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Projective synchronization (PS), in which the state vectors synchronize up to a scaling factor, is
usually observable only in partially linear systems. We show that PS could, by means of control,
be extended to general classes of chaotic systems with nonpartial linearity. Performance of PS
may also be manipulated by controlling the scaling factor to any desired value. In numerical
experiments, we illustrate the applications to a Rössler system and a Chua’s circuit. The
feasibility of the control for high dimensional systems is demonstrated in a hyperchaotic system.
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1. Introduction

In light of the potential application in secure com-
munications [Cuomo & Oppenheim, 1993; Hayes
et al., 1994; Kovarev et al., 1992; Parlitz, 1996],
synchronization in coupled chaotic systems has at-
tracted much interest since Pecora and Carroll first
introduced this important dynamical phenomenon
[Pecora & Carroll, 1990]. However, “synchroniza-
tion” is by far sufficient to describe the mutually
cooperative behavior between the coupled systems.

Different types of synchronization phenomena
have been observed in a variety of chaotic sys-
tems. The occurrence of a particular type of syn-
chronization may depend on a coupling scheme and
the structure of the underlying dynamical system
considered. For two coupled chaotic oscillators
[Rosenblum et al., 1996], phase synchronization
could occur in the manner that the phases θ1,2 are
locked with nθ1 − mθ2 = constant while the am-
plitudes can be very different. In coupled chaotic
map lattices, the global activity of the lattices can
be characterized by phase synchronization but the

local activity of each map remains unsynchronized.
Such collective behavior is referred to as weak syn-
chronization [Roman et al., 1998]. Identical syn-
chronization [Pecora & Carroll, 1990; Hayes et al.,
1993] is the most typical form of chaotic synchro-
nization often observable in two identical systems.
It is characterized by the feature that the phases
are synchronized and the amplitudes tend to be the
same. When the parameters of the two-coupled sys-
tems do not match, or even the two coupled sys-
tems belong to different classes [Kocarev & Parlitz,
1996], there is a general relation between the states
of the two subsystems. This synchronous relation
could be expressed by a smooth, invertible function,
known as generalized synchronization [Rulkov et al.,
1995]. In coupled partially linear systems, Mainieri
and Rehacek [1999] reported that the two identical
systems (drive and response) could be synchronized
up to a scaling factor. This type of chaotic synchro-
nization is referred to as projective synchronization
(PS). Although there exists a linear relation be-
tween the coupled systems, PS could not be clas-
sified as generalized synchronization because the
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response system of PS is not asymptotically stable
[Kocarev & Parlitz, 1996; Li & Xu, 2001].

Projective synchronization is interesting be-
cause of the proportionality of the dynamical scales
and the invariance of chaotic characteristics (such
as Lyapunov exponents and fractal dimensions) be-
tween the states of the two-coupled systems. The
feature of proportionality enables us to duplicate
a topologically identical system in distinct scales
through a PS process. PS could be considered as
a candidate for secure communications with an ad-
ditional advantage of using an adjustable scaling
factor, which will be reported elsewhere.

In the scenario of PS, the evolutionary pattern
governed by the response system is similar to that
governed by the drive system. However the ampli-
tude of the response system is a scalar multiple of
that of the drive system in a phase space. This
scalar multiple is referred to as scaling factor. In
an article by Mainieri and Rehacek [1999], the au-
thors explained the mechanism of the occurrence
of PS in three-dimensional systems. In fact, PS is
determined by the inherent partial linearity of the
systems. Investigation pertaining to the stability
criterion of PS has also been recently conducted in
[Li & Xu, 2001] stating that PS occurs if the trace
of the Jacobian matrix of the subsystem is nega-
tive. This statement implies that PS could occur
even if some Lyapunov exponents are positive. In
other words, the widely accepted condition that all
conditional Lyapunov exponents should be negative
[Pecora & Carroll, 1990] for chaotic synchronization
is not necessary. Note that the resulting dynamics
in PS is hardly predictable [Xu, 2001] because the
scaling factor is dependent on the initial conditions
and the underlying chaotic dynamics. To achieve a
desirable performance of PS, some control methods
have been developed [Xu, 2001; Xu & Li, 2001] to
manipulate the scaling factor. It is thus possible to
adjust (amplify or reduce) the scale of the coupled
dynamics with small controls. Control of PS may
provide more flexibility to promote PS in various
applications.

