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Preface to Second Edition

This edition differs from the previous one in several respects. The use of sto-
chastic calculus and control methods to analyze financial market models has
expanded at a remarkable rate. A new Chapter X gives an introduction to
the role of stochastic optimal control in portfolio optimization and in pricing
derivatives in incomplete markets. Risk-sensitive stochastic control has been
another active research area since the First Edition of this book appeared.
Chapter VI of the First Edition has been completely rewritten, to empha-
size the relationships between logarithmic transformations and risk sensitiv-
ity. Risk-sensitive control theory provides a link between stochastic control
and H-infinity control theory. In the H-infinity approach, disturbances in a
control system are modelled deterministically, instead of in terms of stochastic
processes. A new Chapter XI gives a concise introduction to two-controller,
zero-sum differential games. Included are differential games which arise in
nonlinear H-infinity control and as totally risk-averse limits in risk-sensitive
stochastic control. Other changes from the First Edition include an updated
treatment in Chapter V of viscosity solutions for second-order PDEs. Mate-
rial has also been added in Section I.11 on existence of optimal controls in
deterministic problems. This simplifies the presentation in later sections, and
also is of independent interest.

We wish to thank D. Hernandez-Hernandez, W.M. McEneaney and S.-J.
Sheu who read various new chapters of this edition and made helpful com-
ments. We are also indebted to Madeline Brewster and Winnie Isom for their
able, patient help in typing and revising the text for this edition.

W.H. Fleming
May 1, 2005 H.M. Soner



Preface

This book is intended as an introduction to optimal stochastic control for con-
tinuous time Markov processes and to the theory of viscosity solutions. We ap-
proach stochastic control problems by the method of dynamic programming.
The fundamental equation of dynamic programming is a nonlinear evolution
equation for the value function. For controlled Markov diffusion processes on
n - dimensional euclidean space, the dynamic programming equation becomes
a nonlinear partial differential equation of second order, called a Hamilton –
Jacobi – Bellman (HJB) partial differential equation. The theory of viscos-
ity solutions, first introduced by M. G. Crandall and P.-L. Lions, provides a
convenient framework in which to study HJB equations. Typically, the value
function is not smooth enough to satisfy the HJB equation in a classical sense.
However, under quite general assumptions the value function is the unique vis-
cosity solution of the HJB equation with appropriate boundary conditions. In
addition, the viscosity solution framework is well suited to proving continuous
dependence of solutions on problem data.

The book begins with an introduction to dynamic programming for de-
terministic optimal control problems in Chapter I, and to the corresponding
theory of viscosity solutions in Chapter II. A rather elementary introduction
to dynamic programming for controlled Markov processes is provided in Chap-
ter III. This is followed by the more technical Chapters IV and V, which are
concerned with controlled Markov diffusions and viscosity solutions of HJB
equations. We have tried, through illustrative examples in early chapters and
the selection of material in Chapters VI – VII, to connect stochastic con-
trol theory with other mathematical areas (e.g. large deviations theory) and
with applications to engineering, physics, management, and finance. Chapter
VIII is an introduction to singular stochastic control. Dynamic programming
leads in that case not to a single partial differential equation, but rather to
a system of partial differential inequalities. This is also a feature of other im-
portant classes of stochastic control problems not treated in this book, such
as impulsive control and problems with costs for switching controls.



xiv Preface

Value functions can be found explicitly by solving the HJB equation only
in a few cases, including the linear–quadratic regulator problem, and some
special problems in finance theory. Otherwise, numerical methods for solving
the HJB equation approximately are needed. This is the topic of Chapter IX.

Chapters III, IV and VI rely on probabilistic methods. The only results
about partial differential equations used in these chapters concern classical
solutions (not viscosity solutions.) These chapters can be read independently
of Chapters II and V. On the other hand, readers wishing an introduction to
viscosity solutions with little interest in control may wish to focus on Chapter
II, Secs. 4–6, 8 and on Chapter V, Secs. 4–8.

We wish to thank M. Day, G. Kossioris, M. Katsoulakis, W. McEneaney, S.
Shreve, P. E. Souganidis, Q. Zhang and H. Zhu who read various chapters and
made helpful comments. Thanks are also due to Janice D’Amico who typed
drafts of several chapters. We are especially indebted to Christy Newton. She
not only typed several chapters, but patiently helped us through many revi-
sions to prepare the final version.

W.H. Fleming
June 1, 1992 H.M. Soner



Notation

In this book the following system of numbering definitions, theorems, formulas
etc. is used. Roman numerals are used to refer to chapters. For example,
Theorem II.5.1 refers to Theorem 5.1 in Chapter II. Similarly, IV(3.7) refers
to formula (3.7) of Chapter IV; and within Chapter IV we write simply (3.7)
for such a reference.

IRn denotes n-dimensional euclidean space, with elements x = (x1, · · · , xn).
We write

x · y =
n∑

i=1

xiyi

and |x| = (x · x) 1
2 for the euclidean norm. If A is a m× n matrix, we denote

by |A| the operator norm of the corresponding linear transformation from IRn

into IRd:
|A| = max

|x|≤1
|Ax|.

The transpose of A is denoted by A′. If a and A are n× n matrices,

tr aA =
n∑

i,j=1

aijAij .

Sn denotes the set of symmetric n×n matrices and Sn
+ the set of nonnegative

definite A ∈ Sn. The interior, closure, and boundary of a set B are denoted
by intB, B̄ and ∂B respectively. If Σ is a metric space,



xvi Notation

B(Σ) = σ − algebra of Borel sets of Σ

M(Σ) ={all real − valued functions on Σ which are bounded below}

C(Σ) = {all real − valued continuous functions on Σ}

Cb(Σ) = bounded functions in C(Σ)}.

If Σ is a Banach space

Cp(Σ) ={polynomial growing functions in C(Σ)}.

