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We demonstrate, experimentally and theoretically, controlled loading of an exciton-polariton vortex

chain into a 1D array of trapping potentials. Switching between two types of vortex chains, with topological

charges of the same or alternating signs, is achieved by appropriately shaping an off-resonant pump beam

that drives the system to the regime of bosonic condensation. In analogy to spin chains, these vortex

sequences realize either a “ferromagnetic” or an “antiferromagnetic” order, whereby the role of spin is

played by the orbital angular momentum. The ferromagnetic ordering of vortices is associated with the

formation of a persistent chiral current. Our results pave the way for the controlled creation of nontrivial

distributions of orbital angular momentum and topological order in a periodic exciton-polariton system.

DOI: 10.1103/PhysRevLett.121.225302

Introduction.—Microcavity exciton polaritons attract a

great deal of interest as an accessible solid-state platform for

fundamental studies of nonequilibrium macroscopic quan-

tum systems [1–4], as well as the development of polariton-

based optoelectronics [5]. These quasiparticles arise due to

hybridization of electron-hole pairs (excitons) and photons

in high-qualitymicrocavitieswith embedded semiconductor

quantum wells. The bosonic nature of exciton polaritons

allows for the spontaneous formation of macroscopic

coherent states—Bose-Einstein condensates (BECs) [6–9].

The spin degree of freedom [4] and tunable interactions

between multiply coupled polariton condensates have

recently enabled the realization of driven-dissipative

bosonic spin lattices [10,11]. In particular, a crossover

from an “antiferromagnetic” state (with staggered spins) to

a “ferromagnetic” state (with aligned spins) in such

polaritonic lattices has been observed. It was shown that

these periodic systems are analogous to the Ising spin

model, which has ben very successful in describing a wide

range of condensed matter phenomena. Furthermore, the

creation of periodic polariton arrays with controllable

interactions between the nodes has enabled the demon-

stration of pseudospin lattices, which can be used as analog

simulators of XY Hamiltonians [12].

In principle, the role of spin in the spin lattices and

polariton simulators can be played by orbital angular

momentum, provided that the latter is quantized, well

defined on a single lattice cell, and controllable. Being a

quantum fluid, a polariton condensate can host a wide

variety of quantum vortices [13,14] with an integer topo-

logical charge defined by the phase winding around the

vortex core. Polaritons optically injected by several spatially

separated and independent off-resonant pump spots can

experience phase locking, producing up to 102 vortices and

antivortices that extend over tens of microns across the

sample and remain locked for a long time [15]. However,

the polariton vortex lattices demonstrated in experiments so

far are characterized by spontaneously created ordering of

topological charges, typically resulting in a zero net orbital

angular momentum. Recent theoretical studies predict that

the ability to control the ordering of topological charges in a

periodic polariton lattice could offer information storage

and processing capabilities [16], as well as pave the way for

the realization of topologically protected edge currents [17].

In this Letter, we employ an exciton-polariton condensate

in a 1D buried mesa array of polariton traps [see Fig. 1(a)]

[18–21] to observe the formation of exciton-polaritonvortex

chains. Due to the nonequilibrium character of condensa-

tion, controlled loading of polaritons into distinct energy

bands can be realized by shaping the optical excitation beam

[18,22,23]. Under the conditions of incoherent optical

pumping, far off resonance from the exciton polariton
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energy, we observe vortex chains characterized by different

distributions of the topological charge (orbital angular

momentum) along the array. By shaping the pump beam,

we demonstrate switching between two vortex chains with

topological charges of the same or opposite signs. Such

topological states represent the vortex analogs of one-

dimensional spin systems with ferromagnetic and antifer-

romagnetic configurations, whereby the role of spin is

played by the orbital angular momentum at each lattice site.

Experiment.—The experiment is performed using 1D

mesa arrays microstructured in an AlAs=AlGaAs micro-

cavity with 12 GaAs quantum wells, as described in

Refs. [18,19,22]. Mesas of d ¼ 2.0 μm diameter are

separated by a center-to-center distance of a ¼ 4.0 μm,

with an effective polariton potential depth of ∼5.5 meV for

each mesa, as sketched schematically in Fig. 1(a). The

exciton-polariton condensate is formed spontaneously by

pumping the microcavity with a continuous-wave (cw)

laser, which injects free carriers well above the exciton

energy. The pump beam has a radially symmetric Gaussian

intensity profile with a FWHM of 20 μm, and illuminates

approximately five mesas in the array. The Rabi splitting in

the sample is approximately 13 meV, and the photon-

exciton detuning is −13.5 meV (see the Supplemental

Material [24]), which means that the exciton polaritons

in our experiment have a large photon component.

