, among other things, been applied to model
generation [53]. Later, the focus of ACE shifted from specifications towards knowl-
edge representation and especially the Semantic Web, which was mainly due to the
fact that the Attempto group joined the network “Reasoning on the Web with Rules
and Semantics” (REWERSE)7 that lasted from 2004 until 2008. During this time,
ACE has been applied by the members of the Attempto group as an interface lan-
guage of a first-order reasoner [52], as a query language for the Semantic Web [13],
as an annotation language for web pages [55], and as a general Semantic Web lan-
guage [82]. Furthermore, as a part of my master’s thesis I investigated how ACE can
be used to summarize scientific results in the biomedical domain [92]. Recently, we
have explored the use of ACE for clinical practice guidelines [151].

Also outside of the Attempto group, ACE has been applied in several areas. It has
been used as a natural front-end for different rule languages [71, 100], for importing
texts in controlled English to a reasoning system [22], and was the basis for an
automatic translation system [5].

2.3 Knowledge Representation

Besides the research area of controlled natural language, knowledge representation
is another area that is important for this thesis.

Knowledge representation is a discipline that is usually seen as a subfield of arti-
ficial intelligence. It is about representing human knowledge in a form that enables
some sort of automatic reasoning, i.e. the inference of new knowledge out of exist-
ing one. According to John Sowa [156], knowledge representation builds upon three

7http://rewerse.net

http://rewerse.net
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existing fields: logic for the formal structure and for the laws of inference, ontology
for naming and defining the things we want to talk about, and computation for the
ability to create computer applications out of it.

Different formalisms have been proposed for structuring knowledge, e.g. frames
[108] and semantic networks [179]. Often, these languages initially did not have a
clearly defined meaning and thus could not be considered proper logic languages.
Many of them have been revised in this respect, however, and had a significant
influence on subsequent languages like KL-ONE [20] which comes with carefully
defined formal semantics.

In terms of ontologies, a number of projects like Cyc [98] have emerged that aim
to encode human common sense knowledge in a formal way. The outcomes of other
initiatives like WordNet [46] cannot be considered ontologies in the strict sense but
are still a very valuable resource for building ontologies for the purpose of knowledge
representation.

Also on the computation aspect, a lot of work has been done. Automated rea-
soning is one of the most important and most complex computation tasks in the
area of knowledge representation. Various reasoners exist today that can compute
inferences in full first-order logic [163] or in more tractable subsets thereof like De-
scription Logics (e.g. [153, 170]). Beside that, many rule engines exist that can reason
with non-standard extensions of classical logic like negation as failure (e.g. [118]).

Thus, the basic ingredients for knowledge representation are available today. Nev-
ertheless, the big break-through of knowledge representation systems did not yet
happen. One could ask: Why?

There are certainly many possible answers to this question. In my view, however,
usability is the most important reason for the missing practical success of knowledge
representation approaches. Too little effort has been spent on how human users
should interact with such systems, even though usability is known to be a critical
issue [106]. Another problem is that user interfaces were mostly put on top of systems
that were already finished otherwise. This is not the right approach, as I will argue
in the introduction of Chapter 4. Good user interfaces emerge if they are under
consideration from the very beginning of the design of the complete system.

Many different branches in the field of knowledge representation exist. Two popu-
lar ones — expert systems and the Semantic Web — will be discussed in more detail
below. Furthermore, two general usability problems of knowledge representation will
be highlighted, namely (1) how to put knowledge into the system and (2) how to get
it out again.

2.3.1 Expert Systems

Expert systems are software tools that store expert knowledge and can provide prac-
tical advice on the basis of such knowledge. The basic idea is to create programs that
can replace human experts to some degree in order to make their knowledge more
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available.

Research on expert systems began in the 1960s. Dendral [24] was one of the
first expert systems, initiated in 1965. It was designed to help chemists to analyze
organic molecules and was very successful. Encouraged by this and other success
stories, expert systems became very popular in the 1970s and 1980s. R1 (later called
XCON) [105] is another example of a successful expert system. It has been developed
by Digital Equipment Corporation (today Hewlett-Packard) and could automatically
select appropriate configurations of computer system components on the basis of a
customer’s purchase order. However, many other systems failed to achieve the same
success and only a minority of them found widespread usage [62].

The main reason why such systems often failed in practice — apart from or-
ganizational factors — was the poor adaptation by its users and only to a lesser
degree technical factors [62]. Arguably because of the bad reputation caused by sys-
tems that failed to follow up on their promises, the field of expert systems gradually
disappeared again from the scientific landscape in the 1990s.

Also in the 1990s, it was proposed to use controlled English in expert systems
in order to make knowledge acquisition and maintenance more user friendly [134].
However, this approach was not further pursued and — to my knowledge — no
expert system exists to date that is based on CNL.

2.3.2 Semantic Web

The vision of the Semantic Web has been presented by Berners-Lee (the inventor of
the World Wide Web) and others in 2001 [11]. The basic idea is to do knowledge
representation on the scale of the web. The current World Wide Web should be
transformed and extended so that its content can also be understood by computers,
at least to some degree. This should be achieved by publishing not only documents on
the web but knowledge descriptions with a precisely defined formal meaning. Ideally,
the Semantic Web should become as pervasive as the traditional World Wide Web
today.

The Semantic Web has received broad attention in the academic world during
the past ten years and large amounts of work have been invested to make it a reality.
However, as Berners-Lee and his colleagues had to admit in 2008, the idea of the
Semantic Web “remains largely unrealized” [150].

Most technical problems could be solved and many Semantic Web languages
have been defined and standardized, like RDF [102], the Web Ontology Language
(OWL) [16], and SPARQL [132]. Nevertheless, the Semantic Web did not yet happen.
The lack of usability is again a plausible reason for this. The logic-based languages
and the theories behind them are too complicated for casual web users and the
current user interfaces fail to hide this complexity.

In order to solve this problem, natural language interfaces like PANTO [175],
GINO [12], and others [88] have been developed. Furthermore, several proposals
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have been made recently to use CNLs as interface languages for the Semantic Web
(see [147, 82, 145] and Section 2.1.3.3). However, the vast majority of those CNL-
based tools for the Semantic Web are still early prototypes and the definite proof
that they can make better Semantic Web interfaces has yet to be provided.

2.3.3 Knowledge Acquisition and Maintenance

A major problem that is manifest in all types of knowledge representation systems is
to reliably acquire and maintain knowledge about a certain domain. The knowledge
acquisition process has initially been seen as a transfer process that is about trans-
ferring the knowledge from the head of domain experts into formal representations
to be stored in knowledge representation systems. As it turned out, however, this
view of knowledge acquisition was inadequate. Human knowledge does not seem to
be stored in human brains in a way that can be mapped easily to formal represen-
tations. Instead, the knowledge acquisition process must be regarded as a modeling
process [30, 162].

Apparently, this modeling process requires some effort on the side of the domain
expert whose knowledge should be represented. The main difficulty is that the domain
experts are usually not familiar with the methodologies and languages of knowledge
representation. On the other hand, the knowledge representation experts are unlikely
to be experts in the particular domain. Traditionally, this problem is solved by a
team-based approach where a domain expert and a knowledge engineer work together
to develop an appropriate formal model of the given area.

This approach is relatively expensive since it requires the availability of both,
skilled knowledge engineers and competent domain experts. Furthermore, this ap-
proach bears the danger of different kinds of misunderstanding between the domain
expert and the knowledge engineer.

For those reasons, it would be much more convenient and reliable if the domain
experts could formalize their own knowledge in a more or less autonomous way. How-
ever, existing knowledge acquisition approaches that get along without the presence
of a knowledge engineer are known to have limitations [173].

Again, CNLs could be the solution for this. CNLs are claimed to make knowledge
representations easier to understand and verify for domain experts, and thus could
hopefully reduce the need for knowledge engineers in the future [69].

2.3.4 Accessing Knowledge Bases

Once knowledge is represented in a formal way and stored in a knowledge base, the
next problem is how to retrieve it. The people who want to access the knowledge base
can again in most cases not be expected to be familiar with knowledge representation
formalisms. In contrast to the knowledge acquisition task, it cannot practically be
assumed that a knowledge engineer is present every time the knowledge base should
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be accessed. Therefore, it is crucial to provide user interfaces that do not presuppose
a knowledge engineering background.

One possible approach to this problem are interfaces that accept full natural
language, as, for example, the ORAKEL system [29] and various proposed natural
language database interfaces [70, 174]. While such interfaces indeed simplify knowl-
edge access, they also make it less reliable. Arguably, this is the reason why such
systems could never find widespread usage.

The use of CNL instead of full natural language could solve this problem. This
approach was proposed in the 1980s [113] but the first working prototypes emerged
much later (e.g. [13]). It can be assumed that this CNL approach works particu-
larly well for knowledge bases that already used a CNL approach for acquiring the
knowledge and store not only logical but also linguistic properties of the knowledge
elements.

In summary, one can say that usability aspects have not received the same atten-
tion as technical issues in the research area of knowledge representation. While the
technical formats and methods seem to have reached a certain degree of maturity,
the problem of user interfaces is still unsolved. In my view, CNLs have a great po-
tential to bring us forward in this respect and this potential will be explored in the
remainder of this thesis.



CHAPTER 3

Grammar

Languages, both natural and formal, are usually defined by grammars. I will argue
that controlled natural languages have requirements concerning their grammars that
differ from those of natural languages and also from those of other formal languages.
This chapter thus targets the first research question defined in the introduction of
this thesis:

1. How should controlled English grammars be represented?

The attention will be restricted on CNLs to be used within predictive editors, as
motivated in Section 2.1.4. As we will see, predictive editors pose some specific re-
quirements on the grammar notation.

I will first outline the requirements for a grammar notation to describe the syn-
tax of languages like ACE to be used in predictive editors (Section 3.1). Then, I will
show that these requirements cannot be satisfied by existing grammar frameworks
(Section 3.2). On the basis of the requirements for CNL grammars, a grammar nota-
tion is defined that I call Codeco (Section 3.3). I will show how the Codeco notation
can be implemented in Prolog as a definite clause grammar (Section 3.4) and how
it can be interpreted in a chart parser (Section 3.5). The introduced Codeco nota-
tion only covers the syntax of a language and does not include any semantics. I will
briefly sketch how semantics could be added and discuss other possible extensions
(Section 3.6).
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I will then introduce a grammar written in Codeco that describes a large subset
of ACE (Section 3.7). A number of tests have been performed on the basis of this
grammar. Their results will be described (Section 3.8).

3.1 Controlled English Grammar Requirements

I devise a list of requirements that grammars of controlled English have to meet if
they are to be defined, implemented, used, and reused efficiently, under the assump-
tion that the predictive editor approach is taken. These requirements originate from
the experiences with defining subsets of ACE used in a predictive editor and are
partly justified by the evaluation results of the tools to be presented in Chapter 4.

The most important requirement is that such grammars should be defined in a
concrete and declarative way. Furthermore, in order to be usable within predictive ed-
itors, lookahead features should be implementable efficiently, i.e. it should be possible
to find out with reasonable effort which words can follow a partial text. Addition-
ally, referential elements like anaphoric pronouns should be supported but restricted
to cases where an antecedent exists that they can point to. This also requires that
scopes can be described. Finally, for the sake of practicality, it is necessary that such
grammars are relatively easy to implement.

These requirements will now be explained in more detail.

Concreteness

Concreteness is an obvious requirement. Due to their practical and computer-oriented
nature, CNL grammars should be concrete. Concrete grammars are fully formalized
and can be read and interpreted by programs, as opposed to abstract grammars that
are informal and cannot be processed automatically without additional work.

Declarativeness

As a second requirement, CNL grammars should be declarative in order to facilitate
their usage by different kinds of tools. Grammars are declarative if they are defined in
a way that does not depend on a concrete algorithm or implementation. Declarative
grammars have the advantage that they can be completely separated from the parser
that processes them. This makes it easy for such grammars to be used by other
programs, for the parser to be changed or replaced, or to have different parsers for
the same language.

Another advantage of declarative grammars is that they can be shared easily
between different parties using the same CNL, thus ensuring compatibility between
systems.

Furthermore, declarative grammars are easy to change and reuse. The removal
of some rules from a grammar leads to a language that is a subset of the language
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described by the initial grammar. In the same way, the addition of rules leads to a
superset of the language. With non-declarative grammars, these properties do usually
not hold.

Lookahead Features

Predictive editors require the availability of lookahead features, i.e. the possibility to
find out how a partial text can be continued. For this reason, CNLs must be defined
in a form that enables the efficient implementation of such lookahead features.

Concretely, this means that a partial text, for instance “a brother of Sue likes ...”,
can be given to the parser and that the parser is able return the complete set of words
that can be used to continue the partial sentence according to the grammar. For the
given example, the parser might say that “a”, “every”, “no”, “somebody”, “John”,
“Sue”, “himself” and “her” are the possibilities to continue the partial sentence.

The Figures 4.2 and 4.3 of Chapter 4 clarify the lookahead features requirement.
Efficient lookahead support is crucial for implementing predictive editors.

Anaphoric References and Scopes

Anaphoric references require special handling in CNL grammars. It should be possible
to describe the circumstances under which anaphoric references are allowed in an
exact, declarative, and simple way that — in order to have a clear separation of
syntax and semantics — does not depend on the semantic representation. Ideally,
anaphoric references should be possible not only to sentence-internal antecedents but
also to those in preceding sentences.

Concretely, a CNL should allow the use of a referential expression like “it” only
if a matching antecedent (e.g. “a country”) can be identified in the preceding text, as
shown for ACE in Section 2.2.2.6. Every sentence that contains an expression that
can only be interpreted in a referential way but cannot be resolved must be considered
syntactically incorrect. Thus, CNL grammars have to be able to represent the fact
that anaphoric references should be allowed only if they can be resolved.

As shown in Section 2.2.2.6, the resolvability of anaphoric references depends
on the scopes of the preceding text. Scopes are raised by certain structures like
negation, and they cover certain areas of the text that denote the range of influence
of the respective expression. Section 2.2.2.5 showed that scopes can be ambiguous
in natural language and explained how they are defined in ACE. While, in natural
languages, scopes can be considered a semantic phenomenon, they have to be treated
as a syntactic issue in CNLs if the restrictions on anaphoric references are to be
described appropriately.

Thus, a grammar that defines the syntax of a CNL needs to specify anaphoric
references, their antecedents, and the positions at which scopes are opened and closed.
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Implementability

Finally, a CNL grammar notation should be easy to implement in different program-
ming languages. As a consequence, a CNL grammar notation should be neutral with
respect to the programming paradigm of its parser.

The implementability requirement is motivated by the fact that the usability
of CNLs heavily depends on good integration into user interfaces like predictive
editors. For this reason, it is desirable that the CNL parser is implemented in the
same programming language as the user interface component of a tool based on CNL.

Another reason why implementability is important is that the parser is often
not the only tool that needs to know the CNL grammar. There can be many other
tools that need to read and process the grammar, e.g. general editors (see Section
2.1.5), paraphrasers [84] and verbalizers1. Furthermore, more than one parser might
be necessary for practical reasons. For example, a simple top-down parser is probably
the best for parsing large texts in batch mode and for doing regression tests (e.g.
through language generation). On the other hand, a chart parser is better suited for
providing lookahead capabilities.

3.2 Existing Grammar Frameworks

Many different grammar frameworks exist. Some are aimed at describing natural lan-
guages whereas others focus on defining formal ones. In the case of formal languages,
such grammar frameworks are usually called parser generators. Furthermore, definite
clause grammars (DCG) are a simple but powerful formalism that is used for both
natural and formal languages.

As I will show, none of these frameworks fully satisfies the requirements for con-
trolled English grammars defined above.

3.2.1 Natural Language Grammar Frameworks

Since CNLs are based on natural languages, CNL grammars share many properties
with natural language grammars. For example, CNL grammars describe the same
words and word classes and use the same syntactic structures like sentences, noun
phrases, verb phrases, and relative clauses.

A large number of different grammar frameworks exist to process natural lan-
guages. Some of the most popular ones are Head-Driven Phrase Structure Grammars
(HPSG) [127], Lexical-Functional Grammars [86], Tree-Adjoining Grammars [80],
Combinatory Categorial Grammars [160], and Dependency Grammars [107]. More of
them are discussed by Cole et al. [35]. Most of these frameworks are defined in an ab-
stract and declarative way. Concrete grammar definitions based on such frameworks,
however, are often not fully declarative.

1see e.g. http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html

http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html
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Despite many similarities, a number of important differences between natural
language grammars and grammars for CNLs can be identified that have the conse-
quence that the grammar frameworks for natural languages do not work out very
well for CNLs. Most of the differences originate from the fact that the two kinds
of grammars are the results of opposing goals. Natural language grammars are de-
scriptive in the sense that they try to describe existing phenomena. CNL grammars,
in contrast, are prescriptive, meaning that they define something new. Thus, one
could say that natural language grammars are language descriptions whereas CNL
grammars are language definitions. A range of further differences originate from this
most fundamental distinction.

For instance, grammars for natural languages and those for CNLs differ in com-
plexity. Natural languages are very complex and this has the consequence that the
grammars describing such languages can also be very complex. For this reason, gram-
matical frameworks for natural languages — like the ones mentioned above — have
to be very general in order to be able to describe natural languages in an appropriate
way. For CNLs — that are typically much simpler and abandon natural structures
that are difficult to process — these frameworks would be an overkill.

Partly because of the high degree of complexity, providing lookahead features
on the basis of those frameworks is very hard. Another reason is that lookahead
features are simply not relevant for natural language applications, and thus no special
attention has been given to this problem. The difficulty of implementing lookahead
features with natural language grammar frameworks can be seen by the fact that no
predictive editors exist for CNLs that emerged from an NLP background like CPL
or CLOnE.

A further problem is caused by the fact that many implementations of the gram-
mar frameworks for natural languages depend on logic-based programming languages
like Prolog. Such grammars are usually very hard to process in procedural or object-
oriented languages like C or Java. This is because Prolog-based grammars depend on
unification and backtracking that come for free in this language. In procedural lan-
guages, however, unification and backtracking are not built-in and grammars relying
on them are hard to interpret.

The handling of ambiguity is another important difference. Natural language
grammars have to deal with the inherent ambiguity of natural languages. Context
information and background knowledge can help resolving ambiguities (e.g. struc-
tural ambiguities) but there is always a remaining degree of uncertainty. Natural
language grammar frameworks are designed to be able to cope with such situations,
can represent structural ambiguity by using underspecified representations, and re-
quire the parser to disambiguate by applying heuristic methods. In contrast, CNLs
(the formal ones on which this thesis focuses) remove structural ambiguity by their
design, which makes underspecification and heuristics unnecessary in most cases.

Finally, the resolution of anaphoric references to appropriate antecedents is an-
other particularly difficult problem for the correct representation of natural language.
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In computational linguistics, this problem is usually solved by applying complex al-
gorithms to find the most likely antecedents (see e.g. [95, 59, 78]). The following
example will clarify why this is such a difficult problem: An anaphoric pronoun like
“it” can refer to a noun phrase that has been introduced in the preceding text but
it can also refer to a broader structure like a complete sentence or paragraph. It
is also possible that “it” refers to something that has been introduced only in an
implicit way or to something that will be identified only in the text that follows
later. Furthermore, “it” can refer to something outside of the text, meaning that
background knowledge is needed to resolve it. Altogether, this has the consequence
that sentences like “an object contains it” have to be considered syntactically correct
even if no matching antecedent for “it” can be found in the text.

In order to address the problem of anaphoric references, natural language gram-
mar frameworks like HPSG establish “binding theories” [28, 127] that consist of
principles that describe under which circumstances two components of the text can
refer to the same thing. Applying these binding theories, however, just gives a set
of possible antecedents for each anaphor but does not allow for deterministic resolu-
tion of them. This stands in contrast to the requirements for CNL grammars where
anaphoric references should always be resolvable in a deterministic way.

3.2.2 Parser Generators

Apart from the approaches introduced above to define grammars for natural lan-
guages, a number of systems exist that are aimed at the definition and parsing of
formal languages (e.g. programming languages). In the simplest case, grammars for
formal languages are written in Backus-Naur Form [117, 89]. Examples of more so-
phisticated grammar formalisms for formal languages — called parser generators —
include Yacc [79], GNU bison2 and ANTLR [122]. The general problem of these
formalisms is that context-sensitive constraints cannot be defined in a declarative
way.

Simple context-free languages can be described in a declarative and simple way,
e.g. by using plain Backus-Naur style grammars. However, such grammars are very
limited and even very simple CNLs cannot be defined appropriately. The description
of number and gender agreement restrictions, for example, could theoretically be
described in such grammars but not in a practical way.

It is possible to describe more complex grammars containing context-sensitive
elements with such parser generators. However, this has to be done in the form of
procedural extensions that depend on a particular programming language to be inter-
preted. Thus, the property of declarativeness gets lost when more complex languages
are described.

Furthermore, since such parser generators are designed to describe formal lan-
guages they have no special support for natural language related things like anaphoric

2http://www.gnu.org/software/bison/

http://www.gnu.org/software/bison/
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references.
Before discussing the lookahead capabilities of parser generators, it has to be

noted that the term lookahead is somewhat overloaded and is sometimes used with a
different meaning. In the context of parsers for formal languages, lookahead denotes
how far the parsing algorithm looks ahead in the fixed token list before deciding
which rule to apply. Lookahead in our sense of the word — i.e. predicting possible
next tokens — is not directly supported by existing parser generators. However, as
long as no procedural extensions are used, this is not hard to implement. Actually,
lookahead features for formal languages are available in many source code editors
in the form of code completion. The “code assist” feature of the Eclipse IDE, for
example, provides code completion and is one of the most frequently used features
by Java developers [114].

Formalized English is an example of a CNL that is defined in a parser generator
language [103]. It is a quite simple language only covering a very small part of natural
English and having many formal looking elements in it. For such simple and not fully
natural-looking languages, the parser generator approach to CNL grammars can be
viable.

3.2.3 Definite Clause Grammars

Definite clause grammars (DCGs) [125], finally, are a simple but powerful way to
define grammars for natural and formal languages and are mostly written in logic-
based programming languages like Prolog. In fact, many of the grammar frameworks
for natural languages introduced above are usually implemented on the basis of
Prolog DCGs.

In their core, DCGs are fully declarative and can thus in principle be processed
by any programming language. Since they build upon the logical concept of definite
clauses, they are easy to process for logic-based programming languages. In other
programming languages, however, a significant overhead is necessary to simulate
backtracking and unification. Thus, DCGs are a good solution when using logic-based
programming languages but interpreting them in other languages is not practical in
many cases.

DCGs are good in terms of expressivity because they are not necessarily context-
free but can contain context-sensitive elements. Anaphoric references, however, are
again a problem. Defining them in an appropriate way is difficult in plain DCGs.
The following two exemplary DCG rules show how antecedents and anaphors could
be defined in a Prolog DCG grammar:

np(Agr, Ante-[Agr|Ante]) -->

determiner(Agr),

noun(Agr).

np(Agr, Ante-Ante) -->
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anaphoric_pronoun(Agr),

{ once(member(Agr,Ante)) }.

The code inside the curly brackets defines that the agreement structure of the pro-
noun is unified with the first possible element of the antecedent list.

This approach has some problems. First of all, the curly brackets contain code
that is not fully declarative. A more serious problem, however, is the way how connec-
tions between anaphors and antecedents are established. In the example above, the
accessible antecedents are passed through the grammar by using input and output
lists of the form “In-Out” so that new elements can be added to the list whenever an
antecedent occurs in the text. The problem that follows from this approach is that
the definition of anaphoric references cannot be done locally in the grammar rules
that actually deal with anaphoric structures but they affect almost the complete
grammar. In fact, it affects all rules that are potentially involved on the path from
an anaphor to its antecedent. For example, a grammar rule dealing with the general
structure of a sentence would look as follows:

s(AnteIn-AnteOut) -->

np(Agr, AnteIn-AnteTemp),

vp(Agr, AnteTemp-AnteOut).

As this example shows, anaphoric references also have to be considered when writing
grammar rules that have otherwise nothing to do with anaphors or antecedents.
This is not very convenient and it would be desirable to be able to define anaphoric
references in a simpler way only at the level of the grammar rules that actually deal
with antecedents and anaphors.

Different extensions of DCGs have been defined in order to describe phenomena
of natural language in a more appropriate way. Extraposition Grammars [124], for
example, extend DCGs for a better description of natural language constructions
called left extrapositions, i.e. phenomena of sentence elements appearing at earlier
positions than normal.

Assumption Grammars [39] are another variant of DCGs motivated by natural
language phenomena that are hard to express otherwise, like free word order and
complex cases of coordination. Anaphoric references can be represented in a very
simple and clean way with Assumption Grammars. The following example (taken
from [39]) shows how this can be done:

np(X,VP,VP) :- proper_name(X), +specifier(X).

np(X,VP,R) :- det(X,NP,VP,R), noun(X-F,NP), +specifier(X-F).

np(X,VP,VP) :- anaphora(X), -specifier(X).

The “+”-operator is used to establish “hypotheses” that can be consumed later by
the use of the “-”-operator. In this way, the restrictions for anaphoric references can
be defined locally in the rules that define the structure of antecedents and anaphors.
This solution comes very close to what we need for CNLs. However, there are still
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some problems. It is unclear how anaphors can be resolved deterministically if more
than one matching antecedent is available, and how irreflexive pronouns like “it” can
be prevented from referring to the subject of the respective verb phrase.

A further problem with the DCG approach concerns lookahead features. In prin-
ciple, it is possible to provide lookahead features with standard Prolog DCGs as Rolf
Schwitter and I could show [93]. However, this approach is not very efficient and can
become impractical for complex grammars and long sentences. For DCG variants
like Assumption Grammars, it is unknown how lookahead could be implemented.

3.2.4 Concluding Remarks on Existing Grammar Frameworks

In summary, none of the introduced existing grammar frameworks fully satisfies all
requirements for CNL grammars.

The grammar frameworks for natural languages do not work out well for CNLs:
the high complexity of these frameworks makes it very hard to use such grammars
in different programming languages and to provide lookahead features. Furthermore,
anaphoric references cannot be restricted to be allowed only if they can be resolved.

Parser generators — as used to define formal languages — have the problem
that context-sensitive structures cannot be defined in a declarative way. They can-
not combine context-sensitivity and declarativeness. Since they are targeted towards
formal languages, they also have no special support for natural language structures
like anaphoric references.

DCGs fulfill most of the requirements set out but unfortunately not all of them:
apart from the fact they are hard to interpret efficiently in programming languages
not based on logic, they also have no fully satisfying support for anaphoric references,
even though Assumption Grammars come very close in this respect. (Nevertheless,
DCGs have many good properties for defining CNL grammars and, in fact, the
grammar notation to be introduced in the remainder of this chapter can be translated
into a Prolog DCG notation.)

Especially the proper definition of anaphoric references in CNL grammars seems
to be a real problem. This problem is illustrated by the work of Namgoong and
Kim [115], which does not really fit into one of the categories introduced above. The
core of the CNL they introduce is a simple context-free grammar that is defined
declaratively but cannot cover things like anaphoric references. For this reason, they
had to extend their notation for representing anaphoric references. The extended
grammar notation, however, is not declarative anymore and thus the advantages of
declarative grammars are lost.

In order to overcome the discussed problems, I will introduce a new grammar
notation designed specifically for CNLs.

The Grammatical Framework (GF) [5] is a grammar framework that is similar
to the approach to be presented here in the sense that it is designed specifically for
CNLs. It does not focus on languages with a deterministic mapping to logic, however,
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but on machine translation between controlled subsets of different natural languages.
It allows for declarative definition of grammar rules and can be used in predictive
editors, but it lacks support for anaphoric references.

3.3 The Codeco Notation

On the basis of the aforementioned requirements, I created a grammar notation
called Codeco, which stands for “concrete and declarative grammar notation for con-
trolled natural languages”. This notation has been used to describe a large subset of
ACE that will be introduced later in this chapter and is shown in its full extent in
Appendix A.

The Codeco notation has been developed with ACE in mind, and the elements of
Codeco will be motivated by ACE examples. Nevertheless, this notation should be
general enough for other controlled subsets of English, and for controlled subsets of
other languages. Codeco can be conceived as a proposal for a general CNL grammar
notation. It has been shown to work well for a large subset of ACE, but it cannot
be excluded that extensions or modifications would become necessary to be able
to express the syntax of other CNLs. Some possible extensions will be discussed in
Section 3.6.

The elements of the Codeco notation are shown here in a pretty-printed form.
Additionally, a Prolog-based representation is introduced that uses Prolog as a rep-
resentation language (i.e. not as a programming language). Thus, Codeco grammars
can be represented in Prolog, but are not Prolog programs.

In the following sections, the different elements of the Codeco notation are in-
troduced, i.e. grammar rules, grammatical categories, and certain special elements.
After that, the issue of reference resolution is discussed in detail.

Later in this chapter, it will be shown how Codeco grammars can be run in Prolog
as DCG grammars, how they can be processed in chart parsers, and how lookahead
features can be implemented.

3.3.1 Simple Categories and Grammar Rules

Basically, a Codeco grammar is a set of grammar rules that are composed of gram-
matical categories, e.g. “np” standing for noun phrases and “vp” standing for verb
phrases. Additionally, there must be a designated start category that represents all
possible well-formed statements of the language, e.g. “s” standing for sentences of
the given language.

Grammar rules in Codeco use the operator “
:
−→” (where the colon on the arrow is

needed to distinguish normal rules from scope-closing rules as they will be introduced
later). Grammar rules make use of grammatical categories, for instance:

vp
:
−→ v np
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On the left hand side, the arrow operator takes exactly one category that is called
the head of the rule (i.e. “vp” in the example above). On the right hand side, there
must be a sequence of categories which is called the body of the rule (i.e. the sequence
of the two categories “v” and “np” in the example above). Such grammar rules state
that the category of the head can be derived from (we can also say expanded to)
the sequence of categories of the body. The example shown above thus means that a
“vp” consists of a “v” followed by an “np”.

The right hand side of a rule can be empty, i.e. a sequence of zero categories. An
example is shown here:

adv
:
−→

Such rules state that the category of the head can be derived from an empty sequence
of categories, i.e. they define optional parts of the grammar. The example above
means that an “adv” is always optional when it appears in the body of another rule.

Terminal categories are categories that cannot be expanded further. Such cate-
gories correspond to the tokens of the input text. In Codeco, terminal categories are
represented in square brackets:

v
:
−→ [ does not ] verb

This example means that if the input text contains the token “does not” followed by
something that can be considered a “verb”, then they can together be considered a
“v”.

In their Prolog representation, Codeco grammar rules are represented by using
the infix operator “=>”. The predefined Prolog operator “,” is used to connect the
different categories of the body. Terminal categories are represented as Prolog lists,
and the empty list is used to represent an empty category sequence. Therefore, the
above examples would be represented as follows in Prolog:

vp => v, np.

adv => [].

v => [’does not’], verb.

In these simple cases, the Codeco Prolog notation is very similar to the Prolog DCG
notation, the only difference being that “=>” is used instead of “-->”.

The Codeco notation introduced so far allows us to define simple context-free
grammars. Looking at our requirements for a CNL grammar notation, we still need
means for the representation of context-sensitive structures and for anaphoric refer-
ences. First of all, however, we need to be able to define lexicon entries.

3.3.2 Pre-terminal Categories

In order to provide a clean interface between grammar and lexicon, Codeco has a
special notation for pre-terminal categories. Pre-terminal categories are conceptually
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somewhere between non-terminal and terminal categories, in the sense that they can
be expanded but only in a very restricted way. In order to distinguish them from the
other types of categories, they are marked with an underline:

np
:
−→ [ a ] noun

Pre-terminal categories can expand only to terminal categories. This means that pre-
terminal categories can occur on the left hand side of a rule only if the right hand
side consists of exactly one terminal category. Such rules are called lexical rules and
are displayed with a plain arrow, for instance:

noun → [ person ]

In the Prolog notation, lexical rules are represented in the same way as grammar
rules, and pre-terminal categories use the prefix operator “$”:

np => [a], $noun.

$noun => [person].

Lexical rules can be stored in a dynamic lexicon but they can also be part of the
static grammar.

3.3.3 Feature Structures

In order to support context-sensitivity, non-terminal and pre-terminal categories
can be augmented by flat feature structures. Feature structures [87] are sets of
name/value pairs; they are shown here using the colon operator “:” where the name
of the feature stands on the left hand side and the value on the right hand side.
Values can be variables, which are displayed as boxes:

vp

(

num: Num

neg: Neg

)

:
−→ v





num: Num

neg: Neg

type: tr



 np
(

case: acc

)

v

(

neg: +
type: Type

)

:
−→ [ does not ] verb

(

type: Type

)

np
(

noun: Noun

)

:
−→ [ a ] noun

(

text: Noun

)

The names of the features are atoms (i.e. atomic symbols) and their values can be
atoms or variables. The feature values “plus” and “minus” are pretty-printed as “+”
and “−”, respectively. The order in which the features are listed has no semantic
relevance.

An important restriction is that feature values cannot be feature structures them-
selves. This means that feature structures in Codeco are always flat. The restriction
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to flat feature structures should keep Codeco simple and easy to implement. In the-
ory, however, this restriction can easily be dropped as Section 3.6.2 will show.

In the Codeco Prolog notation, features are represented by predicate arguments
in the form of name/value pairs separated by the infix operator “:”. The given
examples would be represented as follows:

vp(num:Num,neg:Neg) => v(num:Num,neg:Neg,type:tr), np(case:acc).

v(neg:plus,type:Type) => [’does not’], verb(type:Type).

np(noun:Noun) => [a], $noun(text:Noun).

Names starting with uppercase letters are considered variables in Prolog, e.g. “Num”
and “Type”.

Due to the support for feature structures, not only context-free languages can be
defined in Codeco but also context-sensitive aspects can be modeled, e.g. number
agreement restrictions.

3.3.4 Normal Forward and Backward References

So far, the introduced elements of Codeco are quite straightforward and not very
specific to CNLs or predictive editors. The support for anaphoric references, however,
requires some novel extensions.

In principle, it is easy to support sentences like

A country contains an area that is not controlled by the country.
If a person X is a relative of a person Y then the person Y is a relative of
the person X.

where “the country”, “the person X” and “the person Y” are resolvable anaphoric
references. However, given that we only have the Codeco elements introduced so far,
it is not possible to suppress sentences like

Every area is controlled by the country.
The person X is a relative of the person Y.

where “the country”, “the person X” and “the person Y” are not resolvable. This can
be acceptable (e.g. ACE supports such sentences by simply interpreting the definite
noun phrases in a non-anaphoric way) but in many situations it is better to disallow
such non-resolvable references. For example, anaphoric references might be harder to
understand for the users if a predictive editor also suggests “the country” at positions
where it cannot be meant anaphorically.

In Codeco, anaphoric references can be defined in a way, so they can be used only
at positions where they can be resolved. This is done by using the special categories
“>” and “<”. These special categories allow us to establish special kinds of nonlocal
dependencies across the syntax tree as the following illustration shows:
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“>” represents a forward reference and marks a position in the text to which
anaphoric references can refer to, i.e. “>” stands for antecedents. “<” represents a
backward reference and refers back to the closed possible antecedent, i.e. “<” stands
for anaphors. These special categories can have feature structures and they can occur
only in the body of rules, for example:

np
:
−→ [ a ] noun

(

text: Noun

)

>

(

type: noun
noun: Noun

)

ref
:
−→ [ the ] noun

(

text: Noun

)

<

(

type: noun
noun: Noun

)

The forward reference of the first rule establishes an antecedent to which later back-
ward references can refer to. The second rule contains such a backward reference
that refers back to an antecedent with a matching feature structure. In this example,
forward and backward references have to agree in their type and their noun (repre-
sented by the features “type” and “noun”). This has the effect that “the country”,
for example, can refer to “a country” but “the area” cannot.

Forward references always succeed, whereas backward references succeed only if
a matching antecedent in the form of a forward reference can be found somewhere
earlier in the syntax tree. Every backward reference must connect to exactly one for-
ward reference. Forward references, however, can connect to any number of backward
references, including zero.

In order to distinguish these simple types of forward and backward references from
other reference types that will be introduced later, they are called normal forward
references and normal backward references, respectively.

In the Prolog notation, they are represented by the symbols “>” and “<”:

np => [a], $noun(text:Noun), >(type:noun,noun:Noun).

ref => [the], $noun(text:Noun), <(type:noun,noun:Noun).

Syntactically, such references act like normal grammatical categories with the only
exception that they cannot occur in the head of a rule.
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Altogether, these special categories provide a very simple way to establish non-
local dependencies in the grammar for describing anaphoric references. However, as
we will discover, these simple kinds of references are not general enough for all types
of references we would like to represent. For this reason, more reference types have
to be defined, but first accessibility constraints need to be discussed.

3.3.5 Scopes and Accessibility

As already pointed out several times in this thesis, anaphoric references are affected
by scopes. Anaphoric references are resolvable only to positions in the previous text
that are accessible, i.e. that are not inside closed scopes. An example introduced
earlier is

Every man protects a house from every enemy and does not destroy ...

where one can refer to “man” and to “house” but not to “enemy” (because “every”
opens a scope that is closed after “enemy”). The Codeco elements introduced so far
do not allow for such restrictions. Additional elements are needed to define where
scopes open and where they close.

The position where a scope opens is represented in Codeco by the special category
“�” called scope opener, for example:

quant
(

exist: –

)

:
−→ � [ every ]

Scope openers always succeed and all they do is opening scopes. Like forward and
backward references, they can only occur in the body of rules. Furthermore, they
do not have feature structures because there would be no benefit attaching feature
structures to scope openers. Otherwise they behave syntactically like normal cate-
gories.

Scopes that are open have to be closed somewhere. In contrast to the opening
positions of scopes, their closing positions can be far away from the scope-triggering
structure. For this reason, the closing positions of scopes cannot be defined in the
same way as their opening positions. Instead, the positions where scopes close are
defined in Codeco by the use of scope-closing rules “

∼
−→”, for instance:

vp
(

num: Num

)

∼
−−→ v

(

num: Num

type: tr

)

np
(

case: acc

)

This rule states that a “vp” can be expanded to a “v” followed by an “np” (under
the restrictions defined by the feature structures) and additionally defines that any
scope that is opened by the direct or indirect children of “v” and “np” is closed at
the end of “np”.

Scope-closing rules are thus handled in the same way as normal rules with the
only difference that they additionally define that all scopes that are opened in the
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body (including direct and indirect children of the body categories) are closed at the
end position of the last body category. If no scopes have been opened, scope-closing
rules simply behave like normal rules.

Every antecedent that is not in a scope that has been closed up to a certain
position in the text is accessible from that position. The principle of accessibility will
be explained in more detail in Section 3.3.10.1.

In the Prolog notation, scope openers are represented in a straightforward way
by the special category “//”. For the example above, one would write:

quant(exists:minus) => //, [every].

Scope closing rules are represented in the same way as normal rules with the only
difference that they use the operator “~>” instead of “=>”:

vp(num:Num) ~> v(num:Num,type:tr), np(case:acc).

Scope openers and scope-closing rules allow us to define where scopes open and
where they close. In this way, anaphoric references can be restricted so that they
can be used only if they can be resolved to an accessible antecedent. In contrast to
most other approaches, scopes are defined in a way that is completely independent
from the semantic representation, which gives us a clear separation of syntax and
semantics.

3.3.6 Position Operators

The introduced Codeco elements allow us to use definite noun phrases as anaphoric
references in a way, so they can be used only if they are resolvable. However, with
only the elements introduced so far at hand, it is not possible to use forward and
backward references to define, for example, that a reflexive pronoun like “herself” is
allowed only if it refers to the subject of the respective verb phrase. Concretely, the
introduced Codeco elements do not allow for a distinction of the following two cases:

A woman helps herself.
* A woman knows a man who helps herself.

