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P. C. Snijders,1,* E. J. Moon,2 C. González,3 S. Rogge,1 J. Ortega,3 F. Flores,3 and H. H. Weitering2,4

1Kavli Institute of NanoScience Delft, Delft University of Technology, 2628 CJ Delft, The Netherlands*
2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
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Ga adsorption on the Si(112) surface results in the formation of pseudomorphic Ga atom chains.
Compressive strain in these atom chains is relieved via creation of adatom vacancies and their self-
organization into meandering vacancy lines. The average spacing between these line defects can be
controlled, within limits, by adjusting the chemical potential � of the Ga adatoms. We derive a lattice
model that quantitatively connects density functional theory (DFT) calculations for perfectly ordered
structures with the fluctuating disorder seen in experiment and the experimental control parameter �. This
hybrid approach of lattice modeling and DFT can be applied to other examples of line defects in
heteroepitaxy.
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Many physical, chemical, and biological phenomena are
manifestations of self-organization of matter, such as crys-
tal growth, protein folding, or formation of galaxy clusters.
Well-known examples of self-organization in advanced
materials systems include the formation of magic metal
clusters, pyramid quantum dots, quantum dot superlattices
in heterostructures [1], and the ordering of atom vacancies
into line defects or vacancy line superstructures [2– 4]. For
application purposes, it would be essential to control the
size, uniformity, and spacing of such nano-objects. This
goes against the odds of thermodynamic fluctuations that
are especially profound in low-dimensional systems, and
the stochastic nature of nucleation and growth.

Here, we show that the average spacing between VLs in
a monatomic Ga layer on Si(112) can be controlled and
varied continuously, within limits, via the chemical poten-
tial of the adsorbate species,�. Ga vacancies self-organize
into a n� 1 VL superstructure [Fig. 1(a)–1(c)], similar to
the formation of the well-known n� 2 superstructures for
Ge on Si(100) [2–4]. Entropic fluctuations compete with
this ordering process, however, resulting in meandering
VLs where the average line spacing is fixed by the chemi-
cal potential. The meandering amplitude is limited by
elastic repulsions between VLs. Such a two-dimensional
(2D) interacting vacancy line system has been modeled as
a 1D random walker trapped in a harmonic potential repre-
senting the collective mean field of all the other VLs [4].
For systems such as Ge on Si(100), this 1D model seems to
capture the observed meandering quite well, allowing for a
straightforward determination of the kink energy and line
repulsion from statistical analysis of fluctuations in
Scanning Tunneling Microscopy (STM) images. Step fluc-
tuations on vicinal crystal surfaces have been analyzed in
similar fashion, using continuum modeling [5].

An interesting question is how the constraints imposed
by the discreteness of a lattice modifies the elastic inter-
actions that are driving the self-organization of vacancies,

particularly for short VL spacings. Discrete VL spacings
conceivably lead to significant vacancy-vacancy correla-
tions that cannot be captured by the usual mean field or
continuum models. Ga on Si(112) turns out to be an
interesting test case. By tuning the average line spacing
between n � 5 and n � 6 (see Fig. 1) we find that the
discrete distribution of VL spacings does not follow the
scaling behavior predicted by the mean field model, and
that correlations cannot be ignored. Guided by these ex-
perimental observations, we construct a lattice model in
which the surface is represented as an entropic mixture or
solid solution of different m� 1 building blocks (hence-
forth m will be reserved for integers and n for the average
periodicity). The model naturally takes into account the
discrete nature of the VL spacing and contains only two
parameters: (1) the chemical potential of the adsorbate

FIG. 1 (color online). (a)–(c) STM images of the Ga-covered
Si�112�n� 1 surface: (a) n � 5:49, (b) n � 5:68, and
(c) n � 5:88. (d) Topview and (e) sideview of a ball and stick
representation of the Si�112�6� 1-Ga surface.
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which can be varied experimentally; and (2) the repulsive
interaction between VLs, which is calculated from density
functional theory (DFT) and verified experimentally. The
lattice model connects the DFT results, calculated for
perfect order, with the fluctuating disorder seen in
experiment.

