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Abstract

Real-time cooperation between autonomous vehicles can enable time-critical missions
such as tracking and pursuit of a dynamic target or environmental feature, but
relies on wireless communications. Underwater, communication over distances be-
yond about one hundred meters is almost exclusively accomplished through acoustics,
which bring challenges such as propagation delays, low data rates, packet loss, and
scheduling constraints due to interference and limited bandwidth. These limitations
make underwater pursuit missions preeminent applications of networked control. Mo-
tivated by such applications, this thesis presents contributions towards multi-vehicle
feedback control in the presence of severe communication constraints.

The first major area of work considers the formulation and solution of new un-
derwater multi-vehicle tracking and pursuit problems using closed-loop control. We
begin with a centralized robust optimization approach for multicast routing and power
control which is suitable for integration with vehicle control. Next, we describe field
experiments in range-based target pursuit at high tracking bandwidths in a chal-
lenging shallow-water environment. Finally, we present a methodology for pursuit of
dynamic ocean features such as fronts, which we validate using hindcast ocean model
data. The primary innovation is a projection algorithm which carries out linearization
of ocean model forecast dynamics and uncertainty directly in vehicle coordinates via
a forward model technique. The resulting coupled linear stochastic system is suitable
for networked control.

The second area of work presents a unified formalism for multi-vehicle control
and estimation with measurement, control, and acknowledgment packets all subject
to scheduling, delays and packet loss. The modular framework we develop is built
around a jump linear system description incorporating receding horizon optimization
and buffering at actuators. Integration of these elements enables synthesis of a novel
technique for estimation using delayed and lossy control acknowledgments—a desir-
able and practical capability of fielded systems that has not been considered to date.
Simulations and field experiments demonstrate the effectiveness of our approach.
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Chapter 1

Introduction

1.1 Motivation and Problem Overview

The ocean plays a crucial role in the global climate and ecosystem, and understand-

ing the complex interactions between humans and the ocean is important for the

long-term prosperity of society. However, the ocean is incredibly difficult to study,

as remote sensing below the surface is difficult, measurements from ships are very

expensive, and stationary or drifting platforms do not provide dense coverage.

Robotic systems have emerged as important tools for efficient, low-cost, and low-

risk study of the ocean. Early robotic vehicles used tethers to a ship for power

and remote-controlled operation. While remotely operated vehicles (ROVs) are still

workhorses of marine industry and research, their connection to the ship makes them

expensive for monitoring missions, and additionally their large size limits maneuver-

ability and speed. For many survey applications, autonomous underwater vehicles

(AUVs) can cover more ground and deliver a more desirable data product.

In recent years, technology for underwater propulsion, sensing, energy storage,

imaging, and navigation has been maturing—resulting in highly capable vehicles.

Many flavors of AUVs have been invented, ranging from slow yet efficient gliders, to

large survey vehicles featuring many sensors, to highly maneuverable vehicles meant

for operating in tight near ships or seafloor structures [170]. Basic water proper-

ties are routinely measured today from mobile robots, while sophisticated chemical

17



and biological analyses in situ are becoming mature technologies, for example DNA

probes [216] and mass spectrometers [37]. AUVs themselves as well as components are

increasingly becoming commercialized, resulting in lower costs and more widespread

use. These systems have made an impact in naval operations, undersea oil and gas,

underwater archeology, and ocean research.

With the successes of single-vehicle AUV operations, the focus has begun to move

towards more advanced team behavior and collaboration [18]. Already exploited reg-

ularly in the terrestrial and air domains, networks of mobile agents are an attractive

means for tracking and pursuit of dynamic processes over mixed spatial scales [68],

although wireless communication inevitably brings fundamental challenges in net-

worked control [14]. Surfacing to use satellite comms is very expensive in terms of

time and energy, and while optical communications are a great new technology, at

present they are only suitable for links up to one or two hundred meters in clear wa-

ter. For longer distances, acoustics are the preferred method of wireless underwater

communication, however, there are fundamental limitations to this channel: limited

and distance-dependent bandwidth, time-varying multipath propagation that makes

decoding packets difficult, and the low speed of sound in water (1500 m/s as opposed

to the speed of light) [116]. For multiple vehicle networks, acoustics are subject to

scheduling constraints due to interference and limited bandwidth.

These communication constraints have limited the use of acoustic communications

in high-performance, real-time tasks. This is for good reason—assets are expensive,

the ocean environment is risky, and large benefits can come from even basic uses of

communications. For example, integrated data assimilation has been aided by coordi-

nated adaptive sampling at slow update rates via surfacing and satellite comms [195].

Non-time-critical acoustic communications has increased the effectiveness of many

missions, both via uplink of sensor info to operators on a ship, and downlink of basic

commands such as updated waypoint lists. However, this thesis argues that in order

to enable new dynamic missions in the ocean, we must consider closed-loop control

with acomms in the feedback loop. Some examples of such missions are tight forma-

tion flying, cooperative pursuit of targets such as marine animals, or pursuit of an

18



oceanographic feature like a plume from an oil well or underwater volcano eruption.

In such scenarios, multiple cooperating vehicles can be highly effective, even neces-

sary, for achieving spatial and temporal resolution simultaneously. To enable these

capabilities, communication constraints must be at the forefront of control design.

Much work in acoustic communications has been aimed at traditional communica-

tion systems, which focus on achieving reliable transmission at high throughput. With

any error correction scheme, the price to be paid for increased reliability is increased

latency due to coding delay, and decreased throughput due to added redundancy. In

practical communication systems, handshaking and retransmissions are usually used

for reliable transport, such as the TCP protocol often used in the internet. However,

due to the propagation delays of acomms, TCP is not effective underwater.

For feedback control, the needs of a communication system are different. Con-

trol systems operate in real-time, so latency becomes arguably the most important

consideration. Long coding delays and/or retransmissions are not effective, as old

information is not very useful to a controller. Instead, it is often desirable to sacrifice

reliability and/or throughput for short delays. Of course, traditional feedback control

assumes that information moves around the control loop with no constraints or errors.

The field of communication-constrained control is also known as networked control,

and has received considerable theoretical attention. Motivated by the challenges laid

out so far related to dynamic underwater missions, this work aims to bring advanced

networked control algorithms into the field of marine robotics.

We believe that dynamic control of multiple underwater vehicles communicat-

ing with acoustics is a preeminent application of networked control. To this end,

this thesis presents contributions towards centralized multi-vehicle feedback control

in the presence of severe communication constraints typical of underwater acoustics.

A block diagram of such a scenario is shown in Figure 1-1. The first major area

of work considers the formulation and solution of new underwater pursuit problems

using closed-loop control, namely field experiments in multi-vehicle target pursuit,

and “oceanographic pursuit” of dynamic ocean features. The second area of work

presents a unified formalism for multi-vehicle control and estimation with measure-
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ment, control, and acknowledgment packets all subject to scheduling, delays and

packet loss.

Figure 1-1: Networked control system with centralized estimator/controller and mul-
tiple vehicles, connected via constrained communication links.

1.2 Background and Prior Work

The vision of a dynamic multi-vehicle cooperative ocean monitoring system builds

on a number of diverse topics: vehicle autonomy, navigation and control, underwater

communications, numerical ocean models, and networked control. In this section,

we present background and prior work in these topics, as well as relevant vehicle

operations underwater. We provide an overview here and give more detailed literature

review in the specific chapters. Chapter 3 discusses a collection of experimental

works in the specific context of target pursuit, Chapter 4 includes more background

on numerical ocean models, and Chapter 5 reviews some specific networked control

work in more detail.

1.2.1 Vehicle Control and Navigation

Onboard flight control is developed and tuned specific to the vehicle design (shape,

control surfaces, thruster placement), and ranges from simple PID controllers to
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highly nonlinear MIMO control systems for vehicles with complex dynamics. Of-

ten vehicles use trackline-following, path-planning, or trajectory-generation methods

as an outer loop around low-level thrust and attitude control [84]. Above these low-

level controllers there is some form of an autonomous decision-maker. This software

ranges from simple modules that execute preplanned missions (for example, visiting a

series of waypoints), to powerful adaptive mission planners running onboard artificial

intelligence algorithms such as MOOS-IvP [25], or T-REX [159]. Additionally, due

to acoustic links to a ship, many AUVs rely on some aspect of human-in-the-loop

decision making for low-frequency high-level planning, leveraging the economical mo-

bility and data-gathering capabilities of the AUV combined with the experience and

knowledge of human scientists [30, 215,257].

The primary impediment to navigation underwater is that GPS does not work be-

low the ocean surface. Depth, magnetic heading, and orientation are relatively easily

obtained underwater in the open ocean, however methods for accurately determining

geo-referenced position are challenging. Advanced odometry-based navigation can be

quite accurate when expensive sensors are used. Navigation systems relying on inertial

measurement units (IMU) and Doppler velocimetry (DVL) are frequently used in the

underwater environment [132]. These systems have been reported to give sub-meter

navigational accuracy, and also work well when combined with low frequency updates

from a global navigation system (such as the acoustic methods described in the next

section). However, these systems have significant drawbacks. A high-end IMU costs

$150,000, while a DVL costs $30,000 or more depending on depth-rating, and Doppler

velocimetry is only useful within range of a solid boundary. DVL bottom-lock range

is frequency-dependent and is inversely proportional to the accuracy of measured ve-

locities. As with very high-end IMUs, these units are prohibitively expensive and

large in size for use in small, economical AUVs. Price and form factor aside, inertial

and Doppler methods suffer from drift over time—errors accumulate as acceleration

and velocity are integrated to give position. The latest high performance inertial

and Doppler methods have drift rates as low as 0.1% of distance traveled, a ‘good’

system could have drift on the order of 0.5%, and obviously, as cheaper and smaller
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components are used, performance degrades further.

Acoustics can provide GPS-like drift-free globally referenced navigation underwa-

ter, albeit with other limitations. There are two main classes of acoustic navigation

underwater that provide drift-free global reference: Long baseline (LBL) [162] and

Ultra-short baseline (USBL) [243]. These systems use the travel time of sound in

water to determine distance and therefore track acoustic pingers.

The most effective underwater navigation is achieved using drift-free acoustic sys-

tems combined with IMUs and DVLs to achieve accuracy on the order of one me-

ter [132, 136, 203, 248]. With multiple-vehicle fleets, collaborative navigation using

inter-vehicle ranging can help improve position estimation accuracy [13,73,75].

1.2.2 Underwater Communications

Radio-frequency wireless communications, the workhorse of terrestrial systems, are

infeasible underwater due to severe attenuation. Attenuation is less dramatic at low

frequencies, however systems running as low as 433 MHz have only been reported

to propagate just over one meter underwater [7]. Transmissions at extremely low

frequencies (ELF, 30-300 Hz) can propagate through conductive seawater, and are

commonly used for communications by US Navy submarines [113], however trans-

mission at these frequency bands requires large antennas and high power, making

it impractical for use by small autonomous vehicles. Optical communications using

lasers or LEDs have also been considered for high-bandwidth underwater communi-

cations [137] and can offer high throughput in certain conditions (several Mbits/sec

at ranges up to 100-200 m [65, 76, 77, 130]), however optical links are affected by

high scattering due to particles in the water and have limited range. They are also

challenged by ambient light in shallow water operations.

Similarly to navigation, underwater communications are primarily accomplished

through acoustic links. Acoustics are unique due to distance-dependent bandwidth

[228] and long propagation delays. Various technologies exist for acoustic modems,

usually operating in the 10-30 kHz range. Performance of acoustic modems varies

significantly based on the modulation type used and the channel characteristics. Fre-
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quency shift keying is a simple noncoherent modulation technique which is relatively

reliable and low-power, but offers low communication throughput. Phase-shift key-

ing (PSK) with channel equalization is a more complex coherent modulation method

that requires more processing but offers the possibility of orders of magnitude higher

throughput [87]. Channel characteristics can vary in different ocean applications

based on the water depth, bottom topography, oceanographic water properties, sea

surface conditions, ambient noise, and the direction of communication [229]. Deep

water vertical channels offer the best conditions for acoustic communication due to

low ambient noise and scattering in the mid-water column, less difficulty with multi-

paths, and lower variance on delays [221]. The shallow water channel is much more

difficult due to multipaths from surface and bottom effects, high delay spreads, and

a high Doppler spread [7]. A rough performance limitation for vertical channels in

deep water is 100 km ·kbps for the range-rate product [131], while in shallow horizon-

tal channels achievable throughput can be as low as 80 bps, and sometimes channel

availability can completely vanish for tens of minutes [179]. Recent work has focused

on signal processing such as multiple input-multiple output channel estimation and

spread-spectrum techniques for improving the performance of phase-coherent meth-

ods [47].

There are a number of commercial off-the-shelf acoustic modems available [6],

such as the WHOI micromodem [85], models by Teledyne Benthos [5], LinkQuest

[3], EvoLogics [2] and DSPComm [1]. Additionally, USBL navigation units include

acoustic modem capabilities integrated into the transceiver and transponders, such

as with the Sonardyne Ranger USBL system used with the NDSF vehicle Sentry

[4]. These USBL units support transmission of position data obtained by the USBL

interleaved with short data or control packets.

Acoustic communications are half duplex, as transducers can not send and receive

at the same time [150]. Additionally, due to collisions of acoustic packets at the re-

ceiver, great care must be taken with acoustic modem systems if communications with

multiple nodes must be achieved. Research is being conducted with multiple access

(MAC) schemes, however the most widely used method in practice is simple Time
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Division Multiple Access (TDMA), where a time slot is allocated for each transponder

to communicate [116]. Specialized “spatial reuse” geographic routing and scheduling

techniques exist for TDMA where improved performance can be obtained by con-

sidering interference caused by distant transmissions, instead of requiring a strictly

collision-free schedule [64, 125,180].

Finally, we note that the use of acoustic communications for dynamic control pur-

poses has a different set of requirements and goals compared to the traditional view

of communication theory and networking. Since control is real-time, time-averaged

throughput is not the primary metric of interest. Old packets are not as useful to a

control system, and long block codes cannot be used to improve throughput because

they increase the latency of the measurements and commands in the control loop.

This affects choices of packet size, forward error correction codes, as well as transport

protocols. Much of the research on optimization of these choices for communica-

tion networks is not relevant for networked control systems, where communication

constraints are incorporated into control design in an integrated manner.

1.2.3 Ocean Science and Numerical Ocean Models

Similar to numerical weather prediction (NWP) for the atmosphere [200], numerical

ocean models now play a major role in our understanding of ocean science [106].

Originally, these models were global-scale, and did not have resolution sufficient to

study smaller and more dynamic features. As models improve, the situation is chang-

ing. The behavior of ocean fronts and similar features such as plumes and filaments

has long been of interest to oceanographers [79, 92]. Recent measurements in a front

off Japan have revealed sub-mesoscale structure that figures unexpectedly large in

the energy balance [62]. Fronts and plumes are implicated in foundational work on

Lagrangian coherent structures [173], and can show dramatic physical, chemical, and

biological variability that is critical to understanding ocean-atmospheric coupling,

ecological systems, and pollution [37, 78]. Despite continual advances in modeling of

complex natural processes, ocean fronts at the mesoscale and smaller remain chal-

lenging [41,111], and hence have emerged as a primary focus area for mobile sensing
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systems.

The quality of predictions is of course a perennial concern in modeling any stochas-

tic, nonlinear process [133, 144, 177, 204, 230]. Large-scale data assimilation is often

accomplished using an ensemble Kalman filter technique [74, 120]. An ensemble of

monte-carlo model runs with variable forcing and initial conditions is a popular means

for describing forecast uncertainty [209]; we use such forecast techniques in Chapter

4.

1.2.4 Relevant Vehicle Operations Underwater

We lay out some background in vehicle operations in the ocean in the following

sections. Prior work with multiple-vehicle operations is the most directly related to

this thesis, however, we also give background on some single-vehicle operations where

relevant sampling, path-planning, and control designs are used. We focus primarily

on experimental work here, although notable theoretical and simulation works are

included as well.

Multiple Vehicles

An overview of multi-vehicle operations in the ocean is given in Figure 1-2, showing

two axes: reliance on communications, and use of environmental models. A selection

of particularly relevant works are placed in appropriate locations within this two-

dimensional space. These works as well as more are described in more detail below.

Early references on the benefits of multiple vehicles for ocean surveys include

Willcox et al. [251] and Curtin et al. [59]. Leonard et al. have studied coordinated

control with multiple gliders extensively, including field experiments in Monterey

Bay [83, 142, 143, 176]. Coordination was performed via surfacing and satellite com-

munication with a centralized control center on shore, often including human input.

Schneider and Schmidt present a command and control architecture for coordinat-

ing multiple vehicles from a ship using both RF and acoustic communications [215].

Multi-vehicle relays using acoustics were studied by Murphy et al. [167] and Cheung et
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Figure 1-2: Literature review of multi-vehicle operations in the ocean, plotted accord-
ing to their use of environmental modeling and reliance on communications. Image
adapted from F. Hover.
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al. [46]. Various acoustic communication infrastructures for multi-vehicle deployments

have been presented, e.g. Grund et al. for PLUSNet [107], the GREX project [8, 33],

and Caiti et al. for the Underwater Acoustic Network (UAN) project [35,36]. Packet

loss rates in mobile networking experiments are studied in [34,38].

Distributed navigation using acoustic ranging is studied in [13, 58, 75, 129], while

formation control and leader-follower experiments at relatively slow speeds are pre-

sented in [17, 33, 53, 226]. Advanced control approaches for leader-follower missions

are studied via simulations in Cui et al. [56]. Coordinated tracking of acoustic signals

using multiple vehicles and arrays is considered experimentally in [69, 151, 152]. Das

et al. consider coordinated deployments of vehicles and drifters for Lagrangian track-

ing, including field results [61]. Petillo & Schmidt give experimental results with two

AUVs performing coordinated adaptive surveys for detecting internal waves in [181].

Sampling and path-planning

There has been considerable work studying advanced planning optimizations for mul-

tiple vehicles via simulations. Sampling strategies for data assimilation are presented

by Heaney et al. [114], and related path-planning optimization is considered by Yil-

maz et al. [256]. Collaborative control for tracking Lagrangian coherent structures is

studied by Michini et al. [160]. Petillo et al. present a distributed simulation approach

for plume and thermocline tracking in [182].

Although not multi-vehicle, there has been related experimental work with single

vehicles that make reactive decisions based on measurements. A single vehicle has

successfully tracked a plankton bloom [98]. Tracking of internal waves and the ther-

mocline has been performed by Cruz & Matos [54], Cazenave et al. [43], and Zhang

et al. [261]. Similarly, Zhang et al. present tracking of upwelling fronts in Monterey

Bay [260,262,263].

Path-planning under knowledge of current forecasts has been studied extensively,

for example by Smith et al. [225] and Lolla et al. [149]. Lagrangian coherent structures

have also been used for path-planning in currents [124].
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Teleoperation

While not directly related to autonomous vehicles, underwater teleoperation is a rel-

evant field [201]. ROVs of course are remotely controlled via the fiber optic tether,

which offers lossless high bandwidth communication with very low latency. However,

when vehicles are remote controlled via acoustic communications, communication

constraints are a very important aspect of the system. Interest has been increasing

for using un-tethered AUVs for manipulation tasks. While autonomous manipula-

tion is in its early phases [153], the possibility of supervised or semi-autonomous

manipulation via wireless communication is intriguing.

Most approaches for acoustic-based remote control do not perform closed-loop

dynamic control (such as force-feedback teleoperation). The human operator gives

open-loop commands, possibly with some local closed-loop assistance to avoid dis-

turbances [212]. Often, model-based prediction is used to reduce the effects of the

communication delays and give the operator an up-to-date representation of the pose

of a manipulator, an example of such a system is described by Sayers [211].

More recently, there have been experiments with wireless operation of the NEREUS

vehicle, both over acoustic and optical links [32,249]. In these experiments, feedback

loops for the manipulator arms were closed onboard the vehicle, with only joint posi-

tions and parameter settings sent over the wireless link to avoid stability issues. Still,

the pilots reported latency as the most challenging aspect of controlling the vehicle

and manipulator.

1.2.5 Networked Control

Traditional control theory assumes that signals between sensors, controllers and actu-

ators are perfect, e.g. there are no communication constraints. When communication

is not ideal, such as with wireless communications, challenges arise for control [14].

There are many ways of representing communication constraints, ranging from fun-

damental information-theoretic bounds on channel capacity to practical abstractions

that model the behavior of specific packet-based protocols as seen by the control
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system.

Theoretical questions of performance and stability of even very simple plants sub-

ject to communication constraints have been the subject of seminal papers in net-

worked control. The famous Witsenhausen counterexample [252] was an early result

in networked control, and has attracted considerable research interest even to this

day. Regarding stability, Tatikonda & Mitter related the channel capacity to the un-

stable eigenvalues of a dynamic system, and presented design techniques for encoding

and decoding [232]. Martins & Dahleh studied disturbance rejection and present a

new Bode-like integral relating unstable dynamics and channel capacity [154]. Sahai

& Mitter present the notion of anytime capacity and discuss the relationship between

coding delay and control performance in [208].

For application to real-life systems, the theoretical bounds of information theory

are less useful, and most work considers some variation of the packet-based network

abstraction. While specific network protocol stacks can become very complex, a sim-

plified explanation is as follows. Packets include a certain amount of information and

take a certain amount of time to transmit. Usually, the field of networked control does

not consider the physical layer in detail, working instead with higher level abstrac-

tions. After encoding and transmission across a lossy channel, packets are decoded

successfully with some probability, and dropped if decoding is unsuccessful. Delay in-

cludes the time to encode, transmit, and decode the packet, on top of the propagation

delay through the wireless medium (much longer in water than air!). The packet size

and schedule for a particular link in the network determines the throughput of that

communication link; packet size, encoding, and modulation are determined based on

a tradeoff between bit rate and packet loss. The quantization of the information (e.g.

sensor measurements, or actuator commands) depends on the packet size chosen.

This thesis (and the majority of the work described below) uses the abstraction

of packet loss, delay (and scheduling if multiple communication links are used), and

quantization to describe a communication link. We first will give an overview of

constructive techniques for networked control, and then discuss Model Predictive

Control and its application to networked control. Figure 1-3 shows the relationships
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and differences between some major results in networked control, focusing on the

main elements of our JLS control technique developed in Chapter 5, namely Model

Predictive Control, scheduling and delays, and robustness to packet loss.

Figure 1-3: Literature review of networked control techniques, focusing on Model
Predictive Control, scheduling and delays, and robustness to packet loss. The works in
purple consider fundamental information-theoretic limits, and the works shown in blue
develop constructive techniques using packet-based abstractions. Constructive works
shown in bold consider losses in both the sensor-estimator and controller-actuator
links of a feedback loop.

Constructive Techniques

While literature on networked control is extensive, the focus of this thesis is on con-

necting advanced control techniques to real-world applications. The literature re-

viewed in this section is relevant to this goal.

Signal delays are commonly considered in control design; deterministic delays are
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easily handled with standard techniques, and there is extensive literature on stochastic

delays (see Nilsson et al. for a survey [172]). Similarly, estimation subject to delays

has been addressed in [139,227].

Related to delays, deterministic scheduling is an aspect of networked control sys-

tems that arises when multiple vehicles must share a communication medium. As

mentioned in Section 1.2.2, interference considerations and bandwidth limitations of

underwater acoustic networks mean that the most common approach for multiple

access is TDMA scheduling. This scenario results in a multirate control system,

where measurements and commands are sent at different times, and possibly at dif-

ferent rates. Some results in multirate control include the ℓ1 optimization approach

of Dahleh et al. [60] and the LMI approach of Lall & Dullerud [138].

Packet loss when there are no delays or rate limits has been studied extensively

for the case of quadratic cost. The Kalman Filter is easily set up to handle intermit-

tent measurements; performance in this situation is analyzed in [222]. Gupta et al.

present the Modified Information Filter for the scenario where there are packet losses

between the sensor and controller in an LQG control loop [108]. Alternative encoding

schemes for dealing with packet loss include multiple-description coding [126, 175]

and temporal packet coding [205]. Control techniques for the scenario with lossy

channels between the sensor and controller and the controller and actuator have been

presented by Schenato et al. [214] using linear matrix inequalities (LMIs), and by

Imer et al. [123] using dynamic programming. We extended the work of Imer et

al. [123] to the case of independent multi-channel packet losses [196]; Imer’s dynamic

programming approach results in a highly tractable recursion. A major consideration

in these schemes is whether or not control packet acknowledgments are available. If

they are, then the usual separation principle holds and estimation and control can

be designed independently. If they are not, then the “dual effect” is present—control

packet uncertainty affects estimation. A middle ground is lossy control acknowledg-

ments, studied in [93, 94, 134]. With underwater acoustic networks subject to long

propagation delays and interference constraints, acknowledgments may be very costly

in time. Notably, the case of delayed and lossy acknowledgments has not been con-
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sidered in the networked control literature, motivating our treatment of this case in

Chapter 5.

Many works consider quantized control where all packets are successful without

delay. Fu presents a sector bound approach where a logarithmic quantizer is treated

as a norm-bounded uncertainty within a robust control scheme [80,88]. An alternate

approach is to use dynamic quantizers that adjust the quantization window based

on the plant state [10, 11, 163]. These sort of dynamic quantizers rely on lossless

communication, and synchronization issues can arise if packet loss is present.

The Markov jump linear systems (MJLS) community has studied control within

H2 and H∞ frameworks. MJLS descriptions can incorporate complicated jump be-

havior, including packet loss. The usual assumption is that the “mode” or “jump

variable” is available to the controller, which in the networked control setting means

that control packet acknowledgments are available. MJLS approaches based on LMIs

for this case are studied in [52, 82, 96, 99, 217, 218]. The case with no mode obser-

vations is significantly more difficult and has received limited attention, often via

difficult and suboptimal iterative optimizations [238]. MJLS approaches can also

handle deterministic schedules, but the tractability of the LMI solutions does not

scale well with problem size/schedule length [218].

There have been limited works in networked control that consider more than

one of the above communication constraints simultaneously, as theory becomes quite

complex. Results have been limited to stability tradeoffs, as opposed to performance

bounds. Tsumura et al. study tradeoffs between packet loss and quantization [234],

Chiuso et al. study packet loss and delay [48], Donkers et al. study scheduling con-

straints and delays [66], and Heemels et al. consider packet loss, quantization, and

delays [115].

1.2.6 Model Predictive Control

Model Predictive Control (MPC) is a control approach that leverages real-time on-

line optimization to compute a trajectory of optimal control commands over a finite

horizon. Traditionally, the first command is executed each step, and the process is
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repeated with a rolling horizon. The primary advantage of MPC over linear control

is that the optimization approach allows for state and input constraints as well as

certain types of nonlinearities to easily be handled [158]. The drawback is compu-

tational complexity, however as computing power improves and optimization solvers

become more efficient, MPC can be used effectively in many applications [26]. MPC is

widely used in industry, although the constraints and rolling horizon make theoretical

analysis more difficult [121,187].

One disadvantage to MPC is that it assumes perfect state information. A common

approach is certainty equivalence (CE-MPC): use an estimator and design control

under the assumption that the estimate is the true state and there will be no future

disturbances. In this case, the cost function is deterministic. The logic follows from

the separation principle in LQG control, and often works well in practice [49,223,247].

Various approaches for robust MPC have been presented, e.g. [21, 103, 104, 118, 157,

174, 253]. These techniques are discussed in more detail in Section 5.9.5, however

they are often considerably more computationally intensive than deterministic MPC.

MPC has also been applied to networked control, most often to the case of packet

loss between the controller and actuator. For this scenario, a natural approach called

packetized predictive control (PPC) is to send an entire trajectory of commands

to a buffer at the actuator [19, 109, 193]. If future packets are lost, the actuator

executes commands from the buffered trajectory. Obviously, disturbances cannot be

rejected if packets are lost, however this approach offers many advantages compared

to the usual approaches of zero or hold-input control. Variations on PPC study

the rate-distortion tradeoff when quantization is present [192], and formulate the

optimization to generate sparse control trajectories using the ℓ1 norm [168]. The

PPC idea of sending buffered trajectories has been applied in a number of networked

control settings [57,81,100,146,161,183,184,241]. These approaches are discussed in

more detail in Section 5.2.4.

Quantized MPC is a related area of research. Explicitly including quantization

levels in the optimization is an option, however this results in an intractable com-

binatorial optimization problem. In a series of related works, Goodwin et al. derive
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optimal closed-form solutions for quantized MPC with vector codebooks, and study

the partition of the state space that characterizes the solutions [102, 189–191, 219].

These approaches scale poorly with long trajectories, as the number of codebook

entries scales with the trajectory length and lookup becomes an expensive operation.

