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Controlled Tripping of Overheated Lines
Mitigates Power Outages

René Pfitzner, Konstantin Turitsyn, and Michael Chertkov

Abstract—We study the evolution of fast blackout cascades in
the model of the Polish (transmission) power grid (2700 nodes and
3504 transmission lines). The cascade is initiated by a sufficiently
severe initial contingency tripping. It propagates via sequential
trippings of many more overheated lines, islanding loads and
generators and eventually arriving at a fixed point with the
surviving part of the system being power-flow-balanced and the
rest of the system being outaged. Utilizing an improved formof
the quasi-static model for cascade propagation introducedin our
earlier study (Statistical Classification of Cascading Failures in
Power Grids, IEEE PES GM 2011), we analyze how the severity
of the cascade depends on the order of tripping overheated
lines. Our main observation is that the order of tripping has a
tremendous effect on the size of the resulting outage. Finding the
“best” tripping, defined as causing the least damage, constitutes
a difficult dynamical optimization problem, whose solution is
most likely computationally infeasible. Instead, here we study
performance of a number of natural heuristics, resolving the next
switching decision based on the current state of the grid. Overall,
we conclude thatcontrolled intentional tripping is advantageous in
the situation of a fast developing extreme emergency, as it provides
significant mitigation of the resulting damage.

Index Terms—Power grids, Power system faults, Power trans-
mission, Power Outages, Power Flows, Cascades, Power system
control, Optimization

I. I NTRODUCTION

The effect of large power grid blackouts on the economy
and on our everyday life is enormous. Unfortunately the grid
of today in the US, and also in many other countries, operates
on the edge, thus making large and costly blackouts, such as
the August 2003 East Coast blackout, more and more prob-
able. Increase in energy consumption with a pace exceeding
reinforcement of the power systems, growing fluctuations (e.g.
associated with intermittency of new renewable sources) and
insufficient upgrade of the transmission system are the major
factors leading to increase of the failure probability. This paper
contributes to the recent line of research motivated by this
growing and important problem.

Cascades are extreme, and hopefully rare, processes. In this
manuscript we aim to analyze the final damage of a cascading
process taking place on the time scale of tens of seconds
to minutes, and to find a way of controlling the cascade
and minimizing its final damage via a carefully selected and
automatically executed sequence of line-trippings. The logic

The work at LANL was carried out under the auspices of the National
Nuclear Security Administration of the U.S. Department of Energy at Los
Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The
work of RP and MC is partially supported by NSF grant DMS-0807592.
The work of MC was funded in part by DTRA/DOD under the grant
BRCALL06-Per3-D-2-0022 on “Network Adaptability from WMDDisruption
and Cascading Failures”.

Fig. 1. Visualization of the Polish power grid (non-geographical). Small grey
circles denote consumer nodes. Bigger green circles denotegenerators. The
bigger the (green) circle the larger power generated.

here is that controlled tripping of overloaded lines, as a
replacement for the “do nothing” scheme, i.e. “waiting” for
probabilistically natural tripping, might be beneficial inthat
it redistributes power-flows in a favorable way. Our results
suggest that this is indeed a valid assumption. This type of
emergency control, however, will require on-the-fly state esti-
mation for computations and eventually selecting optimal (or
just good) control actions. The emergency setting also assumes
a flawless execution of these control actions. Both, discovering
and executing the cascade-mitigating strategy of the line
trippings, impose significant constraints on communications.
In this regards, our analysis emphasizes the importance of
fast and reliable communications necessary to mitigate fast
emerging cascades.

A number of modeling methodologies were developed to
study cascades, see [1], [2], [3] for comprehensive reviews.
Here we choose to work with a framework of microscopic
modeling and simulations of cascades, originated from [4],
[5] and continued in our recent paper [6]1.