A function φ is called polynomially growing if there exist constants K,m ≥ 0
such that

|φ(x)| ≤ K(1 + |x|m), ∀x ∈ Σ.

For an open set O ⊂ IRn, and a positive integer k,

Ck(O) = {all k − times continuously differentiable functions on O}

Ck
b (O) = {φ ∈ Ck(O) : φ and all partial derivatives of φ or orders ≤ k are

bounded}

Ck
p (O) = {φ ∈ Ck(O) : all partial derivatives of φ of orders ≤ k are

polynomially growing}.

For a measurable set E ⊂ IRn, we say that φ ∈ Ck(E) if there exist Ẽ
open with E ⊂ Ẽ and φ̃ ∈ Ck(Ẽ) such that φ(x) = φ̃(x) for all x ∈ E.
Spaces Ck

b (E), Ck
p (E) are defined similarly. C∞(E), C∞

b (E), C∞
p (E) denote

the intersections over k = 1, 2, · · · of Ck(E), Ck
b (E), Ck

p (E).
We denote the gradient vector and matrix of second order partial deriva-

tives of φ by
Dφ = (φx1 , · · · , φxn

)

D2φ = (φxixj ), i, j = 1, · · · , n.
Sometimes these are denoted instead by φx, φxx respectively.

If φ is a vector-valued function, with values in IRm, then we write φ ∈
Ck(E), φ ∈ Ck

b (E) etc if each component of φ belongs to Ck(E), Ck
b (E) etc.

For vector-valued functions,Dφ andD2φ are identified with the differentials of
φ of first and second orders. For vector-valued φ, |Dφ|, |D2φ| are the operator
norms. We denote intervals of IR1, respectively closed and half-open to the
right, by

[a, b], [a, b).

Given t0 < t1

Q0 = [t0, t1) × IRn, Q0 = [t0, t1) × IRn.



Notation xvii

Given O ⊂ IRn open

Q = [t0, t1) ×O, Q = [t0, t1] ×O

∂∗Q = ([t0, t1] × ∂O) ∪ ({t1} ×O).

We call ∂∗Q the parabolic boundary of the cylindrical region Q. If Φ =
φ(t, x), G ⊂ IRn+1, we say that Φ ∈ C�,k(G) if there exist G̃ open with G ⊂ G̃
and Φ̃ such that Φ̃(t, x) = Φ(t, x) for all (t, x) ∈ G and all partial derivatives of
Φ̃ or orders ≤ � in t and of orders ≤ k in x are continuous on G̃. For example,
we often consider Φ ∈ C1,2(G), where either G = Q or G = Q. The spaces
C�,k

b (G), C�,k
p (G) are defined similarly as above.

The gradient vector and matrix of second-order partial derivatives of Φ(t, ·)
are denoted by DxΦ,D

2
xΦ, or sometimes by Φx, Φxx.

If F is a real-valued function on a set U which has a minimum on U , then

arg min
v∈U

F (v) = {v∗ ∈ U : F (v∗) ≤ F (v) ∀v ∈ U}.

The supnorm of a bounded function is denoted by ‖ ‖, and Lp-norms are
denoted by ‖ ‖p.



I

Deterministic Optimal Control

I.1 Introduction

The concept of control can be described as the process of influencing the
behavior of a dynamical system to achieve a desired goal. If the goal is to
optimize some payoff function (or cost function) which depends on the control
inputs to the system, then the problem is one of optimal control.

In this introductory chapter we are concerned with deterministic optimal
control models in which the dynamics of the system being controlled are gov-
erned by a set of ordinary differential equations. In these models the system
operates for times s in some interval I. The state at time s ∈ I is a vector
in n-dimensional euclidean IRn. At each time s, a control u(s) is chosen from
some given set U (called the control space.) If I is a finite interval, namely,

I = [t, t1] = {s : t ≤ s ≤ t1},

then the differential equations describing the time evolution of x(s) are (3.2)
below. The cost functional to be optimized takes the form (3.4).

During the 1950’s and 1960’s aerospace engineering applications greatly
stimulated the development of deterministic optimal control theory. Among
such applications was the problem of optimal flight trajectories for aircraft
and space vehicles. However, deterministic control theory provides methods
of much wider applicability to problems from diverse areas of engineering,
economics and management science. Some illustrative examples are given in
Section 2.

It often happens that a system is being controlled only for x(s) ∈ O, where
O is the closure of some given open set O ⊂ IRn. Two versions of that situation
are formulated in Section 3. In one version, control occurs only until the time
of exit from a closed cylindrical region Q = [t0, t1] × O. In the other version,
only controls which keep x(s) ∈ O for t ≤ s ≤ t1 are allowed (this is called a
state constrained control problem.)
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The method of dynamic programming is the one which will be followed in
this book, to study both deterministic and stochastic optimal control prob-
lems. In dynamic programming, a value function V is introduced which is
the optimum value of the payoff considered as a function of initial data. See
Section 4, and also Section 7 for infinite time horizon problems. The value
function V for a deterministic optimal control problem satisfies, at least for-
mally, a first order nonlinear partial differential equation. See (5.3) or (7.10)
below. In fact, the value function V often does not have the smoothness prop-
erties needed to interpret it as a solution to the dynamic programming partial
differential equation in the usual (“classical”) sense. However, in such cases V
can be interpreted as a viscosity solution, as will be explained in Chapter II.

Closely related to dynamic programming is the idea of feedback controls,
which will also be called in this book Markov control policies. According to
a Markov control policy, the control u(s) is chosen based on knowing not
only time s but also the state x(s). The Verification Theorems 5.1, 5.2 and
7.1 provide a way to find optimal Markov control policies, in cases when the
value function V is indeed a classical solution of the dynamic programming
partial differential equation with the appropriate boundary data.