In the regime of low excitation powers below the

condensation threshold, the dispersion (energy vs in-plane

momentum) of exciton polaritons reveals the band-gap

structure imposed by the periodicity of the trapping

potential in the lateral (x) direction, as described in

Refs. [18,22]. Both the ground (s) and the excited (p)

bands of the characteristic band-gap spectrum of the

extended Bloch states can be seen in Fig. 1(b). A large

band gap is seen between the ground and the first excited

bands, indicating proximity to the tight-binding regime.

The most relevant physics arises due to the essentially 2D

Bloch states forming via hybridization of the higher-order

bound states (p modes) of the individual mesas, marked as

p-band in Fig. 1(b). Depending on the spatial orientation

of the p modes with respect to the array, they hybridize

into two distinct Bloch subbands, namely σ-bonding and

π-bonding bands [see Fig. 1(c)].

In the regime of strong excitation, the fast energy relax-

ation towards lower Bloch states is accompanied by stimu-

lated bosonic scattering into selected states with a maximum

gain [18]. In our system, the second Bloch band, formed via

bonding of the p modes (dipoles) of individual mesas,

becomes strongly populated [Figs. 2(a) and 2(d)]. This is

due to inefficient energy relaxation for the highly photonic

exciton polaritons at large negative detunings [18]. As a rule,

condensation occurs in the vicinity of the high-symmetry

(a)

(c)

(b)

FIG. 1. (a) Schematic of a 1D mesa array microstructured in an

AlAs=AlGaAs microcavity formed between two distributed

Bragg mirrors (BM) with embedded GaAs quantum wells

(QW) illuminated by an off-resonant optical pump (red shaded

area, not to scale). (b) Dispersion measurement of the polariton

emission from the mesa traps below the condensation threshold.

A p energy band consists of two subbands and is formed by the

hybridization of the p modes of the individual mesas. Panel

(c) shows schematics of the σ-bond and π-bond hybridization

forming the p band in panel (b).

(a) (b)

(c)

(d) (e)

(f)

FIG. 2. Photoluminescence above the condensation threshold.

(a) Dispersion of exciton polaritons excited by a large-area pump

spot (inset, not to scale). Two distinct peaks at the edges of the

Brillouin zone (BZ) are visible. The signal in the center of the BZ

was detected for ky ≠ 0. The dotted white lines represent the

calculated dispersion subbands, which are blueshifted with

respect to the linear dispersion subbands shown by the red

dotted lines. (b) The intensity profile of the antiferromagnetic

vortex chain measured in real space and (c) the associated

interferometry image. (d) Dispersion of exciton polaritons excited

by a large-area pump spot with the mesas shielded by a mask

(inset, not to scale). (e) The real-space intensity profile of the

ferromagnetic vortex chain and (f) the associated interferometry

image. The on-site topological charges þ1 and −1 are repre-

sented by the up and down arrows, respectively. Lack of circular

symmetry in (b) and (e) is due to unequal population of the Bloch

modes forming the vortex chain (see text).
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points in the dispersion bands corresponding to zero group

velocities [25–27], either in the middle of the Brillouin zone

(BZ) or at its edges, depending on the particular spatial shape

of the pumping spot. As shown below, the spatial distribution

of the condensate in the form of the vortex chain can be

interpreted as a phase-locked superposition of such 2D,

higher-order Bloch states in the array. Therefore, the for-

mation of vortex states in our system is uniquely enabled by

the condensation of exciton polaritons into a nonground

Bloch state of the 1D array of 2D mesas. Moreover, depend-

ing on the pumping conditions, it is possible to populate

Bloch states with different symmetries within the same band

and, as a consequence, to switch between the vortex chains

with “staggered” [Figs. 2(b) and 2(c)] or “aligned” [Figs. 2(e)

and 2(f)] topological charges.

In the first configuration, the array of mesa traps is

pumped by a large Gaussian pump spot [Fig. 2(a), inset]. At

higher pump powers, exciton polaritons undergo a transition

to bosonic condensation. The above-threshold dispersion

indicates that the σ-bonding band is strongly occupied at the

edges of the first BZ (kx ¼ �π=a) and experiences a

blueshift due to the interaction with an incoherent excitonic

reservoir injected by the pump [see the dotted white lines in

Fig. 2(a)]. An additional subset of occupied states arising

from the π-bonding modes is visible in the middle of the

BZ (kx ¼ 0) and is detectable only for the ky ≠ 0 far-field

components of the cavity photoluminescence. Real-space

measurements [Figs. 2(b) and 2(c)] show a condensate

distribution in the form of a chain of single-charge

vortices with alternating signs of the topological charge

(−1; 1;−1; 1;…) or, using the spin-chain terminology, an

antiferromagnetic configuration. The distribution of the

topological charges along the chain is confirmed by using

Michelson interferometry, whereby one arm of the inter-

ferometer undergoes magnification by a factor of 40 to

create a defect-free reference beam [Fig. 2(c)].