The availability of PS seems limited to the class
of partially linear chaotic systems. Although the
projective nature was also observed in the Lorenz
system with a specific coupling scheme [Kocarev &
Parlitz, 1996], the Lorenz system actually possesses
partial linearity. It is natural to think if it is possi-
ble to extend PS to more general classes of nonlin-
ear systems rather than the class of partial linearity.
In this paper, we introduce a control approach to

produce PS in nonlinear chaotic systems. In addi-
tion, the control method can be used to direct the
scaling factor to any preferred value for any desir-
able performance of synchronized dynamics. The
control approach is derived from the Lyapunov sta-
bility theory and thus the control is globally stable.

2. Projective Synchronization

We firstly elaborate PS in partially linear systems
such as the Lorenz system. A partially linear sys-
tem is defined as the system in which the state vec-
tor consists of two parts (u, z). Vector u is linearly
related to its time derivative u̇, while variable z is
nonlinearly related to the variables in u, as given
by

u̇ = A(z) · u ,
ż = f(u, z) .

(1)

Projective synchronization may be observable when
two identical systems (1) are coupled through the
variable z in the form

u̇m = A(z) · um ,
ż = f(um, z) ,

u̇s = A(z) · us .
(2)

The subscripts m and s stand for the master (drive)
and slave (response) systems respectively. In the
coupled system (2), the drive system evolves in-
dependently, while the response system is gov-
erned by the drive system through the variable
z. With certain parametrical settings, PS takes
place and exhibits the dynamical feature that the
two state vectors tend to a proportional relation,
i.e. limt→∞ ‖αum − us‖ = 0, where α is a constant
scaling factor. The sign of α is determined by the
phase difference, ω ∈ (−π, π], between the drive
and response systems. When t → ∞, ω = ±π,
then α is negative. When t → ∞, ω = 0, α is
positive.

We provide an example in Fig. 1 to illustrate
the dynamical evolution of projective synchroniza-
tion in the Lorenz system [Lorenz, 1963]

ẋ = σ(y − x) ,

ẏ = (µ− z)x− y ,
ż = xy − ρz .

(3)

Figure 1 shows projective synchronization in which
the drive system and response system move in
the same phase (θs − θm = 0, α < 0). Figure 1(a)
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Fig. 1. Projective synchronization for the Lorenz system
(σ = 10, µ = 60 and ρ = 8/3) with the initial condition {xm,
ym, z, xs, ys} = {0.1, 0.2, 0.1, 0.4, 0.5}; (a) two synchro-
nized trajectories in x–y plane; (b) the evolution of the ratio
of rs cos(θs−θm)/rm which tends to a scaling factor α = 3.257
after a short transient (where r =

√
x2 + y2, θs = tg(ys/xs)

and θm = tg(ym/xm)).

depicts the trajectory evolution (where the tran-
sient evolution is discarded) in x–y plane and
Fig. 1(b) the evolution of the ratio rs cos(θs −
θm)/rm, where r =

√
x2 + y2 is the norm of the

state vector and θ = tg(y/x) the phase angle.
When PS happens, the angular difference ω =

θs − θm converges to either 0 or π and rs cos(θs −
θm)/rm, tends to the scaling factor α. We remark
that the form us = αum is a solution of PS for
partially linear systems, but usually not a solution
for nonpartially linear systems. To realize PS in a
coupled nonpartially linear chaotic system, a con-
trol may be necessary to force the coupled system
to perform the projective nature.

