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Abstract 

A number of techniques have been developed in recent years for the analysis and design 
of controllers which are robust with respect to structured complex uncertainty. In particular 
the complex p synthesis procedure has been successfully applied to a number of engineering 
problems. However the presence of real parametric uncertainty in the problem description 
substantially complicates matters, so that standard complex p synthesis techniques are no longer 
adequate. In this paper we develop a procedure to tackle the mixed (real and complex) p 

synthesis problem. This procedure involves a "D,G-I< iteration" between computing the mixed 
p upper bound and solving an 'J-t, optimal control problem, and has guaranteed convergence to 
a local minimum of the (nonconvex) problem. The procedure has been implemented in software, 
and several controller designs are compared with the corresponding complex p synthesis designs. 

1 Introduction 

Many control engineering problems motivate the consideration of robustness problems involving 

both real and complex uncertainties. These mixed uncertainty descriptions offer the control engineer 

the possibility of more accurately modeling given physical systems, and hence using less conservative 

analysis tools, t o  produce control system designs with enhanced performance. The price to be paid 

for this added sophistication to the analysis and design procedure is an increase in the complexity 

of the associated mathematical problems to be solved. A number of practical analysis tools have 

been developed for mixed problems, and computational software is now available for the general 

mixed p analysis problem [YND92, BDG+91]. In this paper we will be concerned with the general 

mixed p synthesis problem. 

The problem of synthesising a controller which is (optimally) robust to  structured mixed un- 

certainty is very difficult, since the associated optimization problem is not convex. Furthermore 

it seems intuitively clear that the synthesis problem is at  least as hard as the analysis problem, 

which is known t o  be NP hard [RP, BYDM]. Some exact solutions have been presented for special 

cases of the synthesis problem (see [RM92] for example, which reduces the rank one p synthesis 

problem to  a convex optimization problem), but these are all cases for which the analysis problem 

also simplifies considerably. As yet there is no globally optimal solution to  the general synthesis 

problem (even in the purely complex case), and no indication that one will be forthcoming in the 

foreseeable future. 

Nevertheless the (complex) p-synthesis procedure first outlined in [Doy85] has been successfully 

applied to  a large number of engineering problems (see [BYD92] for example). This procedure 



involves a ' 9 - l i  iteration" between computing the p upper bound, and solving for an H, (sub) 
optimal controller (both of which are convex problems). This procedure, which was developed 

for p problems involving only complex blocks, does not guarantee to find the globally p-optimal 

controller (since the problem is not jointly convex in D and I i) ,  but has often been found to work 

well in practice. The approach taken here to the mixed p synthesis problem is to  extend the above 

procedure to the mixed case, by exploiting some new analysis tools recently developed for the mixed 

p upper bound. In this way a "D,G-K iteration" procedure is developed, which finds a controller 

that stabilizes the nominal system, and attempts to minimize the peak value (across frequency) of 

mixed p. 

Prior to tackling the mixed p synthesis problem, we need to develop some State Space factor- 

ization machinery, and this is the subject of section 3. A number of factorizations are presented, 

which are required in the mixed p synthesis procedure to essentially produce stable system realiza- 

tions of the scaling matrices. State Space formulae are presented for all the required factorizations. 

This machinery is then used in section 4 to develop the "D,G-Ii iteration" procedure for mixed 

p synthesis. The procedure utilizes a combination of 3-1, optimal control, mixed p upper bound 

computation, and the above factorization machinery to yield an algorithm for mixed p synthesis. 

The algorithm has guaranteed convergence to a kocal minimum of the problem (as in the complex 

case). Full details of the procedure, including appropriate routines for fitting the scaling matrices, 

are given in section 4. This procedure has been implemented in software, and in section 5 the 

procedure is applied to several example problems involving real parametric uncertainty. It is seen 

that the new procedure is able to exploit the phase information in the real uncertainties, to produce 

a controller with a lower value for mixed p (and hence better robust performance) than one could 

obtain with standard complex p synthesis techniques. 

2 Notation and Definitions 

The notation used here is fairly standard, and is taken from [You93]. For any square complex matrix 
M we denote the transpose by MT, and the complex conjugate transpose by M*. The largest 

singular value and the structured singular value are denoted by a ( M )  and pn(M) respectively. 

For a Hermitian matrix M,  then X(M) denotes the largest (real) eigenvalue. We denote the b x b 

identity matrix and zero matrix by and Ok respectively. Occasionally we will drop the subscripts 

from I and 0, whence they denote identity and zero matrices respectively, of the appropriate size. 