The problem is that there is no way to check whether a potential antecedent is the
subject of a given anaphoric reference or not. What is needed is a way of assigning
an identifier to each antecedent.

To this aim, Codeco employs the position operator “#”, which can occur in
the body of rules. This operator takes a variable and assigns it an identifier that
represents the respective position in the text. In the sentence “Mary helps herself”,
for example, four different positions exist: p0, p1, p2 and p3 in “p0 Mary p1 helps p2
herself p3”. A variable of a position operator is unified with the position identifier
that corresponds to the location of the position operator in the syntax tree. The
following picture visualizes how position operators work:
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The first position operator unifies its variable with the position identifier p0 because,
in the syntax tree, the position operator occurs on the left of the first token of
the input text. The second position operator unifies its variable with the position
identifier p2 because of its location between the second and the third token.

With the use of position operators, reflexive pronouns can be defined in a way,
so they can be used only if a matching antecedent exists that is the subject of the
given verb phrase:

np
(

id: Id

)

:
−→ # Id prop

(

human: H

)

>





id: Id

human: H

type: prop





ref
(

subj: Subj

)

:
−→ [ itself ] <

(

id: Subj

human: –

)

Note that a position operator does not behave like a normal category in the sense
that it does not take a whole feature structure but just a single variable.

The actual form of the position identifiers is not relevant as long as every position
in the text is assigned exactly one unique identifier, and as long as position identifiers
are different from any feature value that does not come from a position operator.

For the Prolog notation, “#” is defined as a prefix operator:

np(id:Id) =>

#Id,

prop(human:H),

>(id:Id,human:H,type:prop).

ref(subj:Subj) =>

[itself],

<(id:subj,human:minus).

Position operators allow us to use identifiers — e.g. for identifying the subject
of a verb phrase — in a very simple and declarative way. With position operators,
the use of reflexive pronouns can be constrained appropriately. As we will see later,
however, a further extension is needed for the appropriate definition of irreflexive
pronouns.
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3.3.7 Negative Backward References

A further problem that has to be solved concerns variables as they are supported,
for instance, by ACE. Phrases like “a person X” can be used to introduce a variable
“X”. A problem arises if the same variable is introduced twice, as in the following
example:

* A person X knows a person X.

One solution is to allow such sentences and to define that the second introduction
of “X” overrides the first one so that subsequent occurrences of “X” can only refer
to the second one. In first-order logic, for example, variables are treated this way. In
CNLs, however, the overriding of variables can be confusing for the readers. ACE,
for example, does not allow variables to be overridden and returns an error message
if one tries to do so.

Such restrictions cannot be defined by the Codeco elements introduced so far.
Another extension is needed: the special category “≮” that can be used to ensure that
there is no matching antecedent. This special category establishes negative backward
references, which can be used — among other things — to ensure that no variable
is introduced twice:

newvar
:
−→ var

(

text: V

)

≮

(

type: var
var: V

)

>

(

type: var
var: V

)

The special category “≮” succeeds only if there is no accessible forward reference that
unifies with the given feature structure. In the above example, the negative backward
reference ensures that a variable can be introduced only if there is no antecedent that
introduces a variable with the same name.

In the Prolog notation, negative backwards references are represented by the
symbol “/<”. The example above would thus look as follows:

np =>

$var(text:V),

/<(type:var,var:V),

>(type:var,var:V).

Negative backward references give us the possibility to define that certain struc-
tures are allowed unless a certain kind of antecedent is available. Note that the
principle of accessibility — to be explained in detail in Section 3.3.10.1 — does also
apply for negative backward references. Thus, only accessible matching antecedents
are relevant.

3.3.8 Complex Backward References

The introduced Codeco elements are still not sufficient for expressing all the things we
would like to express. As already mentioned, there is still a problem with irreflexive
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pronouns like “him”. While reflexive pronouns like “himself” can be restricted to
refer only to the respective subject, the introduced Codeco elements do not allow for
preventing irreflexive pronouns from referring to the subject as well:

John knows Bill and helps him.
* John helps him.

These two cases cannot be distinguished so far. It thus becomes necessary to in-
troduce complex backward references, which use the special structure “<+...−...”.
Complex backward references can have several feature structures: one or more posi-
tive ones (after the symbol “+”), which define how a matching antecedent must look
like, and zero or more negative ones (after “−”), which define how the antecedent
must not look like. The symbol “−” can be omitted if no negative feature structures
are present.

In this way, irreflexive pronouns can be correctly represented, for instance, as
shown below:

ref
(

subj: Subj

)

:
−→ [ he ] <+

(

human: +
gender: masc

)

−
(

id: Subj

)

Complex backward references refer to the closest accessible forward reference that
unifies with one of the positive feature structures but is not unifiable with any of the
negative ones. The complex backward reference of the example shown above ensures
that “he” can be used only if an accessible antecedent exists that has masculine
gender but is not the subject of the respective verb phrase.

In the Prolog notation, the symbol “<” is used for complex backward references,
i.e. the same symbol as for normal backward references. The difference to normal
backward references is that the feature structures are inside of terms using the sym-
bols “+” and “-” representing the positive and the negative feature structures, re-
spectively:

ref(subj:Subj) =>

[he],

<( +(human:plus,gender:masc),

-(id:Subj) ).

Complex backward references are a powerful construct, with which anaphoric
references can be restricted in a very general way. The following two examples —
which are rather artificial and would probably not be very useful in practice —
illustrate the general nature of complex backward references. As a first example, one
could define the word “it/him” so that it can only refer to the closest antecedent that
is either neuter (i.e. not human) or masculine but that is not the subject:

ref
(

subj: Subj

)

:
−→ [ it/him ] <+

(

human: –

)

(

human: +
gender: masc

)

−
(

id: Subj

)
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As another example, one might want to define that the word “this” can be used to
refer to something which is neuter and has no variable attached or which is a relation
(whatever that means), but which is not the subject and is not a proper name. This
complex behavior could be achieved by the following rule:

ref
(

subj: Subj

)

:
−→ [ this ] <+

(

hasvar: –
human: –

)

(

type: relation

)

−
(

id: Subj

)(

type: prop

)

In the Prolog notation, these examples would look as follows:

ref(subj:Subj) =>

[’it/him’],

<( +(human:minus),

+(human:plus,gender:masc),

-(id:Subj) ).

ref(subj:Subj) =>

[this],

<( +(hasvar:minus,human:minus),

+(type:relation),

-(id:Subj),

-(type:prop) ).

Complex backward references that have exactly one positive feature structure
and no negative ones are equivalent to normal backward references. For this reason,
algorithms defined for complex backward references implicitly also cover normal ones.
Normal backward references are subsumed by complex backward references and can
thus be considered syntactic sugar of the language.

3.3.9 Strong Forward References

Finally, one further extension is needed in order to handle antecedents that are
not affected by the accessibility constraints. For example, proper names are usually
considered accessible even if under negation:

Mary does not love Bill. Mary hates him.

In such situations, the special category “≫” can be used, which introduces a strong
forward reference:

np
(

id: Id

)

:
−→ prop

(

human: H

)

≫





id: Id

human: H

type: prop





Strong forward references are always accessible even if they are within closed scopes.
Apart from that, they behave exactly the same way as normal forward references.
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In the Prolog notation, strong forward references are represented by the symbol
“>>”. The introduced example would thus look as follows:

np(id:Id) =>

prop(human:H),

>>(id:Id,human:H,type:prop).

All elements of the Codeco language have now been introduced.

3.3.10 Principles of Reference Resolution

The resolution of references in Codeco — i.e. the matching of backward references
to the appropriate forward references — requires some more explanation.

All three types of backward references (normal, negative and complex ones)
are resolved according to the three principles of accessibility, proximity and left-
dependence. The principle of accessibility has already been mentioned in the preced-
ing sections. It implies that an antecedent within a scope cannot be referred to from
outside the scope. The principle of proximity defines that textually closer antecedents
have precedence over those that are more distant. The principle of left-dependence,
finally, defines which variable bindings have to be considered when resolving a refer-
ence. These three principles will now be explained in detail.

3.3.10.1 Accessibility

The principle of accessibility states that one can refer to forward references only if
they are accessible from the position of the backward reference. A forward reference
is accessible only if it is not within a scope that has already been closed before the
position of the backward reference, or if it is a strong forward reference.

This accessibility constraint can be visualized in the syntax tree. The syntax tree
for the partial sentence shown in Section 3.3.5 could look as follows:

s ∼

vp

vp ∼

np

ref

...

v

tv

destroy

aux

does not

conj

and

vp

pp

np

>n

enemy

det

every

prep

from

np

n

house

det

a

v

tv

protects

np

n

man

det

Every

∼

�

�

�

( ( ()

>

>

<



70 CHAPTER 3. GRAMMAR

All nodes that represent the head of a scope-closing grammar rule are marked with
“∼”. The positions in the text where scopes open and close are marked by paren-
theses. In this example, three scopes have been opened but only the second one (the
one in front of “every enemy”) has been closed (after “enemy”). The blue area marks
the part of the syntax tree that is covered by this closed scope.

As a consequence of the accessibility constraint, the forward references for “man”
and “house” are accessible from the position of the backward reference at the very end
of the shown partial sentence. In contrast, the forward reference for “enemy” is not
accessible because it is inside a closed scope. The possible references are illustrated
by dashed red connection lines. Thus, the shown partial sentence could be continued
by the anaphoric references “the man” or “the house” (or equivalently “himself” or
“it”, respectively) but not by the reference “the enemy”.

Strong forward references are not affected by the accessibility constraint: they
are always accessible. The following example shows a partial sentence with two oc-
currences of strong forward references:

s ∼

vp

vp ∼

np

ref

...

v

tv

likes

conj

and

vp

np

pp

np

prop

Bill

prep

of

>n

friend

det

every

v

tv

knows

np

prop

Mary

∼

�

( )

≫

≫

<

As shown by the dashed red connection lines, the second of the two strong forward
references is also accessible even though it is within a closed scope. The normal
forward reference for “friend”, however, is not accessible. Thus, the given partial
sentence could be continued by a reference like “him” pointing to “Bill” or by a
reference like “herself” pointing to “Mary”. The reference “the friend”, however, would
not be allowed.

The difference between normal, negative and complex backward references has
no effect on the accessibility constraint.

In summary, Codeco defines accessibility constraints by using the scope-opening
category “�” and scope-closing grammar rules. Additionally, strong forward refer-
ences can be used to bypass the accessibility constraints.

3.3.10.2 Proximity

Proximity is the second principle for the resolution of backward references. If a back-
ward reference could potentially point to more than one forward reference then, as a
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last resort, the principle of proximity defines that the textually closest forward refer-
ence is taken. This ensures that every backward reference resolves deterministically
to exactly one forward reference.

In the following example, the reference “it” could in principle refer to three an-
tecedents:

s

s

...

...

np

ref

pn

it

conj

then

s

vp

np

n

error

det

an

v

tv

causes

np

pp

np

n

machine

det

a

prep

of

n

part

det

a

conj

If

>

>

> <

The pronoun “it” could refer to “part”, “machine”, or to “error”. According to the
principle of proximity, the textually closest antecedent is taken. In this example, the
backward reference is resolved to the forward reference of “error” that is only two
tokens away whereas the other two forward references have a distance of five and
eight tokens, respectively.

In other words, a backward reference can be resolved only to a forward reference
if no other matching forward reference exists that is closer to the backward reference.

3.3.10.3 Left-dependence

The principle of left-dependence, finally, means that everything to the left of a back-
ward reference is considered for its resolution but everything to its right is not. The
crucial point is that variable bindings entailed by a part of the syntax tree that is to
the left of the reference are considered for the resolution of the reference. In contrast,
variable bindings that would be entailed by a part of the syntax tree that is on the
right are not considered.

Variables as they occur in the grammar can be instantiated to an atom or unified
to another variable during the construction of the syntax tree for a given input text.
These bindings occur when a category of the body of a rule is matched to the head
of another rule. The node in the syntax tree that corresponds to the body category
of the one rule and at the same time to the head of the other rule can be considered
the location where the binding takes place. In this way, every variable binding can
be located in the syntax tree. The principle of left-dependence defines now that all
variable bindings that are located in the syntax tree to the left of a reference have
to be considered when resolving the reference but the bindings to the right of the
reference must not be considered.



72 CHAPTER 3. GRAMMAR

A concrete example will illustrate why the principle of left-dependence is impor-
tant. The following example shows two versions of the same grammar rule:

ref
:
−→ [ the ] <

(

type: noun
noun: N

)

noun
(

text: N

)

ref
:
−→ [ the ] noun

(

text: N

)

<

(

type: noun
noun: N

)

The only difference is that the backward reference and the pre-terminal category
“noun” are switched.

In the first version, the backward reference is resolved without considering how
the variable “N” would be bound by the category “noun”. If, for example, the two
forward references

>

(

type: noun
noun: country

)

>

(

type: noun
noun: area

)

are accessible from the position of the backward reference then the backward refer-
ence would match both forward references. According to the principle of proximity,
it would then be resolved to the closer of the two, i.e. to the one that represents the
noun “area”. There is no possibility to refer to “country” in this case.

In the second version of the grammar rule, the backward reference follows the
category “noun” and the respective binding for the variable “N” is considered for
the resolution of the backward reference. Thus, for resolving the backward reference,
it is considered that the variable “N” is bound to “area”, “person”, “country”, or
whatever occurs in the input text (as long as it is supported by the lexicon). Given the
accessible forward references shown above, the backward reference can be resolved
to the first forward reference if the variable is bound to “country”, or it can be
resolved to second one if the variable is bound to “area”. Apparently, this version of
the grammar rule is more sensible than the first one.

As a rule of thumb, backward references should generally follow the textual rep-
resentation of the anaphoric reference and not precede it.

3.3.11 Restriction on Backward References

In order to provide a proper and efficient lookahead algorithm that can also handle
backward references, their usage must be restricted.

Backward references are restricted in the way that they must immediately follow
a terminal or pre-terminal category in the body of grammar rules. Thus, they are
not allowed at the initial position of the body of a rule and they are not allowed to
follow a non-terminal category.

This restriction ensures that backward references are close to the terminal cat-
egories that represent them. Section 3.5.4 will show how lookahead features can be
implemented if this restriction is followed.
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However, the basic algorithms to be presented that transform Codeco into Prolog
DCGs or use it within a chart parser also work for grammars that do not follow this
restriction. Only the lookahead feature would not work as expected.

3.4 Codeco as a Prolog DCG

Codeco is a declarative notation that is designed to be processable by different kinds
of parsers. This section explains how grammars in Codeco notation can be trans-
formed into definite clause grammars (DCGs) in Prolog. The next section will show
how Codeco can be interpreted by a chart parser.

Prolog DCGs have already been introduced in Section 3.2.3. They are a simple
and convenient way to define grammars and they can be executed with very little
computational overhead. Grammar rules in the Prolog DCG notation use the oper-
ator “-->” and are internally transformed by Prolog in a very simple way into plain
Prolog clauses using the operator “:-”.

SWI Prolog3, which is a popular open source implementation of Prolog, is used
here. However, the presented code should be executable with no or minimal changes
in any other Prolog implementation. Below, it is shown how the different elements
of Codeco map to the Prolog DCG representation.

Feature Structures

First of all, the feature structures of Codeco need to be represented appropriately in
the DCG. This can be done by using Prolog lists. Since such lists unify only if they
have the same length and if their elements are pairwise unifiable, it is required to
know how many and what kind of feature names occur in the Codeco grammar. For
this reason, the different feature names have to be extracted and put into a distinct
order before the actual transformation can start.

Every feature structure in the Codeco grammar is then transformed into a Prolog
list of the length of the number of distinct feature names in the grammar. The
starting point is a list of unbound variables. For every name/value pair of the feature
structure, the list element at the position that corresponds to the feature name is
unified with the feature value.

For example, let us assume that a grammar uses exactly seven feature names,
which are sorted as follows:

id subj type num case gender text

A feature structure like




id: Id

subj: Id

num: sg





3http://www.swi-prolog.org/

http://www.swi-prolog.org/
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is in this case translated into

[Id,Id,_,sg,_,_,_]

in the Prolog DCG representation. Note that each occurrence of the underscore sym-
bol “ ” denotes a different variable in Prolog. Doing this transformation consistently
with all feature structures of the whole grammar ensures that two Prolog lists rep-
resenting two feature structures unify if and only if the two feature structures would
be unifiable.

This transformation is just a simplified version of what more elaborate feature
systems like ProFIT [45] or GULP [36] do.

Categories and Position Operators

Grammatical categories of Codeco — including the special categories for scope open-
ers (“//”), forward references (“>” and “>>”), and negative backward references
(“/<”) — are transformed into Prolog predicates having two arguments. Normal and
complex backward references (“<”) will be discussed below.

The first argument contains the feature structure, or simply a list of unbound
variables if the category has no feature structure. The second argument contains a
complex term of the form “R1/R2” where R1 is the incoming list of references and
R2 is the outgoing list. These reference lists contain all forward references and scope
openers that are accessible. They are used to correctly resolve backward references.
For example, a Codeco category of the form

np





id: Id

subj: Id

num: sg





is translated into the following Prolog term:

np([Id,Id,_,sg,_,_,_],R1/R2)

As we will see shortly, reference lists are connected with each other and threaded
through the grammar rules.

Position operators like # P simply lead to a unary Prolog predicate with the
name “#” containing the respective variable:

#(P)

Normal and Complex Backward References

Normal and complex backward references are treated the same way as the other
categories with the only difference that the first argument is not a feature structure
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itself but a list of feature structures, each of which is prefixed by either “+” or “-”.
Normal backward references only get one “+”-term. E.g.

<

(

type: noun
text: Text

)

is translated into:

<([+[_,_,noun,_,_,_,Text]],R1/R2)

Complex backward references get a “+”-term for every positive feature structure and
a “-”-term for every negative one. E.g.

<+
(

gender: masc

)

−
(

id: Subj

)

is translated into:

<([+[_,_,_,_,_,masc,_],-[Subj,_,_,_,_,_,_]],R1/R2)

Grammar Rules

Normal grammar rules are converted by transforming all involved categories (the one
in the head and the zero or more categories of the body) and by then unifying the
reference lists of the categories in the right way. This is done by unifying the input
list of the head with the input list of the first body category, whose output list is
in turn unified with the input list of the second body category, and so on until the
output list of the last body category is unified with the output list of the head.

For example, the grammar rule

vp
(

num: Num

)

:
−→ adv v

(

num: Num

type: tr

)

np
(

case: acc

)

would be transformed into:

vp([_,_,_,Num,_,_,_],RIn/ROut) -->

adv([_,_,_,_,_],RIn/R1),

v([_,_,tr,Num,_,_,_],R1/R2),

np([_,_,_,_,acc,_,_],R2/ROut).

The threading of the reference lists (which has already been sketched in Sec-
tion 3.2.3 and which is very similar to how Prolog interprets the DCG notation as
plain Prolog programs) ensures that all accessible references are known at every point
of the parsing process. Furthermore, references can be added or removed at any point
by returning a different output list than the one that is received as input list.

Scope-closing rules are basically transformed in the same way, but the resulting
DCG rules end with an additional special predicate of the form “~(RIn,RTemp,
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ROut)” where RIn is the input reference list of the head, RTemp is the output list of
the last body category, and ROut is the output list of the head. This special predicate
is used to remove the references that are not accessible from the outside of the rule.

If the above example had been a scope-closing rule (i.e. using “
∼
−→” instead of

“
:
−→”) then the resulting Prolog DCG rule would have looked as follows:

vp([_,_,_,Num,_,_,_],RIn/ROut) -->

adv([_,_,_,_,_,_,_],RIn/R1),

v([_,_,tr,Num,_,_,_],R1/R2),

np([_,_,_,_,acc,_,_],R2/R3),

~(RIn/R3/ROut).

Special Predicates

The last thing to be done is to define the meaning of the special predicates “>”, “>>”,
“<”, “/<”, “//”, “~” and “#”. Note that none of these special predicates read any
token from the token list to be parsed.

“>” and “>>” simply add a new reference to the reference list. References are
represented by terms consisting of the type of the reference and the respective feature
structure. This behavior can be implemented in Prolog as follows:

>(F, T/[>(F)|T]) --> [].

>>(F, T/[>>(F)|T]) --> [].

Note that the new references are added to the beginning of the lists. As a consequence,
the lists are reversed in the sense that references that occur earlier in the text appear
later in the reference list.

“<”-references succeed if there is a forward reference in the list of references that
unifies with a positive feature structure and is not unifiable with any negative one.
The closest possible reference should be taken if more than one such forward reference
exists. This can be implemented in the form of the two Prolog DCG rules

<(L, [R|T]/[R|T]) --> {

R =.. [_,Q],

\+ member(-Q, L),

\+ \+ member(+Q, L),

!,

member(+Q, L)

}.

<(L, [R|T]/[R|T]) --> <(L,T/T).

where “member/2” (i.e. the predicate that has the name “member” and takes two
arguments) is a built-in Prolog predicate that is used to access the elements of lists.
The list is searched for a matching forward reference starting from the beginning of
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the list which corresponds to the textually closest reference (because the lists are
reversed). It is first checked that no negative feature structure matches by using the
Prolog negation operator “\+”. Then, it is checked whether at least one of the positive
feature structures matches without already performing the actual unification. This
is achieved by using double negation “\+ \+”. In the case this succeeds, the cut “!”
is used to prevent from looking for further forward references. The actual unification
is performed only after the cut in order to account for the fact that more than one
of the positive feature structures may match.

“/<”-references should succeed only if there is no matching forward reference in
the reference list. This can be implemented with the following DCG rule:

/<(F, T/T) --> {

\+ ( member(R,T), R =.. [_,F] )

}, !.

The implementation of the “//”-predicate is very simple. It just adds the symbol
“//” to the references list:

//(_, T/[//|T]) --> [].

The “~”-predicate needs to remove all references that are not accessible from the
outside of the scope-closing rule. If a scope opener has been added by one of the
body categories then everything that has been added later — except strong forward
references — has to be removed again. However, the elements of the reference list
that were already present in the input list of the head should not be changed. The
following code implements this:

~(RIn/RTemp/ROut) --> {

append([X,[//|N],RIn],RTemp),

\+ member(//,N),

findall(>>(R),member(>>(R),X),Y),

append([Y,N,RIn],ROut)

}, !.

The predicates “append/2” and “findall/3” are again built-in. “append/2” takes
a list of lists and returns another list that is obtained by consecutively appending
the lists contained in the input list. “findall/3” looks for all possible solutions for
a given goal and returns them in a list. These predicates are easy to implement by
hand if the used Prolog interpreter does not support them.

If no scope has been opened then the temporary reference list coming from the
last body category is returned unchanged:

~(_/ROut/ROut) --> [].

Finally, the “#”-predicate needs to bind its variable to a certain position identifier.
The easiest way to do this in Prolog is to take the number of tokens that still have to
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be processed (taking the number of tokens that already have been processed is more
complicated). This cannot be done in the form of a DCG rule but a plain Prolog
clause has to be used:

#(#(P),L,L) :- length(L,P).

The built-in predicate “length/2” is used to determine the length of the list of
unprocessed tokens. The variable is not bound to the bare position number “P” but
to the complex term “#(P)” in order to prevent from unwanted unifications with
features values that do not come from a position operator.

Altogether, these transformations allow us to execute Codeco grammars as Prolog
DCGs. Performance measurements will be presented in Section 3.8.4.

3.5 Codeco in a Chart Parser

As already mentioned earlier, DCGs have some shortcomings. Compared to the pars-
ing approach of Prolog DCGs, chart parsers are much better suited for implemen-
tations in procedural or object-oriented programming languages. This is because
chart parsers do not depend on backtracking. Furthermore, lookahead features can
be implemented in a much more efficient way with chart parsers.

The basic idea of chart parsers is to store temporary parse results in a data
structure that is called chart and that contains small portions of parse results in the
form of edges (sometimes simply called items).

The algorithm for Codeco to be presented here is based on the chart parsing
algorithm invented by Jay Earley that is therefore known as the Earley algorithm [44].
Grune and Jacobs [64] discuss this algorithm in more detail, and Covington [37] shows
how it can be implemented. The specialty of the Earley algorithm is that it combines
top-down and bottom-up processing.

The parsing time of the standard Earley algorithm is in the worst case cubic
with respect to the number of tokens to be parsed and only quadratic for the case of
unambiguous grammars. However, this holds only if the categories have no arguments
(e.g. feature structures). Otherwise, parsing is NP-complete in the general case. In
practice, however, Earley parsers perform very well for most grammars and never
come even close to these worst-case measures.

The processing of Codeco grammars within an Earley parser as described in
this section has been implemented in Java and is available as open source software.
Evaluation results of this implementation will be shown in Section 3.7. This Java
implementation is the basis for the predictive editor that is used in the ACE Editor
(see Section 4.2) and in AceWiki (see Section 4.4).

Below, a meta language is introduced. This meta language is then used to de-
scribe the elements of a chart parser and to explain the different steps of the parsing
algorithm. Finally, it is shown how lookahead information for partial texts can be
extracted from the chart.
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3.5.1 Meta Language

In order to be able to talk about the elements of chart parsers (i.e. rules and edges)
in a general way, it is very useful to define a meta language. In this section, the
following meta symbols will be used:

F stands for a feature structure, i.e. a set of name/value pairs.

A stands for any (terminal, pre-terminal or non-terminal) category, i.e.
a category name followed by an optional feature structure.

α stands for an arbitrary sequence of zero or more categories.

r stands for a forward reference symbol, i.e. either “>” or “≫”.

ρ stands for an arbitrary sequence of zero or more forward references
“rF” and scope openers “�”.

s stands for either a colon “:” or a tilde “∼” so that “
s
−→” can stand for

“
:
−→” or for “

∼
−→”.

i stands for a position identifier that represents a certain position in the
input text.

All meta symbols can have a numerical index to distinguish different instances of the
same symbol, e.g. α1 and α2. Other meta symbols will be introduced as needed.

3.5.2 Chart Parser Elements

Before the actual parsing steps can be described, the fundamental elements of Earley
parsers have to be introduced: the edges and the chart. Furthermore, a graphical
notation is introduced that will be used to describe the parsing steps in an intuitive
way.

Edges

The edges of a chart parser are derived from the grammar rules and like the grammar
rules they consist of a head and a body. Every edge has the following general form
(using the meta language introduced above):

〈i1, i2〉 A −→ α1 • α2

A is the head of the edge. The body of the edge is split into a sequence α1 of
categories that have already been recognized and another sequence α2 of categories
that still have to be processed. The dot “•” indicates where the first sequence ends
and the second one starts. Furthermore, every edge has a start position i1 and an
end position i2.
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The following example should clarify how edges work. If the grammar contains a
rule

s
:
−→ np vp

then this rule could lead to the edge

〈0, 0〉 s −→ • np vp

where start and end position are both 0 and where the body starts with the dot
symbol “•”. This edge has the meaning that we are looking at the position 0 for the
category “s” but nothing has been found so far. If the text between position 0 and
2, for example, is recognized as an “np” then a new edge

〈0, 2〉 s −→ np • vp

could be added to the chart. This edge means that we started looking for an “s” at
position 0 and until position 2 we already found an “np”, but a “vp” is still needed
to make it a complete “s”. Assuming that a “vp” is later recognized between the
positions 2 and 5, a new edge

〈0, 5〉 s −→ np vp •

could be added. This edge represents the fact that between the positions 0 and 5 a
complete “s” has been recognized consisting of an “np” and a “vp”.

Edges like the last one where all categories of the body are recognized are called
passive. All other edges are called active and their first category of the sequence of
not yet recognized categories is called their active category.

Edges with Antecedents

Processing Codeco grammars requires an extended notation for edges. Whenever a
backward reference occurs, we need to be able to find out which antecedents are
accessible from that position. For this reason, edges coming from a Codeco grammar
have to carry information about the accessible antecedents.

First of all, every edge must carry the information whether it originated from a
normal rule or a scope-closing one. Edges originating from normal rules are called
normal edges and edges coming from scope-closing rules are called scope-closing
edges. Like the rules they originate from, normal edges are represented by an arrow
with a colon “

:
−→” and scope-closing edges use an arrow with a tilde “

∼
−→”.

Furthermore, every Codeco edge has two sequences which are called external
antecedent list and internal antecedent list. Both lists are displayed above the arrow:
the external one on the left of the colon or tilde, the internal one on the right thereof.
Both antecedent lists are sequences of forward references and scope openers. Hence,
Codeco edges have the following general structure:

〈i1, i2〉 A
ρ1 s ρ2
−−−−−→ α1 • α2



CHAPTER 3. GRAMMAR 81

ρ1 is the external antecedent list. It represents the antecedents that come from
outside the edge, i.e. from earlier positions than the starting position i1.

ρ2 is the internal antecedent list. It contains the antecedents that come from
inside the edge, i.e. from the categories of α1 and their children. Internal antecedents
are textually somewhere between the start and the end position of the respective
edge.

Scope openers in the antecedent lists show where scopes have been opened that
are not yet closed up to the given position.

As a concrete example, the antecedent lists of an edge could look as follows:

. . .

� ≫

(

type: prop
text: ’Sue’

)

: >

(

type: var
text: ’X’

)

� >

(

type: noun
text: ’man’

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ . . .

In this case, the external antecedent list consists of a scope opener and a strong
forward reference. The internal antecedent list consists of a normal forward refer-
ence followed by a scope opener followed by another normal forward reference. The
colon “:” separates these two lists. Concretely, a backward reference could potentially
attach to three different antecedents in this situation: the proper name “Sue”, the
variable “X”, and the noun “man”.

Chart

A chart in the context of chart parsers is a data structure used to store the partial
parse results in the form of edges. Before the parsing process for a certain text starts,
the chart is empty.

Edges are only added to the chart if they are not yet contained. Thus, it is not
possible to have more than one copy of the same edge in the chart. Furthermore,
edges are not changed or removed from the chart once they are added (unless the
input text changes).

Traditionally, chart parsers perform a subsumption check for each new edge to be
added to the chart [37]. A potential new edge is added to the chart if and only if no
equivalent or more general edge already exists.

For reasons that will become clear later, the algorithm to be presented requires
an equivalence check and not a subsumption check. New edges are added to the chart
except for the case that an edge is already contained that is fully equivalent to the
new one.

Graphical Notation

In order to be able to describe the chart parsing steps for the Codeco notation in
an intuitive way, a simple graphical notation is used that is inspired by Gazdar and
Mellish [58]. The different positions of the input text are represented by small circles
that are arranged as a horizontal sequence. For example, the simple sentence “France
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borders Spain” would lead to four small circles standing for the four positions in the
input text:

0
France

1
borders

2
Spain

3

Each position has an identifier: 0, 1, 2 and 3 in the given example.
Edges are represented by arrows that point from their start position to their end

position and that have a label with the remaining edge information. For the example
shown above, two possible edges could be

〈0, 1〉 s −→ np • vp

〈2, 2〉 np −→ • prop

that would be represented in the graphical notation as follows:

0
France

1
borders

2
Spain

3

s −→ np • vp np −→ • prop

A general edge is represented by

. . .

A
ρ1 s ρ2
−−−−−→ α1 • α2

i1 i2

where the three dots “. . . ” mean that i2 is either the same position as i1 or directly
follows i1 or indirectly follows i1. Thus, the case i1 = i2 that would be represented
as

A
ρ1 s ρ2
−−−−−→ α1 • α2

i1 = i2

is included by the representation above. In this way, active edges can be generally
represented by

. . .

A1
ρ1 s ρ2
−−−−−→ α1 •A2α2

i1 i2
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where A2 is the active category of the edge. Passive edges, in contrast, have the
general form

. . .

A
ρ1 s ρ2
−−−−−→ α •

i1 i2

where the dot is at the last position of the body.

This graphical notation will later be used to describe the parsing steps in an
explicit but intuitive way.

3.5.3 Chart Parsing Steps

In a traditional Earley parser, there are four parsing steps: initialization, scanning,
prediction and completion. In the case of Codeco, an additional step — to be called
resolution — is needed to resolve the references, position operators, and scope open-
ers.

Below, the general algorithm is explained. After that, a graphical notation to
describe the parsing steps is introduced that uses the notation for edges introduced
above. This notation is then used to define each of the five parsing steps, i.e. initializa-
tion, scanning, prediction, completion and resolution. Finally, some brief complexity
considerations are shown.

3.5.3.1 General Algorithm

The general algorithm starts with the initialization. This step is performed at the
beginning to initialize the empty chart. Then, prediction, completion and resolution
are performed several times which together will be called the PCR step. This PCR
step corresponds to the “Completer/Predictor Loop” as described by Grune and
Jacobs [64]. A text is then parsed by consecutively scanning the tokens of the text.
After each scanning of a token, again the PCR step is performed. The following piece
of pseudocode shows this general algorithm:

parse(tokens) {

new chart

initialize(chart)

pcr(chart)

foreach t in tokens {

scan(chart,t)

pcr(chart)

}

}
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The PCR step consists of executing the prediction, completion and resolution
steps until none of the three is able to generate an edge that is not yet in the chart.
This can be implemented as follows:

pcr(chart) {

loop {

c := chart.size()

predict(chart)

complete(chart)

resolve(chart)

if c=chart.size() then return

}

}

Prediction, completion and resolution are performed one after the other and starting
over again until none of the three can contribute a new edge. The actual order of
these three steps can be changed without breaking the algorithm. It can have an
effect (positive or negative) on the performance though.

In terms of performance, there is potential for optimization anyway. First of all,
the algorithm above checks the chart for new edges only after the resolution step. An
optimized algorithm checks after each step whether the last three steps contributed
a new edge or not. Furthermore, a progress table can be introduced that allows the
different parsing steps to remember which edges of the chart they already checked.
In this way, edges can be prevented from being checked by the same parsing step
more than once.

Such an optimized algorithm can look as follows (without going into the details
of the progress table):

pcr(chart) {

step := 0

i := 0

new progressTable

loop {

c := chart.size()

if step=0 then predict(chart,progressTable)

if step=1 then complete(chart,progressTable)

if step=2 then resolve(chart,progressTable)

if c=chart.size() then i := i+1 else i := 0

if i>2 then return

step := (step+1) modulo 3

}

}

The variable i counts the number of consecutive idle steps, i.e. steps that did not
increase the number of edges in the chart. The loop can be exited as soon as this
value reaches 3. In this situation, no further edge can be added because each of the
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three sub-steps has been performed on exactly the same chart without being able to
add a new edge.

3.5.3.2 Graphical Notation for Parsing Steps

Building upon the graphical notation for edges introduced above, the parsing steps
will be described by the use of a graphical notation that has a large arrow in the
middle of the picture and that corresponds to the following scheme:

⇒(edges in the chart) (edge to be added)

(rule in the grammar)

On the left hand side of the arrow, edges are shown that need to be in the chart in
order to execute the described parsing step. If a grammar rule is shown below the
arrow then this rule must be present in the grammar for executing the parsing step.
On the right hand side of the arrow the new edge is shown that has to be added to
the chart when the described parsing step is executed, unless the resulting edge is
already there.

If a certain meta symbol occurs more than once on the left hand side of the picture
and in the rule representation below the arrow then this means that the respective
parts have to be unifiable but not necessarily identical. When generating the new
edge, these unifications have to be considered but the existing edges in the chart and
the grammar rules remain unchanged.

3.5.3.3 Initialization

At the very beginning, the chart has to be initialized. For each rule that has the
start category (according to which the text should be parsed) on its left hand side,
an edge is introduced into the chart at the start position:

⇒
I

s
−→ α

I
s
−→ • α

i0 i0

i0 stands for the start position of the chart, i.e. the position that represents the
beginning of the input text, and I stands for the start category of the grammar. The
only difference to the standard Earley algorithm is that the information about normal
and scope-opening rules is taken over from the grammar to the chart, represented
by s.
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3.5.3.4 Scanning

During the scanning step, a token is read from the input text. This token can be
interpreted as a terminal symbol T for which a passive edge is introduced that has
T on its left hand side:

T ⇒ T

T
:
−→ •

Furthermore, the token can also be a possible extension for one or more pre-terminal
symbols P :

T ⇒ T

P
:
−→ T •

P → T

The rule P → T can come from the static grammar or from a dynamically managed
lexicon.

3.5.3.5 Prediction

The prediction step looks out for grammar rules that could be applied at the given
position. For every active category in the chart that matches the head of a rule in
the grammar, a new edge is introduced (unless it is already in the chart):

. . . ⇒ . . .

A
ρ1 s1 ρ2
−−−−−−→ α1 •Nα2

N
s2−→ α3

N
ρ1ρ2 s2
−−−−−→ • α3

N denotes a non-terminal category. The external antecedent list of the new edge is
a concatenation of the external and the internal antecedent list of the existing edge.
The internal antecedent list of the new edge is empty because it has no recognized
categories in its body and thus cannot have internal antecedents.

Remember that the three dots “. . . ” mean that an arbitrary number of nodes can
exist between the two shown nodes and that the two nodes can also be one and the
same. Thus, the new edge that is produced by such a prediction step can itself be
used to produce more new edges by again applying the prediction step at the same
position.
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3.5.3.6 Completion

The completion step takes the active categories of the active edges in the chart and
looks for passive edges with a corresponding head. If such two edges can be found
then a new edge can be created out of them.

Informally speaking, if there is an edge that is not yet finished (i.e. active) and
needs a certain category to proceed (i.e. its active category) and this category matches
the head of a finished (i.e. passive) edge that starts at the position where the first
edge ends then the category is recognized in the input text and the first edge can
make one step forward and span to the end of the recognized category.

In the standard Earley algorithm, there is only one kind of completion step. The
extensions for references, however, make it necessary to differentiate between the
cases where the passive edge is a normal edge and those where it is a scope-closing
edge.

In the case of a normal edge, the completion step looks as follows:

. . . . . . ⇒ . . . . . .

A1
ρ1 s ρ2
−−−−−→ α1 •A2α2

A2
ρ1ρ2 : ρ3
−−−−−−−→ α3 •

A1
ρ1 s ρ2ρ3
−−−−−−−→ α1A2 • α2

In contrast to the standard Earley algorithm, not only the active category of the
active edge has to match the head of the passive edge, but also the references of the
active edge have to be present in the same order in the passive edge.

If no scope has been opened then scope-closing edges are completed in exactly
the same way as normal edges:

. . . . . . ⇒ . . . . . .

A1
ρ1 s ρ2
−−−−−→ α1 •A2α2

A2
ρ1ρ2 ∼ ρ3
−−−−−−−→ α3 •

A1
ρ1 s ρ2ρ3
−−−−−−−→ α1A2 • α2

where ρ3 contains no scope opener �

If one or more scopes have been opened then all scope openers and all normal for-
ward references that come after the first scope opener are removed from the internal
antecedent list for the new edge to be added:
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. . . . . . ⇒ . . . . . .

A1
ρ1 s ρ2
−−−−−→ α1 •A2α2

A2

ρ1ρ2 ∼ ρ3 � ρ4
−−−−−−−−−−−−→ α3 •

A1
ρ1 s ρ2ρ3ρ5
−−−−−−−−−→ α1A2 • α2

where ρ3 contains no scope opener �

where ρ5 is the sequence of all ≫-references
that appear in ρ4 (in the same order)

It is important to see that these three completion rules are non-overlapping in
the sense that for two given edges at most one new edge can be generated.

3.5.3.7 Resolution

In order to handle position operators, scope openers, and references, an additional
parsing step is needed which I call resolution. It is now shown how and under which
circumstances these special elements of Codeco can be resolved. Generally, only ele-
ments occurring in the position of an active category are resolvable.