MPC is quite flexible for modification to different problems, with the tractabil-

ity of the underlying optimization being the most important consideration. Other

extensions of MPC include hybrid autonoma [20], MJLS [239, 240], and distributed

MPC [169,213].

1.3 Field Experiment Setup

The field experiments inChapter 3 andChapter 6 both use our autonomous surface

craft and acoustic modem testbed, with operations in the Charles River. We describe

this testbed here.

1.3.1 Autonomous Surface Vehicles

We use autonomous kayaks as shown in Figure 1-4 for our experiments; they are

also described in [97]. Each craft is 1.8m long, weighs about 40 kg, and has a rotating

thruster near the bow for propulsion and steering. The maximum speed of the vehicles

is approximately 1.7 m/s. The relevant navigation sensors available on each vehicle

are a tilt-compensated compass and RTK GPS. We use Novotel GPS antennas, uBlox

GPS receivers, and the RTKlib software package [231], and have observed position

variances on the order of 10−4 m2. Raw compass measurements are passed through a

first-order low-pass filter with time constant 2 s, and the noise variance on this signal

is estimated as 10 deg2.

The vehicles run MOOS-IvP autonomy software [25] integrated with custom con-

trol algorithms and modem interfaces. We rely on the the MOOS heading PID con-

troller, which runs at five Hz, and the MOOS trackline controller, which runs at two

Hz. Step response experiments with the kayak under closed-loop heading control

indicate a rise time of roughly four seconds, and 30% overshoot; we also note the
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kayaks are able to turn 180 degrees in approximately three seconds. The MOOS

trackline controller is an inner-outer loop that modulates the desired vehicle heading

so as to steer it toward a point on the trackline, some lead distance ld ahead. When

the waypoint is closer than the lead distance, the vehicle simply drives towards the

waypoint. For longer distances the result for small errors is a proportional map for

desired heading: φd ≃ ex/ld, where ex is the cross-track error in meters and φd is in

radians.1

Figure 1-4: The Charles River Basin in Cambridge/Boston, MA, and the autonomous
kayak Nostromo. Water depth is 2-12 m.

1.3.2 Acoustic Communications

We use the WHOI Micro-Modem [85], a well-established and commercially available

technology for underwater acoustic communication. Modems are towed by the vehi-

cles, suspended at a depth of about 1.5 meters; this gives us realistic shallow-water

1The linear form written is based on approximation of the tangent function. For errors less than
one meter, the MOOS Trackline controller increases the lead distance proportionally, effectively
lowering the gain to limit oscillations.
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acoustic performance, but with direct access to GPS and RF wireless connectivity at

the surface for conducting controlled tests. Along with messaging, we use the modem

for one-way travel-time ranging [73]. For messaging, the Micro-Modem has six differ-

ent packet types with different lengths and data capacities. In Chapter 3 we use the

FSK mini-packet (“MP”), which is regarded as the most robust of the packet types,

but contains only thirteen bits of information. The mini-packets take slightly over

one second to transmit. We also use the full-sized Rate 0 FSK packets (“FSK0”),

which carry thirty-two bytes of information and take approximately five seconds to

transmit. All Micro-Modem packets are sent with an acoustic source level of 190 dB

rel µPa.

We note that the upcoming MicroModem 2 will include new flexible PSK mini-

packets, which are available at different PSK data rates and are flexible in terms of

the packet size. This capability will help give more options when designing a system,

as it fills the gap between the 13-bit minipacket and the full-sized FSK and PSK

packets in terms of latency, packet size, and reliability.

The experimental work in this thesis took place in the Charles River Basin, shown

in Figure 1-4. This domain has fresh water 2-12 m deep, a complex bathymetry,

and some hard surfaces on the boundaries (seawalls and bridges); our working space

is about 1500 m long and 500 m wide. Acoustic performance in this environment is

different from an open-water deep ocean scenario, where multipath and reverberation

are much lower, but the ranges are higher. Operations in the Basin can have highly

variable acoustic performance, as shown in Figure 1-5. Our conditions are multipath-

limited and travel times are short.

We use TDMA scheduling for multi-vehicle communications. Scheduling and tim-

ing is especially important for closed-loop control. We enforce the fixed time slots with

a number of timeouts, as indicated in Figure 1-6. We synchronize clocks using the

network time protocol; in the absence of clock synchronization, we note that precision

clocks are becoming increasingly practical for use on underwater vehicles [73].
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Figure 1-5: Micro-Modem performance data in the Charles River Basin, an environ-
ment limited by multipath, not power. The left plot shows transmissions from the
source to a mobile relay, and the right plot shows transmissions from the relay to the
destination. The SNR value indicates sound pressure level relative to ambient noise.
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Figure 1-6: The internal state machine used on each vehicle to maintain consistent
timing with respect to predefined transmission and reception slots. Thick arrows
distinguish acoustic events that initiate state changes or other actions from normal
logic flow. Special operations are indicated to handle detection of erroneous multipath
receptions, which frequently occur in this environment. For example, a good reception
for a time slot Ti will follow the “Receive complete” path (bottom) to a good signal.
A trailing multipath reception will return to the receiving state, but the end of time
slot Ti will arrive before the end of the packet. In the top right, slot Ti is already
taken by the good reception, so we return to the ready state with no action taken.
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1.4 Overview of Approach

This thesis considers networked control of multiple-vehicle ocean systems, presenting

contributions towards truly dynamic integrated missions in the presence of severe

communication constraints. The contributions are aimed towards implementation

and experimentation with real-world testbed systems.

Although navigation is challenging and important for all underwater vehicles,

we focus on the multi-vehicle control aspects and consider navigation as a given.

The uncertainty of whatever navigation system may be used is incorporated into

our estimation approach as measurement noise for vehicle positions. Similarly, we

consider abstract models of vehicle motion that capture high bandwidth low-level

dynamic control onboard the vehicle. The effects of disturbances as well as unmodeled

dynamics (of the vehicle under low-level control) are considered process noise for our

estimation purposes.

We consider communication constraints using the abstraction of packet loss, de-

lays, scheduling, and quantization. We do not consider optimization of the lower

layers of the communication system—choices such as modulation, channel equaliza-

tion, and error correction coding. Except for the specific range-based target pursuit

experiments in Chapter 3, we do not consider quantization of sensor commands,

as this is a highly application-specific problem. In Chapters 5-6, our main focus

with quantization is the tradeoff between different control packet types (broadcast vs.

individual), as well as the tradeoff between control quantization and control packet

loss.

We use a centralized control architecture (as diagrammed in Figure 1-1) for a

number of reasons. First, our vision for a comprehensive ocean monitoring system

involves integration of networked control with lower-frequency procedures in data

assimilation and model forecasting. These procedures are computationally-intensive

and draw on data from many sources, making a centralized computation center at-

tractive. Second, ocean systems are expensive, and operation is risky. Operators

prefer to have the ability to watch over the system and intervene if necessary, which
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is much more difficult with decentralized control architectures. Additionally, it is

often beneficial to blend expert human input (e.g. from oceanographers) with au-

tonomous capabilities. The third reason is that many decentralized control schemes

are designed based on centralized methods as starting points. As multi-vehicle sys-

tems grow in numbers and spatial coverage, network constraints will begin to drive

control in a more decentralized direction.

Regarding control techniques, we note that many more theoretical results of net-

worked control consider stability, versus performance. The ocean monitoring systems

we consider are not unstable in the traditional sense—vehicles will not be accelerating

arbitrarily fast across the ocean. These systems are more concerned with reference

following and disturbance rejection. If performance in these metrics is low, a form

of practical instability can be observed where the feature or target to be tracked is

lost. However, networked control results on stabilizing unstable systems are not di-

rectly relevant. Due to this reason, as well as the lack of networked control results

that consider all of the communication constraints present in acoustic communica-

tion networks, our control approach is to build a practical and effective framework

that handles all of the aspects we desire, while sacrificing some theoretical rigor in

order to do so. We demonstrate the effectiveness of our approach empirically in field

experiments and simulations.

1.5 Summary of Contributions

While the rest of this thesis focuses on dynamic missions with multiple cooperating ve-

hicles, Chapter 2 introduces some fundamental aspects of acoustic communications,

and presents a robust approach to a major acoustic networking problem: multicast

routing and power control. Specifically, we consider the minimum energy wireless

transmission problem [MET], augmented by the practical condition that constraints

on link power must be satisfied in probability. For this, we formulate the robust

counterpart of the multicommodity mixed-integer linear programming (MILP) model

from Haugland and Yuan [112], and derive scaled power levels that account for uncer-
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tainty. While not undertaken in this thesis, the optimization approach for routing and

power control is suitable for future integration with control and scheduling design.

This chapter is based on work published in [199].

In Chapter 3 we address through experiments the capability of acoustics to

sustain highly dynamic, multi-agent missions, in particular range-only pursuit in a

challenging shallow-water environment. As opposed to a traditional control and esti-

mation design scenario, the mission here is accomplished through a highly integrated

vehicle system performing full joint estimation and coordination through lossy, rate-

limited acoustic communications underwater. The three experimental configurations

studied show the effects of cycle time, quantization, and acomms performance on the

frequency response of the system. In particular, we show that for tracking highly

dynamic targets it is beneficial to trade-off quantization for low cycle time. These

outcomes show definitively that aggressive dynamic control of multi-agent systems

underwater is tractable today. This chapter is based on work published in [198].

Chapter 4 presents an integrated framework for “Oceanographic Pursuit”—joint

estimation and pursuit of dynamic features in the ocean, over large spatial scales

and with multiple collaborating vehicles relying on limited communications. We

present a unique multi-vehicle frontal point description and control methodology that

leverages numerical ocean model forecast ensembles. Our primary innovation is a

projector algorithm that carries out linearization of ocean model forecast uncertainty

directly in vehicle coordinates via a forward model technique. The outcome is a clean

stochastic system representation that captures coupling between sites and is suitable

for advanced techniques in networked control. Simulations using three model datasets

demonstrate the proof-of-concept. This chapter is based on work published in [196]

and [197].

Chapter 5 presents a unified formalism for multi-vehicle control and estimation

with control, measurement, and acknowledgment packets all subject to schedules, de-

lays and packet loss. The modular framework is built around a jump linear system

(JLS) description that includes Packetized Predictive Control (PPC), a technique

that combines the receding horizon optimization of Model Predictive Control with
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buffering at the actuator. Integration of these elements enables synthesis of a novel

technique for estimation using delayed and lossy control acknowledgments—a desir-

able and practical capability of fielded systems that has not been considered in work

to date. This chapter describes the framework, the estimation and control technique,

a simple illustrative example, and a few possible extensions.

In Chapter 6 we present simulation and field experiments demonstrating the

JLS-PPC controller in pursuit missions. The field experiments use three autonomous

surface vehicles towing acoustic modems, tracking a simulated feature. To focus

on control performance, “hybrid” measurements are created using the vehicles posi-

tions and simulated gradients. The acoustic communications are fully realistic, using

TDMA scheduling and quantized packets, and subject to packet loss. We also present

simulation results demonstrating the performance improvements of JLS-PPC over in-

dependent vehicles, comparison of two schedule paradigms, and scalability to larger

fleet sizes. A design tradeoff study between control quantization and packet loss is

demonstrated using the simulation framework, and finally, we present results showing

the benefits of using piggybacked ACKs.

We conclude and summarize the contributions of the thesis in Chapter 7, along

with a discussion of areas of future work.
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Chapter 2

A Centralized Optimization

Approach for Robust Minimum

Energy Multicast Routing and

Power Control

Most uses of acoustic modems have been in static or quasi-static deployments, where

energy, range, and time-averaged throughput are the major considerations. While the

rest of this thesis focuses on dynamic missions with multiple cooperating vehicles, this

chapter presents a robust approach to a major acoustic networking problem: multicast

routing and power control. Multicast is an important component of vehicle networks

as it is often beneficial to send commands to many vehicles at once to save both

time and energy. The multiplexed schedule in Chapter 5 is an example of the use

of broadcast in a multi-vehicle control system. Furthermore, acoustic modems have

recently become more prevalent on small low-power vehicles such as gliders, where

energy considerations are very important [86].

In this chapter, we consider the minimum energy wireless transmission problem

[MET], augmented by the practical condition that constraints on link power must

be satisfied in probability. For this, we formulate the robust counterpart of the mul-
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ticommodity mixed-integer linear programming (MILP) model from Haugland and

Yuan [112], and derive scaled power levels that account for uncertainty. Our main

result is that the deterministic formulation with these scaled power levels recovers

exactly the optimal robust solution in the absence of correlations, and therefore al-

lows for efficient solution via MILP. The approach developed here relies on centralized

global optimization, which is more amenable to mobile networks than iterative algo-

rithms where convergence may be difficult while nodes are constantly moving. While

not undertaken in this thesis, the optimization approach for routing is suitable for

future integration with control and scheduling design.

2.1 Introduction and Prior Work

With underwater acoustic communications, range and data throughput depend on

modem power and carrier frequency [228], and as a result, ocean network deployments

are often over-powered or limited in scale to improve robustness. However, excess

power causes interference and depletes limited energy sources in untethered vehicles

and nodes [180].

This chapter considers underwater acomms routing with power control via a cen-

tralized robust approach, with emphasis on multicast. While the large size and ad-hoc

nature of many RF wireless applications motivate distributed routing methods based

on network discovery [206], the high latency and unreliability of acomms suggests

that these algorithms could exhibit poor convergence in the underwater domain.

However, centralized optimization requires that all data go to the central location

which itself uses communications resources. Considering large-scale ocean missions,

data assimilation and planning are typically centralized today and the marine as-

sets are expensive and tracked carefully [195]. These aspects of acomms and ocean

missions motivate optimization methods which can take into account motion plans,

global channel information, and operator input [119].

Wireless network design via centralized approaches is of course a rich and active

area of research. Convex optimization for routing in multi-hop RF wireless networks
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is presented in [55]; see also [12] for an approach specific to acomms. These works do

not consider robustness, however. Most prior work in robust network design, e.g. [9],

has considered uncertainty in traffic demands. Chang et. al. consider robustness

to uncertain packet success rates in lossy network coding subgraph generation [44].

Regarding power control in routing, several non-robust, acoustics-focused approaches

have been proposed, including [127]. Quek et. al. consider robust power allocation

for two-hop RF wireless relay networks [188] for a single source to single destination,

using multiple two-hop relay channels. Our approach shares the idea that power can

be traded off for robustness; we note that for acoustic communications, this tradeoff

is most clear with low-rate FSK modulation. Other factors such as time-varying

multipath become more important for higher rate techniques.

In this work, we consider multicast over arbitrary numbers of hops using acoustic

channel models. Although acomms possesses the broadcast advantage, multicast has

received little attention in underwater acoustic networks [171]. We base our approach

on the multicommodity MET-F2 formulation by Haugland and Yuan [112], and the

main idea is to use robust convex optimization to account for uncertainty in required

power levels for acomms. We give the problem statement in Section 2.2. Stochastic

acomms models motivated by data are discussed in Section 2.3. The supporting

formulations are outlined in Section 2.4, and our new approach for Robust MET is

presented in Section 2.5. Section 2.6, we show that the deterministic formulation

with properly-scaled power data can be used to solve the robust problem. We present

computational results in Section 2.7, and discuss conclusions and some realistic

extensions to our formulation in Section 2.8.

2.2 Approach and problem definition

We consider a single source transmitting to multiple destinations, and design minimum-

power broadcast trees and node power levels which meet individual connectivity re-

quirements with a specified probability. Node locations are considered static and

known; the primary sources of uncertainty are in transmission loss and noise at the
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receiver and transmitter. While we recognize the importance of protocol effects, we

do not consider link throughput rates, impacts of interference on medium access, nor

correlated uncertainty across links in this work in order to focus on the key aspects of

robust minimum-power routing. However, the formulation of Robust MET via con-

vex optimization is a key underlying construction onto which protocol aspects may

be added and analyzed.

Since we are designing power levels at the nodes, we choose to model uncertainty

in the transmit power necessary to achieve a minimum SNR at the receiver: pij =

p̄ij + p̃ij. The mean power for link (i, j) to have successful transmission is p̄ij (the

no-uncertainty power), and the normal random variable describing the uncertainty

in the power is p̃ij.
1 The mean and variance for each link, along with the desired

probability of link connectivity, are inputs to the optimization.

Robust optimization considers the worst-case realization of the random variable

pij; under the assumption of a Gaussian distribution we use the mean power plus

a properly-scaled addition to account for uncertainty. Our solution is thus feasible

for the worst-case realization within a certain probabilistic bound. We call the mean

power plus the scaled power p̂ij and will show in Section 2.6 that it can be set

deterministically.

2.2.1 Definitions

The wireless network is described by a graph G(V,E), where E is set of possible

(undirected) edges and V is the set of nodes. The set of directional arcs derived from

E is A. The multicast source node is s and the set of destinations is D. The transmit

1As will be discussed in Section 2.4.2, the assumption of a Gaussian distribution is simply used
to formally size the uncertainty sets used in the optimization. Other distributions can be better-
suited for acoustic channel variability, and the size of the uncertainty sets could be approximated
under different distributions or based directly on data.
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power of node i is Pi. Additionally,

xt
ij = Flow on arc (i, j) ∈ A for commodity t ∈ D

yij =







1 if the power of node i ≥ p̂ij

0 otherwise

The x variables are binary and an arc is included in the routing if it has flow for any

commodity.

2.2.2 Deterministic Minimum Energy Transmission [MET]

The minimum energy transmission [MET] problem was first introduced in [250], and

concerns the optimal node transmission powers and associated routing tree for a wire-

less single-source broadcast or multicast network. To be consistent with our notation

we use p̄ij to denote the deterministic power model. The formal problem statement is:

[MET] Find a power vector (P1, P2, . . . , PN) ∈ R
N
+ of minimum sum, such that

the induced graph (V,EP ), where EP = {(i, j) ∈ A : Pi ≥ p̄ij}, has a path from s to

each t ∈ D.

Broadcast has D=V \{s} while multicast has D ⊂ V \{s}. The MET problem can be

transformed into an equivalent Steiner tree problem and is thus NP-complete [112].

2.2.3 Robust Minimum Energy Transmission [Robust MET]

The robust formulation of MET requires the power constraints, which relate the power

Pi at a node to the inter-node minimum power levels pij, to be satisfied in probability:

EP = {(i, j) ∈ A : prob (Pi ≥ pij) ≥ η} (2.1)

Successful transmission occurs when the power at the receiver exceeds a minimum

SNR threshold.
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2.3 Acoustic communications model

The unique characteristics of the acoustic communications channel leave many trans-

mission parameters to be optimized, such as center-frequency, bandwidth, frequency

allocation, power level, and modulation schemes [228]. Our models are aimed towards

practical implementation using currently available hardware. We assume center fre-

quencies, bandwidth, and frequency allocation to be fixed in our propagation models.

New versions of the WHOI MicroModem allow for transmit power to be set in the

range of 140-150 dB, whereas the standard source level is 185 dB [91].

2.3.1 Mean power model

For our mean power model we use classical descriptions of underwater acoustic prop-

agation, as well as the conversion from sound pressure level (traditionally denoted in

acoustics in dB rel µPa) to absolute power in Watts. To reach a threshold SNR of

SNR0 decibels, with ambient noise NRX dB rel µPa, the transmit power in Watts as

a function of distance r meters is approximated as

p̄(r) = Arκ
(

10(αr)/10
) (

10(SNR0+NRX+60−185)/10
)

+ B (2.2)

The first term (rκ) is due to spreading (κ = 2 for spherical), while the second term is

a linear approximation of absorption loss in seawater [12]. Following the literature,

at 10 kHz, α = 10−3 (this corresponds to attenuation of one dB per kilometer). The

constant factor that is a function of SNR0 and NRX represents the desired power at

the receiver, and (60 − 185) represents the conversion from dB rel µPa to W, the

(−185) is the conversion from dB to W, and the (+60) is due to the 1µPa reference

for sound pressure. The linear gain in the transmission loss model A and zero-mean

additive term B will be used in the next section. As an example, with SNR0 = 20,

and ambient noise of NRX = 40, 25 W of transmit power is required to transmit r = 5

km. This approximation roughly matches performance which has been observed with

the WHOI MicroModem [85].
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2.3.2 Uncertainty Models

Uncertainty derives from different types of nodes (static sensor nodes, AUVs, surface

ships), different operating locations (harbor, open-ocean, shipping lane) and differ-

ent ocean conditions (mixing water masses, varying wind/wave conditions, varying

bathymetry). These can all affect both the ambient noise at the receiver and the

transmission loss. Consequently, we define multiplicative and additive uncertainty on

each link: Aij = 1 + Ãij, and Bij = 0 + B̃ij , with Ãij and B̃ij as zero-mean Gaus-

sian random variables. To first order, multiplicative uncertainty can approximate

uncertainty in path loss (large-scale fading), or uncertainty in distance. Additive

uncertainty corresponds to ambient noise at the receiver.

References [119, 186] discuss two specific MicroModem datasets which are sup-

portive of the mean power model in Equation 2.2, and have a path loss variance

in decibels which is constant with distance. Constant variance in decibels roughly

equates with our multiplicative uncertainty model in Watts. These data were taken in

moderately deep water and in relatively good channel conditions. Conversely, Figure

1-5 shows data with higher variability obtained in experiments with MicroModems

in the Charles River (Boston, MA), a very shallow acoustic environment. Statistical

analysis of modem performance in this environment is ongoing work; we note that

our formulation can accommodate link-by-link means and variances from any model.

2.4 Supporting Formulations

2.4.1 MET-F2 MILP formulation

Here we summarize a compact integer programming model for MET introduced by

Haugland and Yuan [112]; our notation matches theirs. The strength of “MET-

F2” over previous formulations comes from multi-commodity flows: each commodity
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corresponds to a unique destination. We define a multicommodity flow vector x:

xt
ij =







1 if flow to destination t ∈ D\{s} on arc (i, j)

0 otherwise
(2.3)

Continuity is defined in a standard way by relating the flows of each commodity, xt,

the graph G, and the supply/demand vector bst: x
t ∈ F(G, bst), t ∈ D\{s}, where F

is the set of admissible flows. For each commodity, the source has a supply of one,

and the destination has a demand of one. Supplies and demand for each commodity

t and node i are set according to:

bst(i) =



















1 if i = t

−1 if i = s

0 otherwise

The multicommodity flow formulation allows for the broadcast advantage to be

represented compactly, using constraints which relate the yij variables to the flows xt
ij

using a specific ordering of power levels. For any node i ∈ V, let πi : {1, . . . , N−1} 7→

V \{i} be a bijection such that pi,πi(1), . . . , pi,πi(N−1) is monotonically non-decreasing.

As shorthand, the subscript (i, k) defines the variables in non-decreasing order of

power required, where k refers to the kth-closest node to node i. The formal problem

[MET-F2] is given below [112]:

minimize
y

∑

{i,j}∈A

pijyij (2.4)

subject to xt ∈ F(G, bst), t ∈ D\{s}, (2.5)

N−1
∑

l=k

xt
(il) ≤

N−1
∑

l=k

y(il),

i ∈ V, k ∈ 1, . . . , N − 1, t ∈ D\{s}, (2.6)

y ∈ {0, 1}|A|, (2.7)

x ∈ {0, 1}|A||D|, (2.8)
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where the minimum mean link powers pij, the sets A and D, the source s, and the

ordering πij are given. The node powers are then set as Pi =
∑

j∈V pijyij.

2.4.2 Robust LP

We start with a standard linear program:

minimize
x

cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

(2.9)

A deterministic LP uses constraints of the form aT
i x ≤ bi, where aT

i and bi are

known. The robust optimization framework of Ben-Tal and Nemirovski [24] requires

the solution to hold for all constraint parameters in an uncertainty set. We use

the second-order cone program (SOCP) formulation from [148], which models ai as

Gaussian random variables and sizes the uncertainty sets such that the constraints

are met in probability. We desire:

prob(aT
i x ≤ bi) ≥ η. (2.10)

The corresponding SOC constraint is:

āT
i x+ Φ−1(η)

∣

∣

∣

∣

∣

∣
Q

1/2
i z

∣

∣

∣

∣

∣

∣

2
≤ bi (2.11)

where Φ−1 is the inverse cdf of the standard normal distribution. The probability η

must be ≥ 0.5, which results in Φ−1(η) ≥ 0, making (2.11) a valid SOC constraint.

Qi is the covariance matrix of the independent Gaussian random vectors ai; there

are no correlations between ai and aj represented. Notice that this formulation uses

continuous decision variables, while there are binary variables in MET-F2. We will

address this in the next section.
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2.5 Robust LP for MET-F2

In the deterministic MET-F2 formulation, the Pi variables are used, since they are

redundant with pij and yij . In order to pose the problem as a robust LP, we re-

introduce them, which allows for Pi to become larger than the mean minimum powers:

Pi ≥
∑

j∈V

pijyij . (2.12)

Substituting the stochastic definition of pij from Section 2.3, and enforcing the

power constraint probabilistically, we require

Pi ≥
∑

j∈V

(p̄ij + p̃ij)yij , with probability η. (2.13)

We define the vector of decision variables, with N Pi variables, |A||D| x
t
ij variables,

and |A| yij variables:

z = [P1, . . . , PN , x12, . . . , xN−1,N , y12, . . . , yN−1,N ] (2.14)

Following the procedure of Section 2.4.2, we can manipulate the constraints of

[MET-F2] into the form aT
i z ≤ bi, and arrive at a new set of SOC constraints:

−Pi +
N
∑

j=1

(p̄ijyij) + Φ−1(η)
∣

∣

∣

∣

∣

∣
Q

1

2

i z

∣

∣

∣

∣

∣

∣

2
≤ 0, i = 1, . . . , N (2.15)

For the Robust MET-F2 problem, Qi is a large matrix with blocks corresponding to

the constituents of z (Pi, x
t
ij, and yij). For a given node i, yij is a singleton vector

which we denote yi. Since uncertainty is modeled in the parameter pij, multiplying

the variables yij , the only nonzero block of Qi is the one corresponding to yi. We

denote this block Qi,yy, and restrict it to be diagonal.

With inter-node variances of pij denoted as σ2
ij , we define the vector of variances

from node i to each other node σ2
i = [σ2

i1, . . . , σ
2
iN ]. Thus, Qi,yy = diag(σ2

i ).

The full robust MET-F2 optimization problem is:
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[Robust MET-F2]

minimize
y,P

∑

i∈V

Pi (2.16)

subject to (2.5), (2.6), (2.7), (2.8),

− Pi +
N
∑

j=1

(p̄ijyij) + Φ−1(η)σT
i yi ≤ 0,

i = 1, . . . , N, (2.17)

Pmin
i ≤ Pi ≤ Pmax

i , i = 1, . . . , N (2.18)

This model has two major features. First, the diagonal Qi,yy restriction reduces the

second-order cone constraint of the robust counterpart to a linear constraint. In

addition to the robust constraint (2.17), we have added maximum and minimum

node power levels to this formulation to more accurately describe constraints due to

real hardware. Second, the ordering based on power used in constraint (2.6) must be

modified to use p̂ij instead of the deterministic (or mean) powers in order to account

for the effects of uncertainty. In the next section we show exactly how to set p̂ij.

2.6 Analysis and determination of scaled powers

2.6.1 Determination of p̂ij

We show that the scaled powers p̂ij are a function of the mean and variance of pij, and

further, that if p̂ij is used as input to the deterministic MET-F2 MILP formulation,

the results are the optimal solution to Robust MET.

We assume that the optimal routing yij has been determined, and define j∗(i) =

j s.t. yij = 1; j∗(i) is the node in the routing which requires the largest power for

connectivity with node i. The robust constraint (2.17) reduces to:

Pi ≥ p̄ij∗(i) + Φ−1(η)σij∗(i), (2.19)
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where σij∗(i) is the standard deviation of the uncertainty for the transmit power of

link ij∗(i). Since the objective is to minimize the sum of the node powers Pi, and Pi

appear only in this constraint, the inequality (2.19) is tight. The resulting equality

relation for Pi allows for substitution of the RHS of (2.19) in the objective,2 which

becomes:

minimize
N
∑

i=1

Pi =
N
∑

i=1

(

p̄ij∗(i) + Φ−1(η)σij∗(i)

)

(2.20)

The added robust constraint (2.17) has been moved to the objective.3 The only

remaining difference between the constraint sets of the deterministic MET-F2 formu-

lation and the robust version is that the ordering used in constraint (2.6) is different.4

Robust MET requires ordering based on the scaled powers p̂ij, while ordering in de-

terministic MET-F2 is set based on the deterministic (or mean) powers. However, by

the same equality argument as for (2.19), it is clear that:

p̂ij = p̄ij + Φ−1(η)σij. (2.21)

Substituting p̂ij for pij in deterministic MET-F2 results in an equivalent formulation

to Robust MET. This is important computationally because MET-F2 (a MILP) solves

much faster than the general robust counterpart of a MILP (a MISOCP). We refer to

[112] for solution times; networks up to fifty nodes are tractable to solve to optimality

today.

