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CONTROLLED TOPOLOGY IN GEOMETRY 

K. GROVE, P. PETERSEN V AND J. Y. WU 

The purpose of the present note is to announce some finiteness theorems 
for classes of Riemannian manifolds (cf. A, B and D below). 

Let ^*$v(n) denote the class of closed Riemannian «-manifolds with 
sectional curvatures between k and K, diameter between d and D, and 
volume between v and V. Here k < K are arbitrary, 0 < d < D, and 
0 < v < V, 

THEOREM A. For n ^ 3,4 the class ^£%'y,cc{n) contains at most finitely 
many diffeomorphism types. 

This unifies and generalizes the following two theorems in high dimen­
sions. 

THEOREM (J. CHEEGER [C, P]). The Class ^^°°{n) contains at most 
finitely many diffeomorphism types. 

THEOREM (K. GROVE, P. PETERSEN [GP]). The class ^ ° ^ ' ° ° contains 
at most finitely many homotopy types. 

For k > 0 and n = 3, the conclusion in Theorem A follows by Hamil­
ton's theorem in [H]. For k > 0 and n = 4 the fundamental group is 
either trivial or Z2 by Synge's theorem. Using Freedman's classification of 
simply connected topological 4-manifolds together with the above theorem 
and standard surgery theory then yields (cf. also [HK]). 

COROLLARY B. For k>0 the class ̂ ^'^'^(n) contains at most finitely 
many diffeomorphism (resp. homeomorphism) types when n ^ 4 (resp. n = 
4). 

The basic construction in [GP] exhibits for each M G ^^f'^in) a 
suitable strong deformation retraction of an a priori neighborhood of the 
diagonal inMxM onto the diagonal This enables one to findR, C> 0 so 
that for all p e M the metric r-ball B{p, r) is contractible inside B(p, C-r) 
whenever r < R. This latter property carries over to any compact space 
X = limMfc in the Gromov-Hausdorff closure of Jf£%f,00(n), moreover 
dim AT < n, cf. [PV]. Using the local contractibility properties, rather than 
the deformations as in [GP], one gets homotopy equivalences 
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for large k, where diam ƒ* = sup{diam f fI (x)\x 6 l } ^ 0 and diam gk -» 
0 as k —• oo, cf. [PV]. In particular, X is «-dimensional. 

It is a fairly easy consequence of results due to Begle [B] that X = lim Mk 
must be a homology manifold. 

Combining all these properties of X allows us to apply a result of 
F. Quinn [Q] to conclude that X admits a resolution for n > 4. If in 
addition n > 5, and X satisfies the disjoint disc property (DDP), it must 
be a topological manifold according to a theorem of R. D. Edwards, cf. 
[E, DJ. To see that X = limAf̂  indeed satisfies the DDP, one uses the de­
formations associated with Mk together with the homotopy equivalences 
fk,gk. Hence 

THEOREM C. For n > 5 any compact metric space in the Gromov-
Hausdorff closure ofJ?£%f,00(n) is a topological n-manifold. 

Having shown that X is a topological manifold of dimension > 5 a result 
of T. A. Chapman and S. Ferry fCF, F] implies that for k sufficiently 
large gk can be deformed to a homeomorphism. Since the closure of 
<^k^'v,00{n) is compact, cf. [G], we conclude that this class contains at 
most finitely many homeomorphism types. By a general result of R. Kirby 
and L. Siebenmann [KS], Theorem A follows. 

The same argument as outlined above yields finiteness for diffeomor-
phism types rather than homotopy types in a finiteness theorem by 
T. Yamaguchi, cf. [Y]. In particular, 

THEOREM D. For n > 5 the class of closed n-manifolds with injectivity 
radius bounded from below and volume from above, contains at most finitely 
many diffeomorphism types. 
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