A position operator is resolved by unifying its variable with an identifier that
represents the given position in the input text:

. . . ⇒ . . .

A
ρ1 s ρ2
−−−−−→ α1 •#i α2 A

ρ1 s ρ2
−−−−−→ α1 #i • α2

i

Remember that the two occurrences of i on the left hand side mean that the two
parts must be unifiable, and that the i on the right hand side represents the unified
version of the two.

Scope openers are resolved by adding the scope opener symbol to the end of the
internal antecedent list:

. . . ⇒ . . .

A
ρ1 s ρ2
−−−−−→ α1 • �α2 A

ρ1 s ρ2�
−−−−−−→ α1 � • α2

Forward references are resolved in a similar way as scope openers. Together with
their feature structure, they are added to the end of the internal antecedent list:

. . . ⇒ . . .

A
ρ1 s ρ2
−−−−−→ α1 •>F α2 A

ρ1 s ρ2>F
−−−−−−−−→ α1 >F • α2

Strong forward references are resolved accordingly:
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. . . ⇒ . . .

A
ρ1 s ρ2
−−−−−→ α1 •≫F α2 A

ρ1 s ρ2≫F
−−−−−−−−→ α1≫F • α2

Complex backward references can be resolved to an internal antecedent or — if
this is not possible — to an external one. The resolution to an internal antecedent
works as follows (with 1 ≤ x ≤ m and 0 ≤ n):

. . . ⇒ . . .

A
ρ1 s ρ2rF1ρ3
−−−−−−−−−−→ α1 •<

+F ′
1... F

′
x... F

′
m

−F ′′
1 ... F

′′
n α2

A
ρ1 s ρ2rF2ρ3
−−−−−−−−−−→ α1 <

+F ′
1... F2... F

′
m

−F ′′
1 ... F

′′
n • α2

where F1 is unifiable with F ′

x
and is not

unifiable with any F ′′, and where ρ3 contains
no rF2 such that F2 is unifiable with an F ′

while being not unifiable with any F ′′

where F1 and F ′

x
are unified and F2 is the

result of this unification

The positive feature structures of the complex backward reference are denoted by
F ′, the negative ones by F ′′. The resolution of a complex backward reference to an
external antecedent is straightforward:

. . . ⇒ . . .

A
ρ1rF1ρ2 s ρ3
−−−−−−−−−−→ α1 •<

+F ′
1... F

′
x... F

′
m

−F ′′
1 ... F

′′
n α2

A
ρ1rF2ρ2 s ρ3
−−−−−−−−−−→ α1 <

+F ′
1... F2... F

′
m

−F ′′
1 ... F

′′
n • α2

where F1 is unifiable with F ′

x
and is not

unifiable with any F ′′, and where ρ2 and ρ3
contain no rF2 such that F2 is unifiable with
an F ′ while being not unifiable with any F ′′

where F1 and F ′

x
are unified and F2 is the

result of this unification

Note that the same edge can produce more than one new edge when several positive
feature structures can unify with the same forward reference. Since normal backward
references are equivalent to complex ones for the case x = m = 1 and n = 0, they do
not need to be discussed separately.

Finally, negative backward references have to be resolved. They can be resolved
only if no matching antecedent exists, neither internal nor external:
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. . . ⇒ . . .

A
ρ1 s ρ2
−−−−−→ α1 •≮F1 α2 A

ρ1 s ρ2
−−−−−→ α1 ≮F1 • α2

where ρ1 and ρ2 contain no rF2 such that F2

can unify with F1

Here it becomes clear why an equivalence check — and not just a subsumption check
— is needed before adding new edges to the chart. A negative backward reference that
is resolvable given certain antecedent lists is not necessarily resolvable in the case of
antecedent lists that are more general (e.g. have at certain positions variables instead
of atoms but are otherwise the same). More specific edges can behave differently than
general ones, and for this reason an edge has to be added to the chart even if a more
general edge already exists.

3.5.3.8 Complexity Considerations

Let us have some brief and scruffy complexity considerations for the shown algorithm
in terms of both, space and time. This can be done by a comparison to the standard
Earley algorithm that has been proven to be efficient in practical applications.

The space requirements of chart parsers can be measured by the size of the chart,
i.e. by the number of contained edges. As long as the positive feature structures
of complex backward references are pairwise disjoint (i.e. not unifiable), the special
elements of Codeco increase the number of edges in the chart — compared to the
standard Earley algorithm — only linearly with respect to the number of special
elements used in the grammar, and only by a constant factor with respect to the
length of the token list. This can be seen by the fact that the scanning, prediction,
and completion steps do not produce more edges than in the standard algorithm.
Furthermore, for each edge and its descendant edges containing special elements the
resolution step can be applied at most once for each special element. Only in the
case of complex backward references with positive feature structures that are not
pairwise disjoint, this does not necessarily hold. Thus, the chart can be expected to
remain reasonably small as long as complex backward references with more than one
positive feature structure are used with caution.

In terms of time complexity, it is easy to verify that the additional time needed
— compared to the standard algorithm — for processing any edge in the prediction
or resolution step or any two edges in the completion step is linear with respect
to the number of elements in the external and internal antecedent list. Since the
number of elements in the antecedent lists is linearly correlated to the number of
parsed tokens and since the number of tokens increases the chart only by a constant
factor, it can be concluded that the amount of additional time that is needed grows
only in a linear way with respect to the number of tokens. Furthermore, checking for
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the equivalence of edges does not take more than twice as much time compared to
checking for subsumption (because equivalence can be checked by a mutual check for
subsumption). Altogether, the presented algorithm can be expected to be reasonably
fast.

3.5.4 Lookahead with Codeco

Given the introduced chart parsing algorithm, providing lookahead features — as
they are needed for predictive editors — can be implemented efficiently in a relatively
simple way.

The basic idea is that the lookahead information is stored in the active categories
of the edges in the chart. Active categories denote categories that are predicted to
possibly occur after the end position of the edge. Thus, every terminal category that
is an active category of an edge that has its end position at the end of a partial text
is a possible token to continue the partial text. Pre-terminal categories and backward
references, however, make the actual algorithm slightly more complicated.

The possible next tokens will be described as sets of options where at least one
of the options must be fulfilled by a token to be a possible continuation of a given
partial text. The algorithm to be introduced can describe the possible next tokens
in an abstract and in a concrete way by generating a set of abstract options Oa and
another set of concrete options Oc. An abstract option would say, for example, that
any proper name is a possible next token. A concrete option, in contrast, would say
for example that the concrete proper name “Bill” is a possible token.

In order to get this lookahead information, the partial text has to be parsed, i.e.
the chart has to be filled with the edges that represent the syntactic representation
of the partial text. As a next step, the abstract options can be extracted. After that,
the set of concrete options can be created using the set of abstract options and the
lexicon entries.

Abstract Options Extraction

First of all, a formal structure for abstract options has to be defined. In the algorithm
to be presented, abstract options have the form

C/ {X1 . . . Xn}

with 0 ≤ n and where C and each Xj are terminal or pre-terminal categories. C
denotes a category of possible next tokens with Xj being exceptions in the form of
more specific categories describing tokens that are not possible. For instance, the
abstract option

var /
{

var
(

varname: X

)

var
(

varname: Z

)}

states that all tokens of the pre-terminal category “var” are possible next tokens with
the exception of those with a “varname” feature value of “X” or “Z”. Concretely,
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this means that any variable is a possible next token except “X” and “Z”. Another
example is

pron

(

refl: –
gender: fem

)

/ {}

that denotes that any irreflexive feminine pronoun is a possible next token. Terminal
categories can also appear in abstract options, e.g.

[ that ] / {}

stating that the word “that” is a possible next token.

The set of abstract options Oa is extracted from the edges of the chart. This is
done by iterating over all edges that have their end position at the position where
the partial text ends. This position will be denoted by ix. Furthermore, only edges
are relevant that have a terminal or pre-terminal category (denoted by T ) as their
active category.

First, let us consider edges that have a complex backward reference after their
active category. For every edge — and for every possible F ′

x therein — of the form

. . .

A
ρ1 s ρ2
−−−−−→ α1 • T<

+F ′
1... F

′
x... F

′
m

−F ′′
1 ... F

′′
nα2

ix

with 1 ≤ x ≤ m and 0 ≤ n, and for every rF1 that is contained in ρ1 or in ρ2 and
that has a feature structure F1 that is unifiable with F ′

x, an abstract option

T ′/ {T ′′
1 . . . T ′′

t }

is added to Oa where T ′ is the result of category T after unifying F1 and F ′
x and

where the exceptions are obtained as follows: For every F ′′ that is unifiable with F1,
an exception T ′′ is added that is the result of category T after unifying F1 and F ′′.
The differentiation between T and T ′ is necessary because the unification of F1 and
F ′
x can entail the binding of variables that also occur in T . Altogether, this has the

effect that terminal or pre-terminal categories in front of backward references are
reported as possible next tokens with exceptions that describe all cases for which the
reference can afterwards not be resolved.

Again, this part of the algorithm described on the basis of complex backward
references also applies for normal backward references which will not be discussed
separately. Normal backward references are just a special case of complex ones.

Next, we have to handle edges with negative backward references. For every edge
of the form
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. . .

A
ρ1 s ρ2
−−−−−→ α1 • T≮Fα2

ix

an abstract option
T/ {T ′

1 . . . T
′
n}

is added to Oa where the exceptions T ′
i are obtained as follows: For every rF ′ that is

contained in ρ1 or in ρ2 and that has a feature structure F ′ that is unifiable with F ,
an exception T ′

j is added that is the result of category T after unifying F and F ′. The
effect of this is that terminal or pre-terminal categories that are in front of negative
backward references are reported as possible next tokens together with exceptions
that describe all cases where the negative backward reference can afterwards find a
matching antecedent and thus cannot be resolved.

So far, these option descriptions “look” only one step ahead. They do not cover
cases where more than one terminal or pre-terminal category exists between the ac-
tive position and the backward reference. In the case of complex backward references,
however, it is possible and useful to look more than one step ahead. The symbol δ is
used to represent a sequence of one or more terminal or pre-terminal categories.

For every edge — and for every possible F ′
x therein — of the form

. . .

A
ρ1 s ρ2
−−−−−→ α1 • Tδ<

+F ′
1... F

′
x... F

′
m

−F ′′
1 ... F

′′
nα2

ix

and for every rF that is contained in ρ1 or in ρ2 and that has a feature structure F
that is unifiable with F ′

x, an abstract option

T ′/ {}

is added to Oa where T ′ is the result of category T after unifying F and F ′
x.

Finally, edges that have a terminal or pre-terminal category at their active po-
sition but are not covered by the patterns introduced so far, an abstract option is
created the following way: For every edge of the form

. . .

A
ρ1 s ρ2
−−−−−→ α1 • Tα2

ix

that is not covered by the patterns introduced above, an abstract option

T/ {}



94 CHAPTER 3. GRAMMAR

is added to Oa. This means that when no backward reference is close to the active
category then this terminal or pre-terminal category is reported as a category of a
possible next token.

In this way, a set of abstract options Oa is obtained that describes the possible
next tokens in a general way, i.e. without considering the lexicon. As we will see,
such general lookahead information can be important for predictive editors.

Concrete Options Extraction

In contrast to abstract options that can describe possible next tokens (i.e. termi-
nal categories) without explicitly listing them, concrete options show the concrete
terminal categories that are possible at the given position in the text.

Concrete options could actually just be terminal categories. For user-friendly pre-
dictive editors, however, it can be necessary to know also the pre-terminal categories
from which the terminal categories are derived, e.g. for grouping the possible next
words into different sub-menus. For this reason, concrete options have the form

W ← C

where W is a terminal category denoting a word and C is a pre-terminal category
from which W has been derived. The following example of a concrete option repre-
sents the possibility to continue the partial text with the noun “country”:

[ country ] ← noun
(

human: –

)

The special symbol “∅” is used at the position of C if the given word does not
originate from a lexical rule but directly from the grammar. The concrete option

[ every ] ← ∅

for instance, states that “every” is a possible next token that does not come from the
lexicon but is part of the grammar rules.

The set of concrete options Oc can be generated on the basis of the abstract
options Oa. For every abstract option

W/ {}

that is contained in Oa and where W is a terminal category, a concrete option

W ← ∅

is added to Oc.
Furthermore, for every abstract option

C/ {X1 . . . Xn}
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that is contained in Oa and where C is a pre-terminal category, and for each lexical
rule

C ′ → W

that is contained in the grammar and where C ′ is unifiable with C but is not unifiable
with any Xj , the concrete option

W ← C

is added to Oc.
In this way, a set of concrete options Oc is obtained. This set contains the concrete

word forms that are possible to follow the given partial text.

Lookahead Interface

Parsers that implement these algorithms can provide a simple interface for predictive
editors to access the lookahead features. Assuming that the partial text has already
been submitted to the parser, the predictive editor module can simply request the
set of concrete options Oc and — if needed — also the set of abstract options Oa. In
this way, the predictive editor module has all needed information in order to show to
the user how the partial text can be continued, e.g. in the form of graphical menus.

The set of concrete options can directly be presented to the user as possible
next words. On the basis of the set of abstract options, the predictive editor can,
for example, allow users to create new words that are not yet known at the time
the lookahead algorithm runs. Thus, the predictive editor does not only know which
concrete words can follow a partial text but also which words in general would be
allowed if they were in the lexicon.

Completeness and Correctness

Finally, the presented lookahead algorithm can be analyzed with respect to com-
pleteness and correctness.

The presented algorithm is complete in the sense that it returns every token that
can, together with the tokens of the partial text, be completed to a well-formed
statement according to the grammar. The algorithm is also correct in the sense that
it only returns the tokens for which, together with the tokens of the partial text, a
partial syntax tree exists that is valid with respect to the grammar.

These definitions of completeness and correctness leave some freedom on how to
handle certain special cases. The definitions do not say anything about the tokens
that lead to a valid partial syntax tree that cannot be completed to a full statement.
This can happen, for example, if the edge used for predicting the next token contains
at a later position a non-terminal category that does not occur as a head in any of
the grammar rules. In this case, the edge can never complete and the predicted token
is actually not a possible next token to complete the partial text, even though a valid
partial syntax tree can be constructed.



96 CHAPTER 3. GRAMMAR

Thus, Codeco grammars should be designed in such a way that invalid statements
fail at the earliest possible position, i.e. at the first position for which no continuation
to a valid statement exists. I would argue that properly designed grammars should
follow this restriction anyway.

3.6 Possible Codeco Extensions

The presented grammar notation called Codeco can be seen as a proposal of a general
grammar notation for CNLs. Its design was driven by ACE and — as I will show
later in this chapter — it works out nicely for describing subsets of ACE. However,
I cannot prove at this point that Codeco is suitable for the definition of CNLs in
general (or at least for the definition of English-based CNLs in general). Extensions
and modifications of Codeco might become necessary in the future in order to meet
the requirements of other CNLs.

Some possible extensions are discussed below, concretely the inclusion of seman-
tics and general feature structures.

3.6.1 Semantics in Codeco

The presented Codeco notation describes only the syntax of a CNL but not its
semantics. Codeco grammars have so far mainly been used in predictive editors for
which semantics are not essential. For this reason, the focus of Codeco was on syntax
and not on semantics.

However, it is easy to extend the Codeco notation so that it is capable of rep-
resenting semantics. A simple method is to attach λ-terms to the grammar rules,
which can afterwards be retrieved from the syntax tree and compiled into a logical
formula by β-reduction.

For example, a rule like

quant
(

exist: –

)

:
−→ � [ every ]

can be assigned a λDRS representation

λP.λQ. z ⊕ P@z ⇒ Q@z

as shown by Blackburn and Bos [15] where ⊕ is an operator to merge DRS boxes.
In this way, the semantics can be represented in a concrete and declarative way too.

An important property of this approach is that syntax and semantics are clearly
separated. The semantic representation is completely irrelevant for the definition of
the language, i.e. for defining which sentences are part of the language and which are
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not. This makes it easy, for example, to reuse a Codeco grammar or a part thereof
under a different semantic framework.

3.6.2 General Feature Structures

As a second possible extension, the restriction to flat feature structures in Codeco
could easily be dropped. This can make complex grammar definitions more elegant
because features that are often shared between categories can be grouped. Further-
more, general feature structures would increase the expressivity of Codeco because
arbitrarily nested structures could be passed from one grammar rule to another one,
which is not possible otherwise.

However, general feature structures also impose new problems. With flat fea-
ture structures where the values can only be atoms or variables, only very simple
cases of unification can occur: atom with atom, atom with variable, and variable
with variable. This is relatively easy to implement in procedural or object-oriented
programming languages in an efficient way. With general feature structures, more
complex unifications — like feature structure with feature structure — have to be
handled that cannot occur in plain Codeco.

Thus, the support for general feature structures would make Codeco more ex-
pressive but also more complicated and harder to implement. Furthermore, as the
ACE Codeco grammar shows that will be presented in the next section, also complex
subsets of English can conveniently be represented with flat feature structures.

3.7 ACE Codeco Grammar

The introduced Codeco notation has been used to describe a large subset of ACE, to
be called simply ACE Codeco. Appendix A shows the complete grammar consisting
of 164 grammar rules.

Both implementations of Codeco — the Prolog DCG representation and the Java
Earley parser implementation — can not only be used to parse but also to generate
sentences. Thus, all syntactically correct sentences up to a certain sentence length can
be generated automatically. This can be used to evaluate the ACE Codeco grammar,
the parser implementations, and the Codeco notation itself in various ways.

First of all, the coverage of ACE Codeco with respect to the full language of ACE
is described. Then, a subset thereof is introduced that has been used for evaluating
the grammar by exhaustive language generation, and the results of this evaluation
are shown.

3.7.1 ACE Codeco Coverage

The ACE Codeco grammar covers a large part of ACE including countable nouns,
proper names, intransitive and transitive verbs, adjectives, adverbs, prepositions,
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plurals, negation, comparative and superlative adjectives and adverbs, of -phrases,
relative clauses, modality, numerical quantifiers, coordination of sentences / verb
phrases / relative clauses, conditional sentences, and questions. Anaphoric refer-
ences are possible by using simple definite noun phrases, variables, and reflexive and
irreflexive pronouns.

However, there are some considerable restrictions with respect to the full language
of ACE. Mass nouns, measurement nouns, ditransitive verbs, numbers and strings
as noun phrases, sentences as verb phrase complements, Saxon genitive, possessive
pronouns, noun phrase coordination, and commands are not covered at this point.

Nevertheless, this subset of ACE defined by the Codeco grammar is — to my
knowledge — the broadest subset of English that has ever been defined in a concrete
and fully declarative way and that includes complex issues like anaphoric references.
This grammar is used by the predictive editor of the ACE Editor that will be intro-
duced in Section 4.2.

3.7.2 Evaluation Subset of the ACE Codeco Grammar

When sentences are generated from a grammar in an exhaustive manner then one
quickly encounters a combinatorial explosion on the number of generated sentences.
In practice, this means that one has to define a sublanguage so that only the sen-
tences of this sublanguage are generated. Otherwise, only very short sentences can
be generated within reasonable time. Such a sublanguage has to be restricted on the
lexical as well as on the grammatical level.

The following two sections illustrate why it is necessary to restrict lexicon and
grammar, and show how a sublanguage of ACE Codeco has been defined for evalu-
ation purposes.

3.7.2.1 Lexical Restrictions

The size of the lexicon is an obvious driver of the combinatorial explosion as the
following example shows. Considering a very simple language that only supports
sentences of the form “a noun verb a noun”, only one sentence can be generated if
there is just one noun “man” and one verb “knows”:

A man knows a man.

However, just by adding one additional noun “woman” and one additional verb
“helps”, we already get eight possible sentences:

A man knows a man.
A man knows a woman.
A woman knows a man.
A woman knows a woman.
A man helps a man.
A man helps a woman.
A woman helps a man.
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A woman helps a woman.

Apparently, things get even much worse when more lexicon entries are added. Thus,
in order to prevent unnecessary combinatorial explosion when evaluating a grammar
by language generation, it makes sense to use a minimal lexicon.

For the evaluation subset of the ACE Codeco grammar only the following words
are used: the proper name “Mary”, the noun “woman”, the adjective “young”, the
transitive adjective “mad-about”, the intransitive verb “wait”, the transitive verb
“ask”, the adverb “early”, and the preposition “for”. Furthermore, “X” is the only
variable name and “2” the only number. The concrete set of lexical rules of ACE
Codeco is shown in Section A.3 of the appendix.

3.7.2.2 Grammatical Restrictions

As we will see, restricting the lexicon is not sufficient to handle the combinatorial
explosion. It is also needed to exclude some of the grammar rules for the evaluation
subset.

The following example illustrates why grammatical restrictions are necessary: In
ACE, a noun can be preceded by a plain adjective like “important” but also by an
adjective preceded by “more” or “most” like “more important” or “most important”.
Thus, by extending the mini-language introduced above by optional adjectives, we
get 16 possible sentences, even if there is only one word per category:

A man knows a man.
An important man knows a man.
A more important man knows a man.
A most important man knows a man.
A man knows an important man.
An important man knows an important man.
...
A most important man knows a most important man.

The sentences containing “more” or “most” always correspond to a valid sentence
without “more” and “most”. Thus, these grammar rules do not add much to the
conceptual complexity of the grammar. By excluding the grammar rules responsible
for “more” and “most”, only four sentences are left:

A man knows a man.
An important man knows a man.
A man knows an important man.
An important man knows an important man.

Because this heavily reduces the number of sentences, it makes sense to evaluate the
grammar without the rules for “more” and “most” and to check those rules manually
for correctness.

As this example shows, it does not make sense to use all grammar rules for
evaluation by exhaustive language generation. Rather, a subset of the grammar rules
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sentence length number of sentences growth factor

3 6
4 87 14.50
5 385 4.43
6 1’959 5.09
7 11’803 6.03
8 64’691 5.48
9 342’863 5.30

10 1’829’075 5.33

3–10 2’250’869

Table 3.1: This table shows the number of sentences that can be generated by the evaluation
subset of the ACE Codeco grammar using a minimal lexicon.

should be used by excluding the grammar rules that contribute to the combinatorial
explosion but do not contribute much to the conceptual complexity of the language.

Such an evaluation subset has been defined for the ACE Codeco grammar con-
sisting of 97 of the altogether 164 grammar rules. In Section A.2 of the appendix, the
grammar rules of ACE Codeco are listed and the ones that belong to the evaluation
subset are marked.

3.7.3 Exhaustive Language Generation for ACE Codeco

The evaluation subset of the ACE Codeco grammar has been translated into a Prolog
DCG in order to generate all sentences up to the length of ten tokens. This leads to
altogether 2’250’869 sentences.

Table 3.1 shows the number of sentences in relation to the sentence length. Every
sentence consists of at least three tokens. Only six sentences exist that have the
minimal length of three tokens, which look as follows:

(1) everybody waits .
(2) Mary waits .
(3) somebody waits .
(4) there is somebody .
(5) who waits ?
(6) X waits .

Note that the full stop and the question mark also count as tokens and that “there
is” is just one token. 93 distinct sentences exist that have three or four tokens and
they are shown in Figure 3.1.

As expected, the growth of the number of sentences is exponential. The growth
factor converges to a value somewhere between 5 and 6. Thus, the number of sentences
having eleven tokens can be expected somewhere around 10 millions.
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(1) a woman waits .
(2) every woman waits .
(3) everybody asks everybody .
(4) " " herself .
(5) " " Mary .
(6) " " somebody .
(7) " " who ?
(8) " " X .
(9) " does not wait .

(10) " is everybody .
(11) " " herself .
(12) " " Mary .
(13) " " somebody .
(14) " " who ?
(15) " " X .
(16) " " young .
(17) " waits .
(18) " " early .
(19) " X waits .
(20) it is false that everybody waits .
(21) " Mary waits .
(22) " somebody waits .
(23) " X waits .
(24) Mary asks everybody .
(25) " " herself .
(26) " " Mary .
(27) " " somebody .
(28) " " who ?
(29) " " X .
(30) " does not wait .
(31) " is everybody .
(32) " " herself .
(33) " " Mary .
(34) " " somebody .
(35) " " who ?
(36) " " X .
(37) " " young .
(38) " waits .
(39) " waits early .
(40) somebody asks everybody .
(41) " " herself .
(42) " " Mary .
(43) " " somebody .
(44) " " who ?
(45) " " X .
(46) " does not wait .
(47) " is everybody .

(48) " " herself .
(49) " " Mary .
(50) " " somebody .
(51) " " who ?
(52) " " X .
(53) " " young .
(54) " waits .
(55) " " early .
(56) " X waits .
(57) there is a woman .
(58) " somebody .
(59) " " X .
(60) which woman waits ?
(61) " women wait ?
(62) who asks everybody ?
(63) " " herself ?
(64) " " Mary ?
(65) " " somebody ?
(66) " " who ?
(67) " " X ?
(68) " does not wait ?
(69) " is everybody ?
(70) " " herself ?
(71) " " Mary ?
(72) " " somebody ?
(73) " " who ?
(74) " " X ?
(75) " " young ?
(76) " waits ?
(77) " " early ?
(78) X asks everybody .
(79) " " herself .
(80) " " Mary .
(81) " " somebody .
(82) " " who ?
(83) " " X .
(84) " does not wait .
(85) " is everybody .
(86) " " herself .
(87) " " Mary .
(88) " " somebody .
(89) " " who ?
(90) " " X .
(91) " " young .
(92) " waits .
(93) " " early .

Figure 3.1: This figure shows all sentences of the evaluation subset of the ACE Codeco
grammar up to the length of four tokens. Note that the tokens “does not”, “it is false

that” and “there is” consist of more than one word. The sentences are sorted alphabeti-
cally and tokens that are unchanged with respect to the previous sentence are represented
by quotation marks.
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These figures show that it is crucial to define evaluation subsets before gram-
mars can be evaluated by language generation. Otherwise, the number of sentences
increases by more than one order of magnitude, and the language generation process
described above would probably still be running at the publishing date of this thesis.

3.8 Codeco Evaluation

On the basis of the ACE Codeco grammar and its evaluation subset, a number of
tests can be performed.

On the one hand, it can be evaluated whether the language described by ACE
Codeco has the desired properties. We can check whether ACE Codeco contains
unwanted ambiguity and whether it is indeed a subset of the full ACE language.

On the other hand, the grammar of ACE Codeco can be taken as a test case
to test the Codeco notation and the two implementations thereof. We can evaluate
whether the two implementations of Codeco process the ACE Codeco grammar in
the same way, as they should. Furthermore, the runtime performances of the two
implementations can be tested and compared.

3.8.1 Ambiguity Check of ACE Codeco

Languages like ACE are designed to be unambiguous on the syntactic level. This
means that every valid sentence must have exactly one syntax tree according to
the given grammar. By exhaustive language generation, the resulting sentences can
be checked for duplicates. Sentences generated more than once have more than one
possible syntax tree and are thus ambiguous.

Up to the length of ten tokens, no ambiguous sentences are generated by the
evaluation subset of ACE Codeco. Thus, at least a large subset of ACE Codeco is
unambiguous for at least relatively short sentences.

On the basis of this result, some “soft conclusions” for the full ACE Codeco
language can be made. It can be verified that the rules missing in the evaluation
subset do not introduce ambiguity. Furthermore, it can be argued that most types
of ambiguity would be discoverable in sentences of ten or less tokens. Thus, the ACE
Codeco grammar can in good conscience be considered unambiguous.

Actually, several cases of ambiguity could be found in this way in earlier versions
of the ACE Codeco grammar. These ambiguities could then be remedied. This shows
how important it is to be able to check automatically for ambiguity. Otherwise, it
would have been very hard to detect these cases.

3.8.2 Subset Check of ACE Codeco and Full ACE

The ACE Codeco grammar is designed as a proper subset of ACE. It can now be
checked automatically whether this is the case, at least for the evaluation subset of
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ACE Codeco and up to a certain sentence length.
Every sentence up to the length of ten tokens was submitted to the ACE parser

(APE) and parsing succeeded in all cases. Since APE is the reference implementation
of ACE, this means that these sentences are syntactically correct ACE sentences.

The number of ten tokens can be considered sufficiently high for detecting most
potential classes of sentences that are part of ACE Codeco but not of ACE. Thus,
the results of this test indicate that the ACE Codeco grammar indeed describes a
subset of ACE.

Interestingly, this test discovered several previously unknown bugs of both, Co-
deco and APE, which could then be fixed.

3.8.3 Equivalence Check of the Implementations

For the generation of the sentences up to a length of ten tokens, the Prolog DCG
parser has been used because it is faster than the Java implementation. However,
the Java implementation can also be used for language generation. This enables us
to check whether the two implementations accept the same set of sentences, as they
should, for the ACE Codeco grammar.

The Java implementation has been used to generate all sentences up to the sen-
tence length of eight tokens. Since the Java implementation is slower than the one
based on Prolog DCGs (see the next section), the former cannot generate as long
sentence as the latter within reasonable time. The resulting set of sentences gener-
ated by the Java implementation was identical to the one generated by the Prolog
DCG. This is an indication that the two implementations contain no major bugs and
that they interpret Codeco grammars in the same way.

3.8.4 Performance Tests of the Implementations

Finally, the performance of the two implementations of Codeco can be evaluated
and compared. Both implementations can be used for parsing and for generation,
and thus the runtimes in these two disciplines can be compared. For this test, again
the ACE Codeco grammar has been used.

The first task was to generate all sentences of the evaluation subset of ACE
Codeco up to the length of seven tokens. The second task was to parse again the
sentences that result from the generation task. This parsing task was performed
in two ways for both implementations: once using the evaluation subset and once
using the full ACE Codeco grammar. The restricted lexicon of the evaluation subset
has been used in both cases. These tests were performed on a MacBook Pro laptop
computer having a 2.4 GHz Intel Core 2 Duo processor and 2 GB of main memory.
SWI Prolog 5.6.61 and Java 1.5.0 19 have been used. Table 3.2 shows the results of
these performance tests.

The generation of the 14’240 sentences only requires about 41 seconds in the case
of the Prolog DCG implementation. This means that less than 3 milliseconds are
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time in seconds
task grammar implementation overall average

generation ACE Codeco eval. subset Prolog DCG 40.8 0.00286
generation ACE Codeco eval. subset Java Earley parser 1040. 0.0730
parsing ACE Codeco eval. subset Prolog DCG 5.13 0.000360
parsing ACE Codeco eval. subset Java Earley parser 392. 0.0276
parsing full ACE Codeco Prolog DCG 20.7 0.00146
parsing full ACE Codeco Java Earley parser 1900. 0.134
parsing full ACE APE 230. 0.0161

Table 3.2: This table shows the results of a performance test of the two implementations of
Codeco, i.e. the DCG version and the Java implementation as an Earley parser. The first
task was to generate all sentences of the evaluation subset of the ACE Codeco grammar
up to the length of seven tokens. This leads to 14’240 sentences. As a second task, the
sentences that result from the generation task should be parsed again. This parsing task
was performed using the evaluation subset as well as the full grammar of ACE Codeco. The
overall time values denote the time needed for all 14’240 sentences. The average values are
obtained by dividing the overall time by 14’240. As a comparison, the performance of the
existing ACE parser (APE) is shown for the parsing task.

needed on average for generating one sentence. The Java implementation, in con-
trast, needs about 17 minutes for this complete generation task, which corresponds
to 73 milliseconds per sentence. Thus, generation is about 25 times faster when using
the Prolog DCG version compared to the Java implementation. These results show
that the Prolog DCG implementation is well suited for exhaustive language genera-
tion. The Java implementation is much slower but the time values are still within a
reasonable range.

The Prolog DCG approach is amazingly fast for parsing the same set of sentences
using the evaluation subset of the grammar. Here, parsing just means detecting that
the given statements are well-formed according to the grammar. Altogether only
slightly more than 5 seconds are needed to parse the complete test set, i.e. less
than 0.4 milliseconds per sentence. When using the full ACE Codeco grammar for
parsing the same set of sentences, altogether 21 seconds are needed, i.e. about 1.5
milliseconds per sentence. The Java implementation is again much slower and requires
almost 30 milliseconds per sentence when using the grammar of the evaluation subset,
which leads to an overall time of more than 6 minutes. For the full grammar, 134
milliseconds are required per sentence leading to an overall time of about 32 minutes.
Thus, the Java implementation is 76 to 92 times slower than the Prolog DCG for the
parsing task. Because all time values are clearly below 1 second per sentence, both
parser implementations can be considered fast enough for practical applications. If
large amounts of sentences have to be parsed, however, the Prolog DCG version
should be preferred.
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The fact that the Java implementation requires considerably more time than the
Prolog DCG is not surprising. Prolog is known to be a good language for implement-
ing natural language grammars. DCG grammar rules in Prolog are directly translated
into Prolog clauses and generate only very little overhead. Java, in contrast, has no
special support for executing grammar rules and for this reason the processing of
grammar rules has to be implemented on a higher level. Variables that can unify
with other variables according to the laws of logic come for free with Prolog but
have to be implemented on a higher level in the case of Java. Even though only very
simple types of variable unifications can occur with Codeco, it creates a significant
overhead in Java.

As a comparison, the existing parser APE — the reference implementation of
ACE — needs about 4 minutes for the complete parsing task. Thus, it is faster
than the Java implementation but slower than the Prolog DCG version of Codeco.
However, it has to be considered that APE does more than just accepting well-formed
sentences. It also creates a DRS representation and a syntax tree.

Compared to natural language parsers, the performance results of both imple-
mentations can be considered more than satisfying. The parsing times of existing
parsers for unrestricted natural language range from about 50 milliseconds up to
more than 15 seconds per sentence [111, 34]. Again, these systems do more than just
accepting well-formed sentences as they return a representation of the syntax like a
syntax tree. Furthermore, they have to handle complex cases of ambiguity, which is
not the case for the Codeco implementations. Nevertheless, this comparison shows
that the Codeco implementations perform reasonably well.

3.9 Concluding Remarks on Codeco

In summary, the Codeco notation allows us to define controlled subsets of natu-
ral languages in a convenient and adequate way. The resulting grammars have a
declaratively defined meaning, can be interpreted in different kinds of programming
languages in an efficient way, and allow for lookahead features that are important
for predictive editors. Furthermore, Codeco enables automatic testing of a given
grammar, e.g. by exhaustive language generation, which is very important for the
development of reliable practical applications. Altogether, Codeco embodies a more
engineering focused approach to CNLs.

The next chapter will show — on the basis of concrete tools that have been de-
veloped — that the theoretical considerations of this chapter actually have practical
relevance and allow us to build better applications.
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Tools

Having introduced the theoretical concepts on how to define CNLs, we can now have
a closer look at the practical application thereof. This chapter targets the second
research question defined in the introduction of this thesis:

2. How should tools for controlled English be designed?

Controlled natural languages are supposed to improve the communication between
humans and computers. Apparently, this requires not only carefully designed CNLs
but also appropriate software tools that embed these languages and provide user
interfaces that enable the easy usage of the CNL.

CNLs have an apparent impact on the user interface level. However, they should
not be seen as an interface issue only. User interfaces in general should be more than
just the linking component between the users and the rest of the program, or by
quoting Don Norman [137]:

❛❛ What’s wrong with interfaces? The question, for one. The interface is
the wrong place to begin. It implies you already have done all the rest
and now you want to patch it up to make it pretty for the user. That
attitude is what is wrong with the interface. ❜❜

The key point is that good user interfaces originate from system-scale design decisions
that take the user interface into account from the very beginning. In my view, existing
(controlled) natural language interfaces for knowledge representation systems did not
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work out so far because the user interfaces have just been put onto the top of existing
systems in most cases. Knowledge representation systems should be designed with
user interfaces in mind from the beginning.

In this chapter, I will first introduce some design principles for user interfaces
based on CNL (Section 4.1). Then, three knowledge representation tools will be de-
scribed that I have developed and that embed CNL not only as an interface language
but as the philosophy of the complete design. The ACE Editor is a general text ed-
itor for ACE containing a predictive editor (Section 4.2). AceRules is a rule engine
using ACE as its input and output language (Section 4.3). AceWiki, finally, is a
relatively mature semantic wiki engine that has been evaluated within several small
user studies (Section 4.4).

All three tools are implemented as web applications that run inside a web browser.
They are implemented using the Echo Web Framework1, which is a modern Java-
based web application framework. This web-based approach has the advantage that
everyone can run the applications without the need to install anything.

4.1 Design Principles for CNL User Interfaces

A lot of work has been done on how user interfaces of computer programs should look
like [96] and there are well-known general principles on how such interfaces should
be designed. For example, user interfaces should be tailored to the goals and skills of
the potential users, they should reuse existing metaphors that the users know from
other programs, and the behavior of the interface should be consistent and should
not surprise the users [167]. In the case of user interfaces using CNL, some additional
and more concrete design principles can be identified.

My own experience from developing the three applications that will be introduced
later in this chapter can be summarized by the following three design principles:

CNL user interfaces ...

1. ... should follow the natural spirit of CNLs.

2. ... should solve the writability problem of CNLs.

3. ... should not let users confuse CNL with natural language.

The first principle means that a CNL user interface should assimilate the nat-
uralness of the CNL. Thus, the interface as a whole should be led by the nature
of natural language and not, for example, by technical aspects. My claim is that
a CNL can unfold its naturalness only if surrounded by a user interface with the
same natural flavor. For example, the CNL sentences should not be called “axioms”
by the user interface but just “sentences”. Similarly, the interface should rather use

1http://echo.nextapp.com/site/

http://echo.nextapp.com/site/
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linguistic terms like “verb” and “noun phrase” instead of technical terms like “object
property” and “concept description”.

The second principle means that the writability problem of CNLs — as described
in Section 2.1.4 — has to be solved by the user interface. If the error messages
approach is taken, this means that the user interface must be able to show error
messages when sentences do not comply with the restrictions of the respective CNL.
Furthermore, users must be given practical advice in a reliable and understandable
way how to resolve the problem. In the case of the predictive editor approach, such
a predictive editor must be tightly integrated so that users are supported by the
lookahead capabilities of the editor when writing CNL statements. If the language
generation approach is adopted, finally, the user interface must enable users to trigger
modifications of the underlying model, which is then immediately verbalized and
shown to the users. In any case, writability is a critical aspect to which special
attention has to be paid when designing CNL tools.

The third principle, finally, means that users should get the opportunity to get
familiar with the CNL and to understand the differences to full natural language, even
if this understanding only happens on an unconscious level. The main problem is that
CNL can easily be confused with full natural language. User interfaces using CNL
still need natural language at different places, for example for informal explanations,
help pages, and different kinds of labels. This raises the danger of misunderstandings.
An informal explanation can be misinterpreted as a formal statement, and vice versa.
My claim is that if the text in CNL cannot be clearly distinguished from the text
that is in full natural language, it gets much harder for the users to learn how the
CNL and the complete system work.

4.2 ACE Editor

The ACE Editor is the first of three tools to be introduced. It is a general editor
for writing and modifying ACE texts. Figure 4.1 shows a screenshot. It includes
a predictive editor that enables easy creation and modification of ACE sentences.
Furthermore, it uses the ACE parser (APE) to show different kinds of parsing results
(e.g. syntax trees, paraphrases and DRSs) to the users.

The ACE Editor is not a finished tool but rather a general basis to create domain-
specific tools on top of it. The purpose of the ACE Editor is to demonstrate how an
editor can be built that enables to write and modify texts in a CNL in a simple and
intuitive way. Users should not need to learn the grammar of ACE in advance, but
they should be able to learn the language while using the editor.