The case of a nondiagonal Qi,yy represents correlations, which is outside our cur-

rent scope. However, correlations could be treated approximately by solving the

MISOCP with constraint (2.15), using the ordering based on p̂ij as given above. If it

2Substituting the robust definition of Pi into the objective can also be viewed as a special case of
the robust optimization approach for cost coefficients with ellipsoidal uncertainty sets by Bertsimas
and Sim [28].

3This is a simple variable substitution since the inequality is argued to be tight, however this
procedure can also be interpreted via Lagrangean duality.

4Additionally, if maximum and minimum node power levels are desired, the Pi variables must be
retained; the effect on overall problem size and tractability is negligible.
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is desired, a fully linear approximation could also be made through the relation:
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2.6.2 Special case: constant multiplicative uncertainty

Multiplicative uncertainty (described by Ã in Section 2.3) which is constant across

all links is amenable to further analysis. This model would be valid if all nodes have

similar characteristics and the ocean conditions are approximately uniform across the

operating region. The uncertainty for link ij in absolute power [W] at the sender

becomes a simple fraction of the mean power for the link in [W]:

σ
(

Ãij

)

= σij =
p̄ij
C

(2.23)

We show that under these conditions the optimal routing solution (xt
ij and yij) ob-

tained through the deterministic MET-F2 program with the mean powers p̄ is in fact

optimal for the robust formulation as well. The node powers are set with a simple

linear scaling of p̄ij∗(i) that depends on η, and that the scaling is the same across all

nodes.

We insert this model for σij into the objective as defined in (2.20) and collect

terms:
N
∑

i=1

Pi =

(

1 +
Φ−1(η)

C

)

(

N
∑

i=1

p̄ij∗(i)

)

(2.24)

Since Φ−1(η) and C are both constants, it is clear that this objective is the same as the

deterministic MET-F2 objective, with a constant scaling factor. With the constant

multiplicative uncertainty, the ordering based on p̂ij is the same as the ordering based

on p̄ij. Thus, this formulation has the same feasible set as deterministic MET-F2 and

the optimal solution to Robust MET is:

• The optimal routing xt
ij and yij from deterministic MET-F2
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• Node powers set according to:

Pi =

(

1 +
Φ−1(η)

C

)

(

N
∑

j=1

p̄ijyij

)

(2.25)

The optimal topology and routing are invariant, but the power levels change with the

uncertainty level. This is important practically as only changes in the power scaling

parameter must be broadcast to all the nodes as conditions change, as opposed to a

complete routing table.

2.7 Computational Results

We ignore absorption losses and present results for the spherical spreading model

p̄ij = Gr2ij in order to be consistent with literature on MET. Results were computed

using AMPL/CPLEX. The results we show are all for a single multicast instance

with N = 30 nodes, and |D| = 15 destinations randomly located in the unit square.

We present example results for multiplicative and additive uncertainty separately, all

with η = 0.99. We normalize the powers such that the deterministic objective (σ = 0)

has total power of one. We did not set maximum or minimum power levels for any

of these cases, in order to focus on the effects of the robust constraints.

2.7.1 Multiplicative uncertainty

The left side of Figure 2-1 shows the deterministic routing, and the right side shows

a scenario where all links going into destinations have a multiplicative uncertainty

of σij = p̄ij/2 and all links going into optional router nodes have a multiplicative

uncertainty of σij = p̄ij/20. The routing is notably different between the two cases.

The deterministic case would be infeasible with uncertainty.
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s

Deterministic
Objective = 1.00

s

Multiplicative uncertainty
Objective = 1.82

Figure 2-1: The left plot is the deterministic solution (shown for reference). The red
node labeled s is the source. The right plot is the solution when destination nodes
(blue) have multiplicative uncertainty of σij = p̄ij/2 and optional routers (black) have
multiplicative uncertainty of σij = p̄ij/20. Note that the deterministic solution would
be infeasible for the scenario with uncertainty.

2.7.2 Constant additive uncertainty

We consider next uncertainties in transmit power for all links as a single constant:

σ(B̃ij) = σij = σC . Figure 2-2 shows three cases. The uncertainty is normalized

such that a standard deviation of one is equal to the power required to transmit the

edge length of the domain. The optimal solutions are compared to the prior heuristic,

which takes the deterministic design and increases node power levels in order to meet

the robust constraints. The heuristic applied in this case is very poor. As uncertainty

increases, the true solution moves from the optimal deterministic solution towards

a star network. We present results up to large uncertainties to show the extreme

behavior of the routing trees. Figure 2-3 shows a summary comparison. Even at

low uncertainty, for σC = 1/50 shown in Figure 2-2b, Robust MET achieves an

objective which is 41% better than that of the heuristic. We note that the optimal

solution is piecewise-linear in between changes in routing and topology, although

Figure 2-3 does not directly show each discrete change.
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Figure 2-2: Robust MET solution (left) compared to baseline heuristic (right) for
three different values of constant additive uncertainty. σC = 1 corresponds to un-
certainty equal to the power to transmit the distance of an edge of the box. The
objective is normalized such that the optimal deterministic objective (σ = 0) is equal
to one.
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Figure 2-3: Normalized sum of transmit powers as a function of constant additive
uncertainty for N = 30 and D = 15. The total power with no uncertainty is 1.
Uncertainty with a standard deviation equal to the mean power required to transmit
the edge length of the domain is one.

2.8 Summary

Robust MET provides a tractable means for designing efficient geographic rout-

ing subject to power uncertainty, a capability which is especially useful in power-

constrained marine robotic networks that rely on unreliable acoustic communications.

We have shown that with proper scaling of input power levels, a deterministic MILP

formulation may be used to find the optimal robust solution; MILP solvers are faster

than mixed-integer SOCP solvers. Additionally, in the case of constant multiplicative

uncertainty the deterministic routing solution plus a linear scaling of node powers is

optimal. This suggests that the routing table does not always need to be updated as

conditions change. In this case or between shifts in topology for arbitrary uncertainty

scenarios, adaptive power-control schemes using feedback, such as in [185], could be

used for additional performance benefits as the routing is locally optimal.
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Chapter 3

Field Experiments in Multi-vehicle

Dynamic Target Pursuit

In this chapter we address through experiments the capability of acoustics to sustain

highly dynamic, multi-agent missions, in particular range-only pursuit in a challeng-

ing shallow-water environment. As opposed to a traditional control and estimation

design scenario, the mission here is accomplished through a highly integrated vehi-

cle system performing full joint estimation and coordination through lossy acoustic

communications underwater. The waypoint-based control used in this chapter does

not consider detailed vehicle dynamics or timing aspects that we focus on in Chap-

ter 5. Nevertheless, the three experimental configurations studied show the effects

of cycle time, quantization, and acomms performance on the frequency response of

the closed-loop system. In particular, the MP and FSK0 experiments demonstrate

that for tracking highly dynamic targets it is beneficial to trade-off quantization for

low cycle time. These outcomes show definitively that aggressive dynamic control of

multi-agent systems underwater is tractable today. More broadly, the pursuit mission

presented in this chapter is one special case of a much larger picture where multi-

ple vehicles track features in the ocean, as opposed to point targets. We discuss an

approach for such missions in Chapter 4.
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3.1 Introduction

Truly dynamic missions of interest in the ocean include networked ocean vehicles

following a submarine or a marine animal; the latter has been a dream of biologists

for decades. Major gaps exist in our understanding of the life cycles of many important

marine animals, such as jellyfish [202], sharks [224,245], lobsters [242], and more.

In an effort to lay some groundwork for exploiting advanced algorithms in a real-

world ocean application, this chapter addresses with experiments an approach for

joint estimation and pursuit of a moving target using acoustic communications; see

Figure 3-1. Needless to say, the general pursuit problem has held high interest for

decades; it is a canonical mission in space and air, on land, and at sea. Probabilistic

pursuit-evasion games have been studied extensively in the robotics literature [244],

and pursuer and evader dynamics as well as nonlinear estimation are important factors

in these algorithms [145, 264]. The effects of communication constraints have not

received much attention [166]. These are often addressed indirectly via decentralized

approaches that require minimal exchange of information between agents [50]; see

[70, 89] for ocean-specific implementations.

There have been some recent experimental works that are related to our pursuit

scenario. Perhaps most intriguing is tracking a leopard shark in extremely shallow

water, using a single autonomous vehicle with a hydrophone array of 2.4 m spread [51].

The system was successful but the shark evidently moved only 200 m or so in 48

minutes reported. Bean et al. (2007) studied range-based leader–follower regulation

with Micro-Modem mini-packets and 1 m/s speeds [17], while Brignone et al. (2009)

study a similar problem with DSPComm modems and two vehicles operating at 0.7

and 3 m/s [33]. Both works present data from proof-of-concept field trials with mostly

straight trajectories. Soares et al. (2013) consider a vehicle following two leaders in

a triangle formation, with ranges of about fifteen meters, speeds around 0.5 m/s,

and a total loop time of four seconds [226]. In contrast, Cruz et al. (2012) consider

a complete feedback system—in the sense of two-way communications—for which a

stationary controller transmits commands for two mobile followers, who then transmit
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Figure 3-1: Screenshot from an active localization and pursuit experiment with acous-
tic communications. The two vehicles jointly estimate the target location based on
range measurements, and move to stay in formation relative to it.

back their positions [53]. The vehicle speeds are slow, in the neighborhood of 10 cm/s,

and the cycle time is around twenty seconds. Through analysis, Chen and Pompili

(2012) addressed optimization of acoustic communications in coordinated flight of

ocean gliders, where currents are especially important [45].

None of these prior works explicitly deal with designing and improving closed-loop

frequency response of an integrated multi-vehicle feedback system. This is exactly

our objective here. Our design does not rigorously account for stability margins, the

multi-rate nature of acoustic communications, inherent geometric nonlinearities, or

the fact that autonomous marine vehicles are not ideal actuators. On the other hand,

our approach demonstrates practical closed-loop performance at half the Nyquist rate,

with little evidence of stability breakdown.

We detail the experiment setup in the following section with descriptions of the

vehicles and communication hardware used, the experimental domain, and the es-

timation and control strategies and parameters. We then give results from three

integrated tests, demonstrating the performance achieved.
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3.2 Experimental Setup

Our experiment in joint localization and pursuit has two mobile agents sharing sensor

information and commands through acoustic links. We make scalar range measure-

ments at each agent, and thus tracking is impossible without their coordination. One

agent is designated as the leader that coordinates the measurements and the actions

of the followers. This arrangement involves lossy channels at both locations in the

feedback loop of Figure 3-2. In the general case, a centralized architecture such as

this allows integration with remote sensing, large-scale computations (such as data

assimilation), and human-in-the-loop decision-making. The mobile agents attempt to

stay close to the target, and in a formation conducive to good sensor performance.

The autonomous surface vehicles and acoustic modem system used are described

in Section 1.3. The next three subsections detail the arrangement and operation of

the multi-vehicle joint estimation and pursuit system.

Sensors 
Estimators / 

Encoders 

Controllers / 

Decoders 

Estimator / 

Decoder 

Controller / 

Encoder 

Physical 

Vehicles 

Lossy 

Channel 

Lossy 

Channel 

local measurements 

e.g., ranges 

positions 

of vehicles 

environment 

e.g., position 

of target 

outside information 

outside objectives 

local      centralized  

Figure 3-2: Block diagram of a generic multi-vehicle feedback system with a central-
ized estimator and controller, and communication channels at two locations within
the loop. Vehicles act as mobile sensors.

3.2.1 Physical Layout

The two-vehicle pursuit mission encompasses limited communication performance in

both the sensing and control channels. In this experiment there is a target to be

tracked, “Icarus”, and two cooperating agents “Silvana” and “Nostromo”. We will

denote these three nodes with the symbols I, S, and N, respectively. N can be thought
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of as a leader, and S a follower. The sensing objective is a simple one: to maintain S

and N in fixed triangular configuration relative to the estimated location of I, so that

measurements will be of high fidelity, i.e., in the sense of a good HDOP [29], and in the

sense of a short range. Our pursuit arrangement models the general situation where

range or other target sensing degrades with distance, but a high level of tracking

precision is desired. Maintaining a close pursuit formation keeps ranges close to a

nominal value, allowing for more precise quantization.

An “unstable” situation is encountered if the target crosses the baseline (the line

in between the two vehicles acting as a moving long baseline network)—the estimate

begins to diverge from the target location. Thus, the disadvantage of a small pursuit

formation is that it is easier for the target to cross the baseline, bringing up a tradeoff

between robustness of a larger formation and accuracy of a smaller formation (which

requires good closed-loop performance).

3.2.2 Cycle Description, Timing and Quantization

We detail the stages of the control loop for the MP and FSK0 cases. Within a cycle

step, S and N each receive a measurement of range to I via the Micro-Modems in

ranging mode. After a guard period, S transmits its current location and range data

to N through acoustic communication. N combines this information with its own

location and range information to generate an estimated location of I. N calculates

control actions for itself and for S, and transmits the latter back to S. The cycle

includes three separate transmissions and there are no acknowledgments.

For feedback control, there is a problem-dependent tradeoff to be made between

time-averaged throughput (usually achieved with long coding blocks) and timeliness of

the information (shorter messages). We present data using both 13-bit mini-packets

and 32-byte FSK0 packets as an initial study of this tradeoff. The MP scenario

minimizes cycle time at the expense of data quantization; we achieved a total cycle

time of 12 seconds in this configuration.1 With the FSK0 configuration, packets

1When range measurements do not interfere with modem packets and the cycle consists of just
two-way communications (e.g. using GPS and wifi for ranges), we have achieved a six-second total
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require no quantization for the data types we send, but do require a 9.5-second time

slot for each transmission, resulting in a total cycle time of 23 seconds.2 The “wifi”

scenario involves a four-second slot for acoustic ranging, as detailed above. However,

the inter-vehicle communications are handled instantaneously via wifi, so the estimate

is available immediately upon reception of ranges.

For the message from S to N in the MP case, we used three bits for the range,

and five bits each direction for S’s location in a 32×32 discretized workspace; this

workspace had ten-meter resolution. The range data were logarithmically quantized

relative to a desired range of 50 m, with seven bin edges located at [19.2 32.5 42.5

50 57.5 67.5 80.8] m, and the three-bit messages decoded as [11.5 26.8 38.2 46.8 53.2

61.8 73.2 88.5] m. This correlates with the density ρ = 0.75 [80]. For the message

from N back to S, we used five bits in each of x and y for the desired location in

the workspace. This left three bits unused. Note that with quantization, there is a

tradeoff between range and precision. With this choice, any range larger than 80.8

m is decoded as the furthest range bin, so when ranges are very large, estimation

suffers. Increasing this outer range would come at the expense of resolution of the

bins near the 50 m nominal range; it is the control system’s job to keep the vehicles

in the desired formation so that small bins can be used.

3.2.3 Settings and User Choices

The tracking system contains a nonlinear sigma-point filter (SPF) [128], well-suited

for this type of application.3 The nonholonomic target I (a small motorboat) was as-

sumed to be moving at constant 1.55 m/s, with stochastic low-pass, zero-mean turn-

ing rate with variance Q. The observation vector contains the two noisy ranges, with

variances RS and RN for range measurements to Silvana and Nostromo, respectively.

The sensor noise for range measurements was chosen based on prior characterizations

of the WHOI Micro-Modem ranging capability [58, 85] and our own observed LBL

cycle time with mini-packets in the field.
2As we were submitting this paper we became aware of several modifications in the operation of

the Micro-Modems that likely will allow for slightly faster cycle times.
3Other nonlinear, range-only filters, such as particle filters, could also be used [63].
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performance. The sensor noise for the follower range measurement (I to S) in the MP

experiment was set to a higher value to account for the effects of quantization during

communication of the measurement from S to the filter running on N. Settings for

the three configurations are given in Table 3.1.

When a measurement is not available (either due to a missed LBL range, or

a dropped measurement packet from S to N), we take the standard approach of

setting the noise of the lost measurement to infinity [222]. In the MP and FSK0

configurations, when a control command from N to S is dropped, the previously-

received command for S remains the desired waypoint. This approach is chosen to

ensure safe operation in the case of many missed packets. In the MP case, three bits

are left unused in the command packet which could encode contingency plans.

The desired observation triangle has a sixty-degree vertex at I. For the MP and

wifi cases, the ranges to each of S and N were 50 m; for the FSK0 case the desired

ranges were 100 m due to the slower cycle time.4

Table 3.1: Settings and results for the three configurations. DesRange is the length
of the legs in the desired sensing formation. The columns with R are the sensor noise
variances for the range measurements to each vehicle. Q is the target heading rate
variance. BW is the closed-loop tracking bandwidth, and Atten is the tracking error
attenuation at 0.065 rad/s. Also see Figure 3-6.

Config Cycle Time DesRange RS RN Q BW Atten

sec m m2 m2 (rad/s)2 rad/s dB

FSK0 23 100 0.25 0.25 0.01 0.065 0
Wifi 4 50 0.25 0.25 0.05 0.5 18
MP 12 50 0.25 9 0.05 0.13 7

3.3 Experimental Results

We compare the tracking performance of three different communication configura-

tions: full-sized packets (“FSK0”) with negligible quantization and a 23-second cycle,

RF wireless communication (“wifi”) with a four-second cycle, and 13-bit mini-packets

4The ranges are set relative to the distance the target can drive in a time step, so that the target
is unlikely to cross the baseline before the control system can react.
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(“MP”) with a 12-second cycle. The “wifi” configuration roughly represents a single

vehicle towing a long two-element array, as inter-vehicle communication is lossless

and immediate. However, a true “single-vehicle with array” would be less maneuver-

able than vehicles without arrays, and could not pursue the target as closely without

risking the target crossing the baseline. For close pursuit with multiple vehicles, we

can view the “wifi” case as a lower bound on performance.

The experiments we report were conducted on 8-9 July 2013, both days with light

winds.5 Figures 3-3, 3-4, and 3-5 give results from the FSK0, wifi and MP tests,

respectively. In each test, I moved in a largely random trajectory, as shown in the

birds-eye view in the upper left (Subplot a) and the time traces in Subplot c. The

upper right (Subplot b) shows the sensing formation every fifteen time steps; we see

that while the ideal triangle configuration was rarely achieved in the FSK0 and MP

tests, the target did not cross the baseline (the red straight line between the two

nodes acting as a moving LBL network), nor did the geometry ever stay poor for a

sustained period. The tracking and pursuit system did not lose the target.

The measured ranges are reported in Subplot e in each figure, including quan-

tization of raw values sent to N from S in the subsequent measurement packet for

the MP case. Range losses in all cases are low, as the Micro-Modem ranging ping is

fairly robust; see figure captions for loss statistics. Subplot d shows the north and

east tracking error over time, along with dropped communication packets for the MP

and FSK cases. The packet losses are significantly higher for the FSK0 test. Most of

the larger errors occur following packet losses, but some large spikes (such as around

500 seconds in the mini-packet test) are not near packet losses—errors can also occur

due to poor sensing geometry, and in the MP case, quantization.

Recalling our broad objective to achieve dynamic control through mobile acoustic

networks, it is revealing to ask what is the effective closed-loop estimation bandwidth

achieved. A direct FFT-based empirical transfer function for the estimation error

divided by target motion is shown for each test in Figure 3-6; spectra have been

5This data set, along with videos, is publicly available at http://web.mit.edu/hovergroup/

resources.html .

68



−200 0 200 400
−400

−300

−200

−100

0

east, m

n
o
rt

h
, 
m

a) Target Icarus Overhead View

 

 

True

Estimate

−200 −100 0 100 200 300

−400

−300

−200

−100

east, m

b) Formation Overhead View

 

 

Ideal

Icarus

Silvana

Nostromo

−400

−200

0

200

400

m

c) Target Tracking

 

 
east

north

True

Estimate

−40
0

40

−40
0

40

m

east

north

d) Tracking Errors

 

 

Nostromo −> Silvana Losses

Silvana −> Nostromo Losses

0 1000 2000 3000 4000 5000 6000

50

100

150

50

100

150

Icarus −> Silvana

Icarus −> Nostromo

m

time, s

e) Ranges

Figure 3-3: FSK0 test results (6463 seconds, 281 cycles). a) Overview of true and
estimated trajectories of the target Icarus. b) Sensing formation every 15 time steps.
c) Actual (GPS) and estimated trajectory of target Icarus. d) Estimation error of
Icarus’ location. The RMS radius of estimation errors was 20.2 m. Data packet
losses are also shown; loss rates were: N → S = 19.9%, S → N = 14.0%. e)
Range measurements from Icarus to each kayak, and losses. Range loss rates were:
I→ N = 1.1%, I→ S = 4.8%.
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Figure 3-4: Wifi test results (1820 seconds, 455 cycles). a) Overview of the true
and estimated trajectories of the target Icarus. b) Sensing formation every 30 time
steps. c) Actual (GPS) and estimated trajectory of the target Icarus. d) Estimation
error of Icarus’ location. The RMS radius of estimation errors was 3.8 m. e) Range
measurements from Icarus to each vehicle, and losses. Range loss rates were: I →
N = 9.0%, I→ S = 4.8%.
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Figure 3-5: MP test results (4800 seconds, 400 cycles). a) Overview of the true and
estimated trajectories of the target Icarus. b) Sensing formation every 15 time steps.
c) Actual (GPS) and estimated trajectory of the target Icarus. d) Estimation error
of Icarus’ location. The RMS radius of estimation errors was 12.7 m. Data packet
losses are also shown; the loss rates were: N → S = 3.8%, S → N = 6.5%. e)
Range measurements from Icarus to each vehicle, and losses. Range loss rates were:
I → N = 3.8%, I → S = 4.8%. Quantized measurements sent from Silvana to
Nostromo are shown in red on top of the true measured ranges.
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Figure 3-6: Empirical FFT-based transfer function for estimator error divided by
target motion. The solid lines show the mean of the X and Y spectra. The dashed
lines show an approximate linear fit for low-frequency attenuation. Dots show the
approximate attenuation at 0.065 rad/s.

smoothed with a five-point centered moving average. The FSK0 test has a break

frequency for tracking the motion of I at approximately 0.065 rad/s, slightly less

than half the Nyquist rate for the twenty-three-second cycle. The wifi test has a

break frequency of approximately 0.5 rad/s. The MP test has a break frequency of

approximately 0.13 rad/s. We can also compare the attenuation of tracking error

for each configuration at 0.065 rad/s. FSK0 has zero attenuation, wifi has 18 dB

attenuation, and MP has 7 dB.

3.4 Summary

Our experiment has achieved aggressive target pursuit in the underwater environ-

ment. We performed tracking of a moving target using two vehicles and acoustic

range measurements. The vehicles collaborate in order to jointly estimate the tar-

get’s position, and move to stay in formation relative to it. Real-time communication

is an integral aspect of the estimation and control loop. We have presented in detail

results comparing the tracking performance of three different communication config-
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urations, at operating speeds near 1.5 m/s. The primary result of the experiments is

high bandwidth tracking of the target. Comparing the frequency response of two dif-

ferent communication schemes demonstrates that for tracking highly dynamic targets

it is beneficial to trade-off quantization for low cycle time. The results given with the

13-bit minipacket illustrate an extreme end of this tradeoff, and new developments in

more flexible short packets will offer further options for exploring the tradeoff.
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Chapter 4

Oceanographic Pursuit: Networked

Control of Multiple Vehicles

Tracking Dynamic Ocean Features

Extending the target pursuit mission of the previous chapter to oceanographic ap-

plications, this chapter considers distributed and dynamic tracking of moving ocean

features, such as eddies, plumes and fronts. This capability will allow observation of

important chemical, biological, and physical processes over larger physical scales and

at faster temporal scales than possible with a single vehicle.

This chapter presents an integrated framework for joint estimation and pursuit of

dynamic features in the ocean, using multiple collaborating vehicles relying on lim-

ited communications. We present a unique multi-vehicle frontal point description and

control methodology that leverages numerical ocean model forecast ensembles. Our

primary innovation is a projector algorithm that carries out linearization of ocean

model forecast uncertainty directly in vehicle coordinates via a forward model tech-

nique. The outcome is a linear time-invariant stochastic system representation that

captures coupling between sites. Simulations using three model datasets demonstrate

the proof-of-concept. While the results of this chapter use the loss-robust control tech-

nique of Imer et al. [123], the modeling approach and system description we develop

is suitable for the JLS-PPC control techniques we present in the next chapter.
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4.1 Introduction

The behavior of ocean fronts and similar structures such as plumes and filaments

has long been of interest to oceanographers [79, 92]. Recent measurements in a front

off Japan have revealed sub-mesoscale structure that figures unexpectedly large in

the energy balance [62]. Fronts and plumes are implicated in foundational work on

Lagrangian coherent structures [173], and can show dramatic physical, chemical, and

biological variability that is critical to understanding ocean-atmospheric coupling,

ecological systems, and pollution [37,78].

Despite continual advances in modeling of complex natural processes, ocean fronts

at the mesoscale and smaller remain challenging [41,111], and hence have emerged as

a primary focus area for mobile sensing systems. Here, progress has been rapid, e.g.

[83, 246]. Zhang et al. [262, 263] carried out at-sea experiments where measurements

both drove trajectory decisions and triggered collection of large samples. A single

vehicle has successfully tracked a plankton bloom [98], while a distributed simulation

approach for plume and thermocline tracking is presented in [182]. Supporting all

these developments, basic water properties are routinely measured today from mobile

robots, while sophisticated chemical and biological analyses in situ are becoming

mature technologies, for example DNA probes [216] and mass spectrometers [37].

In turn, ocean modeling is becoming integrated with real-time sampling systems,

e.g., [110, 225, 251], and is increasingly taking on multi-disciplinary aspects [230].

Path-planning under knowledge of current forecasts has been studied extensively, for

example by Smith et al. [225] and Lolla et al. [149]. None of these works, however,

consider cooperation between vehicles, nor communication constraints. Elsewhere,

coordinated sampling using drifters and vehicles has been studied in [61, 105], and

collaborative control for tracking Lagrangian coherent structures in [160]. But these

papers do not address global dynamic models nor communication constraints.

Already exploited regularly in the terrestrial and air domains, networks of mobile

agents are an attractive means for tracking and pursuit of dynamic processes over

mixed spatial scales [68], although wireless communication inevitably brings funda-
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mental challenges in control [14]. Underwater, wireless communication over distances

beyond about one hundred meters is made almost exclusively via acoustics, which

suffer packet losses caused by ambient noise, multipath, and other environmental

conditions [116]. This packet loss, combined with low data rates and long delays,

has limited the use of acoustic communications in high-performance, real-time tasks.

Our own experience with acoustic modems [198] leads us to assert that control system

design should encompass communication limits from the beginning.

To this end, there has been considerable recent work in the field of control under

communication constraints. Constructive results exist for lossy estimation [108,222],

lossy commands [192] and H∞ sampled-data control [138]. We extended the work

of Imer et al. [123] to the case of independent multi-channel packet losses [196];

Imer’s dynamic programming approach results in a highly tractable recursion. These

principled methods for networked control design, however, usually require LTI system

representations.

In this chapter, we combine the themes above to focus on tracking and pur-

suit of dynamic ocean fronts by multiple unmanned vehicles, posing the problem in

such a way as to accommodate the most promising developments in communication-

constrained feedback control. As diagrammed in Figure 4-1, our approach fits as

an intermediary between high-bandwidth vehicle flight control (at the seconds time

scale) and lower-frequency procedures in numerical ocean modeling, assimilation, and

adaptive sampling. Notably, we are using linearization for a completely different pur-

pose here than the norm in physical oceanography, where it has helped characterize

instability and maximum sensitivity directions through adjoint models [164]. As de-

scribed in full below, our approach explicitly leverages ocean forecast ensembles, a

projection onto vehicle coordinates, and stochastic system identification, yielding a

dynamics description that is directly suitable for control system design. These ele-

ments all enable a reactive control methodology for dynamically sampling the ocean,

that may be faster than many approaches used today. Looking forward, we hope

that our framework may provide a basis for tradeoff studies in designing complex

deployments.
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Figure 4-1: High-level overview of the ocean front tracking system. Inputs on the
Analysis Center side include human decisions and other data sources not available to
the vehicle network; these may or may not be embedded in the projector. Additional
inputs on the Vehicle Network side include channel losses, sensor noise, and physical
disturbances.
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We describe the overall technical framework in Section 4.2, with some addi-

tional background comments on forecasting and linearization. Projection is detailed

in Section 4.3, and the integration of projection, system identification, estimation

and control in Section 4.4. Projection and identification outcomes with test and

model data are described in Section 4.5, and Section 4.6 has control simulations.