Another approach to optimal deterministic control is via Pontryagin’s prin-
ciple, which provides a general set of necessary conditions for an extremum.
In Section 6 we develop, rather briefly, the connection between dynamic pro-
gramming and Pontryagin’s principle. We also give a proof of Pontryagin’s
principle, for the special case of control on a fixed time interval (O = IRn).

In Section 8 and 9 we consider a special class of control problems, in which
the control is the time derivative of the state (u(s) = ẋ(s)) and there are no
control constraints. Such problems belong to the classical calculus of varia-
tions. For a calculus of variations problem, the dynamic programming equa-
tion is called a Hamilton-Jacobi partial differential equation. Many first-order
nonlinear partial differential equations can be interpreted as Hamilton-Jacobi
equations, by using duality for convex functions. This duality corresponds
to the dual Lagrangian and Hamiltonian formulations in classical mechanics.
These matters are treated in Section 10.

Another part of optimal control theory concerns the existence of optimal
controls. In Section 11 we prove two special existence theorems which are used
elsewhere in this book. The proofs rely on lower semicontinuity of the cost
function in the control problem.

The reader should refer to Section 3 for notations and assumptions used
in this chapter, for finite-time horizon deterministic optimal control problems.
For infinite-time horizon problems, these are summarized in Section 7.

I.2 Examples

We start our discussion by giving some examples. In choosing examples, in
this section and later in the book, we have included several highly simplified
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models chosen from such diverse applications as inventory theory, control of
physical devices, financial economics and classical mechanics.

Example 2.1. Consider the production planning of a factory producing
n commodities. Let xi(s), ui(s) denote respectively the inventory level and
production rate for commodity i = 1, · · · , n at time s. In this simple model we
assume that the demand rates di are fixed constants, known to the planner.
Let

x(s) = (x1(s), · · · , xn(s)), u(s) = (u1(s), · · · , un(s)), d = (d1, · · · , dn).

They are, respectively, the inventory and control vectors at time s, and the
demand vector. The rate of change of the inventory x(s) ∈ IRn is

(2.1)
d

ds
x(s) = u(s) − d.

Let us consider the production planning problem on a given finite time interval
t ≤ s ≤ t1. Given an initial inventory x(t) = x, the problem is to choose the
production rate u(s) to minimize

(2.2)
∫ t1

t

h(x(s))ds+ ψ(x(t1)).

We call t1 the terminal time, h the running cost, and ψ the terminal cost. It
is often assumed that h and ψ are convex functions, and that h(x), ψ(x) have
a unique minimum at x = 0. A typical example of h is

h(x) =
n∑

i=1

[
αi(xi)+ + γi(xi)−] ,

where αi, γi are positive constants interpreted respectively as a unit holding
cost and a unit shortage cost. Here, a+ = max{a, 0}, a− = max(−a, 0).

The production rate u(s) must satisfy certain constraints related to the
physical capabilities of the factory and the workforce. These capacity con-
straints translate into upper bounds for the production rates. We assume
that these take the form c1u1 + · · · + cnun ≤ 1 for suitable constants ci > 0.

To summarize, this simple production planning problem is to minimize
(2.2) subject to (2.1), the initial condition x(t) = x, and the control constraint
u(s) ∈ U where

(2.3) U = {v ∈ IRn : vi ≥ 0, i = 1 · · · , n,
n∑

i=1

civi ≤ 1}.

An infinite time horizon, discounted cost version of this problem will be
mentioned in Example 7.4, and the solution to it will be outlined there.

Example 2.2. Consider a simple harmonic oscillator, in which a forcing
term u(s) is taken as the control. Let x1(s), x2(s) denote respectively the
position and velocity at time s. Then
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(2.4)

d

ds
x1(s) = x2(s)

d

ds
x2(s) = −x1(s) + u(s).

We require that u(s) ∈ U , where U is a closed interval. For instance, if U =
[−a, a] with a < ∞, then the bound |u(s)| ≤ a is imposed on the forcing term.

Let us consider the problem of controlling the simple harmonic oscilla-
tor on a finite time interval t ≤ s ≤ t1. An initial position and velocity
(x1(t), x2(t)) = (x1, x2) are given. We seek to minimize a quadratic criterion
of the form

(2.5)
∫ t1

t

[
m1x1(s)2 +m2x2(s)2 + u(s)2

]
ds+ d1x1(t1)2 + d2x2(t2)2,

where m1,m2, d1, d2 are nonnegative constants. If there is no constraint on
the forcing term (U = IR1), this is a particular case of the linear quadratic
regulator problem considered in Example 2.3. If U = [−a, a] with a < ∞, it
is an example of a linear regulator problem with a saturation constraint.

One can also consider the problem of controlling the solution x(s) = (x1(s),
x2(s)) to (2.4) on an infinite time horizon, say on the time interval [0,∞). A
suitable modification of the quadratic criterion (2.5) could be used as the
quantity to be minimized. Another possible criterion to be minimized is the
time for x(s) to reach a given target. If the target is the point (0, 0), then
the control function u(·) is to be chosen such that the first time θ when
x(θ) = (0, 0) is minimized.

Example 2.3. We will now describe the linear quadratic regulator problem
(LQRP). Due to the simplicity of its solution, it has been applied to a large
number of engineering problems. Let x(s) ∈ Rn, u(s) ∈ Rm satisfy

(2.6)
d

ds
x(s) = A(s)x(s) +B(s)u(s)

with given matrices A(s) and B(s) of dimensions n × n, n ×m respectively.
Suppose we are also given M(s), N(s), and D, such that M(s) and D are
nonnegative definite, symmetric n × n matrices and N(s) is a symmetric,
positive definite m×m matrix. The LQRP is to choose u(s) so that

(2.7)
∫ t1

t

[x(s) ·M(s)x(s) + u(s) ·N(s)u(s)] ds+ x(t1) ·Dx(t1)

is minimized. Here x · y denotes the inner product between two vectors. The
solution to this problem will be discussed in Example 5.1.

