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Controlled human malaria infection (CHMI) 
outcomes in Kenyan adults is associated 
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Abstract 

Background:  Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. 
We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired 
immunity in Kenyan adults with varying malaria exposure.

Methods:  We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria 
endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites 
NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired 
immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and resi-
dence as proxy markers of naturally acquired immunity.

Results:  Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other 
parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in 
children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, 
in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability.

Conclusions:  The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria.
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Background
Plasmodium falciparum malaria remains a pressing 
global health emergency. Encouraging progress in its 
control has been made in some areas of Africa [1], but 

elimination does not appear realistic in many areas. The 
current lead vaccine candidates are based on the cir-
cumsporozoite protein (CSP) and have been shown to 
be protect against clinical manifestations of P. falcipa-
rum disease in children [2, 3]. Higher vaccine efficacy 
against clinical manifestations might be achievable 
through inducing immune responses against antigens 
from the asexual blood-stages [4]. The clinical develop-
ment pathway for any one candidate vaccine is expen-
sive and lengthy. None of the blood-stage candidate 
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vaccines subjected to field trials have progressed to 
Phase III trials [5, 6]. The need to understand and inter-
rogate naturally acquired immunity to malaria is fun-
damental to antigen selection and vaccine design. A 
common approach is to use immuno-epidemiological 
studies in malaria endemic regions, where immuno-
logical responses from cross-sectional surveys of chil-
dren are linked with the risk of subsequent malaria 
episodes [7–11]. A limitation of this approach has been 
the reliance on uncontrolled natural but heterogenous 
exposure to malaria [8, 9, 12] as well as exposure to 
genetically diverse parasites [13] in the field.

Controlled Human Malaria Infection (CHMI) studies 
have the potential to accelerate the selection of anti-
gens for vaccine development by controlling for malaria 
exposure, including parasite strain, as well as level of 
infectious dose. For ethical reasons, CHMI requires 
adult volunteers rather than children. In endemic areas 
immunity is acquired with age and adults usually have 
high levels of immunity to the consequences of infec-
tion [14]. Nevertheless, even among adults’ levels of 
immunity may be variable. We have recently described 
clinical outcomes and safety of CHMI in Kenyan adults 
after infection with cryopreserved viable, aseptic, and 
purified Plasmodium falciparum sporozoites (PfSPZ 
Challenge) at a dose of 3200 injected by syringe [15]. 
We showed that using CHMI in this population of 142 
pre-exposed adults, 26 (18.3%) had febrile symptoms 
and were treated; 30 (21.1%) reached ≥ 500 parasites/
µl and were treated; 53 (37.3%) had parasitaemia with-
out meeting thresholds for treatment and; whilst 33 
(23.2%) remained qPCR negative (in a subset of vol-
unteers, some of those qPCR negative between days 8 
and 10 post-infection had low parasitaemia in compari-
son to two other qPCR methods) [15]. These findings 
are consistent with other CHMI studies in volunteers 
from endemic areas [16, 17]. However, the outcomes of 
CHMI that are most strongly associated with naturally 
acquired immunity have not yet been determined. Fur-
thermore, categorizations into multi-level descriptive 
outcomes do not maximize analytical power for corre-
lates of immunity, and either a binary classification or a 
continuous variable would be analytically optimal.

We therefore in this study conducted an analysis 
using anti-schizont antibody responses and location 
of residence as surrogates of immunity. We exam-
ined various parameters from the patterns of parasite 
growth during CHMI. This was to determine which 
parameters most closely associated with these two sur-
rogates of immunity, and to identify whether any were 
more discriminatory of host immunity than the stand-
ard immuno-epidemiological studies conducted in the 
field.

Methods
Study design and population
The full protocol [18] and description of safety and out-
come [15] has been published. Briefly, data from the 
CHMI-SIKA study, which was an open, un-blinded and 
non-randomised with all volunteers receiving an intra-
venous injection [direct venous inoculation (DVI)] dose 
of 3.2 × 103 PfSPZ Challenge PfNF54 strain (i.e. cryo-
preserved, infectious sporozoites). The volunteers were 
monitored for blood parasitaemia by quantitative poly-
merase chain reaction (qPCR) to determine parasite 
growth. The 3.2 × 103 PfSPZ dose was selected because 
this has infected 100% malaria-naïve volunteers undergo-
ing CHMI in studies in the US and EU [19, 20]. PfNF54 is 
African in origin and it is therefore expected that < 100% 
of African volunteers with well-developed naturally 
acquired immunity will become infected [21].