Section 2.8 concludes.

4.2 Technical Setup

4.2.1 Scope of the Field Operation

We consider a dynamic scalar field φ in two dimensions, although there is nothing

inherent to our methodology that prohibits three dimensions, or a vector field. We

will focus on field variables that can be adequately sampled by autonomous vehicles

while they are in motion.

Two key assumptions are that the instantaneous field contains areas of spatial

gradient, which induce a favorable measurement gain for data-driven servoing, and

that the operation of vehicles on gradients is desirable. This is certainly true if we

want to track a front, and characterize the water properties close to it. Beyond

following gradients as a primary mission objective, there is also a broader scenario

in which one set of vehicles might have the task of monitoring feature boundaries –

characterized by a threshold value and a gradient – while another set operates within

the feature, where structure is much harder to detect.

4.2.2 Known and Unknown Frontal Points

In loose terms, a front in the field variable at a given time is an elongated region of

high gradient magnitude; in the plane, a front would comprise a tightly-packed set

of contour lines for field variable φ(t). A projector expresses such a front in terms of

desirable locations for vehicles – which we term frontal points (FP’s) p(t) – and as the

physical front evolves over time, so do the frontal points. Taking φ and p to denote a
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finite time series of the field and a set of FP’s, respectively, our overall strategy in this

paper is to develop a process that quickly generates acceptable p from given φ, and

separately a process by which an actual vehicle group pursues a physical realization

of p. The second process perhaps has a conceptual jump in the sense that we are

asserting a physical p to go with a physical φ, and of course neither is fully known.

For a given φ, frontal points are defined by the projector D:

p = D(φ).

D can comprise algorithms as well as human input; it encodes any explicit dependence

on time, and initial conditions for p. D need not be causal, and as a function could

be surjective or injective or both: different field evolutions φ could easily lead to the

same desired vehicle trajectory, while there also exist useful vehicle trajectories that

do not depend on φ at all. Most importantly, D has full access to φ and is thus

omniscient.

Example 1. A causal, omniscient projector for N vehicles might have the following

key operations at each time step:

1. Given φ(t), choose a level Φ and calculate regions of the physical space that

satisfy φ(t) = Φ.

2. On this subset of interest, propagate the N FP’s, p(t), with constraints on

spacing and on speed.

This example captures the paradigm we explore in computations, but it is by no

means the only one possible. For instance, one could just as easily identify areas of

high gradients in φ(t) to put the FP’s.

An acceptable p satisfies a number of constraints, p ∈ P = P1 ∩P2 ∩ · · · . Already

we know from statements so far that:

P1: p occurs in gradient areas, and observations near p are desirable.

P2: p is feasible for the vehicles and their control system, in terms of
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P1 general desirability of gradient areas
P2 feasibility
P3 accuracy and strength of reference gradients
P4 slowly varying reference FP’s and gradients
P5 consistency of major features
P6 coupling among perturbations

Table 4.1: Summary of general constraints for projector D.

maximum transit speed, maneuvering, closed-loop bandwidth, collision

avoidance, and communication or other operational constraints.

To support closed-loop field operations, we will add to P’s specification below, as

summarized in Table 4.1.

Consider now the physical instance of the field φo; the “o” subscript is used from

here on to indicate the physical instance. D does not apply because we do not know

φo. Yet desirable FP’s po still exist, and an estimate of them plays out according to

p̂t
o = Eo(z

t
o),

where Eo is a causal, actuated estimator, and sparse measurements zo are its driver.

The “t” superscript indicates times up to t. Underlying zo is the physical instance

itself, φo, and a set of physical vehicles and their control system(s), process and sensor

noise channels, and so on. Eo is understood to embed all available information but it

has a structure different from D: it does not know the true field φo, and thus cannot

carry out the first step in Example 1 above.

Our goal then is to exploit the information available at start of mission to ensure

that po ∈ P, and that p̂0 ≈ po through a sampling, estimation and control strategy.

These are achieved through both D and Eo.
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4.2.3 Designing D via Stochastic Prediction

Without prior information about φo the construction from Eo would be extremely

weak. We can use a stochastic model of the ocean process to strengthen it. Consider

a set of specific predicted instances (realizations) of the field, indexed i ∈ {1, · · · ,M}.

The associated set of frontal points is generated by the same omniscient projector

as above: pi = D(φi). Since φi is in hand, the pi defined by D is easy to create

and visualize. Thus a predicted instance provides a direct assessment of D, and

an ensemble of such instances allows us to design D such that the constraints in

Table 4.1 are satisfied.

Let the distribution of the true field be h(φo), and make the assumption that

h(φo) = h(φi), i.e., there are no systematic errors in the field prediction. Formally,

this assertion rests on Leith’s landmark paper in climate studies, that by the ergodic

hypothesis good performance in an ensemble occurs when the ensemble distribution

matches the true climate distribution [141]. This assumption underlies virtually all

modern weather prediction procedures, and in our context it implies that h(po) =

h(pi), since D is agnostic on the input data. Then prob(pi∈P) = prob(po∈P), and

consequently D designed via pi achieves prob(po ∈ P)→ 1 if the design process fully

models random p, and if D yields a high fraction of successful trajectories. In other

words, the probability that the physical instance FP’s po will satisfy the constraints

increases as the projector takes more information about the field into account.

4.2.4 Geometry of Eo

Assuming the desirability (P1) and feasibility (P2) conditions are met by po, the next

question is how to make p̂o ≈ po. In this and the next subsection, we consider

geometric aspects, from which conditions P3, P4, and P5 will follow. As noted, Eo

includes the vehicle system, and hence following po is a complicated function of many

parameters as well as random processes. At each time step, however, Eo can be

thought of as having a geometric part that establishes p̂′
o ≈ po through algebraic

constraints only, and a feedback and estimation part that in turn establishes p̂o ≈ p̂′
o,
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when the vehicles stay close by. This second approximation is essentially set by the

closed-loop performance of the integrated system, the topic of a later section.

Regarding the first approximation, suppose for the moment that there are no

constraints from the vehicle system, i.e., that all measurements and communications

are perfect, and the vehicles’ physical motion is unconstrained. All that is left in Eo

is the causal mapping from perfect measurements at locations q to the FP estimates

p̂′
o. Let us restrict our attention to a single FP and a single time step.

The geometry of Eo is built on one of two simple linearization models. Consider

Figure 4-2(middle), which illustrates the first. Suppose that po instantaneously

satisfies the level condition φ(po) = Φ plus constraints po ∈ C = C1 ∩ C2.
1 To resolve

ambiguities in a complicated field C1 restricts po to the neighborhood of a reference

point p̄; for uniqueness, C2 is a line that sufficiently constrains po along the level

set. The intuition is that if this FP coincides with a strong gradient, and if tracking

errors are small, then a vehicle located at q would be able to directly servo to po, by

measuring [φ(q)−Φ] and enforcing q ∈ C2. Note that p̂
′
o as drawn is not at po because

the estimator does not know the true level set.

Figure 4-2: Spatial linearization geometry. Left boxes: The pursuit control system
should drive a vehicle at q to the estimated frontal point p̂′o. The top boxes show two
linearizations for Eo; the right one has a line constraint C2 and is our main focus in
computations. The left box has a reference gradient imposed and thus requires some
additional constraint. The bottom sketches illustrate the perturbation type for which
each linearization is suited; the solid line is the reference feature and the dotted line
is a physical instance. Right figure: Geometry along C2 (e.g. the reference gradient
direction) illustrating how ḡ establishes p̂′o.

1As a slight abuse of notation, we will use po and q to indicate 2-vectors of coordinates in R
2;

boldface will be used to refer to sets of FP’s and vehicles, respectively.

83



From the stochastic prediction let us define a reference field φ̄ and an associated

set of reference FP’s p̄. One choice, described in Section 4.3.1, is to set φ̄ as

the ensemble mean, with reference FP’s equally spaced along a level set. Note that

although p̄ does depend on a rule set, we do not write p̄ = D(φ̄), because D operates

on instances only, and actually contains both p̄ and φ̄ implicitly. From the stochastic

prediction we also define a reference gradient vector ḡ to go with p̄; both p̄ and ḡ can

change over time. Now each linearization at a site in Eo uses the nominal gradient ḡ,

which is supposed to apply in the neighborhood of po. This is a strong assumption,

because gradient variability can be quite large. A robust stochastic prediction serves

as an adequate indicator, however, and our simple approach of using p̄ and ḡ directly

is shown to be effective for the datasets described in Section 4.5.

Some simple manipulations give a key analytic relationship, illustrated in Fig-

ure 4-2(right):

φo(q)− φo(po) = ḡT (q − p̂′o)

=

∫ q

po

∇φo(s)
Tds, to yield

∫ q

po

(∇φo(s)− ḡ)Tds = ḡT (po − p̂′o), (4.1)

where s denotes any path in R
2 from po to q. The formula is exact, and says that

the error in extrapolating a measurement at q to the anticipated measurement at

(unknown) po is equal to the projection of the reference gradient onto the error in FP

position. It offers two crucial insights. First, with all of q, po and p̂′o assumed to lie

within C1, for the error to be small we need ∇φo to be near ḡ in C1, at least in the

average sense and at least in the direction of q−po. Gradient error that is orthogonal

to q − po has no bearing on the FP error. Second, stronger |ḡ| makes for a smaller

error in ḡ’s direction. Error orthogonal to ḡ is not controlled by the integral (nor by

|ḡ|), and this is why we require the constraint C2 or coupling in our models.

Example 2. To illustrate specific D and Eo, suppose there are two vehicles and that

D codes for one vehicle to follow the northernmost extreme of the level set φi = Φ,
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and the other vehicle to follow the southernmost extreme. This is an easy program

to write if φi is known. Assume p̄ is representative of each instance; then Eo fixes the

east-west coordinate for each vehicle according to that of p̄ – this is the constraint

C2 at each site – and drives each vehicle north or south depending on the error signal

[φo(q)− Φ] and some control law.

We now state more specifically our two major categories of linearization;

1. The first involves perturbations relative to a reference point and its reference

gradient; see Figure 4-2(middle). Perturbations are only allowed along the

reference gradient line through the reference point. This constraint is suitable

when deviations perpendicular to a level set are the dominant effect, e.g., un-

dulations of a long front.

2. The second linearization allows unconstrained translations relative to the ref-

erence FP, but maintains the reference gradient, as in Figure 4-2(left). This

is useful when the shape of the tracked feature is consistent but its translation

is not. In the absence of a given lateral constraint, this linearization requires

coupling between FP’s, which will be described below.

In this paper we give application-related studies concentrating on the first lineariza-

tion.

As an aside, we note that range-only tracking and pursuit of a point target can be

seen as a special case of the second linearization, in which speed limits and nonholo-

nomic constraints for the target are replacing the ocean model. That the observing

vehicles have to maintain a wide aperture, and a suitable distance for sensing and

communication, comprises a simple rule set within the real-time system Eo. We have

studied this scenario experimentally [198].

4.2.5 Gradients for Eo

An instance φi induces pi at each site through D, and the associated gradient is

∇φi(pi). If this gradient is close to the reference gradient ḡ, then we can use the

latter in the real-time operation. Desirable properties for P in this regard are:
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P3a: ‖ḡ‖2 ≥ κ for each FP. The reference gradient is strong, improving

SNR of a noisy field measurement.

P3b: ‖∇φi(pi +∆)− ḡ‖2 ≤ ǫκ for each FP, where ∆ is a positioning error,

and 0 < ǫ ≪ 1. The instance gradient is close to the reference and is

spatially robust.

Both of these properties conform to minimizing the error p̂′o − po in Equation 4.1,

and also relate to control system performance, as discussed in Section 4.6.2. An

additional issue is that p̄ and ḡ can vary over the prediction horizon. Consistent with

control systems practice, we require that these variations are slow enough that they

do not interfere with the closed-loop system near its break frequency:

P4: p̄ and ḡ for each FP are slowly-varying relative to the control system.

Despite best efforts to corral the frontal points through advantageous trajectories,

they may still fail to capture the dynamic behavior of interest. For example, suppose

that a simple, positive-sloping front like that shown in Figure 4-2(right) develops a

local minimum in the vicinity of p̄, leading to an “S”-shaped slice. We have observed

this and other failure mechanisms in our work with ocean model data, and they lead

to a general constraint on feature consistency which is intrinsically related to the

gradients:

P5: An instance pi stays on the major features of interest.

4.2.6 Dynamics Linearization

Our stochastic understanding of the field is a reference trajectory φ̄ and a limited

variation of it φo. This applies to the FP’s as well, with p̄ and po. For the pur-

pose of designing and implementing an observation system, we now assume that the

perturbations po − p̄ have a locally linear dynamic behavior, driven by both known

inputs (e.g., wind forcing if the estimate is accurate) and unknown (long-term nonlin-

ear behavior of ocean flows). Linear dynamics brings access to mature and scalable
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multi-variable identification, analysis and synthesis tools, but the assertion is clearly

a tradeoff against the descriptive power of fully nonlinear modeling. We think the

tradeoff worthwhile since communication constraints and navigation are preeminent

problems in application. That said, any linearization of a nonlinear process, and cer-

tainly one that projects onto a low-dimensional space, has limitations. Our approach

is advocated only for persistent features within the ability of the network and vehicle

system to pursue. Large deformations may occur on long time scales, while smaller

and shorter ones need to be nearly linear.

The physics of ocean processes introduce spatial and dynamic structure into the

field, which may be reflected in the motions of the frontal points. Such physical

aspects include the length scales of turbulence vs. smoothness in diffusion, and

geostrophic or tidal forcing at large scales. Establishing coupling between the frontal

points is powerful since an integrated control and estimation strategy would enable

coupled vehicles to perform better than vehicles making decisions based only on local

information. To emphasize this point, we observe that in general the Kalman filter

systematically reduces error covariance trace as the coupling between subsystems is

increased, with all other parameters held fixed. This trend holds up to the point

where the system’s frequency content is beyond the capability of the filter. Thus, we

set:

P6: An instance pi exhibits coupling.

To establish coupling, we apply system identification techniques to the stochastic

frontal points perturbations; some more details of our identification approach are

given in Section 4.4.2. This method may be criticized first because it is equivalent

to claiming that the coupled dynamic behavior of the ocean field can be expressed

as a model of very low order; second because we claim that these dynamics are

nearly linear; and third because stochastic identification (i.e., the system is driven by

unknown forcing) is difficult enough even for illustrative problems in the literature.

At the same time, linear analysis has in the past been extremely useful in elucidating

fundamental behavior of ocean systems, e.g., [122,233], and indeed a full linear tangent
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dynamic behavior has been developed in [164], and implemented in the widely-used

ROMS modeling system. Along the lines of our current objectives, linear estimation

of ocean systems using sensor networks has been considered before by [259].

4.2.7 Modeling Framework and Other Assumptions

Ensemble description of uncertainty: The quality of predictions is of course a peren-

nial concern in modeling any stochastic, nonlinear process [177, 204]. An ensemble

of model runs with variable forcing and initial conditions is a popular means for de-

scribing uncertainty, and this will be our language in the rest of the paper. More

generally, however, any description of uncertainty could be accommodated insofar as

it allows projection into the vehicle space. Uncertainty in prediction arises primarily

from initial condition errors, modeling errors, and unknown disturbances; we shall

assume that all three elements are unbiased in each epoch.

Limited time scales and renewal: No climate nor ocean model enjoys sustained

accuracy as the prediction horizon lengthens. For employing an ocean model over long

time scales, we assume a data assimilation schedule as found in numerical weather

prediction; predictions are made for a given forward horizon, on which we immediately

carry out our entire design process, and implement it. When a new prediction becomes

available, the process can be run again. An alternative information paradigm would

be to employ repeated sections from longer simulations of cyclic processes, e.g., tidal

flows in a coastal area.

Timing: The integrated observation system has several time scales. Following

Figure 4-1, we define an epoch as the period between Ts and Te over which a given

model prediction (and the associated ensemble data) is valid, and the pursuit task is

undertaken. For our examples in stochastic identification and controller performance,

we study a single epoch.

The model prediction for each epoch consists of T unit time steps, and thus,

Te−Ts = T . The integrated observation and control system, i.e. all sensing, commu-

nications, and actions in the feedback loop, operates at its own time step, δt. In the

current study, we use δt = 1, so that the networked control system matches the model
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time step. This is not far from reality, since ocean model assimilation systems often

run at intervals of several hours, while the command and control cycle of a vehicle

system – at least over large scales and if multi-hop acoustics are involved – could be

many minutes. The coincidence of time steps is a convenient choice for this paper,

but not required.

Centralized control architecture: For the multi-vehicle front tracking problem, we

assume a centralized approach for the design stage, i.e., the upper half of Figure 4-

1, with measurement packets sent to a fusion center, and control commands sent

back out to the vehicles. Many multi-vehicle systems deployed at sea today have a

similarly centralized architecture [195,215]. At the same time, there is no reason that

the multi-vehicle control system (in the lower right of Figure 4-1) has to have a

centralized architecture.

Breakdown: The integrated feedback system may fail for many reasons, some of

which we allude to above, and illustrate below. In general, however, a failure does

not compromise the basic abilities of individual vehicles, sensors, or communication

system – a great many problems will reside in the modeling and the FP’s. This

suggests that on a failure of the integrated system, we can still operate assets in the

field, and in many cases recover the survey and group capabilities that are available

today. Recovery after breakdown is related to the problem of initial detection and

convergence to the feature.

Navigation and jump aspects: Although we can accommodate certain operational

considerations in our unified statement, for the most part we will consider navigation

to be a separate problem, except as described through a standard LTI model with

disturbances and sensor noise. Additionally, while the stochastic identification proce-

dure gives an LTI model over the prediction horizon, in practice the system matrices

change at every prediction update. This implies a jump linear system, which requires

special treatment in control design. Operationally, there are also issues of vehicles

entering and leaving the fleet (for example to charge batteries), which require a jump

system approach.
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4.3 Details of the Projector

4.3.1 Fully Constrained Perturbations

We first describe instance frontal points constrained to the reference gradient di-

rection, passing through the reference frontal point. This model is suitable when

perturbations are primarily in the gradient direction, as in when following moderate

undulations perpendicular to a long front. Tracking the lateral motion of a cable

or chain is a useful analogy for coupled behavior. For M prediction instances (real-

izations) and N vehicle sites, the projection problem on r ∈ R
2, t ∈ {Ts, · · · , Te},

is:

given φi(r, t) (scalar field instance) i ∈ {1, · · · ,M}

find φ̄(r, t) (reference field)

Φj(t) (target level for φ at each vehicle) j ∈ {1, · · · , N}

p̄j(t) (reference FP for each vehicle) j ∈ {1, · · · , N}

p̃i,j(t) (scalar FP perturbations) i ∈ {1, · · · ,M}, j ∈ {1, · · · , N}

such that (dropping the time argument and the ranges for i and j)

i) ḡn(r) := ∇φ̄(r)/||∇φ̄(r)||2 (definition of normalized reference gradient vector)

ii) pi,j := p̄j + ḡn(p̄j)p̃i,j (definition of constrained frontal point instance)

iii) φ̄(p̄j) = Φj (reference frontal point identity)

iv) φi(pi,j) = Φj (frontal point identity per instance)

v) pi,j ∈ P (see Table 4.1)

Selection of the baseline field φ̄ is a matter of user choice, and could be as simple as

the mean field. The target level Φj for a given vehicle j is possibly time varying, and

defines both the reference FP as well as the instance FP, (iii) and iv)). Constraint

ii) establishes that instance FP’s lie on a line passing through the reference FP, and
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in the reference gradient direction.

We show how this construction allows for an explicit estimate of the distance

between the vehicle and the frontal point, from measurement of the field variable.

Let φ̃i := φi − φ̄. For an instance in the field (again dropping the time argument),

invoking a Taylor series gives

φi(pi,j) = φ̄(pi,j) + φ̃i(pi,j)

= φ̄(p̄j + ḡn(p̄j)p̃ i,j) + φ̃i(p̄j + ḡn(p̄j)p̃ i,j)

= φ̄(p̄j) + ‖∇φ̄(p̄j)‖2 p̃ i,j + φ̃i(p̄j) + h.o.t.

“h.o.t.” indicates higher-order terms, which we drop, and the second term here results

from the simple fact that ∇φ̄(p̄j) is parallel to ḡn(p̄j). Now let q i,j be the location of

vehicle j; with q i,j := p̄j + ḡn(p̄j)q̃i,j , the same expansion above gives

φi(q i,j) ≈ φ̄(p̄j) + ‖∇φ̄(p̄j)‖2 q̃i,j + φ̃i(p̄j)

Finally, define the noisy measurement, expressed as a deviation from the reference

value:

zφj =
[

φi(qo,j) + νφ
j

]

− Φj

≈ ‖∇φ̄(p̄j)‖2(q̃o,j − p̃o,j) + νφ
j ,

(4.2)

where νφ
j is the measurement noise of the scalar field sensor on vehicle j. The dis-

tance between the true frontal point and the vehicle is thus captured in the field

measurement.

4.3.2 Unconstrained Translation

Now we look briefly at the more general case, in which the instance FP’s do not have

to remain on the reference gradient line through the reference FP; they can translate

arbitrarily. Such a projector could be used to follow a consistently-shaped structure
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moving through space, for example by placing FP’s along fixed directions from its

centroid. The problem statement of the previous section is modified only slightly.

Scalar p̃i,j is changed to a two-vector, and constraints i) and ii) are replaced with

pi,j = p̄j + p̃i,j. We then simply write the vector form of the earlier measurement

equation:

zφj ≈ [∇φ̄(p̄j)]
T (qo,j − po,j) + νφ

j . (4.3)

It is important to note that this approach, by Equation 4.1, cannot follow po

in the absence of coupling. The target pursuit analogue is illustrative. A vehicle

monitoring target range in the N-S direction plus a vehicle monitoring range in the

E-W direction are clearly sufficient to pursue the target if they communicate. Implicit

at each tracker is the fact that the range gradient points exactly away from the target,

and this is parallel to q−p. The explicit model coupling is simply that the two trackers

are seeing the same target, or p1 = p2.

4.4 System Integration Steps

As we discuss integration of the system described so far, one should bear in mind that

beginning with the system identification step, all measurements and state variables

now relate to perturbations.

4.4.1 Implementing Projection

As noted earlier, projection can be made generic or problem-specific; the main objec-

tive is to provide oceanographers with a good balance of automation and interface.

We will take here the key ideas from Section 2, and the notation of Section 3, to

describe the projection used in our example cases.

First, we specify the reference field φ̄ as the ensemble mean. The set of interest on

φ̄ is taken as a front defined by the scalar field value Φ, constant through the epoch; we

set Φj = Φ for all the FP’s j. Second, a confined area (the C1 box from Section 4.2.2)
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is chosen at each time step, containing desirable parts of the Φ-level set. We look

through the ensemble data by hand (as an oceanographer might), and select for

realistic vehicle motions (P2), strong gradients (P3), stable reference features (P4), and

feature clarity (P5). P2 focuses on satisfying vehicle speed constraints, for which we

limit the distance any reference FP can move between time steps: |p̄j(t+1)− p̄j(t)| ≤

Kuumax, ∀j ∈ {1, . . . , N}, t ∈ {Ts, . . . , Te − 1}, where umax is the vehicle maximum

speed, and 0 < Ku < 1 is a user parameter. Actual vehicles have to follow dynamic

perturbations, not only the reference, soKu is typically well below one. This approach

for P1 can be extended to more complex and practical constraints specific to a given

deployment, such as expected distance traveled, mission time, energy, and so on.

To pick the specific p̄ at each time step, we developed an interface in which the user

draws rays across the reference front within C1, and the intersections then define p̄.

The reference gradient directions ∇φ̄(p̄j) are computed in the same process, defining

a set of N line constraints C2,j . We next project instance variations of the front onto

scalar FP perturbations p̃i,j , using Algorithm 1. The next two paragraphs detail

variations of this algorithm that account for grid interpolation and complicated local

contours.

Algorithm 1 FP Projector for constrained linearization

Require: φi(t) for i ∈ {1, · · · ,M}, and
[p̄j(t), C1(t), C2,j(t)] for j ∈ {1, · · · , N}, all for t ∈ {1, · · · , T}

for all epoch time steps t = 1, . . . , T do
for all instances i ∈ {1, . . . ,M} do

for all FP’s j ∈ {1, . . . , N} do
S0 ← Φ-contour of field φi in C1(t)
pi,j(t)← unique intersection of S0 and C2,j(t)
p̃i,j(t)← pi,j(t)− p̄j(t)

end for
end for

end for

Computed contours consist of vertices and straight segments, so ensuring smooth

interpolation to find the intersection of a local contour S0 and a line C2 takes some care.

We choose a number of points on S0 in the immediate neighborhood of p̄j, compute

the signed distance of each point to C2, and record the closest point on either side of
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C2. pi,j is then computed as the intersection of C2 with the line connecting these two

closest points. This neighborhood around p̄j is unique to each FP and thus tighter

than C1 (which covers the entire feature of interest)—this helps to ensure uniqueness

of frontal points.

The instance front is not always well-behaved. Eddies and similar fluctuations

occur, and these create complicated S0, which can induce multiple intersections with

C2. We attempt to smooth these out by point selection based on the median filter,

well-known in signal and image processing for removing outliers [90]. First, find a

set of n tight contours for φ-levels very close to Φ; we refer to this as a contour

family S(⊃ S0). For a given frontal point, compute the intersection of C2,j with each

member of S; there may be several intersections for a given member, but we only

keep the one closest to p̄j. Compute the signed distance to p̄j for each of these n

closest intersections, and then take the median across S as p̃i,j . In the extreme case

where S∩ C2,j = ∅ (that is, no crossing contours are available in the area of interest),

we expand C1, and with it S, enough to find at least one intersection, so the FP can

be placed. For our computations, this overall approach has proven very effective for

limiting sudden jumps in p̃o,j .

In some instances the front breaks down to a point that the real-time system Eo

simply cannot follow, and so creates major outliers in the FP’s. This is a failure to

satisfy P5. Linear system identification does not handle outliers well, and if needed we

can concede to exclude outlier realizations from system identification. If the fraction

of excluded trials in the ensemble is high, however, we clearly cannot expect the

real-time system to do well. Practically speaking, any operational vehicle system

should be able to switch to a “recovery” mode if such conditions are encountered in a

physical experiment; we expect that even if the oceanographic pursuit mission fails,

the ensemble can still aid failure-detection algorithms.

Once the population of FP perturbations, p̃i,j(t) has been created, it should to be

reviewed to ensure that all (or an acceptable fraction) are in P. P2 is notable because

it relates to vehicle control, speed and maneuvering capabilities. For example, after

running the projector, we check the vehicle speeds: |pi,j(t + 1) − pi,j(t)| ≤ umax.
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Corrections in the process are likely to be made at the level of the reference FP’s,

since Algorithm 1 even with its variations has few tuning parameters.

4.4.2 Stochastic Identification of Instance Frontal Points

Linear system identification [147] – the determination of an LTI dynamical system

model to explain measurements – is highly effective when the input signals are known.

For single-input, single-output systems, strong results are regularly produced by ro-

bust time- and frequency-domain approaches; for multi-input, multi-output systems,

subspace identification algorithms [237] are widely used. The stochastic analogue,

where we wish to explain the data as the output of a coupled system driven by noise

inputs, is much less developed. In fact, aside from the two key references above, there

seem to be few technical results on the topic in the last fifteen years. Intuitively, one

can appreciate that the difficulty of stochastic identification reflects a tenuous opti-

mization problem – the raw constraints are noisy output traces, the belief that the

driving signals are Gaussian, and a system order specification. System order selection

is aided by computing singular values of the Hankel matrix on the input data; this is

very similar to what is done for balanced realization and model reduction [165]. We

describe our specific choices for model order selection in Section 4.5.

Given the order, stochastic subspace methods involve first estimating a sequence

of states from the data; this is in strong contrast to the input-output viewpoint of

classical system identification. The states are interpreted as the output of Kalman

filter predictors, and they can be obtained through QR factorization and singular

value decomposition (SVD). Once these states are identified, a linear least-squares

regression yields the unknown system matrices. The specific numerical algorithm we

use is Matlab’s n4sid [237], providing a model in innovations form. In our case, the

outputs are the linearized perturbations p̃ (with t denoting the time step):

xp(t+ 1) = Apxp(t) +Ke(t)

p̃(t) = Cpxp(t) + e(t),
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and Ap, K, Cp, and Cov(e) , Re, are generated by the algorithm. We reiterate that

p̃ is available only for the model ensemble, not for the physical instance.

