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Abstract— We present experimental data elucidating the
effects of hydrodynamic coupling on the propulsive efficiency of
an array of three oscillating hydrofoils. We simulate this system
using an inviscid flow model; this model duplicates certain key
features of our experimental data but fails to consider the
effects of wake vortex generation and interaction. We present a
qualitative model for the role played by wake vortex dynamics
in the cooperative locomotion of fish schools, and derive a
mathematical model in the form of a nonlinear control system
describing the interaction of a single deformable body with
a single nearby vortex. We present simulations based on the
latter to illustrate the capture of vortices shed from one fish in
a school by a second, trailing fish; vortex capture in this sense
is the control problem central to cooperative swimming.

I. INTRODUCTION

Hydrodynamic coupling among fish swimming in a school
can dramatically reduce the average drag experienced by
individual fish in the school, and can thus improve the
propulsive efficiency of the school as a whole. This fact has
been documented in the biology literature [1], [2], [3], [4],
[5], but the mechanism of coupling has been questioned,
and its significance doubted, by some authors [6]. Existing
models for the relevant hydrodynamics are rare and very
simplified [7], [8], despite a growing literature on other
dynamical aspects of fish schooling [9], [10], [11], [12].
This owes much to the unsteady nature of the fluid-solid
interactions defining schooling locomotion. Drag reduction
on bird flocks through tip-vortex cancellation — a phe-
nomenon which has been modeled successfully and exploited
by aircraft in formation — can, in contrast, be treated as a
problem in steady flow [13].

Hydrodynamic schooling is a problem of engineering
interest as well as scientific interest. Numerous efforts are
ongoing within the robotics community to realize fishlike
aquatic vehicles [14], [15], [16], [17], [18], [19], [20], moti-
vated by the superiority of such designs in energy efficiency,
maneuverability, and stealth [21], [22]. Schools of such
vehicles promise, for example, a platform for reconfigurable
mobile sensing applications ranging from environmental
sampling to the collection of military intelligence [23].
Although energy efficiency is a primary concern in the design
of mobile sensor arrays for long-term deployment, efforts
to develop aquatic vehicle arrays for cooperative sensing
[24], [25] have, to date, ignored the hydrodynamic coupling
among vehicles as a means to conserve energy.
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Fig. 1. Experimental hydrofoil array

II. HYDRODYNAMIC INTERACTIONS IN A
SIMPLE HYDROFOIL ARRAY

The effects of hydrodynamic coupling on schooling loco-
motion are straightforward to reproduce in the lab; indeed,
our experimental system allows us to detail these effects
to an extent infeasible through observations of fish schools.
Consider the robotic system shown in Figure 1. Three stiff
rubber strips, each six inches long and four inches high, are
submerged on vertical shafts in two rows to a depth of eight
inches in a pool of water eight feet across. The three units
are constrained to translate as a group across the pool as
they oscillate, thrice per second each, propelling a support
platform on wheels atop two rails. The independent motors
which drive the oscillations can be seen mounted above the
platform. The system can be configured so that two units
lead one, or so that one unit leads two, across the pool.

The data we present corresponds to the configuration
depicted in Figure 2 for this hydrofoil array. One foil leads
two in the x direction and the foils are driven such that

φ1 = sin ωt, φ2 = sin (ωt+β), φ3 = sin (ωt+α) (1)

with ω ≈ 18 rad/s. We denote the longitudinal spacing
between the lead foil and the trailing row by a and the lateral
spacing in the trailing row by b.

Figure 3 depicts the displacement of the array as a function
of time, with α = β = 0, for two different interfoil
spacings. The array’s displacement after nine seconds with
a = 8 inches and b = 20 inches is more than thrice that with
a = 7 inches and b = 6 inches, suggesting that near-field
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Fig. 2. Idealized hydrofoil array
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Fig. 3. Best-case and worst-case foil spacing with identical phasing

wake interactions among the foils are a severe impediment
to propulsion in the latter case.

Figure 4, depicting the array’s final displacement for sev-
eral parametric combinations (a, b), however, reveals more
detailed a dependence of efficiency on spacing. We note, in
particular, that the final displacement oscillates as the lateral
spacing b is increased.

A good photograph of the wake shed by a translating,
oscillating hydrofoil — an inverse Kármán vortex street in
the midplane of the foil — appears in [20]. Fish resembling
members of family Carangidae — particularly fast and
efficient swimmers [21], [22], and the inspiration for the
majority of current fishlike robots — shed similar wakes.
Such a wake is depicted in Fig. 5. The vortices shed at
the extremes in the motion of the caudal fin of the fish are
polarized such that fluid directly behind the fish is propelled
to the right; the fish is propelled, correspondingly, to the left.