Example 2.4. The simplest kind of problem in classical calculus of vari-
ations is to determine a function x(·) which minimizes a functional

(2.8)
∫ t1

t

L(s, x(s), ẋ(s))ds+ ψ(x(t1)),
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subject to given conditions on x(t) and x(t1)). Here, · = d/ds. Let us fix the
left endpoint, by requiring x(t) = x where x ∈ IRn is given. For the right
endpoint, let us fix t1 and require that x(t1) ∈ M, where M is given closed
subset of IRn. If M = {x1} consists of a single point, then the right endpoint
(t1, x1) is fixed. At the opposite extreme, there is no restriction on x(t1) if
M = IRn.

We will discuss calculus of variations problems in some detail in Sections
8 – 10. In the formulation in Section 8, we allow the possibility that the fixed
upper limit t1 in (2.8) is replaced by a time τ which is the smaller of t1 and
the exit time of x(s) from a given closed region Ō ⊂ IRn. This is a particular
case of the class of control problems to be formulated in Section 3.

I.3 Finite time horizon problems

In this section we formulate some classes of deterministic optimal control
problems, which will be studied in the rest of this chapter and in Chapter
II. At the end of the section, each of these classes of problems appears as a
particular case of a general formulation.

A terminal time t1 will be fixed throughout. Let t0 < t1 and consider initial
times t in the finite interval [t0, t1). (One could equally well take −∞ < t < t1,
but then certain assumptions in the problem formulation become slightly more
complicated.) The objective is to minimize some payoff functional J , which
depends on states x(s) and controls u(s) for t ≤ s ≤ t1.

Let us first formulate the state dynamics for the control problem. Let
Q0 = [t0, t1) × IRn and Q0 = [t0, t1] × IRn, the closure of Q0. Let U be a
closed subset of m-dimensional IRm. We call U the control space. The state
dynamics are given by a function

f : Q0 × U → IRm.

It is assumed that f ∈ C(Q0 × U). Moreover, for suitable Kρ:

(3.1) |f(t, x, v) − f(t, y, v)| ≤ Kρ|x− y|

for all t ∈ [t0, t1], x, y ∈ IRn and v ∈ U such that |v| ≤ ρ. If the control space
U is compact, we can replace Kρ by a constant K, since U ⊂ {v : |v| ≤ ρ} for
large enough ρ. If f(t, ·, v) has a continuous gradient fx, (3.1) is equivalent to
the condition |fx(t, x, v)| ≤ Kρ whenever |v| ≤ ρ.

A control is a bounded, Lebesgue measurable function u(·) on [t, t1] with
values in U . Assumption (3.1) implies that, given any control u(·), the differ-
ential equation

(3.2)
d

ds
x(s) = f(s, x(s), u(s)), t ≤ s ≤ t1
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with initial condition

(3.3) x(t) = x

has a unique solution. The solution x(s) of (3.2) and (3.3) is called the state
of the system at time s. Clearly the state depends on the control u(·) and the
initial condition, but this dependence is suppressed in our notation.

Let U0(t) denote the set of all controls u(·). In notation which we shall use
later (Section 9)

U0(t) = L∞([t, t1]; U).

This is the space of all bounded, Lebesgue measurable, U - valued functions
on [t, t0]. In order to complete the formulation of an optimal control problem,
we must specify for each initial data (t, x) a set U(t, x) ⊂ U0(t) of admissible
controls and a payoff functional J(t, x;u) to be minimized. Let us first for-
mulate some particular classes of problems (A through D below). Then we
subsume all of these classes in a more general formulation. For classes A and
B, all controls u(·) ∈ U0(t) are admitted. However, for classes C and D only
controls u(·) in a smaller U(t, x) are admitted.

A. Fixed finite time horizon. The problem is to find u(·) ∈ U0(t) which
minimizes

(3.4) J(t, x;u) =
∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1)),

where L ∈ C(Q0 ×U). We call L the running cost function and ψ the terminal
cost function.

B. Control until exit from a closed cylindrical region Q. Consider
the following payoff functional J , which depends on states x(s) and controls
u(s) for times s ∈ [t, τ), where τ is the smaller of t1 and the exit time of x(s)
from the closure O of an open set O ⊂ IRn. We let Q = [t0, t1) × O, Q =
[t0, t1] ×O the closure of the cylindrical region Q, and

∂∗Q = ([t0, t1) × ∂O) ∪ ({t1} ×O).

We call [t0, t1)×∂O and {t1}×O the lateral boundary and terminal boundary,
respectively, of Q. Given initial data (t, x) ∈ Q, let τ denote the exit time of
(s, x(s)) from Q. Thus,

τ =

⎧⎨
⎩

inf{s ∈ [t, t1) : x(s) ∈/O} or

t1 if x(s) ∈ O for all s ∈ [t, t1)

Note that (τ, x(τ)) ∈ ∂∗Q. We let

(3.5) J(t, x;u) =
∫ τ

t

L(s, x(s), u(s))ds
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+g(τ, x(τ))χτ<t1 + ψ(x(t1))χτ=t1

Here χ denotes an indicator function. Thus, for real numbers a, b,

χa<b =

⎧⎨
⎩

1 if a < b

0 if a ≥ b,

and χa≤b is defined similarly. The function g is called a boundary cost function,
and is assumed continuous.

B′. Control until exit from Q. Let (t, x) ∈ Q, and let τ ′ be the first
time s such that (s, x(s)) ∈ ∂∗Q. Thus, τ ′ is the exit time of (s, x(s)) from
Q, rather that from Q as for class B above. In (3.5) we now replace τ by τ ′.
We will give conditions under which B and B′ are equivalent optimal control
problems.