1Note that this framework is different from the computationally advanta-
geous but pure phenomenological modeling of [7], [8], [9]. Once the micro-
scopic approaches, of the type discussed in this manuscript, are developed,
they should help selecting the right phenomenological candidate proper for
quantitative power grid modeling. The general importance of models which go
beyond pure graph-theoretical considerations was pointedout and quantified
before in [10].

http://arxiv.org/abs/1104.4558v2
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We study cascades in the power grid model of Poland,
shown in Fig. (1) in a non-geographical format, rendered
using Graphviz [11]. This model is publicly available as a
part of the MATPOWER computational package [12]. The
base case of the studied model corresponds to a peak load
(in the summer of 2004) of 18GW, which accounts to∼ 60%
of the total generation capacity. We follow the approach of
[6], [13] and resolve power-flows within the Directed Current
(DC) approximation [14]. We initialize a cascade by tripping
one or two lines in the base case. We propagate the cascade
via resolving power-flow equations. Then we trip randomly
one of the overloaded lines, check for islands (disconnected
components) and implement mandatory load shedding and/or
outage islands containing insufficient generation to supply
the load. We use the standard scheme ofdroop control to
redistribute generation at any of the steps in the process. We
iterate until a balanced solution on the surviving part of the
grid emerges. (See Fig. 2 for the flowchart of the scheme,
based on [6], with respective explanations of the scheme
briefly repeated in Section II.) We analyze the dependency
of the final damage (measured in terms of the fraction of
power demand not served, but also in terms of the number of
steps it takes to stop the cascade) on the specific choice of the
tripping sequence of overloaded lines. We pose the questionof
finding the optimal strategy of line trippings, i.e. the strategy
leading to the least final outage, and stress that this question
is a difficult one to answer precisely. Thus, we settle here
with the analysis of heuristic algorithms proposing to choose
the next-to-be-tripped line based on the current status of the
power flows. We consider four different heuristics, test their
performance on the Polish model and compare and discuss
the results in Sections III,V. A brief description of our main
findings is as follows:

• Random Tripping. (See Section III for details.) For any
initial tripping we consider multiple memoryless and
statistically uniform tripping paths, that is at each instance
of time we pick at random one of the overloaded lines
to become the next one to be tripped. In general, the
resulting distribution of final outage size is surprisingly
broad, with some tripping paths being almost ideal (in
terms of leading to either no or very small outage) while
others resulting in outaging a very significant portion
of the grid. This observation suggests that one benefits
by not waiting and thus effectively allowing the lines to
trip randomly, but instead initiating an optimal tripping,
resulting in a minimal finite damage.

• Control heuristics. (See Section V for details.) Finding
the optimal switching strategy is a difficult task, which
most probably results in a solution which cannot be stated
in terms of some graph-local rules. Aiming to reduce
complexity of this task, we rely on (and test) four intuitive
and simple graph-local heuristics. We observe, that even
these relatively simple heuristics may mitigate a severe
cascade. Heuristic, which according to our experiments
performs the best in most (but not all) cases, selects at any
instance to trip the least loaded of all the overloaded lines.
We relate this surprisingly good performance behavior to

a (simplified) hierarchical structure of the power grid.

We summarize our results and discuss future research direc-
tions in Section VI.

II. OUR MODEL

There exist multiple failure mechanisms which can lead
to cascades. The most standard failure is an incidental line
tripping. When the operational conditions are normal, tripping
of a line is a low probability event for example associated
with a tree falling on the line. However, if the operation
becomes abnormal and the power flowing through a line
exceeds its threshold capacity, the line tripping becomes
almost inevitable. In this extreme regime any small external
initiation, for example associated with a modest wind or a
perturbation caused by a bird flying near by, will almost
certainly (with probability one) result in a short circuit to
the ground, and thus inevitably lead to tripping in a matter
of minutes. Motivated by these considerations, we assume
in our modeling approach that the cascade is initiated by a
small number of co-incidental events, leading for example to
simultaneous tripping of one or two strong lines. If this initial
failure is sufficiently large, it leads (after resolving thepower-
flow equations) to some other lines exceeding their thermal
limits. These overheated lines are not tripped instantaneously,
but almost certainly one line will be tripped (due to increased
failure probability) within few minutes, if no operator action is
taken. It is natural to assume, that in this relatively shorttime
span left for the overloaded situation to be resolved, all other
external characteristics, such as configurations of loads and
uncontrolled generation (e.g. associated with renewables), re-
main unchanged. When developed naturally and not mitigated,
the cascade may be very large and damaging. This motivates
us to focus on possible preventive actions the operator (or an
automatic control system) can take during the period when the
line already exceeded its rating but it is not yet tripped. As
we will see below, it may be advantageous to trip overloaded
lines in a special order, minimizing the resulting final outage.
Indeed, tripping a line (i.e. changing the underlying topology)
redistributes flows and thus, if the order is chosen wisely, can
lead to a better redistribution of the outages over the grid,
possibly relieving lines from overload, or at least reducing the
remaining overload.