Anti‑malarial drug concentration
We retrospectively measured the concentrations of anti-
malarial drugs (artemether, dihydroartemisinin, sulf-
adoxine, pyrimethamine, chloroquine, lumefantrine, and 
desbutyl-lumefantrine), retrospectively at a day before 
challenge (C − 1) and after challenge (at C + 8) [15]. We 
excluded those with drug levels above the minimum 
inhibitory concentration (MIC) for lumefantrine but 
retained those with levels below the MIC for sulfadoxine 
(in absence of pyrimethamine) and with trace levels of 
chloroquine as described previously [15].

Anti‑schizont antibody levels
Plasma samples were tested by ELISA for the presence 
of human IgG against schizont extract as described pre-
viously [22, 23]. P. falciparum 3D7 strain parasites were 
cultured to schizont stage to make a preparation of schi-
zont extract. To run the ELISAs, the extract was used to 
coat high absorbance plates at an established concentra-
tion shown to have saturation of responses using plasma 
from hyper immune individuals. The assay was repeated 
if duplicate optical density (OD) values for an individual 
plasma sample varied by more than a factor of 1.5. A pool 
of serum samples from an area in Africa where malaria is 
highly endemic was titrated on each plate and acted both 
as a positive control and provided values for a standard 
curve for converting optical density (OD) readings into 
concentrations (Antibody Units, AU).

Location of residence
Volunteers were recruited from differing malaria 
endemic regions in Kenya: Ahero in Western Kenya 
(moderate to high transmission region); Kilifi North on 
the Kenyan Coast (low to no malaria transmission); and 
Kilifi South (moderate transmission region) [1, 24]. In 
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this analysis volunteers from Ahero and Kilifi South were 
combined as resident at “high transmission” intensity 
and Kilifi North taken as resident at “low transmission” 
intensity.

Parasite detection by qPCR
For parasite detection, venous blood samples were col-
lected twice every day from days 8 to 15 of CHMI and 
then once every day from days 16 to 22 of CHMI for 
qPCR analysis by detection of the 18  S ribosomal RNA 
P. falciparum gene [15] in triplicates in a TaqMan assay 
using primers and probes previously described [25]. 
Non-template control was used as a negative control 
(in triplicate wells) with parasite quantification against 
known cultured parasite standards comprising of 6 serial 
dilutions of extracted DNA also run in triplicates. The 
cultured parasite standards were produced in 3 different 
batches. Selected samples were re-ran from each CHMI 
cohort against a final set of standards, including the 
WHO external quantified quality control sample [26].

Statistical analysis
PCR results are presented as the geometric mean of three 
replicate assays at each timepoint. Time to treatment was 
the number of days between challenge and the treatment 
decision taken either because: (a) the volunteer reached 
the pre-assigned threshold of 500 falciparum parasites/
ml by qPCR; (b) they had developed febrile symptoms 
and clinicians had treated them at lower parasite density; 
or (c) they reached the end of the study without reaching 
parasite density threshold or having symptoms. Other 
parameters to describe the outcomes were derived from 
qPCR results as follows: (i) the time to particular parasite 
density thresholds, where volunteers not reaching those 
thresholds were described as missing data; (ii) the “pro-
portion of days growing” where any consecutive increase 
in parasite density is considered a “day growing” (this 
was calculated from raw data, then also from smoothed 
data taking the moving average over 2 days); (iii) the 
mean parasite density as a geometric mean, excluding 
timepoints after treatment; (iv) the maximum number 
of days of continuous consecutive growth; (v) the gradi-
ent of growth from a best-linear-fit of the period defined 
in (iv); (vi) the median number of days since challenge 
for the days of parasite growth as defined in (ii); (vii) the 
converse of (ii), (iv), and (v); (viii) for days of decline in 
parasite density rather than growth; (ix) the “inoculum” 
defined as the peak parasite density observed between 
days 8.5 and 10 after challenge and; (x) the “variability” 
calculated as the summed day-to-day variation in parasite 
density. Kruskal–Wallis tests with multiple comparisons 
were used to compare anti-schizont antibodies by loca-
tion and qPCR outcome and Spearman’s rank correlation 

was used to explore correlations between anti-schizont 
antibody, location, and qPCR parameters.