In the second configuration, the array of mesa traps is

pumped by the same large Gaussian pump spot, but themesa

array itself is shielded from the optical excitation by an

optical mask [Fig. 2(d), inset]. The dispersion measurement

above the condensation threshold shows that the exciton

polaritons occupy the energy states in the middle of the first

and the second BZs. In real space and interferometry images,

a vortex chain with topological charges (1; 1; 1; 1;…) is

observed [Figs. 2(e) and 2(f)], which corresponds to a

ferromagnetic configuration. Remarkably, this ferromag-

netic ordering signifies the formation of a chiral state of

the exciton-polariton condensate in the 1D array due to

nonzero net orbital angular momentum.

Theory and discussion.—In what follows, we present a

simple, intuitive theory of the observed effects. More

precisely, we show that a phase-locked superposition of

two Bloch states within the highly populated second energy

band of the array results in the formation of both the

ferromagnetic and antiferromagnetic vortex chains.

First, it is instructive to analyze the dispersion relation

and the Bloch states of the array in the single-particle linear

limit. Solving the standard eigenvalue problem in the

photon-exciton basis with the trapping potential for pho-

tons [21], we find the dispersion of the Bloch modes within

both σ- and π-bonding subbands shown in Figs. 3(a) and

3(d). Without loss of generality, it is convenient to represent

the condensate in the polariton basis. Then we can assume

that the condensed fraction of the exciton polaritons above

threshold can be represented as a superposition of the two

Bloch modes:

ψðx; y; tÞ ¼ aðtÞBσðx; yÞe
−iωaðkaÞtþikax

þ bðtÞBπðx; yÞe
−iωbðkbÞtþikbx; ð1Þ

where the order parameter can be characterized by the

complex slowly varying amplitudes aðtÞ and bðtÞ associ-

ated with the Bloch states Bσðx; yÞ and Bπðx; yÞ in the σ

and π subbands, respectively. Spatial profiles of the

selected Bloch modes are shown in Figs. 3(a) and 3(d).

The spatial overlap of the Bloch modes with the pump

beam determines their effective pumping rates [23].

FIG. 3. Calculated Bloch mode dispersions of the p band (a)

and (d) and their linear superpositions (b),(c) and (e),(f). (a) σ and

π subbands of the chain. Insets in (a) and (d) schematically show

the excitation conditions. The circles on the dispersion curves in

(a) and (d) mark the Bloch states “BM1” and “BM2” populated

by the respective pump spots, with the respective intensity

profiles shown on the panels below. (b) Intensity and (c) phase

profiles of the linear superposition of the two Bloch modes

marked by the circles in panel (a) with the fixed phase difference

of π=2. (e) Intensity and (f) phase profiles of the linear super-

position of the two Bloch modes marked by the circles in panel

(d) with the fixed phase difference of π=2.

PHYSICAL REVIEW LETTERS 121, 225302 (2018)

225302-3



A large-area pump spot overlaps strongly with both of

the subband components, and therefore both components of

the condensate are equally occupied. Above the condensa-

tion threshold, the exciton polaritons condense into the

respective minima of the subbands, namely at the edge of

the BZ for the σ subband (ka ¼ �π=a) and in the middle of

BZ for the π subband (kb ¼ 0).Note that the energy difference

between these two states in the low-density (linear) limit is

vanishingly small, i.e., ωσðπ=aÞ − ωπð0Þ ≈ 0. As discussed

below, the nonlinear effects, such as polariton-polariton

and reservoir-polariton interactions, as well as local gain-

saturation effects, result in a blueshift and phase locking

between these two Bloch modes in the high-density regime.

The respective superposition of the Bloch modes with equal

amplitudes and a fixed phase of π=2 forms a sequence of

vortices with the alternating charges, as shown in Figs. 3(b)

and 3(c). Therefore, similarly to the experiment, a phase-

locked state of the two Bloch modes can form an antiferro-

magnetic chain of vortices.

The situation changes if the array itself is shielded from

the optical excitation. In this case, the π subband has a

larger overlap with the pump spot due to the spatial

orientation of the on-site dipoles. This leads to an imbal-

ance in the effective pumping rates of the two subbands

[Fig. 3(d)]. As a result, the polaritons first condense in

the π subband in the middle of the BZ (kb ¼ 0) and

experience a stronger reservoir-induced blueshift. This

blueshift can compensate for the initial linear frequency

mismatch between the σ and π Bloch modes, given as

ωπð0Þ − ωσð0Þ ≠ 0 [see Fig. 3(d)]. Above the condensation

threshold, a superposition of these two Bloch modes with

the fixed phase (π=2) gives rise to the vortex chain with the
same topological charges in the ferromagnetic configura-

tion [see Figs. 3(e) and 3(f)].

