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Controlled Generation and Steering of Spatial Gap Solitons
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We demonstrate the first fully controlled generation of immobile and slow spatial gap solitons in
nonlinear periodic systems with band-gap spectra, and observe the key features of gap solitons that
distinguish them from discrete solitons, including a dynamical transformation of gap solitons due to
nonlinear interband coupling. We also describe theoretically and confirm experimentally the effect of
the anomalous steering of gap solitons in optically induced photonic lattices.
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Nonlinear self-action is known to suppress wave
spreading due to dispersion or diffraction and can lead
to the formation of solitary waves (or solitons). Two
decades ago, it was suggested that the systems with
periodically modulated parameters can support a novel
type of solitons—gap solitons [1,2]; such solitons exist in
band gaps of the linear spectra in various structures
including fiber Bragg gratings [3], photonic crystals [4],
and Bose-Einstein condensates loaded onto optical latti-
ces [5]. Gap solitons are composed of the forward- and
backward-propagating waves which are coupled non-
linearly, and both experience Bragg scattering from the
periodic structure. The strongest coupling occurs when
the wave amplitudes are balanced, corresponding to the
formation of slow or immobile gap solitons. In this re-
gime, the specific dispersion [3] and stability properties
[6] of gap solitons become most evident. These unique
properties remain largely unexplored due to the fact that
an exact balance between forward- and backward-
propagating waves was not achieved, and only some
reduction of the soliton velocity was observed experimen-
tally in fiber Bragg gratings [7] and waveguide arrays [8].
This limitation is inherent due to the ‘‘side-on’’ excitation
geometry used in the experiments, where the forward-
propagating wave is launched into the periodic structure
and smaller-amplitude backward wave is generated
through the Bragg scattering, not allowing a direct con-
trol of the soliton velocity.

In this Letter, we study experimentally the formation
of gap solitons in periodic optically induced photonic
lattices where the probe laser beams experience modula-
tion of the optical refractive index in the transverse
spatial dimension, similar to waveguide arrays [9]. We
implement a novel approach launching simultaneously
the forward- and backward-propagating waves directly
into the periodic structure. This allows us to demonstrate
the first fully controlled generation of spatial gap solitons
where the soliton power and velocity can be changed
independently. In particular, we observe experimentally
immobile gap solitons. Waveguide arrays and photonic
lattices are known to support discrete solitons [9], and,
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in addition, this gives us an opportunity to compare both
types of optical solitons emphasizing the intriguing prop-
erties of gap solitons.

In order to determine the conditions for experimental
generation of spatial gap solitons and also underline their
unique features in comparison with discrete solitons, we
perform theoretical analysis of spatial beam propagation
using the normalized paraxial equation for the electric
field envelope E�x; z�,
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�F �x; jEj2�E � 0; (1)

where x and z are the transverse and propagation coor-
dinates normalized to the characteristic values x0 and z0,
respectively, D � z0�=�4
n0x20� is the beam diffraction
coefficient, n0 is the average medium refractive index,
and � is the vacuum wavelength. Our experiments are
performed using a dynamically induced lattice in a biased
photorefractive crystal [10,11], where the optically in-
duced change of the refractive index is F �x; jEj2� �
���Ib � Igcos

2�
x=d� � jEj2��1, Ib is the constant dark
irradiance, Ig is the peak intensity of the two-beam
interference pattern which induces the lattice with a
period d, and � is a nonlinear coefficient proportional
to the applied dc field. To match our experimental con-
ditions, we use the following parameters: � � 0:532 �m,
n0 � 2:4, x0 � 1 �m, z0 � 1 mm, d � 22:2, Ib � 1, Ig �
1, � � 5:31, and the crystal length L � 15 mm.