Survival models were developed using Cox regression 
in three stages; (a) univariable analysis of all potential 
independent predictors; and (b) multivariable analysis 
including significant predictors from (a); second mul-
tivariable analysis retaining only significant predictors 
from (b). The variability in outcome explained by anti-
schizont antibodies was calculated using pseudo r2. To 
compare the CHMI cohort with a previous observational 
field study of children [9, 11, 23], the antibody levels were 
divided into two groups (above and below the median), 
and analysis of the child cohort was restricted to the 
asymptomatically infected group where the protective 
effect of anti-schizont antibodies had been shown to be 
most evident [8, 11, 23].

Results
Anti‑schizont antibody responses for the volunteers 
enrolled in the study
Data from 142 volunteers were included in the analysis 
as previously described [15]. The median age of the vol-
unteers was 28 years old (range 18–45) and 30% were 
female. Antibody responses to schizont extract were 
measured for all the volunteers at screening (Additional 
file  1: Fig. S1). Volunteers from Kilifi North had signifi-
cantly lower anti-schizont antibodies (median of 896 
Antibody units (AU), 95% CI 566 to 1473) compared 
with volunteers from Kilifi South (median of 9238  AU, 
95% CI 6399 to 12,324, p < 0.00001) and Ahero (median 
of 4666 AU, 95% CI 966 to 28,702, p < 0.00054) but vol-
unteers from Kilifi South and Ahero had similar antibody 
levels (p = 0.085). For further analysis, volunteers from 
Kilifi North (N = 34) were considered to be residents 
of an area of “low transmission” whilst volunteers from 
Kilifi South (N = 93) were combined with Ahero volun-
teers (N = 15) and considered to be residents of an area of 
“high transmission”.

qPCR categorized outcomes in relation to location 
and antibody response
We had previously observed four distinct outcomes 
based on parasite growth as measured by qPCR follow-
ing CHMI [15] being parasite growth by qPCR meeting 
the threshold criteria for malaria diagnosis (≥ 500 para-
sites/ml) either: (a) with fever (i.e. “treated febrile”); (b) 
without fever but reaching a parasite density requiring 
treatment (i.e. “treated non-febrile”); (c) with parasites 
detected by qPCR but not at a parasite density meet-
ing the threshold criteria for treatment (i.e. “PCR posi-
tive untreated”); or (d) parasites not identified by qPCR 
throughout monitoring (i.e. “PCR negative”) (Additional 
file 2: Fig. S2). Volunteers who were “treated febrile” had 
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lowest anti-schizont antibodies and were least likely to be 
residents of the high transmission areas (Table 1, Addi-
tional file 3: Fig. S3). The “treated non-febrile” group had 
intermediate levels of anti-schizont antibodies and inter-
mediate likelihood of being residents of the high trans-
mission area. The “untreated PCR positive” group and 
then “PCR negative” group had high levels of anti-schi-
zont antibodies and were both very likely to be residents 
of the high transmission areas. Those who were qPCR 

positive untreated could further be examined in sub-
groups by dividing them into those who were positive 
either early, late, or throughout the period of qPCR mon-
itoring. We did not identify any significant differences in 
anti-schizont antibodies or location of residence for these 
additional sub-groups (Additional file 5: Table S1).

qPCR parameter associations with location and antibody 
response
We examined various parameters that described the 
qPCR results per individual volunteer (Table  2). The 
strongest non-parametric correlates of location of resi-
dence (i.e. residence at high vs. low transmission inten-
sity) or anti-schizont antibodies were time to reaching 
a threshold of 250 parasites/ml; time to treatment; and 
the categorization of treatment versus no treatment 
(Table  2). Other parameters that were strong correlates 
of location of residence or of anti-schizont antibodies 
were highly cross correlated with each other (Additional 
file 4: Fig. S4) and we did not identify a second independ-
ent predictor using parametric analyses after adjusting 
for time to treatment (Additional file  5: Table  S2). The 
parameter time to treatment was used for further analy-
sis over the use of time to a threshold of 250 parasites/ml 

Table 1  qPCR outcome in relation to anti-schizont antibody 
responses

PCR (+) and PCR (−) refer to volunteers who were PCR positive and negative 
respectively; N is the total number of volunteers in each outcome category 
a Median antibody responses with 95% CI in parenthesis
b Proportion with 95% CI in parenthesis. N number of volunteers in the analysis

Outcome N Anti-schizont 
antibody 
concentration (AU)a

Proportion resident 
in high transmission 
areasb

Treated febrile 26 794 (501 to 1230) 0.31 (0.12 to 0.49)

Treated non-febrile 30 3311 (1585 to 7080) 0.56 (0.38 to 0.75)