Several specific challenges that practitioners of stochastic algorithms face include

high sensitivity to pre-filtering of data, and, perhaps more seriously, the requirement

of long signals. Indeed guarantees of optimality and asymptotic unbiasedness only

exist for an infinite number of samples, and statistical analysis with finite sample

length remains an open problem [237]. In practice n4sid can generate useful results

with short sequences, and this would be a necessity for oceanographic pursuit, where

typically few, if any, repeated events are observed. One could conjecture that from a

system identification point of view, longer data traces are desirable even if the latter

portions of them are useless for forecasting; this question is beyond our scope.

n4sid includes a few user parameters that can be tweaked to improve perfor-

mance: SVD weighting, forward prediction horizon, and number of past inputs used

for prediction. In both [147, 237], however, it is made clear that optimal choices for

most of these settings are still open subjects of research.

4.4.3 Connecting with the Vehicle System

We take in our framework a linear time-invariant model of vehicle system behavior;

see [132] for a recent review of underwater vehicle navigation systems that support

control. Our formulation is developed for a group of vehicles, which may or may not

share physical disturbances and navigation aspects. This aggregate vehicle system

is described by the state-space dynamics matrix Aq, gain Bq, and output Cq; the

vehicles’ process noise vector wq has covariance Qq, and measurement noise νq has

covariance Rq. Aq and Bq are block diagonal, since the vehicles have no coupling

except through the control and possibly the disturbances. The integrated open-loop

system is:
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As written, dynamics of the frontal point perturbations and vehicle perturbations are

decoupled, giving the macro block-diagonal structure shown. Clearly xp is affected by

neither xq nor u, but is xq affected by xp? Although in principle one could establish

such coupling, the fact that Ap is developed from stochastic identification, whereas

Aq is not, implies that simulation of vehicles and their control system would have to

be added into D. This turn toward a self-referential projector is left for future work.

Off-diagonal blocks in the process noise gain matrix can be left at zero by the same

rationale.

The output equations are where the oceanographic and the vehicle systems most

strongly interact:

z(t) =







zφ(t)

q̃(t)







=





−GCp GCq

0 Cq
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, (4.5)

with G = diag(‖∇φ̄(p̄1)‖2, . . . , ‖∇φ̄(p̄N)‖2), and it is assumed that G varies slowly

enough not to interfere with the feedback controller (P4). Note that the disturbance

e(t) enters the output equation, in accordance with the innovations form. Its inclu-

sion highlights a subtlety in Equation 4.2; whereas q̃ represents a physical vehicle

perturbation via a strictly proper system, p̃ does not. p̃ is the output of our projec-

tion algorithm with no low-pass constraints at all, and as defined in the stochastic

identification it has “jitter.”

4.4.4 Estimation of the Integrated System

The aggregate process noise vector (dropping the time argument) isw = [(Ke)T , (wq)
T ]T

and the total measurement noise vector is ν = [(−Ge+ νφ)T , (νq)
T ]T . Process noise

for the FP’s may be correlated with the vehicles’ process noise, for example due to

currents; this is captured by the matrix Qeq. We assume, however, that beyond e, no

process noise is correlated with any sensor noise. For use in the generalized Kalman
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filter [220], expanding out the expectations gives:

E
[

[wT,νT ][wT,νT ]T
]

=

















KReK
T Qeq −KReG

T 0

∗ Qq 0 0

∗ ∗ (GReG
T +Rφ) 0

∗ ∗ ∗ Rq

















. (4.6)

4.5 Examples of Projection and Identification

We now present three projection and stochastic identification examples, for the fully

constrained linearization of Section 4.3.1. The first case is an LTI chained mass

system, for validation. Next, we study a double gyre model, simulated using a finite-

volume Navier-Stokes solver [210,235]. The double gyre is a canonical fluid mechanics

problem, highly nonlinear and unstable; while these factors would seem to position

it poorly for system identification, there is also a dominant wave-like behavior that

greatly contributes to coupling, and to a locally linear behavior. More broadly the

double gyre is a generic and dimensionless scenario with few physical parameters,

and thus useful for benchmarking. The third data set is substantially more difficult

and realistic, focusing on three-dimensional flows north and east of Taiwan. This

particular set was part of a larger study [95] emphasizing prediction and uncertainty

for an ocean setting with complex multiscale dynamics, from internal tides and waves

to large-scale currents. One of the main features noted was sporadic intrusions by

the Kuroshio Current into the so-called “Cold Dome.” These elements make it a

challenging case for oceanographic pursuit.

4.5.1 Identification of an LTI Chained Mass

The chained mass system has eight masses arranged nominally along a line and un-

dergoing lateral perturbations. Each mass is tied to ground lightly by a spring kg

and damper bg, connected to adjacent neighbors with springs kn and dampers bn, and

forced by zero-mean white noise of variance wj. The parameters are tuned to give

magnitudes and frequencies similar to those in the double gyre FP perturbations; see
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Table 4.2. The initial condition for each point is pj(0) = 0.1 ·sin
(

j 2π
N−1

)

+0.5q, ∀j ∈

{1, . . . , N}, where q = N (0, 1).

Table 4.2: Parameter values used for chained mass system.

kn kg bn bg w1,...,7 w8

0.02 0.048 0.3 0.01 0.13 0.26

The identification procedure here is the same as used for the ocean model data.

We chose a model order twice the number of sites; this is of course the order of the

generating system, but also consistent with our choices later. With the n4sid algo-

rithm, we used a forward prediction horizon of four, and four past inputs. Figure 4-3

compares time series for two “data” instances (left) to two time series constructed by

stochastic simulation of the identified system and its noise statistics (middle). The

“data” perturbations show a dominant resonant mode and tight coupling in phase;

this strong coupling is supported by the correlation coefficients shown in Figure 4-4.

Time series and correlations from the identified model show virtually the same prop-

erties. The Hankel singular values of the input data (Figure 4-5 (left)), however,

show that the stochastic ID does not exactly recover the original system. We also

ran a local second-order identification for each mass. This is shown in Figure 4-3

(right), where all relative phase information has been lost. This model is what we

use below in a “loners” control scheme made up of non-communicating vehicles.
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Figure 4-3: Time series of selected chained mass perturbations. The eight sites are
shown in different colors on each plot. Left: two selected instances of original simu-
lated data. Middle: simulations using coupled system identification. Right: simula-
tions using local system identification.
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Site 1 − Site 2 1 − 3 1 − 4 1 − 5 1 − 6 1 − 7 1 − 8

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

Figure 4-4: Top: histograms of FP correlation coefficients from original chained mass
simulated data (25 instances). Bottom: from identified model simulations (50 in-
stances). Only correlations between Site 1 and the others are shown.

4.5.2 Identification of a Double Gyre Front

The feature of interest in the double gyre model is a vorticity contour; although

vorticity is not a typical scalar measurement taken at sea, turbulence scales and shear

stress are. We study a 176-timestep period that takes place when the gyre system is

just starting to become unstable, soon after which all structure is lost. Eight reference

FP trajectories were designed, maintaining equal spacing along the reference front.

We then ran the projector on 25 randomly-selected ensemble members, and performed

stochastic identification. The perturbations were lightly low-pass filtered before being

passed into n4sid, so as to reduce grid effects. The Hankel singular values shown in

the middle plot of Figure 4-5 have only one clear break point, at a model order of two.

This choice would allow only for one oscillator, with differences between the behavior

at each site merely representing phase shifts. The actual response is somewhat more

complicated, and we chose a model order of sixteen. A higher number than this would

risk overfitting, while sixteen can be justified at least from a comparison point of view:

the uncoupled dynamics is naturally described with eight independent pairs of states.

We used a forward prediction horizon of four, and four past inputs in n4sid.

As for the chained mass, in Figure 4-6 we compare perturbations for two in-

stances (left) to two time series constructed by stochastic simulation of the identified

system and its noise statistics (middle). The instance fluctuations are oscillatory and

coordinated, with a traveling wave characteristic; amplitude, phase relations, and fre-

quency content are all well-captured in the identified model. Correlation coefficients

shown in Figure 4-7 confirm the strong coupling. The local system identification
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Figure 4-5: Hankel singular values for identification data. Red bars indicate the
model order chosen for each case study.

shown in Figure 4-6 (right) does not describe coupling and relative phase between

points.
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Figure 4-6: Time series data, same format as Figure 4-3.

Site 1 − Site 2 1 − 3 1 − 4 1 − 5 1 − 6 1 − 7 1 − 8

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

Figure 4-7: Correlation coefficients, same format as Figure 4-4.

4.5.3 Identification of a Front off Taiwan

The Taiwan ensemble has fifty instances, the time step is three hours, the run is 68

steps long (about eight days), and the model grid is 4.5km. The feature of interest

here is a persistent temperature front at 50m depth. Compared with the double

gyre case above, this front exhibits much smaller perturbations relative to motion of

the reference, and far less structure. We followed the same general procedure in the
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projector, picking a temperature level and a physical area where gradients are strong

and the front stays well-formed. Snapshots over time of a single realization are shown

in Figure 4-8.

To illustrate the key aspects of this scenario pertinent to identification and oceano-

graphic pursuit, Figure 4-9 shows slices of the temperature field along the reference

gradient cut, and centered at each reference FP. These slices at time step 30 are from

twenty-five instances used for projection and identification. Most of them have a

clean albeit nonlinear shape, confirming definition of the front and strong gradients.

Some sharp corners are visible, caused by interpolation on the model grid.

Step 2 Step 8 Step 14 Step 20

Step 26 Step 32 Step 38 Step 44

Step 50 Step 56 Step 62 Step 68

Figure 4-8: Snapshots over time of a single instance of the Taiwan dataset; the
northern edge of Taiwan is visible at the bottom of each frame. This instance was
used for projection and system identification. The reference contour is a thin black
line, and the true contour is a thick black line. True FP’s are white with black
outlines. The domain of each box is 248 × 180km. The time between snapshots is
18 hours, which makes out-of-phase semi-diurnal (and diurnal) internal tidal effects
visible.

Hankel singular values on the right side of Figure 4-5 show no break point for any

order; this flatter shape indicates the difficulty and lack of structure in the dataset.
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Figure 4-9: Slices of temperature field along constraint C2 for each FP at time step
30. Twenty-five ensemble instances used for projection and identification are shown.
The horizontal axis represents distance along C2 and the vertical axis represents tem-
perature. Slices are positioned horizontally relative to the reference front, which is
the origin of each subplot.

We chose a system order of sixteen, for consistency with twice the number of FP’s.

With the n4sid algorithm, we used a forward prediction horizon of six, and three

past inputs. Time series are plotted in Figure 4-10, and these confirm reduced

coupling. Yet there are still meaningful correlations between neighboring points, as

seen in Figure 4-11. These correlations are replicated in the identified system,

and we will show in the next section that even this modest level brings a benefit to

communication-constrained control.
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Figure 4-10: Time series data, same format as Figure 4-3.

103



Site 1 − Site 2 1 − 3 1 − 4 1 − 5 1 − 6 1 − 7 1 − 8

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

Figure 4-11: Correlation coefficients, same format as Figure 4-4. Adjacent points
show significant correlation and far-away points are largely uncorrelated.

4.6 Closed-loop Control Examples

For each of the three scenarios above, our controller design uses an LTI system model

found by identification on a subset of ensemble instances; the controller design is eval-

uated on separate subsets. We emphasize that these cases are considered only proof

of concept; the control settings and operational parameters used do not necessarily

reflect real conditions.

4.6.1 Explanation of Controllers

As stated in the Introduction, one of our main objectives is to develop controllers

suited for communication constraints; one of the most difficult is packet loss. We

define four vehicle communication models:

• NC: no communication between vehicles for the purpose of oceanographic pur-

suit.

• PC: perfect communication (lossless and instantaneous).

• IL: independent losses. In a cycle, vehicles report measurements instanta-

neously to a fusion center, which then sends out a command set instanta-

neously. There are thus N inbound sensor packets and N outbound sensor

packets. Losses in the sensor packets are binary, and described as a set of inde-

pendent Bernoulli processes, having success probabilities [β1, · · · , βN ]. Losses

in the command packets are similarly described by the Bernoulli parameters

[α1, · · · , αN ].
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• TL: total losses. In a cycle, vehicles report measurements instantaneously to a

fusion center, which then sends out a command set instantaneously. The sensor

packets all succeed with probability β, or they all fail. The command packets all

succeed with probability α, or they all fail. These total failures on the command

and the sensor sides are independent.

This setup ignores the role of communication delays, interference, and scheduling—

aspects that, like packet loss, can be handled rigorously from an LTI framework.

We compare five controllers, each subject to vehicle navigation noise and physical

disturbances:

• “Non-reacting” uses local linear quadratic Gaussian controllers (LQG, compris-

ing a Kalman filter (KF) for state estimation and a linear quadratic regulator

(LQR) for full-state feedback) to place vehicles at the reference FP’s. The vehi-

cles do not alter their trajectories based on field measurements, and thus do not

have to communicate: NC. The local model from stochastic identification is

used for estimation with a KF at each vehicle. This approach gives a practical

upper bound on real-time estimation error.

• “Loners” uses a set of N independent LQG controllers to servo to the esti-

mated front. Each vehicle has only a local model derived from the stochastic

identification: NC.

• “Näıve” applies a standard LQG controller design, given a fully coupled model

and assuming PC. The simulation uses IL, while the KF takes the standard

approach for handling missed measurements.

• “All-or-none” uses the dynamic programming procedure of Imer et al. [123], on

a fully coupled model and where TL is assumed. In simulation, we impose IL.

The control design uses the means of the α and β vectors that make up the

simulation IL model. A regular missed-measurement KF applies, but the TL

scalar α invokes an adjustment to the prior due to the uncertainty of the control

action [94].
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• “Lower Bound” applies a standard LQG controller design, given a fully coupled

model and assuming PC. The simulation is PC also, and hence this controller

is expected to be the best.

When control packets are not received, vehicles stay in place. The control ob-

jective is to minimize the squared positioning error over time, for all sites/vehicles:

ΣN
j=1Σ

T
t=1 (q̃o,j(t)− p̃o,j(t))

2. For LQR design, we weight positioning error ten times

more heavily than control.

4.6.2 Results

Gain Margins

We return briefly to the gradient condition P3b: ‖∇φi(pi+∆)− ḡ‖2 ≤ ǫκ for each FP,

where ∆ is a positioning error, and 0 < ǫ≪ 1. ǫ is related explicitly to gain margin, a

standard means for quantifying robustness in the closed loop, while κ ultimately limits

the bandwidth of the closed-loop system. The first ten instances of the Taiwan data

(from Figure 4-9) are re-plotted in Figure 4-12, now showing more specifically the

slices (red) overlaid on top of twice the reference gradient slope (blue), and centered

at the instance FP. Differences between the reference gradient (not shown) and the

instance slice can be interpreted as sensor gain variations from the point of view of an

estimator. Although we use a time-varying KF, it is noteworthy that the steady-state

KF and the LQR each have a guaranteed per-channel gain margin of zero to two [207]

and thus the blue line and the horizontal define a [0,2]-sector that is highly desirable.2

We see that all of these instantaneous slices fall within, or very close to within, the

sector, at least near the origin.

Controller Performance

For our simulations, we assume that all of the vehicles have identical dynamics and

sensors. The scalar field measurement noise covariance Rφ is the most sensitive pa-

2Despite its wide use in applications, the generic LQG does not have guaranteed stability margins
[67].

106



8

7

6

5

4

3

2

Site 1

Instances

Figure 4-12: Ten instances of Taiwan temperature slices (red) along C2, overlaid on
top of twice the reference gradient (blue). The horizontal axis represents distance
along C2, centered at the instance FP, and the vertical axis represents temperature.
The [0,2] sector defines a region of stability for the Kalman filter.

rameter, and our results compare estimation performance varying Rφ, with other

parameters fixed. For all cases, we simulate control on instances separate from those

used for projection and identification, and use p̃o,j generated by the omniscient pro-

jector for ground-truth. We use one hundred simulation instances for the chained

mass, and twenty-five instances each for the double gyre and Taiwan datasets. Ve-

hicle noise parameters are set as Rq = 0.01 and Qq = 0.01. These are chosen

to roughly describe a physical scenario, but in reality would depend on the spe-

cific vehicles and environmental conditions. Packet success probabilities are set as

ᾱ = [0.7, 0.8, 0.6, 0.9, 0.7, 0.8, 0.6, 0.9], β̄ = [0.6, 0.9, 0.7, 0.6, 0.8, 0.9, 0.7, 0.8].3 From

examination of empirical transfer functions for positioning error in all three scenar-

ios with a variety of noise settings, we verified that the control system bandwidth is

sufficient to track the dominant motion of the feature.

We show results comparing performance with varying Rφ in Figure 4-13. Rφ in

the plots is scaled with the mean gradient squared, so as to capture the importance

3In other work, we have investigated a mixed-loss controller that explicitly designs for IL [196];
however, mixed-loss control performs similarly to “All-or-none” with this set of loss probabilities.
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of noise relative to the ambient signal.4 We compute the RMS (over time) estimation

error (ˆ̃p− p̃), averaged across sites and across simulation instances, and this error is

normalized by the same statistic on the perturbations used for system identification,

in order to compare results across datasets. The leftmost plot of Figure 4-13 shows

the performance of Lower Bound. Major differences underscore the relative difficul-

ties mentioned earlier, and in particular Taiwan has less structure in its perturbations

and considerably more noise, caused both by grid effects as well as erratic projections

in the noisy field. At the other extreme, Lower Bound for the chained mass, designed

using the exact system model, performs only slightly better than Lower Bound based

on the identification—demonstrating that the control system resulting from identi-

fication is successful. Lower Bound for the chained mass does far better than in

either the double gyre or Taiwan cases, largely because the chained mass has an ideal

projector and exact gradients, such that estimation performance is independent of

positioning.

In the right plots of Figure 4-13, we plot differences between the estimation error

of each control method and that of Lower Bound. We will describe a few key aspects:

positioning, coupling, and packet-losses.

Non-reacting and Loners use the same local model for estimation; the difference

is that Loners positions vehicles reactively to pursue the front. Non-reacting and

Loners are identical in the chained mass case, but with the ocean model datasets,

estimation becomes more difficult as positioning worsens in the nonlinear field (see

Figure 4-2(right)). This fact yields a dramatic improvement in estimation for Loners

over Non-reacting in the double gyre, where slices are smooth but slope deforms with

distance from the front. In the Taiwan dataset, Loners also outperform Non-reacting,

but to a lesser extent and mostly at low noise values. The Taiwan front has a more

variable shape and shallower slope, along with more pronounced grid effects. For

every scenario, the bandwidth of the estimator decreases with large Rφ—the entire

system becomes sluggish, vehicles move less, and thus the differences between Loners

4A loose definition of SNR is gradient magnitude multiplied by the standard deviation of the
navigation noise, divided by the standard deviation of the scalar field measurement noise. We have
fixed Rq, so that these figures have essentially 1/SNR on the horizontal axis.
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Figure 4-13: Summarized estimation performance. Estimation error is the RMS
over time of (ˆ̃p − p̃), averaged across points and realizations. Upper left plot:
performance of Lower Bound in each dataset, as function of Rφ. For the chained
mass, the “Exact” controller is designed using the true system and noise. All other
controllers use the outcome of stochastic identification. Upper right, and lower
plots: difference in estimation error relative to Lower Bound for all controllers in
each dataset.
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and Non-reacting disappear.

The role of coupling can be understood by comparing performance of Loners and

Lower Bound. In the chained mass model, the improvement of Lower Bound over

Loners increases significantly from small values as Rφ gets larger, reflecting clearly

that coupling can offset the bad effects of sensor noise. In the two ocean model

datasets, Lower Bound outperforms Loners even at very low Rφ, which may seem

surprising but is due to the nonlinear shapes of the slices. The KF does the best it

can with the given noise level, but the slice nonlinearities invariably create a “pseudo-

noise,” so the the filter is mis-tuned. Loners and Lower Bound both suffer, but Lower

Bound again has the advantage of coupling.

A more nuanced effect of coupling relates to packet loss, and an interesting com-

parison can be seen between All-or-none and Loners. Communication losses hurt es-

timation because of missed measurements, but also hurt positioning directly through

dropped control commands. At low levels of sensor noise, Loners outperform the con-

trollers that are subject to packet loss because uncertain communication deteriorates

the benefits of coupling. At larger Rφ, above a crossover, Loners cannot succeed with

only local modeling, and All-or-none prevails, even with lossy communication.

Comparing now the two controllers subject to packet loss, Näıve and All-or-none

use the same coupled model for estimation, and are subject to the same stochastic

packet loss sequence in each simulation. All-or-none, however, explicitly takes loss

into account in both controller design and in the uncertainty of the KF prior. This

is a strong stabilizing effect, as Näıve shows much more sensitivity to sequences of

packet losses; its errors can be very small or very large, giving rise to the jumps up

and down in Figure 4-13. More broadly, Näıve performs poorly especially at low

Rφ, the error converging to that of All-or-none as Rφ increases. This convergence

simply reflects decreased estimator bandwidth.

The estimation performance over time from one example site and realization for

each dataset is shown in Figure 4-14. The double gyre and chained mass cases show

all methods clearly tracking the dominant oscillations, although Loners and Näıve

often exhibit more over- or undershoot than the coupled methods. In the double gyre,
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estimation errors of Non-reacting are clear, especially near the peaks of perturbation

magnitude. The Taiwan case is drastically different, again showing the difficulty of

this dataset. None of the controllers is able to track the high-frequency variations, but

Loners and Non-reacting are much more sluggish than the coupled methods. These

time series also illustrate system startup (in the first ten or so samples), an important

factor to consider in real-world operations. We have had no difficulties in initializing

to the reference FP’s in any of our test cases.
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Figure 4-14: Estimation performance for one example site and realization. These cases
are in the region where All-or-none outperforms Loners: Rφ/(mean(|G|))2 = 0.82.

In the control simulation results presented, we can clearly see the importance of

actively pursuing the front as opposed to passive tracking, and of global model-based

estimation. Moreover, these outcomes illustrate performance of a pursuit system in

different conditions, illuminating an interesting trade-off space for designing deploy-

ments. An important dimension in it is the number of vehicles and frontal points

compared to the length of the feature, as this affects both spatial resolution of the

reconstruction as well as the expected level of coupling between sites. These factors
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have to be weighed in turn against the costs and capabilities of the individual vehi-

cles. For example, if highly accurate sensors are available, it may not be necessary to

set up communication at all for the purposes of oceanographic pursuit. On the other

hand, vehicles with less expensive, lower-quality sensors can be deployed in larger

numbers and will likely benefit from a coupled model and hence collaboration.

4.7 Summary

We have articulated an integrated framework for dynamically sampling the ocean

using a group of communicating mobile agents. Our new concept is that locally lin-

ear behavior of an ocean process admits strong estimation and control techniques on

short time scales; this will allow multiple cooperating vehicles to decompose spatial

and temporal variations in the field, and track a dynamic feature of interest. The

stochastic dynamical model supporting our controller design is created via a projec-

tion from an ocean forecast ensemble directly into vehicle coordinates, and this is

the main innovation of our work. We have demonstrated that control and estima-

tion designs resulting from the identified models are successful, in studies with three

example datasets.
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Chapter 5

JLS-PPC: A Jump Linear System

Framework for Multirate

Packetized Predictive Control

The examples of target tracking and oceanographic pursuit have illustrated cooper-

ative missions posed in forms suitable for networked feedback control. This chapter

presents a unified formalism for multi-vehicle control and estimation with measure-

ment, control, and control acknowledgment packets all subject to schedules, delays

and packet loss. The modular framework is built around a jump linear system (JLS)

description that includes Packetized Predictive Control (PPC), a technique that com-

bines the receding horizon optimization of Model Predictive Control with buffering at

the actuator. Integration of these elements enables synthesis of a novel technique for

estimation using delayed and lossy control acknowledgments—a desirable and prac-

tical capability of fielded systems that has not been considered in work to date. This

chapter describes the framework, the estimation and control technique, a simple il-

lustrative example, and a few possible extensions. The following chapter presents

simulation and field experiment results with JLS-PPC.
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5.1 Introduction

Acoustic communication links are a crucial component in the feedback loop for un-

derwater multi-vehicle systems operating under centralized estimation and control. A

multi-node system using acoustic communications is subject to multiple-access con-

straints; the most straightforward approach is interference-free scheduling. Due to

bandwidth limitations as well as the fact that most modem hardware today operates

in a single frequency band, the most common approach is TDMA scheduling.1 This

results in a multi-rate control system, where measurements arrive at the estimator at

different times, and control arrives to an individual vehicle at different times. Packet

delays resulting from acoustic propagation time and transmission time are (nearly)

deterministic but substantial, especially if relays must be used. Stochastic packet loss

complicates control design further.

The difficulty of analysis in networked control has limited work primarily to sit-

uations where only a subset of practical conditions are considered, e.g. packet loss

and disturbances, or schedules and constraints [14, 117]. In this work, we develop an

estimation and control framework that handles:

• deterministic TDMA scheduling with communication delays,

• stochastic packet loss in multiple sensor and control links,

• the possibility of delayed or missing control acknowledgments,

• control quantization and saturation constraints,

• process and sensor noise.

To our knowledge this is the first technique that integrates all of these aspects. Our

approach builds on aspects of existing control and estimation techniques: the Kalman

filter (KF), model predictive control (MPC), and buffering of control trajectories. The

1Staggered or overlapping TDMA schedules that exploit position diversity are an area of active
research, e.g. [135,178]
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primary contributions are a novel approach for handling delayed or missing acknowl-

edgments within the framework of multirate scheduling and delays with control tra-

jectory buffers, and a modular description of the integrated system in a compact jump

system form. We describe the framework and our approach for the various blocks in

the subsequent sections, a diagram of the system is shown in Figure 5-1. The unified

formalism we develop helps maintain clean notation and system description across dif-

ferent multi-vehicle systems and communication scenarios. The modular framework

will allow future improvements or modifications to specific blocks without the need

to develop an entire system from scratch.

Figure 5-1: Block diagram of the modular JLS framework for multi-vehicle commu-
nication and control.

5.2 Overview of approach and prior work

We give background on crucial elements to our approach.

5.2.1 Model Predictive Control (MPC)

Constraints on inputs and states, such as speed saturation, islands, or proximity to

ship, are important to model in real physical systems, yet they are not handled by
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conventional linear control techniques; constrained LQG cannot be solved tractably

by dynamic programming. Model predictive control (or receding-horizon control) is a

successful technique that involves explicit solution of a finite-horizon optimal control

problem at each time step. This comes at a (tractable) computational expense online,

but allows significant flexibility in modeling. MPC is often successful in practice but

lacks theoretical guarantees [26].

A primary drawback of MPC is that the standard formulation assumes noiseless

state feedback. Various techniques for Robust MPC have been proposed, however

no current approaches are suitable for use with networked control (primarily due to

constraints on estimator structure). A common approach is certainty equivalence

(CE-MPC): use an estimator and design control under the assumption that the es-

timate is the true state and there will be no future disturbances. In this case, the

cost function is deterministic. The logic follows from the separation principle in LQG

control, and often works well in practice [223,247]. We choose to use CE-MPC for this

reason, along with the belief that communication constraints are more important than

state constraints, which are where approaches explicitly formulated for uncertainty

provide the largest benefit. We discuss Robust MPC in more detail in Section 5.9.5.

5.2.2 Packetized Predictive Control (PPC)

A flavor of MPC for stochastic packet-loss between the controller and actuator is called

Packetized Predictive Control (PPC) [193], where buffered control trajectories are

used in the case of dropped packets. This is an intuitive idea, originally proposed by

Bemporad for predictive control of teleoperated systems with unbounded delays [19].

A receding-horizon optimal control problem is solved, and the entire trajectory (or

at least some length trajectory—the sent trajectory only must be ≤ the computed

trajectory) is sent in each control packet. This trajectory is stored in a buffer at

the actuator (vehicle), and in the case that a new packet is not available at the next

time-step, the next control in the buffered trajectory is implemented; see Figure 5-2.

Since the communication protocol is time-synchronized, the actuator (vehicle) knows

whether a packet was received or not (an implicit ACK is available).
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Figure 5-2: Diagram illustrating the Packetized Predictive Control concept.