C. Final endpoint constraint. Suppose that in case A, the additional
restriction x(t1) ∈ M is imposed, where M is a given closed subset of IRn. In
particular, if M = {x1} consists of a single point, then both endpoints (t, x)
and (t1, x1) of the curve γ = {(s, x(s)) : t ≤ s ≤ t1} are given. We now admit
controls u(·) ∈ U(t, x), where

U(t, x) = {u(·) ∈ U0(t) : x(t1) ∈ M}.

The condition that U(t, x) is nonempty is called a reachability condition. See
Sontag [Sg]. If U = IRm, it is related to the concept of controllability.

In a similar way, one can consider the problem of minimizing J in (3.5)
subject to an endpoint constraint (τ, x(τ)) ∈ S, where S is a given closed
subset of ∂∗Q.

D. State constraint. This is the problem of minimizing J(t, x;u) in (3.4)
subject to the constraint x(s) ∈ O. In this case,

U(t, x) = {u(·) ∈ U0(t) : x(s) ∈ O for t ≤ s ≤ t1}.

General problem formulation. Let us now formulate a general class of
control problems, which includes each of the classes A through D above. Let
O ⊂ IRn be open, with either: (i) O = IRn, or (ii) ∂O a compact manifold of
class C2. Let Q = [t0, t1) ×O. In case O = IRn, we have Q = Q0. Let Ψ be a
function, such that

(3.6) Ψ(t, x) =

⎧⎨
⎩
g(t, x) if (t, x) ∈ [t0, t1) × IRn

ψ(x) if (t, x) ∈ {t1} × IRn

We let

(3.7) J(t, x; u) =
∫ τ

t

L(s, x(s), u(s))ds+ Ψ(τ, x(τ)),
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where τ is the exit time of (s, x(s)) from Q. This agrees with (3.5), and also
with (3.4) in case O = IRn. We admit controls u(·) ∈ U(t, x), where U(t, x)
is nonempty and satisfies the following “switching” condition (3.9). Roughly
speaking, condition (3.9) states that if we replace an admissible control by
another admissible one after a certain time, then the resulting control is still
admissible. More precisely, let u(·) ∈ U(t, x) and u′(·) ∈ U(r, x(r)) for some
r ∈ [t, τ ]. Define a new control by

(3.8) ũ(s) =

⎧⎨
⎩
u(s), t ≤ s ≤ r

u′(s), r < s ≤ t1.

Let x̃(s) be the solution to (3.2) corresponding to control ũ(·) and initial
condition x̃(t) = x. Then we assume that

(3.9) ũs(·) ∈ U(s, x̃(s)), t ≤ s ≤ τ̃ ,

where ũs(·) denotes the restriction to [s, t1] of ũ(·) and τ̃ is the exit time from
Q of (s, x̃(s)). Note that (3.9) implies, in particular, that an admissible control
always stays admissible. Indeed, simply take in (3.7) r = τ and ũs(·) = us(·).

The control problem is as follows: given initial data (t, x) ∈ Q, find u∗(·) ∈
U(t, x) such that

J(t, x; u∗) ≤ J(t, x;u) for all u(·) ∈ U(t, x).

Such a u∗(·) is called an optimal control.
Relation between classes B and B′. Let us conclude this section by

giving some conditions (3.10), (3.11) under which the problem of controlling
until the time τ of exit of (s, x(s)) from Q is equivalent of that of controlling
until the time τ ′ of exit from Q. Let us assume:

(3.10) L ≥ 0, ψ ≥ 0, ψ(x) = 0 for xε∂O and g ≡ 0.

(3.11) For every (s, ξ) ∈ [t0, t1] × ∂O there exists v(s, ξ) ∈ U such that

f(s, ξ, v(s, ξ)) · η(ξ) > 0,

where η(ξ) is the exterior unit normal at ξ ∈ ∂O.

We always have τ ′ ≤ τ ≤ t1. In particular, τ ′ = t1 implies that τ ′ = τ . If
τ ′ < t1, then by (3.5) and the assumption g ≡ 0,

J(t, x;u) =
∫ τ ′

t

Lds+
[∫ τ

τ ′
Lds+ ψ(x(t1))χτ=t1

]
.

Let us denote the first term on the right side by J ′(t, x;u). J ′ is the payoff for
the problem of control up to time τ ′, in case τ ′ < t1. Since L ≥ 0 and ψ ≥ 0,
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(3.12) J(t, x;u) ≥ J ′(t, x;u)

for all u(·) ∈ U0(t). On the other hand, given u(·) with τ ′ < t1, let

ũ(s) =

⎧⎨
⎩
u(s), t ≤ s ≤ τ ′,

v(τ ′, x(τ ′)), τ ′ < s ≤ t1,

with v(s, ξ) as in (3.11). The corresponding solution x̃(s) of (3.2) with x̃(t) = x
coincides with x(s) for t ≤ s ≤ τ ′, and exits from Q at time τ ′. Thus,

(3.13) J ′(t, x;u) = J(t, x; ũ).

From (3.12) and (3.13), it suffices to minimize J among controls ũ(·) for which
the exit times from Q and Q are the same.

I.4 Dynamic programming principle

It is convenient to consider a family of optimization problems with different
initial conditions (t, x). Consider the minimum value of the payoff function as
a function of this initial point. Thus define a value function by

(4.1) V (t, x) = inf
u(·)∈U(t,x)

J(t, x;u),

for all (t, x) ∈ Q. We shall assume that V (t, x) > −∞. This is always true if
the control space U is compact, or if U is not compact but the cost functions
are bounded below (L ≥ −M,Ψ ≥ −M for some constant M ≥ 0.)

The method of dynamic programming uses the value function as a tool in
the analysis of the optimal control problem. In this section and the following
one we study some basic properties of the value function. Then we illustrate
the use of these properties in an example for which the problem can be explic-
itly solved (the linear quadratic regulator problem) and introduce the idea of
feedback control policy.

We start with a simple property of V . Let r ∧ τ = min(r, τ). Recall that g
is the boundary cost (see (3.5)).