The most important component of the ACE Editor is the predictive editor that
helps users to write syntactically correct ACE statements. This predictive editor
makes use of the ACE Codeco grammar introduced in Section 3.7. The grammar is
processed by the Java implementation of the Earley parsing algorithm as described
in Section 3.5. In this way, the predictive editor can rely on the lookahead features
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Figure 4.1: This screenshot shows the ACE Editor. This editor can be used to create and
modify ACE texts. The ACE sentences are parsed in the background and different kinds of
parsing results can be shown, like syntax trees or paraphrases.

of the parser (see Section 3.5.4). The predictive editor is a modular component that
can be reused by other applications. For example, it is used by AceWiki that will be
introduced later in this chapter.

In the following sections, the general approach behind the predictive editor is ex-
plained and the concrete components of the predictive editor interface are described.

4.2.1 Predictive Editing Approach

The biggest problem when designing a predictive editor for a CNL is that there
can potentially be many different ways how a partial sentence can be continued. All
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these possibilities have to be shown to the user in a simple and understandable way.
Furthermore, the user should not have to do much more than one mouse click per
word to be added. Otherwise, creating a complete sentence gets very cumbersome
and slow.

The following concrete example illustrates the difficulty of providing good inter-
faces for predictive editors: The partial sentence

Every country is ...

can be continued in many different ways. First of all, one can negate the verb phrase
by adding “not”, e.g. “every country is not a continent”. The partial sentence could
also be followed by a noun phrase starting with a determiner “a”, “every” or “no”, e.g.
“every country is an area”. Noun phrases can also consist of an indefinite pronoun, e.g.
“every country is something that controls an area”, or of a query pronoun, e.g. “every
country is what?”. Furthermore, a new variable could be added, e.g. “Every country is
X and does not border X”, or a proper name, e.g. “every country is Switzerland”. The
latter is semantically incorrect but syntactically well-formed. Normal or transitive
adjectives can also be used, e.g. “every country is important” or “every country is
located-in a continent”. Adjectives can also have a comparison object, in which case
the partial sentence is continued by either “as” or “more”, e.g. “every country is more
important than John”. Another option is to use passive, e.g. “every country is visited
by John”. Finally, a reference can be used, e.g. “every country is itself”, even though
it does not make much sense in this particular example.

Looking at all those different possibilities, it becomes clear that it is not easy to
come up with an interface that supports all of them but is still easy to use in an
efficient way. The fact that words like proper names, adjectives, and verbs are open
classes that can potentially contain a high number of individual words makes it even
more complicated.

The approach of the ACE Editor to solve this problem is to use menu boxes
that occupy most of the space of the predictive editor user interface. Each of these
menu boxes contains the menu items for a particular type of word. The menu items
are vertically listed and scroll bars are used when they need more space than the
menu box provides. The predictive editor window shows only the menu boxes which
represent possible word classes for the given partial sentence. For example, the menu
box for verbs is only shown when a verb is a possible continuation. This has the
consequence that the number of menu boxes depends on the actual position in the
sentence. Depending on their number, the menu boxes are arranged horizontally in
one or two rows.

In this way, the different possibilities to continue a partial sentence can be shown
in the predictive editor window with reasonable space requirements. Still, the selec-
tion of a word only takes one mouse click and possibly some scrolling.

Another problem when designing predictive editors is that both, beginners and
advanced users, should be able to use the editor efficiently. Beginners have to com-
pletely rely on the menus provided. Advanced users, however, do not need the menus
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all the time and are faster when the input can be done by typing on the keyboard
instead of clicking with the mouse.

The predictive editor of the ACE Editor accounts for this issue by providing a
text field in which users can write freely. The predictive editor can thus be used in
two ways, by clicking on the menu items and by typing in the text field. These two
possibilities are available at every point and the user is free to switch from one to
the other even in the middle of the sentence creation process. In this way, beginners
and advanced users can use the same editor.

The results of the AceWiki experiments to be presented in Section 4.4.4 confirm
that the predictive editor is easy to use for untrained users. From my own experience,
I can say that it can also be used conveniently by advanced users in an efficient way.

4.2.2 Components of the Predictive Editor

Figure 4.2 shows the interface of the predictive editor. It is contained in an internal
window that is displayed within the browser window.

The partial sentence is shown at the very top of the window. This partial sentence
has already been entered by the user and it has been accepted by the parser as a
correct sentence beginning. The partial sentence is followed by three dots “...” to
indicate that further tokens can be added.

Below the partial sentence, there is a text field that can be used to enter one or
more words to be added to the end of the partial sentence. When pressing enter,
the words of this text field are added to the end of the partial sentence if they are
accepted by the grammar. The tab key can be used to trigger autocompletion. For
example, if “Switz” is typed into the text field and the tab key is pressed then the
content of the text field is automatically completed to “Switzerland” if this word is
in the lexicon.

Below the text field, there are a number of menu boxes. In this particular case,
there are seven of them but the actual number depends on the partial sentence. Each
menu box contains a list of menu items, which stand for possible continuations of
the partial sentence. These continuations are retrieved by the chart parser applying
the algorithm described in Section 3.5.4.

By clicking on one of the menu items, its content is added to the end of the
partial sentence. Anaphoric references are handled in exactly the same way, and only
references that are possible at the given position are shown. The text field above the
menu boxes can also be used to filter the menu items. For example, if “co” is entered
into text field, only menu items starting with “co” are shown.

Words of the open word classes (i.e. content words) that are not yet in the lexicon
can be added on the fly, i.e. while writing a sentence. Each menu box that stands for
a class of content words has a special menu entry “new...”. By clicking on such an
entry, a small window pops up containing a form that requests the needed linguistical
information for the new word to be created, e.g. singular and plural word forms for
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Figure 4.2: This screenshot shows the predictive editor that is a part of the ACE Editor and
that is also used by AceWiki. (1) shows the partial ACE sentence. The text field (2) can
be used to enter the next words of the sentence and can also be used to filter the entries of
the menu boxes (3). Clicking on the entries of the menu boxes (3) is an alternative way to
construct a sentence. References can be introduced that point to objects occurring earlier
in the sentence (4). Furthermore, new words can be defined on the fly by clicking on one of
the menu entries “new...” (5).

the case of nouns.

The button “Delete” can be used to remove the last token from the partial sen-
tence. At the very bottom of the window, there are the two common buttons “OK”
and “Cancel”. Pressing “OK” succeeds only if the sentence is completed, i.e. it is not
possible to submit an unfinished sentence.

The usage of anaphoric references is straightforward. It is checked which ana-
phoric references are allowed at the given position and then these options are shown
to the user in a separate menu box “reference”.

When the user clicks on one of the anaphoric references then the predictive editor
can — with the help of the chart parser — show how this reference was resolved. This
is done by underlining the part of the text that represents the antecedent to which
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the reference has been resolved. Figure 4.3 illustrates how this works. In this way,
anaphoric references can be used in the predictive editor in a simple and intuitive
way. They do not introduce further complexity to the user interface.

The predictive editor presented here fully relies on the chart parsing and looka-
head algorithms presented in Section 3.5. If software modules that implement such
algorithms are available then predictive editors can be implemented with little effort.

4.3 AceRules

The AceRules system is the second tool to be introduced. It is a prototype that
exemplifies how ACE can be used to express rules as needed, for example, in business
rule approaches [139]. Such kinds of rule systems represent knowledge in the form of
sets of rules and facts and enable reasoning over them (i.e. executing the rules). Since
such rules have to be created and/or verified by the respective domain experts who
are mostly not familiar with formal notations, it is important to provide intuitive
interfaces, e.g. by CNLs.

Existing work to use natural language representations for rule systems is based on
the idea of verbalizing rules that already exist in a formal representation [66, 77, 99].
The NORMA system [67], for example, is able to verbalize existing formal rules.
CNLs like RuleSpeak and SBVR Structured English [149, 159] have been proposed
for rule systems, but they are not strictly formal and thus cannot be processed in a
fully automatic way.

In contrast to existing approaches, the approach of AceRules is to use CNL as
the main rule language that is automatically translated into the internal rule for-
mat (parsing) and backwards (verbalizing). Both, input and output of AceRules are
represented in ACE.

The following sections show how rules are interpreted (i.e. executed) in AceRules,
and the multi-semantics architecture of AceRules is explained. Finally, the user in-
terface is shown and described.

4.3.1 Rule Interpretation in AceRules

AceRules is designed for forward-chaining interpreters that calculate the complete
answer set for a given set of rules and facts. The general approach of using ACE for
rules, however, could easily be adopted for backward-chaining interpreters that take
a specific statement and try to find a proof or disproof for it on the basis of the given
rules. The forward-chaining approach has been chosen because it is better suited for
demonstration purposes.

In order to clarify how AceRules works, let us have a look at the following simple
program in the form of a set of rules and facts:

John is a man and Bill is a man.
Every man is a person.
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Figure 4.3: This figure shows how anaphoric references are handled in the predictive editor.
At the top, the window of the predictive editor is shown with a partial sentence which can
be continued by using an anaphoric reference. At the given position five different references
are possible, which are shown in the rightmost menu box “reference”. When the user clicks
on one of these reference entries then the editor shows how the reference has been resolved
by underlining the respective part of the text.
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Mary is a woman and Sue is a woman.
Every woman is a person.
No man is a woman and no woman is a man.
John is a relative of Bill and is a friend of Sue.
Sue is not a relative of John.
If X is a relative of Y then Y is a relative of X.
Everybody who is a relative of a person is a friend of the person.
Every person who is not a relative of John is not a friend of Mary.

Submitting this program to AceRules in courteous mode (the different modes will
be discussed in the next section), we get the following answer in the form of a set of
facts that can be derived from the program:

John is a relative of Bill.
Bill is a relative of John.
John is a friend of Bill.
John is a friend of Sue.
Bill is a friend of John.
Sue is a woman.
John is a man.
Bill is a man.
Mary is a woman.
John is a person.

Mary is a person.
Sue is a person.
Bill is a person.
It is false that Sue is a friend of Mary.
It is false that Sue is a relative of John.
It is false that Bill is a woman.
It is false that John is a woman.
It is false that Mary is a man.
It is false that Sue is a man.

As this example shows, input and output of AceRules are both in ACE and no other
formal notation is needed for the user interaction. Even inexperienced users should
be able to understand input and output and to verify that the output is some kind
of conclusion of the input.

AceRules reuses several existing ACE tools. First of all, the program is parsed
by the ACE parser (APE) and transformed into its DRS representation. This DRS
representation is then translated by AceRules into an internal rule structure. Then
different interpreter modules can be applied, which are discussed in the next section.
From this step, we get a set of facts in an internal rule format. AceRules transforms
this back into a DRS representation. Finally, this representation can be given to the
existing ACE verbalizer module (that is used by APE for paraphrasing) returning
the final answer in ACE.

4.3.2 Multi-Semantics Architecture of AceRules

A broad variety of different rule semantics have been defined, each exhibiting certain
properties. Depending on the application domain, the characteristics of the available
information, and on the reasoning tasks to be performed, different properties are
desirable.

AceRules as a general demonstration prototype is designed to support various
semantics in the way that the rule interpreter module is exchangeable. At the mo-
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ment, three different semantics are incorporated: courteous logic programs [63], stable
models [60], and stable models with strong negation [61].

The original stable model semantics supports only negation as failure, but it has
been extended by support for strong negation. Courteous logic programs are based
on stable models with strong negation and support therefore both forms of negation.
None of the two forms of stable models guarantee a unique answer set. Thus, some
programs can have more than one answer. In contrast, courteous logic programs gen-
erate always exactly one answer but are restricted to acyclic programs [6]. Depending
on the concrete application domain, one or the other semantics might be the best
choice.

The three semantics are implemented in AceRules as two interpreter modules.
The first one handles courteous logic programs and is implemented natively. For the
stable model semantics with and without strong negation there is a second interpreter
module that wraps the existing tools Smodels [118] and Lparse [165].

There are various other semantics that could be supported by AceRules, e.g. de-
feasible logic programs [119] or disjunctive stable models [133]. Only little integration
effort would be necessary to incorporate them.

4.3.3 AceRules Interface

AceRules has a simple web interface shown by Figure 4.4. This interface is designed
to hide all technical details by relying on CNL. Basically, the interface consists of two
text areas. The first text area labeled “Program” can be used to write free text that
is interpreted as a rule set in ACE. The second text area is read-only and has the
label “Answer”. After pressing “Run”, the calculated answer is shown in the answer
text area. If more than one answer is entailed by the program then the different
answers are shown in separate tabs.

Users can load and save programs, switch between the different semantics, and
change some settings. For example, users can define how many answers should be
calculated as a maximum, which is needed for the semantics that do not guarantee
a unique answer. Furthermore, there are many help pages that explain the interface
and how error messages have to be interpreted.

Something that AceRules does not provide, however, is proper writing support.
Because the development of the predictive editor only began after AceRules was
developed, it adopts the error messages approach to the writability problem. When
the user enters something that is not correct ACE or cannot be transformed into a
rule structure then simply an error message is shown to the user. Such error messages
try to explain why the given program could not be run, but it might be hard — at
least for untrained users — to understand this well enough to be able to fix the
problem. Thus, the writability problem is not solved in a satisfying way. However, it
would not be hard to include the predictive editor module described in Section 4.2.
AceWiki — to be introduced in the next section — demonstrates that the predictive
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Figure 4.4: This is a screenshot of the AceRules web interface showing an exemplary pro-
gram (i.e. rule set) at the top and the inferred answer at the bottom.

editor can easily be integrated in a specialized application.
Altogether, the AceRules prototype shows how rules can be defined and executed

without requiring the users to learn a complicated formal language. AceRules has
not been tested in user experiments and the poor writing support would probably
be a hindrance in using AceRules efficiently. However, the experiences with AceWiki
show that predictive editors can be embedded in a way that enables untrained user
to deal with CNL-based tools in an efficient way.

4.4 AceWiki

AceWiki is the third and last tool to be presented. It is a semantic wiki using ACE to
represent the content of its articles. In this way, the content is both, human readable
and interpretable for reasoners. The general goal is to show that semantic wikis
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Figure 4.5: This screenshot of the AceWiki interface shows an article about planets. Articles
in AceWiki consist of declarative ACE sentences and ACE questions (both in black) and of
unrestricted natural language comments (in gray).

can be at the same time more expressive and more usable than existing systems.
Figure 4.5 shows a screenshot of the AceWiki web interface.

Wikis are a flexible and dynamic way to share knowledge and have become well-
known by the incredible success of Wikipedia. During the eight years since the start
of Wikipedia in 2001, altogether more than 14 million articles have been created in
the different language versions2.

Below, other existing semantic wikis are discussed. Then, AceWiki is introduced
and it is shown how knowledge is expressed and how reasoning takes place. Further-
more, the results of several tests that have been performed on AceWiki are discussed.
Two experiments have been set up to test the usability of AceWiki. Additionally, a

2http://meta.wikimedia.org/wiki/List_of_Wikipedias retrieved in November 2009

http://meta.wikimedia.org/wiki/List_of_Wikipedias
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small case study has been performed in order to test the general usefulness.

4.4.1 Other Semantic Wikis

Semantic wikis are a relatively new field of research that began in 2004 when semantic
wikis were introduced by Tazzoli et al. [168] describing the PlatypusWiki system.
During the last years, an active community emerged and many new semantic wiki
systems were presented.

Semantic wikis combine the philosophy of wikis (i.e. quick and easy editing of
textual content in a collaborative way over the web) with the concepts and techniques
of the Semantic Web (i.e. enriching the data on the web with well-defined meaning).
The idea is to manage formal knowledge representations within a wiki environment.

Generally, two types of semantic wikis can be distinguished: On the one hand,
there are text-centered approaches that enrich classical wiki environments with se-
mantic annotations. On the other hand, logic-centered approaches use semantic wikis
as a form of online ontology editors. A brief overview of existing semantic wiki en-
gines is given here focusing on those that have been under active development during
the last years.

Semantic MediaWiki [91] and IkeWiki [141] are two well-known examples of text-
centered semantic wikis. Semantic MediaWiki is probably the most popular and one
of the most mature existing semantic wiki engines. It builds upon the MediaWiki
engine (which is used e.g. for Wikipedia) and has been used and extended by many
companies and research groups. IkeWiki is also a mature and popular semantic wiki
engine, which — among other applications — was the basis for the SWiM system
[94] that is dedicated specifically to mathematical content. Recently, the developers
of IkeWiki started a new project called KiWi [142], for which a new semantic wiki
engine has been developed that builds upon the experiences made with IkeWiki.

The SweetWiki system [25] is another example of a text-centered semantic wiki
and is special in the sense that it focuses on social tagging and folksonomies. Hy-
perDEWiki [143] is a further example of the text-centered approach, with a focus
on views and ontology evolution. Hyena [135], finally, is yet another semantic wiki
engine in the text-centered fashion. It allows users to access and modify the wiki
data not only through the web-based interface but additionally provides an editor
that can be run locally.

OntoWiki [8] and myOntology [152] are two examples of logic-centered semantic
wikis. Web-Protégé [171] is the web version of the popular Protégé ontology editor
and can be seen as another example of a logic-centered semantic wiki, even though
its developers do not call it a “semantic wiki”.

In general, there are many new web applications that do not call themselves “se-
mantic wikis” but exhibit many of their characteristic properties. Freebase3, Knoodl4,

3see [17] and http://www.freebase.com
4http://knoodl.com

http://www.freebase.com
http://knoodl.com
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and SWIRRL5 are some examples.
Altogether, semantic wikis seem to be a promising approach to get the domain

experts more involved in the creation and maintenance of ontologies. This could
increase the number and quality of available ontologies, which is an important step
into the direction of making the Semantic Web a reality.

However, two major problems can be identified with existing semantic wikis. First,
most of them have a very technical interface that is hard to understand and use for
untrained persons, especially for those who have no particular background in formal
knowledge representation. Second, existing semantic wikis support only a relatively
low degree of expressivity — mostly just “subject predicate object”-structures —
and do not allow users to assert complex axioms. These two shortcomings have to be
overcome to enable average domain experts to manage complex ontologies through
semantic wiki interfaces.

I argue for using controlled natural languages to solve these problems. CNLs
are easy to understand but can still support a high degree of expressivity. AceWiki
exemplifies how this can be done.

The WikiOnt-CNL6 system has a similar approach. It supports different CNLs
(Rabbit and ACE at the moment) for verbalizing OWL axioms. In contrast to the
AceWiki approach, users cannot create or edit the CNL sentences directly but only
the underlying OWL axioms in a common formal notation. Furthermore, no reasoning
takes place in WikiOnt-CNL.

Moreno and Bringert [112] present another approach of using CNLs in a wiki en-
vironment. They use a multi-lingual CNL framework, which allows them to translate
the wiki content automatically into different languages. Thus, the CNL is not used to
enable reasoning over the content of the wiki but to provide the content in different
language versions in an automatic way.

The AceWiki system to be presented here, is a logic-centered semantic wiki and
is unique in the sense that the user interaction is fully based on CNL and reasoning
is tightly integrated.

4.4.2 Expressing Knowledge in AceWiki

As most wikis do, AceWiki structures its content in the form of articles. In contrast to
common wiki systems, articles in AceWiki are written in ACE and not in uncontrolled
natural language. AceWiki integrates the predictive editor that has been described
in Section 4.2 in order to enable the convenient creation and modification ACE
statements.

The following sections describe how articles in AceWiki look like and how the user
interface distinguishes between ACE and full natural language. Then, pattern-based
suggestions and export features are discussed.

5http://www.swirrl.com
6see [155] and http://tw.rpi.edu/proj/cnl/

http://www.swirrl.com
http://tw.rpi.edu/proj/cnl/
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4.4.2.1 Articles

Articles in AceWiki are closely related to words. Every word gets its own article and
every article is assigned to exactly one word. The respective word is used as the title
of the article page and denotes the topic of the article. ACE statements contained
in the article are supposed to be related somehow to the word that is indicated by
the title. However, it has no semantic relevance in which article a certain statement
appears. The order of the statements also has no effect on the reasoning results.

AceWiki reuses the predictive editor of the ACE Editor to enable the easy cre-
ation and modification of statements in ACE. However, the subset of ACE used by
AceWiki is slightly different from the one used by the ACE Editor. For example,
modal statements using “can”, “should”, etc. are not included at the moment for
simplicity reasons. Questions are supported, however, and they can be used to query
the existing knowledge, which is explained in detail later on.

Since it cannot be expected that any problem domain of the real world can be
fully formalized, AceWiki has support for comments in unrestricted natural language.
Comments can be used, for example, to write down things that are too complicated
to be formalized, are vague or uncertain, or concern the article itself (e.g. “this article
should be improved”). If one only uses comments then AceWiki becomes a normal
non-semantic wiki.

In AceWiki, words have to be defined before they can be used. At the moment, five
types of words are supported: proper names, nouns, transitive verbs, of -constructs
(i.e. nouns that have to be used with of -phrases), and transitive adjectives. Proper
names can optionally have a shorter abbreviation with the same meaning, e.g. “EU”
can be used synonymously to “European Union”. Figure 4.6 shows the lexical editor
of AceWiki that helps users in creating and modifying word forms in an appropriate
way.

Words can be removed again from the wiki, together with their article and the
statements therein. However, in order to ensure that every used word is defined
somewhere, only words that are not used by a statement of a different article can be
removed.

4.4.2.2 CNL and Full Natural Language

As motivated in Section 4.1, it is important to have a clear separation between formal
CNL statements and text in natural language as it occurs in every user interface.
Otherwise, there is the danger that the formal CNL statements are confused with
the informal text.

AceWiki complies with this design principle by applying a very simple rule: Every
text of the AceWiki interface that is not ACE is displayed in italics whereas words
and sentences in ACE are shown in normal font.

This can be seen, for example, in Figure 4.5 and 4.6. ACE sentences like “no
planet is a star” and ACE words like “planet” and “organizes” are displayed in normal
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Figure 4.6: The lexical editor of AceWiki helps users to create or modify words. This
example shows how a new transitive verb “organize” is created.

font. Comments, button and tab names, informal explanations, and window titles,
however, are not ACE and they are thus typeset in italics.

In this way, users can learn that the text in normal font has to follow certain
restrictions that enable the system to interpret it. This can prevent the users from
confusing ACE with natural English and gives them the opportunity to learn how
ACE and AceWiki work.

4.4.2.3 Pattern-based Suggestions

The two usability experiments that have been performed on AceWiki and will be
explained in Section 4.4.4 showed that some common mistakes can be described by
very simple patterns.

Concretely, the second experiment showed that users often create ACE sentences
like “a student studies at a university”, which is interpreted in ACE as having only
existential quantification: “there is a student that studies at a university”. However,
it can be assumed that the user in this case wanted to say “every student studies at
a university”. The pattern that can be identified is very simple: For ACE sentences
starting with “a”, using “every” instead of the initial “a” is more sensible in most
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Figure 4.7: This figure shows a solution to the problem that users often state sentences
starting with “a ...” when they should say “every ...”.

cases.
After the second AceWiki experiment, a new feature has been added to AceWiki

that asks the users each time they create a sentence of the form “a ...” whether it
should be “every ...”. The users can then say whether they really mean “a ...” or
whether it should be rather “every ...”. In the latter case the sentence is automati-
cally corrected. Figure 4.7 shows a screenshot of the dialog presented to the users.
Since this feature was not yet available for the AceWiki versions used for the two
experiments, there are no empirical results so far whether this approach works out.
Due to the simplicity of this pattern, I am confident that users have no difficulty to
understand it and to let the system automatically correct their statements when it
is appropriate.

This “a/every”-pattern is the only pattern for which automatic suggestions are
implemented in AceWiki so far, because it is the only simple pattern that has been
identified. However, other such simple mistake patterns might exist for which this
approach could help.

4.4.2.4 Export Features

AceWiki has a client-side export feature, which allows users to export the complete
knowledge base of a certain AceWiki instance. The knowledge base can be exported as
a single ACE text, together with a lexicon file containing the definition of the words.
Together, this can be used to parse the content of an AceWiki instance locally with
the ACE parser.

Apart from that, the knowledge base can also be exported in the OWL format. In
this way, the content of an AceWiki instance can be loaded in an external reasoner
or ontology editor like Protégé.

4.4.3 Reasoning in AceWiki

AceWiki is designed to seamlessly integrate a reasoner that can give feedback about
the consistency and the entailments of the knowledge base. For the work to be pre-
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sented here, I used the OWL reasoner Pellet7, but other reasoners can be used.

The goal of AceWiki is that users should not have to worry about how and when
reasoning is performed. It should just happen. The users should not need to explicitly
start the reasoning process but it should happen automatically in the background
whenever required.

Below, the coverage of the reasoner is discussed. Then, it is shown how the consis-
tency of the knowledge base is ensured and how questions can be posed. After that,
it is explained how AceWiki reflects type hierarchies and assignments of individuals
to types. Finally, the special issue of unique name assumption is discussed.

4.4.3.1 Reasoner Coverage

AceWiki is designed to be expressive, and users should be free to add complex state-
ment even if the reasoner cannot handle them. In order to prevent confusion by the
users, AceWiki shows for every statement whether it participates in reasoning or not.

Sentences that participate in reasoning are marked by blue triangles. Actually,
most sentences that can be expressed in AceWiki can be translated into OWL and
can thus be handled by the reasoner. Some examples of such sentences are shown
here:

AceWiki relies on the ACE to OWL translation that has been defined and imple-
mented by Kaarel Kaljurand [82]. Sentences that cannot be translated into OWL
cannot participate in reasoning with the current reasoner. Such sentences are marked
by red triangles, as the following examples show:

In this way, it is easy to explain to the users that only the statements with a blue
triangle are considered for reasoning.

Since the complete content of the wiki can be exported, statements with red
triangles can potentially be used outside of AceWiki, e.g. within a different reasoner.
Thus, even though such statements cannot be interpreted by the built-in reasoner
they can still be useful.

7see [153] and http://clarkparsia.com/pellet/

http://clarkparsia.com/pellet/
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4.4.3.2 Consistency

Consistency checking plays a crucial role because any other reasoning task requires
a consistent ontology in order to return useful results. To ensure that the ontology
is always consistent, AceWiki checks every new sentence — immediately after its
creation — whether it is consistent with the current ontology. Otherwise, the sentence
is not included in the ontology. In the following example, the last sentence is in conflict
with the existing knowledge:

After the user created the last sentence of this example, AceWiki detected that it
contradicts the current ontology. The sentence is included in the wiki article but
the red font indicates that it is not included in the ontology. This sentence can be
removed again by the user, or the user can keep it and try to reassert it later when
the rest of the ontology has changed.

Of course, it might be an earlier sentence that is actually incorrect and not
necessarily the last one. Thus, a sentence colored red can actually be correct when
an incorrect sentence has been added earlier that did not introduce an inconsistency
at that point. Only the users can detect and correct such mistakes. Until they do
so, it is the best to keep the ontology consistent by not considering sentences that
would introduce inconsistency.

As a side remark, the inconsistency of the example above is not triggered by
the four sentences alone. The wiki must also contain the knowledge that Germany
is a country and that Asia and Europe are continents. Otherwise, there would be
no inconsistency. Furthermore, unique name assumption (to be discussed in Sec-
tion 4.4.3.5) is applied that implies that Europe and Asia are different individuals.

4.4.3.3 Queries

AceWiki supports queries that are formulated as ACE questions and evaluated by
the reasoner. At the moment, only simple wh-questions are supported that contain
exactly one wh-word, for instance:

Such simple queries correspond to type descriptions. The individuals that can be
proven to belong to the described type are the answers of such a query. Such simple
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queries can be directly answered by a reasoner like Pellet and do not need a separate
query engine. A possible future improvement of AceWiki could be to support a more
expressive query language, for example SPARQL [132].

Questions of the form “what is Switzerland?” would lead to the only answer “Swit-
zerland” if the method described above is applied. This answer is trivial and not very
useful. One would rather expect an answer like “a country” describing a type of the
respective individual. For this reason, AceWiki returns in such cases all types the
respective individual can be proven to belong to:

In both cases, the answers are not necessarily complete. This means that adding
knowledge to the knowledge base might give additional answers to existing questions.

4.4.3.4 Assignments and Hierarchies

Apart from consistency checks and query answering, the reasoner is also used to
infer the type memberships of individuals and the hierarchy of types. These kinds of
reasoning results are displayed in special tabs of the AceWiki articles.

Every article about an individual (i.e. a proper name) has a tab called “Assign-
ments” that shows all types the individual can be proven to belong to. Articles about
types (i.e. nouns) have two such tabs. One is called “Individuals” and shows all in-
dividuals that can be proven to belong to the given type; the other one is called
“Hierarchy” and shows all sub- and super-types of the given type.

In all cases, the results are displayed in ACE, as shown in Figure 4.8. Thus, Ace-
Wiki uses ACE not only as a language to assert knowledge and as a query language
but also as a language to show inferred knowledge.

4.4.3.5 Unique Name Assumption

The term unique name assumption refers to the policy that individuals that are given
different names are implicitly considered distinct. In logical theories, this is often not
the case, i.e. two different constants a and b can refer to the same actual individual.
Also in natural language, this is not generally the case. For example, the names
“Bobby”, “Bob Dylan” and “Robert Zimmerman” can refer to the same individual.
Another example would be the country “Myanmar” that can also be called “Burma”
or “Birma”.

However, in a closed environment like AceWiki, there is no advantage in using
different names for the same thing. Users should be forced to use the same word for
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Figure 4.8: These are examples of the content of the assignments tab for individuals (left),
of the individuals tab for types (middle), and of the hierarchy tab for types (right). The
sentences describe knowledge that is inferred by the reasoner on the basis of the complete
knowledge base.

referring to the same thing. Furthermore, it would be very annoying to be forced to
explicitly state the distinctness of individuals with statements like “Switzerland is not
Germany”.

For these reasons, AceWiki applies the unique name assumption in the sense
that individuals (i.e. proper names) that have different names are always considered
distinct even if this is not explicitly stated. The only exception are abbreviations for
proper names, which are semantically identical to the longer proper name they are
assigned to.

4.4.4 AceWiki Experiments

At different stages of the development of AceWiki, small usability experiments have
been set up to test how well normal users are able to cope with the current version
of AceWiki. Two such experiments have been performed so far. Table 4.1 shows an
overview of these two experiments in comparison to the case study to be presented
in the next section.

The first usability experiment of AceWiki took place in November 2007. The
second experiment was conducted one year later in November 2008. Both experiments
had the nature of cheap ad hoc experiments with the goal to get some feedback about
possible weak points of AceWiki. Since the settings of the two experiments were
different and since the number of participants was relatively low, it is not possible to
draw strong statistical conclusions from the results. Nevertheless, these experiments
give valuable feedback about the usability of AceWiki.

In what follows, the design of the two experiments is introduced and the back-
ground of the participants is described. After that, the results of both experiments
are shown and discussed.
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Experiment 1 Experiment 2 Case Study

time Nov 2007 Nov 2008 Nov/Dec 2008

AceWiki version 0.2.1 0.2.9 0.2.10

number of participants (n) 20 6 1

participants mostly students students AceWiki developer

level of preexisting knowl-
edge about AceWiki

none low highest

domain to be represented “the real world” universities Attempto project

Table 4.1: This table compares the settings of the three tests that have been performed on
AceWiki.

4.4.4.1 Design

In both experiments, the participants were told to create a formal knowledge base
in a collaborative way using AceWiki. The domain to be represented was the real
world in general in the first experiment, and the domain of universities (i.e. students,
departments, professors, etc.) in the second experiment. Otherwise, the participants
were free in what kind of knowledge to add. The only requirement was that it should
be general and verifiable knowledge.

The reason for not giving the participants a more concrete task was the difficulty
of defining a knowledge representation task that is specific enough so that it can
be clearly evaluated but is still general in the sense that it does not exhibit how to
represent the knowledge in ACE. In order to avoid these problems, the chosen task
was very general. Due to the requirement that the added knowledge has to be general
and verifiable, the results can nevertheless be clearly evaluated.

In the first experiment, the participants received no instructions at all how Ace-
Wiki has to be used. In the second case, they attended a 45 minutes lesson about
AceWiki.

Furthermore, the two experiments were based on different versions of AceWiki
that differ significantly in some respects. In the version that has been used for the first
experiment, templates could be used for the creation of certain types of sentences
(e.g. class hierarchies). Templates were removed in later versions because of their
lack of generality. Another difference is that there was no reasoner included in the
AceWiki version used for the first experiment and users thus received no feedback in
the form of reasoning results. Another difference was that the word class of transitive
adjectives was not yet supported in the early version of AceWiki.

The participants of both experiments were told to spend at least half an hour on
adding knowledge to AceWiki. They participated from home by accessing a dedicated
AceWiki instance through a normal web browser. Within a time frame of several days,
the participants could work on their task whenever they wanted. They could stop
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0 5 10 15 20
number of participants

“Semantic Web”

“ontology”

“first-order logic”

“OWL”

“UML”

“I have never heard this term”

“I have heard this term but I do not really know what it means”

“I know more or less the meaning of this term”

“I know this term well or very well”

Figure 4.9: This chart shows how familiar the participants of the first AceWiki experiment
were with the terms Semantic Web, ontology, first-order logic, OWL and UML. This data
was retrieved from five questions of the questionnaire. For each of the terms, the question
was “How familiar are you with this term?” with the four possible answers shown above. This
chart shows that the participants had no considerable background in the field of knowledge
representation and logic.

working with AceWiki at any point and could continue at a later time. Since all
participants accessed the same AceWiki instance, they could see the contributions of
others. They were encouraged to remove or correct statements that other participants
created if they found them to be incorrect, not sufficiently general, or not verifiable.
Thus, the experiments tested not only the ability of the individuals but also the
achievements of the community as a whole.

4.4.4.2 Participants

The goal of the two experiments was to test AceWiki on participants with no par-
ticular background in knowledge representation.

For the first experiment, the requirements for participation were only basic En-
glish skills and access to a computer with broadband internet connection. 20 partic-
ipants were recruited who met these requirements.

In order to assess the technical background of the participants, they were asked
in the questionnaire how familiar they are with a couple of technical terms related
to knowledge representation and logic. Figure 4.9 shows the results, which exhibit
that the participants had no considerable background in these fields. For each of the
terms Semantic Web, ontology, first-order logic, OWL and UML, at least half of the
participants stated that they have never even heard the term before.
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Exp. 1 Exp. 2
ind. comm. ind. comm.

total sentences created S 186 179 113 93
correct sentences S+ 148 145 76 73

correct sentences that are complex S+
x 91 89 54 51

sentences using “a” instead of “every” Se 9 9 23 12
sentences using misclassified words Sw 9 8 0 0
other incorrect sentences S− 20 17 14 8

% of correct sentences S+/S 80% 81% 67% 78%
% of (almost) correct sentences (S+ + Se)/S 84% 86% 88% 91%
% of complex sentences S+

x /S+ 61% 61% 71% 70%

total words created w 170 170 53 50
individuals (i.e. proper names) wp 44 44 11 10
classes (i.e. nouns) wn 81 81 14 14
relations total wr 45 45 28 26

transitive verbs wv 39 39 20 18
of -constructs wo 6 6 2 2
transitive adjectives wa – – 6 6

sentences per word S/w 1.09 1.05 2.13 1.86
correct sentences per word S+/w 0.87 0.85 1.43 1.46

total time spent (in minutes) t 930.9 930.9 360.2 360.2
av. time per participant t/n 46.5 46.5 60.0 60.0
av. time per correct sentence t/S+ 6.3 6.4 4.7 4.9
av. time per (almost) correct sentence t/(S+ + Se) 5.9 6.0 3.6 4.2

Table 4.2: This table shows the results of the first (Exp. 1) and the second (Exp. 2) exper-
iment. The results can be seen from the individuals perspective (ind.) or the community
perspective (comm.)

For the second experiment, six participants have been recruited from the course
“semantic annotation of parallel corpora” hold at the Institute of Computational
Linguistics of the University of Zurich. Being students in computational linguistics,
they had some general background in computer science. Thus, compared to the first
experiment, they had a stronger background concerning the underlying knowledge
representation theories of AceWiki but they were nevertheless no experts in these
fields.

4.4.4.3 Results

Table 4.2 shows the results of the two experiments. Since the participants worked
together on the same knowledge base and could change or remove the contributions
of others, we can look at the results from two perspectives.

On the one hand, there is the community perspective where we only consider the
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final result, not counting the sentences that have been removed at some point and
only looking at the final versions of the sentences.

On the other hand, from the individuals perspective we also count the sentences
that have been changed or removed later by another participant. The different ver-
sions of a changed sentence count for each of the respective participants. However,
sentences created and then removed by the same participant are not counted, and
only the last version counts for sentences that have been changed by the same par-
ticipant.

Below, these results are discussed with respect to the created sentences and words,
the time needed, and the feedback of the participants.

Sentences

The first part of the table shows the number and type of sentences the participants
created. In total, the resulting knowledge bases contained 179 and 93 sentences,
respectively. These sentences had to be checked manually for correctness. S+ stands
for the number of sentences that are (1) logically correct and (2) sensible to state.

These two criteria require some more explanation. The first criterion is quite
simple: In order to be classified as correct, the sentence has to represent a correct
statement about the real world using the common interpretations of the words and
applying the interpretation rules of ACE.

The second criterion can be best explained on the basis of the sentences of the type
Se. Such sentences have already been discussed in Section 4.4.2.3 in the context of
pattern-based suggestions. Se sentences start with “a ...” like for example “a student
studies at a university” that is interpreted in ACE as “there is a student that studies
at a university”. While this is a logically correct statement about the real world, the
writer probably wanted to say “every student studies at a university”, which is more
precise and more sensible. For this reason, Se sentences are not considered correct,
even though they are correct from a purely logical point of view.

Another frequent type of error — denoted by Sw — are sentences using words in
the wrong word category like for example “every London is a city” where “London”
has been added as a noun instead of a proper name.

It is interesting that the incorrect sentences of the types Se and Sw had the same
frequency in the first experiment, but evolved in different directions in the second
one. There was not a single case of an Sw-mistake anymore in the second experiment.
This might be due to the fact that the lexical editor has been enriched with icons
and explanations, based on the insights from the results of the first experiment.

On the other hand, the number of Se-mistakes increased. This might have been
caused by the removal of the templates feature from AceWiki. In the first experiment,
the participants were encouraged to say “every ...” because there were templates for
such sentences. In the second experiment, however, those templates were not available
anymore and the participants were tempted to say “a” instead of “every”. This is
bad news for AceWiki, but the good news is that there are indications that the
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development of AceWiki is on the right track nevertheless. First, while none of the
Se-sentences has been corrected in the first experiment, almost half of them have
been removed or changed by the community during the second experiment. This
indicates that some participants of the second experiment recognized the problem
and tried to resolve it. Second, the Se-sentences can be detected and resolved in a
very easy way as explained in Section 4.4.2.3.

Another point to consider is that the fact that the statements of S+ are correct
with respect to the real world does not necessarily mean that the participants who
wrote the statements gave them the correct ACE interpretation. This understand-
ability issue will be discussed in Chapter 5 and the presented experiment results will
show that ACE is understood very well. For this reason, it can be assumed that the
participants who wrote the correct statements of S+ also meant them in the same
correct way.

An interesting figure is of course the ratio of correct sentences S+/S. As it turns
out, the first experiment exhibits the better ratio for both perspectives: 80% versus
67% for the individuals and 81% versus 78% for the community. However, since
Se-sentences are easily detectable and correctable (and hopefully a solved problem
with the latest version of AceWiki), it makes sense to have a look at the ratio
of “(almost) correct” sentences consisting of the correct sentences S+ and the Se

sentences. This ratio was better in the second experiment: 84% versus 88% for the
individuals perspective; 86% versus 91% for the community perspective. However,
the different settings of the experiments do not allow us to draw any statistical
conclusions from these numbers. Nevertheless, these results give us the impression
that a ratio of correct and sensible statements of 90% and above is achievable with
our approach.