Benefits of this approach are that no a priori specification of control packet success

probability is required, any optimization method can be used “under the hood” to

generate the control sequences, and the only tuning parameter is the length of the

trajectory to be sent. Practically, the length of the trajectory sent as well as command

resolution can be varied based on the trajectory contents: if the control dies to zero

quickly, early commands can be sent at high-resolution; if the control commands are

large for a number of steps, they can be sent with less resolution with minimal effect

on performance. Extensions have been proposed for sparse control plans [168], and

rate-distortion analysis with dithered vector quantizers [192].

5.2.3 Scheduling, delays, ACKS, and the dual effect

Due to the propagation delays of acoustic communications, control cannot be com-

puted based on up-to-date information. The measurement is old by the time it

reaches a centralized estimator, and the control command does not reach the actu-

ator, or vehicle, until after computation time plus propagation delay of the control

packet. Scheduling introduces additional delays. This timing structure is different

than the conventional setup in discrete-time control, where control is computed and

applied immediately based on instantaneous measurements.

A major issue in systems with packet loss in the sensor and controller channels

is the dual effect, which arises when no acknowledgment of control packet success is

available [15]. In this case, the control prior to be used in the estimator is uncertain.

The information flow of the scheduled control loop adds further complication, as the

delays due to scheduling exaggerate the dual effect.
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The following basic options may be possible for control packet ACKs (we will

explore these later):

• Control ACK is available instantaneously and without loss (usually an unreal-

istic assumption).

• Control ACK is “piggybacked” with measurement packets (a lossy, delayed

ACK).

• Dedicated slots for control ACKs are built into the schedule (likely more reliable

and less delayed than a measurement packet).

• No ACKs are used.

We note that some subtle variations are also possible. For example, ACKs may

be piggybacked as part of a large measurement packet, but in their own separate

block with a different error correction code. In this case, the piggybacked ACK

would share the schedule and delay with the measurement packet, but would have a

different (likely higher) packet success probability. Another example is if hardware

allows for a separate, non-interfering ACK channel in addition to the primary data

packet channel (for example, data transmission in a higher frequency band, and ACK

transmission in a lower frequency band). In this case, the ACK schedule could have

overlap with the control and/or measurement schedules. The JLS framework can

handle scenarios such as these as long as they can be described by the scheduling,

delay, and loss notation introduced later.

5.2.4 Related Work

Other constructive approaches for handling packet loss have been proposed in various

settings. Of particular interest are scenarios where there are losses in both the sensor

and measurement channels. Imer et al. solves an LQG-like control problem via dy-

namic programming, for the cases when acknowledgments (ACKs) are present, and

not present [123]. Schenato et al. solved a similar problem via LMIs [214]. Both of

these works consider single “all-or-none” communication channels; we have extended
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this to the independent multi-channel case in [196]. Other approaches have taken

the Markov Jump Linear System (MJLS) viewpoint, often with an H∞ objective.

This problem has been solved for the output feedback case with mode observations

(ACKs) [96], via an LMI method. The case of no mode observations is not tractable

to solve to optimality, but some approaches have been proposed, e.g. [238]. MJLS

approaches can also handle deterministic schedules, but the tractability of the LMI

solutions does not scale well with problem size/schedule length [218]. None of these

approaches are able to handle system and control constraints like MPC, nor do they

take advantage of PPC buffering schemes.

Multirate control has been studied extensively for unconstrained systems with no

packet loss [138]. An early reference on multirate MPC is Lee et al. , 1992 [140].

This work considers a measurement schedule only, and is primarily concerned with

designing a suitable steady-state estimator.

Millan et al. , 2008 consider constrained predictive control with buffering for the

case of noiseless state feedback. Liu et al. , 2012 present an unconstrained predictive

control scheme using buffering that handles multirate and out-of-order measurements

[146]. Both of these works assume immediate lossless acknowledgments, and all-or-

none losses in the sensor and controller channels. For the case of noisy but lossless

measurements, Cunguara et al. show that the separation principle holds even without

acknowledgments when buffering of extended input schemes is used [57].

The closest work in terms of delays and lack of acknowledgments is described in

Pin & Parisini, 2011 [184], and Pin et al. , 2009 [183]. These works build on similar

work by Varutti & Findeisen [81,241], and consider stochastic delays and packet-loss

with no acknowledgments. By constraining the beginning of a new control trajectory

to be equal to the buffered trajectory, the dual effect is circumvented as the estimator

knows the input. However, these approaches do not consider multiple communication

channels nor multirate scheduling, and may be slow to reject disturbances due to the

control constraints during the beginning of each trajectory.
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5.3 List of assumptions

We make a number of simplifying assumptions in developing our framework. We

collect them all here, but each is explained in context in the relevant section. Many

of these assumptions can be relaxed without loss of generality (but with an increase

in notational complexity). However, a few are fundamental to our approach and are

listed in bold.

• All vehicles have accurate clocks; schedule is time-synchronized.

• The communication schedule is given.

• All vehicles know the communication schedule.

• Packets are coded and have a cyclic redundancy code (CRC)—packets

are either received correctly, or dropped completely.

• Transmissions occur at the start of a slot. Receptions arrive sometime within

the slot, and are assumed to be available at the beginning of the next slot.

• Each of the Nv agents has the same number of control inputs Nu and measure-

ments Ny.

• Controls for all vehicles are computed using the same trajectory horizon Np.

• Control commands and measurements to and from a single vehicle are contained

in one packet each.

• The communication schedule is periodic and constant in time.

• All propagation delays are equal to an integer multiple (≥ 1) of the time slot

length, and are equal for all similar types of communication links (e.g. control

delays to all vehicles are the same).

• There is sufficient memory onboard vehicles and at the controller to

keep a buffers of old signals.
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The system model is discretized with the TDMA slot length as the time step. A

lower bound for TDMA slot length depends the packet lengths and necessary guard

times of the communication system used, and expected propagation delays given the

size of the vehicle deployment area. Longer slots can be used if lower duty cycles are

desired for energy savings, although at the expense of a longer cycle and slower control

system bandwidth. If variable length packets or short computation slots are needed,

the TDMA schedule can be constructed with a small “fundamental” slot length, and

longer packets can use multiple slots.

5.4 System Definitions

We begin by defining the system under consideration.

5.4.1 Underlying system

We consider a standard discrete-time LTI state-space system:

xt+1 = Axt + Buut + Bwwt

yt = Cxt + νt,
(5.1)

where xt ∈ R
Nx×1, ut ∈ R

(NvNu)×1, yt ∈ R
(NvNy)×1, wt ∈ R

nw and νt ∈ R
(NvNy)×1.

For simplicity in future notation, we have assumed that there are Nv separate agents

(e.g. vehicles), each with Nu control inputs and Ny measured outputs.

We will consider minimum and maximum allowed control values as functions of

time (Nu × 1 vectors) for each individual agent:

¯
ui

t ≤ ui
t ≤ ūi

t, ∀t ∈ 1, . . . , N, ∀i ∈ 1, . . . , Nv,

where N is the length of the mission. For brevity, we will refer to these as u ∈ U .
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5.4.2 Flow of information

Deterministic schedules

We consider control design under the assumption that a given schedule has already

been designed. Comparison of various schedules can then be performed empirically.

We ignore inter-time-step delays and assume transmissions arrive at the end of

their slot within the TDMA schedule. We assume that the system operates in a

time-synchronized manner and set the system discretization time step equal to the

network time step (one slot of the TDMA schedule).

For simplicity, we will assume all propagation delays are equal to an integer mul-

tiple (≥ 1) of the slot length:

• τc is the control delay

• τm is the measurement delay

• τa is the ACK delay.

These can be vectors with different delays for each vehicle without loss of generality.

These delays include the time to encode and transmit the packet, the physical prop-

agation delay of the information traveling through space, and any time necessary to

decode. As a simplifying assumption we will consider that all measurements (which

can be vectors) to and from a single vehicle (denoted i ∈ 1, . . . , Nv) are contained in

one packet; this assumption can easily be relaxed with more complicated notation.2

We model the deterministic control, measurement, and ACK packet scheduling

2Measurements may also come from non-actuated nodes; these can also be incorporated into the
estimator.
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policy with indicator variables (each for all i ∈ 1, . . . , Nv):

πi
t =







1 if a control packet is planned to be sent at step t

0 otherwise

ξit =







1 if a measurement packet is planned to be sent at step t

0 otherwise

λi
t =







1 if a control ACK packet is planned to be sent at step t

0 otherwise

Note that the time indices t refer to transmission at the start of a time slot, so that

the packet will have arrived at the beginning of the time slot τc, τm, or τa steps in

the future.

We additionally define τ ia′ as the time between a (planned) control packet recep-

tion, and the transmission of the corresponding ACK. If πi
t−τc = 1, then a control

packet was planned to be received at t, and λi
t+τ i

a′
= 1 (an ACK is sent at t + τ ia′).

We assume periodic schedules, so τ ia′ is a property of the schedule design (although in

principle τ ia′ could vary in time, assuming it is known at the vehicle and controller).

Schedule examples

We will describe two canonical scheduling paradigms for illustration (these will later

be compared in simulation/experimental results).

The “Multiplexed” (MX) schedule first sends measurements from each vehicle to

the controller, then sends a single broadcast packet containing control trajectories for

all vehicles. The “Interleaved” (IL) schedule sends a measurement from a vehicle,

then a control packet to that vehicle, repeated for all vehicles. Figure 5-4 shows

the control packets for each type of schedule. For a given Np, the MX control packet

includes Nv times more control actions than the IL packet, making quantization more

coarse for a given packet size.

In addition to choice of MX or IL control packets, schedules vary depending on

whether control ACKs are “piggybacked” with measurement packets, or sent in their
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own dedicated packet. Examples of MX and IL schedules with both of these options

are illustrated in Figure 5-3. Even with these simple schedule examples, it is clear

that scheduling design involves complicated tradeoffs between quantization of control

packets, overall length of schedule T s, ACK reliability, time between measurement

and control, and time between control and ACKs τ ia′ .

Stochastic packet-loss

Similar to the deterministic schedule, we define (random) indicator variables to indi-

cate whether packets are successfully received (each for all i ∈ 1, . . . , Nv):

αi
t−τc =







1 if a control packet sent at step t− τc is received at step t

0 otherwise

βi
t−τm =







1 if a measurement packet sent at step t = τm is received at step t

0 otherwise

γi
t−τa =







1 if a control ACK packet sent during at t− τa is received at step t

0 otherwise

We denote the probability of packet success in control channel i as ᾱi, in measure-

ment channel i as β̄i, and in control ACK channel i as γ̄i.3 In the development

of the framework, we do not consider any particular distribution on the packet loss

sequences, although common assumptions are that the losses are Bernoulli or Markov.

New information is available only if a packet is scheduled and received correctly.

A measurement taken at time t − τm is available at the estimator at time t when

ξit−τmβ
i
t−τm = 1. Similarly, a control ACK packet sent at time t− τa is available at the

estimator at time t when λi
t−τaγ

i
t−τa = 1. A control packet sent at time t is available

at the actuator (vehicle) at time t+ τc when πi
tα

i
t = 1.

Vectors for all vehicles are bold: πt = [π1
t , . . . , π

Nv

t ]T , and similar for ξ, λ, α, γ,

and β.

3These probabilities could be time-varying (for example if a channel estimator is being run based
on observed performance); for simplicity we leave them as time-invariant.
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Figure 5-3: MX and IL schedules with piggybacked ACKs, and dedicated ACKs
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Figure 5-4: Control packets for MX and IL schedules. For a given prediction horizon
Np, the MX broadcast packet contains Nv times more commands than an individual
IL packet.

5.5 Stochastic Jump Linear System Framework

We present a stochastic jump linear system framework (JLS) for multi-vehicle pack-

etized predictive control with multirate scheduling and packet loss. This framework

describes the evolution of the system with given control commands, schedule, and

packet loss sequences. We develop estimation and control strategies in subsequent

sections.

5.5.1 Packetized Predictive Control (PPC)

We propose a straightforward extension to the packetized predictive control concept

where the combination of deterministic scheduling and stochastic packet loss deter-

mines the control to be implemented. This is especially useful when considering con-

trol constraints; the vehicle will still drive in the best (open-loop) manner in between

packets.

Control plans of length Np are computed whenever maxπt = 1, e.g. whenever

there is a planned control transmission to any vehicle at time t. The control sequence

computed at t is designed to take effect at time t + τc, as indicated below. We set

the trajectory length for the control packet equal to the MPC prediction horizon,

although the transmitted trajectory length can be shortened if desired. Control plans

are set to dummy variables when they are not computed—the indicator variable for

packet success takes the schedule into account and will not update the buffer state
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when no control is computed.

Some definitions for a single input system:

• dit = πi
t−τcα

i
t−τc : scalar indicator variable to indicate when a control packet is

received at vehicle i at time t.

• ui
t ∈ R

1: control command for vehicle i to be executed at time t.

• U i
t ∈ R

Np×1: vector containing the planned control trajectory for vehicle i

• bit ∈ R
Np×1: buffer state for vehicle i

We first describe the PPC buffer in state space form for a scalar system, following

[192]:

bit = Mbit−1(1− dit) + ditU
i
t

ui
t = eT1 b

i
t,

(5.2)

with e1 and M defined as follows.

e1 =
[

1 0 · · · 0
]T

∈ R
Np×1

M =























0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

0 · · · · · · 0 1

0 · · · · · · · · · mf























∈ R
Np×Np

If zero-control is to be applied in the case that the buffer runs out, then mf = 0. If

the previous input is to be held, then mf = 1.

5.5.2 Multi-vehicle PPC

Moving to a multi-vehicle system, with the option for Nu control inputs for each

vehicle, requires construction of some larger matrices. We use col to denote the
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column-stacking operator, ⊗ to denote the Kronecker product, and .∗ to denote the

elementwise product of two vectors.4

• Dt = diag(πt−τc . ∗ αt−τc) ⊗
(

INp
⊗ INu

)

∈ R
(NvNpNu)×(NvNpNu): success matrix

for controls applied at t.

• ui
t =

[

u
(i,1)
t , . . . , u

(i,Nu)
t

]T

∈ R
Nu×1: control input for vehicle i.

• U i
t = col

[

ui
t, . . . ,u

i
t+Np−1

]

∈ R
(NpNu)×1: stacked vector containing the planned

control trajectory for vehicle i.

• Ut = col
[

U 1
t , . . . ,U

Nv

t

]

∈ R
(NvNpNu)×1: stacked vector of control trajectories

for all vehicles/channels.

• ut = col
[

u1
t , . . . ,u

Nv

t

]

∈ R
(NvNu)×1: vector of control commands for all vehicles.

• bit ∈ R
(NpNu)×1: buffer state for vehicle i (Np vectors of size R

Nu×1 are stacked).

• bt = col
[

b1t , . . . , b
Nv

t

]

∈ R
(NvNpNu)×1: stacked vector of all buffer states.

• M = INv
⊗M ⊗ INu

∈ R
(NvNpNu)×(NvNpNu): augmented buffer shift matrix.

• E1 = INv
⊗
(

eT1 ⊗ INu

)

∈ R
(NvNu)×(NvNpNu): augmented selection matrix.

The buffer state bt and control ut for all vehicles is updated with

bt = M (I −Dt)bt−1 +DtUt

ut = E1bt.

4When column-stacking and constructing augmented matrices, we use the convention that control
inputs for a single vehicle go together in the “innermost” grouping, trajectories of (stacked) input
vectors are grouped next, and finally blocks of these stacked trajectories for each vehicle are stacked.
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5.5.3 Augmented System Dynamics

We augment the system dynamics to include the PPC buffer. The augmented state

vector X includes the system states x as well as the buffer b:

Xt =







xt+1

bt







.

The system update is described in the form Xt+1 = AtXt + B
u
t Ut + B

wwt, given

in Equation 5.3. We formulate the output equations from the perspective of the

centralized estimator. Measurement yt−τm arrives at the estimator at time t, accord-

ing to the success matrix St−τm described below. The output equation is given in

Equation 5.4.

ACKs from each vehicle are an additional output. Since ACKs may be lossy or

not available, we define α̃t as the control packet success as known to the estimator.

If λi
tγ

i
t = 1, then the ACK αi

t−τc−τ i
a′
is available at the estimator at time t+ τa. Since

ACKs may be lossy, we define a success matrix for ACKs, at, in a similar manner

as for measurements. With slight abuse of notation,
¯
αt−τa is an array of ACKs sent

from all vehicles at t − τa:
[

α1
t−τa−τ1

a′
−τc

, . . . , αN
t−τa−τN

a′
−τc

]T

. Note that each vehicle’s

ACK may correspond to a different control trajectory, depending on τ ia′ . If ACKs are

sent back with measurements, λ = ξ, γ = β, and τa = τm.

Further definitions:

• St = INy
⊗ diag(ξt. ∗ βt) ∈ R

(NvNy)×(NvNy): success matrix for all measurement

channels, sent at t− τm.

• at = diag(λt. ∗ γt) ∈ R
Nv×Nv : ACK success indicator matrix for all vehicles,

sent at t− τa.
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xt+1

bt







=





A BuE1M (I −Dt)

0 M (I −Dt)











xt

bt−1







+





BuE1Dt

Dt



Ut +





Bw

0



wt (5.3)







yt−τm

α̃t−τa







=





St−τmC 0

0 at−τa











xt−τm

¯
αt−τa







+





St−τm

0



νt−τm (5.4)

Note that the A and Bu matrices are time-varying with Dt, which itself has a

deterministic component (based on π) and a stochastic component (α).

5.6 Estimation

Our estimation approach is based on the Kalman filter (KF), with W and V as

the covariance matrices for process and measurement noise, respectively. The goal

of estimation is to prepare the state estimate for use when computing control. At

time t, a (partial) measurement of the state at time t − τm may be available, so

the a posteriori estimate x̂t−τm|t−τm is computed.5 However, control computed at

time t will be received and applied at time t+ τc, so the estimate must be propagated

forward open-loop to this time before use in control computations. An example timing

diagram for a two-vehicle MX schedule with no packet loss (deterministic scheduling

only) is given in Figure 5-5.

Due to scheduling, losses, and delays of measurements and ACKs, the information

known at the estimator varies each step in a stochastic manner. The KF can handle

intermittent measurements as well as time-varying system matrices [222]. The pri-

mary challenge is determining the correct control prior to use when there are control

packet losses, delays, and delayed/lossy acknowledgments.

We first represent the basic KF in jump system form, used for both a posteriori

and open-loop estimation. We then describe novel approaches for handling control

priors.

5More complex methods for mixed delays can also be used, for example using the methods of
Stanway, 2010 [227].
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Figure 5-5: Example timing diagram for two-vehicle MX schedule and one-step de-
lays. This diagram assumes that no packet loss is occurring. The capital red U is a
control trajectory that is sent and placed into the PPC buffer onboard the vehicle.
The subscript refers to the time the trajectory arrives, and the indices inside of the
parentheses refer to specific element(s) of that control trajectory.
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5.6.1 KF in Jump System Form

Following the system (5.3), we formulate the KF in jump system form. The KF

jump system depends on D̂t, which is an estimate of the success matrix Dt defined

in Section 5.5.2. As described later, D̂t is set in different ways depending on the

availability of control ACKs.

The augmented state estimate is X̂t+1|t+1 = [x̂T
t+1|t+1, b̂

T
t ]

T , where x̂t+1|t+1 is the

a posteriori state estimate and b̂t is the buffer estimate. The estimated buffer state

is used when generating the state estimate priors, but is not updated with the KF

innovation. The combination of the buffer and system states in the same JLS de-

scription make the KF prediction step straightforward—the usual matrix operations

automatically ensure that the buffer is used for the control priors.

The innovation updates only the system states; the error covariance P ∈ R
Nx×Nx

describes the uncertainty of these states. The standard covariance prior is used

Pt+1|t = APt|tA
T + W . The Kalman gain Lt+1 ∈ R

(NvNy)×Nx is computed in the

usual way, with columns wiped out for missing measurements using St+1:

Lt+1 = (Pt+1|tC
T )(CPt+1|tC

T + V )−1St+1. (5.5)

The covariance update for Pt+1|t+1 is standard, using Lt+1: Pt+1|t+1 = (I−Lt+1C)Pt+1|t.

We now give the jump system form of the KF:







x̂t+1|t+1

b̂t







=





(I − Lt+1C)A (I − Lt+1C)BuE1M (I − D̂t)

0(NvNpNu)×(Nx) M (I − D̂t)











x̂t|t

b̂t−1







(5.6)

+





(I − Lt+1C)BuE1D̂t

D̂t



Ut +





Lt+1

0



yt+1

The KF runs each time step using whatever information is available. The result

is the a posteriori estimate of the system state for the time that the most recently re-

ceived measurement was taken—e.g. at each step t, the estimator updates x̂t−τm|t−τm .

132



5.6.2 Forward propagation for control computation

If control is to be computed and sent at time t, it will arrive and be applied at

time t + τc. The state estimate input to the MPC solver must be for time t + τc.

Since the most up-to-date a posteriori estimate at time t is x̂t−τm|t−τm , the system is

run forward open-loop based on the current estimated control buffer (and estimated

jump variables D̂t−τm to D̂t+τc−1). This generates X̂t+τc|t−τm , which is passed to the

MPC solver. The timing of the forward propagation for a two-vehicle MX schedule

is diagrammed in Figure 5-5.

This forward propagation is performed using X̂k+1 = Ak(D̂k)X̂k+B
u
k(Dk)Uk, ∀k =

t − τm, . . . , t + τc − 1. (This can also be interpreted as the above jump system KF

with L = 0).

5.6.3 Setting the jump variable D̂t

The goal when setting the jump variable D̂t is to exploit all control information

available at the estimator. When immediate, lossless ACKs are available, this is

simple: the jump variable D̂t is equal to the true Dt. The combination of delayed

ACKs and control buffering means that an ACK arrival gives information about the

past—back to the time the control buffer that is being acknowledged arrived at the

vehicle. Due to the buffer, the ACK is useful for determining the control applied over

a number of steps instead of just one control action. To make use of this information,

the estimator backs up and re-runs its estimate based on the updated jump variable

(using a stored history of past a posteriori estimates as well as computed controls

and measurements). This procedure is described in Figure 5-6.

Figure 5-6: Schematic showing the update of the appropriate past D̂ upon reception
of a delayed ACK.
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When dealing with missing ACKs (either lost ACK packets, or no planned ACKs),

we formulate the estimator priors based on the expected value of the control action.

This follows from the approach for zero control when packets are lost (as considered

by Imer et al. , Schenato et al. , Garone et al. , and others), where the control

prior is simply the computed control command weighted by ᾱ. With the PPC buffer

and MJLS system, the buffer state is estimated by updating the jump system with

D̂t = diag(πt−τc . ∗ ᾱ) ⊗
(

INp
⊗ INu

)

instead of Dt. (Other approaches for handling

missing ACKs could be used, but lack any formal justification).

Handling lossy and delayed acknowledgments with arbitrary schedules requires

care when performing the “back-up and re-run” strategy. The amount of time to

back up depends on all ACKs received at a given time step, since τ ia′ may be different

for each vehicle, and the system is coupled. We initialize α̂ to ᾱ for all time steps,

and overwrite when an ACK is available. Algorithm 2 describes the procedure

for updating a sequence of D̂ based on lossy, delayed acknowledgments. A timing

diagram showing the operation of the algorithm is shown in Figure 5-7, for the

specific scenario when the previous control trajectory is successfully received at t −

τa − τa′ , a measurement and ACK are successfully received at t, and control is to be

computed at time t.

Algorithm 2 Determining jump variable with lossy and delayed acknowledgments

Initialize α̂t ← ᾱ, ∀t = 1, . . . , N
for all Time steps t = 1, . . . , N do

at−τa ← λt−τa . ∗ γt−τa

ACKInds← {i|ait−τa = 1}
tiack ← t− τa − τ ia′ , ∀i ∈ ACKInds
for all i ∈ ACKInds do

α̂i
ti
ack

−τc
← αi

ti
ack

−τc

end for
for all i ∈ ACKInds do

D̂ti
ack
← diag(πti

ack
−τc . ∗ α̂ti

ack
−τc)⊗ (INp

⊗ INu
)

end for
end for
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Figure 5-7: Diagram showing timing and operation of the delayed ACK algorithm
when the previous control trajectory is successfully received at t−τa−τa′ , a measure-
ment and ACK are successfully received at t, and control is to be computed at time
t. The blocks left of the thick black line show events that happen on the physical
vehicle at real time instants. Blocks to the right of the thick black line show actions
taken at time t by the estimator and controller.

Accuracy of priors

This strategy results in correct KF priors for vehicle i when the following occur:

• A new ACK is received successfully

• The received ACK indicates the previous control packet was successful (positive

ACK)

• τa + τ ia′ ≤ T s, where T s is the length of the periodic schedule.

If the schedule is shorter than τa+ τ ia′ , then there are steps near the end of the re-run

section where the control priors must be estimated (a new control plan is planned to

arrive inside of the re-run section, but after the recent ACK was sent). Priors remain

correct for the forward propagation section if τa + τ ia′ + τc ≤ T s.

If an ACK is not received successfully, the priors are incorrect since the expected

value of the buffer is used. If an ACK is received successfully, but the ACK indicates

that the previous control packet was not received successfully (a negative acknowl-

edgment, or NACK), then the current buffer estimate is used for the prior. As such,

the accuracy of the priors depends on the prior state of the buffer estimate.
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When the priors are wrong, the estimation accuracy suffers. The “resetting” of

priors to their accurate values when a positive ACK is received helps estimation

performance, however the negative effect of previous dropped measurements and/or

ACKs can linger. One approach around this is to send back a history of ACKs and/or

measurements in each packet. This way, if a measurement and/or ACK packet arrives,

the estimator can be backed-up to the last point in time where the priors were correct,

and re-run from there. ACK packets from each vehicle could be of different lengths,

e.g. one vehicle’s ACK could report about a long history if space allows and if we

know the control channel is unreliable. Obviously the length of the ACK history (as

well as strength of the error correction coding for the ACKs) affects the size of the

packet, bringing up the tradeoff between packet size and reliability. This tradeoff

invites future optimization, but is outside of the current scope.

5.7 Multirate MPC formulation

The solution of the MPC optimization is complicated by the schedule and delays—

control updates may not be scheduled for all vehicles at once. We compute control

actions for a prediction horizon of Np steps, repeating the process with the new

state estimate at each time step. While MPC assumes perfect state information, we

initialize the optimization with the state estimate provided by the KF and forward

propagation, and solve a deterministic optimal control problem assuming this is the

actual state. This certainty-equivalent (CE-MPC) approach is effective and commonly

used in industry [247], however, robust MPC techniques could be used as well. Robust

MPC is discussed further in Section 5.9.5.

The cost function for a mission (steps t = 1, . . . , N) considers a quadratic cost

on states (which can be reformulated for any sort of output equation), and quadratic

cost on control (which could alternatively be reformulated with an ℓ1 norm if sparse

control is desired):

J =
N
∑

t=1

(

xT
t Qtxt + uT

t Rtut

)

136



The value of J depends on the initial state x0, the measurement and control sequences

π and ξ, and the stochastic variables w, ν, α and β. The design variables are the

control sequence u as well as the choice of estimator.

If only partial control updates are to be sent at time t, control actions that will not

be updated until future times are not new decision variables—they are constrained

to equal the actions that will be executed out of the buffer. For each vehicle we

compute ki
p, the number of time steps to use control priors within the MPC prediction,

following ki
p = min {k|πi

t+τc+k = 1, k ≥ 0}. The MPC prediction uses b̂t+τc−1 and

kp to constrain the control priors. We describe the multirate MPC algorithm in

Algorithm 3, which includes solution of the optimization problem (5.7).

Algorithm 3 Multirate MPC

Require: t, π, τc, τm, τa, τa′ , Np, A, B
u, Q, R,

¯
u, ū

AT ESTIMATOR/CONTROLLER, AT STEP t:
Receive St−τmyt−τm , and at−τaα̃t−τa .
Run Algorithm 2 to compute D̂min(tack)−τc−1 through D̂t+τc−1.

Run the KF using D̂ computed above, giving X̂t+τc|t−τm .
Determine additional length of control priors to use in MPC prediction:
for all Vehicles i ∈ 1, . . . , Nv do

ki
p ← min {k|πi

t+τc+k = 1, k ≥ 0}: first planned update for vehicle i.
end for
Give MPC optimization X̂t+τc|t−τm , kp, and system parameters.
Run MPC optimization (5.7), obtain U i

t+τ ic
, ∀i s.t. πi

t = 1.