Experiments were carried out in ultrahigh vacuum, em-
ploying STM and low energy electron diffraction (LEED).
Detailed experimental procedures for obtaining the
Ga=Si�112��n� 1� surface reconstruction have been re-
ported elsewhere [6]. The n� 1 periodicity was controlled
by adjusting the Ga flux. All samples were equilibrated at
810 K for about 15 minutes and subsequently cooled to
room temperature at �2 K= sec. Theoretically, within our
local orbital DFT calculation (see below), the 6� 1 struc-
ture is stable for �0:6<�<�0:2 eV while the 5� 1
structure is stable below �0:6 eV (�bulk � 0). � can be
estimated from � � �bulk � kT ln�pc=ps�, where pc and
ps are the Ga vapor pressures inside the effusion cell and at
the sample, respectively [6].

Figures 1(a)–1(c) show three large-scale empty state
STM images of the Si�112�n� 1-Ga surface, obtained at
different �. Dark VLs meander perpendicular to the Ga
adatom rows [6]. From these images, we identified several
m� 1 unit cells where ma is the spacing between neigh-
boring Ga vacancies along the �1�10	 direction (a �
0:384 nm is the lattice constant). A row of Ga atoms is
adsorbed at the (111)-like step-edge sites of the Si(112)
surface, while a second row of Ga atoms is adsorbed on the
terrace sites [Fig. 1(d) and 1(e)] [6]. The resulting zigzag
chains are interrupted by the meandering VLs. For each
m� 1 unit cell, there are m� 1 Ga atoms on the terrace
sites whereas the number of step-edge Ga atoms fluctuates
between m� 2 and m [6]. Therefore, in order to acquire
statistical information on the distribution of unit cell sizes,
one needs to collect large-scale images and count the num-
ber of terrace atoms within each unit cell. This was most
easily accomplished using empty state images (Fig. 1).

The probability distributions of the m� 1 unit cells
from these images are shown in Fig. 2 for different average
periodicities with 5< n< 6 (i.e., different �). A typical
sample image contained about 2000 unit cells. The vast
majority of unit cells are either 5� 1 or 6� 1 with a small
percentage of 4� 1 and 7� 1 unit cells. As shown, the
experimental distributions can be fitted to Gaussian distri-
bution functions with great accuracy. The Gaussian widths
are practically constant (� � 0:49
 0:02) for the indi-
cated values of n, conflicting with the 13% change pre-
dicted by the continuum model [4,5].

Figure 3 shows the LEED line profiles along the �1�10	
direction for various � (and thus various n). The fractional
order spots are incommensurate with the integer order
reflections and shift continuously with �. They can only
be indexed with three indices, instead of the two usual (h,
k) Miller indices, ~q � �h
 p=n� ~a� k ~b�, where �a� and �b�

are the reciprocal lattice vectors parallel and perpendicular

to the Ga chains, respectively, and ~q is the momentum
transfer. The fractional number n represents the average
VL spacing (see below) and p is an integer. Evidently,
varying amounts of Ga on the surface result in an entropic
mixture of 5� 1 and 6� 1 units. This is consistent with an
autocorrelation analysis of the VL pattern in the STM
image (not shown) that shows that the sequence of 5� 1
and 6� 1 units along the [1�10] direction is random.
Indeed, the periodicity from LEED coincides with the
centroids of the Gaussian fits in Fig. 2 to within 1%.