The existence of solitons is closely linked to the struc-
ture of the linear wave spectrum. In periodic lattices, the
spectrum is composed of bands which correspond to the
propagating Floquet-Bloch modes separated by gaps
where the wave propagation is forbidden. The Floquet-
Bloch modes are periodic solutions of linearized Eq. (1)
of the form E�;n�x; z� �  �;n�x� exp�i�x=d� i��;nz�,
where ��;n and � are the Bloch-wave propagation con-
stant and wave number, respectively, the index n �
1; 2; . . . marks the order of the transmission band, and
 �;n�x� has the periodicity of the lattice. In Fig. 1(a), we
plot the dispersion relation ��;n and mark two types of
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FIG. 1 (color online). (a) Dispersion of Bloch waves in an
optically induced photonic lattice; the spectrum bands are
shaded. (b) Profiles of the Bloch waves (solid lines) and the
leading-order Fourier components (dashed lines) superimposed
on top of the normalized refracted index profile of the periodic
lattice (shown with shading) for gap edges indicated by arrows.
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FIG. 2 (color online). Numerical results for the soliton fam-
ilies: Power (top) and width (middle) vs the propagation con-
stant. Bottom: soliton profiles (solid lines) corresponding to the
marked points (a–d) in the upper plots; shadings mark the
lattice minima. Arrows illustrate the direction of the input
beams, whose interference pattern (dashed lines) approximates
the soliton profile.
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the band gaps: the top gap, which exists due to the effect
of the total internal reflection and extends to �! �1,
and the lower gap, which has a finite width and appears
due to Bragg scattering.

Bright spatial solitons are self-trapped localized
beams, which do not change during propagation due to
a balance between diffraction and nonlinearity. The cor-
responding solutions of the model Eq. (1) have the form
E�;n�x; z� � u�x;�� exp�i�z�, where u�x;�� is the soliton
profile, and � is the propagation constant. Solitons can
exist when � belongs to a spectral gap. In the case of self-
defocusing nonlinearity (� < 0), solitons do not exist in
the total internal reflection gap. Instead, the staggered
solitons may appear near the lower edge of the first band;
their dispersion and steering properties resemble closely
those of the discrete solitons in self-focusing media
which are associated with coupling between the guided
modes confined to the lattice maxima of the refractive
index [10,12].

We consider the case of a self-focusing nonlinearity
(� > 0), where discrete and gap solitons can coexist in the
same lattice and their characteristics can be compared
directly; see Fig. 2. The plots are presented for the sol-
itons centered at a maximum (on-site) and a minimum
(off-site) of the lattice. At high powers, discrete solitons
become localized at one or two neighboring lattice max-
ima, and this defines their minimum widths. In contrast,
the power of gap solitons is bounded from above because
the Bragg-reflection gap has a finite width, and the spec-
trum of the maximum soliton localization should be in-
side the gap [3,13]. The off-site solitons are unstable and
tend to transform into their on-site counterparts; how-
ever, the instability growth rate for gap solitons is smaller
than that for discrete solitons due to a bounded soliton
power and width in the gap (see Fig. 2). On the other hand,
gap solitons can become unstable due to interband cou-
pling [14], whereas such instability does not exist for
discrete solitons.

In periodic systems, gap solitons have the profiles
closely resembling modulated Bloch waves near the cor-
responding band edges [14]. Therefore, controlled experi-
mental excitation of spatial gap solitons can be realized
if the modulated Bloch-wave profile is properly matched
at the input. Since the Bloch waves are periodic, they can
be decomposed into the Fourier series, E�;n�x; 0� �P
mCn��� 2
m� exp�ix��� 2
m�=d�. In Fig. 1(b), we