In order to understand the phase-locking mechanism

qualitatively discussed above, it is necessary to consider

nonlinear effects. The full dynamics of exciton-polariton

condensation in a one-dimensional mesa array for moderate

pump powers above threshold can be reliably reproduced by

a two-dimensional mean-field dynamical model taking into

account energy relaxation due to quantum and thermal

fluctuations in the system [28,29]. It consists of the open-

dissipative Gross-Pitaevskii equation for the condensate

wave function incorporating stochastic fluctuations and

coupled to the rate equation for the excitonic reservoir

created by the off-resonant cw pump [18,29]. For the sake

of simplicity, it is convenient to assume that the inco-

herent reservoir rapidly reaches a steady state. Under this

assumption, the reservoir density can be expressed explicitly

as a function of the pump rate and polariton density, and the

model becomes closely related to that derived in Ref. [30].

Then, by using the ansatz in the form of Eq. (1), the standard

model [28] for the incoherently pumped polaritons with a

relevant normalization can be written as follows (see the

Supplemental Material [24] for details):

i
da

dt
¼ −Δaaþ Γaaþ ðξajaj

2 þ 2ξabjbj
2Þaþ ξ̃abb

2a�;

i
db

dt
¼ −Δbbþ Γbbþ ðξbjbj

2 þ 2ξabjaj
2Þbþ ξ̃baa

2b�;

ð2Þ

where Γa;b ¼ ðiR=2þ gr=ℏÞPa;b=γr − iγc=2, γc is the loss

rate for the condensed polaritons, gr accounts for the strength
of the blueshift of the coherent polaritons due to their

interaction with the incoherent reservoir, γr is the loss rate

of the incoherent reservoir, R determines the stimulated

scattering rate into the condensed state, Pa, Pb are the

effective pump rates for the respective Bloch modes, and

Δa;b ¼ ωa;b − ωσ;π . The complex coefficients ξa, ξb, ξab,

ξ̃ab, and ξ̃ba account for both polariton-polariton and

reservoir-polariton interactions, as well as the effect of gain

saturation due to reservoir depletion.

First, we consider the antiferromagnetic configuration,

which is associated with a balanced excitation of both

Bloch modes (Pa ¼ Pb). Extensive numerical simulations

of the model in Eq. (2) with random initial conditions

prove the existence of a stable steady-state solution with

equal amplitudes jaj ¼ jbj and a fixed phase difference

between Bloch modes ϕa − ϕb ¼ π=2þ πn, where n is

an integer [as shown in Figs. 4(a) and 4(b)]. This

confirms the existence of a phase-locked superposition

of Bloch modes resulting in the antiferromagnetic vortex

chain.

In the case of the ferromagnetic configuration, as

discussed above, there is an imbalance in the effective

pumping of the two subbands, i.e., Pa < Pb. Numerical

simulations for the Bloch mode with the nonzero frequency

(a)

(b) (d)

(c)

FIG. 4. Nonlinear dynamics of the Bloch mode amplitudes

governed by the model in Eq. (2). Panels (a) and (b) show the

temporal dynamics of the amplitude ratio and the phase difference

between the two Bloch modes, respectively, for the cases of

balanced pumping Pa ¼ Pb ¼ 35 meV=μm2 and zero frequency

detuningΔab ¼ Δb − Δa ¼ 0. Panels (c) and (d) show the temporal

dynamics of the amplitude ratio and the phase difference between

the two Bloch modes, respectively, for the cases of imbalanced

pumping Pa < Pb (Pa ¼ 32 meV=μm2, Pb ¼ 45 meV=μm2) and

nonzero frequency detuning Δab ¼ 0.63 meV. For other parame-

ters of the model, see the Supplemental Material [24].
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detuning at kx ¼ 0 Δab ¼ Δb − Δb ≠ 0 and imbalanced

pumping show that there exist stable states with almost

equal amplitudes and locked phase ϕa − ϕb ≈ π=2þ πn [as
seen in Figs. 4(c) and 4(d)].

Conclusion.—To summarize, we experimentally

demonstrate vortex chains with both ferromagnetic and

antiferromagnetic distributions of topological charges in

an exciton-polariton condensate loaded into a 1D array of

mesa traps, and support our observations by a coupled-

mode theory for the Bloch states.

This research opens an avenue for using current

advanced nanofabrication techniques to create and manipu-

late stable exciton-polariton vortex chains in microstruc-

tured potentials. Furthermore, controlled loading of the

exciton-polariton condensate into a topologically ordered

state offers interesting possibilities for future realization of

topologically protected exciton-polariton currents [17].
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