We believe interactions among the wakes shed by the
three foils comprising our array, each wake approximating
an inverse Kármán vortex street like that shown in Fig. 5,
to mediate the efficiency of the array overall. In particular,
we believe that when oppositely-polarized vortices shed by
adjacent fish are superposed to cancel one another, the
efficiency of the array is locally maximized. Our reasoning
is detailed in Section IV; for now, we note that this model
predicts periodicity like that in Fig. 4 with respect to both a
and b when α and β are held fixed and with respect to both
α and β when a and b are held fixed.

Periodicity in final distance with variations in a is difficult
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Fig. 4. Measured position after a fixed time as a function of foil spacing

Fig. 5. A propulsive wake comprising discrete vortices

to discern in Fig. 4, in part, because our system comprises
the smallest number of hydrofoils that might reasonably
be called an array. Undamped periodicity would require an
infinite array of foils. Periodicity with respect to both α
and β with a and b held fixed is apparent, however, in
Fig. 6. Individual data points represent integer pairs (m,n)
parametrizing the gait (1) with

α =
mπ

6
, β =

nπ
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Fig. 7. Simulated position after a fixed time as a function of foil phasing

III. INVISCID HYDRODYNAMIC COUPLING

Although the flow through our experimental hydrofoil
array is distinguished by periodic vortex structures, the fluid
velocity field contains a component which is irrotational. An
objective of the authors’ is the comprehensive treatment of
schooling locomotion as a problem in geometric mechanics,
but the viscous phenomenon of vortex shedding exceeds the
present scope of geometric methods. Hydrodynamic inter-
actions among solid bodies in an irrotational flow field lend
themselves readily to analytical methods like Lagrangian and
Hamiltonian reduction, and irrotational models have recently
been advanced for interacting systems of bodies immersed
in fluids [26]. It is therefore worth exploring the validity of
an irrotational model for our experimental system.

Figure 7 reproduces Figure 6 via numerical simulation
assuming irrotational flow around the system shown in Fig.
2. It is noteworthy that the oscillatory dependence of final
displacement on both α and β is apparent in Figure 7 despite
the absence of vortex structures in the simulated flow. The
mean final displacement of the array as a function of α and
β, however, is predicted in Fig. 7 to be zero.

It is demonstrated in [27] that the self-propulsion of a
deformable body — or of a system of bodies — in an
irrotational flow can be described by a geometric construc-
tion called a principal connection. Consistent with Fig. 7,
a mechanical system governed by a principal connection
cannot derive net displacement from oscillatory deformations
which enclose no area in the abstract space of variables
parametrizing its shape. It is furthermore the case that models
in the form of principal connections are invariant with respect
to time scaling. Although we present experimental data for
only one oscillatory frequency ω, the value of this frequency
clearly influences the overall performance of our laboratory
array. In the limit as ω approaches zero, in particular, it is
clear that the laboratory array will not translate at all. We
conclude that an accurate model for the self-propulsion of
the real array must account for the dynamics of the array’s
vortical wake.

Fig. 8. One fish drafts the combined wake of two others

= +

Fig. 9. Wake energy harvesting through vortex cancellation

We conclude this Section with a comparison of our ex-
perimental results to the predictions of the inviscid model
presented in [8]. Our inviscid model represents the potential
flow around three solid bodies in the absence of vortices;
the model in [8] represents the potential flow through a
translating, semi-infinite array of regularly-spaced vortices in
the absence of solid bodies. The vortex array is assumed to
be generated by a semi-infinite array of fish with oscillating
caudal fins, but the fish are assumed to be hydrodynamically
invisible, carried along by the flow between the vortices
without interrupting it.

The latter model predicts that fish far from the front line
in a semi-infinite array can experience, for the same fin
motions, a five-fold increase in propulsive force through
their interaction. This advantage would be diminished in an
array of finite size; this is consistent with the three-and-
a-half-fold range of swimming velocities shown in Figure
3. The analysis in [8] predicts, furthermore, that the most
energy-efficient arrangement of fish in a school is constructed
of units like that shown in Figure 2 with the longitudinal
distance between consecutive rows roughly twice the lateral
distance between consecutive fish in a given row. If, in
particular, a = 8 inches, then fish in a given row should be
separated by distances b which are multiples of 4 inches. The
array configuration providing our best experimental results
corresponds to a = 8 inches and b = 20 inches.