Send U i
t+τc (control plans to be sent at time t, received at time t+ τc).

minimize
u

J =

t+τc+Np
∑

k=t+τc+1

(

xT
kQkxk + uT

k−1Rk−1uk−1

)

subject to (5.7)

xk+1 = Axk + Buuk, ∀t = t+ τc, . . . , t+ τc +Np

xt+τc = x̂t+τc|t−τm

if ki
p ≥ 1 : ui

k = Ei
1M

kip b̂t+τc−1 ∀k = k = t+ τc, . . . , t+ ki
p + τc − 1, ∀i ∈ 1, . . . , Nv,

¯
ui

k ≤ ui
k ≤ ūi

k, ∀k = t+ τc, . . . , t+Np + τc, ∀i ∈ 1, . . . , Nv,
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We use a basic control quantization scheme: nq control levels in between umin

and umax for each command of the trajectory, spaced linearly. While suboptimal, the

simplest control quantization method is to solve the MPC optimization assuming no

quantization, and then quantize the solution with a linear quantizer.

Alternate methods for quantized MPC and vector quantization of trajectories exist

(see Section 5.9.3), we leave those for future work.

5.7.1 JLS-PPC Modular code

The elements that make up the JLS-PPC controller are modular, consisting of a

jump variable estimator, a lossy state estimator, a forward propagation step, MPC

optimization, and the PPC buffer. Figure 5-8 shows the modular blocks used in the

software implementation, including the inputs and outputs.

Figure 5-8: Modular code blocks of the JLS-PPC framework, including inputs and
outputs.
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5.8 Example

We present an example with a simple plant to demonstrate the framework, especially

the performance benefits of using piggybacked ACKs over no ACKs. The plant is a

double integrator with a single force input u, force disturbances w, and noisy measure-

ment of position. We consider this plant discretized in time with a zero-order-hold

on the input and unit time steps:

xt+1 =





1 1

0 1



xt +





0.5

1



 (ut + wt) (5.8)

yt = [1 0]xt + vt (5.9)

We control the plant using JLS-PPC, subject to schedules and losses for mea-

surements and controls. We compare performance when using piggybacked ACKs,

and no ACKs. The MPC horizon Np is 20 steps, and MPC parameters are Q =

[10, 0; 0, 1];Qf = 10Q, and R = 1. Control constraints are set as umax = 10, umin =

−10, and there are 15 quantization bins linearly spaced between the constraints. Pro-

cess noise covariance is set as W = 0.1, and measurement noise covariance is set as

V = 4; we note that these are chosen such that the KF priors play a large role in

estimation, emphasizing the effects of using piggybacked ACKs. Communications

occur in a four-step periodic cycle, according to π = [1, 0, 0, 0] and ξ = [0, 0, 1, 0].

Communication delays τc = τm = τa = 1, and both control and measurement packet

success rates are set to sixty percent: ᾱ = β̄ = 0.6.

We study 300-step simulations of this system, and average results over 25 trials.

For each trial, the same exact packet loss and noise sequences are used for both

ACK methods. Results are given in Table 5.1. Dramatic benefits are observed by

using piggybacked ACKs—estimation error improves by over a factor of five, and

positioning error improves by over a factor of twelve.

We show time series results for a single trial in Figure 5-9. In this trial, the system

effectively went unstable when no ACKs were used, resulting in very large estimation

and positioning errors. The RMS estimation error with piggybacked ACKs was 5.46,
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Table 5.1: Performance comparison between controllers using piggybacked ACKs,
and controllers using no ACKs. Results are the RMS error of each trial over time,
averaged over 25 trials.

Controller Lower Bound Piggyback ACKs No ACKs

Estimation error 2.2 10.2 55.4
Position error 5.2 26.0 312.0

and 85.0 when using no ACKs. The RMS positioning error with piggybacked ACKs

was 15.37, and 767.65 when using no ACKs. In Figures 5-10 and 5-11, we zoom-

in and illustrate the origins of the instability when using the no ACK controller.

Despite being subject to the same packet loss and noise sequences, the piggybacked

ACK controller behaves well.

We note a few important observations when comparing time series of individual

trials. In between measurement receptions, the estimate usually drifts away from

the true state. This effect is more pronounced when disturbances are large and/or

control priors are inaccurate. When measurement packets arrive successfully, the

estimate jumps (sometimes quite far) back towards the true position, as expected.

Measurement packets carrying piggybacked ACKs serve to improve the knowledge of

the control buffer, improving the priors and resulting in more accurate estimation in

between measurement receptions. Even with successful measurements, the estimate

can drift considerably in the no ACKs case because control priors are constructed

using the expected value of the control action. Intuition suggests successful control

packet receptions are good for system performance, but with no ACKs, if the control

packet success probability is low but a sequence of consecutive control receptions

occurs, estimation (and subsequently positioning) will suffer since the priors are far

from correct! This can be observed in steps 17-25 in Figure 5-10. With piggybacked

ACKs, estimation is still good even when control packets are lost, (since measurements

are arriving successfully, and delayed ACKs are used).

Figure 5-10 shows the beginning of the trial, zoomed-in from the beginning up

to step 50. A measurement is lost at step 7, causing the estimate to lag. When a

new measurement arrives successfully at step 11, the estimate snaps back on for both
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methods. Between step 11 and 43, however, the estimate is much more accurate for

the piggybacked ACK controller, since the expected value used in priors with no ACKs

is not accurate. At step 43, another measurement is lost. The piggybacked ACK

estimate remains well-behaved because positioning error was low so little control was

planned, and because the control priors are known more accurately due to previous

successful ACKs. The estimate with no ACK is very far off, and the effect of the

incorrect control prior is visible in the incorrect slope of the estimate between steps

41 and 46. The estimation errors with the no ACK controller result in poor choices

of control, driving the system away from its setpoint.

Figure 5-11 shows steps 40-80—the aftermath of the errors that begin to accu-

mulate in the end of the previous plot. The piggybacked ACK estimate and control

perform well, while the incorrect priors induce instability when no ACKs are used.
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Figure 5-9: Time series results for a single trial. The lower bound using scheduled
communications but no packet loss is on the left. The controller using piggybacked
ACKs is in the middle, and the controller using no ACKs on the right. RMS estima-
tion error for piggybacked ACKs was 5.46, and the RMS positioning error was 15.37.
RMS estimation error for no ACKs was 85.04, and the RMS positioning error was
767.65.
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Figure 5-10: Time series results for a single trial, using piggybacked ACKs on the
left, and using no ACKs on the right.
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Figure 5-11: Time series results for a single trial, using piggybacked ACKs on the
left, and using no ACKs on the right.
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5.9 Alternate approaches

This section will articulate some alternate approaches and extensions that are not

used in the JLS-PPC framework described above, but may be useful.

5.9.1 Improved estimation when no ACKs are available

The approach developed in Section 5.6.3 uses the expected value of the control

action for the control prior when ACKs are not available. A drawback of this approach

is that the expected value of the control is a mix between the previous buffer and the

new command, and will never actually be applied.

An alternate approach is to use ideas from maximum likelihood estimation and

compare the estimator priors for different scenarios of packet losses using residuals.

This idea is used in communications for simultaneous channel estimation and de-

coding, known as per-survivor processing [194]. Similar approaches using banks of

estimators are used for fault-tolerant control when sensors or actuators may break

down [254, 255]. Specific to the no-ACK networked control scenario, Epstein et al.

study mode observer techniques for recovering the “fate” of the control signal applied

at the plant [71, 72]; the accuracy of their scheme depends on the magnitude of the

control compared to noise and disturbances. Blind & Allgower extend the methods of

Epstein et al. to the case where measurements are lost [31]; however the fate estimates

can only be updated when measurements are available. In summary, all of the above

methods use measurement information (output of the plant) to try to infer the actual

control applied and improve state estimation.

We do not consider these approaches in our current formulation because we focus

on the “piggybacked” ACK case, where ACKs are added onto measurement pack-

ets.6 With “piggybacked” ACKs, the ACK arrives only when measurements arrive,

and thus there is little or no information to use for improving estimation compared

6We choose to focus on “piggybacked” ACKs because they are the most practical approach for
the underwater multi-vehicle missions we consider. Dedicated ACK packets take up time in the
schedule, and optimized ACK packets are often not built in to commercial modem systems. Data
packets used for measurements are often large, however, and the addition of one extra ACK bit
should be negligible.
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to the expected-value-control prior approach. There is never a case of a successful

measurement but an unsuccessful ACK, which is the case considered by the above

methods.

5.9.2 Covariance modifications when control is uncertain

When immediate, lossless ACKs are not available, the actual control executed onboard

the vehicles is uncertain due to packet loss. It is possible to derive an additional term

to add to the KF covariance computation that takes this into account. In simulations,

this has not proven to consistently improve estimation performance, so the results of

the next chapter do not include this adjustment. However, we believe with some

tweaking this approach may prove useful in the future, possibly in combination with

the robust MPC techniques described in Section 5.9.5.

For simplicity, we will first develop the covariance modifications for a system with

a scalar control action and packet success variable αt, with E(αt) = ᾱ. Consider a time

t, with the most recent planned control arrival at t−k̃t. k̃t = min {k|πt−τc−k = 1, k ≥ 0}.

There are two options: if the control packet is successful (e.g. αt−k̃t−τc
= 1), then the

appropriate action of the recent computed/sent control trajectory Ut−k̃t
is executed.

We denote this as ũt = eT1M
k̃tUt−k̃t

. If the control packet is lost (e.g. αt−k̃t−τc
= 0),

then control is executed from the vehicle buffer (which is a function of the history of

U and α). We denote this control as ût = eT1Mbt−1.

Depending on the ACK structure, bt−1 may be known exactly (for example, if

there are delayed ACKs that arrive in between the sending of the previous control

trajectory and the current time), or a buffer estimate b̂t−1 may need to be used

(following the no-ACK KF priors developed above). In this case, is there an “extra”

added covariance due to the fact that the buffer is not known exactly.7

The system evolves according to

xt+1 = Axt + αkBũt + (1− αt)Bût + wt (5.10)

7This added uncertainty should be quantified in some way; this topic is outside the current scope.
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We can write the prediction error as follows:

et+1|t = Aet|t + (αt − ᾱ)Bũ− ((1− αt)− (1− ᾱ))Bû+ wt (5.11)

The covariance prior is the expected value: Pt+1|t = E
[

et+1|te
T
t+1|t

]

. Following the

approach used in Garone et al. , 2010 [94], this can be rewritten as follows:

Pt+1|t = E
[

Aet|te
T
t|tA

T
]

+ E[wtw
T
t ] + E

[

(αt − ᾱ)2
]

Bũtũ
T
t B

T + E [((1− αt)− (1− ᾱ))]Bûtû
T
t B

T

= APt|tA
T +Q+ (1− ᾱ)ᾱBũtũ

T
t B

T − (1− ᾱ)ᾱBûtû
T
t B

T

= APt|tA
T +Q+ (1− ᾱ)ᾱB(ũt − ût)(ũt − ût)

TBT

For the multi-channel case, we define ũt and ût as the appropriate (NvNu) × 1

control vectors corresponding to control actions from the recent computed plan, vs.

previous buffer. With q = (ũt − ût)(ũt − ût)
T , we have

Pt+1|t = APt|tA
T +Q+ B(E{α′

tqα
′
t}+ q − ᾱ′q − qᾱ′)BT , (5.12)

where α′ = diag(α) (and similarly for ᾱ′), and using

E{α′Zα′} =







ᾱ′Zᾱ′ for the off-diagonal elements

ᾱ′Z for the diagonal elements,
(5.13)

5.9.3 Closed-form quantized MPC

Quantization of control commands is important with PPC since long trajectories of

control commands are sent in each packet. Additionally, the multiplexed schedule

described in Section 5.4.2 uses a broadcast control packet sent to all vehicles, which

increases the number of commands in a single packet by a factor of Nv. Our simu-

lations and experiments in Chapter 6 look at the effects of control packet size with

a näıve quantization scheme (first solve a non-quantized MPC optimization, then

quantize the solution with a linear nearest-neighbor quantizer).

Closed form solutions for constrained MPC give analytic expressions for the con-
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trol law depending on which partition of the state space the system is in [22, 219].

Building on this idea, solutions for optimal quantized MPC exist, where vector quanti-

zation is used on trajectories of commands. Quevedo, Goodwin and De Dona present

a closed form solution for this scenario, where a coordinate transform plus nearest-

neighbor vector quantizer is shown to be optimal, and a similar state space partition

can be used to determine the appropriate control law [189]. The drawback of this

approach is that the codebook (for one control input) is of size n
Np
u , where nu is the

number of quantization levels for control commands, and Np is the trajectory length.

The codebook size and nearest-neighbor search used for encoding do not scale well,

and become quite computationally intensive as the number of inputs and length of

trajectory increase.

5.9.4 Application-specific source coding and quantized esti-

mation

Application-specific source coding could potentially be used for both control com-

mands as well as measurements. For control commands, a codebook could be con-

structed based off of a pdf of the (expected) speeds of the perturbations (or alterna-

tively, off of the non-quantized commands from simulations). This sort of codebook

could used with modifications of the closed-form MPC described above.

We specifically choose not to consider quantization of measurements in this work,

as this is a highly application-specific problem. Measurements could be of many

flavors—a simple scalar measurement, average of a scalar measurement over time,

more complex “metameasurements” such as a gradient estimate from a short local

survey, etc. A given problem could benefit from a focused source coding design, either

lossless or compressed. If measurement quantization is severe, quantized estimation

techniques can be used.
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5.9.5 Robust MPC

A drawback of MPC in its standard form is that the problem is formulated for noiseless

state feedback. However, often all states are not measured, and there is sensor noise

and system disturbances. A common approach is certainty equivalence (CE-MPC):

use an estimator and design control under the assumption that the estimate is the

true state and there will be no future disturbances. In this case, the cost function is

deterministic. The logic follows from the separation principle in LQG control, and

often works well in practice. Wang and Boyd [247] derive performance bounds for

stochastic control and show that CE-MPC is close to optimal in three examples. Skaf

and Boyd [223] show in one numerical example of stochastic unconstrained supply

chain optimization that the performance of CE-MPC is very close to that of affine-

recourse MPC, and that both are close to the prescient optimal value. Chuang et

al. [49] study the optimality of certainty equivalence for expected value problems and

provide an algorithm for determining partitions of the state space where the certainty

equivalent controller is optimal.

We focus on deterministic MPC computations for a number of reasons. First,

robust or stochastic approaches often do not have significant gains in cost (expected

or worst-case) compared to CE-MPC solutions for systems driven by Gaussian noise

(a reasonable assumption for OP, since we use stochastic identification to capture

uncertainty). Second, robust or stochastic approaches are not as flexible in terms of

adding in scheduling and packet-loss (specifically time-varying estimators). Third,

we believe the communication constraints are more important than state constraints,

which are where approaches explicitly formulated for uncertainty provide the largest

benefit. However, we give a brief discussion on the available techniques for robust

MPC for context, and in the hopes that they can be integrated into the JLS framework

in the future.

Robust MPC models have been presented that include parametric uncertainty

in the system model as well as additive disturbances, both bounded and stochastic.

Mayne et al. present an overview of MPC with disturbances [158], and a Goodwin
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et al. give a survey of more recent work [101]. Cost functions for robust MPC have

been posed in min-max (worst-case) as well as stochastic (expected value) forms.

Additionally, uncertainty and disturbances bring up issues of feasibility with state

constraints, which are usually considered in a probabilistic sense.

A major topic of theoretical interest in robust MPC is that the effects of feedback

should be considered in the robust control design to combat against excessive conser-

vatism. Feedback offers recourse for future disturbances – the control policy can be

made less conservative if feedback is designed in. As with multi-stage stochastic pro-

gramming, this is a very difficult (or intractable) problem to solve optimally. Based

on ideas of the Affinely-adaptive Adjustable Robust Counterpart (AARC) from Ben-

Tal and Nemirovski [23], approaches have been proposed to restrict the optimization

to affine feedback policies, beginning with [236]. Goulart et al. formulate the affine

feedback policy as a convex problem using disturbance feedback [104]. The affine

feedback method is considered for time-invariant observers in [103], and the Kalman

Filter in Hokayem et al. , 2012 [118]. Mayne et al. take a slightly different approach

where the initial state is used as an optimization parameter in order to increase the

domain of attraction for robust state feedback MPC [157], as well as for time-invariant

observers [155]. Transient dynamics of the observer is considered in [156], but the

observer gain itself must be time-invariant. Work by Cannon et al. look at “tube-

based” robust MPC under closed-loop feedback [39,40]. Unfortunately, all closed-loop

prediction methods are (as far as we aware) unable to handle time-varying estimator

structures, which are crucial for handling intermittent measurements.

Bertsimas and Brown take a different approach and present a tractable robust

open-loop prediction technique [27]. Their method allows for all system parameters

to be time-varying, with bounded uncertainty sets that can be tuned heuristically for

a desired level of conservatism. The resulting optimization is a SDP, and they derive

an SOCP approximation as well. The min-max objective is computed in an open-

loop manner, e.g. under the assumption that no feedback is available throughout the

horizon to reject disturbances. The open-loop prediction of their approach results in

considerable conservatism and constraints must still be implemented in a probabilis-
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tic (as opposed to worst-case) manner. We have computationally investigated this

technique, and initial findings indicate that the gains from the robust objective are

minimal in the Gaussian noise setting.

5.10 Summary

We have described JLS-PPC, a unified framework and control technique for central-

ized estimation and control with stochastic packet-loss, deterministic delays, and a

pre-designed schedule for transmissions of measurements, controls, and control ac-

knowledgments. The ability to consider all of these communication constraints is a

new capability in the literature, and our framework helps manage the complexity of

system description and notation. We have outlined the notation and assumptions,

described candidate scheduling paradigms, presented the jump linear description of

the system, and finally developed specific estimation and control algorithms. The

elements that make up the JLS-PPC controller are modular, consisting of a jump

variable estimator, a lossy state estimator, a forward propagation step, MPC opti-

mization, and the PPC buffer. Our jump estimator algorithm uses a novel approach

for using delayed and lossy control packet acknowledgments, made possible by the

use of the PPC buffer and the JLS system description. An illustrative example with

a simple system demonstrates that the benefits of using lossy, delayed ACKs can be

dramatic. We have described the algorithms that our JLS-PPC implementation is

based on, and noted that future improvements to any individual block may be used

with the rest of the existing framework.
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Chapter 6

Pursuit Experiments with

JLS-PPC

We present simulation and field experiments demonstrating the JLS-PPC controller

in pursuit missions. The feature is a simulated chained mass front similar to the

one studied in Chapter 4. The field experiments use three autonomous surface

vehicles towing acoustic modems, tracking and pursuing the simulated feature. To

focus on control performance, “hybrid” measurements are created using the vehicles

positions and simulated gradients. The acoustic communications are fully realistic,

using TDMA scheduling and quantized packets, and subject to packet loss. We also

present simulation results demonstrating the performance improvements of JLS-PPC

over independent vehicles, comparison of two scheduling paradigms, and scalability

to larger fleet sizes. A design tradeoff study between control quantization and packet

loss is demonstrated using the simulation framework, and finally, we present results

showing the benefits of using piggybacked ACKs.

6.1 Setup

We study the performance of the JLS-PPC controller with different communication

schedule types (MX and IL), packet loss rates, quantization levels, and sensor noise.

We use piggybacked ACKs for all results in this chapter, except for the comparison
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with no ACKs in Section 6.2.5. The JLS-PPC controllers are compared to Loners

(vehicles operating independently with local uncoupled models) and Lower Bound

(coupled model with ideal communications) controllers. The Loners and Lower Bound

controllers are similar to those used in the Oceanographic Pursuit studies, described

in Section 4.6.1.

The system model for simulations and field experiments is kinematic vehicles with

speed constraints tracking and pursuing perturbations generated by a chained-mass

driven by noise; see the system description in Section 4.4.3 of Chapter 4. The

chained mass system has Nv masses arranged nominally along a line and undergoing

lateral perturbations. Each mass is tied to ground lightly by a spring kg and damper

bg, connected to adjacent neighbors with springs kn and dampers bn, and forced by

zero-mean white noise of variance wj. As in Chapter 4, the chained mass model uses

perfectly linear gradients, which decouples vehicle positioning from estimation. For

this reason, we consider both estimation and positioning performance in our results.

When dealing with true oceanographic features, the arguments of Chapter 4 will

hold—that the linearization of of the projection procedure will be more accurate near

the feature itself, and improved positioning should also improve estimation due to

more accurate gradients.

In order to evaluate controller performance clearly, the coupled controllers (all

except Loners) use the exact chained mass model, as opposed to the outcome of

system identification; Chapter 4 studies projection and identification on ocean model

datasets. We note that in contrast to the simulations of Chapter 4, the experiments

of this chapter include scheduling, delays, and control packet quantization in addition

to packet loss. We use the multiplexed (MX) and interleaved (IL) schedules described

in Section 5.4.2 for the JLS-PPC controllers. For fairness, we compare the Loners

and Lower Bound controllers with measurement schedules, such that the frequency

of measurement updates for each vehicle is the same as for the MX schedule (Loners

and Lower Bound are not subject to delays or packet loss, and control is computed

and applied every step).

While the Loners in Chapter 4 used the outcome of uncoupled system identifi-
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cation on their specific frontal point, we choose not to use system identification in

this chapter for a more clean evaluation of controller performance. For experiments

in this chapter, we tried two different model options for Loners. The first is a sim-

ple double integrator, and the second is two masses tied together by a spring (not

attached at all to ground). The natural frequency of the second model was tuned

to match the dominant natural frequency of the chained mass. In simulations, the

integrator model consistently outperformed the drifting oscillator model. For some

perturbations the drifting oscillator was very accurate, however due to coupling and

higher modes, Loners with this model was often considerably out of phase. For this

reason, we show Loners results using the double integrator model for the rest of this

Chapter.

We focus our studies on fast dynamics, and set the parameters of the chained

mass system such that there are relatively few control cycles per natural period of

the perturbations. For the majority of our experiments, we set the chained mass

parameters such that there are three cycles of the IL schedule within the natural

period, since the IL schedule is longer than the MX schedule. Parameters of the

chained mass system that give this natural frequency are given in Table 6.1, for the

three vehicle case. Note the light damping and very light spring to ground (to keep

perturbations from drifting too far). For other numbers of masses/vehicles, the cycle

time increases and we scale kn appropriately to give the same number of schedule

cycles per natural period.

The driving noise of the perturbations are set such that the speeds of the pertur-

bations are usually below but often close to the vehicle speed constraints. If pertur-

bation speeds are larger than the speed constraints, the vehicles are always chasing

the feature and the pursuit problem is ill-posed. If perturbation speeds are much

slower, than the importance of using MPC over unconstrained control techniques is

diminished.

We use simple linear quantization scheme of the previous chapter, with levels set

between the max and min speed constraints. We set the MPC prediction horizon as

a multiple of the schedule length: Np = Nmult
p T s. This choice is due to the spirit of
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Table 6.1: Parameter values used for chained mass system in JLS experiments for
Nv = 3. The dominant natural frequency of the system is ωn = 0.3487, for a natural
period of 18 steps.

kn kg bn bg wp

0.0405 1e-4 4e-3 0 0.35

packetized predictive control—the vehicle buffer will have a trajectory lasting Nmult
p

cycles, which can be used for Nmult
p −1 consecutive packet losses. A side effect of this

choice is that it results in a different horizon for MX vs. IL schedules. If desired, it is

possible set MPC horizons longer than the length of the trajectory sent in the PPC

packet.

When comparing MX vs. IL schedules, we keep the number of total commands in

a packet constant between the schedules. The IL control packet has the trajectory of

just one vehicle, although the trajectory is a bit longer than MX due to the longer IL

schedule. The MX broadcast control requires squeezing all Nv trajectories into the

packet, resulting in coarser quantization.

6.1.1 Setup of Field Experiments

Field experiments were conducted in the Charles River Basin using the kayak system

described in Introduction and Chapter 3. The vehicles introduce real maneuvering

and physical disturbances (e.g. wind, waves) into the system. Most importantly,

the vehicles are towing acoustic modems that are communicating according to a

MX or IL TDMA schedule and subject to real packet loss. Our experimental setup

uses synchronized timing on all vehicles, and the TDMA schedule uses five-second

communication slots followed by two-second guard time slots. The guard time slots

are used for computation. Running the estimator is near-instantaneous, and the MPC

control optimization took on average 0.25 s, easily fitting into the guard slots. The

discrete-time control system is run using time steps of δt = 7 s, matching the TDMA

slots.

For our hybrid experiments, we simulated the perturbations and constructed hy-
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brid measurements based on linear gradients and position of the perturbation and

vehicle. Gaussian noise for the hybrid field measurements was added. Vehicle 2D

locations were determined using RTK GPS, and for the experiment we projected the

position onto the C2 line (the line normal to the feature, explained in Section 4.2.4)

to give the vehicle position in the perturbation frame, q.

Vehicle low-level controllers, timing, and acoustic communications were handled

within MOOS using custom C++ code. The control algorithms and hybrid feature

measurements were implemented on the shore computer in Matlab, using the mex-

moos connection utility to pass messages back and forth from the MOOS database.

The MPC optimization is modeled in CVX, a Matlab toolbox for prototyping convex

optimization problems, and solved using Gurobi, a state-of-the-art commercial solver.

The controller outputs speed commands, which were encoded and sent to the

vehicles. The PPC buffer was run onboard each vehicle, outputting a speed command

each time step. The vehicle computed a desired waypoint u× δt meters along the C2

from the previous desired waypoint. Using this method, any positioning errors do not

accumulate over time. The maximum vehicle speed was 1.2 m/s. Speed constraints

for the controller were set as (1.2m/s)× (7s/step) = 8.4 m/step, in the positive and

negative directions.

For vehicle control, we made a few adjustments to the baseline MOOS waypoint

and trackline control. Vehicle speed control was accomplished via an open-loop lookup

table for thrust, plus a outer loop adaptation based on GPS speed. GPS speed is a

very noisy measurement so this loop was run with heavy filtering, slow bandwidth,

and was turned off when sharp turns were made. For trackline control, we adjusted

the setup so that the C2 line was used as the trackline, instead of the line between

the vehicle and the next waypoint. Since vehicles often turn around on the C2 line,

we modified the trackline controller for improved performance when making sharp

turns: when the heading error is large, the trackpoint moves far away from the

vehicle before coming back to its usual position slowly. Additionally, we shrunk the

waypoint capture radius for more precise performance.
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6.1.2 Vehicle and Comms simulations

Simulations use the same feature model and measurement technique as the field ex-

periments. Vehicles are simulated using (constrained) kinematic models along the C2

line, e.g. no orthogonal positioning effects. Gaussian process noise and measurement

noise is added. The same speed constraints were used: +/−8.4 horizontal units per

step.

Comms are simulated with TDMA schedule with slot equal to the control system

time setup, and Bernoulli packet losses. For simplicity, in our simulations we set the

packet loss rates equal for all vehicles, and for controls and measurements. Hetero-

geneous loss rates are easily handled by the JLS-PPC framework; the only loss rate

estimate required is for control packets (used by the jump estimator for KF priors

when no ACK is available).

6.2 Results

We first present experimental results, to emphasize that the JLS-PPC controller is

suitable for field implementation. We then discuss a few major outcomes of simula-

tions.

6.2.1 Field Experiments

We ran experimental trials testing different controllers on the same perturbation

instance. The scalar field measurement noise variance was Vφ = 0.1. For estimation

of the vehicle position, we set Vq = 0.1m2 and Wq = 0.1m2. We then compare these

with the performance expected from simulations with the same settings.

Time Series Results

Time series of selected controller runs are shown in Figures 6-1, 6-2, 6-3, and

6-4. The true perturbations p̃, estimated perturbations p̂, and vehicle positions q are

plotted, color-coded by site. The lower subplots show estimation error (ˆ̃p − p̃), and
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position error (q− p̃). To evaluate performance, we compute the RMS (over time) of

the estimation error and position error, averaged across sites.

The Lower Bound controller performs very well, estimation and positioning errors

are typical of LQG control, with some larger positioning errors due to vehicle speed

constraints. The Loners controller has much larger errors, especially near the peaks of

the perturbation oscillations, where the integrator model takes a few schedule cycles

to make the turn. These errors combined with speed constraints causes the vehicles

lag behind the perturbations considerably, despite the Loners controller not having

to deal with communication delays. The JLS-PPC controller with MX schedule and

9-level quantization demonstrates good estimation performance, nearly as good as

Lower Bound. Vehicles exhibit a similar phase lag as with the Loners controller, this

time caused primarily by the communication delays.