Our model reflects the existing reality of the power grid
automatic control. We assume that generation re-dispatch,
which is typically done every 15 minutes to an hour, is
not available for fast adjustment necessary to mitigate the
emergency overload. Hence, in the here considered timescale,
the system continues to operate under the primary (droop)
control, also supported by emergency load shedding. See
Section II-D for detailed discussion.

The flowchart diagram shown in Fig. 2 explains our cascade
model. We initiate the model with an Optimal Power Flow
(OPF) solution and introduce initial failures by tripping one
or more lines. We then check for islanding and include the
droop control mechanism to match generation and demand.
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Optimal Power Flow:d0, g0

initial line tripping

Identify islands

Droop Control Identify islands

Load Shedding

Power Flow cut one overloaded line

Line Check

Finish

no violation

violation

Fig. 2. Flowchart of our microscopic quasi-static model of the cascade.

Next, the scheme evaluates the PF solution2 on the new model,
checks if line flows exceed ratings and, if so, trip exactlyone
of these lines. Let us emphasize that the choice of tripping a
single line at once reflects the physical reality of the grid better
than simultaneous tripping of many lines one may consider to
simplify the model. Indeed, if the tripping occurs by itself
because the line exceeds its thermal limit, the event is random
and it is not correlated to other trippings. Also the typicaltime
between consecutive trippings is significantly longer thanthe
time for all the electric and electro-mechanical transients to
occur. (The transients are settled in seconds or even faster.)
Additionally, if the tripping would be initiated by a control
system, it is safer to trip lines one-by-one to avoid strong
perturbations and stronger transients. The cascade algorithm
is repeated until all the thermal constrains are resolved, and
a steady feasible solution is achieved. Different stages ofthe
algorithm are described in detail in the following subsections,
which mainly follows the logic of [6], also with addition of a
new ingredient - mandatory load shedding over an island with
an insufficient generation.

A. DC power flow

A general power-flow solver takes injection and consump-
tion of powers at all the nodes of the power grid and other
system parameters as input and outputs voltages and phases at
the nodes and powers transmitted over all the transmission
lines of the grid. Our cascading algorithm will work with
the most general power solver. However, and as in [6], we

2We choose to work here with the DC approximation, ignoring variations
in voltage and resistive characteristics of lines, and assuming that the phase
difference across any of the lines is sufficiently small. This approximation is
realistic and it also helps us to make the algorithm lighter and focus more
on the most important new ingredients of the model, associated with the
sequence of trippings and network effects. On the other hand, our scheme
certainly allows running more accurate AC power flow insteadof DC, and
thus accounting for voltage constraints at the nodes where voltage is not
controlled directly.

choose to work with a DC solver, which is a bit simpler in
implementation. The DC solver evaluates

∀i ∈ G0 :
∑

j∼i

pij =

{

gi, i ∈ Gg

−di, i ∈ Gd

0, i ∈ G0 \ (Gg ∪ Gd)
(1)

∀{i, j} ∈ G1 : θi − θj = xijpij (2)

wherex = (xij |{i, j} ∈ G1), g = (gi|i ∈ Gg), d = (di|i ∈
Gd), θ = (θi|i ∈ G0), p = (pij = −pji|{i, j} ∈ G1) are
the vector of line inductances, the vector of powers injected
at generators, the vector of demands consumed at loads, the
vector of phases and the vector of line flows, respectively.
(Here {i, j} is our notation for directed edges andj ∼ i
indicates thatj is the graph neighbor ofi.) Note that to
streamline notations, we used an abbreviated version of the
DC power flow equations in (1,2). In particular, we ignore
terms associated with tap transformers. In our simulationswe
utilize the DC-PF solver from the Matlab based MATPOWER
package [12] taking into account effects of transformers and
other devices included in the description of the Polish grid
model.