Untreated PCR (+) 53 8710 (6166 to 12,589) 0.98 (0.93 to 1.0)

PCR (−) 33 15,849 (8913 to 31,623) 0.93 (0.86 to 1.0)

Table 2  Non-parametric analysis of qPCR parameters with anti-schizont antibody responses and location

N number of volunteers in the analysis. Analysis uses Spearman’s rank-order correlation. P values in bold indicate statistical significance (p < 0.05)
a Peak at days considered are from days 8.5 to 10 post-infection
b Analysis of smoothed data
c Analysis of raw data
d Represents the summed/average day to day increase or decrease

Parameter Rho anti-schizont 
antibody

p value anti-
schizont antibody

Rho location p value location N

Inoculuma − 0.25 0.003 − 0.08 0.32 142

Time to treatment 0.56 3.60e−13 0.64 1.85e−17 142

Treated vs. untreated − 0.54 2.47e−12 − 0.59 6.59e−15 142

Mean parasite density − 0.53 1.26e−11 − 0.44 6.07e−08 142

Proportion of days with parasite growthb − 0.54 3.40e−12 − 0.43 7.34e−08 142

Proportion of days with parasite growthc − 0.52 2.93e−11 − 0.41 4.18e−07 142

Proportion of days with declining parasite numbers − 0.34 0.00004 − 0.26 0.002 142

Days of longest consecutive parasite growth − 0.5 1.63e−10 − 0.39 1.00e−06 142

Median point of days with parasite growth 0.26 0.01 0.39 0.00008 96

Maximum days of consecutive decline − 0.12 0.24 − 0.01 0.88 104

Median day of decline 0.02 0.82 0.05 0.61 104

Gradient − 0.45 2.15e−08 − 0.47 3.47e−09 142

Variabilityd 0.19 0.06 0.06 0.53 96

Time to threshold of parasites (1/µl) 0.33 0.00006 0.27 0.001 142

Time to threshold of parasites (5/µl) 0.45 2.83e−08 0.49 4.82e−10 142

Time to threshold of parasites (50/µl) 0.54 3.18e−12 0.6 2.36e−15 142

Time to threshold of parasites (250/µl) 0.62 9.34e−14 0.62 9.69e−14 118

Time to threshold of parasites (500/µl) 0.54 1.37e−09 0.56 1.71e−10 111

Time to threshold of parasites (1000/µl) 0.51 1.33e−08 0.59 1.28e−11 108
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since some volunteers were treated at lower parasite den-
sities leading to missing data for time to 250 parasites/ml.

Survival analysis
We developed a multivariable Cox regression model of 
time to treatment, finding both anti-schizont antibodies 
and location of residence to be strong independent pre-
dictors of outcome (Table 3). The presence of parasites at 
screening and plasma lumefantrine drug concentrations 
were weak predictors of outcome in univariable analysis 
(Table  3), but not in multivariable analysis (Multivari-
able 1, Table 3). Parasites at screening and lumefantrine 
drug concentrations were both confounded by location of 
residence (r = 0.20, p = 0.016 and r = 0.30, p = 0.0003 for 
associations with location of residence, respectively). The 
year of enrolment in the trial (cohort year), anti-malarial 
drug concentration, age, and gender were not significant 
predictors of outcome. In the final model (Multivariable 
2), the two independent predictors were residence (i.e. 
at high vs. low transmission) and anti-schizont antibody 
concentration, explaining 35% of the variability in out-
come on logistic regression (Table 3, and Fig. 1).

We compared the predictive strength of anti-schizont 
antibodies in the CHMI model with previous cohort 
studies based on natural exposure in the field [9, 11, 23], 
to determine whether the CHMI model would advance 
the field in examining for correlates of infection. In order 
to make comparisons across models, we used dichoto-
mized anti-schizont antibody levels above and below 
the median for each study to have a bi-level comparison 
in each setting that was not dependent on the different 
range of antibody levels. We compared the pseudo R2 in 

logistic regression to determine the variability in outcome 
explained by antibody levels in each setting. In CHMI, 
the odds ratio (OR) of requiring treatment based on anti-
schizont antibody levels above the median was OR = 0.12 
(95% CI 0.06 to 0.27, p = 2 × 10−7) and explained 17% of 
the variability. In the previously reported cohort of 121 
children between the ages of 1 and 8 years found to be 
parasite positive at baseline with the inclusion crite-
ria for analysis being residence in the study area, hav-
ing anti-schizont antibodies above the median level was 
associated with OR = 0.64 (95% CI 0.29 to 1.4, p = 0.26) 
for febrile malaria, explaining 0.8% of the variability in 
outcome. Survival plots from the CHMI study showed 
a clear distinction in time to treatment by anti-schizont 
antibody responses (Fig. 2, left panel), in contrast to the 
less clear distinction seen in field studies based on natu-
ral exposure (Fig. 2, right panel).