IV. VORTEX WAKE GENERATION AND
WAKE-BODY INTERACTIONS

Our conceptual model for wake-body interactions in
schooling locomotion is illustrated in Fig. 5 and in Figs.
8 through 10. We note, first of all, that energy imparted to
the fluid by the fish in Fig. 5 is effectively lost to the wake.

A fish situated between the vortex streets trailing two
other fish experiences an ambient flow assisting forward
propulsion, as shown in Fig. 8. This is the basis for the
schooling model presented in [8]. Energy can be further
harvested by one fish in a school from the wake of another
by counter-spinning a vortex trailing the latter at one extreme
of the motion of the former’s caudal fin, as shown in
Fig. 9. The wake trailing the harvesting fish contains less
lost energy than would that of a lone fish. Properly-timed
oscillations in the shape of a fish’s body — and thus in the
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Fig. 10. Body oscillations direct incoming vortices

direction of the circulatory flow around its body — entrain
incoming vortices for energy harvesting at the proper position
relative to the caudal fin, as shown in Fig. 10. The fish
which does not undulate loses the opportunity to exploit the
incoming vortex when the vortex follows the circulatory flow
counterclockwise around the fish.

In Section V we construct an explicit model for the motion
of a single vortex in the presence of a hydrofoil undergoing
prescribed deformations over time. This model allows us,
in particular, to verify the need for control of the kind
illustrated in Fig. 10, and to explore the proper timing of
body undulations to provide for the energy extraction of
Figure 9. The motion of the vortex is the result of four
superposed flows, to wit

• The flow generated by the vortex itself. Although an
isolated vortex will remain stationary in an unbounded
fluid, the presence of the hydrofoil deforms the flow due
to the vortex — introducing a self-advection term — in
a manner that depends on the hydrofoil’s instantaneous
shape.

• The flow due to the deformation of the hydrofoil. The
flow on the surface of the foil must have zero normal
velocity relative to the foil, but fluid is permitted to slip
along the foil.

• A uniform freestream flow relative to the hydrofoil. This
is equivalent to the assumption that the foil is translating
relative to quiescent fluid infinitely far away.

• A circulatory flow around the hydrofoil, varying in
strength as the foil changes shape to enforce a Kutta
condition at the foil’s trailing point relative to the
freestream flow. The addition of circulation to the
inviscid flow over a rigid foil to prescribe the position
of a trailing stagnation point is the basis for inviscid
airfoil theory [28]. The treatment of Kutta conditions
as constraints on fluid-body systems in the context of
Lagrangian mechanics is introduced by the authors in
[29].

It is noteworthy that we have chosen to account for circu-
latory flow around the hydrofoil but not for the shedding of
new vorticity from the foil’s trailing point to balance changes
in this flow over time. In so doing, we have simplified our
model considerably. We justify this simplification, in part,
by noting that vorticity shed behind the foil will be carried
downstream by the superposed uniform flow and will thus
have minimal effect on the motion of the upstream vortex. A
computational model which accounts for continuous vortex

shedding in the formation of wake structures behind a
translating, deforming foil appears in [30].

It is also noteworthy that our model addresses the motion
of a free vortex subject to a constant freestream flow relative
to a deforming foil. Although this is equivalent to the
problem in which the foil itself translates, it is unlikely that
the translation of a fish in a school is actually steady. The
interactions of a free deforming body and a nearby vortex
require a more complicated model. The authors and collab-
orators are working to develop Hamiltonian descriptions for
extensions to the classical Föppl problem of a free rigid body
interacting with a collection of vortices [31], [32], building
upon their work in [33] and upon parallel work like that in
[34].

V. DYNAMIC MODEL FOR WAKE VORTEX
ENTRAINMENT

The treatment of ideal flow in the plane can often be
simplified by associating a single complex coordinate with
each point in the plane and specifying patterns of flow in
terms of complex potentials. The complex potential w(z)
generates the velocity field in the complex z plane such that
ż = (dw/dz)∗, where the symbol ∗ indicates the complex
conjugate of its argument.

It was noted in Section III that a flow model which
excludes vortex dynamics will be inadequate to describe
the phenomena underpinning schooling locomotion. Potential
flow theory, however, accommodates both the treatment of
discrete moving vortices and the treatment of circulatory
flows around closed solid boundaries; we refer the reader
to [35] for details. The modeling assumptions detailed in
Section IV permit us to apply potential flow methods to the
problem of a single deforming hydrofoil interacting with a
free vortex.