B. Optimal Power Flow

Our base solution is obtained by solving the standard
DC optimal power-flow problem, finding the optimum gen-
erator dispatch given the initial loadd0 and cost functions
f = (fi|i ∈ Gg) for every generator as well as generation
power and line capacity constraints. To execute this task we
use MATPOWER [12], and cost functions provided in the
description of the Polish model. The DC optimal power-flow,
in the simplest nomenclature, corresponds then to solving

min
p,g,θ

∑

i

fi(gi)

∣

∣

∣

∣

∣

Eqs. (1,2), whered → d0

∀{i, j} : |pij | ≤ pmax

ij

∀i : gmin

i ≤ gi ≤ gmax

i

(3)

for the branch flows,p, and generation powers,g. The resulting
p0, g0 and θ0 form the base (reference) solution for our
cascading algorithm.

C. Identify islands

Our algorithm does not generate a surviving balanced sub-
grid at once, but instead resolves it in steps, mimicking
dynamics of realistic cascades. The temporal evolution of
the surviving sub-grid is induced by cutting saturated lines,
which might also cause the formation of islands and removing
freshly formed but overloaded islands. We check for islanding
(i.e. splitting of the grid into independent components) using
a depth-first-search based algorithm. If an island is formed,
we do all other computations within the cascading algorithm
independently for every island.

D. Droop Control and Load Shedding

In the process of evaluating the cascading algorithm it can
happen, due to tripping of overloaded lines, that some loads
or generators will become disconnected from the grid or that
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the grid splits up into islands. Both scenarios require fast
automatic redistribution of generation, done in the so-called
droop control fashion [14].

Droop control is executed at each generator locally in
response to an increase or decrease of the system frequency
(measured locally as well). Droop control in our algorithm is
necessary if the grid changes its structure, i.e. followingthe
appearance of new island(s) in the result of line tripping. Here
we assume that the power generation,gi(+), at nodei after
this events is

gi(+) =
gi(−)

gΣ(−)
dΣ(+), (4)

where the newly introduced quantities on the right hand
side of Eq. (4) are the current power generation,gi(−), at
node i; the total power generation (before droop control),
gΣ(−) =

∑

j∈Σg
gj(−), at the freshly formed island,Σ ⊂

G, the generator belongs to; and the total power demand,
dΣ(+) =

∑

j∈Σd
dj(+), of the island. Droop control is

executed at every generator of the grid instantaneously. Note
that the ratio on the right hand side of eq. (4) changes in the
process of our discrete event simulations in accordance with
the modification of islands. If at some point in the process
a generator becomes saturated, we do not include it anymore
in the droop control mechanism described above, but instead
keep its generation level constant (at the maximum generation
capacity). As long as demand and total power generation can
be matched, the island persists. If the total demand in the island
exceeds generation capacity, one first tries to shed10% of the
loads, and then shuts the island down only if the latter is not
successful in balancing the remaining load. This load shedding
scheme is a simple proxy of the “real world” mandatory
load shedding implemented in cases of extreme emergency.
To inspect the effect of load shedding, we also compare the
results against an even simpler strategy considered in [6].Here
we skip the load shedding step and switch off an overloaded
island immediately.

III. R ANDOM (NATURAL ) TRIPPING

We first consider random (natural) tripping. The idea is
straightforward: at each step of the cascade consider all
overheated lines on equal footing and pick one of the lines
at random. This uniform and memoryless direct sampling
generates a tripping path which stops eventually. We repeat
this process many times for each initial tripping. The results
are presented in the form of histograms in Figs. (3,4,5,6) for
four representative examples of initial tripping(s). Of the four
examples considered, the first three shown in Figs. (3,4,5)
correspond to initial tripping of a single line, enumeratedas
line 44, 2832and102 respectively. In the last example shown
in Fig. (6) we initiate by tripping two lines simultaneously
(line 3 and29).

We motivate our choice of initial tripping by the following
considerations:

• Tripping a single line (or a small number of not highly
loaded lines) will most likely not lead to any cascade at
all, due to then − 1 contingency criterium. Hence, we
created the candidate list of the top 1% most loaded lines.

• In pre-simulations (data not shown) we sampled over
all possible initial trippings of single lines within this
list and studied the resulting blackout size. Most of the
pre-samples did not produce any notable outage, what
we attribute to enforcement of then − 1 contingency
constraint in the base case. Out of the “bad” samples,
producing notable outage, we chose lines44, 2832 and
102 for the simulations discussed in the manuscript.