Lemma 4.1. For every initial condition (t, x) ∈ Q, admissible control
u(·) ∈ U(t, x) and t ≤ r ≤ t1, we have

(4.2) V (t, x) ≤
∫ r∧τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r

+V (r, x(r))χr≤τ .

Proof. Suppose that τ < r ≤ t1. Then Ψ(r ∧ τ, x(r ∧ τ)) = g(τ, x(τ)),
and (4.2) follows from the definition of the value function. Now suppose that
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r ≤ τ . For any δ > 0, choose an admissible control u1(·) ∈ U(r, x(r)) such
that ∫ τ1

r

L(s, x1(s), u1(s))ds+ Ψ(τ1, x1(τ1)) ≤ V (r, x(r)) + δ.

Here x1(s) is the state at time s corresponding to the control u1(·) and initial
condition (r, x(r)), and τ1 is the exit time of (s, x1(s)) from Q. (Such a control
u1(·) is called δ - optimal.) As in (3.8) define an admissible control ũ(·) ∈
U(t, x) by

ũ(s) =

⎧⎨
⎩
u(s), s ≤ r

u1(s), s > r.

Let x̃(s) be the state corresponding to ũ(·) with initial condition (t, x), and τ̃
the exit time of (s, x̃(s)) from Q. Since r < τ, τ1 = τ̃ and we have

V (t, x) ≤ J(t, x; ũ)

=
∫ τ̃

t

L(s, x̃(s), ũ(s))ds+ Ψ(τ̃ , x̃(τ̃))

=
∫ r

t

L(s, x(s), u(s))ds+
∫ τ1

r

L(s, x1(s), u1(s))ds

+Ψ(τ1, x1(τ1))

≤
∫ r

t

L(s, x(s), u(s))ds+ V (r, x(r)) + δ. �

The proof of Lemma 4.1 shows that the right side of (4.2) is a nondecreas-
ing function of r. However, if u(·) is optimal (or nearly optimal), then this
function is constant (or nearly constant). Indeed, for a small positive δ, choose
a δ-optimal admissible control u(·) ∈ U(t, x). Then for any r ∈ [t, t1] we have

δ + V (t, x) ≥ J(t, x;u)

=
∫ τ

t

L(s, x(s), u(s))ds+ Ψ(τ, x(τ))

=
∫ τ∧r

t

L(s, x(s), u(s))ds+
∫ τ

τ∧r

L(s, x(s), u(s))ds+ Ψ(τ, x(τ))

=
∫ τ∧r

t

L(s, x(s), u(s))ds+ J(r ∧ τ, x(r ∧ τ);u)

≥
∫ τ∧r

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r + V (r, x(r))χr≤τ .
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Since δ is arbitrary, we have proved the following.
Lemma 4.2. For any initial condition (t, x) ∈ Q and r ∈ [t, t1],

(4.3) V (t, x) = inf
u(·)∈U(t,x)

[∫ r∧τ

t

L(s, x(s), u(s))ds

+g(τ, x(τ))χτ<r + V (r, x(r))χr≤τ

]
.

The above identity is called the dynamic programming principle. It is the
basis of the solution technique developed by Bellman in the 1950’s [Be]. An
interesting observation is that an optimal control u∗(·) ∈ U(t, x) minimizes
(4.3) at every r. Hence to determine the optimal control u∗(t), it suffices
to analyze (4.3) with r arbitrarily close to t. Intuitively this yields a simple
optimization problem that is minimized by u∗(t). However, as we shall see in
later chapters, this approach requires a knowledge of the value function.

Another corollary of the above computations is the following.
Corollary 4.1. An admissible control u(·) ∈ U(t, x) is δ-optimal at (t, x)

if any only if it is δ-optimal at every (r, x(r)) with r ∈ [t, τ ].

I.5 Dynamic programming equation

In this section, we assume that the value function is continuously differen-
tiable and proceed formally to obtain a nonlinear partial differential equation
satisfied by the value function. In general however, the value function is not
differentiable. In that case a notion of “weak” solutions to this equation is
needed. This will be the subject of Chapter 2. After formally deriving the
dynamic programming partial differential equation (5.3), we prove two Veri-
fication Theorems (Theorems 5.1 and 5.2) which give sufficient conditions for
a solution to the optimal control problem.

Let 0 < h ≤ t1 − t, and take r = t + h in the dynamic programming
principle (4.3). Subtract V (t, x) from both sides of (4.3) and then divide by
h. This yields

(5.1) inf
u(·)∈U(t,x)

{
1
h

∫ (t+h)∧τ

t

L(s, x(s), u(s))ds+
1
h
g(τ, x(τ))χτ<t+h

+
1
h

[V (t+ h, x(t+ h))χt+h≤τ − V (t, x)]
}

= 0.

Let us assume that:

(5.2) For every (t, x) ∈ Q and v ∈ U there exists u(·) ∈ U(t, x) such that

v = lim
s↓t

u(s).
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If U(t, x) = U0(t), clearly (5.2) holds. For instance, we may take u(s) ≡ v.
For the state constrained problem (Case D, Section 3), (5.2) holds provided
U(r, ξ) is not empty for every (r, ξ) ∈ Q (See Theorem II.12.1.). Note that we
assume (5.2) for (t, x) ∈ Q, not (t, x) ∈ Q. In the state constrained problem,
only controls in some subset of U can be used at time t when (t, x) is on
the lateral boundary of Q. If (t, x) ∈ Q, then x ∈ O and t + h ≤ τ if h is
sufficiently small. If we formally let h ↓ 0 in (5.2) we obtain, for (t, x) ∈ Q,

(5.3)
∂

∂t
V (t, x) + inf

v∈U
{L(t, x, v) + f(t, x, v) ·DxV (t, x)} = 0.