Discussion
We used serial qPCR to determine the outcomes most 
strongly associated with anti-schizont antibodies and 
location of residence (low vs. high transmission), in order 
to define the outcomes for CHMI in exposed adults that 
are most strongly associated with surrogates of immu-
nity. We used anti-schizont antibody levels and location 
of residence at varying prior exposure to malaria as sur-
rogates for immunity to malaria. We examined several 
potential parameters based on the qPCR monitoring 
done for CHMI for their association with anti-schizont 
antibodies and location. Time to treatment and time to 
250 parasites/µl were strongly associated with anti-schi-
zont antibodies and with location. We preferred time to 

Table 3  Cox regression analysis of time to treatment

PCR (+) volunteers, qPCR positive at screening. P values in bold indicate statistical significance (p < 0.05)
a Residence of volunteers
b Log transformed concentration values used

Variable Univariable Multivariable 1 Multivariable 2

HR 95% CI p value HR 95% CI p HR 95% CI p

Cohort (i.e. one cohort per year)

 2016 1

 2017 0.74 0.42, 1.32 0.31

 2018 0.87 0.51, 1.50 0.62

 Age (years) 1 0.97, 1.04 0.82

 Residence at low transmissiona 1 1 1

 Residence at high transmissiona 0.11 0.06, 0.19 1 × 10−14 0.22 0.11, 0 0.44 0.00003 0.20 0.10, 0.40 5 × 10−6

 Sulfadoxineb 1.21 0.78, 1.88 0.4

 Lumefantrineb 0.55 0.32, 0.96 0.04 0.78 0.45, 1.34 0.37

 Anti-Schizont 0.23 0.14, 0.36 2 × 10−10 0.51 0.30, 0.88 0.02 0.44 0.27, 0.74 0.0016
 qPCR (+) at screening 0.17 0.05, 0.55 0.003 0.39 0.11, 1.36 0.14

 Sex (male) 1.1 0.62, 1.94 0.75
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treatment rather than time to 250 parasites/µl, as the for-
mer included the full set of volunteer data and avoids the 
potential bias of missing data from volunteers who were 
treated before reaching 250 parasites/µl.

After adjusting for time to treatment, there were no 
other independent predictors of anti-schizont antibodies 
or of location of residence. We therefore developed a sur-
vival analysis based on time to treatment. The combina-
tion of location of residence and anti-schizont antibodies 
as a continuous variable explained 35% of the variability 
in time to treatment in CHMI. Since prior residence and 
anti-schizont antibodies only offer limited information 
on the true extent of host immunity, this implies that a 
very significant proportion of the variability in outcome 
in CHMI is due to host immunity.

We examined whether the analysis of CHMI for natu-
rally acquired immunity was a significant advance over 
previous studies conducted in the field based on natu-
ral exposure to malaria. Adults have higher levels of 
immunity than children, different endpoints are used for 
adults participating in CHMI compared with children in 
field observational studies, but nevertheless these study 
designs both share the aim to define potential correlates 
of immunity. In order to make comparisons, we used 
logistic regression with febrile malaria as the outcome 

in the field studies, and with treatment criteria as the 
outcome in CHMI. We used anti-schizont antibodies as 
the predictor variable. Levels of anti-schizont antibodies 
higher among adults than children, so we divided anti-
bodies into high or low categories based on the median 
antibody level in each study. In the field-based observa-
tional study analysed here in a cohort of children, anti-
schizont antibody responses explained less than 1% 
of the observed variability, but anti-schizont antibod-
ies explained 17% of the variability in CHMI outcomes. 
This is not surprising given the variability in exposure to 
malaria seen in the field [8, 9], whereas in CHMI expo-
sure is controlled and does not vary between participants.