3. Control Method and Numerical
Experiments

Now we intend to extend the PS feature to general
nonlinear systems rather than partially linear sys-
tems by employing a control method. Our aim is
that when the drive system generates a chaotic dy-
namics, the response system can, by control, track
and synchronize the driving dynamics with a speci-
fied scaling factor. To perform PS in a coupled non-
linear system, we devise our control scheme based
on the following considerations. (a) The feedback
control will be set to the response system only. This
is because the originality of the chaotic signals from
the drive should not be altered by any artificial
interruption (i.e. control signals). Considering a
potential application of secure communications in
which information is masked by a driving dynam-
ics, we only need to control the response system to
synchronize the response dynamics with the driv-
ing dynamics. (b) The controlled synchronization
should possess a global stability so that the syn-
chronization process will be free of the sensitivity
to initial conditions. In other words, once control
is activated, the response system can be immedi-
ately controlled to synchronize with the drive sys-
tem whatever be the initial states.

Based on the above considerations, we intro-
duce a control vector v to the response system, in
the form

u̇m = g(um, z) ,

z = f(u, z) ,

u̇s = g(us, z) + v ,

(4)

where g is a nonlinear function vector with re-
spect to u and z. The control vector v has the
same dimension as u. Note that without control
(i.e. v = 0), the dynamical states um and us defined
by the coupled system (4) evolve with no patterns,
and PS does not occur. Our purpose is to find an
appropriate control vector v for the system (4) so
that PS happens with a desired scaling factor α∗,
i.e. limt→∞ ‖α∗um − us‖ = 0.

Concerning the development of a control algo-
rithm with the property of global convergence, we
employ the Lyapunov stability theory by defining
a proper Lyapunov function that must be globally
stable. To constitute the function, we introduce
an error vector e(t) = α∗um(t) − us(t) according
to the form of PS solution, where the components
ei(t) = α∗um,i(t)− us,i(t), and the variables um,i(t)
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and us,i(t) are the ith components of um and us
respectively. If the control vector v is well defined
such that when limt→∞ e(t) = 0, PS will happen in
the coupled system (4). We consider a Lyapunov
function in the form of

V =
1

2
eTe =

1

2

n∑
i=1

e2
i , (5)

where the superscription T is a transpose. If the
Lyapunov function (5) satisfies the conditions{

V (e) > 0 if e 6= 0

V (e) = 0 if e = 0
(6)

and {
V̇ (e) < 0 if e 6= 0

V̇ (e) = 0 if e = 0
, (7)

the error vector e(t) will asymptotically tend to zero
such that limt→∞ ‖α∗um − us‖ = 0. It implies the
occurrence of PS at the scaling factor of α∗. The
first condition (6) can be satisfied obviously. For
the second condition (7), we need to evaluate V̇ by
referring to system (4), and thus we have

V̇ =
n∑
i=1

eiėi = eT ė

= eT (α∗g(um, z)− g(us, z)− v)

= ϕ(e, v) . (8)

In Eq. (8), the derivative V̇ is, in fact, a func-
tion of the control vector v. The sign of V̇ can be
determined by an appropriate selection of the con-
trol vector v. If the control vector v is chosen in
a way that results in V̇ < 0 for e 6= 0, then the
coupled system (4) will perform PS with a scaling
factor of α∗ for any initial state. In fact, there is
great flexibility in defining the control vector v to
achieve a controlled PS. An explicit form of con-
trol depends on specific forms of the coupled sys-
tem (4). In what follows, we will derive the control
vector through the examples where the Rössler sys-
tem, the Chua’s circuit and a hyperchaotic system
of high dimensions are considered to illustrate the
implementations of the control.