Another important aspect is the complexity of the created sentences. Of course,
syntactically and semantically complex statements are harder to construct than sim-
ple ones. For this reason, the correct sentences have been classified according to their
complexity. S+

c stands for all correct sentences that are complex in the sense that
they contain a negation (“no”, “does not”, etc.), an implication (“every”, “if ... then”,
etc.), a disjunction (“or”), a cardinality restriction (“at most 3”, etc.), or several of
these elements. While the ratio of complex sentences was already very high in the
first experiment (around 60%), it was was even higher in the second experiment
reaching 70%.

Looking at the concrete sentences the participants created, one can see that they
managed to create a broad variety of complex sentences. The following sentences are
examples created during the first experiment:

Every dog is a mammal.
It is false that every animal is a mammal.
Every country is a part of a continent.
It is false that Winston-Churchill is a prime-minister of Denmark.

These examples have been created without using the templates feature of the used
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early version of AceWiki. Some examples of the second experiment are shown here:

Every lecture is attended by at least 3 students.
Every lecturer is a professor or is an assistant.
Every professor is employed by a university.
If X contains Y then X is larger than Y.
If somebody X likes Y then X does not hate Y.
If X is a student and a professor knows X then the professor hates X or likes X or
is indifferent to X.

The last example is even too complex to be represented in the language OWL. Thus,
the AceWiki user interface seems to scale very well with respect to the complexity
of the ontology.

Words

The second part of Table 4.2 shows the number and types of the words that have been
created during the experiment. All types of words have been used by the participants
with the exception that transitive adjectives were not supported by the AceWiki
version used for the first experiment. While nouns were the predominant word type
in the first experiment, transitive verbs were the most frequent type in the second
one.

It is interesting to see that the first experiment resulted in an ontology consisting
of more words than correct sentences, whereas in the second experiment the number
of correct sentences clearly exceeds the number of words. This is an indication that
the words in the second experiment have been reused more often and were more
interconnected.

Time

The third part of Table 4.2 takes the time dimension into account. On average,
each participant of the first experiment spent 47 minutes, and each participant of
the second experiment spent 60 minutes. The average time per correct sentence,
which was around 6.4 minutes in the first experiment, was much better in the second
experiment being only 4.9 minutes.

These time values can be considered very good results, given that the participants
had no practical training and had no particular background in formal knowledge
representation.

User Feedback

Finally, the feedback that the participants of the first experiment gave in the ques-
tionnaire can be evaluated. Unfortunately, there is no such data for the second ex-
periment.
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0 2 4 6 8 10 12
number of participants

very easy 1

quite easy 4

medium 10

quite hard 4

very hard 1

Figure 4.10: This chart shows how the participants answered the question “How easy or
how difficult was the handling of AceWiki?” after the first experiment.

The questionnaire asked how easy or how difficult the handling of AceWiki was
perceived by the participants. Figure 4.10 shows the result. The responses are dis-
tributed symmetrically and have a peak at “medium”.

On the one hand, this is a good result since only 25% of the users found it hard to
use AceWiki. It has to be considered that the participants only experienced the costs
of formal knowledge representation, but not the benefits (since reasoning features
were missing in the version of AceWiki that was used for the first experiment).
Furthermore, one can argue that knowledge representation is inherently a difficult
task that can probably never be made very easy for everybody.

On the other hand, the results show that there is certainly room for improvement.
Since the time the first experiment was conducted, the AceWiki interface has under-
gone various improvements concerning usability. For this reason, it can be assumed
that the current version would score better in this respect.

4.4.5 AceWiki Case Study

The two presented usability experiments seem to confirm that AceWiki can be used
conveniently by untrained persons. However, usability does not imply the usefulness
for a particular purpose. For this reason, I performed a small case study in the form
of a self-experiment to exemplify how an experienced user like myself can represent
a strictly defined part of real world knowledge in AceWiki in a useful way.

The rest of this section describes the design of the case study and discusses the
results.

4.4.5.1 Design

The case study presented here consists of the formalization of the content of the At-
tempto website8 in AceWiki. This website contains information about the Attempto

8http://attempto.ifi.uzh.ch

http://attempto.ifi.uzh.ch
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total sentences created S 538
complex sentences Sx 107

% of complex sentences Sx/S 19.9%

total words created w 261
individuals (i.e. proper names) wp 184
classes (i.e. nouns) wn 46
relations total wr 31

transitive verbs wv 11
of -constructs wo 13
transitive adjectives wa 7

sentences per word S/w 2.061

time spent (in minutes) t 347.8 (= 5.8 h)
av. time per sentence t/S 0.65 (= 38.8 s)

Table 4.3: This table lists the results of the AceWiki case study that was about formalizing
the content of the Attempto website in AceWiki.

project and its members, collaborators, documents, tools, languages and publica-
tions, and the relations among these entities. Thus, the information provided by the
Attempto website is a piece of relevant real world knowledge.

In the case study to be presented, I used a plain AceWiki instance and filled
it with the information found on the public Attempto website. The goal was to
represent as much as possible of the original information in a natural and adequate
way. This was done manually using the predictive editor of AceWiki without any
kind of automation.

4.4.5.2 Results

Table 4.3 shows the results of the case study. The formalization of the website content
took less than six hours and resulted in 538 sentences. This gives an average time
per sentence of less than 40 seconds. These results give us some indication that
AceWiki is not only usable for novice users but can also be used in an efficient way
by experienced users.

Most of the created words are proper names (i.e. individuals), which is not sur-
prising for the formalization of a project website. The ratio of complex sentences is
much lower than the ones encountered in the experiments but with almost 20% still
on a considerable level.

Basically, all relevant content of the Attempto website could be represented in
AceWiki. Of course, the text could not be taken over verbatim but had to be
rephrased. Figure 4.11 exemplarily shows how the content of the website was for-
malized. The resulting ACE sentences are natural and understandable.
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Figure 4.11: This figure shows, as an example, a text that occurs on the Attempto website
(top) and how it was represented in AceWiki (bottom).

However, some minor problems were encountered. Data types like strings, num-
bers and dates would have been helpful but are not supported. ACE itself has support
for strings and numbers, but AceWiki does not make use of it so far. Another problem
was that the words in AceWiki can consist only of letters, numbers, hyphens, and
blank spaces (the latter are internally represented as underscores). Some things like
publication titles or package names contain colons or dots which had to be replaced
by hyphens in the AceWiki representation. These problems could be solved in the
future by adding support for data types to AceWiki and being more flexible with
respect to user-defined words.

Figure 4.12 shows an example of a wiki article that resulted from the case study.
It illustrates how queries can be used for content that is automatically generated
and updated. This is an important advantage of such semantic wiki systems. The
knowledge has to be asserted once but can be displayed in different places. In the
case of AceWiki, such automatically created content is well separated from asserted
content in a natural and simple manner by using ACE questions.

The abbreviation feature for proper names has been used extensively, e.g. to de-
fine that “ACE” is the abbreviation of “Attempto Controlled English” as shown on
Figure 4.12. This abbreviation feature was even more important to describe publica-
tions, which can be identified by their titles. However, sentences containing spelled-
out publication titles become very hard to read. In such cases, abbreviations have
been defined, which can be used conveniently to refer to the publications.

Altogether, the presented case study seems to confirm that AceWiki is usable
and useful. However, the fact that the AceWiki developer is able to use AceWiki
in an efficient way for representing real world knowledge does of course not imply
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Figure 4.12: This figure shows an exemplary wiki article (about the language ACE) that
resulted from the case study. Queries are used to generate content that is automatically
updated.

that every experienced user is able to do so. However, the results can be seen as an
upper boundary of what is possible to achieve with AceWiki, and the results show
that AceWiki can in principle be used in an effective way to represent real world
knowledge.

4.5 Concluding Remarks on CNL Tools

The three tools ACE Editor, AceRules and AceWiki exemplify how CNLs can make
intuitive and powerful knowledge representation systems by applying the identified
design principles. The presented studies show that such tools can be used by non-
specialists after little or no training.

Some essential aspects, however, remain unexplored with these studies. First of
all, it is not certain that the ACE statements are actually always understood in the
way defined by the ACE interpretation rules. Furthermore, there is no evidence so
far that languages like ACE are indeed easier to understand than other languages.
These understandability issues will be tackled in the next chapter that shows how
the understandability of CNLs and other formal languages can be evaluated and
compared.
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Understandability

This chapter takes a closer look at the topic of CNL understandability. The tools
and the evaluation results of the experiments presented in the previous chapter show
that CNLs are suitable for providing usable interfaces to knowledge representation
systems. However, it is not completely clear at this point whether the ACE statements
are understood correctly. This leads us to the third and fourth research question of
this thesis as defined in the introduction:

3. How can the understandability of controlled English be eval-

uated?

4. Is controlled English indeed easier to understand than other

formal languages?

Controlled natural languages are claimed to be easier to learn and understand than
other formal languages and user studies are the only way to verify this claim. How-
ever, it is not trivial to set up such studies in a proper way. The results of the
experiments presented in the previous chapter do not imply that the participants
actually understood all statements they wrote.

So far, there is no agreed methodology on how the understandability of CNLs
should be evaluated. Furthermore, there is no solid evidence that CNLs are indeed
easier to understand than comparable common formal languages.
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Below, this chapter presents the state of the art in CNL evaluation and describes
some problems with existing approaches (Section 5.1). Then, I will introduce a gen-
eral framework for human subject experiments to test the understandability of CNLs,
which solves the identified problems of existing approaches (Section 5.2). Afterwards,
the results of two experiments are described that have been performed to test and
compare the understandability ACE (Sections 5.3 and 5.4). These experiments also
give us evidence whether the ontograph approach altogether worked out (Section 5.5).
Finally, the conclusions will be summarized (Section 5.6), limitations of ontographs
are discussed, and some possible other application areas are sketched (Section 5.7).

5.1 Existing CNL Evaluation Approaches

Many different user experiments have been conducted in the past to evaluate different
kinds of CNLs. Two general types of approaches can be identified: task-based and
paraphrase-based approaches. I will argue that it is difficult to get reliable results
concerning the understandability of CNLs with either approach.

5.1.1 Task-based CNL Experiments

Several user experiments have been conducted where a specific task was given to
the participants who should accomplish the task by entering CNL statements into a
given tool. Examples of such task-based experiments are the AceWiki experiments
presented in Section 4.4.4, having a very general task. Other such experiments have
been described by Bernstein and Kaufmann [12] and by Funk et al. [57, 56]. In all
cases, the participants received tasks to add certain knowledge to the knowledge base
using a tool that is based on CNL. An example taken from [57] is the task

Create a subclass Journal of Periodical.

for which the participants are expected to write a CNL statement in the form of
“Journals are a type of Periodicals”. To evaluate whether the task was accomplished,
the resulting knowledge base can be checked whether it contains this actual piece of
information or not. This approach bears some problems if used to test the under-
standability of a language.

First of all, such experiments mainly test the ability to write statements in the
given CNL and not the ability to understand them. A user succeeding in the task
shown above does not necessarily understand what the statement means. In order
to add “Journal” as a subclass of “Periodical”, the user only has to map “subclass”
and “type of”, but does not have to understand these terms.

Another problem is that it is hard to determine with such experiments how much
the CNL contributes to the general usability and understandability, and how much
is due to other aspects of the tool. It is also hard to compare CNLs to other formal
languages with such studies, because different languages often require different tools.



140 CHAPTER 5. UNDERSTANDABILITY

For these reasons, it would be desirable to be able to test the understandability of
CNLs in a tool-independent way, which is not possible with task-based approaches.

Due to the writability problem of CNLs (see Section 2.1.4), however, tools are
needed to test the writability of CNLs, and task-based approaches seem to be a good
solution for this.

Task-based evaluation approaches can be complemented by measuring the sub-
jective usability, for example by applying the popular SUS method [23]. However,
such subjective usability scores are — as the inventor of SUS admits — a “quick and
dirty” method that does not allow for direct conclusions on comprehension of the
concepts involved. For this reason, such usability scores are not suitable for reliably
measuring the understandability of CNLs either.

Inglesant et al. [75] introduce an approach that is related to what I will present
in this chapter by using graphical representations. They performed a task-based
evaluation of their CNL tool where the participants had to formalize a scenario that
was described as a textual listing and at the same time as a diagram. As it turned
out, however, the participants mostly ignored the diagram and only relied on the
textual description.

5.1.2 Paraphrase-based CNL Experiments

Paraphrase-based approaches are a way how CNLs can be tested in a tool-inde-
pendent manner. In contrast to task-based approaches, they aim to evaluate the
comprehensibility of a CNL rather than the usability of tools using CNL.

Hart et al. [69] present such an approach to test their CNL (i.e. the Rabbit
language). The authors conducted an experiment where the participants were given
one Rabbit statement at a time and had to choose from four paraphrases in natural
English, only one of which was correct. The authors give the following example of a
Rabbit statement and four options:

Statement: Bob is an instance of an acornfly.

Option 1: Bob is a unique thing that is classified as an acornfly.

Option 2: Bob is sometimes an acornfly.

Option 3: All Bobs are types of acornflies.

Option 4: All acornflies are examples of Bob.

They used artificial words like “acornfly” in order to prevent that the participants
classify the statement on the basis of their own background knowledge. Option 1
would be the correct solution in this case. Similar experiments are described by
Hallett et al. [65] and Chervak et al. [27]. Again, there are some problems with such
approaches.

First of all, since natural language is highly ambiguous, it has to be ensured
somehow that the participants understand the natural language paraphrases in the
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way they are intended, which just takes the same problem to the next level. For the
example above, one has to make sure that the participants understand the phrases “is
classified as”, “are types of” and “are examples of” in the correct way. The problem
is even more complicated with words like “unique”, “sometimes” and “all”. If one
cannot be sure that the participants understand the paraphrases then the results do
not permit any conclusions about the understandability of the tested language.

Furthermore, since the formal statement and the paraphrases look very similar
in many cases (both rely on English), it is yet again hard to determine whether
understanding is actually necessary to fulfill the task. The participants might do the
right thing without understanding the sentences (e.g. just by following some syntactic
patterns), or by misunderstanding both — statement and paraphrase — in the same
way.

For the example above, a participant might just think that “an instance of”
sounds like having the same meaning as “a unique thing that is classified as” without
understanding any of the two. Such a person would be able to perform very well on
the task above. In this case, the good performance would imply nothing about the
understandability of the tested language.

Nevertheless, paraphrase-based approaches also have their advantages. One of
them is that they scale very well with respect to the expressivity of the language to
be tested. Basically, CNLs built upon any kind of formal logic can in principle be
tested within such experiments, once the problems identified above are solved in one
way or another.

5.2 The Ontograph Framework

Since task-based and paraphrase-based approaches have serious problems if used for
testing the understandability of CNLs, I will introduce a new approach.

I propose an approach that is based on diagrams and solves the discussed problems
of existing approaches. My approach relies on a graphical notation that I developed
and that I call ontographs (as a contraction of “ontology graphs”). This notation is
designed to be very simple and intuitive. The basic idea is to describe simple situ-
ations in this graphical notation so that these situation descriptions can be used in
human subject experiments as a common basis to test the understandability of differ-
ent formal languages. This approach allows for designing reliable understandability
experiments that are completely tool-independent.

In this section, the elements of the ontograph notation are introduced, some
characteristic properties of this notation are described, it is argued that these prop-
erties make ontographs intuitively understandable, it is shown how experiments can
be designed on the basis of ontographs, and, finally, some related approaches are
described.
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5.2.1 The Ontograph Notation

Every ontograph diagram consists of a legend that introduces types and relations and
of a mini world that describes the actual individuals, their types, and their relations.

As a side remark, the distinction between legend and mini world roughly corre-
sponds to the distinction between TBox and ABox [116] that is used in Description
Logics and in other knowledge representation theories.

The ontograph elements of the legend and of the mini world are now to be de-
scribed, and it is shown how these elements are compiled into a complete ontograph.

Legend

The legend of an ontograph introduces the graphical representations of types and
relations.

Types are introduced by showing their name beside the symbol that represents
the respective type. For example, a type “person” would be introduced as follows:

person

Another type “object” can be introduced as follows:

object

Starting from such general types, more specific ones can be defined. For example,
“traveler” and “officer” can be defined as specific types of the general type “person”:

traveler ofcer

There can also be specific types for the general type “object”, for example “present”
and “TV”:

present TV

If a legend contains a type like “person” and, at the same time, a specific type like
“traveler” then the part of the symbol of the specific type that is copied from the
general type is displayed in gray:

person traveler ofcer
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The same is done for objects:

object present TV

The purpose of this is to specify that only the black part of the symbol represents
the respective type. This becomes important for individuals that belong to several
types. For example, the suitcase is the deciding criterion in the case of the “traveler”
definition (and not e.g. the missing hat).

Relations are represented by circles that contain a specific symbol and an arrow
going through this circle. As with types, the legend introduces the names of the
relations by showing them on the right hand side of the graphical representation.
Some examples are the relations “loves”, “helps” and “inspects”:

loves helps inspects

In contrast to types, there is no way to create specific relations based on more general
ones.

Mini World

In contrast to the legend that only introduces vocabulary and the respective graphical
representations, the mini world describes actual situations. Such situations consist
of individuals, the types of the individuals, and the actual relations between them.

Every individual is represented by exactly one symbol. These symbols denote the
types of the individuals, as introduced by the legend. For example, an individual that
is a traveler and another individual that is a present are represented by a traveler
symbol and a present symbol:

If an individual belongs to several types then it is represented by a combined symbol
that is obtained by merging the respective symbols. For example

represents an individual that is a traveler and an officer and another individual that
is a present and a TV. The ontograph notation requires that every individual belongs
to at least one type.

Individuals can optionally have a name that is shown in the mini world below
the respective symbol:
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John

Relation instances are represented by arrows that point from one individual to
another (or the same) individual and that have a relation symbol (as defined by
the legend) somewhere in the middle. “John helps Mary”, for example, would be
represented as follows:

John Mary

Not only persons but also objects can participate in relations and, of course, indi-
viduals can participate in several relations at the same time:

John Mary

There is no explicit notation for negation. The fact that something is not the
case is represented implicitly by not saying that it is the case. For example, stating
that “John does not help Mary” is done by not drawing a help-relation from John to
Mary. Thus, mini worlds are closed in the sense that everything that is true is shown
and everything that is not shown is false.

Complete Ontographs

Mini world and legend are compiled into a complete ontograph. The mini world is
represented by a large square surrounded by a thick line and labeled with “mini
world”. This square contains the mini world elements described above. The legend
is represented by a smaller upright rectangle to the right of the mini world with
the same height. The area of the legend is also surrounded by a thick line, is labeled
with “legend”, and contains the legend elements as introduced above. These elements
are arranged one below the other in a way that type definitions come before relation
definitions. Figure 5.1 shows an example. More examples can be found in Appendix B.

5.2.2 Properties of the Ontograph Notation

The ontograph notation has some important characteristic properties, which have to
be discussed.
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Mini World Legend

person

ofcer

Bill

Mary

JohnKate
TV

loves

traveler

present

helps

inspects

Figure 5.1: This is an example of an ontograph. The legend on the right hand side defines
the types and relations. The mini world on the left hand side shows the actual individuals,
their types, and the relations between them.

First of all, the ontograph notation does not allow for expressing incomplete
knowledge. This means that nothing can be left unspecified and that every statement
about the mini world is either necessarily true or necessarily false. For example, one
can express “John helps Mary”, or one can also state “John does not help Mary”, but
one cannot express that it is unknown whether one or the other is the case. Most
other logic languages (e.g. standard first-order logic) do not behave this way. For the
ontograph notation, this has the positive effect that no explicit notation for negation
is needed. Everything that is not shown in the ontograph is simply considered false.

Another important property of the ontograph notation is that it has no gen-
eralization capabilities. Logically speaking, the ontograph notation has no support
for any kind of quantification over the individuals. For example, one cannot express
something like “every man loves Mary” in a general way. The only way to express this
is to draw a love-relation from every individual that is a man to the individual Mary.
Thus, every individual and every relation instance has to be represented individually.
This has the apparent consequence that the ontograph notation cannot be used to
describe situations with an infinite number of individuals and becomes impractical
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with something around 50 or more individuals and relation instances.
These properties make the ontograph notation a very simple language. They also

have the consequence that the ontograph notation is no candidate for becoming a
knowledge representation language of its own. A knowledge representation language
without support for partial knowledge and generalization would not be very useful.

5.2.3 The Understandability of Ontographs

Ontographs are required to be very intuitive and easy to understand. Several prop-
erties of the ontograph notation are indications of its intuitive understandability.

First of all, it can be argued that the use of simple and intuitive graphical icons
contributes to the understandability of the ontograph notation. The used icons and
the meaning of the arrows are easily identifiable.

Probably more important, however, is the fact that the ontograph notation has
no generalization capabilities and does not support partial knowledge. This excludes
many potential misunderstandings. An ontograph explicitly shows every existing
individual and depicts every single relation instance between them. There is not
much to misunderstand with such basic elements.

These arguments are of course not sufficient to prove that the ontograph notation
is very easy to understand for the participants of an experiment. The results of two
experiments that have been performed will be described in Section 5.5, and they will
give us some solid evidence that the ontograph notation is indeed easy to understand.

5.2.4 Ontograph Experiments

Ontographs are designed to be used in experiments testing the understandability
of formal languages. They could, in principle, also be used to test the writability of
languages by asking the participants to describe given situations. However, the latter
approach has not yet been investigated.

In order to test the understandability of a language, an ontograph and several
statements (written in the language to be tested) are shown to the participants of
an experiment, who have to decide which of the statements are true and which are
false with respect to the situation depicted by the ontograph.

An important property of ontographs is that they use a graphical notation that
is syntactically very different from textual languages like CNLs. This makes it virtu-
ally impossible to distinguish true and false statements of a given textual language
with respect to a given ontograph just by looking at the syntax. If participants man-
age to systematically classify the statements correctly as true or false then it can
be concluded with a high degree of certainty that the participants understood the
statements and the ontograph.

This point gets even clearer by applying a direct connection to model theory [26].
From a model-theoretic point of view, one can say that ontographs are a language
to describe first-order models. The statements that are shown to the participants
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of an experiment would then be very simple first-order theories. From this point
of view, the task of the participants is to decide whether certain theories have the
shown ontograph as a model or not. We can say that participants understand a
statement if they can correctly and systematically classify different ontographs as
being a model of the statement or as not being a model thereof. This conclusion can
be drawn because the truth of first-order theories can be defined solely on the basis
of their models. Thus, being able to identify the ontographs that are models of a
theory represented by a statement means that the respective person understands the
statement correctly.

Admittedly, this model-theoretic interpretation of the term “understanding” is
relatively narrow and ignores important problems like symbol grounding [68]. Such
kinds of problems are not covered by the ontograph approach. Nevertheless, the onto-
graph framework allows us to draw stronger conclusions about the understandability
of a language than other existing approaches.

5.2.5 Related Approaches

Different graphical notations have been defined to represent logical statements, for
example Peirce’s existential graphs [123] and Sowa’s conceptual graphs [156]. How-
ever, such languages are fundamentally different from ontographs in the sense that
they aim at representing general logical statement and in the sense that they are not
designed to be intuitively understandable but have to be learned.

The combination of intuitive pictures and statements in natural language can
also be found in books for language learners, e.g. “English through pictures” [138].
As in the ontograph framework, pictures are used as a language that is understood
without explanation.

The idea of “textual model checking” presented by Bos [19] is similar to the
ontograph approach in some respects. Like in the ontograph approach, there is the
task of classifying given statements as true or false with respect to a given situation.
In contrast to the approach presented here, the task is to be performed by computer
programs and not by humans, and it is about testing these computer programs rather
than the language.

5.3 First Ontograph Experiment

So far, two experiments have been performed using the ontograph framework. The
first one was a smaller experiment that only tested ACE without another language for
comparison. The goal was to get some first experiences with the ontograph framework
and at the same time to get some results about the understandability of ACE and
to find possible weak points.

Since the number of participants was considerably lower than in the second exper-
iment and since this first experiment was conducted in a less controlled environment,
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the results cannot be considered as reliable as the ones from the second experiment.
For this reason, this section describes the design and the results of the first ontograph
experiment in a relatively brief way.

5.3.1 Design of the first Ontograph Experiment

For the first experiment, 15 participants were recruited who were mostly students
and not experts in knowledge representation. They participated in the experiment
from home by using a common web browser to connect to our server.

Four ontographs have been used for this experiment. In order to distinguish them
from the ontographs used in the second experiment, they will be called 1X, 2X, 3X
and 4X. They are shown in Appendix B.1 together with 20 ACE statements each.
These statements are subdivided into two series a and b whereas only series a has
been used for this experiment and series b is unused so far.

The statements of both series are numbered from 1 to 10. In this way, every
statement gets an identifier that consists of its number followed by either “a” or “b”
(depending on the series) and postfixed by “+” if the statement is true with respect
to its ontograph or “−” if it is false. The statements of the different ontographs
can be uniquely referenced with identifiers of the form “ontograph/statement”. For
example, the identifier 2X/5a+ stands for the fifth statement of series a of ontograph
2X and exhibits that this statement is true with respect to its ontograph.

The ACE sentences are chosen so that they cover a broad variety of seman-
tic structures. All sentences would be expressible in the language OWL and would
cover most of the axiom types provided by the OWL standard. The first ontograph
1X only contains individuals and types but no relations. Relations are introduced
in ontograph 2X. The statements of the third ontograph 3X use more complicated
structures like domain, range, and cardinality restrictions. The statements of onto-
graph 4X, finally, are only about relations. In this way, a subset of ACE is covered
that corresponds to a subset of first-order logic that is similar to the one used by
OWL.

These ontograph series contain three special statements to test how the partici-
pants perform on logical borderline cases, where human intuition can be misleading.
1X/3a+ is such a borderline statement. It is a very simple statement using “or”
where both conjuncts are true. Since ACE defines that “or” is always interpreted in-
clusively, the statement is true, but it can be expected that this is confusing for the
participants. Another borderline statement is 1X/10a+ that is a conditional state-
ment with a false precondition. While such statements are considered logically true
no matter what the postcondition is, this can also be confusing for the participants.
2X/7a+, finally, is the third borderline statement. It contains “nothing but ...” in a
situation where “nothing” would be correct as well. ACE defines “nothing but ...” to
include “nothing at all”, which could be another cause for confusion. For these three
borderline statements, it can be expected that the participants perform worse than
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for the other statements.
The experiment was conducted in a way that one ontograph after the other

was shown to the participants together with the ten statements of series a. For
each ontograph, the participants had at most five minutes to classify each of the
statements as true, false, or “don’t know”. Thus, the participants could spend on
average at most 30 seconds per statement.

There was no explanation on how the ACE statements have to be interpreted,
with the one exception that “something” can stand for persons and objects. After
the experiment, the participants filled out a very short questionnaire about their
experiences during the experiment.

5.3.2 Results of the first Ontograph Experiment

The first ontograph experiment can be evaluated on the basis of the general classi-
fication scores and the amount of time needed. Additionally, an overview is given of
how the individual statements have been classified.

5.3.2.1 General Classification Scores

Figure 5.2 shows how well the participants performed on the classification task. This
figure shows the percentages of correct classifications whereas “don’t know” answers
and cases where the time limit run out count as 0.5 correct answers. Overall 83%
of the statements have been classified correctly. This figure has to be compared to
50%, which can be achieved without understanding (by mere guessing, by choosing
always “don’t know”, or by letting the time limit run out).

If the borderline statements described above (i.e. 1X/3a+, 1X/10a+ and 2X/7a+)
are not considered then the percentage of correct classifications reaches almost 88%.
Considering all statements, ontograph 3X was understood best with almost 90% cor-
rect classifications whereas the other three ontographs have scores between 78% and
84%. In the case of the ontographs 1X and 2X, however, these numbers are much
higher when the borderline statements are disregarded: 95.8% and 88.6%, respec-
tively.

These results indicate that the ACE statements were generally well understood.
As expected, the borderline statements had a negative influence on the classification
score.

5.3.2.2 Time

Apart from the classification scores, it is also interesting to see how much time was
needed for this classification task. The participants could spend at most 5 minutes
per ontograph but they could proceed before this time limit ran out. In this way,
the actual time the participants needed could be retrieved from the log files of the
server. Figure 5.3 shows these time values.
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50% 60% 70% 80% 90% 100%
percentage of correct classifications

Overall
83.0%

87.7%(without borderline statements)

Ontograph 1X
83.3%

95.8%(without borderline statements)

Ontograph 2X
80.7%

88.6%(without borderline statements)

Ontograph 3X 89.7%

Ontograph 4X 78.3%

Figure 5.2: This chart shows the percentage of correct classifications of the ACE statements
of the first ontograph experiment. The base line is 50% that can be achieved by mere
guessing. “don’t know” classifications and cases where the time limit ran out count as 0.5
correct classifications. Series 1 and 2 contain the borderline statements 1X/3a+, 1X/10a+
and 2X/7a+, which were the main reason for incorrect classifications. The scores obtained
by ignoring these borderline statements are shown separately.

From the 5 minutes the participants could spend for each ontograph, they needed
on average only 3.2 minutes. Thus, less than 20 seconds were needed per statement.
Together with the results on the classification scores, this shows that the participants
were able to understand the ACE statements very quickly.

The time values for the different ontographs show that 4X required most time
followed by 3X. This can be explained by the fact that these ontographs were more
complicated than the other two. The fact that the simplest ontograph 1X required
more time than 2X can be explained by the fact that 1X was the first ontograph
presented to the participants, and thus they were not yet familiar with this notation
and the procedure.

5.3.2.3 Individual Statements

Finally, it is interesting to look at how the individual statements have been classified.
Figure 5.4 shows the results for the individual statements. They confirm that the
borderline statements were often incorrectly classified.

The borderline statement 1X/3a+ (the simple statement using “or” where both
conjuncts are true) is true according to the ACE semantics but was often classified
as false. One might assume that many participants misinterpreted the “or” as being
exclusive (instead of inclusive as ACE defines it). However, if that were the case then
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0 1 2 3 4 5

time in minutes

Overall 3.20

Ontograph 1X 2.86

Ontograph 2X 2.60

Ontograph 3X 3.43

Ontograph 4X 3.91

Figure 5.3: This chart shows the average time needed for the classification of the statements
of the different ontographs by the participants of the first ontograph experiment. 5 minutes
was the time limit.

the participants should also interpret the “or” of statement 1X/9a+ as exclusive,
but they did not. A more plausible explanation is that the participants recognized
that the statement 1X/3a+ is imprecise in the sense that using “and” instead of
“or” would be more accurate. This prevented some of the participants from realizing
that the statement is nevertheless true in a logical sense. The situation is different
with statement 1X/9a+ where the replacement of “or” by “and” would not be more
accurate but would make the true statement false. As a result, 1X/9a+ was classified
correctly by almost all participants. It seems that people in such cases often fail to
distinguish accuracy from logical truth.

1X/10a+ is the second borderline statement (the conditional statement with a
false precondition). It is not surprising that people with no background in logics fail
to classify this statement in a correct way.

The third borderline statement is 2X/7a+ (the statement containing “nothing
but ...” that would also be correct if “nothing” was used). This is a common mistake
that can also be encountered in other languages like OWL: people tend to think
that “nothing but ...” implies “at least 1 ...” [136]. It is interesting to see that in this
case the more general statement 2X/9a+ (containing “nothing but ...” in a general
context) was also classified incorrectly by most of the participants, in contrast to
the statements 1X/3a+ and 1X/9a+ where only the specific one was misunderstood.
Thus, it seems that the participants really misunderstood “nothing but” and that it
was not just because they were mixing up accuracy and logical truth.

I assume that the misunderstanding of such borderline statements is not specific
to ACE, but can be encountered in any other language.

The statement 3X/6a+ also exhibits a predominance of the wrong classifications
over correct ones. In this case, however, no clear reason can be identified.

Apart from the discussed cases, the correct decision was chosen at least twice
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Figure 5.4: This chart shows for each statement how many participants classified it cor-
rectly, classified it wrongly, said that they don’t know, or exceeded the time limit. The
predominance of the correct classification over the wrong one is statistically significant on
a 95% confidence level for all statements that are marked with “⋆”. Appendix B.1 shows
the concrete ontographs and statements.

as often than the wrong one. This preference is statistically significant on a 95%
confidence level for all of them except for 4X/7a− and 4X/10a+, applying a simple
binomial test with the null hypothesis being a random 50% decision.

As can be seen on Figure 5.4, “don’t know” answers were quite frequent for the
statements of ontograph 4X. This can be explained by the fact that the statements
of this ontograph make use of variables. Some of the participants seem to feel un-
comfortable with them. Still, the statements of ontograph 4X were also understood
reasonably well.

Another interesting point is that the participants were not told that the ontograph
notation reflects the complete information about the mini world and that everything
that is not shown in the ontograph can be considered false. The result for statement
2X/2a+, for example, shows that the participants understood this very well without
any explanation. They understood that the fact that the ontograph does not show
a see-relation from Mary to Tom means that “Mary does not see Tom” is a true
statement.

5.4 Second Ontograph Experiment

Building upon the experiences of the first experiment, a second experiment was per-
formed that compares ACE to a comparable common formal language. This experi-
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ment was more thorough than the first one in the sense that the number of partici-
pants was much higher (64 participants) and they acted in a controlled environment,
instead of participating from home as in the first experiment. This experiment should
give us statistical evidence on whether ACE is indeed easier to understand than a
common formal language.

In what follows, the design and the results of the second ontograph experiment
are described.

5.4.1 Design of the second Ontograph Experiment

This second ontograph experiment has been designed very carefully in order to get
strong statistical results on the question whether ACE is easier to understand than
other formal languages.

In the following sections, important aspects of the design are described, namely
the choice of the language to compare ACE against, the amount of time the partici-
pants should get for learning the languages, the recruitment criteria, the grouping of
the participants according to the different tasks, the overall experiment procedure,
the design of the language description sheets, and the payout. Furthermore, the re-
sults of a test run are described that was performed before the main experiment.

5.4.1.1 Comparable Language

The most important design decision is the choice of the language to which ACE is
compared. For this experiment, the Manchester OWL Syntax, a usability-oriented
syntax of the ontology language OWL, has been chosen. The inventors of the Manch-
ester OWL Syntax introduce it as follows [73]:

❛❛ The syntax, which is known as the Manchester OWL Syntax, was
developed in response to a demand from a wide range of users, who do
not have a Description Logic background, for a “less logician like” syntax.
The Manchester OWL Syntax is derived from the OWL Abstract Syntax,
but is less verbose and minimizes the use of brackets. This means that it
is quick and easy to read and write. ❜❜

As this quotation shows, the Manchester OWL Syntax is designed for good usability
and good understandability and thus seems to be an appropriate choice for this
experiment. However, the Manchester OWL Syntax requires the statements to be
grouped by their main ontological entity (the one in subject position so to speak).
This is a reasonable approach for the definition of complete ontologies, but it makes
it impossible to state short and independent statements that could be used for a
direct comparison to ACE in an experimental setting.

For this reason, a modified version of the Manchester OWL Syntax has been
defined specifically for this experiment. The resulting language which I will call
“Manchester-like language” or “MLL” uses the same or very similar keywords but



154 CHAPTER 5. UNDERSTANDABILITY

Series 1 Series 2 Series 3 Series 4

S ::= I HasType T × × ×
I R I ×
I not R I ×
T SubTypeOf T × × ×
R SubRelationOf R ×
T EquivalentTo T ×
R EquivalentTo R ×
T DisjointWith T ×
R DisjointWith R ×
R HasDomain T ×
R HasRange T ×
R IsSymmetric ×
R IsAsymmetric ×
R IsTransitive ×

T ::= not T × ×
T or T × ×
T and T ×
R some T ×
R only T ×
R min N T ×
R max N T ×

R ::= inverse R ×

Table 5.1: This table shows the grammar rules of MLL (in Backus-Naur style) and the
subsets thereof used for the individual series. Each series uses exactly seven out of the 22
grammar rules.

allows us to state short and independent statements, which do not depend on their
ordering.

Table 5.1 shows the simple grammar of MLL to be used in this experiment.
Furthermore, the table shows how four different subsets have been defined. Each
of them has been tested independently in a separate series. The details about the
different series will be explained later on.

MLL adopts the color codes of the Manchester OWL Syntax for improved read-
ability. Turquoise is used for the boolean operators on types and for the inverse
operator on relations. More complex operators used for type restrictions involving
relations are displayed in magenta.

5.4.1.2 Learning Time

Obviously, the understanding of a language highly depends on the amount of time
spent for learning the language. This means that one has to define a certain time
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frame when evaluating the understandability of languages. Some languages might
be the best choice if there is only little learning time; other languages might be less
understandable in this situation but are more suitable in the long run.

So far, little is known about how the understandability of CNLs compares to
the understandability of common formal languages. CNLs are designed to be under-
standable with no learning and the results of the first ontograph experiment show
that this is indeed the case. Since other formal languages like the Manchester OWL
Syntax are not designed to be understandable with no learning at all, it would not
be appropriate to compare ACE to such a language in a zero learning time scenario.

For this reason, I chose a learning time for this second experiment of about 20
minutes. This seems to be a reasonable first step away from the zero learning time
scenario. The effect of longer learning times remains open to be studied in the future.

5.4.1.3 Participants

Another important design decision is the choice of the participants. Such studies are
mostly performed with students because they are flexible and usually close to the
research facilities of the universities. In my case, there are even more reasons why
students are a good choice. Students are used to think systematically and logically
but they are usually not familiar with formal logical notations (unless this lies in their
field of study). In this way, they resemble domain experts who have to formalize their
knowledge and who should profit from languages like ACE.

The requirements for the participants have been defined as follows: They had
to be students or graduates with no higher education in computer science or logic.
Furthermore, at least intermediate level skills in written German and English were
required, because the experiment itself was explained and performed in German, and
English was needed to understand the ACE texts.

64 students have been recruited who fulfill these requirements and exhibit a broad
variety of fields of study. The students were on average 22 years old and 42% of them
were female and 58% were male. Furthermore, it is important to mention that none
of them participated in the first ontograph experiment or in any of the AceWiki
experiments.

5.4.1.4 Ontographs and Statements

The second experiment was designed in a more focused way than the first one. There
are many aspects that could be tested, but not everything can be done within one
experiment. This experiment is designed to evaluate the general understandability
and leaves more specific aspects to possible future experiments. This means that the
second experiment did not include borderline statements anymore, such as implica-
tions with false preconditions and statements using “or” where “and” would be more
accurate (cf. the results of the first experiment). On the other hand, the semantic
coverage should still be kept as broad as possible. However, some things like reflexive
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relation instances (i.e. relation instances that have the same individual on the left
and right hand side) that were part of the first experiment were not present anymore
in the second one.

As in the first experiment, the ontographs were divided into four series, which
roughly corresponded to the ones of the first experiment: The first series only con-
tains individuals and types without relations; the statements of the second series
contain relations with different kinds of simple universal quantifications; the third
series contains domain, range, and number restrictions; and, finally, the fourth series
consists basically only of relations.

For each of the four series, three ontographs have been created (denoted by A, B
and C, respectively) and 10 statement patterns have been defined. For each statement
pattern of the respective ontograph two statements are defined: one that is true with
respect to the situation depicted by the ontograph (denoted by +) and another one
that is false (denoted by –). Every statement is expressed in both languages, ACE
and MLL. Thus, every ontograph has 20 statements in ACE and 20 statements in
MLL that are pairwise semantically equivalent.

The 20 statement pairs for each ontograph are again subdivided into two state-
ment series of 10 statements each (denoted by a and b). This is done in a way, that
each statement series has exactly one statement pair of each pattern and that each
statement series contains some true statements and some false ones (but not neces-
sarily in a balanced way). The statements of the different ontographs will again be
referenced by identifiers of the form “ontograph/statement”, for example 3C/5b–. Ad-
ditionally, more general references of the form “ontograph-series/statement-pattern”
will be used that stand for all statements of the given statement pattern of all on-
tographs of the given series. Thus, the concrete example 3/5 would stand for all
statements of pattern 5 of the ontographs 3A, 3B and 3C.