The family of profiles realized in the complex ζ plane as
images of circles in the complex z plane under the Joukowski
transformation

ζ = f(z) = z +
k2

z
, (2)

where k is a real constant, have received special attention in
the literature of inviscid airfoil theory. We parametrize the
deforming foil in our control problem as the image under
this transformation of a circle with center d = xc + jyc and
radius R in the z plane, and we treat ẋc, ẏc, and Ṙ as control
inputs.

It is clear that (2) will map any two points z and k2/z to
the same point in the ζ plane; the inverse transformation is
given by

z = f−1(ζ) =
1
2

(
ζ ±

√
ζ2 − 4k2

)
. (3)

We restrict ourselves to the case k < R and choose the
positive square root when invoking the inverse map (3) to
ensure that f−1 maps points outside the foil in the ζ plane
to points outside the circle in the z plane.

A vortex with strength Γ at the point ζ0 outside a rigid
foil in the ζ plane establishes a flow described by a complex

3907



potential W (ζ); this function can be expressed as a function
w(z) of z = f−1(ζ). It is straightforward to show that

w(z) =
Γ

2πj
log(z − d) − Γ

2πj
log

[
z −

(
d +

R2

(z0 − d)∗

)]

+
Γ

2πj
log(z − z0),

where z0 = f−1(ζ0) [36]. We note that d + R2

(z0−d)∗ is the
image of the point z0 in the circle in the z plane.

The complex potential W (ζ) = w ◦ f−1(ζ) describes the
motion of any fluid point away from the vortex in the ζ
plane, but not the motion of the vortex itself. The motion
of the vortex is determined by the derivative of the complex
potential

W0(ζ) = W (ζ) − Γ
2πj

log(ζ − ζ0)

at the point ζ0 [36].
In the end, the equations describing the motion of z0 will

appear simpler than the equations describing the motion of
ζ0; we therefore choose to study the system in the z plane
rather than the equivalent system in the ζ plane. We begin
by writing

w(z) = w0(z) +
Γ

2πj
log(z − z0),

so that

w0(z) = W0(ζ) +
Γ

2πj
log

(
ζ − ζ0

z − z0

)
.

Using Taylor series to differentiate both sides of this equality
with respect to z, we obtain

dw0

dz

∣∣∣∣
z=z0

=
dW0

dζ

∣∣∣∣
ζ=ζ0

f ′(z0) +
Γ

4πj

f ′′(z0)
f ′(z0)

.

The chain rule requires the velocity ż0 to satisfy

dW0

dζ

∣∣∣∣
ζ=ζ0

=
(
ζ̇0

)∗
= (f ′(z0)ż0)

∗ = (f ′(z0))
∗ (ż0)

∗
,

so

(ż0)
∗ =

1
|f ′(z0)|2

(
dw0

dz

∣∣∣∣
z=z0

− Γ
4πj

f ′′(z0)
f ′(z0)

)
.

In terms of the cartesian coordinates such that z0 = x + jy,

ẋ =
Γ
2π

1
|f ′(z0)|2

( −(y − yc)
(x − xc)2 + (y − yc)2

+
(y − yc)

(x − xc)2 + (y − yc)2 − R2

+ k2 (−y3 + 3x2y − k2y)
(x3 − 3xy2 − k2x)2 + (−y3 + 3x2y − k2y)2

)
(4)
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Fig. 11. Corresponding trajectories for vortex motion around a rigid foil

and

ẏ =
Γ
2π

1
|f ′(z0)|2

(
(x − xc)

(x − xc)2 + (y − yc)2

− (x − xc)
(x − xc)2 + (y − yc)2 − R2

− k2 (x3 − 3xy2 − k2x)
(x3 − 3xy2 − k2x)2 + (−y3 + 3x2y − k2y)2

)
,

(5)
where

|f ′(z0)|2 =
(x2 − y2 − k2)2 + (2xy)2

(x2 + y2)2
.

Fig. 11 depicts a trajectory described around a rigid foil by
a vortex in the ζ plane and the corresponding trajectory of
the point z0 in the z plane. Here Γ = −5, xc = −0.4,
yc = −0.7, R = 2.5, and k = 2.