show the characteristic profiles of the Bloch waves, and
also plot the contribution from the leading-order Fourier
components (dashed lines). In the leading order, we find
E0;1 � C1�0� � . . . , and, therefore, lattice solitons in the
semi-infinite total internal reflection gap can be gener-
ated by a single incident beam, as was realized in ear-
lier experiments for arrays of weakly coupled optical
waveguides [9]. On the contrary, the Bloch waves in the
Bragg-reflection gap are composed of counterpropagat-
ing waves, e.g., E
;n � Cn�
� exp�i
x=d� � Cn��
��
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exp��i
x=d� � . . . for n � 1; 2. Therefore, spatial gap
solitons can be generated by using two Gaussian beams
which are tuned to the Bragg resonance and have opposite
inclination angles, as was originally suggested in
Ref. [15] and further developed in Ref. [13]. Therefore,
we consider the input field in the form, E0�x� �����
I0

p
e��x�xc�2=w2

cos�
�x� xs�=d�, where the exponential
term approximates the gap-soliton envelope, w being
083905-2
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the width of the input beams. The interference term
approximates the Bloch-wave profile, with the shift xs
depending on the relative phase difference between the
two beams. When the interference maxima are at the
minima of the refractive index profile, the Bloch mode
is excited at the lower edge of the Bragg-reflection gap,
and the input pattern can well match the gap-soliton
profile, as shown in Figs. 2(a) and 2(b).

We investigated the dynamics of the two-beam mutual
focusing and the gap-soliton generation by simulating the
model Eq. (1) with the input parameter xs chosen to match
the Bloch-wave profile at the lower gap edge, and xc �
d=2. The beams diffract at a low input power [Fig. 3(a)],
whereas an immobile gap soliton forms when the input
power is increased [Fig. 3(b)]. The required power de-
pends on the input beam width, as follows from Fig. 2,
and the minimum soliton width defines the fundamental
limit on the degree of two-beam mutual focusing. Indeed,
as the power grows, a gap-soliton breaks up through a
resonant excitation of the first band, and subsequent for-
mation of a quasiperiodic breathing mode [Fig. 3(c)].
These effects are generic, and they may occur in lattices
with various geometries [13]; the breathing states were
recently observed in waveguide arrays [16].

Our experiments were performed in a 15 mm long
strontium barium niobate (SBN:60) crystal externally
biased along the crystalline c axis. The experimental
scheme is sketched in Fig. 4 (top-left panel), where two
extraordinary polarized probe beams were focused by
cylindrical lens and made to overlap at the input face of
the crystal (see auxiliary figure in Ref. [17] for details).
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FIG. 3 (color online). Numerical results. Dynamics of the
Bloch waves excited through the two-beam interference:
(a) linear diffraction at low power (I0 ’ 0), (b) excitation of
a gap soliton in the nonlinear regime (I0 � 0:048), (c) beam
breakup and the formation of a quasiperiodic breathing state at
higher powers (I0 � 0:29). Left: variation of intensity along
the propagation direction. Right: beam profiles at the crystal
output (z � 15 mm) normalized to I0.
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The angle between these two beams was set to twice the
Bragg angle, such that the periodicity of the interference
pattern is equal to that of the lattice (22 �m). In our case,
the value of periodicity corresponds to a relatively wide
gap in the transmission spectrum, as shown in Fig. 1(a).
The relative phase between the probe beams was tuned to
obtain a symmetric interference pattern corresponding to
the off-site state (xc � d=2), as shown in Fig. 4 (top,
right). The relative position between this pattern and the
lattice could also be controlled, by changing the relative
phase between the two lattice-forming beams [11]. The
input width of the overlapping probe beams is w �
55 �m (65 �m FWHM). For a zero bias field, when the
lattice is absent, the beams become fully separated at the
crystal output. When an electric field of 5000 V=cm is
applied to the crystal, the interference pattern induces a
periodic modulation of the optical refractive index and
the probe beams excite Bloch waves at the edge of the
Brillouin zone corresponding to the first or the second
band, depending on the relative position of the lattice.