Next, we analyze the distribution of unit cells in the
surface by combining DFT calculations with a 1D lattice
model. First, we analyze the interaction between VLs via
DFT–local-density approximation (DFT-LDA) total-
energy calculations, for different periodic m� 1 recon-
structions (m � 4, 5, 6, 7 or 8). From these calculations we
obtain um�1 � ��em�1 � nGa��, where em�1 is total en-
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FIG. 2. Normalized distributions of m� 1 unit cells on the
surface, fitted with Gaussians. The centroid of Gaussian distri-
bution shifts from n � 5:28 to n � 5:95 with increasing �. Their
standard deviations are � � 0:49
 0:02. Inset: um�1 [in eV; see
Eq. (1)] versus 1=m2 for m � 4, 5, 6, 7, and 8 from DFT
calculations for � � �0:55 eV.
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FIG. 3. LEED intensity profiles of the Ga-covered Si�112�n�
1 surface (70 eV). The average n� 1 periodicities determined
from the intensity profiles are indicated on the right. Dotted lines
follow the continuous shifts of the fractional order spots. Inset:
sections of the LEED image for n � 5:97 and n � 5:21.
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ergy per m� 1 unit cell, and nGa � 2�m� 1� the number
of Ga atoms per m� 1 unit cell. The variation � is taken
with respect to a hypothetical surface without VLs [7]. We
used an efficient local orbital DFT-LDA code [8]. The use
of a local orbital approach guarantees that the basis set is
strictly the same in the different calculations [9]. The inset
of Fig. 2 shows um�1 plotted as a function of 1=m2. The
straight line indicates that the repulsive interaction be-
tween VLs is elastic in nature [10]. Accordingly [11]:

 um�1 � ��G=m2 (1)

whereG defines the repulsive interaction between VLs and
� is the formation energy per unit cell of a VL that
implicitly depends on � [12]. From the slope of um�1

versus 1=m2, we obtain G � 19
 1 eV.
In a second step we introduce a 1D lattice model in

which the surface is considered as an entropic mixture of
differentm� 1 unit cells, thus neglecting the 2D meander-
ing along the VLs. The following analysis of the VL
interactions and kink energy is conceptually different
from the mean field analysis in, e.g., Ref. [4], which
described the meandering of an individual VL in a mean
field potential as a function of the kink energy. Here, we
derive a unit cell distribution by considering an ensemble
of straight lines with no kinks. Kinks are analyzed sepa-
rately without reliance on a mean field model.

In our lattice model, the VLs are straight lines and the
system is characterized by the numbersNm (m � 4, 5, 6, 7)
representing the number of 4� 1, 5� 1, 6� 1, and 7� 1
unit cells of the system, and the number of VLs is N �
N4 � N5 � N6 � N7. According to our previous discus-
sion, we write for this 1D model:

 U � ��E��NGa� � N��
X
m

NmG=m
2; (2)

where E is the total energy of the surface and NGa �
6N4 � 8N5 � 10N6 � 12N7 the number of Ga atoms on
the surface. We can define the following partition function
Z:

 Z �
�

N!

N4!N5!N6!N7!

�
exp

�
�
U
kT

�
(3)

and maximize Z with the condition that M � 4N4 �
5N5 � 6N6 � 7N7 is constant (i.e., the size of the system
is fixed). This yields a set of equations that give nm �
Nm=N as a function of � and T:

 ln�n4
5=n

5
4	 � ��� �1=42 � 1=�4� 5� � 1=52�G	=kT;

(4)

 ln�n5
6=n

6
5	 � ��� �1=52 � 1=�5� 6� � 1=62�G	=kT;

(5)

 ln�n6
7=n

7
6	 � ��� �1=62 � 1=�6� 7� � 1=72�G	=kT:

(6)

The numerator on the right hand side of these equations
is related to um�1 for the different m� 1 periodic recon-
structions. For example, 6u5�1 � 5u6�1 obtained via
Eq. (1) equals the numerator on the right in Eq. (5). This
result allows us to make a direct connection between the
lattice model, Eqs. (4)–(6), and the DFT-LDA calculations
performed for um�1.

By fitting Eqs. (4)–(6) to the distributions of m� 1 unit
cells observed experimentally (see Fig. 2), we determine
G=kT � 570
 100 [13]. Here, the relevant temperature is
the temperature TF below which the distribution is frozen.
TF can be estimated from the LEED line profiles. We find
that TF  400
 100 K [14]. Using this value for TF to-
gether with our LDA result for G (G � 19
 1 eV), we
obtain G=kT � 550
 170, in good agreement with the
value obtained above from the fitting to Eqs. (4)–(6).
From the fitting, we find that the width of the distribution
depends only on the ratio G=kT whereas the average
periodicity depends on both G=kT and � [13].
Specifically, � varies by 0:32
 0:08 eV for 5:21 � n �
5:95, in good agreement with our local orbital calculations
showing a variation in � of 0.26 eV.