The preceding equations can be amended to account for
deformations of the foil, circulation around the foil, and a
freestream flow in the ζ plane with the addition of flows
expressible in terms of complex potentials in the z plane.
Deforming the foil by translating the center d = xc + jyc of
the cylinder in the z plane, for example, defines the complex
potential

wḋ(z) = − R2

z − d
(ẋc + jẏc) ;

the x and y components

ẋḋ =
R2

((x − xc)2 + (y − yc)2)
2

· [((x − xc)2 − (y − yc)2
)
ẋc + 2(x − xc)(y − yc)ẏc

]
and

ẏḋ =
R2

((x − xc)2 + (y − yc)2)
2

· [((y − yc)2 − (x − xc)2
)
ẏc + 2(x − xc)(y − yc)ẋc

]
of the complex velocity (dwd/dz)∗ are added to the right-
hand sides of (4) and (5) accordingly.

We account for changes in R with the complex potential

wṘ(z) = RṘ log(z − d),
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Fig. 12. Trajectories for a counterclockwise vortex around a rigid foil

for a freestream flow of speed U with the complex potential

wU (z) = U

(
z − d +

R2

z − d

)
,

and for a circulatory flow of strength ΓKutta with the complex
potential

wKutta(z) =
ΓKutta

2πj
log

(
z − d

R

)
.

In order to satisfy the Kutta condition described in Section
IV, we set

ΓKutta = −4πUyc

following [35].
Combining terms, we can thus write the equations govern-

ing the motion of the vortex relative to the foil as a control-
affine system with drift⎡

⎢⎢⎢⎢⎣
ẋ
ẏ
ẋc

ẏc

Ṙ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f1

f2

0
0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

g11

g12

1
0
0

⎤
⎥⎥⎥⎥⎦u1 +

⎡
⎢⎢⎢⎢⎣

g21

g22

0
1
0

⎤
⎥⎥⎥⎥⎦u2 +

⎡
⎢⎢⎢⎢⎣

g31

g32

0
0
1

⎤
⎥⎥⎥⎥⎦u3, (6)

where the terms fi and gij depend on the location of the
preimage (x, y) of the vortex and the position (xc, yc) and
radius R of the cylinder in the z plane, and where the control
inputs are given by (u1, u2, u3) = (ẋc, ẏc, Ṙ).

VI. SIMULATION OF VORTEX ENTRAINMENT

We now use the mathematical model from Section V to
examine the control problem from Fig. 10. Fig. 12 depicts
two possible trajectories for a clockwise vortex — like the
vortex in Fig. 10 — moving around a rigid foil from left
to right. A uniform flow to the right is superposed with the
flow due to the vortex itself in each case; the uniform flow
in the figure on the right is faster relative to the strength of
the vortex than is the uniform flow in the figure on the left.

It is the natural tendency of the vortex to cross in front of
the foil, away from the side on which the foil will benefit
from the flow due to the vortex in the sense of Fig. 8. Only
when the freestream flow is sufficiently fast will the vortex
be carried past the foil on the side on which it originated.

Fig. 13 revisits the situation on the left of Fig. 12 with
actuation applied in the control input u2 from (6). Four
snapshots are shown as the vortex is directed above the
foil by the corresponding undulation in the foil’s shape. The
vortex ends up at the desired location for energy harvesting
à la Fig. 9.
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Fig. 13. Oscillation entrains the vortex to the desired side of the foil

VII. FUTURE WORK

The model developed in Section V allows us to explore
the manipulation of the trajectory of the vortex through
controlled deformations in the foil. It is our ultimate goal
to treat this as a closed-loop control problem in which the
position of the vortex at any point in time is deduced from the
instantaneous flow along the surface of the foil. Schooling
fish solve exactly this problem, each fish adjusting its own
undulations to benefit from the wakes of its predecessors
without — it would seem — direct communication among
different fish. Although visual data may sometimes play a
role in schooling — each fish estimating surrounding flow
patterns from observations of its neighbors’ movements — it
has been demonstrated that even blind fish can school [37],
underscoring the importance of flow sensing to cooperative
fish locomotion. The estimation of a surrounding vortex
flow from the pressure distribution along a hydrofoil was
considered in [38]; an experimental apparatus is under de-
velopment in the authors’ lab which will provide distributed
flow measurements along the surface of a fishlike robot using
sensors mimicking the lateral lines of real fish [39].

The authors have begun to explore several other aspects
of schooling locomotion, both theoretical and practical.
These include the potential for direct communication to
add robustness to cooperative robotic locomotion achieved
through individualistic sensing, and to mediate the formation,
dissolution, and reshaping of robotic vehicle schools for
adaptive mobile sensing applications.
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