To embody the control method, we apply the
above idea to the Rössler system [Rössler, 1976]
that is not a partially linear system if z is used as
the coupling variable, as in

ẋ = b+ x(y − c) ,
ẏ = −x− z ,
ż = y + az ,

(9)

which behaves chaotically with the settings a =
0.398, b = 2 and c = 4. In this system, u = (x, y),
e = (e1, e2), v = (v1, v2), z is the coupling variable
and Eq. (8) reads

V̇ = ((α∗ − 1)b+ α∗xmym − xsys)e1 − ce2
1

+ (1− α∗)ze2 − e1e2 − v1e1 − v2e2 . (10)

An option for V̇ to be negative is that the control
vector v may be defined as
v1 = (α∗ − 1)b+ α∗xmym
−xsys + k1(α∗xm − xs)

v2 = (1− α∗)z − (α∗xm − xs)
+ k2(α∗ym − ys)

, k1 > −c, k2 > 0 .

(11)

According to the Lyapunov stability theory, the
coupled Rössler system will produce PS under the
control (11). The parameters k1 and k2 in Eq. (11)
can be arbitrarily selected provided they satisfy
the conditions (11). Substitution of Eq. (11) into
Eq. (10), we have V̇ = −(k1+c)e2

1−k2e
2
2. Hence the

dynamics of the two components of e are governed
by e1 = e10 exp(−(k1 + c)t) and e2 = e20 exp(−k2t)
respectively, where the subscript “0” denotes initial
conditions. It indicates that the preselected param-
eters k1 and k2 have an impact on the convergence
of the control. In fact k1 and k2 define the con-
vergence rates of the errors e1 and e2, respectively.
The larger the values of k1 and k2, the faster is the
convergence rate of the control. From Eq. (11), we
can find that the control vector v does not vanish
after PS happens. It is because the projective solu-
tion is not a solution of the original (uncontrolled)
system.

Figure 2 shows two cases for the Rössler system,
where PS is controlled to the desired scaling factors
as α∗ = 5 in Figs. 2(a) and 2(b) and α∗ = −5 in
Figs. 2(c) and 2(d), respectively. The scaling fac-
tor can be chosen arbitrarily. Figures 2(a) and 2(c)
depict the controlled trajectories of PS in the x–y
plane (transient evolution is not plotted here). For
the case α∗ = 5, the state vectors of the master sys-
tem and the slave system evolve in the same phase
angle, i.e. θs − θm = 0; for the case α∗ = −5, the
state vectors of the master system and the slave sys-
tem evolve in the opposite direction, i.e. θs−θm = π.
Figures 2(b) and 2(d) plot the evolutions of the ratio
rs cos(θs− θm)/rm, which asymptotically converges
to a desired scaling factor. The effects on the con-
trol resulting from the variations of k1 and k2 are
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Fig. 2. Controlled PS for the Rössler system (a = 0.398, b = 2 and c = 4). (a) Synchronized trajectories (in x–y plane) with
an assigned scaling factor α∗ = 5, (b) the variation of the ratio with distinct convergence rates, (c) synchronized trajectories
(in x–y plane) with α∗ = −5, (d) the variation of the ratio. Initial condition is {xm, ym, z, xs, ys} = {0.1, 0.2, 0.1, 0.3, 0.2}.

shown by the curves with different values of k1 and
k2 in Figs. 2(b) and 2(d). It is easy to find that the
convergence time of the control is decreased with
the augmentation of k1 and k2, in accordance with
the analysis mentioned above.

The second example on the implementation of
the control method is provided in Chua’s circuit
[Chua, 1993] defined in a cubic nonlinear form

ẋ = ρε(y − ax3 − cx) ,

ẏ = ρ(x− y + z) ,

ż = ρ(−βy − γz) .
(12)

For this system, Eq. (8) can be written as

V̇ = (εe2 − εce1 + εax3
s − α∗εax3

m − v1)e1

+ ((α∗ − 1)z + e1 − e2 − v2)e2 . (13)

Similarly, we set


v1 =εe2+εax3

s−α∗εax3
m

+ k1(α∗xm−xs)
v2 =(α∗−1)z+(α∗xm−xs)

+ k2(α∗ym−ys)

, k1>−εc, k2>−1,

(14)

such that V̇ = −(k1 + εc)e2
1 − (k2 + 1)e2

2 < 0, indi-
cating that limt→∞ e(t) = 0 and PS occurs.