This analysis, here, shows how, adjusting and account-
ing for heterogeneity of exposure and infection, and 
given that anti-schizont antibodies in field-based studies 
account for a small fraction of the variability, CHMI in 
an adult pre-exposed population has a larger discrimina-
tory power to study immunity in relation to past expo-
sure. Furthermore, in non-immune CHMI studies, a large 
proportion of the volunteers develop illness and require 
treatment at relatively low parasitaemia thresholds 
(between 5 and 50 parasites/ml) whilst in our study, indi-
viduals were often asymptomatic and parasite-free and 
this could largely be as a result of differences in responses 

Fig. 1  Time to treatment survival analysis. Kaplan–Meier curves comparing time to treatment with location of residence (left panel) and 
anti-schizont antibody response (right panel). Shown are survival curves for location of residence is low transmission (blue) vs. high transmission 
(red). For anti-schizont antibody responses shown is low antibodies (blue) vs. high antibodies (red)
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in non-immunes with semi-immunes [27, 28]. With the 
exception of innate factors such as sickle cell trait [17], 
this resistance in previously malaria exposed individuals 
thus might be as a result of acquired adaptive immunity 
which is confirmed by anti-schizont antibody responses.

Thus, these findings presented here, provide a unique 
opportunity to advance the field of vaccine antigen dis-
covery utilizing the CHMI platform with characteriza-
tion and better understanding of the development of 
immunity to infection in the context of past malaria 
exposure. A comprehensive analysis of signatures or cor-
relates of immunity as has been recent detailed utilizing 
systems serology approaches (both qualitative and quan-
titative antibody-based approaches) [29] will significantly 
advance the field.

This analysis, not relying on one or two parameters of 
the outcome measure (PCR) especially in the context 
of undertaking these studies in populations with vary-
ing past exposures to malaria is warranted. Tradition-
ally, studies have relied on the parasite growth kinetics/
rate as an important measure of outcome in CHMI stud-
ies—including as an assessment of vaccine or drug effi-
cacy [30]. CHMI studies enrolling volunteers with a 
range of parasite exposures, to date in Africa, have taken 

the approach of endpoint measurement largely based 
on thick-blood microscopy at a particular threshold for 
diagnosis [17, 22, 31] to explain parasite growth rates. 
Achan et al. [16] despite using PCR as a criteria for end-
point, did not have the same breadth of past exposures as 
presented here. Hence, it is important for studies particu-
larly utilizing PCR to undertake a detailed analysis of the 
most reliable parameter that would account for diversity 
in parasite growth.

Conclusions
We thus conclude that CHMI studies in malaria endemic 
areas, using a standardized inoculum, are an effective 
platform and powerful tool with which to study host 
immunity. Variability in outcomes are more closely 
attributable to host immunity than for field-based studies 
based on natural exposure. Anti-schizont antibodies are 
generally not considered to be mechanistically related to 
immunity but rather a marker of past exposure. Anti-sch-
izont antibodies are thus likely to be cross correlated with 
multiple other potential mechanisms of immunity [22, 
23, 32, 33]. Hence in further studies of host immunity, we 
would expect antigen-specific responses and functional 
antibodies to explain remaining variability in outcome. It 

Fig. 2  Survival analysis of CHMI vs. field-based observational study.  Kaplan–Meier curves comparing of the CHMI cohort (left panel) and 
field-based cohort (right panel) in relation to requirement for treatment and anti-schizont antibody responses. Antibody responses are shown as 
low (red) vs. high (blue)
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is possible that a few mechanistic markers will be inde-
pendently associated with outcome and that, on adjust-
ing, the associations with other markers of exposure 
will be attenuated, or that outcome will be explained by 
a range of parameters independently. In either case, the 
experimentally controlled conditions are expected to 
leave less unexplained variation than occurs in the field 
due to variable exposure to mosquito bites. In follow up 
analyses, immunological parameters, including but not 
limited to for example functional assays for blood-stage 
immunity [34, 35] and protein microarray analyses to 
identify blood-stage antigens [36], will need to be under-
taken in relation to the PCR parameters described here. 
This will aid in the further identification of signatures 
or correlates of immunity. Previous immuno-epidemio-
logical studies using observational cohorts have identi-
fied several immunological markers much more strongly 
associated with immunity than anti-schizont antibody 
[11], and these findings can now be tested using the 
CHMI approach in malaria endemic areas.
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transmission (left panel, Kilifi North—N = 34) and high transmission (right 
panel, Kilifi South—N = 93 and Ahero—N = 15). Parasitaemia was deter-
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threshold (Treated); green lines represent individuals who did not meet 
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rics. Inoculum represents peak at days from days 8.5 to 10 post-infection; 
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data; proportion of days with parasite growth represents analysis of raw 
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