Due to traffic on the Charles River, the experiments were conducted relatively

close to the dock, where the modem for the centralized estimation and control center

was located. This resulted in few packet losses. To demonstrate the ability of the

controller to handle larger packet losses, we ran a field trial where additional Bernoulli

packet losses were added in simulation, with a loss probability of 20%. Results for

this trial are shown in Figure 6-4. With more packet losses, there are some large ex-

cursions where the estimate is inaccurate, such as near step 60. When a measurement

successfully arrives, the estimate error drops dramatically. Positioning errors can also

occur when estimation is relatively accurate, but control packets are dropped. An

example of this is before step 120, where three consecutive control packets are lost

for the red perturbation/vehicle, causing the vehicle to drive too far in the negative

direction. Since Nmult
p = 3, after these three packet losses, the buffer runs out and

vehicle speeds are set to zero, evident at step 120. The next control packet arrives

successfully, but the position error remains relatively large while the vehicle is at its

speed constraint attempting to catch up to the perturbation.
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Figure 6-1: Time series of experiment run, Lower Bound. RMS estimation error was
2.21 m, and the RMS positioning error was 4.20 m.
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Figure 6-2: Time series of experiment run, Loners. RMS estimation error was 4.19
m, and the RMS positioning error was 10.15 m.
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Figure 6-3: Time series of experiment run, MX schedule, 9-level quantization. RMS
estimation error was 2.49 m, and the RMS positioning error was 10.33 m.
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Figure 6-4: Time series of experiment run, MX schedule, 3-level quantization, with
20% additional packet loss added in software. RMS estimation error was 6.37 m, and
the RMS positioning error was 18.59 m.
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Comparison to simulations

We compare experimental results to simulations using the same perturbation time

series, and the same exact noise and packet loss sequences. The only difference is

that the vehicles are simulated using a kinematic model. Figure 6-5 shows a scatter

plot of these results, with positioning error on the x-axis, and estimation error on the

y-axis.

Experimental results roughly match the simulation results. Experimental per-

formance is consistently worse than simulations by a small amount, especially in

positioning error, because our autonomous kayaks are non-ideal actuators. This is

an expected source of error, especially since the experiments were conducted over a

relatively small domain compared to the maneuverability of the vehicles. This causes

the station-keeping behavior and turning dynamics to affect positioning. A surprising

result is that the positioning inaccuracy also affects estimation of the frontal points.

This was not expected because of the ideal gradient slices used in generating the hy-

brid measurements, which usually mean that positioning does not affect estimation

performance. However, the estimation of the vehicle position does affect estimation of

the feature. The vehicle positioning errors are non-Gaussian, and the KF might not

have been tuned optimally for estimation of vehicle position. We note that the brown

trial includes 20% extra simulated packet loss, on top of the actual packet losses. In

this case, the estimator was not tuned properly for this scenario, as the control priors

(when no ACKs arrived) were generated using a control packet loss probability of

5%. Comparison with the simulation results for 20% packet loss in Figure 6-6 shows

that the inaccurate packet loss estimate resulted in estimation and positioning errors

that are larger by approximately a factor of two.

6.2.2 JLS-PPC MX and IL vs. independent vehicles

We show ensemble simulation results, again with scatter plots with positioning error

on the x-axis, and estimation error on the y-axis. The simulation ensembles have 25

trials each and were run with a few packet loss rates and control quantization levels.
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Figure 6-5: Scatter plot of experiments and experiments with the exact same per-
turbations, noise and packet loss sequences. The dominant natural period of the
chained-mass is 18 steps. Experiment performance is slightly worse than simulations
with similar settings, due to the physical vehicles being non-ideal actuators.

For the Loners and Lower Bound, we show each individual trial with a marker. For

the JLS-PPC controllers, the large outlined dots show the mean of 25 trials, and the

thin curves show one-standard-deviation ellipses.

We have focused the majority of our simulation studies on the three-vehicle case

as it captures the essential elements of the system, but is faster to simulate and more

clear to analyze than larger fleet sizes. A representative example with scalar field

measurement noise variance of Vφ = 1, vehicle measurement noise of Vq = 1, and

vehicle process noise of Wq = 0.1 is shown in Figure 6-6.

Over a large range of sensor and process noise values, we have observed that

the JLS-PPC controller with the MX schedule consistently outperforms the same

controller using the IL schedule. JLS-PPC with MX with packet losses of roughly

20% or less are superior to vehicles acting independently (the Loners controller),

and when packet loss is very low, these methods approach the performance of the

scheduled Lower Bound. Notably, the JLS-PPC methods have a clear advantage in

estimation, consistently exhibiting approximately 1.75 times lower estimation error

than Loners when packet losses are low. The estimation error for Loners is 5.10, while

it is 2.93 for the MX schedule with 3-level quantization and 10% packet loss.

161



The JLS-PPC methods do not perform as strongly in positioning, as they must

deal with communication delays on top of packet loss. This explains why the JLS-

PPC controllers with no packet loss and no quantization match the estimation error

of Lower Bound, but are worse at positioning. With coarse quantization, positioning

is hurt further. Quantization effects are discussed further in Section 6.2.4.

As a more exaggerated example of the differences between control methods, we

show results when the system dynamics are extra fast in Figure 6-7. For these

simulations, the scalar field measurement noise variance was Vφ = 0.1, vehicle mea-

surement noise was Vq = 0.1, and vehicle process noise was Wq = 0.1. The natural

period of the chained-mass is 12 steps, which gives three cycles of the MX schedule,

and just two cycles of the IL schedule. With the IL controller right at its Nyquist

rate, its performance suffers considerably. The improvement of the MX controller

over the Loners is more pronounced as well. The mean estimation for Loners is 6.85,

while the mean estimation for the MX with 3-level quantization and 10% packet loss

is 2.41—almost three times lower. This leads us to a design observation: as the dy-

namics of the feature to be tracked speed up, the benefits of the JLS-PPC controller

with MX schedule over Loners become more important.

The trend of MX outperforming IL is also exaggerated as the feature dynamics

become faster. We suspect the dominant factor here is that the IL schedule is longer

than the MX schedule, which outweighs the finer quantization (for a given packet

size) of the IL schedule. This point corroborates the main result of the target pursuit

experiments of Chapter 3—that cycle time is more important than quantization

when high tracking and pursuit bandwidth is desired.

6.2.3 Scalability

The tractability of a centralized control system is very important, as the system size

and computational requirements increase with fleet size. Onboard the vehicles, very

minimal computation is needed; small embedded processors will have no trouble run-

ning the PPC buffer. The large computations happen at the centralized fusion center,

which runs the jump estimator, lossy KF, and controller. The dominant computa-
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Figure 6-6: Scatter plot for Nv = 3. The dominant natural period of the chained-
mass is 18 steps. The upper plot is zoomed-out and includes 50% packet loss results;
the lower plot is a zoomed-in version of the upper plot. For the Loners and Lower
Bound, we show each individual trial with a marker. For the JLS-PPC controllers,
the large outlined dots show the mean of 25 trials, and the thin curves show one-
standard-deviation ellipses. The main result is that the JLS-PPC controller with the
MX schedule gives a factor of 1.75 improvement in estimation error over Loners when
packet loss is 10%.
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Figure 6-7: Scatter plot for Nv = 3, with fast perturbations. The dominant natural
period of the chained-mass is 12 steps. For the Loners and Lower Bound, we show
each individual trial with a marker. For the JLS-PPC controllers, the large outlined
dots show the mean of 25 trials, and the thin curves show one-standard-deviation
ellipses. The MX controller shows larger improvements over Loners with this fast
system compared to the slower system results in Figure 6-6.
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tional expense is running the MPC optimization, a constrained quadratic program.

As noted, we solve the MPC problem using CVX and Gurobi on a standard desktop

computer. This approach is easily tractable for 10-vehicle fleets, with computation

times of roughly 0.5 s.

We note that more advanced solvers exist that take advantage of the special struc-

ture of MPC-style problems, as well as generate compiled code for specific problem

instances. These methods could be used to effectively implement JLS-PPC if even

larger fleets or low-power computers are used.

Figure 6-8 gives simulation results for Nv = 10, using chained mass dynamics

with a dominant natural period of 60 steps (three times the length of the IL schedule

of 20 steps). These results are for Vφ = 1, Vq = 1, and Wq = 1. The main result

is that computations were tractable, and similar trends in performance are observed

compared to the Nv = 3 results. The mean estimation error is 15.73 for Loners,

and 9.91 for MX with 3-level quantization and 5% packet loss. This is slightly less

than the two-time improvement observed frequently in Nv = 3 trials. For the MX

schedule with 3-level quantization, packets include 990 commands times levels. With

the same packet size, the IL control commands consist of 15 levels. The difference

in performance between no quantization and 15-level quantization is negligible, so

the infinite quantization IL results are omitted from the plot. The 50% packet loss

IL results are also omitted, as performance is poor. Notably, the IL schedule with

no packet loss has much higher estimation error than the MX schedule with 20%

packet loss, and performs worse in estimation and positioning compared to Loners.

The differences in schedule lengths between MX and IL are exaggerated as fleet sizes

grow, easily overcoming the quantization benefits of IL—making MX the obvious

schedule choice.
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Figure 6-8: Scatter plot for Nv = 10. The dominant natural period of the chained-
mass is 60 steps. For the JLS-PPC controllers, the large outlined dots show the mean
of 10 trials, and the thin curves show one-standard-deviation ellipses. Similar trends
are observed as with the three-vehicle systems, although the differences between the
MX and IL schedules are exaggerated due to more vehicles and longer schedules.
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6.2.4 Tradeoff between control command quantization and

control packet loss

The use of buffering, and also the MX schedule, place an emphasis on quantization of

control commands, as many commands are fit into one control packet. While there

are many complex tradeoffs and settings involved in a wireless communication link,

a fundamental tradeoff exists between the data rate and the ability of the receiver

to decode information. Consider a packet-based network with fixed packet lengths

in time. For given channel conditions, as the size of the packet in bits increases,

modulation and/or error correction coding must adjust to increase throughput, which

decreases reliability. With the control framework of this chapter, we study fixed

numbers of control commands per packet, so the coarseness of quantization of each

command affects the reliability of packet reception. The JLS-PPC framework does not

model the choices involved in this tradeoff directly, however the simulation capability

can be used indirectly as a design tool for optimizing the quantization versus packet

loss tradeoff.

As an example, Figure 6-9 shows a contour plot of positioning error over a

two-dimensional domain of packet loss vs. number of quantization levels, for MX

schedules. Each point on the grid is the average of 50 simulations using that com-

bination of quantization and packet loss. To emphasize the shape, log-scale axes are

used. We note that positioning error is affected by quantization much more strongly

than estimation error when ideal gradients are used (estimation error is largely a

function of packet loss alone).1

The difference in performance as quantization increases from 2 levels to 3 levels is

dramatic, since three levels adds zero as an option. From 3 to 5 levels, the difference

is less dramatic; a trend that continues as quantization becomes finer. We note that

with the examples of this chapter, quantization is probably less of a factor than in

other settings since we are looking at systems with fast dynamics, and the vehicle

speed constraints are set up to be roughly equal to the max speed of the perturbations.

1With nonlinear fields, positioning error will affect estimation, and if measurement quantization
is considered, a similar tradeoff can be studied for the vehicle-to-estimator communication link.
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With this scenario, the movement of the perturbations is often quite fast, making the

3-level quantization scheme effective. With slower perturbations, there likely will

be scenarios where the naive quantization scheme we use (rounding of the optimal

non-quantized solution) could perform badly (large limit cycles). In such a scenario,

techniques like dynamic quantization (e.g. [10,11,163]), or possibly the optimal closed-

form quantized MPC discussed in Section 5.9.3, could perform better, since they can

give a PWM (or delta-sigma modulator) type command sequence that isn’t biased.

The positioning error contour plot is a useful tool for system design. A system

designer can produce a tradeoff curve in the 2D packet loss vs. quantization space

for a given communication system setup and channel condition. Factors that may

go into creating such a curve are discussed below, however a reasonable assumption

is the curve will be monotonically increasing from left to right (as the number of

quantization levels goes up, the bit rate must increase, and packet loss will increase).

The “quarter-bowl” shape of the contour plot suggests that for many such curves,

there will be an interesting design tradeoff as the minimum in positioning error will

occur somewhere in the middle of the plot.

A basic example of such a curve is plotted on top of the upper contour plot in

Figure 6-9. This curve describes an exponential relationship between the num-

ber of quantization levels and the packet loss probability of the controller link:

nLevels = 1.5e0.1ᾱ. With this relationship, packet loss is low (≈ 3%) when coarse

2-level quantization is used, and packet loss increases as the quantization resolution

becomes finer and the data packets must be sent using higher rate transmission. The

bottom plot of Figure 6-9 gives the RMS positioning error along this curve, showing

the minimum positioning error occurs when five control quantization levels are used.

As mentioned above, there are many complicated choices that go into creating

a“representative” packet loss vs. quantization curve, and full treatment of the choices

is beyond the scope of this thesis. High-level decisions such as communication system

frequency and bandwidth, and the slot length, packet length in time, etc. for the

communication schedule and control system must be considered. Once these are

decided, the digital modulation scheme must be chosen (e.g. FSK, or PSK/QAM
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Figure 6-9: Top: Positioning error contour plot for JLS-PPC with MX schedule,
piggybacked ACKs. The black curve shows the tradeoff between quantization and
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with varying constellation sizes). Forward error correction coding (FEC) gain can

also be adjusted. Channel conditions (noise, delay spread, path loss, etc.) vary, and

must be modeled. The SNR (or post-equalizer SNR for phase-coherent methods) is

then related to a bit error rate based on the specific modulation scheme chosen. The

bit error rate can then be related to a packet error rate depending on the FEC coding

gain.

Related to the number quantization levels, there are also issues about how to

efficiently package the control trajectories into a packet. Combining the bit repre-

sentations of individually-quantized commands is the simplest, although vector quan-

tization of trajectories is also possible. The issue with vector quantization is that

the codebook size is nLevelsNp , so codebooks can grow very large when many levels

and/or long trajectories are used. However, when commands are quantized individ-

ually using few numbers of bits, there are large jumps in the numbers of levels that

can be represented, e.g. four levels with two bits, 8 levels with three bits, 16 levels

with four bits, etc. Packets for serialized command trajectories will have large dis-

crete jumps in size as the number of levels increases—quantization with 5 levels will

result in the same size packet as with 8 levels. A middle-ground option is to quantize

shorter sections of commands via vector quantization, and then combine those chunks

to form the full trajectory. The choice of trajectory representation and compression

involves engineering tradeoffs and will affect the shape of the loss-quantization curve.

All of these settings are related, and one could think of various optimizations that

could be studied. Similar optimizations have been done in the literature, but usually

related to multihop or reliable transport protocols (e.g. work by Casari & Zorzi [42],

and Basagni et al. [16]). There is room for future work to study communication

optimization in the context of real-time control.

6.2.5 Piggybacked ACKs vs. no ACKs

A major contribution of the JLS framework is the ability to handle delayed and

lossy control acknowledgments. In this section, we consider the benefit of using this

capability with piggybacked control ACKs versus no control ACKs. This study is
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similar to that conducted with the simple SISO double integrator in Section 5.8,

but for the multi-vehicle pursuit system.

Control ACKs help generate accurate KF priors, and thus make the biggest differ-

ence in estimation when the priors are important—large vehicle measurement noise

and low vehicle process noise. We present results with such noise settings, intended to

emphasize the differences between ACK schemes. The vehicle measurement noise was

set to Vq = 9, vehicle process noise to Wq = 0.01, and the scalar field measurement

noise to Vφ = 0.01.

For these simulations, the two ACK methods were compared with identical noise

and packet loss sequences for each trial. Four numbers of quantization levels were

simulated. Due to the large noise values and high packet losses considered, there were

often trials where the estimator diverged; we count the trials where this occurred, and

discard the numerical results for a trial if either of the methods diverged. For each

packet loss, quantization, and instance, the no ACK methods had either the same or

slightly more (by up to 2 more) outliers. We then computed the mean estimation and

position errors from the outlier-filtered results, averaged across trials and quantization

levels. These results are shown in Figure 6-10.

The results are dramatic, showing clear benefits for the piggybacked ACK scheme.

At 0% packet loss, the performance is the same, as expected. The difference in

estimation and positioning errors becomes more dramatic as packet loss increases

to 20%, with approximately a constant absolute difference in performance at higher

packet losses. With 20% packet loss, the piggybacked ACK controller achieves a 60%

reduction in positioning error and a 70% reduction in estimation error compared to

the no ACK controller.

6.3 Summary

The main result of the chapter is that the MX schedule consistently outperforms

vehicles acting independently (“Loners”) when packet loss remains reasonable (e.g.

below 30%). Additionally, results showed that the MX schedule is superior to the
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Figure 6-10: Comparison of performance with piggybacked (lossy, delayed) ACKs vs.
no ACKs, averaged over 50 trials and four different quantization levels.

IL schedule in both estimation and positioning performance. We demonstrated that

the JLS framework is easily scalable to 10-vehicle fleets, with the above two trends

remaining true. As the dynamics of the feature to be tracked become faster, the

benefits of the JLS-PPC controller over Loners become more dramatic.

We conducted field experiments with autonomous surface vehicles and real acous-

tic communications using TDMA schedules and subject to quantization and packet

loss. Results from these trials indicated that the simulation framework is effective at

illuminating trends between controllers, with the absolute performance of the physi-

cal system diminished slightly due to vehicles behaving as non-ideal actuators. This

supports our assertion that the simulation framework is a useful tool for system de-

sign. We discussed one example where the simulation framework provides a method

to indirectly study and optimize communication system tradeoffs, specifically the

quantization versus packet loss relationship. Finally, we presented simulation results

that clearly demonstrate the usefulness of piggybacked ACKs. This capability is a

key aspect of the JLS-PPC framework, and is especially helpful in scenarios where

the KF priors play a large role in estimation performance.
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Chapter 7

Conclusion

We reiterate the primary outcomes of each chapter, and summarize how they relate

to the overall goal of enabling highly dynamic multi-vehicle collaborative control in

the ocean. We conclude with a discussion of promising directions for future work.

7.1 Summary of Contributions

Chapters 2-4 consider the first major area of work: the setup and solution of new

underwater pursuit problems using closed-loop control.

Chapter 2 set the stage by introducing some fundamental aspects of acoustic

communications, and presented a robust approach to a major acoustic networking

problem: multicast routing and power control. We formulated the robust counter-

part of the multicommodity mixed-integer linear programming (MILP) model from

Haugland and Yuan [112], and derived scaled power levels that account for uncer-

tainty. Our formulation, Robust MET, provides a tractable means for designing

efficient geographic routing subject to power uncertainty, a capability which is es-

pecially useful in power-constrained marine robotic networks that rely on unreliable

acomms. We showed that with proper scaling of input power levels, a deterministic

MILP formulation may be used to find the optimal robust solution; this type of opti-

mization can be solved tractably. The approach developed relies on centralized global

optimization, which is more amenable to mobile networks than iterative algorithms
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where convergence may be difficult while nodes are constantly moving.

Chapter 3 presented field experiments in target pursuit using acoustic range mea-

surements and lossy, rate-limited acoustic communications. We performed tracking

of a moving target using two vehicles and acoustic range measurements. The vehicles

collaborate in order to jointly estimate the target’s position, and move to stay in for-

mation relative to it. Real-time communication is an integral aspect of the estimation

and control loop. We presented in detail results comparing the tracking performance

of three different communication configurations, at operating speeds near 1.5 m/s.

A “lower bound” case with RF wireless communication, a four-second cycle and no

quantization had a tracking bandwidth of ≈ 0.5 rad/s. When using full-sized mo-

dem packets with negligible quantization and a 23-second cycle time, the tracking

bandwidth was ≈ 0.065 rad/s. With 13-bit mini-packets, we employed logarithmic

quantization to achieve a cycle time of 12 seconds and a tracking bandwidth of ≈ 0.13

rad/s. In particular, the mini packet vs. full-sized packet experiments demonstrated

that for tracking highly dynamic targets it is beneficial to trade-off quantization for

low cycle time. These outcomes showed definitively that aggressive dynamic control

of multi-agent systems underwater is tractable today.

In Chapter 4, we articulated an integrated framework for dynamically sampling

the ocean using a group of communicating mobile agents. Our new concept is that

locally linear behavior of an ocean process admits strong estimation and control tech-

niques on short time scales; this allows multiple cooperating vehicles to decompose

spatial and temporal variations in the field, and track a dynamic feature of interest.

The stochastic dynamical model supporting our controller design is created via a pro-

jection from an ocean forecast ensemble into succinct vehicle coordinates, and this is

the main innovation of our work. In studies with three example datasets, we demon-

strated that control and estimation designs resulting from the identified models are

successful and provide benefits over vehicles operating independently.

Chapter 5 presented the second primary area of work—detailed development of

a networked control framework for centralized estimation and control with stochas-

tic packet-loss, deterministic delays, and a pre-designed schedule for transmissions
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of measurements, controls, and control acknowledgments. The ability to consider

all of these communication constraints is a new capability in the literature, and our

framework helps manage the complexity of system description and notation. We

outlined the notation and assumptions, described candidate scheduling paradigms,

presented the jump linear description of the system, and finally developed specific

estimation and control algorithms. The elements that make up the JLS-PPC con-

troller are modular, consisting of a jump variable estimator, a lossy state estimator,

a forward propagation step, MPC optimization, and the PPC buffer. Our jump es-

timator algorithm uses a novel approach for using delayed and lossy control packet

acknowledgments, made possible by the use of the PPC buffer and the JLS system

description. An illustrative example with a simple system demonstrated that the

benefits of using lossy, delayed ACKs can be dramatic. We described the algorithms

that our JLS-PPC implementation is based on, and note that future improvements

to any individual block may be used with the rest of the existing framework.

In Chapter 6, we presented simulation and field experiments demonstrating the

JLS-PPC controller in pursuit missions. The main result of the chapter is that the

JLS-PPC controller using the MX schedule consistently outperformed vehicles acting

independently (“Loners”) when packet loss remains reasonable (e.g. below 30%). We

showed that the MX schedule is superior to the IL schedule in both estimation and

positioning performance, and demonstrated that the JLS framework is easily scalable

to 10-vehicle fleets, with the above two trends remaining true. We conducted field

experiments with autonomous surface vehicles and real acoustic communications using

TDMA schedules and quantized controls, and subject to packet loss. Results from

these trials indicated that the simulation framework is effective at illuminating trends

between controllers, with the absolute performance of the physical system diminished

slightly due to vehicles behaving as non-ideal actuators. This supports our assertion

that the simulation framework is a useful tool for system design. We discussed one

example where the simulation framework provides a method to indirectly study and

optimize communication system tradeoffs, specifically the quantization versus packet

loss relationship. Finally, we presented simulation results that clearly demonstrate
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the usefulness of piggybacked ACKs. This capability is a key aspect of the JLS-PPC

framework, and is especially helpful in scenarios where the KF priors play a large role

in estimation performance.

7.2 Future Work

7.2.1 Oceanographic Pursuit and similar applications

We believe that multi-vehicle networked control applications will play a large role in

future understanding of the ocean. Target pursuit can help inform the study of marine

animals, and oceanographic pursuit can improve our understanding of complex and

dynamic ocean features. Many areas of future work exist, and we discuss a few here.

Local linearization of ocean model simulations is a critical element of the Oceano-

graphic Pursuit procedure, that we address first with the frontal points concept and

then with subspace identification methods. Neither of these is easy. Frontal point

generation has an implicit ergodicity assumption, and requires domain expertise as

implied in the constraints P. At the same time, subspace identification, even for sys-

tems which are known to be linear, is difficult, and we have as well restrictions on

record length, plus gridding effects. Many specializations and improvements can be

made to the preliminary methods we have described. We firmly believe that linear

stochastic models, however, are key to cogent analysis and design procedures when

multiple vehicles are to operate with realistic navigation and communication limits.

The LTI model allows for classical and scalable multivariable estimation and control,

as well as rigorous contemporary approaches for lossy communications. To this end,

the JLS-PPC control framework with TDMA scheduling and delays can be applied

to oceanographic pursuit datasets to provide more realistic results in the same style

as those presented at the end of Chapter 4.

Of course, full-scale experiments pursuing an actual feature in the ocean are a

future goal. Next, we discuss some immediate areas that will make our Oceano-

graphic Pursuit approach more amenable to field implementation. Initial detection
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of a feature, and the associated initialization of the closed-loop pursuit system, is an

important problem. Related are issues of fault detection (e.g. did the feature break

up? or did the vehicles lose it?) and recovery. Important application-specific ex-

tensions consider the measurements themselves. Realistic field measurements from

vehicles could range from time-intensive scalar measurements, to histories of fast mea-

surements, to “metameasurements” such as a local survey to determine the gradient.

Representing these measurements for communications requires efficient source cod-

ing, and incorporating such measurements into the networked control framework may

require novel measurement models. Depending on the nature and update rate of the

sensor, it may also be beneficial to blend the “Loners” technique with the central-

ized collaborative approach. Hierarchical control techniques could allow a level of

reactivity locally onboard the vehicle, with high-level adjustments provided by the

networked controller.

Our Oceanographic Pursuit framework and projection algorithm could be used to

study the relationships between spatiotemporal resolution, number of vehicles, vehicle

speeds, feature dynamics, sensor characteristics, etc. For example, if highly accurate

sensors are available, it may not be necessary to set up communication at all for the

purposes of oceanographic pursuit. On the other hand, vehicles with less expensive,

lower-quality sensors can be deployed in larger numbers and will likely benefit from

a coupled model and hence collaboration. More broadly, heterogeneous sensor and

vehicle networks are increasingly likely in practice. The integrated framework we

have developed should support strong trade-off studies along these lines, and further

insight could be gathered from a more comprehensive and integrated approach to pro-

jection and system identification. For example, depending on the strength of coupling

between sites and communication degradation with distance, it may be beneficial to

group vehicles into subnetworks, where collaboration occurs at a high rate between

nearby vehicles, and inter-subgroup communication occurs at longer intervals.
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7.2.2 JLS-PPC and co-design of communication and control

One straightforward direction for future work is to use the JLS framework for weighing

the various tradeoffs in communication design, specifically when communications are

to be used for closed-loop control. As results in this thesis have shown, the tradeoff be-

tween delays, reliability, and quantization must be considered differently for feedback

control than for time-averaged throughput. Simulations using the JLS framework can

help determine optimal tradeoffs, similar to the quantization vs. packet loss example

given in the end of Chapter 6. Practically, investigation of potential “sweet spots”

within these tradeoff spaces can inform the design of control-specific modems and

protocols to better meet the needs of networked control systems. For example, if

hardware allows, a non-interfering dual-frequency communication system could dra-

matically improve scheduling constraints. An alternate capability is for modems to

include dedicated ACK capability, where very small reliable ACK packets are sent

over an acoustic channel that does not interfere with the larger control and measure-

ment packets. Another example of a new modem capability that helps address the

latency and reliability considerations of closed-loop control is the flexible minipacket

capability of the MicroModem 2.

As mentioned, the modular nature of the JLS framework is intended to allow

improvements and extensions to specific components, many of which we discuss in

Section 5.9. Of these, development of robust MPC techniques may be the most im-

portant. Connecting the uncertainty of the state estimator with robust control tech-

niques could offer large improvements in performance, especially if state constraints

(e.g. islands or proximity to a ship) are considered. Similarly, certain applications

may require more detailed consideration of nonlinear vehicle dynamics and maneu-

vering constraints. Work towards tractable representations and approximations of

such constraints within the MPC framework would improve performance in these

scenarios.

The JLS-PPC controller is built around receding horizon optimization. More

broadly, we expect that convex optimization can provide a unifying framework for
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integrated communication and control design and analysis. The JLS-PPC controller

accepts scheduling and delays as inputs; an “outer” optimization ideally would design

schedules that give best performance given system dynamics and vehicle positions.

Large deployments in terms of both spatial extent as well as vehicle fleet size

will necessitate multihop networking, where routing is an additional aspect to be

considered on top of scheduling. The approach for robust MET given in Chapter

2 is based on convex optimization, and this formulation is just one possible step

towards integrated co-design. Robust MET itself can be extended in a number of

directions, most directly to multi-source solutions via shared broadcast trees [258].

To incorporate mobility, we can re-solve the optimization as vehicles move, and thus

integrate our formulation with motion planning.

The “holy grail” of multi-vehicle networked control is integrated co-design of con-

trol and communications. Related to the co-design problem is the desire for analyt-

ical results for controller performance as a function of communication parameters,

which may help connect the communication design with controller performance met-

rics. Bringing together practical constructive techniques in networked control and

communication design with fundamental bounds on performance such as disturbance

rejection will help provide a theoretical justification for operators to trust networked

vehicle systems in the field.
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