• Contingency tripping of more lines gets unlikely in a real
scenario. However, we choose again to do pre-sampling
over all combinations of initially tripping exactly two
lines out of the 1%-list and studied the resulting blackout
size. Again, most combinations (not containing any of
three in the previous bullet chosen lines) did not result in
significant outage. Out of the ones which did, we chose
the combination of tripping line3 and 29 for our main
simulations.

There are a number of important observations one can make
from analyzing the histograms shown. First of all, the four
examples (with different initiations) are all different interms of
the average size of the outage, even though they all correspond
to approximately the same amount of the initial power loss.
Indeed, in the example with tripping line44 and the example
where lines3 and29 were tripped simultaneously, the average
damage is significantly larger than in the other two examples
considered. Second, and probably most importantly, in all of
the four cases the resulting distribution is rather broad. Given
the severity and costs of a large blackout, it is especially
troublesome to observe that in all these examples ending in
a serious outage is very much possible. This suggests that
choosing a particular sequence of trippings can make a big
difference. This observation motivated the development of
relatively simple (on-line and memoryless) control heuristics
discussed in the next Section. Third, in three of the four
cases the number of good instances (with zero or small final
damage) is significant and even in the worst case (tripping
of line 44) it is still nonzero. This suggests that if one can
run fast reliable simulations off-line, simply sampling the
tripping paths uniformly and in a memoryless fashion, then
picking the sequence giving the least final damage and tripping
the actual lines (on line) accordingly, would give a very
reasonable control scheme. (Note that this sampling strategy
will only suffice if the state of the system is well known. If
computational resources and the time allocated for the off-
line computations are sufficient the sampling approach will
work well. On the other hand, when the tripping action needs
to be taken care of immediately one will need to rely on
a more efficient control heuristic.) Finally, we observe that
the histograms are not monotonic, often showing second and
sometimes third local maxima. We associate this observation
with complexity of the underlying network and microscopic
resolution of cascade process.

The insets of Figs. (3,4,5,6) also show scatter plots relating
the length of the cascade (measured in terms of the number
of lines tripped) to the size of the resulting blackout (fraction
of load not served). The main observation here is that the two
characteristics are strongly correlated: the larger the outage the
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longer the cascade.

IV. EFFECT OF LOAD-SHEDDING

Fig. 7 shows results equivalent to these shown in Fig. 3,
howeverexcluding load-shedding and thus switching off an
overloaded island immediately. We discover that the overall
effect of the load shedding does not lead to any significant
qualitative changes in the outage distribution function, even
though some quantitative changes were observed, in particular
in the low-outage scenarios which show a slightly better
performance in the case without load shedding.

V. CONTROL OF THETRIPPING PATH

The aforementioned observation of the strong sensitivity of
the outage size to changes in the tripping sequence suggests
that designing the optimal strategy, leading to the smallest
outage, is an extremely important problem. It is also a hard
problem, due to the complex topology and dynamics of the
network. We will not attempt to approach this difficult problem
systematically here. Instead, we suggest to test some simple
memoryless heuristics, i.e. algorithms choosing the next-to-
be-tripped line based on the current state of the active partof
the grid. We tested the following four schemes:

A1 Trip the line,(i, j), with the minimal current power flow,
Pij = min{PO};

A2 Trip the line,(i, j), with the maximal current power flow,
Pij = max{PO};

A3 Trip the line, (i, j), with the minimal current relative
overload,pij = min{pO};

A4 Trip line, (i, j), with the maximal current relative over-
load,pij = max{pO};