The ontographs B and C of each series and their statements are structurally
equivalent in the sense that they can be transformed into each other by applying
one-to-one transformations to the names of individuals, types and relations. As we
will see, this is important for ensuring that the task of classifying ACE statements is
equally hard as the task of classifying MLL statements, while minimizing the learning
effect when the two tasks are to be performed in succession.

5.4.1.5 Groups

In order to enable a good comparison between the two languages ACE and MLL,
a “within subject” design is used, which means that each participant is tested on
ACE and on MLL. This and the design decision to have a learning phase of about
20 minutes increases the time needed to perform this experiment, compared to the
first one. Since the participants of an experiment cannot be expected to concentrate
for much longer than one hour, it is impossible to test a participant on all ontograph
series in the same experiment session. For this reason, each participant is randomly
assigned to one series and is only tested on that one.
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The participants are equally (and randomly) distributed into 16 groups according
to the cross product of the ontograph series (1, 2, 3 and 4), the order in which the
participant is tested on the two languages (AM for ACE first and then MLL; MA for
MLL first and then ACE), and the statement series (a and b):

groups := (1, 2, 3, 4)× (AM,MA)× (a, b)

Having altogether 64 participants gives us 4 participants for each of the 16 groups.

5.4.1.6 Procedure

The experiment was conducted in a computer room with a computer for each par-
ticipant. The main part of the experiment was performed on the computer screen.
Additionally, the participants received different printed sheets during the experiment.

The overall procedure consisted of seven stages:

1. Instruction
2. Control Questions
3. Learning Phase 1
4. Testing Phase 1
5. Learning Phase 2
6. Testing Phase 2
7. Questionnaire

For the instruction phase, the participants received a printed instruction sheet
that explains the experiment procedure, the payout, and the ontograph notation
(showing ontograph 1A, 2A, 3A or 4A, respectively).

The reverse side of the instruction sheet contained control questions for the par-
ticipants to answer, which allowed us to check whether the participants understood
the instructions correctly. The participants had to return the filled-out instruction
sheet to the experimenter. The experimenter then checked whether all questions
were answered correctly. In the case of false answers, the experimenter explained the
respective issue to the participant.

For the learning phase, the participants received a language description sheet of
the first language (either ACE or MLL). This language description sheet only ex-
plained the subset of the language that is used for the respective series. For this
reason, each series had its own instruction sheets for both languages. During the
learning phase, the participants had to read the language description sheet. Further-
more, an ontograph (the same as on the instruction sheet) was shown on the screen
together with the 10 true statements marked as “true” and the 10 false statements
marked as “false” in the respective language. Figure 5.5 shows a screenshot of the
experiment screen during the learning phase.

During the testing phase, a different ontograph was shown on the screen (1B, 2B,
3B or 4B for one language; 1C, 2C, 3C or 4C for the other language). Furthermore, the
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Figure 5.5: This figure shows the screen of the second ontograph experiment during the
learning phase for the language ACE. An ontograph is shown to the left and to the right
several statements are listed as “true statements” and as “false statements”. At the bottom
left, the remaining time for the learning phase is shown. The button “Next” can be used to
proceed before the time limit runs out.

10 statements of the respective statement series in the respective language were shown
on the screen together with radio buttons that allowed the participants to choose
between “true”, “false” or “don’t know”. Figure 5.6 shows how the experiment screen
of the testing phase looked like. During the testing phase, the participants could keep
the language description sheet that they got for the learning phase. Thus, they did
not need to know the language description by heart but they could read parts of it
again during the testing phase if necessary.

For the steps 5 and 6, the procedure of the steps 3 and 4 was repeated in the
second language, i.e. ACE if the first language was MLL and vice versa. Because
of the fact that the used ontographs B and C and their statements are structurally
equivalent, it could be ensured that the ACE task had exactly the same difficulty as
the MLL task. Using the same ontograph for both tasks was not an option because
this would have entailed a large learning effect between the two tasks.

Finally, the participants received a printed questionnaire form inquiring about
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Figure 5.6: This figure shows the screen of the second ontograph experiment during the
testing phase for the language ACE. An ontograph is shown to the left and to the right ten
statements are listed each having three radio buttons with the options “true”, “false” and
“don’t know”. At the bottom left, the remaining time for the testing phase is shown. If all
statements are classified, the button “Next” can be used to proceed.

their background and their experiences during the experiment. The experiment was
finished when the participants turned in the completed questionnaire form.

The learning phases had a time limit of 16 minutes each (20 minutes in the test
run) and the time limit for the testing phases was 6 minutes (10 minutes in the test
run). The participants were forced to proceed when the time limit ran out but they
could proceed earlier. In this way, it can not only be investigated how understandable
the languages are but also how much time the participants needed to learn them.

5.4.1.7 Language Description Sheets

The proper design of the language description sheets is crucial for this experiment.
If the participants perform better in one language than in the other, it might be
that the respective language was merely described better than the other. Thus, the
language description sheets have to be written very carefully to be sure that they
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are not misunderstood and are optimal for learning the respective language under
the given time restrictions.

In order to achieve an ideal learning effect given the strict time restrictions, each
series has its own set of language description sheets that only describe the part of the
language that is needed within the respective series. Appendix B.2 shows all language
description sheets used for the experiment. The experiment was performed in German
and for this reason German versions of the sheets were used. The appendix shows
translations in English. Furthermore, all language description sheets in German and
English are available online1.

The creation of the language description sheets for ACE is not very problematic.
Firstly, ACE is designed to be understood without training and thus only little
explanation is needed. Secondly, I am experienced in describing and explaining ACE.
Thirdly, since I advocate controlled natural languages, nobody would doubt that I
will ensure a first-rate description of ACE.

The ACE description sheets only explain a small number of issues, namely that
“or” is meant inclusively, that “something”, “everything” and “nothing” can also refer
to persons, that “nothing but ...” includes “nothing”, that “at most” does not exclude
zero, and how variables have to be interpreted. In the case of ACE, it might not
be necessary to explain all these aspects. However, in order to have an adequate
comparison to MLL where such aspects have to be explained anyway, they are also
explained for the case of ACE. Because no series makes use of more than three of these
aspects, the ACE description sheets of the different series are very short. The most
important part of the ACE description sheets is the part that tells the participants
to rely on their intuitive understanding when reading the ACE statements.

Things are slightly more complicated with the language description sheets for
MLL. MLL is not designed to be understood without training and I had no experience
in teaching such languages. Furthermore, people might suspect that I did not do my
best to provide a good language description of MLL because using a suboptimal
description would make ACE more favorable. Thus, it is crucial to ensure that the
description of MLL is as good as it can be.

The quality of the language description sheets for MLL was ensured in three steps.
First of all, the four series were designed in a way that at most seven MLL keywords
are used per series. Since each series has its own language description sheets, not
more than seven keywords have to be described by the same sheet. This should make
it easier to understand the needed subset of the language. Furthermore, the fact that
the ontographs of the second experiment did not contain reflexive relation instances
(i.e. relation instances with the same individual on the left and right hand side)
allows further simplifications. In the description of MLL, the word “another” can
be used conveniently for saying things like “whenever an individual has the given
relation to another individual then ...”, which would not be accurate if reflexive
relation instances were present. In this case, one would have to say something like

1http://attempto.ifi.uzh.ch/site/docs/ontograph/

http://attempto.ifi.uzh.ch/site/docs/ontograph/
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“whenever an individual has the given relation to an individual that may or may not
be the same individual then ...”, which makes the complete description more verbose
and harder to understand. Thus, the exclusion of reflexive relation instances makes
the MLL description sheets much more readable.

In a second step, the different MLL description sheets were given to three partic-
ipants (who comply with the restrictions of the experiment but who did not partic-
ipate in it). These three persons read the sheets and gave me feedback about what
they did not understand and what could be improved.

As a third step, I used the test run (to be described below) to receive final feedback
about the understandability and usefulness of the language description sheets. After
the test run, the participants received the sheets again and they were told to highlight
everything that was difficult to understand. Only very few things were highlighted
(altogether two highlightings in the MLL description, one in the ACE description,
and none in the general instructions) and according to this I made a couple of small
last changes for the main experiment.

Altogether, the language description sheets were compiled very carefully and
it is very unlikely that a different description of MLL would radically increase its
understandability. To affirm the quality of the used sheets, Appendix B.2 can be
consulted.

5.4.1.8 Payout

In order to be able to recruit a large number of participants for this experiment, it
was necessary to financially compensate them. The experiment was designed to last
approximately one hour: 22 minutes for each of the two tasks plus some additional
time for reading the instructions, for answering the control questions, and for filling
out the questionnaire. For their presence during the time of the experiment, the par-
ticipants received a fixed amount of 20 Swiss francs. At the time of the recruitment,
this amount of money was promised to the participants as their minimal reward.

In order to provide incentives for good performance, the participants additionally
received a variable amount of money depending on the number of statements they
managed to classify correctly. Every correct classification was worth 0.60 Swiss francs.
Every “don’t know” answer and statements for which the time limit ran out gave
0.30 Swiss francs. Thus, the participants could earn between 20 and 32 Swiss francs,
and they could get 26 Swiss francs for sure by always choosing “don’t know”. The
method of the payout calculation was described in the instruction sheets and was
checked in the control questions.

While there were monetary incentives for good classification scores, the time
needed for the learning and testing phases had no influence on the payout. The reason
for this was that quickly choosing “don’t know” for all statements (or just guessing
quickly and randomly) would become a profitable strategy if short time values gave
high rewards. In order to prevent from such behavior, no monetary incentives were
given for the amount of time needed. For the same reason, participants that required
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less time for the tasks were not allowed to leave the experiment earlier, and this
was known to the participants from the beginning. It was assumed that no explicit
incentives are necessary for the participants to continue with the procedure when
they think that they accomplished the task as good as they could (and this was
indeed the case, as the results will show).

Thus, the participants had incentives to do the classifications of the statements
correctly in order to get a high reward, but there was no concrete incentive for
finishing the tasks before the time limit runs out.

5.4.1.9 Test Run

In order to test the design of the experiment and to get some practical experience, I
performed a test run before the main experiment. For this test run, ten participants
were recruited and nine of them showed up.

The participants could spend up to 20 minutes for each learning phase and up to
10 minutes for each testing phase.

The participants performed very well. On average, they classified 8.92 out of 10
statements correctly. This is an indication that the experiment in general worked out
well. ACE was understood better but not much better (0.28 points). Interestingly,
four of the nine participants had a perfect score of 10 for both languages. On the
one hand, this is good because it shows that the task was feasible and that the
instructions were clear. On the other hand, it is bad because it does not return any
indication which of the languages was better.

For this reason, I decided to make the task slightly harder for the main exper-
iment. This should reduce the number of perfect scores and thus give us better
feedback on which language is better.

It would have been very hard to change the ontographs and the related statements
in a way that would leave all the design decisions intact. The easiest and cleanest
way to make the task harder was to reduce the time limits. I decided to reduce the
maximum learning time from 20 to 16 minutes and the maximum testing time from
10 to 6 minutes. In this way, the maximum learning time was still higher than the
average learning time of the test run (13 minutes) and the maximum testing time
was about the same as the average testing time of the test run. Thus, the new limits
still give a reasonable amount of time for the given task.

5.4.2 Results of the second Ontograph Experiment

Now we can look at the results of the main experiment. These results are retrieved
on the one hand from the log files that show how the participants classified the
statements and how long it took them, and on the other hand from the questionnaire
forms filled out by the participants after the experiment.

As the first one, the second experiment is evaluated on the basis of the general
classification score and the amount of time needed. Additionally, the answers in the



CHAPTER 5. UNDERSTANDABILITY 163

50% 60% 70% 80% 90% 100%
percentage of correct classifications

⋆ Overall
91.4%ACE

86.3%MLL

ACE first
90.8%ACE

87.8%MLL

⋆ MLL first
92.0%ACE

84.7%MLL

Series 1
93.4%ACE

92.2%MLL

⋆ Series 2
95.3%ACE

81.3%MLL

Series 3
91.9%ACE

87.2%MLL

Series 4
85.0%ACE

84.4%MLL

Figure 5.7: This chart shows the average percentages of correct classifications for the sec-
ond ontograph experiment. The base line is 50% that can be achieved by mere guessing.
“Don’t know” classifications and cases where the time limit ran out count as 0.5 correct
classifications. Significant differences are marked by “⋆” (see Table 5.2 for details).

questionnaire allow us to measure the perceived understandability. The differences
that these measurements exhibit between ACE and MLL are then checked for sta-
tistical significance. Furthermore, a regression analysis is described that investigates
the influence of different factors on the performance of the participants. Finally, we
can again have a closer look at how the individual statements have been classified.

5.4.2.1 General Classification Scores

Figure 5.7 shows the average percentages of correct classifications per testing phase.
As for the first experiment, “don’t know” answers and the cases where the time limit
ran out are counted as 0.5 correct classifications. 50% is again the baseline because
an average of five correct classifications out of ten can be achieved by mere guessing,
by choosing always “don’t know”, or by letting the time limit run out.

91.4% of the statements were classified correctly in the case of ACE and 86.3%
in the case of MLL. Thus, out of the ten statements of a testing phase, ACE was on
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average 0.5 points better than MLL. This is a considerable and statistically significant
difference (the details of the used statistical test to compare the two samples are
explained later on). One also has to consider that these values are already close to
the ceiling in the form of the perfect score of 10, which might have reduced the actual
effect.

The results of the participants who received ACE first and then MLL can now be
compared with the ones who received MLL first. As expected, both languages were
understood better when they were the second language. This can be explained by
the fact that the participants were more familiar with the procedure, the task, and
the ontograph notation. However, even in the case when ACE was the first language
and MLL the second one, ACE was understood better (but in this case not within
statistical significance).

Looking at the results from the perspective of the different series, one can see that
ACE was better in all cases but only the series 2 and 3 exhibit a clear dominance of
ACE (and this dominance is significant only for series 2). According to these results,
one could say that languages like MLL are equally easy to understand for very simple
statements as the ones in series 1 and for statements about relations as they appear
in series 4. In the case of series 1, the reason might be that these statements are so
simple that they can be understood even in a rather complicated language. In the
case of series 4, the reason is probably that Description Logic based languages like
MLL can express these statements without variables whereas ACE needs variables,
which are somehow borderline cases in terms of naturalness. (An advantage of ACE
that is not manifested in this experiment is that one can express more complicated
statements that cannot be expressed by Description Logic based languages.)

Compared to the test run where 44% of the participants had a perfect score for
ACE and for MLL, only 23% had a perfect score in the main experiment. Thus, the
reduction of the time limits seemed to have had the desired effect.

In summary, the results show that — while both languages are understood rea-
sonably well — ACE is easier to understand than MLL.

5.4.2.2 Time

As a next step, we can look at the time values. For simplicity reasons and since the
learning process was presumably not restricted to the learning phase but continued
during the testing phase, the time needed for both phases will together be called the
learning time.

Figure 5.8 shows the learning times of the participants. They could spend at
most 22 minutes (16 minutes for the learning phase and 6 minutes for the testing
phase). The participants needed much less time for ACE than for MLL. In the case of
ACE less than 14 minutes were needed, whereas in the case of MLL the participants
needed more than 18 minutes. Thus, MLL required 29% more time to be learned,
compared to ACE.
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Figure 5.8: This chart shows the average time needed for learning and testing phase. Sig-
nificant differences are marked by “⋆” (see Table 5.2 for details).

Note that these results can be evaluated only together with the results described
above concerning the classification scores. The learning time can only be evaluated
together with the degree of understanding it entails. The smaller amount of learning
time for ACE could be explained simply by the fact that the language description
sheets for ACE contained less text than the ones for MLL. But together with the
results described above that show that ACE was understood better and the fact
that the language description sheets have been written very carefully, it can be
concluded that ACE required less learning time while leading to a higher degree of
understanding.

Again, we can split the results according to the participants who received ACE
first and those who received MLL first. The results show the expected effect: ACE
and MLL required less time as second language. However, ACE required less time
than MLL no matter if it was the first language or the second. Thus, even in the cases
where ACE was the first language and the participants had no previous experience
with the procedure and MLL was the second language and the participants could
use the experiences they made before, even in such cases ACE required less time.
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Looking at the different series, we can see that this effect spreads over all four
series. MLL required on average between 3 and 6 minutes more than ACE.

The better time values of ACE compared to MLL are statistically significant for
the whole sample as well as for all presented subsamples.

5.4.2.3 Perceived Understandability

As a third dimension, we can look at the “perceived understandability”, i.e. how
the participants perceived the understandability of the languages. The questionnaire
that the participants filled out after the experiment contained two questions that
asked the participants how understandable they found ACE and MLL, respectively.
They could choose from four options: “very hard to understand” (value 0), “hard to
understand” (1), “easy to understand” (2) and “very easy to understand” (3). The
perceived understandability does not necessarily have to coincide with the actual un-
derstandability and can be a very valuable measure for the acceptance of a language
and the confidence of its users.

Figure 5.9 shows the perceived understandability derived from the questionnaire
scores of the languages. Overall, ACE got much better scores than MLL. MLL was
close but below “easy to understand” scoring 1.92, whereas ACE was closer to “very
easy to understand” than to “easy to understand” scoring 2.59.

By dividing the results into those who received ACE first and those who received
MLL first, we see that both languages scored better when ACE was the first language.
I do not have a convincing explanation for this and it might just be a statistical
artifact.

Looking at the perceived understandability scores from the perspective of the
different series, we see that ACE received clearly better scores in all four series. It
is interesting that this also holds for the series 1 and 4 where ACE was not much
better than MLL in terms of actual understanding, as shown before. Thus, even
though the actual understanding of the statements of these series does not show a
clear difference, the acceptance and confidence of the participants seems to be higher
in the case of ACE.

5.4.2.4 Significance

The charts with the experiment results already indicate in which cases the differ-
ence between ACE and MLL is statistically significant. This was done by using the
Wilcoxon signed-rank test [176], which is a non-parametric statistical method for
testing the difference between measurements of a paired sample. In contrast to Stu-
dent’s t-test, this test does not rely on the assumption that the statistical population
corresponds to a standard normal distribution. This relieves us from investigating
whether standard normal distribution can be assumed for the given setting.

Table 5.2 shows the obtained p-values for the three dimensions of our comparison
(i.e. classification score, time, and questionnaire score). For the complete sample, the
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Figure 5.9: This chart shows the average subjective understandability scores derived from
the questionnaire. 0 means “very hard to understand”, 1 means “hard to understand”, 2
means “easy to understand”, and 3 means “very easy to understand”. Significant differences
are marked by “⋆” (see Table 5.2 for details).

values are well within the 95% confidence level for all three dimensions. They are
even within the 99% level.

5.4.2.5 Regression

In a next step, a regression analysis can be performed to find out which factors were
relevant for a good understandability of the two languages. The data set consists of
the classification scores of the 128 test phases (two test phases for each of the 64
participants). Apart from the factors that originate from the experiment design (i.e.
the two different languages in different order and the different ontograph series), it
can be speculated that the gender of the participants, their age, and their English
skills could have an influence on the results.

Table 5.3 shows the result of the regression test. sc norm is the dependent variable
and stands for the classification score normalized to 5 (i.e. the normalized score is
obtained by subtracting 5 from the number of correctly classified statements). The
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p-value

classification score: complete sample 0.003421 ⋆
ACE first 0.2140
MLL first 0.005893 ⋆

Series 1 0.5859
Series 2 0.003052 ⋆
Series 3 0.1250
Series 4 0.6335

time: complete sample 1.493 × 10−10 ⋆
ACE first 0.006640 ⋆
MLL first 3.260 × 10−9 ⋆

Series 1 0.01309 ⋆
Series 2 0.002624 ⋆
Series 3 9.155 × 10−5 ⋆
Series 4 0.002686 ⋆

questionnaire score: complete sample 3.240 × 10−7 ⋆
ACE first 7.343 × 10−5 ⋆
MLL first 0.001850 ⋆

Series 1 0.02148 ⋆
Series 2 0.02197 ⋆
Series 3 0.0004883 ⋆
Series 4 0.1855

Table 5.2: This table shows the p-values of Wilcoxon signed-rank tests. The null hypothesis
is that the given values are not different for ACE and for MLL. This null hypothesis can
be rejected in 16 of the 21 cases on a 95% confidence level, marked by “⋆”.

normalization has the effect that 0 stands for what can be achieved, on average,
without understanding.

There are eight independent variables: ace, first lang, series 2, series 3, series 4,
female, age above 18 and very good engl. ace stands for the language that is tested
with 0 meaning MLL and 1 meaning ACE. first lang is 1 if the language was the first
language that was tested, and 0 if it was the second one. series 2 is 1 if the test was
performed on series 2, and otherwise it is 0. In the same way, series 3 and series 4
represent the series 3 and 4, respectively. Series 1 is encoded by setting all those
three variables to 0. female determines the gender of the participant: 0 means male,
1 means female. age above 18 contains an integer denoting the age in years of the
participant after subtracting 18 years. very good engl, finally, stands for the degree
of English understanding of the participants as they stated it in the questionnaire. 0
means that the participant has good English skills but not very good ones. 1 means
that the participant has very good English skills.

Thus, the baseline of the regression (i.e. the case where all independent variables
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descriptive regression
Avg. Range Coef. Std. Err. t P > |t|

sc norm 3.883 −2 to 5
ace 0.500 0 or 1 0.516 0.180 2.86 0.006 ⋆

first lang 0.500 0 or 1 −0.219 0.180 −1.22 0.229
series 2 0.250 0 or 1 −0.480 0.337 −1.42 0.159
series 3 0.250 0 or 1 −0.278 0.349 −0.80 0.429
series 4 0.250 0 or 1 −0.880 0.522 −1.69 0.097
female 0.422 0 or 1 0.141 0.298 0.47 0.637

age above 18 4.109 0 to 28 −0.072 0.030 −2.44 0.018 ⋆
very good engl 0.391 0 or 1 0.203 0.297 0.68 0.496

cons 4.302 0.325 13.23 0.000 ⋆

Table 5.3: This table shows the result of the regression analysis of the second ontograph
experiment with sc norm being the dependent variable. To the left, a small descriptive
analysis of the data is shown. “⋆” indicates the coefficients of the regression analysis that
are statistically significant on a 95% confidence level.

are zero) is about testing MLL as the second language using series 1 where the
participant is a 18 year old male person with good (but not very good) English
skills. This baseline situation is represented by the constant coefficient cons. The
value of the constant coefficient can be interpreted as the average normalized score
in the baseline situation. Thus, an 18 year old male person with good English skills
who was tested on series 1 in MLL as the second language scored on average 9.302
(“denormalized” by adding 5 to 4.302) points out of 10. The values of the other
coefficients can be interpreted as the difference from the baseline when changing the
respective factor.

If ACE is tested instead of MLL (but everything else is left unchanged) then
the score was on average 0.52 points higher (which roughly coincides with the result
discovered earlier). This effect is statistically significant on a 95% confidence level.

The results presented in the preceding sections already showed that both lan-
guages performed better when they were the second language. The regression test
confirms this and we see that being the first language decreased the score on average
by 0.22 points. However, this is not significantly different from 0 and thus there is
no evidence that second languages systematically perform better.

As expected, series 1 led to the best scores. Using series 2, 3 or 4 decreased the
score on average by 0.28 to 0.88 points compared to series 1. However, this is again
not statistically significant.

The possible speculation that the gender of the participants has an influence on
their performance could not be confirmed. Women on average performed better than
men, but not significantly.
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A significant effect could be found, however, with respect to the age of the partic-
ipants. The age of 18 years was chosen as the baseline because this was the minimal
age encountered in the set of participants. The older the participants were the worse
they performed. Every year of additional age led to a decrease of the score by on
average 0.07 points. Thus, a 23 year old participant performed on average about 0.35
points worse than someone who was only 18 years old. This effect is significant on a
95% confidence level.

Finally, we can look at the degree of English skills of the participants. The par-
ticipants were mostly native German speakers. In order to ensure that they had
sufficient knowledge of English to understand the ACE sentences, they were asked
in the questionnaire about their English skills. The four choices were “(almost) no
skills”, “only little skills”, “good skills” and “very good skills”. The first two choices
were only for control reasons because such people do not meet the requirements of
the experiment, and they had to be excluded from the data set that was used for
the evaluation. Thus, the data set only contains participants with good or very good
English skills. As one could expect, people with very good skills performed better
than those who had only good skills, but not significantly.

5.4.2.6 Individual Statements

Finally, we can look at the individual statement patterns and how they were classified
by the participants. Figure 5.10 visualizes these results. With the exception of one
ACE statement pattern and four MLL statement patterns, the predominance of
correct classifications over wrong ones is statistically significant on a 95% confidence
level using a simple binomial test.

In the case of ACE, the statements of each pattern were classified correctly by at
least 69% of the participants. In contrast, the statements of some MLL patterns were
classified correctly in only 50% of the cases. While there is no MLL pattern whose
statements scored more than 2 points better than the respective ACE statements, the
statements of six ACE patterns scored 3 or more points better than the respective
MLL statements. It is interesting to have a closer look at those six statement patterns,
which are 1/3, 1/5, 2/5, 2/8, 3/8 and 4/9. Table 5.4 shows these six patterns with
examples in ACE and MLL to give an impression of the better understandability of
ACE.

The statements of 1/3 are simple statements using “or” like for example “Mary is
an officer or is a golfer”, which seems to be easier to understand than the respective
sentence in MLL “Mary HasType officer or golfer”.

1/5 is a very interesting case consisting of plain subtype statements. Such state-
ments are very simple and essential for the creation of ontologies. Many existing
ontologies consist mainly of such statements. They are represented in MLL for ex-
ample by “golfer SubTypeOf man”. The results show that the ACE version “every
golfer is a man” is easier to understand.



CHAPTER 5. UNDERSTANDABILITY 171

0

4

8

12

16

n
u
m
b
er

of
p
ar
ti
ci
p
an
ts

⋆
1/

1
⋆
1/

2
⋆
1/

3
⋆
1/

4
⋆
1/

5
⋆
1/

6
⋆
1/

7
⋆
1/

8
⋆
1/

9
⋆
1/

10

⋆
2/

1
⋆
2/

2
⋆
2/

3
⋆
2/

4
⋆
2/

5
⋆
2/

6
⋆
2/

7
⋆
2/

8
⋆
2/

9
⋆
2/

10

⋆
3/

1
⋆
3/

2
⋆
3/

3
⋆
3/

4
⋆
3/

5
⋆
3/

6
⋆
3/

7
⋆
3/

8
⋆
3/

9
3/

10

⋆
4/

1
⋆
4/

2
⋆
4/

3
⋆
4/

4
⋆
4/

5
⋆
4/

6
⋆
4/

7
⋆
4/

8
⋆
4/

9
⋆
4/

10

ACE statements

0

4

8

12

16

n
u
m
b
er

of
p
ar
ti
ci
p
an
ts

⋆
1/

1
⋆
1/

2
⋆
1/

3
⋆
1/

4
⋆
1/

5
⋆
1/

6
⋆
1/

7
⋆
1/

8
⋆
1/

9
⋆
1/

10

⋆
2/

1
⋆
2/

2
⋆
2/

3
⋆
2/

4
2/

5
⋆
2/

6
⋆
2/

7
⋆
2/

8
2/

9
⋆
2/

10

⋆
3/

1
⋆
3/

2
⋆
3/

3
⋆
3/

4
⋆
3/

5
⋆
3/

6
⋆
3/

7
3/

8
⋆
3/

9
⋆
3/

10

⋆
4/

1
⋆
4/

2
⋆
4/

3
⋆
4/

4
⋆
4/

5
⋆
4/

6
⋆
4/

7
⋆
4/

8
4/

9
⋆
4/

10

MLL statements

classified correctly “don’t know” time limit exceeded classified wrongly

Figure 5.10: These two charts show for each ACE statement pattern and for each MLL
statement pattern how many participants classified the statement correctly, classified it
wrongly, said that they don’t know, or exceeded the time limit. The predominance of the
correct classification over the wrong one is statistically significant on a 95% confidence level
for all statement patterns that are marked with “⋆”. Section B.2 of the appendix shows the
concrete ontographs and statements.

The largest difference between ACE and MLL is manifested by the statements of
2/5. While everyone scored perfectly in the case of ACE, only half of the participants
were able to do so in the case of MLL. These statements are relatively complex and
are represented in ACE for example as “John buys something that is not a present”
and in MLL as “John HasType buys some (not present)”. Arguably, the reason for
this difference is that the combination of the operators “some” and “not” is hard to
understand in the case of MLL whereas it comes completely natural in the case of
ACE.

The statements of 2/8 and 3/8 are similar in the sense that both are subtype
statements with a complex left hand side. In MLL, they are represented for example
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Pattern ACE Example MLL Example

1/3 Mary is an officer or is a golfer. Mary HasType officer or golfer

1/5 Every golfer is a man. golfer SubTypeOf man

2/5 John buys something that is not a
present.

John HasType buys some (not
present)

2/8 Everything that buys a present is a
man.

buys some present SubTypeOf man

3/8 Everything that inspects at least 2
letters is an officer.

inspects min 2 letter SubTypeOf
officer

4/9 If X loves Y then X helps Y. If X helps
Y then X loves Y.

loves EquivalentTo helps

Table 5.4: This table shows the sentence patterns where ACE was clearly better understood
than MLL. The shown examples can give an impression why ACE is easier to understand.

by “buys some present SubTypeOf man” and “inspects min 2 letter SubTypeOf offi-
cer”, which seems to be hard to understand. The ACE versions of these examples are
“everything that buys a present is a man” and “everything that inspects at least 2 letters
is an officer”, respectively. Thus, the keyword “SubTypeOf” in general seems to be
rather hard to understand, whereas the natural quantifier “every” is understood very
well.

4/9, finally, was also understood much better in the case of ACE. The respective
statements denote the equivalence of two relations. This case is interesting because
the respective statements look very different in ACE and in MLL. In MLL this is
expressed by short statements like “loves EquivalentTo helps” whereas in ACE the
same thing is expressed in a much more verbose manner: “If X loves Y then X helps
Y. If X helps Y then X loves Y.”. Even though the meaning of “EquivalentTo” was
clearly explained in the instruction sheets for MLL, the more verbose ACE version
was understood much better by the participants. Variables as ACE uses them (which
are rather rare in natural language) seem to be easier to understand than the more
abstract keywords of MLL that do not depend on variables.

5.5 Ontograph Framework Evaluation

Another important question to evaluate is whether the ontograph framework alto-
gether worked out or not. Figure 5.11 shows the results of two questions on the
questionnaires of both experiments asking the participants about how understand-
able they found the ontograph notation and the overall instructions. All values are
between “easy to understand” and “very easy to understand”. This shows that the
ontographs were well accepted by the participants and that it is possible to explain
the procedure of such experiments in an understandable way. The fact that these
values are considerably higher for the second experiment can be explained by the
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questionnaire understandability score
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2.07First Experiment
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Figure 5.11: This chart shows average values of how understandable the participants found
the ontograph notation and the general instructions. These values are based on the answers
in the questionnaire. 0 means “very hard to understand”, 1 means “hard to understand”, 2
means “easy to understand”, and 3 means “very easy to understand”.

more detailed instructions about the procedure and about the ontograph notation
and by the more careful design in general.

Furthermore, the results of the two experiments show that the ontographs were
indeed very well understood by the participants. In all discussed cases, the overall
percentage of correct classifications exceeded 80%. The ACE statements of the second
experiment were even classified correctly in 91.4% of the cases.

Using a simple calculation, we can approximate how often the ontographs are
misunderstood. Since the mistakes that are made trying to understand the ontograph
notation sum up with the mistakes in understanding the statements (plus other types
of mistakes like e.g. oversights), the percentages of incorrect classifications contain
different types of errors. In the second experiment, the mistakes made trying to
understand the ontographs and the mistakes made trying to understand the ACE
sentences lead together to a value of 8.6% incorrect classifications. We have to assume
that misunderstandings and other mistakes still lead to the correct classification in
50% of the cases. Thus, we can assume the “rate of mistakes” to be 17.2%. The “rate
of ontograph mistakes” must therefore be somewhere between 0% and 17.2%.

In summary, the rate of mistakes due to the ontograph notation cannot be pre-
cisely determined but can be shown to be reasonably low.

5.6 Conclusions from the Ontograph Experiments

The results of the two experiments show that the ontograph framework worked out
very well and is suitable for testing the understandability of languages.

The first experiment showed that ACE is understandable even without instruc-
tions. Some borderline statements were tested and they were understood very poorly.
However, there is good reason to believe that this is not specific to CNLs but would
be encountered with any other language.
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The second experiment showed that ACE is understood significantly better than
the language MLL. Furthermore, ACE required less time to be learned and was
perceived as easier to understand by the participants. The difference in terms of
perceived (i.e. subjective) understandability is bigger than the difference in actual
(i.e. objective) understandability. This can lead to the conclusion that common for-
mal languages like MLL do not only have an understandability problem but also an
acceptability problem.

MLL is directly derived from the Manchester OWL Syntax in a way that leaves
its properties concerning understandability intact. For this reason, the conclusions
of the second experiment can be directly applied to the Manchester OWL Syntax,
which is the state of the art approach on how to represent ontological knowledge in
a user-friendly manner. Thus, I could show that CNLs like ACE can do better in
terms of understandability than the current state of the art.

The results show that essential statements like subtype statements are understood
better when using ACE. Also variables that are not very frequent in common English
are accepted and understood very well. Furthermore, the results show that nested
statements can be a problem for languages like MLL whereas they are understood
very well when represented in ACE.

Altogether, ACE performed better than MLL in all explored dimensions. These
results suggest that CNLs should be used instead of languages like the Manchester
OWL Syntax in situations where people have to deal with knowledge representations
after little or no training.

5.7 Limitations and Other Applications

Finally, a brief discussion on the limitations of the ontograph approach is given, and
some other possible application areas are sketched.

The introduced ontograph approach, of course, also has its limitations. The most
important one is probably the fact that only relatively simple forms of logic can be
represented. Basically, ontographs cover first-order logic without functions and with
the restriction to unary and binary predicates.

I do not see a solution at this point how predicates taking three arguments, for
example, could be represented in an intuitive way. It would be even harder to repre-
sent more sophisticated forms of logic, e.g. modal or temporal logic. For such cases,
it might be necessary to come back to task-based and paraphrase-based approaches
to evaluate the understandability of languages. The core of such sophisticated forms
of logic, however, could still be tested with the ontograph approach.

Ontographs are designed for the specific purpose of testing the understandability
of languages, but they might also be useful in other application areas.

It has already been mentioned that the ontograph framework could be used to
evaluate the writability of languages. Such evaluations could be performed by asking
the participants of an experiment to describe situations depicted by ontographs.
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The teaching and learning of languages could be another possible application
area. The task of classifying statements with respect to an ontograph could turn out
to be a good exercise for learning the language or for assessing the understanding
skills of people. Thus, the same tests could be performed with the goal to evaluate
the participants instead of evaluating the respective language.

Another possible application could be to visualize models of a logical theory in
the ontograph notation. This approach would be based on the fact that ontographs
can be considered a language for describing first-order models, as discussed earlier
in this chapter.

In summary, ontographs have been shown to be useful for testing the understand-
ability of languages despite some limitations, and they could possibly also be applied
to other application areas.



CHAPTER 6

Conclusions and Outlook

The previous chapters have shown how controlled natural languages in general and
subsets of ACE in particular can be defined, deployed and evaluated. Now, the con-
clusions can be drawn (Section 6.1) and we can have a brief look into the future of
the field of controlled natural languages (Section 6.2).

6.1 Conclusions

We can now return to the four questions from the introduction and answer them on
the basis of the results presented in the previous chapters.

The first question concerns the definition of languages and has been discussed in
Chapter 3. The answer to this question can be summarized as follows:

1. How should controlled English grammars be represented?

Controlled subsets of English should preferably be defined in a concrete
and declarative way. Furthermore, they should be defined in a grammar
notation that has special support for anaphoric references and that can
be used efficiently by different kinds of tools like predictive editors. Ex-
isting grammar frameworks do not comply with these requirements. The
introduced grammar notation Codeco, however, has been shown to be
suitable for defining CNLs and has been tested on a large subset of ACE.
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The second question that targets the deployment aspect has been examined in Chap-
ter 4. This question can be answered in summary as follows:

2. How should tools for controlled English be designed?

The most important task of tools using controlled English is to solve
the writability problem of CNLs. The predictive editor approach could
be shown to be a good solution to this problem. This approach makes
it possible to create user interfaces that can be used efficiently without
training, as the example of AceWiki shows.

The questions number three and four are about the evaluation aspect and have been
investigated in Chapter 5. The third question can now be answered as follows:

3. How can the understandability of controlled English be eval-

uated?

With existing evaluation approaches, the understandability of controlled
English cannot be tested reliably. Using the graphical situation depictions
of the introduced ontograph framework allows us to test and compare the
understandability of languages in a tool-independent and reliable way.

The fourth and last question is crucial since it inquires whether controlled English
actually has the properties it has been designed for. We are now able to affirm this
assumption:

4. Is controlled English indeed easier to understand than other

formal languages?

Yes. Using the ontograph framework, I could show that a controlled sub-
set of English like ACE is easier to understand than a comparable formal
language. In addition, ACE requires less time to be learned and is pre-
ferred by users.

In summary, I could show on the one hand that CNLs like ACE are indeed superior
to other languages and that it is possible to embed CNLs in tools in a way that they
are easy to use without training. On the other hand, I introduced building blocks
that facilitate the practical application of CNL technologies like the Codeco grammar
notation and the ontograph framework for understandability evaluations.

Finally, we can return to the hypothesis that is the basis of these four questions:

Controlled English efficiently enables clear and intelligible user

interfaces for knowledge representation systems.

Because (1) a simple grammar formalism could be defined that can be used to accu-
rately describe grammars for controlled English, (2) controlled English has in turn
proven to be easier to comprehend than an alternative language representing the cur-
rent state of the art, and (3) prototypical tools show that all this can be combined
in a simple way that leads to usable interfaces, the hypothesis is verified.
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6.2 Outlook

Ultimately, we can have a brief look into the future of CNLs and on the possible
impact of this thesis. The problem of people not familiar with formal languages
who have to communicate with computers cannot be expected to disappear in the
near future. On the contrary, it can be assumed that more and more people will
need to interact with computers and that this communication will become more and
more intensive and complex. While a large amount of research has been directed
to natural language processing approaches without a real break-through in sight,
relatively little work has been done on approaches based on formal CNLs and many
aspects thereof are still to be explored. Thus, such CNL approaches are a relatively
new and promising direction to bring us further in solving this human–computer
interface problem.

While CNLs with a direct connection to formal logic have been quite successful
in the academic world, they have not yet been applied extensively on complex real-
world scenarios. This is most probably the reason why they could not yet gain ground
in industry. My thesis provides building blocks that should facilitate the efficient and
reliable use of CNL techniques and should allow us to see the topic of CNLs from a
more engineering perspective. This could be the first step towards industry adoption
and maybe towards a “CNL killer application” that could boost the research on
CNL.

Since user interfaces are crucial for all kinds of knowledge representation systems,
the areas of expert systems and the Semantic Web could profit from CNLs too. Both
areas have suffered from poor acceptance by their end users. Thus, CNLs have the
potential to advance a broad field of existing research.

From my point of view, collaborative approaches like wikis are one of the most
promising directions. As the example of Wikipedia shows, such systems can grow
without much intervention in a fast and almost magical way once the critical mass is
attained. One can only imagine what would become possible if world knowledge the
size of the current Wikipedia was available in a logical form that can be interpreted
by computers. A new generation of computer applications could emerge that can
apply world knowledge in a sensible way.