This is a nonlinear partial differential equation of first order, which we refer to
as the dynamic programming equation or simply DPE. In (5.3), DxV denotes
the gradient of V (t, ·). It is notationally convenient to rewrite (5.3) as

(5.3′) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x)) = 0,

where for (t, x, p) ∈ Q0 × IRn

(5.4) H(t, x, p) = sup
v∈U

{−p · f(t, x, v) − L(t, x, v)} .

In analogy with a quantity occurring in classical mechanics, we call this func-
tion the Hamiltonian. The dynamic programming equation (5.3′) is sometimes
also called a Hamilton–Jacobi–Bellman PDE.

Equation (5.3) is to be considered in Q, with appropriate terminal or
boundary conditions. Let us describe such conditions for problems of the
classes A and B in Section 3. Boundary conditions for state constrained prob-
lems (class D, Section 3) will be described later in Section II.12. For class A,
we have Q = Q0. By (3.4) the terminal (Cauchy) data are

(5.5) V (t1, x) = ψ(x), x ∈ IRn.

We now state a theorem which connects the dynamic programming equation
to the control problem of minimizing (3.4).

Theorem 5.1. (Q = Q0). Let W ∈ C1(Q0) satisfy (5.3) and (5.5). Then:

(5.6) W (t, x) ≤ V (t, x), ∀(t, x) ∈ Q0.

Moreover, if there exists u∗(·) ∈ U0(t) such that

(5.7) L(s, x∗(s), u∗(s)) + f(s, x∗(s), u∗(s)) ·DxW (s, x∗(s))

= −H(s, x∗(s), DxW (s, x∗(s))

for almost all s ∈ [t, t1], then u∗(·) is optimal for initial data (t, x) and
W (t, x) = V (t, x).
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In Theorem 5.1, x∗(·) denotes the solution to (3.2) with u(·)=u∗(·), x∗(t)=
x. Theorem 5.1 is called a Verification Theorem. Note that, by the definition
(5.4) of H, (5.7) is equivalent to

(5.7′) u∗(s) ∈ arg min
v∈U

{f(s, x∗(s), v) ·DxW (s, x∗(s)) + L(s, x∗(s), v)}.

Proof of Theorem 5.1. Consider any u(·) ∈ U0(t). Using multivariate
calculus and the dynamic programming equation (5.3), we obtain

(5.8) W (t1, x(t1)) = W (t, x) +
∫ t1

t

[
∂

∂t
W (s, x(s)) + ẋ(s) ·DxW (s, x(s)]ds

= W (t, x) +
∫ t1

t

[
∂

∂t
W (s, x(s)) + f(s, x(s), u(s)) ·DxW (s, x(s))]ds

≥ W (t, x) −
∫ t1

t

L(s, x(s), u(s))ds.

By (5.5), W (t1, x(t1)) = ψ(x(t1)). Hence

W (t, x) ≤ J(t, x;u).

We get (5.6) by taking the infimum over u(·).
To prove the second assertion of the theorem, let u∗(·) ∈ U0(t) satisfy

(5.7). We redo the calculation above with u∗(·). This yields (5.8) with an
equality. Hence

(5.9) W (t, x) = J(t, x;u∗).

By combining this equality with (5.6), we conclude that u∗(·) is optimal at
(t, x).

�
Remark 5.1. Condition (5.7) is necessary as well as sufficient. Indeed,

from the proof of Theorem 5.1 and the definition (5.4) of H it is immediate
that (5.7) holds for almost all s if u∗(·) is optimal.

We illustrate the use of the Verification Theorem 5.1 in an example.
Example 5.1. Consider the linear quadratic regulator problem (LQRP)

described in Example 2.3. In this example, O = IRn, U = IRm,U(t, x) = U0(t),
and

(5.10)

f(t, x, v) = A(t)x+B(t)v

L(t, x, v) = x ·M(t)x+ v ·N(t)v

Ψ(t, x) = ψ(x) = x ·Dx.

The dynamic programming equation (5.3′) becomes
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(5.11) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x)) = 0, t0 ≤ t < t1, x ∈ IRn.

The Hamiltonion H(t, x, p) is given by

(5.12)
H(t, x, p) = sup

v
{−f(t, x, v) · p− L(t, x, v)}

= 1
4N

−1(t)B′(t)p ·B′(t)p−A(t)x · p− x ·M(t)x,

where B′(t) is the transpose of the matrix B(t) and N−1(t) is the inverse of
N(t) which is assumed to be invertible. For later use, we note that the unique
maximizer of (5.12) is

(5.13) v∗ = −1
2
N−1(t)B′(t)p.

To use the Verification Theorem 5.1, first we have to solve (5.11) with the
terminal condition

(5.14) V (t1, x) = x ·Dx, x ∈ Rn.

We guess that the solution of (5.11) and (5.14) is a quadratic function in x.
So, let

W (t, x) = x · P (t)x

for some symmetric matrix P (t). We substitute W (t, x) into (5.11) to obtain

− ∂

∂t
W (t, x) +H(t, x,DxW (t, x))

= −x · ∂
∂t
P (t)x+N−1(t)B′(t)P (t)x ·B′(t)P (t)x

−2A(t)x · P (t)x− x ·M(t)x

= x · [− ∂

∂t
P (t) + P (t)B(t)N−1(t)B′(t)P (t)

−A(t)P (t) − P (t)A′(t) −M(t)]x.

Hence W satisfies (5.11) provided that

(5.15)
d

dt
P (t) = P (t)B(t)N−1(t)B′(t)P (t)

−A(t)P (t) − P (t)A′(t) −M(t), t ∈ [0, t1).