where the relative overload is defined aspij = (Pij −
Pmax
ij )/Pmax

ij .
Our choice of the four strategies is motivated by the

following considerations.
(A1): Strategy (A1) was inspired by considering an over-
simplified hierarchical model with a tree-like structure, the
top level representing the transmission part of the grid. The
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lower in the hierarchy the line is positioned, the more likely
it is to carry less power. In this picture the majority of
generators would be on a high level in the hierarchy. Tripping
an overloaded line of comparably small power flow will
correspond to tripping a line at a low level, thus leading to
cutting a small sub-tree. This sub-tree possibly contains fewer
generators than needed to support their demands. Hence, the
sub-tree will most likely shut down. Since the tripped line is
(most probably) from the low level, the shut down demand will
be rather small. This kind of “load shedding” will effectively
de-stress the system and eventually lead to a stable power flow
solution with no overloaded lines on higher levels. Obviously
the Polish grid is not cleanly hierarchical, containing sufficient
number of loops. However, the number of edges and vertexes
in this relatively large grid is roughly the same, suggesting
that at least locally the graph is somewhat tree like. This
observation is also supported by Fig. 1, showing an illustration
of the topology of the Polish power grid. Overall, the above
arguments suggest that the tree/hierarchy based strategy (A1)
may be working reasonably well.
(A2): The second strategy was suggested as the inverse of
(A1). It is also a greedy strategy: taking care of the worst local
problem, and thus ignoring any possible long correlations and
structural connections.
(A3): The logic behind (A3) is similar to (A1), however
suggesting to use the relative overload instead of the absolute
overload as an alternative (and possibly more accurate) mea-
sure of the line stress. And indeed, the (A3) scheme shows
performance very similar to (A1) in our base experiments.
However, it becomes less efficient (than (A1)) in the simplified
trials, ignoring mandatory load shedding.
(A4): This strategy is similar to (A2) in what concerns being
greedy and focusing first on the worst local problem. The
difference with (A2) is in the replacement of the absolute
overload criterium of (A2) by the relative (and re-scaled) one
in (A4). One may argue that the relative criterium of (A4)
mimics the “natural” sequence of trippings (i.e. the one which
takes place without “line switching” control) better than (A2)
and better than tripping overloaded lines uniformly. Indeed,

the probability of natural tripping of a line does not depend
on other lines (therefore, it is local), and it will also be a fast
(possibly exponential) growing function of the line relative
overload. We want to stress that all these decision schemes
relay on fast uplink communications (to a central location)of
the current line status (overloaded or not, and if overloaded
by how much) followed by a tripping signal communicated
downlink.

We compare performance of the four schemes against
each other and also against the random uniform trippings in
Figs. (3,4,5,6). We observe that our hierarchical interpretation
of the Polish grid was in majority of cases (but not always)
reasonable. In all, but the third example of Fig. (5), (A1) isa
clear cut winner, and generally (A2) and (A4) are performing
worse than (A1) and (A3). Also, and quite remarkably, uniform
tripping was rather successful in the cases of Figs. 4,5 and 6,
resulting in no damage (or almost no damage) for significant,
O(1), number of samples. In the case of the Fig. 6, random
tripping leads to almost no damage in22% of samples, note
however that the worst of the400 samples has lead to a very
severe damage - removal of60% of loads. In general, the
tests were inconclusive in terms of looking for a universally
reliable heuristics. It leads us to believe that finding the optimal
strategy is not going to be easy, and hence making massive
off-line sampling (given reliable state estimations) willlikely
be the most reliable choice.

VI. SUMMARY

The research presented in this manuscript extends and
complements previous studies of control and optimization
for mitigating blackouts and vulnerability analysis of power
grids [15], [13], [16], [17], [18]. Of many possible theoretical
control actions capable to mediate emerging cascade, such
as generator dispatch or load shedding, we focus here solely
on analysis oftripping of already overloaded lines. In what
concerns sequential removal of overloaded lines, our numerical
study can also be viewed as suggesting dynamic extension
of the staticN − k contingency problem analyzed in [19].
We perform our study on a real-world power grid structure,
using a microscopic DC power flow approximation, however
to generalize our analysis to the general AC framework will
be straightforward. We showed that controlled tripping of
overloaded lines may lead to significant mitigation of the
resulting damage, as it forces the cascade to go through a less
damaging scenario as if it would develop by itself without
the mitigation. The problem of finding an universally optimal
sequence of trippings is computationally hard. To mitigatethe
hardness we settle in this study on suggesting and analyzing
some plausible tripping heuristics, formulated as graph-local
searches over the current state of the grid, which is memoryless
and requires efficient communications of the SCADA type. Of
the strategies considered, the heuristics performing the best
in the majority of cases suggest to trip the least overloaded
line first. We plan to extend this study by analyzing other
grids, work on improving algorithm, e.g. analyzing more so-
phisticated optimization schemes including searching through
strategies over anticipated future moves (with time horizon),
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and analyze hybrid control schemes combining line tripping
with other actions, such as emergency generation dispatch.
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