The experimental results shown in Fig. 4 confirm
remarkably all theoretical predictions. First, we align
the interference maxima of the input beams with the
minima of the induced lattice at the input face of the
crystal and record the beam profiles at the back face for
several input powers [see Fig. 4 (left column)]. The output
intensity is exactly zero at the maxima of the index
grating. The intensity maxima are out of phase, as con-
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FIG. 4 (color online). Experimental results. Top: Excitation
scheme (left) and input intensity profile (right). Bottom: output
for various beam powers. Left: mutual focusing and gap-
soliton formation when interference maxima are aligned with
the lattice minima. Right: Self-defocusing when interference
maxima are at the lattice maxima. Dashed curves: The beam
profiles at the indicated intensity when the grating is erased.
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FIG. 5 (color online). (a) Schematic demonstration of anoma-
lous gap-soliton steering induced by a tilt of the lattice; dashed
line shows the propagation direction of a gap soliton; arrows
indicate the directions of the input beams. (b),(c) Output
soliton profile for a lattice tilt in the direction of larger x by
20% of the Bragg angle with respect to normal; dashed lines
show the beam profiles when the lattice is absent.
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firmed with interferometric measurements, and possess a
double peak structure located at the minima of the grat-
ing. At low powers, the output intensity pattern is broad
and corresponds to the Bloch waves at the lower gap edge.
The beam is centered exactly between two unperturbed
output beams [dashed curve in Fig. 4 (left column)]
measured for zero voltage. At higher intensity (I0=Ig �
0:04), we observe the two beam mutual focusing. For
intensities I0=Ig � 0:14, the output beam becomes self-
trapped to a state which has the width equal to that at the
input [see Fig. 4 (left column)], indicating the formation
of a spatial gap soliton. The gap soliton has zero trans-
verse velocity and is centered between the two output
beams that separate when the grating is erased (dashed
curve). As predicted theoretically, the effect of the mu-
tual focusing is limited, and at higher intensities (I0=Ig �
0:25) the beam disintegrates [see Fig. 4 (left column,
bottom plot)] while its profile becomes asymmetric due
to the diffusion contribution to the photorefractive non-
linearity. On the other hand, when we align the interfer-
ence maxima of the input beams at the lattice maxima,
the excited Bloch-wave corresponds to the upper edge of
the Bragg-reflection gap (see Fig. 1) and it experience
anomalous diffraction [18] leading to self-defocusing as
the power is increased [Fig. 4(right)].

Finally, we study mobility of spatial gap solitons.
Experimentally, the soliton steering is induced by tilting
the lattice by 20% of the Bragg angle, thus introducing a
lateral shift of the induced waveguides by 16 �m at the
output [the lattice is shifted to the right in Fig. 5(a)].
Results of our experiments and the corresponding nu-
merical simulations are presented side by side in
Figs. 5(b) and 5(c); they show that the generated gap
solitons move to the left when the grating is tilted to the
right. In the experimental profile, a small excitation of the
first band can be seen on the right-hand side (positive x) of
the gap soliton. It appears due to small asymmetry of the
initial excitation profile and inhomogeneities of the lat-
tice. The anomalous steering is observed because the
spatial group-velocity dispersion (GVD) for gap solitons
of the second band is almost 3 times larger compared to a
homogeneous medium under our experimental condi-
tions. This phenomenon is analogous to the superprism
effect in photonic crystals in the spatial domain [19]. By
changing the lattice period and modulation depth, we can
increase or decrease the GVD of gap solitons. In contrast,
the discrete solitons associated with the first band always
experience reduced spatial GVD, and therefore tend to
propagate along the lattice [20].

In conclusion, we have demonstrated experimentally
the first fully controlled generation of spatial gap solitons
in optically induced periodic photonic lattices and ob-
served novel effects such as anomalous steering of gap
solitons and the limitation of the two-beam mutual fo-
cusing through interband coupling. We believe our results
083905-4
can also be useful for the study of nonlinear effects in
photonic crystals and nonlinear dynamics of the Bose-
Einstein condensates in optical lattices.

Note added.—Independent observation of immobile
spatial gap solitons was recently reported in Ref. [21].
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