The controlled PS of Chua’s circuit is shown in
Fig. 3 with two assigned scaling factors α∗ = 5 in
Figs. 3(a) and 3(b), α∗ = −5 in Figs. 3(c) and 3(d).
In Fig. 3, the parameters are set as ρ = 1, ε = 10,
a = 1, β = 16, c = −0.143, γ = 0 with the initial
conditions {xm, ym, z, xs, ys} = {−0.074, 0.023,
0.062, −0.05, 0.03}. We can see that PS happens
after a short transient under the control (14) and
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Fig. 3. Controlled PS for Chua’s circuit (a = 1, ρ = 1, ε = 10, β = 16, c = −0.143 and γ = 0). (a) Synchronized trajectories
with an assigned scaling factor α∗ = 5, (b) the evolutions of the ratio rs cos(θs − θm)/rm, (c) synchronized trajectories with
an assigned value α∗ = −5 and (d) the evolutions of the ratio rs cos(θs − θm)/rm. Initial condition is set as {xm, ym, z, xs,
ys} = {−0.076, 0.009, 0.122, −0.05, 0.03}.

the scaling factors are directed onto the desired val-
ues [α∗ = 5 in Fig. 3(b) and α∗ = −5 in Fig. 3(d)].
The effects of k1 and k2 on the control are displayed
in Figs. 3(b) and 3(d).

4. Discussions

The previous two examples provided are the cases of
three-dimensional systems. Theoretically, the con-
trol method could be applied to high dimensional
systems. It seems always possible to find a control
vector to enable the derivative of Lyapunov func-
tion V to be negative. As an example for high di-
mensions, we apply the control to the hyperchaotic

Rössler system [Rössler, 1976]

ẋ = −y − z ,
ẏ = x+ ay + w ,

ż = b+ xz ,

ẇ = cz + dw ,

(15)

where the parameters are set as a = 0.25, b = 3,
c = −0.5, d = 0.05. For the coupled system (15),
u = (x, y, z), e = (e1, e2, e3), v = (v1, v2, v3) with
w as the coupling variable. The occurrence of PS
in the system (15) could be realized by setting the
control vector as
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Fig. 4. Controlled PS for the hyperchaotic Rössler system
(a = 0.25, b = 3, c = −0.5, d = 0.05) with the desired scaling
factors α∗ = 5. Initial condition is set as {xm, ym, zm, w, xs,
ys, zs} = {−10, 20, 20, 30, 10, 20, 10}; (a) two synchronized
trajectories (in x–y plane) move with the same phase angles,
(b) the evolutions of the ratio rs cos(θs−θm)/rm, which tends
to α∗ = 5.


v1 =−e2−e3+k−1e1

v2 =e1+(α∗−1)w+k2e2

v3 =α∗xmzm−xszm
+ (α∗−1)b+k3e3

, k1>0, k2>−a, k3>0 .

(16)

A controlled PS is displayed in Fig. 4 with a de-
signed scaling factor α∗ = 5.

In conclusion, we have introduced a control
method for developing PS in nonpartially linear sys-
tems. The method allows us to manipulate the
response dynamics in a duplicated pattern with
any scalar multiple of the driving dynamics. To

illustrate the control algorithm, we applied it to the
Rössler system and the Chua’s circuit. The effec-
tiveness of the method for high dimensional chaotic
systems is demonstrated in the hyperchaotic Rössler
system. The numerical results indicate that PS can
be extended to general classes of coupled nonlin-
ear chaotic systems with a desired scaling factor by
adding a control vector to the response system. The
control vector is determined based on the Lyapunov
stability theory, guaranteeing the global stability of
the control.
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