We finally turn our attention to the 2D meandering
behavior and determination of the kink energy. We restrict
our analysis to the case n � 5:49: in this case the surface
contains almost equal amounts of 5� 1 or 6� 1 unit cells,
with a negligible number of 4� 1 and 7� 1 unit cells (out
of N � 3461 unit cells analyzed we found only six 4� 1
and five 7� 1 unit cells), and will be neglected in the
following analysis.

A vacancy can be located in between a 5� 1 and 6� 1
unit cells, a configuration which we denote as 5

6 ; other
configurations are 6

5 , 6
6 and 5

5 . Similarly, the kinks in the
VLs can be classified according to the configuration of the
four surrounding unit cells, as, e.g., 6

5
5
6 , Fig. 4(a), or 6

6
6
5 ,

Fig. 4(b), etc. Only kinks of the type 6
5

5
6 or 5

6
6
5 appear as

regular kinks: all other kink configurations imply the pres-
ence of a correlated kink in a neighboring VL, as indicated
by the circles in Fig. 4(b). Thus, we use the terms regular

(e)

65
_ _6 5 __

6
6

6
5

(d)(c)(a) (b)

FIG. 4. Schematic drawing of different kink configurations.
Light/dark rectangles represent 6� 1=5� 1 unit cells.
(a) Regular kink, (b) nonregular kinks (see text). (c) and
(d) Two possible configurations for the model system used in
our analysis. Circles in (a)–(d) highlight kink positions.
(e) Shows a portion of the oblique lattice used in the DFT
calculations of the kink energy (oblique lattice vectors indicated
by arrows).
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kink, to refer to 6
5

5
6 or 5

6
6
5 kinks, and nonregular kink for the

others. Experimentally, we counted the total number of
kinks, NK, as well as the number of regular NR and non-
regular NNR kinks, obtaining NK=N � 0:060 and
NNR=NR � 0:20. If all kinks were created independently,
as implicitly assumed in mean field models of VLs [4],
then the ratio NNR=NR should have been 0.13 for the
present case with NK=N � 0:06. The �50% higher frac-
tion of nonregular kinks observed here implies correlated
meandering, meaning that kink energies cannot be calcu-
lated reliably using the mean field model [4].

Based on the experimentally observed absence of order-
ing of the different m� 1 unit cells in the [1�10] direction,
we analyzed the number of one-step kinks, NK, along a VL
using the model system depicted in Figs. 4(c) and 4(d). In
this model system of 4� 2 � 8 unit-cells, we consider
all 28 � 256 possible configurations of 5� 1 and 6� 1
unit cells; the probability of each is proportional to
exp��nkek=kTF� where nk is the number of kinks it
contains and ek the kink energy. We find that the ratios
NK=N and NNR=NR are already converged for this
small-size model system. From this model we obtain
NK=N as a function of exp��ek=kTF�, and deduce the
kink energy ek using the experimental ratio NK=N �
0:06 and TF � 400 K. This yields ek � 73
 20 meV.
From this model we can also obtain NNR=NR as a function
of exp��ek=kTF�, and obtain an independent estimate of
the kink energy. This procedure yields ek � 68
 20 meV,
showing the consistency of this analysis (the errors mainly
arise from the large uncertainty in TF). We also estimated
the kink energy ek by means of DFT calculations for a
periodic 6� 1 and 5� 1 arrangement of kinks using
oblique lattice vectors; see Fig. 4(e). These calculations
yield ek � 80
 10 meV and ek � 88
 10 meV, respec-
tively, in excellent agreement with the experimental values
above. Note that a mean field analysis using NK=N � 0:06
would have produced a higher kink energy of 119

30 meV. This overestimation is consistent with the fact
that vacancy correlations are not included in the 1D mean
field model, although they effectively suppress thermal
meandering.

In summary, the self-organization process of atom va-
cancies in the Ga=Si�112� interface can be experimentally
controlled via the chemical potential of the adsorbate. A
new lattice model accurately connects first principles DFT
calculations for ordered structures with experimental data
from disordered structures, and naturally incorporates the
chemical potential. This hybrid approach of lattice model-
ing and DFT may be useful to other self-organization
processes where fluctuations are bound by discrete length
scales in the system.
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