In any case, we have to be prepared for a future where computers are not only
prevalent but pervasive. In such a world, it is important that everyone — and not
only a small elite of educated people — can communicate with the computers. Con-
trolled natural languages could help establishing a computer-assisted society where
everybody can equally profit from the computers.
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ACE Codeco Grammar

This appendix shows the complete ACE Codeco grammar, which describes a subset
of ACE in the Codeco notation and is introduced in Section 3.7.

First, the used feature names are shown and explained (Section A.1). Then, the
actual grammar is shown consisting of altogether 164 grammar rules (Section A.2).
Additionally, there are 15 predefined lexical rules that are used for evaluation pur-
poses (Section A.3).

A.1 Features of ACE Codeco

The ACE Codeco grammar makes use of 25 feature names explained below and listed
in alphabetical order:

be is used in the case of verb phrases to determine whether the auxiliary verb “be”
is used (“+”) or not (“–”). The verb “be” is used for the copula (e.g. “John is
a customer”) and for passive voice (e.g. “John is observed by Bill”).

case stands for the syntactic case and is either “nom” for nominative or “acc” for
accusative.

copula determines whether a verb phrase is a copula (“+”) or not (“–”). A copula
in ACE always uses the verb “be”, e.g. “Mary is important”.
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def is “+” if the given structure is definite, e.g. “the country”. Otherwise, it is “–”.

embv is “+” if the given structure has an embedded verb phrase, e.g. the noun
phrase “John who waits”. The noun phrase “a friend of Mary”, in contrast,
contains no verb phrase.

exist is “+” if the given structure is existentially quantified (e.g. “a woman”) and
“–” otherwise (e.g. “every woman” or “no woman”).

gender stands for the gender of proper names, nouns, and pronouns. It is “masc”
for masculine elements and “fem” for feminine ones. This feature is only used
in cases where the feature “human” is set to “+”.

hasvar is used for antecedents and anaphors. It is “+” if a variable is present and
“–” otherwise.

human determines whether a proper name, noun, or pronoun is human (“+”) or
not (“–”).

id contains an identifier for noun phrases that is needed to correctly resolve ana-
phoric pronouns.

noun is used for antecedents and anaphors and contains the used noun.

of is “+” if the respective category contains an of -construct like “part of”. Otherwise,
it is “–”.

pl represents the grammatical number. It is “+” if the respective structure is in
plural form or “–” if it is singular.

prep is used for transitive adjectives and contains the preposition, e.g. “about” for
the transitive adjective “mad-about”.

refl represents whether a pronoun is reflexive (“+”) or irreflexive (“–”). “Himself”,
for example, is a reflexive pronoun, whereas “him” is irreflexive.

rel is “+” if the given structure contains a relative clause, or “–” otherwise.

relpron is used for relative clauses and stores the used relative pronoun, i.e. either
“that”, “who” or “which”. This feature is needed to support noun phrases like
“a man that is rich and that waits” and “a man who is rich and who waits” but
not “a man who is rich and that waits”.

subj contains the id of the grammatical subject or “–” if there is no subject. This
is needed, for example, to resolve reflexive pronouns like “herself”.

text contains the text of the terminal category to be passed up to higher-level cat-
egories.
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type stores the type of antecedents.

var contains the names of variables.

vcat stands for the verb category and is either “itr” for intransitive verbs or “tr”
for transitive ones.

vform contains the verb form which can be either infinitive (“inf”) or finite (“fin”).

whin has the value “+” if there is a wh-word (i.e. “who”, “what” or “which”) to the
left of the beginning of the respective category, or “–” otherwise.

whout has the value “+” if there is a wh-word to the left of the end of the respective
category, or “–” otherwise. Thus, “whin” and “whout” are the same if no wh-
word is contained in the given category.

A.2 Grammar Rules of ACE Codeco

Below, the grammar rules of the ACE Codeco grammar are listed. They are identified
by consecutive numbers. The grammar rules of the evaluation subset are marked with
an underlined number, e.g. (3).

The grammar rules (87), (88), (89), (91), (92), (93), (115) and (118) are redundant
in the sense that they introduce combined terminal categories like “is not” that
are already defined in other grammar rules as two independent categories like “is”
followed by “not”. The only purpose of these grammar rules is to make the usage
in predictive editors more convenient. Expressions like “is not” can in this way be
added in one step instead of two.

The category text is the start category for the full grammar whereas complete sen-
tence is the start category in the case of the evaluation subset.

Texts and Sentences

text stands for a complete text consisting of an arbitrary number of complete sen-
tences (including zero):

(1) text
:

−→

(2) text
:

−→ complete sentence text

A complete sentence is represented by the category complete sentence and is either a
declarative sentence that ends with a full stop or a question ending with a question
mark:

(3) complete sentence
:

−→ sentence [ . ]

(4) complete sentence
∼

−−→ � simple sentence 2

(

whin: –
whout: +

)

[ ? ]
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General sentences are represented by sentence:

(5) sentence
:

−→ sentence coord 1

(6) sentence
∼

−−→ � [ for every ] nc
(

subj: –

)

sentence coord 1

(7) sentence
∼

−−→ � [ if ] sentence coord 1 [ then ] sentence coord 1

Sentences can be coordinated using “or” (sentence coord 1) and “and” (sentence co-
ord 2):

(8) sentence coord 1
:

−→ sentence coord 2

(9) sentence coord 1
∼

−−→ � sentence coord 2 [ or ] sentence coord 1

(10) sentence coord 2
:

−→ simple sentence 1

(11) sentence coord 2
:

−→ simple sentence 1 [ and ] sentence coord 2

Uncoordinated sentences are represented in two levels by simple sentence 1 and sim-
ple sentence 2:

(12) simple sentence 1
∼

−−→ � [ it is false that ] simple sentence 2

(

whin: –
whout: –

)

(13) simple sentence 1
:

−→ [ there is ] np













case: nom
def: –
exist: +
pl: –
subj: –
whin: –
whout: –













(14) simple sentence 1
:

−→ [ there is ] np













case: nom
def: –
exist: +
pl: –
subj: –
whin: –
whout: –













[ such that ] simple sentence 1

(15) simple sentence 1
:

−→ [ there are ] np













case: nom
def: –
exist: +
pl: +
subj: –
whin: –
whout: –













(16) simple sentence 1
:

−→ simple sentence 2

(

whin: –
whout: –

)

(17) simple sentence 2

(

whin: 1

whout: 2

)

∼
−−→ np











case: nom
id: 3

pl: 4

subj: –
whin: 1

whout: 5











vp coord 1





pl: 4

subj: 3

whin: 5

whout: 2





Verb Phrases

Like sentences, verb phrases can be coordinated using “or” (vp coord 1) and “and”
(vp coord 2):
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(18) vp coord 1





pl: 1

subj: 2

whin: 3

whout: 4





:
−→ vp coord 2





pl: 1

subj: 2

whin: 3

whout: 4





(19) vp coord 1





pl: 1

subj: 2

whin: 3

whout: 4





∼
−−→ � vp coord 2





pl: 1

subj: 2

whin: 3

whout: 5



 [ or ] vp coord 1





pl: 1

subj: 2

whin: 5

whout: 4





(20) vp coord 2





pl: 1

subj: 2

whin: 3

whout: 4





:
−→ vp





pl: 1

subj: 2

whin: 3

whout: 4





(21) vp coord 2





pl: 1

subj: 2

whin: 3

whout: 4





:
−→ vp





pl: 1

subj: 2

whin: 3

whout: 5



 [ and ] vp coord 2





pl: 1

subj: 2

whin: 5

whout: 4





Uncoordinated verb phrases represented by vp can use an auxiliary verb and can
have verb phrase modifiers:

(22) vp











exist: 1

pl: 2

rel: 3

subj: 4

whin: 5

whout: 6











∼
−−→ aux

(

be: 7

exist: 1

pl: 2

)

v























be: 7

copula: 8

embv: 9

exist: 1

pl: 2

rel: 3

subj: 4

vform: inf
whin: 5

whout: 10























vmod









copula: 8

embv: 9

subj: 4

whin: 10

whout: 6









(23) vp











exist: +
pl: 1

rel: 2

subj: 3

whin: 4

whout: 5











∼
−−→ v























be: –
copula: 6

embv: 7

exist: +
pl: 1

rel: 2

subj: 3

vform: fin
whin: 4

whout: 8























vmod









copula: 6

embv: 7

subj: 3

whin: 8

whout: 5









The category v represents the main verb or — if “be” is used as a copula verb — the
complementing noun phrase or adjective complement:

(24) v











be: –
copula: –
pl: 1

vform: 2

whin: 3

whout: 3











:
−→ verb





be: –
pl: 1

vcat: itr
vform: 2





(25) v



















be: –
copula: –
embv: 1

pl: 2

rel: 3

subj: 4

vform: 5

whin: 6

whout: 7



















:
−→ verb





be: –
pl: 2

vcat: tr
vform: 5



 np













case: acc
embv: 1

rel: 3

subj: 4

vcat: tr
whin: 6

whout: 7













(26) v













be: +
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













:
−→ verb

(

be: +
vcat: tr

)

[ by ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5












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(27) v













be: +
copula: +
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













:
−→ np



















case: acc
copula: +
embv: 1

of: +
pl: –
rel: 2

subj: 3

whin: 4

whout: 5



















(28) v

















be: +
copula: +
embv: 1

pl: –
rel: 2

subj: 3

whin: 4

whout: 5

















:
−→ np



















case: acc
copula: +
embv: 1

of: –
pl: –
rel: 2

subj: 3

whin: 4

whout: 5



















(29) v





be: +
copula: +
whin: 1

whout: 1





:
−→ adj coord

(30) v













be: +
copula: +
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













:
−→ adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









Noun Phrases

Noun phrases are represented by np and can consist of proper names, variables,
pronouns, and different noun constructs:

(31) np



















def: +
embv: 1

exist: +
id: 2

of: –
pl: –
rel: 3

whin: 4

whout: 5



















:
−→ prop

(

gender: 6

human: 7

id: 2

)

≫









gender: 6

hasvar: –
human: 7

id: 2

type: prop









relcl











embv: 1

human: 7

rel: 3

subj: 2

whin: 4

whout: 5











(32) np













def: +
exist: +
id: 1

of: –
pl: –
whin: 2

whout: 2













:
−→ # 1 newvar

(

var: 3

)

>





hasvar: +
id: 1

type: var
var: 3





(33) np













def: +
exist: +
id: 1

of: –
pl: –
whin: 2

whout: 2













:
−→ def noun sg

(

noun: 3

)

ref
(

text: 4

)

<













gender: 5

hasvar: +
human: 6

id: 1

noun: 3

type: noun
var: 4













>









gender: 5

hasvar: –
human: 6

id: 1

type: ref









(34) np













def: +
exist: +
id: 1

of: –
pl: –
whin: 2

whout: 2













:
−→ def noun sg

(

noun: 3

)

<









gender: 4

human: 5

id: 1

noun: 3

type: noun









>









gender: 4

hasvar: –
human: 5

id: 1

type: ref








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(35) np













def: +
exist: +
id: 1

of: –
pl: –
whin: 2

whout: 2













:
−→ ref

(

text: 3

)

<









gender: 4

hasvar: +
human: 5

id: 1

var: 3









>









gender: 4

hasvar: –
human: 5

id: 1

type: ref









(36) np



















def: +
exist: +
id: 1

of: –
pl: –
refl: +
subj: 1

whin: 2

whout: 2



















:
−→ pron

(

gender: 3

human: 4

refl: +

)

<

(

gender: 3

human: 4

id: 1

)

(37) np























case: 1

def: +
exist: +
id: 2

of: –
pl: –
refl: –
subj: 3

whin: 4

whout: 4























:
−→ pron





case: 1

gender: 5

human: 6

refl: –



 <+

(

gender: 5

human: 6

id: 2

)

−

(

id: 3

)

>









gender: 5

hasvar: –
human: 6

id: 2

type: pron









(38) np



















embv: 1

exist: 2

id: 3

of: 4

pl: –
rel: 5

subj: 6

whin: 7

whout: 8



















:
−→ quant

(

exist: 2

)

nc













embv: 1

id: 3

of: 4

rel: 5

subj: 6

whin: 7

whout: 8













(39) np

















embv: 1

exist: 2

id: 3

of: –
pl: –
rel: 4

whin: 5

whout: 6

















:
−→ # 3 ipron

(

exist: 2

human: 7

)

opt newvar

(

hasvar: 8

var: 9

)

>









hasvar: 8

human: 7

id: 3

type: ipron
var: 9









relcl











embv: 1

human: 7

rel: 4

subj: 3

whin: 5

whout: 6











(40) np













copula: –
exist: +
id: 1

of: –
pl: +
whin: 2

whout: 2













:
−→ num quant num opt adj coord # 1 noun pl

(41) np













copula: –
exist: +
id: 1

of: –
pl: –
whin: 2

whout: 2













:
−→ num quant [ 1 ] # 1 opt adj coord noun sg

(

gender: 3

human: 4

text: 5

)

>











gender: 3

hasvar: –
human: 4

id: 1

noun: 5

type: noun











(42) np









exist: +
id: 1

of: –
pl: –
whout: +









:
−→ # 1 [ what ] >





hasvar: –
human: –
id: 1

type: wh





(43) np









exist: +
id: 1

of: –
pl: –
whout: +









:
−→ # 1 [ who ] >





hasvar: –
human: +
id: 1

type: wh




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(44) np

















embv: 1

exist: +
id: 2

of: 3

pl: –
rel: 4

subj: 5

whout: +

















:
−→ [ which ] nc













embv: 1

id: 2

of: 3

rel: 4

subj: 5

whin: +
whout: +













(45) np









exist: +
id: 1

of: –
pl: +
whout: +









:
−→ [ which ] opt adj coord # 1 noun pl

The category nc represents nouns optionally followed by variables, relative clauses,
and prepositional phrases using “of”:

(46) nc











embv: 1

id: 2

of: –
rel: 3

whin: 4

whout: 5











:
−→ n





gender: 6

human: 7

id: 2

text: 8



 opt newvar

(

hasvar: 9

var: 10

)

>













gender: 6

hasvar: 9

human: 7

id: 2

noun: 8

type: noun
var: 10













relcl











embv: 1

human: 7

rel: 3

subj: 2

whin: 4

whout: 5











(47) nc













embv: 1

id: 2

of: +
rel: 3

subj: 4

whin: 5

whout: 6













∼
−−→ n





gender: 7

human: 8

id: 2

text: 9



 >











gender: 7

hasvar: –
human: 8

id: 2

noun: 9

type: noun











[ of ] np











case: acc
embv: 1

rel: 3

subj: 4

whin: 5

whout: 6











The category n stands for nouns that are preceded by an optional adjective coordi-
nation:

(48) n





gender: 1

human: 2

id: 3

text: 4





:
−→ opt adj coord # 3 noun sg

(

gender: 1

human: 2

text: 4

)

New variables, optional and mandatory, are represented by opt newvar and newvar,
respectively:

(49) opt newvar
(

hasvar: –

)

:
−→

(50) opt newvar

(

hasvar: +
var: 1

)

:
−→ newvar

(

var: 1

)

(51) newvar
(

var: 1

)

:
−→ var

(

text: 1

)

≮

(

hasvar: +
var: 1

)

Proper names can either require the definite article “the” or not, and are represented
by the category prop:

(52) prop

(

gender: 1

human: 2

id: 3

)

:
−→ prop sg

(

gender: 1

human: 2

text: 3

)

(53) prop

(

gender: 1

human: 2

id: 3

)

:
−→ propdef sg

(

gender: 1

human: 2

text: 3

)
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Adjectives

Adjectives can only be coordinated by “and”, and are represented by opt adj coord
for the optional case and by adj coord if mandatory:

(54) opt adj coord
:

−→

(55) opt adj coord
:

−→ adj coord

(56) adj coord
:

−→ adj

(57) adj coord
:

−→ adj [ and ] adj coord

Uncoordinated adjectives are represented by adj and can be used in positive, com-
parative and superlative forms:

(58) adj
:

−→ adj itr

(59) adj
:

−→ [ more ] adj itr

(60) adj
:

−→ adj itr comp

(61) adj
:

−→ [ most ] adj itr

(62) adj
:

−→ adj itr sup

The category adjc stands for more complicated adjective constructions including
nested noun phrases that represent a comparison object:

(63) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ as ] adj itr [ as ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













(64) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ adj itr comp [ than ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













(65) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ more ] adj itr [ than ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













(66) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













(67) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ more ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5












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(68) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ most ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5













(69) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ as ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ as ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













(70) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ as ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ as ] adj prep
(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













(71) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ more ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ than ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













(72) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ adj tr comp

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ than ] np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













(73) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ [ more ] adj tr

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ than ] adj prep
(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













(74) adjc









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ adj tr comp

(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: –
subj: 3

whin: 4

whout: 7













[ than ] adj prep
(

prep: 6

)

np













case: acc
copula: –
embv: 1

rel: 2

subj: 3

whin: 7

whout: 5













Relative Clauses

Relative clauses are represented by relcl. They start with a relative pronoun and are
always optional:

(75) relcl

(

whin: 1

whout: 1

)

:
−→

(76) relcl











embv: +
human: 1

rel: +
subj: 2

whin: 3

whout: 4











:
−→ relpron

(

human: 1

relpron: 5

)

relcl1









human: 1

relpron: 5

subj: 2

whin: 3

whout: 4









Like sentences and verb phrases, relative clauses can be coordinated by “or” (relcl1)
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and “and” (relcl2):

(77) relcl1









human: 1

relpron: 2

subj: 3

whin: 4

whout: 5









∼
−−→ � relcl2











human: 1

rel: –
relpron: 2

subj: 3

whin: 4

whout: 6











or relpron

(

human: 1

relpron: 2

)

relcl1









human: 1

relpron: 2

subj: 3

whin: 6

whout: 5









(78) relcl1









human: 1

relpron: 2

subj: 3

whin: 4

whout: 5









:
−→ relcl2









human: 1

relpron: 2

subj: 3

whin: 4

whout: 5









(79) relcl2











human: 1

rel: 2

relpron: 3

subj: 4

whin: 5

whout: 6











:
−→ vp









pl: –
rel: –
subj: 4

whin: 5

whout: 7









and relpron

(

human: 1

relpron: 3

)

relcl2











human: 1

rel: 2

relpron: 3

subj: 4

whin: 7

whout: 6











(80) relcl2





rel: 1

subj: 2

whin: 3

whout: 4





:
−→ vp









pl: –
rel: 1

subj: 2

whin: 3

whout: 4









(81) relcl2





rel: 1

subj: 2

whin: 3

whout: 4





∼
−−→ np























case: nom
copula: –
embv: 5

id: 6

pl: 7

refl: –
rel: –
subj: 2

whin: 3

whout: 8























aux

(

be: –
pl: 7

)

verb





be: –
pl: 7

vcat: tr
vform: inf



 vmod











copula: –
embv: 5

rel: 1

subj: 6

whin: 8

whout: 4











(82) relcl2





rel: 1

subj: 2

whin: 3

whout: 4





∼
−−→ np























case: nom
copula: –
embv: 5

id: 6

pl: 7

refl: –
rel: –
subj: 2

whin: 3

whout: 8























verb





be: –
pl: 7

vcat: tr
vform: fin



 vmod











copula: –
embv: 5

rel: 1

subj: 6

whin: 8

whout: 4











Relative pronouns are represented by relpron and can be either “that”, “who” or
“which”:

(83) relpron
(

relpron: that

)

:
−→ [ that ]

(84) relpron

(

human: +
relpron: who

)

:
−→ [ who ]

(85) relpron

(

human: –
relpron: which

)

:
−→ [ which ]

The categories or relpron and and relpron define shortcuts — e.g. “or that” as one
token — for better usability inside of the predictive editor:

(86) or relpron

(

human: 1

relpron: 2

)

:
−→ [ or ] relpron

(

human: 1

relpron: 2

)

(87) or relpron
(

relpron: that

)

:
−→ [ or that ]

(88) or relpron

(

human: +
relpron: who

)

:
−→ [ or who ]
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(89) or relpron

(

human: –
relpron: which

)

:
−→ [ or which ]

(90) and relpron

(

human: 1

relpron: 2

)

:
−→ [ and ] relpron

(

human: 1

relpron: 2

)

(91) and relpron
(

relpron: that

)

:
−→ [ and that ]

(92) and relpron

(

human: +
relpron: who

)

:
−→ [ and who ]

(93) and relpron

(

human: –
relpron: which

)

:
−→ [ and which ]

Verb Phrase Modifiers

Verb phrase modifiers are represented by vmod and the auxiliary category vmod x,
and are always optional:

(94) vmod

(

whin: 1

whout: 1

)

:
−→

(95) vmod











copula: 1

embv: –
rel: 2

subj: 3

whin: 4

whout: 5











:
−→ adv coord

(

copula: 1

)

vmod x









copula: 1

rel: 2

subj: 3

whin: 4

whout: 5









(96) vmod











copula: 1

embv: –
rel: 2

subj: 3

whin: 4

whout: 5











:
−→ pp









embv: 6

rel: 2

subj: 3

whin: 4

whout: 7









vmod











copula: 1

embv: 6

rel: 2

subj: 3

whin: 7

whout: 5











(97) vmod x

(

whin: 1

whout: 1

)

:
−→

(98) vmod x









copula: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ pp









embv: 6

rel: 2

subj: 3

whin: 4

whout: 7









vmod











copula: 1

embv: 6

rel: 2

subj: 3

whin: 7

whout: 5











The category pp represents prepositional phrases:

(99) pp









embv: 1

rel: 2

subj: 3

whin: 4

whout: 5









:
−→ prep np











case: acc
embv: 1

rel: 2

subj: 3

whin: 4

whout: 5











Adverbs can be coordinated by “and”, which is represented by adv coord:

(100) adv coord
(

copula: –

)

:
−→ adv phrase

(101) adv coord
(

copula: –

)

:
−→ adv phrase [ and ] adv coord

Adverbial phrases are represented by adv phrase, and can be in positive, comparative
or superlative form:

(102) adv phrase
:

−→ adv
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(103) adv phrase
:

−→ [ more ] adv

(104) adv phrase
:

−→ adv comp

(105) adv phrase
:

−→ [ most ] adv

(106) adv phrase
:

−→ adv sup

Verbs

The category verb represents main verbs, which can be intransitive or transitive:

(107) verb





be: –
pl: –
vcat: itr
vform: fin





:
−→ iv finsg

(108) verb





be: –
pl: +
vcat: itr
vform: fin





:
−→ iv infpl

(109) verb

(

be: –
vcat: itr
vform: inf

)

:
−→ iv infpl

(110) verb





be: –
pl: –
vcat: tr
vform: fin





:
−→ tv finsg

(111) verb





be: –
pl: +
vcat: tr
vform: fin





:
−→ tv infpl

(112) verb

(

be: –
vcat: tr
vform: inf

)

:
−→ tv infpl

(113) verb

(

be: +
vcat: tr

)

:
−→ tv pp

Auxiliary verbs are represented by aux, which includes negation markers:

(114) aux

(

be: +
exist: +
pl: –

)

:
−→ [ is ]

(115) aux

(

be: +
exist: –
pl: –

)

:
−→ � [ is not ]

(116) aux

(

be: +
exist: –
pl: –

)

:
−→ � [ is ] [ not ]

(117) aux

(

be: +
exist: +
pl: +

)

:
−→ [ are ]

(118) aux

(

be: +
exist: –
pl: +

)

:
−→ � [ are not ]

(119) aux

(

be: +
exist: –
pl: +

)

:
−→ � [ are ] [ not ]
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(120) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ does not ]

(121) aux

(

be: –
exist: –
pl: +

)

:
−→ � [ do not ]

(122) aux

(

be: –
exist: –

)

:
−→ � [ can ]

(123) aux

(

be: –
exist: –

)

:
−→ � [ should ]

(124) aux

(

be: –
exist: –

)

:
−→ � [ must ]

(125) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ has to ]

(126) aux

(

be: –
exist: –
pl: +

)

:
−→ � [ have to ]

(127) aux

(

be: +
exist: –

)

:
−→ � [ can ] [ be ]

(128) aux

(

be: +
exist: –

)

:
−→ � [ should ] [ be ]

(129) aux

(

be: +
exist: –

)

:
−→ � [ must ] [ be ]

(130) aux

(

be: +
exist: –
pl: –

)

:
−→ � [ has to ] [ be ]

(131) aux

(

be: +
exist: –
pl: +

)

:
−→ � [ have to ] [ be ]

(132) aux

(

be: +
exist: –

)

:
−→ � [ cannot ] [ be ]

(133) aux

(

be: +
exist: –

)

:
−→ � [ can ] [ not ] [ be ]

(134) aux

(

be: +
exist: –

)

:
−→ � [ should ] [ not ] [ be ]

(135) aux

(

be: +
exist: –
pl: –

)

:
−→ � [ does not ] [ have to ] [ be ]

(136) aux

(

be: +
exist: –
pl: +

)

:
−→ � [ do not ] [ have to ] [ be ]

(137) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ cannot ]

(138) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ can ] [ not ]

(139) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ should ] [ not ]
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(140) aux

(

be: –
exist: –
pl: –

)

:
−→ � [ does not ] [ have to ]

(141) aux

(

be: –
exist: –
pl: +

)

:
−→ � [ do not ] [ have to ]

Quantifiers

Existential and universal quantifiers are represented by quant:

(142) quant
(

exist: +

)

:
−→ [ a ]

(143) quant
(

exist: +

)

:
−→ [ an ]

(144) quant
(

exist: –

)

:
−→ � [ every ]

(145) quant
(

exist: –

)

:
−→ � [ no ]

The category num quant stands for numerical quantifiers:

(146) num quant
:

−→ [ at least ]

(147) num quant
:

−→ [ at most ]

(148) num quant
:

−→ [ less than ]

(149) num quant
:

−→ [ more than ]

(150) num quant
:

−→ [ exactly ]

Indefinite Pronouns

Indefinite pronouns are represented by ipron:

(151) ipron

(

exist: +
human: –

)

→ [ something ]

(152) ipron

(

exist: +
human: +

)

→ [ somebody ]

(153) ipron

(

exist: –
human: –

)

→ � [ everything ]

(154) ipron

(

exist: –
human: +

)

→ � [ everybody ]

(155) ipron

(

exist: –
human: –

)

→ � [ nothing ]

(156) ipron

(

exist: –
human: +

)

→ � [ nobody ]
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Anaphoric Pronouns

The category pron represents reflexive and irreflexive anaphoric pronouns:

(157) pron

(

human: –
refl: +

)

→ [ itself ]

(158) pron

(

gender: masc
human: +
refl: +

)

→ [ himself ]

(159) pron

(

gender: fem
human: +
refl: +

)

→ [ herself ]

(160) pron

(

human: –
refl: –

)

→ [ it ]

(161) pron





case: nom
gender: masc
human: +
refl: –



 → [ he ]

(162) pron





case: acc
gender: masc
human: +
refl: –



 → [ him ]

(163) pron





case: nom
gender: fem
human: +
refl: –



 → [ she ]

(164) pron





case: acc
gender: fem
human: +
refl: –



 → [ her ]

A.3 Lexical Rules of ACE Codeco

Below, the lexical rules (i.e. lexicon entries) are shown, which are used for evaluation
purposes.

(165) prop sg

(

gender: fem
human: +
text: Mary

)

→ [Mary ]

(166) def noun sg
(

noun: woman

)

→ [ the woman ]

(167) ref
(

text: X

)

→ [ X ]

(168) num → [ 2 ]

(169) noun pl → [ women ]

(170) noun sg

(

gender: fem
human: +
text: woman

)

→ [ woman ]

(171) var
(

text: X

)

→ [ X ]

(172) iv finsg → [ waits ]

(173) iv infpl → [ wait ]
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(174) tv finsg → [ asks ]

(175) tv infpl → [ ask ]

(176) tv pp → [ asked ]

(177) adj itr → [ young ]

(178) adj itr comp → [ younger ]

(179) adj tr
(

prep: about

)

→ [ mad-about ]

(180) adj tr comp
(

prep: about

)

→ [ madder-about ]

(181) adj prep
(

prep: about

)

→ [ about ]

(182) prep → [ for ]

(183) adv → [ early ]



APPENDIX B

Ontograph Resources

This appendix chapter shows the resources that have been used for the two exper-
iments described in Chapter 5, i.e. the ontographs, the corresponding statements,
and (in the case of the second experiment) the language description sheets. First,
the resources for the first experiment are shown (Section B.1), and then the ones for
the second experiment (Section B.2).

The resources shown in this appendix chapter can also be found on the web1 in
different formats. All these resources can be reused freely under the terms of the
Creative Commons Attribution License2. Thus, everyone is free to use and modify
the shown ontographs if the work is properly attributed. In an experimental setting,
the attribution can be dropped.

B.1 Resources of the first Ontograph Experiment

The first ontograph experiment used four ontographs 1X, 2X, 3X and 4X. Each onto-
graph has two series of statements (a and b) each of which consists of 10 statements
in ACE. Only series a has been used for the experiment. Some of the statement
are true and have a plus sign (+) in the identifier. The others are false and their
identifiers have a minus sign (–).

1http://attempto.ifi.uzh.ch/site/docs/ontograph/
2http://creativecommons.org/licenses/by/3.0/

http://attempto.ifi.uzh.ch/site/docs/ontograph/
http://creativecommons.org/licenses/by/3.0/


APPENDIX B. ONTOGRAPH RESOURCES 197

Ontograph Table 1X

Mini World Legend

person

man

woman

traveler

officer

golfer

John

Tom

Bill

Sue

Mary

Lara

ID ACE

1a− Mary is a traveler.
1b+ John is a golfer.
2a+ Bill is not a golfer.
2b− Lara is not an officer.
3a+ Mary is an officer or is a woman.
3b− John is a woman or is a traveler.
4a− Sue is an officer and is a traveler.
4b+ Tom is a man and is a golfer.
5a− Every traveler is a man.
5b+ Every officer is a woman.
6a+ No golfer is a woman.
6b− No traveler is a golfer.
7a+ Every woman is an officer and every officer is a woman.
7b− Every golfer is a man and every man is a golfer.
8a− Every traveler who is not a woman is a golfer.
8b+ Every man who is not a golfer is a traveler.
9a+ Every man is a golfer or is a traveler.
9b− Every traveler is a golfer or is an officer.
10a+ Every woman who is a golfer is a traveler.
10b+ Every officer who is a man is a golfer.
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Ontograph Table 2X

Mini World Legend

sees

picture

buys

$

$

$

$

$

person

man

woman

Mary

LaraTom

John

present

ID ACE

1a+ John sees Tom.
1b− Lara sees Mary.
2a+ Mary does not see Tom.
2b− Tom does not see Lara.
3a− Tom buys a picture.
3b+ John buys a present.
4a− John sees no woman.
4b+ Mary sees no man.
5a+ Tom sees every woman.
5b− Lara sees every man.
6a+ Tom sees nothing but women.
6b− John sees nothing but men.
7a+ Lara buys nothing but presents.
7b+ Lara buys nothing but pictures.
8a− No woman sees herself.
8b+ No man sees himself.
9a+ Every woman buys nothing but pictures.
9b− Every man buys nothing but presents.
10a+ No man who buys a picture is seen by a woman.
10b− No woman who buys a picture is seen by a man.
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Ontograph Table 3X

Mini World Legend

person

loves

sees

traveler

officer

aquarium

present

$ buys

$

$

$
Tom

Sue

Bill

Lara

ID ACE

1a+ Everything that loves something is a person.
1b− Everything that sees something is an officer.
2a− Everything that is loved by something is a person.
2b+ Everything that is bought by something is a present.
3a+ Everything that sees something is an officer or is a traveler.
3b− Everything that loves something is a traveler or is an officer.
4a− Everything that is bought by something is an aquarium or is an officer.
4b+ Everything that is seen by something is a traveler or is an aquarium.
5a− Everything buys at most 1 thing.
5b+ Everything loves at most 1 thing.
6a+ Everything is bought by at most 1 thing.
6b− Everything is loved by at most 1 thing.
7a− Lara sees at least 2 persons.
7b+ Bill sees at least 2 aquariums.
8a+ Bill is seen by at most 1 traveler.
8b− Sue is loved by at most 1 person.
9a− Every officer is loved by at least 2 persons.
9b+ Every aquarium is seen by at least 2 persons.
10a+ Every officer sees exactly 1 traveler.
10b− Every traveler loves exactly 1 person.



200 APPENDIX B. ONTOGRAPH RESOURCES

Ontograph Table 4X

Mini World Legend

loves

sees

? asks

? ?

?

admires

helps

person

ID ACE

1a+ If X asks Y then Y asks X.
1b− If X helps Y then Y helps X.
2a+ If X sees Y then Y does not see X.
2b− If X asks Y then Y does not ask X.
3a− Nothing asks itself.
3b+ Nothing sees itself.
4a− If X loves something that loves Y then X loves Y.
4b+ If X sees something that sees Y then X sees Y.
5a+ If X admires Y then X sees Y.
5b− If X sees Y then X admires Y.
6a− If X helps Y then Y admires X.
6b+ If X loves Y then Y sees X.
7a− If X admires Y then X does not see Y.
7b+ If X loves Y then X does not admire Y.
8a+ If X admires Y then Y does not see X.
8b− If X sees Y then Y does not love X.
9a− If X admires Y then X sees Y. If X sees Y then X admires Y.
9b+ If X loves Y then X helps Y. If X helps Y then X loves Y.
10a+ If X sees something that admires Y then X sees Y.
10b− If X asks something that sees Y then X asks Y.
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B.2 Resources of the second Ontograph Experiment

The second ontograph experiment used four series of ontographs (1, 2, 3 and 4)
each consisting of three ontographs (A, B and C). Each ontograph has two series of
statements (a and b) each of which consists of 10 statements. These statements are
built according to certain patterns, and each statement is expressed in ACE and in
MLL. Some of the statement are true and have a plus sign (+) in the identifier. The
others are false and their identifiers have a minus sign (−). The ontographs B and C
of each series and the respective statements are structurally equivalent in the sense
that they can be derived from each other by one-to-one replacements of the names
of the individuals, types and relations.

The participants of the experiment received a printed language description sheet
for ACE and another one for MLL. Because these description sheets only describe
the subset of the language that was used for the given series, each series has its
own description sheets. For the sake of neutrality, ACE was called “language A” and
MLL was called “language B”. The description sheets used for the experiment were
in German.

In the following Sections B.2.1 to B.2.4, the different series are introduced and
their statement patterns are listed. English translations of the used language de-
scription sheets are shown for each series. Furthermore, the ontographs are shown,
together with their statements in ACE and MLL. Section B.2.5, finally, shows the
questionnaire that the participants had to fill out after the experiment.
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B.2.1 Ontograph Series 1

The statements of this series only contain individuals and types, but no relations.

Statement patterns

ID Name ACE Pattern MLL Pattern

1 individual type 〈I〉 is a 〈T 〉. 〈I〉 HasType 〈T 〉
2 negative individ-

ual type
〈I〉 is not a 〈T 〉. 〈I〉 HasType not 〈T 〉

3 disjunctive indi-
vidual type

〈I〉 is a 〈T1〉 or is a 〈T2〉. 〈I〉 HasType 〈T1〉 or 〈T2〉

4 conjunctive indi-
vidual type

〈I〉 is a 〈T1〉 and is a 〈T2〉. 〈I〉 HasType 〈T1〉 and 〈T2〉

5 subtype Every 〈T1〉 is a 〈T2〉. 〈T1〉 SubTypeOf 〈T2〉
6 disjoint types No 〈T1〉 is a 〈T2〉. 〈T1〉 DisjointWith 〈T2〉
7 equivalent types Every 〈T1〉 is a 〈T2〉 and every 〈T2〉 is a

〈T1〉.
〈T1〉 EquivalentTo 〈T2〉

8 complex subtype Every 〈T1〉 who is not a 〈T2〉 is a 〈T3〉. 〈T1〉 and (not 〈T2〉) SubTypeOf 〈T3〉
9 complex super-

type
Every 〈T1〉 is a 〈T2〉 or is a 〈T3〉. 〈T1〉 SubTypeOf 〈T2〉 or 〈T3〉

10 complex sub-
type/supertype

Nobody who is a 〈T1〉 or who is a 〈T2〉 is
a 〈T3〉 and is a 〈T4〉.

〈T1〉 or 〈T2〉 SubTypeOf not (〈T3〉 and
〈T4〉)

ACE Description Sheet

Language A

The language A consists of statements in English with certain interpretation rules. The proper names in these English 
statements correspond to the individuals of the mini world and the nouns correspond to the types. In the following, 
the interpretation rules are explained.

„or“

If a sentence contains an „or“ then this is always interpreted as an „or“ that does not exclude „and“. Thus, „or“ 
means: either the one or the other or both.

Intuitive Interpretation

Apart from that, the decision whether a certain statement in the language A is true or false should be based on the  
interpretation that one as an English speaking person intuitively assigns to the statement.
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MLL Description Sheet

Language B

The language B consists of statements of the forms described and explained below. These statements are composed 
of keywords and of the names of the individuals and types of the respective mini world. The used keywords are  
„HasType“, „SubTypeOf“, „DisjointWith“, „EquivalentTo“, „not“, „and“, and „or“.

Statements

Every statement can either be true or false. Every statement of the language B has the form of one of the four  
schemes described here. Note that types can be complex (see the next section).

HasType-statements

scheme:  Individual  HasType  Type 

example: John HasType golfer

explanation: A HasType-statement requires an individual and a 
type  and  it  states  that  the  given  individual 
belongs to  the given type.  The example above 
states that John is a golfer.

SubTypeOf-statements

scheme:  Type1  SubTypeOf  Type2 

example: golfer SubTypeOf man

explanation: A  SubTypeOf-statement  requires  two  types  and 
states that every individual that belongs to the 
first  type also belongs to the second type (but 
not necessarily the other way round). The exam-
ple above states that every individual that is  a 
golfer is also a man.

DisjointWith-statements

scheme:  Type1  DisjointWith  Type2 

example: woman DisjointWith golfer

explanation: A DisjointWith-statement requires two types and 
states that no individual belongs to the first type 
and at the same time to the second type. The 
example  above  states  that  no  individual  is  a 
woman and is a golfer.

EquivalentTo-statements

scheme:  Type1  EquivalentTo  Type2 

example: golfer EquivalentTo man

explanation: An  EquivalentTo-statement  requires  two  types 
and states that every individual that belongs to 
the first type also belongs to the second type and 
vice versa. The example above states that every 
individual that is a golfer is also a man and vice 
versa.