The continuity of W at time t1 yields that

(5.16) P (t1) = D.
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Equation (5.15) is called a matrix Riccati equation. It has been studied
extensively. If we fix t1, then (5.15)-(5.16) has a solution P (t) backward in
time on some maximal interval tmin < t ≤ t1, where either tmin = −∞
or tmin < ∞. Let us use Theorem 5.1 to show that V (t, x) = W (t, x) for
tmin < t ≤ t1, and to find an explicit formula for the optimal u∗(s). In view
of (5.13), (5.7′) holds at any s ∈ [t, t1] if and only if

(5.17)
u∗(s) = −1

2
N−1(s)B′(s)DxW (s, x∗(s))

= −N−1(s)B′(s)P (s)x∗(s).

Now substitute (5.17) back into the state equation (2.6) to obtain

d

ds
x∗(s) = [A(s) −B(s)N−1(s)B′(s)P (s)]x∗(s).

This equation has a unique solution satisfying the initial condition x∗(t) = x.
Thus there is a unique control u∗(·) satisfying (5.17). Theorem 5.1 then implies
that u∗(·) is optimal at (t, x).

Notice that the optimal control u∗(s) in (5.17) is a linear function of the
state x∗(s). The matrix N−1(s)B′(s)P (s) can be precomputed by solving
the Riccati differential equation (5.15) with terminal data (5.16), without
reference to the initial conditions for x(s). This is one of the important aspects
of the LQRP.

In the LQRP as formulated in Example 2.3, the matrices M(s) and D
are nonnegative definite and N(s) is positive definite. This implies that P (t)
is nonnegative definite and that tmin = −∞. To see this, for tmin < t ≤ t1,
0 ≤ V (t, x) ≤ J(t, x; 0). Since V (t, x) = x ·P (t)x, P (t) is nonnegative definite
and bounded on any finite interval, which excludes the possibility that tmin >
−∞.

In Section VI.8 we will encounter a class of problems in which M(s) is
negative definite. Such problems are called LQRP problems with indefinite
sign. In this case, P (t) may not be nonnegative definite and tmin may be
finite. The following example illustrates these possibilities.

Example 5.2. Let n = 1, f(v) = v, L(x, v) = −x2 + v2 and D = 0. The
solution to (5.15)-(5.16) is P (t) = − tan(t1 − t) if t1 − t < π

2 and tmin = t1 − π
2 .

Control until exit from Q. Let us next consider the problem of control
until the time τ of exit from a closed cylindrical region Q (class B, Section
3.) We first formulate appropriate boundary conditions for the dynamic pro-
gramming equation (5.3). Then we outline a proof of a Verification Theorem
(Theorem 5.2) similar to Theorem 5.1. When t = t1, we have as in (5.5):

(5.18) V (t1, x) = ψ(x), x ∈ O.

Let us assume that (3.11) holds on the lateral boundary [t0, t1) × ∂O. This
implies that, for (t, x) ∈ [t0, t1) × ∂O, one choice is to exit immediately from
Q (thus, τ = t). Therefore,
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(5.19) V (t, x) ≤ g(t, x), (t, x) ∈ [t0, t1) × ∂O

If it is optimal to exit immediately from Q, then equality holds in (5.19).
However, in many examples, there are points (t, x) of the lateral boundary
for which there exists a control u0(·) such that J(t, x;u(·)) < g(t, x). See
Example II.2.3. At such points, strict inequality holds in (5.19). If (3.10) is
assumed, in addition to (3.11), then V (t, x) ≥ 0. Since g ≡ 0 when (3.10)
holds, (5.19) implies that the lateral boundary condition V (t, x) = 0 holds
for all (t, x) ∈ [t0, t1) × ∂O, if both (3.10) and (3.11) hold. Note that we
have not yet proved that the value function V is continuous on Q. However,
such a result will be proved later (Theorem II.10.2.). Boundary conditions are
discussed further in Section II.13.

Theorem 5.2. Let W ∈ C1(Q) satisfy (5.3), (5.18) and (5.19). Then

(5.20) W (t, x) ≤ V (t, x) for all (t, x) ∈ Q.

Moreover, suppose that there exists u∗(·) ∈ U0(t) such that (5.7) holds for
almost all s ∈ [t, τ∗] and W (τ∗, x∗(τ∗)) = g(τ∗, x∗(τ∗)) in case τ∗ < t1. Then
u∗(·) is optimal for initial data (t, x) and W (t, x) = V (t, x).

Here τ∗ is the exit time of (s, x∗(s)) from Q. The proof of Theorem 5.2
is almost the same as for Theorem 5.1. In (5.8) the integral is now from t
to the exit time τ , and W (τ, x(τ)) is on the left side. By (5.18) and (5.19),
W (τ, x(τ)) ≤ Ψ(τ, x(τ)) with Ψ as in (3.6). This gives (5.20). The second half
goes exactly as for Theorem 5.1.

Remark 5.2. An entirely similar Verification Theorem is true for the
problem of control until the time τ ′ of exit from Q (rather from Q.) In fact,
since (s, x(s)) ∈ Q for t ≤ s < τ ′, the proof of Theorem 5.2 shows that it
suffices in this case to assume W ∈ C1(Q) ∩ C(Q) rather than W ∈ C1(Q).
A situation where such a weaker assumption on W is convenient will arise in
Example 7.3.

In Example 5.1 we constructed an admissible control by using the value
function. To generalize the procedure, let W be as in Theorem 5.2 (or as in
Theorem 5.1 in case Q = Q0.) For (t, x) ∈ Q define a set-valued map F ∗(t, x)
by

F ∗(t, x) = {f(t, x, v) : v ∈ v∗(t, x)}
where v∗(t, x) is another set-valued map

(5.21) v∗(t, x) = arg min
v∈U

[f(t, x, v) ·DxW (t, x) + L(t, x, v)] .

We may now restate (5.7′) as u∗(s) ∈ v∗(s, x∗(s)). Substituting this into the
state dynamics yields

(5.22) ẋ∗(s) ∈ F ∗(s, x∗(s)), s ∈ [t, τ∗].

Thus, we have the following corollary to Theorem 5.2.