Type Operators

Every type (simple or complex) stands for a certain group of individuals. „woman“ and „golfer“ are examples of sim-
ple types. Apart from simple types, there are complex types that are composed by the type operators described here. 
„woman or golfer“ is an example of a complex type. Note that such complex types can be nested. In this case, paren-
theses are used to clarify the structure, for example „not (golfer and man)“.

not-operator

scheme: not  Type 

example: not golfer

explanation: The  not-operator  requires  just  one  type.  The 
resulting complex type stands for all individuals 
that do not belong to the given type. The exam-
ple above stands for all individuals that are not 
golfers.

and-operator

scheme:  Type1  and  Type2 

example: golfer and man

explanation: The and-operator requires two types. The result-
ing complex type stands for all  individuals that 
belong to the first type and at the same time to 
the second type. The example above stands for 
all individuals that are golfers and men.

or-operator

scheme:  Type1  or  Type2 

example: woman or golfer

explanation: The or-operator requires two types. The resulting 
complex  type  stands  for  all  individuals  that 
belong to the first type or to the second type or 
to both. The example above stands for all individ-
uals that are women or golfers or both.
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Ontograph Table 1A

Mini World Legend

person

man

woman

traveler

ofcer

golfer

John

Tom

Bill

Sue

Mary

Lisa

ID ACE MLL

1a− Mary is a traveler. Mary HasType traveler
1b+ John is a golfer. John HasType golfer
2a+ Bill is not a golfer. Bill HasType not golfer
2b− Lisa is not an officer. Lisa HasType not officer
3a+ Mary is an officer or is a golfer. Mary HasType officer or golfer
3b− John is a woman or is a traveler. John HasType woman or traveler
4a− Sue is an officer and is a traveler. Sue HasType officer and traveler
4b+ Tom is a man and is a golfer. Tom HasType man and golfer
5a− Every man is a golfer. man SubTypeOf golfer
5b+ Every golfer is a man. golfer SubTypeOf man
6a+ No golfer is a woman. golfer DisjointWith woman
6b− No traveler is a golfer. traveler DisjointWith golfer
7a+ Every woman is an officer and every officer is a

woman.
woman EquivalentTo officer

7b− Every golfer is a man and every man is a golfer. golfer EquivalentTo man
8a− Every traveler who is not a woman is a golfer. traveler and (not woman) SubTypeOf golfer
8b+ Every man who is not a golfer is a traveler. man and (not golfer) SubTypeOf traveler
9a+ Every man is a golfer or is a traveler. man SubTypeOf golfer or traveler
9b− Every traveler is a golfer or is an officer. traveler SubTypeOf golfer or officer
10a+ Nobody who is a man or who is a golfer is an

officer and is a traveler.
man or golfer SubTypeOf not (officer and
traveler)

10b− Nobody who is a traveler or who is an officer is a
man and is a golfer.

traveler or officer SubTypeOf not (man and
golfer)
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Ontograph Table 1B

Mini World Legend

person

man

woman

traveler

ofcer

golfer

Sue

Mary

John

Tom

Bill

Paul

ID ACE MLL

1a+ John is a traveler. John HasType traveler
1b− Mary is a traveler. Mary HasType traveler
2a− Bill is not an officer. Bill HasType not officer
2b+ Sue is not an officer. Sue HasType not officer
3a− Tom is an officer or is a golfer. Tom HasType officer or golfer
3b+ Paul is a golfer or is a man. Paul HasType golfer or man
4a− Mary is a woman and is a traveler. Mary HasType woman and traveler
4b+ John is a man and is a traveler. John HasType man and traveler
5a− Every man is a traveler. man SubTypeOf traveler
5b+ Every traveler is a man. traveler SubTypeOf man
6a+ No traveler is a golfer. traveler DisjointWith golfer
6b− No officer is a woman. officer DisjointWith woman
7a+ Every woman is a golfer and every golfer is a

woman.
woman EquivalentTo golfer

7b− Every traveler is a man and every man is a traveler. traveler EquivalentTo man
8a− Every officer who is not a traveler is a golfer. officer and (not traveler) SubTypeOf golfer
8b+ Every man who is not a traveler is an officer. man and (not traveler) SubTypeOf officer
9a+ Every man is a traveler or is an officer. man SubTypeOf traveler or officer
9b− Every officer is a man or is a traveler. officer SubTypeOf man or traveler
10a− Nobody who is a golfer or who is a traveler is a

man and is an officer.
golfer or traveler SubTypeOf not (man and
officer)

10b+ Nobody who is a man or who is a traveler is an
officer and is a golfer.

man or traveler SubTypeOf not (officer and
golfer)
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Ontograph Table 1C

Mini World Legend

person

man

woman

traveler

ofcer

golfer

Bill

Sue

Tom

Lisa

Kate

Mary

ID ACE MLL

1a+ Lisa is an officer. Lisa HasType officer
1b− Bill is an officer. Bill HasType officer
2a− Sue is not a golfer. Sue HasType not golfer
2b+ Tom is not a golfer. Tom HasType not golfer
3a− Mary is a golfer or is a traveler. Mary HasType golfer or traveler
3b+ Kate is a traveler or is a woman. Kate HasType traveler or woman
4a− Bill is a man and is an officer. Bill HasType man and officer
4b+ Lisa is a woman and is an officer. Lisa HasType woman and officer
5a− Every woman is an officer. woman SubTypeOf officer
5b+ Every officer is a woman. officer SubTypeOf woman
6a+ No officer is a traveler. officer DisjointWith traveler
6b− No golfer is a man. golfer DisjointWith man
7a+ Every man is a traveler and every traveler is a man. man EquivalentTo traveler
7b− Every officer is a woman and every woman is an

officer.
officer EquivalentTo woman

8a− Every golfer who is not an officer is a traveler. golfer and (not officer) SubTypeOf traveler
8b+ Every woman who is not an officer is a golfer. woman and (not officer) SubTypeOf golfer
9a+ Every woman is an officer or is a golfer. woman SubTypeOf officer or golfer
9b− Every golfer is a woman or is an officer. golfer SubTypeOf woman or officer
10a− Nobody who is a traveler or who is an officer is a

woman and is a golfer.
traveler or officer SubTypeOf not (woman and
golfer)

10b+ Nobody who is a woman or who is an officer is a
golfer and is a traveler.

woman or officer SubTypeOf not (golfer and
traveler)
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B.2.2 Ontograph Series 2

The statements of this series contain relations with different kinds of simple quan-
tifications.

Statement patterns

ID Name ACE Pattern MLL Pattern

1 relation instance 〈I1〉 〈R〉 〈I2〉. 〈I1〉 〈R〉 〈I2〉
2 negative relation

instance
〈I1〉 does not 〈R〉 〈I2〉. 〈I1〉 not 〈R〉 〈I2〉

3 concrete existen-
tial statement

〈I〉 〈R〉 a 〈T 〉. 〈I〉 HasType 〈R〉 some 〈T 〉

4 concrete negative
statement 1

〈I〉 〈R〉 no 〈T 〉. 〈I〉 HasType not (〈R〉 some 〈T 〉)

5 concrete negative
statement 2

〈I〉 〈R〉 something that is not a 〈T 〉. 〈I〉 HasType 〈R〉 some (not 〈T 〉)

6 concrete excep-
tion statement

〈I〉 〈R〉 nothing but 〈T 〉. 〈I〉 HasType 〈R〉 only 〈T 〉

7 general existential
statement 1

Every 〈T1〉 〈R〉 a 〈T2〉. 〈T1〉 SubTypeOf 〈R〉 some 〈T2〉

8 general existential
statement 2

Everything that 〈R〉 a 〈T1〉 is a 〈T2〉. 〈R〉 some 〈T1〉 SubTypeOf 〈T2〉

9 general exception
statement 1

Every 〈T1〉 〈R〉 nothing but 〈T2〉. 〈T1〉 SubTypeOf 〈R〉 only 〈T2〉

10 general exception
statement 2

Everything that 〈R〉 nothing but 〈T1〉 is
a 〈T2〉.

〈R〉 only 〈T1〉 SubTypeOf 〈T2〉

ACE Description Sheet

Language A

The language A consists of statements in English with certain interpretation rules. The proper names in these English 
statements correspond to the individuals of the mini world, the nouns correspond to the types, and the verbs corre-
spond to the relations. In the following, the interpretation rules are explained.

„something“ / „everything“ / „nothing“

The words „something“, „everything“, and „nothing“ always include persons. Normally, one would not use „some-
thing“ in English to refer to a person. Instead, „somebody“ or „someone“ would be used, and analogously for „every -
thing“ and „nothing“. In the language A, however, „something“, „everything“, and „nothing“ are always interpreted 
in a way that includes persons. „John loves everything“, for example, means that John has a „loves“-relation to every 
person and also to every other individual.

„nothing but“

The word „but“ is used only in the combination „nothing but“. „John sees nothing but women“, for example, means 
that John has either no „sees“-relation at all to another individual, or if he does then only to women. Or in other  
words: The example means that John has no „sees“-relation to an individual that is not a woman.

Intuitive Interpretation

Apart from that, the decision whether a certain statement in the language A is true or false should be based on the  
interpretation that one as an English speaking person intuitively assigns to the statement.
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MLL Description Sheet

Language B

The language B consists of statements of the forms described and explained below. These statements are composed 
of keywords and of the names of the individuals, types, and relations of the respective mini world. The used keywords 
are „HasType“, „SubTypeOf“, „not“, „some“, and „only“.

Statements

Every statement can either be true or false. Every statement of the language B has the form of one of the four  
schemes described here. Note that types can be complex (see the next section).

Positive simple statements

scheme:  Individual1   Relation   Individual2 

example: John sees Mary

explanation: A positive simple statement consists of two indi-
viduals and one relation and states that the first 
individual  has the given  relation to  the  second 
individual.  The example above states  that  John 
has a „sees”-relation to Mary.

Negative simple statements

scheme:  Individual1  not  Relation   Individual2 

example: Mary not helps Bill

explanation: A negative simple statement consists of two indi-
viduals and one relation where the relation is pre-
ceded by the keyword „not“. Such a statement 
states that the first individual does not have the 
given  relation  to  the  second  individual.  The 
example above states that Mary does not have a 
„helps“-relation to Bill.

HasType-statements

scheme:  Individual  HasType  Type 

example: John HasType man

explanation: A HasType-statement requires an individual and a 
type  and  it  states  that  the  given  individual 
belongs to  the given  type.  The example  above 
states that John is a man.

SubTypeOf-statements

scheme:  Type1  SubTypeOf  Type2 

example: golfer SubTypeOf man

explanation: A  SubTypeOf-statement  requires  two  types  and 
states that every individual that belongs to the 
first  type also belongs to  the second type (but 
not necessarily the other way round). The exam-
ple above states that every individual that is  a 
golfer is also a man.

Type Operators

Every type (simple or complex) stands for a certain group of individuals. „woman“ and „golfer“ are examples of sim-
ple types. Apart from simple types, there are complex types that are composed by the type operators described here. 
„sees only golfer“ is an example of a complex type. Note that such complex types can be nested. In this case, paren-
theses are used to clarify the structure, for example „not (loves some woman)“.

not-operator

scheme: not  Type 

example: not golfer

explanation: The  not-operator  requires  just  one  type.  The 
resulting complex type stands for all individuals 
that do not belong to the given type. The exam-
ple above stands for all individuals that are not 
golfers.

some-operator

scheme:  Relation  some  Type 

example: loves some woman

explanation: The some-operator requires a relation and a type. 
The resulting complex type stands for all individ-
uals that have the given relation to at least one 
individual of the given type. The example above 
stands for all individuals that have a „loves“-rela-
tion to at least one woman.

only-operator

scheme:  Relation  only  Type 

example: helps only woman

explanation: The only-operator requires a relation and a type. 
The resulting complex type stands for all individ-
uals that either have no corresponding relation to 
another individual at all, or if they do then only to 
individuals of the given type. The example above 
stands for all individuals that have „helps“-rela-
tions (if present at all) only to women. Thus, the 
example includes all individuals except those that 
have a „helps“-relation to an individual that is not 
a woman.
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Ontograph Table 2A

Mini World Legend

sees

picture

buys

$

$

$

$
$

person

man

woman

Mary

LisaTom

John

present

ID ACE MLL

1a− Lisa sees Mary. Lisa sees Mary
1b+ John sees Tom. John sees Tom
2a+ Mary does not see Tom. Mary not sees Tom
2b− Tom does not see Lisa. Tom not sees Lisa
3a− Tom buys a picture. Tom HasType buys some picture
3b+ John buys a present. John HasType buys some present
4a+ Mary sees no man. Mary HasType not (sees some man)
4b− John sees no woman. John HasType not (sees some woman)
5a+ John buys something that is not a present. John HasType buys some (not present)
5b− Tom sees something that is not a woman. Tom HasType sees some (not woman)
6a− John sees nothing but men. John HasType sees only man
6b+ Tom sees nothing but women. Tom HasType sees only woman
7a+ Every man buys a present. man SubTypeOf buys some present
7b− Every woman buys a picture. woman SubTypeOf buys some picture
8a+ Everything that buys a present is a man. buys some present SubTypeOf man
8b− Everything that sees a woman is a man. sees some woman SubTypeOf man
9a− Every man buys nothing but presents. man SubTypeOf buys only present
9b+ Every woman buys nothing but pictures. woman SubTypeOf buys only picture
10a+ Everything that buys nothing but pictures is a

woman.
buys only picture SubTypeOf woman

10b− Everything that sees nothing but women is a man. sees only woman SubTypeOf man
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Ontograph Table 2B

Mini World Legend

person

traveler

ofcer

letter

aquarium

admires

Lisa

Tom

Sue

Paul

inspects

ID ACE MLL

1a− Tom inspects Lisa. Tom inspects Lisa
1b+ Lisa inspects Tom. Lisa inspects Tom
2a+ Lisa does not admire Tom. Lisa not admires Tom
2b− Tom does not admire Lisa. Tom not admires Lisa
3a+ Lisa admires an officer. Lisa HasType admires some officer
3b− Lisa admires a traveler. Lisa HasType admires some traveler
4a+ Paul admires no officer. Paul HasType not (admires some officer)
4b− Lisa inspects no traveler. Lisa HasType not (inspects some traveler)
5a+ Sue admires something that is not a traveler. Sue HasType admires some (not traveler)
5b− Paul admires something that is not an aquarium. Paul HasType admires some (not aquarium)
6a+ Tom inspects nothing but letters. Tom HasType inspects only letter
6b− Lisa inspects nothing but travelers. Lisa HasType inspects only traveler
7a− Every traveler inspects a letter. traveler SubTypeOf inspects some letter
7b+ Every officer inspects an aquarium. officer SubTypeOf inspects some aquarium
8a+ Everything that inspects an aquarium is an officer. inspects some aquarium SubTypeOf officer
8b− Everything that admires a person is an officer. admires some person SubTypeOf officer
9a− Every officer inspects nothing but aquariums. officer SubTypeOf inspects only aquarium
9b+ Every traveler admires nothing but officers. traveler SubTypeOf admires only officer
10a− Everything that admires nothing but persons is an

officer.
admires only person SubTypeOf officer

10b+ Everything that inspects nothing but letters is a
traveler.

inspects only letter SubTypeOf traveler
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Ontograph Table 2C

Mini World Legend

person

ofcer

aquarium

Bill
Mary

John

Kate

golfer

TV

loves

sees

ID ACE MLL

1a− Bill sees Kate. Bill sees Kate
1b+ Kate sees Bill. Kate sees Bill
2a+ Kate does not love Bill. Kate not loves Bill
2b− Bill does not love Kate. Bill not loves Kate
3a+ Kate loves a golfer. Kate HasType loves some golfer
3b− Kate loves an officer. Kate HasType loves some officer
4a+ John loves no golfer. John HasType not (loves some golfer)
4b− Kate sees no officer. Kate HasType not (sees some officer)
5a+ Mary loves something that is not an officer. Mary HasType loves some (not officer)
5b− John loves something that is not a TV. John HasType loves some (not TV)
6a+ Bill sees nothing but aquariums. Bill HasType sees only aquarium
6b− Kate sees nothing but officers. Kate HasType sees only officer
7a− Every officer sees an aquarium. officer SubTypeOf sees some aquarium
7b+ Every golfer sees a TV. golfer SubTypeOf sees some TV
8a+ Everything that sees a TV is a golfer. sees some TV SubTypeOf golfer
8b− Everything that loves a person is a golfer. loves some person SubTypeOf golfer
9a− Every golfer sees nothing but TVs. golfer SubTypeOf sees only TV
9b+ Every officer loves nothing but golfers. officer SubTypeOf loves only golfer
10a− Everything that loves nothing but persons is a

golfer.
loves only person SubTypeOf golfer

10b+ Everything that sees nothing but aquariums is an
officer.

sees only aquarium SubTypeOf officer
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B.2.3 Ontograph Series 3

The statements of this series consist of domain, range, and cardinality restrictions.

Statement patterns

ID Name ACE Pattern MLL Pattern

1 domain Everything that 〈R〉 something is a 〈T 〉. 〈R〉 HasDomain 〈T 〉
2 range Everything that is 〈R〉 by something is a

〈T 〉.
〈R〉 HasRange 〈T 〉

3 complex domain Everything that 〈R〉 something is a 〈T1〉
or is a 〈T2〉.

〈R〉 HasDomain 〈T1〉 or 〈T2〉

4 complex range Everything that is 〈R〉 by something is a
〈T1〉 or is a 〈T2〉.

〈R〉 HasRange 〈T1〉 or 〈T2〉

5 minimal cardinality 〈I〉 〈R〉 at least 2 〈T 〉. 〈I〉 HasType 〈R〉 min 2 〈T 〉
6 maximal cardinality 〈I〉 〈R〉 at most 1 〈T 〉. 〈I〉 HasType 〈R〉 max 1 〈T 〉
7 general minimal

cardinality 1
Every 〈T1〉 〈R〉 at least 2 〈T2〉. 〈T1〉 SubTypeOf 〈R〉 min 2 〈T2〉

8 general minimal
cardinality 2

Everything that 〈R〉 at least 2 〈T1〉 is a
〈T2〉.

〈R〉 min 2 〈T1〉 SubTypeOf 〈T2〉

9 general maximal
cardinality

Every 〈T1〉 〈R〉 at most 1 〈T2〉. 〈T1〉 SubTypeOf 〈R〉 max 1 〈T2〉

10 complex maximal
cardinality

Everything that is a 〈T1〉 or that is a
〈T2〉 〈R〉 at most 1 〈T3〉.

〈T1〉 or 〈T2〉 SubTypeOf 〈R〉 max 1
〈T3〉

ACE Description Sheet

Language A

The language A consists of statements in English with certain interpretation rules. The proper names in these English 
statements correspond to the individuals of the mini world, the nouns correspond to the types, and the verbs corre-
spond to the relations. In the following, the interpretation rules are explained.

„or“

If a sentence contains an „or“ then this is always interpreted as an „or“ that does not exclude „and“. Thus, „or“ 
means: either the one or the other or both.

„something“ / „everything“

The words „something“ and „everything“ always include persons. Normally, one would not use „something“ in Eng-
lish to refer to a person. Instead, „somebody“ or „someone“ would be used, and analogously for „everything“. In the  
language A, however, „something“ and „everything“ are always interpreted in a way that includes persons. „John 
loves everything“, for example, means that John has a „loves“-relation to every person and also to every other indi-
vidual.

„at most“

The expression „at most” does not exclude zero. “John loves at most 2 women”, for example, means that John either  
loves no woman at all, loves one woman, or loves two women.

Intuitive Interpretation

Apart from that, the decision whether a certain statement in the language A is true or false should be based on the  
interpretation that one as an English speaking person intuitively assigns to the statement.
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MLL Description Sheet

Language B

The language B consists of statements of the forms described and explained below. These statements are composed 
of keywords and of the names of the individuals, types, and relations of the respective mini world. The used keywords 
are „HasType“, „SubTypeOf“, „HasDomain“, „HasRange“, „or“, „min“, and „max“.

Statements

Every statement can either be true or false. Every statement of the language B has the form of one of the four  
schemes described here. Note that types can be complex (see the next section).

HasType-statement

scheme:  Individual  HasType  Type 

example: John HasType golfer

explanation: A HasType-statement requires an individual and a 
type  and  it  states  that  the  given  individual 
belongs to  the given type.  The example above 
states that John is a golfer.

HasDomain-statement

scheme:  Relation  HasDomain  Type 

example: buys HasDomain golfer

explanation: A HasDomain-statement requires a relation and a 
type. Such a statement states that whenever an 
individual has the given relation to another indi-
vidual  then  the  first  individual  belongs  to  the 
given type. The example above states that every 
individual that has a „buys“-relation to another 
individual is a golfer.

HasRange-statement

scheme:  Relation  HasRange  Type 

example: loves HasRange woman

explanation: A HasRange-statement requires a relation and a 
type. Such a statement states that whenever an 
individual has the given relation to another indi-
vidual then the second individual belongs to the 
given type. The example above states that every 
individual  to  which  another  individual  has  a 
„loves“-relation is a woman.

SubTypeOf-statement

scheme:  Type1  SubTypeOf  Type2 

example: golfer SubTypeOf man

explanation: A  SubTypeOf-statement  requires  two  types  and 
states that every individual that belongs to the 
first  type also belongs to  the second type (but 
not necessarily the other way round). The exam-
ple above states that every individual that is  a 
golfer is also a man.

Type Operators

Every type (simple or complex) stands for a certain group of individuals. „traveler“ and „aquarium“ are examples of 
simple types. Apart from simple types, there are complex types that are composed by the type operators described  
here. „buys min 2 presents“ is an example of a complex type.

or-operator

scheme:  Type1  or  Type2 

example: woman or golfer

explanation: The or-operator requires two types. The resulting 
complex  type  stands  for  all  individuals  that 
belong to the first type or to the second type or 
to both. The example above stands for all individ-
uals that are women or golfers or both.

min-operator

scheme:  Relation  min  Number   Type 

example: loves min 2 woman

explanation: The min-operator requires a relation, a number, 
and a type. The resulting complex type stands for 
all individuals that have the given relation to at 
least the given number of individuals of the given 
type. The example above stands for all individu-
als that have a „loves“-relation to  at  least  two 
women.

max-operator

scheme:  Relation  max  Number   Type 

example: sees max 2 man

explanation: The max-operator requires a relation, a number, 
and a type. The resulting complex type stands for 
all  individuals that have the given relation to a 
maximum of the given number of individuals of 
the given type. This includes the individuals that 
have no corresponding relation at all. The exam-
ple above stands for all individuals that have a 
„sees“-relation to at most two men.
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Ontograph Table 3A

Mini World Legend

person

loves

sees

traveler

ofcer

aquarium

present

$ buys

$

$

$
Tom

Bill

Sue

Lisa

ID ACE MLL

1a− Everything that sees something is an officer. sees HasDomain officer
1b+ Everything that loves something is a person. loves HasDomain person
2a− Everything that is loved by something is a person. loves HasRange person
2b+ Everything that is bought by something is a

present.
buys HasRange present

3a− Everything that loves something is a traveler or is
an officer.

loves HasDomain traveler or officer

3b+ Everything that sees something is an officer or is a
traveler.

sees HasDomain officer or traveler

4a+ Everything that is seen by something is a traveler
or is an aquarium.

sees HasRange traveler or aquarium

4b− Everything that is bought by something is an
aquarium or is an officer.

buys HasRange aquarium or officer

5a+ Tom loves at least 2 officers. Tom HasType loves min 2 officer
5b− Sue sees at least 2 persons. Sue HasType sees min 2 person
6a− Lisa buys at most 1 present. Lisa HasType buys max 1 present
6b+ Bill loves at most 1 person. Bill HasType loves max 1 person
7a+ Every traveler sees at least 2 aquariums. traveler SubTypeOf sees min 2 aquarium
7b− Every officer buys at least 2 presents. officer SubTypeOf buys min 2 present
8a+ Everything that buys at least 2 presents is an

officer.
buys min 2 present SubTypeOf officer

8b− Everything that loves at least 2 officers is a
traveler.

love min 2 officer SubTypeOf traveler

9a+ Every officer sees at most 1 aquarium. officer SubTypeOf sees max 1 aquarium
9b− Every person buys at most 1 present. person SubTypeOf buys max 1 present
10a− Everything that is a traveler or that is an officer

sees at most 1 aquarium.
traveler or officer SubTypeOf sees max 1
aquarium

10b+ Everything that is an officer or that is a traveler
loves at most 1 person.

officer or traveler SubTypeOf loves max 1 person
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Ontograph Table 3B

Mini World Legend

person

ofcer

golfer

picture

letter

helps

inspects

sees

John
Sue

Lisa

Paul

ID ACE MLL

1a− Everything that inspects something is an officer inspects HasDomain officer
1b+ Everything that helps something is an officer. helps HasDomain officer
2a+ Everything that is inspected by something is a

letter.
inspects HasRange letter

2b− Everything that is seen by something is an officer. sees HasRange officer
3a+ Everything that inspects something is a golfer or is

an officer.
inspects HasDomain golfer or officer

3b− Everything that sees something is an officer or is a
golfer.

sees HasDomain officer or golfer

4a+ Everything that is seen by something is an officer
or is a picture.

sees HasRange officer or picture

4b− Everything that is helped by something is a golfer
or is an officer.

helps HasRange golfer or officer

5a+ Lisa inspects at least 2 letters. Lisa HasType inspects min 2 letter
5b− Paul sees at least 2 persons. Paul HasType sees min 2 person
6a− Lisa helps at most 1 person. Lisa HasType helps max 1 person
6b+ John sees at most 1 officer. John HasType sees max 1 officer
7a+ Every officer helps at least 2 persons. officer SubTypeOf helps min 2 person
7b− Every officer inspects at least 2 letters. officer SubTypeOf inspects min 2 letter
8a− Everything that sees at least 2 pictures is an

officer.
sees min 2 picture SubTypeOf officer

8b+ Everything that inspects at least 2 letters is an
officer.

inspects min 2 letter SubTypeOf officer

9a− Every person inspects at most 1 letter. person SubTypeOf inspects max 1 letter
9b+ Every person helps at most 1 officer. person SubTypeOf helps max 1 officer
10a+ Everything that is an officer or that is a golfer sees

at most 1 picture.
officer or golfer SubTypeOf sees max 1 picture

10b− Everything that is a golfer or that is an officer
inspects at most 1 letter.

golfer or officer SubTypeOf inspects max 1 letter
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Ontograph Table 3C

Mini World Legend

person

golfer

Bill

Tom

Kate

Mary

traveler

present

TV

admires

sees

helps

ID ACE MLL

1a− Everything that sees something is a golfer. sees HasDomain golfer
1b+ Everything that helps something is a golfer. helps HasDomain golfer
2a+ Everything that is seen by something is a TV. sees HasRange TV
2b− Everything that is admired by something is a

golfer.
admires HasRange golfer

3a+ Everything that sees something is a traveler or is a
golfer.

sees HasDomain traveler or golfer

3b− Everything that admires something is a golfer or is
a traveler.

admires HasDomain golfer or traveler

4a+ Everything that is admired by something is a golfer
or is a present.

admires HasRange golfer or present

4b− Everything that is helped by something is a traveler
or is a golfer.

helps HasRange traveler or golfer

5a+ Kate sees at least 2 TVs. Kate HasType sees min 2 TV
5b− Mary admires at least 2 persons. Mary HasType admires min 2 person
6a− Kate helps at most 1 person. Kate HasType helps max 1 person
6b+ Bill admires at most 1 golfer. Bill HasType admires max 1 golfer
7a+ Every golfer helps at least 2 persons. golfer SubTypeOf helps min 2 person
7b− Every golfer sees at least 2 TVs. golfer SubTypeOf sees min 2 TV
8a− Everything that admires at least 2 presents is a

golfer.
admires min 2 present SubTypeOf golfer

8b+ Everything that sees at least 2 TVs is a golfer. sees min 2 TV SubTypeOf golfer
9a− Every person sees at most 1 TV. person SubTypeOf sees max 1 TV
9b+ Every person helps at most 1 golfer. person SubTypeOf helps max 1 golfer
10a+ Everything that is a golfer or that is a traveler

admires at most 1 present.
golfer or traveler SubTypeOf admires max 1
present

10b− Everything that is a traveler or that is a golfer sees
at most 1 TV.

traveler or golfer SubTypeOf sees max 1 TV
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B.2.4 Ontograph Series 4

The statements of this series are only about relations and not about individuals or
types.

Statement patterns

ID Name ACE Pattern MLL Pattern

1 symmetric rela-
tion

If X 〈R〉 Y then Y 〈R〉 X. 〈R〉 IsSymmetric

2 asymmetric rela-
tion

If X 〈R〉 Y then Y does not 〈R〉 X. 〈R〉 IsAsymmetric

3 transitive relation If X 〈R〉 somebody who 〈R〉 Y then X
〈R〉 Y.

〈R〉 IsTransitive

4 subrelation 1 If X 〈R1〉 Y then X 〈R2〉 Y. 〈R1〉 SubRelationOf 〈R2〉
5 subrelation 2 If X 〈R1〉 Y then X 〈R2〉 Y. 〈R1〉 SubRelationOf 〈R2〉
6 inverse subrela-

tion
If X 〈R1〉 Y then Y 〈R2〉 X. 〈R1〉 SubRelationOf inverse 〈R2〉

7 disjoint relations If X 〈R1〉 Y then X does not 〈R2〉 Y. 〈R1〉 DisjointWith 〈R2〉
8 inverse disjoint

relations
If X 〈R1〉 Y then Y does not 〈R2〉 X. 〈R1〉 DisjointWith inverse 〈R2〉

9 equivalent rela-
tions

If X 〈R1〉 Y then X 〈R2〉 Y. If X 〈R2〉 Y
then X 〈R1〉 Y.

〈R1〉 EquivalentTo 〈R2〉

10 inverse equivalent
relations

If X 〈R1〉 Y then Y 〈R2〉 X. If Y 〈R2〉 X
then X 〈R1〉 Y.

〈R1〉 EquivalentTo inverse 〈R2〉

ACE Description Sheet

Language A

The language A consists of statements in English with certain interpretation rules. The verbs in these English state -
ments correspond to the relations of the mini world. In the following, the interpretation rules are explained.

Variables

The words „X“ and „Y“ represent variables. A variable can stand for any individual. If a certain variable occurs more 
than once in the same sentence then every occurrence stands for the same individual. „X sees somebody who loves  
X“, for example, means that some individual has a “sees”-relation to another individual that again has a “loves”-rela-
tion to the first individual.

Intuitive Interpretation

Apart from that, the decision whether a certain statement in the language A is true or false should be based on the  
interpretation that one as an English speaking person intuitively assigns to the statement.
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MLL Description Sheet

Language B

The language B consists of statements of the forms described and explained below. These statements are composed 
of keywords and of the names of the relations of the respective mini world. The used keywords are „SubRelationOf“,  
„DisjointWith“, „EquivalentTo“, „IsSymmetric“, „IsAsymmetric“, „IsTransitive“, and „inverse“.

Statements

Every statement can either be true or false. Every statement of the language B has the form of one of the six  
schemes described here. Note that relations can be inverse (see the next section).

SubRelationOf-statements

scheme:  Relation1  SubRelationOf  Relation2 

example: helps SubRelationOf loves

explanation: A SubRelationOf-statement requires two relations. 
Such a statement states that whenever two indi-
viduals are connected by the first relation then 
these two individuals are in the same direction 
also connected by the second relation (but not 
necessarily  the other  way round).  The example 
above states that whenever two individuals are 
connected by a „helps“-relation then they are in 
the same direction also connected by a „loves“-
relation.

DisjointWith-statements

scheme:  Relation1  DisjointWith  Relation2 

example: admires DisjointWith helps

explanation: A DisjointWith-statement  requires  two relations. 
Such a statement states that whenever two indi-
viduals are connected by the first relation then 
these  two  individuals  are  never  in  the  same 
direction connected by the second relation. The 
example above states that whenever two individ-
uals are connected by an „admires“-relation then 
they are never in the same direction connected 
by a „helps“-relation.

EquivalentTo-statements

scheme:  Relation1  EquivalentTo  Relation2 

example: sees EquivalentTo asks

explanation: An EquivalentTo-statement requires two relations. 
Such a statement states that whenever two indi-
viduals are connected by the first relation then 
these two individuals are in the same direction 
also connected by the second relation, and vice 
versa. The example above states that whenever 
two individuals are connected by a „sees“-rela-
tion then they are in the same direction also con-
nected by an „asks“-relation and vice versa.

IsSymmetric-statements

scheme:  Relation  IsSymmetric

example: sees IsSymmetric

explanation: An IsSymmetric-statement requires just one rela-
tion. Such a statement states that whenever an 
individual has the given relation to another indi-
vidual then the second individual has the same 
relation to the first individual as well. The exam-
ple above states that whenever an individual has 
a „sees“-relation to  another individual then the 
second  individual  has  a  „sees“-relation  to  the 
first individual as well.

IsAsymmetric-statements

scheme:  Relation  IsAsymmetric

example: admires IsAsymmetric

explanation: An  IsAsymmetric-statement  requires  just  one 
relation. Such a statement states that whenever 
an individual  has  the  given  relation  to  another 
individual then the second individual  never  has 
the  same  relation  to  the  first  individual.  The 
example above states that whenever an individ-
ual has an „admires“-relation to another individ-
ual  then  the  second  individual  never  has  an 
„admires“-relation to the first individual.

IsTransitive-statements

scheme:  Relation  IsTransitive

example: asks IsTransitive

explanation: An IsTransitive-statement requires just one rela-
tion. Such a statement states that whenever an 
individual has the given relation to another indi-
vidual that again has the same relation to a third 
individual then the first individual has the same 
relation to the third individual as well. The exam-
ple above states that whenever an individual has 
an „asks“-relation to another individual that has 
an „asks“-relation to a third individual then the 
first individual has an „asks“-relation to the third 
individual as well.

inverse-operator

Wherever a relation can occur in the statements, there can also be an inverse relation. Such inverse relations are  
built by the operator „inverse“ described here.

inverse-operator

scheme: inverse  Relation 

example: inverse sees

explanation: The inverse-operator requires just one relation. The resulting complex relation represents the inverse 
relation that connects the same individuals but in the inverse direction. The example above repre-
sents the inverse relation of the „sees“-relation and one could call it the „is seen by“-relation.
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Ontograph Table 4A

Mini World Legend

loves

sees

? asks

? ?
admires

helps

person

inspects

ID ACE MLL

1a− If X helps Y then Y helps X. helps IsSymmetric
1b+ If X asks Y then Y asks X. asks IsSymmetric
2a+ If X sees Y then Y does not see X. sees IsAsymmetric
2b− If X asks Y then Y does not ask X. asks IsAsymmetric
3a+ If X sees somebody who sees Y then X sees Y. sees IsTransitive
3b− If X loves somebody who loves Y then X loves Y. loves IsTransitive
4a+ If X admires Y then X sees Y. admires SubRelationOf sees
4b− If X sees Y then X admires Y. sees SubRelationOf admires
5a+ If X inspects Y then X helps Y. inspects SubRelationOf helps
5b− If X helps Y then X inspects Y. helps SubRelationOf inspects
6a− If X helps Y then Y admires X. helps SubRelationOf inverse admires
6b+ If X loves Y then Y sees X. loves SubRelationOf inverse sees
7a+ If X loves Y then X does not admire Y. loves DisjointWith admires
7b− If X admires Y then X does not see Y. admires DisjointWith sees
8a− If X sees Y then Y does not love X. sees DisjointWith inverse love
8b+ If X admires Y then Y does not see X. admires DisjointWith inverse sees
9a− If X admires Y then X sees Y. If X sees Y then X

admires Y.
admires EquivalentTo sees

9b+ If X loves Y then X helps Y. If X helps Y then X
loves Y.

loves EquivalentTo helps

10a− If X inspects Y then Y sees X. If Y sees X then X
inspects Y.

inspects EquivalentTo inverse sees

10b+ If X admires Y then Y inspects X. If Y inspects X
then X admires Y.

admires EquivalentTo inverse inspects
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Ontograph Table 4B

Mini World Legend

loves

sees

? asks

admires

helps

person

inspects

?

?

ID ACE MLL

1a+ If X helps Y then Y helps X. helps IsSymmetric
1b− If X admires Y then Y admires X. admires IsSymmetric
2a+ If X asks Y then Y does not ask X. asks IsAsymmetric
2b− If X helps Y then Y does not help X. helps IsAsymmetric
3a+ If X admires somebody who admires Y then X

admires Y.
admires IsTransitive

3b− If X sees somebody who sees Y then X sees Y. sees IsTransitive
4a− If X sees Y then X admires Y. sees SubRelationOf admires
4b+ If X inspects Y then X admires Y. inspects SubRelationOf admires
5a+ If X asks Y then X admires Y. asks SubRelationOf admires
5b− If X admires Y then X asks Y. admires SubRelationOf asks
6a− If X loves Y then Y admires X. loves SubRelationOf inverse admires
6b+ If X sees Y then Y admires X. sees SubRelationOf inverse admires
7a− If X admires Y then X does not inspect Y. admires DisjointWith inspects
7b+ If X sees Y then X does not admire Y. sees DisjointWith admires
8a+ If X asks Y then Y does not admire X. asks DisjointWith inverse admires
8b− If X admires Y then Y does not see X. admires DisjointWith inverse sees
9a+ If X loves Y then X inspects Y. If X inspects Y

then X loves Y.
loves EquivalentTo inspects

9b− If X asks Y then X admires Y. If X admires Y then
X asks Y.

asks EquivalentTo admires

10a− If X loves Y then Y admires X. If Y admires X then
X loves Y.

loves EquivalentTo inverse admires

10b+ If X asks Y then Y sees X. If Y sees X then X asks
Y.

asks EquivalentTo inverse sees
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Ontograph Table 4C

Mini World Legend

loves

sees

? asks

admires

helps

person

inspects

?

ID ACE MLL

1a+ If X sees Y then Y sees X. sees IsSymmetric
1b− If X loves Y then Y loves X. loves IsSymmetric
2a+ If X helps Y then Y does not help X. helps IsAsymmetric
2b− If X sees Y then Y does not see X. sees IsAsymmetric
3a+ If X loves somebody who loves Y then X loves Y. loves IsTransitive
3b− If X inspects somebody who inspects Y then X

inspects Y.
inspects IsTransitive

4a− If X inspects Y then X loves Y. inspects SubRelationOf loves
4b+ If X asks Y then X loves Y. asks SubRelationOf loves
5a+ If X helps Y then X loves Y. helps SubRelationOf loves
5b− If X loves Y then X helps Y. loves SubRelationOf helps
6a− If X admires Y then Y loves X. admires SubRelationOf inverse loves
6b+ If X inspects Y then Y loves X. inspects SubRelationOf inverse loves
7a− If X loves Y then X does not ask Y. loves DisjointWith asks
7b+ If X inspects Y then X does not love Y. inspects DisjointWith loves
8a+ If X helps Y then Y does not love X. helps DisjointWith inverse loves
8b− If X loves Y then Y does not inspect X. loves DisjointWith inverse inspects
9a+ If X admires Y then X asks Y. If X asks Y then X

admires Y.
admires EquivalentTo asks

9b− If X helps Y then X loves Y. If X loves Y then X
helps Y.

helps EquivalentTo loves

10a− If X admires Y then Y loves X. If Y loves X then
X admires Y.

admires EquivalentTo inverse loves

10b+ If X helps Y then Y inspects X. If Y inspects X
then X helps Y.

helps EquivalentTo inverse inspects
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B.2.5 Questionnaire

Below, the questionnaire is shown that the participants had to fill out after the
second ontograph experiment. The items marked with a star “*” exist only for control
reasons (the star is not part of the questionnaire) and the participants who checked
one of these options had to be excluded from the data set.

1. What is your gender?

✷ male
✷ female

2. How old are you?

years

3. What do you study or what have you been studying? Please also indicate your minor
subjects (if applicable).

✷ current studies in:
✷ finished studies in:
✷ I am not a student *

4. What is your level of English skills?

✷ no skills or almost no skills *
✷ little skills *
✷ good skills
✷ very good skills

5. How easy or hard to understand did you find the instructions?

✷ very easy to understand
✷ easy to understand
✷ hard to understand
✷ very hard to understand

6. How easy or hard to understand did you find the diagrams?

✷ very easy to understand
✷ easy to understand
✷ hard to understand
✷ very hard to understand

7. How easy or hard to understand did you find the statements in language A (the
language that looks like English)?

✷ very easy to understand
✷ easy to understand
✷ hard to understand
✷ very hard to understand
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8. How easy or hard to understand did you find the statements in language B?

✷ very easy to understand
✷ easy to understand
✷ hard to understand
✷ very hard to understand
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