We define RM to be the space of real-rational proper transfer matrices. For a transfer matrix 

P E RM, then we denote its State Space representation by 

and we define P" (s) I PT(-s). We define RL, to be the subspace of R M  with elements analytic 

on Re(s) = 0, and R3-1, to be the subspace of RM with elements analytic in Re(s) 2 0. Given a 

transfer matrix P E EX,, then we denote its infinity norm by 

The definition of p is dependent upon the underlying block structure of the uncertainties, which 

is defined as follows. Suppose we have a matrix M E ex" and three non-negative integers m,, m,, 



and mc (with m := m, + m, + mc < n) which specify the number of uncertainty blocks of each 

type. Then the block structure IC(m,, m,, me) is an m-tuple of positive integers 

This m-tuple specifies the dimensions of the perturbation blocks, and we require EKn=, ki = n 

in order that these dimensions are compatible with M. This determines the set of allowable 

perturbations, namely define 

XK = (A = block diag (STIk,, . . . , 6krIkm, 9 61eIkm,+l . . ., 6kcIkmr+mc A:,. . . ,A&) : 

6: E R , ~ F  E c ,AF E ck m,+mc+iXkmv+mc+i  } (4) 

Note that XK C CXn and that this block structure is sufficiently general to allow for (any com- 

bination of) repeated real scalars, repeated complex scalars, and full complex blocks. The purely 

complex case corresponds to m, = 0, and the purely real case to m, = mc = 0. 

Note also that all the results which follow are easily generalized to the case where the full complex 

blocks need not be square, and the blocks may come in any order. We make these restrictions in 

(4) purely for notational convenience. 

Definition 1 ([Doy82]) The structured singular value, pK(lM), of a matrix M E CXn with re- 

spect to a block structure IC(m,, m,, mc) is  defined as 

- 1 

pK(M) = ( min {8(A) : det(I - AM) = 0)) 
AEXK 

with pK(M) = 0 if no A E XK solves det(I - Ahl )  = 0. 

In order to develop the relevant theory we define the following sets of block diagonal scaling matrices 

(which, like p itself, are dependent on the underlying block structure). 

GK = {block diag(G1,. . .,G,r,0km,+17.. . ,Okm) : Gi = G: E CkaX"} (7) 

3 State Space Factorization Theory 

Prior to considering the mixed p synthesis problem we need to develop some State Space factor- 

ization machinery. We will develop State Space formulae for specific coprime, inner-outer, and 

spectral factorizations that will be needed for the mixed p synthesis problem. These factorizations 

are extensions of standard results (see [ZDG] for example), and as such are of some interest in their 

own right. 

3.1 Basic Concepts 

We begin with a brief review of some basic concepts about transfer matrices. For a more detailed 

exposition on this subject see [ZDG, Fra871. 



Definition 2 Suppose we have a transfer matrix D E R M .  Then D is  said to be inner i f  D E 

RE, and D"D = I, and co-inner i f  D E RE, and DD" = I. 

If we are interested in square transfer matrices, then these notions can be simplified somewhat. 

Lemma 1 Suppose we have a square transfer matrix D E RM. Then the following conditions are 

equivalent: 

2. DD" = I. 

3. D is invertible and D-'"D-l = I. 

4. D is  invertible and D-lDW1" = I. 

Proof: Follows from straightforward manipulations. 

Lemma 2 Suppose we have a square transfer matrix D 6 RM, Then D is  inner i f  and only i f  D 

is co-inner. 

Proof: Apply lemma 1 to D E RE,. 

A closely related concept is that of an all pass transfer matrix. 

Definition 3 Given a square transfer matrix D E RM, then D is said to be all pass i f  D E RG, 

and D"D = I. 

Note from lemma 1 that we could equivalently require D E RG, and DD" = I. For square 

matrices then an inner (or co-inner) transfer matrix is exactly a stable all pass transfer matrix. 

Lemma 3 Suppose we have a square transfer matrix D E RM. Then D is all pass i f  and only i f  

D is  invertible and D-l is all pass. 

Proof: (-+) Suppose D is all pass, and hence D E RL,. From lemma 1 we immediately find 

that D is invertible and D-lND-l = I. But now this implies D-l = D", and hence D-l E RL,, 

which together with the earlier result implies D-l is all pass. 

(-) Suppose D is invertible and D-l is all pass. Applying the above proof we obtain D = (D-l)-l 

is all pass. 

The term all pass is motivated by the fact that at any given frequency the gain matrix of an all 

pass transfer matrix is unitary, or, in other words, has unity magnitude gain in all directions. To 

be more explicit, we have the following well known results (stated without proof). 

Lemma 4 Suppose Nl, N2 are all pass transfer matrices, and D E R M .  Then for any w E R we 
have 

T(Nl(j~)D(jw)N2(jw>) = T(D(jw)) 

Lemma 5 Suppose N1, N2 are square inner transfer matrices, and D E RE,. Then we have 

N1DN2 E RE, and 

ll~lDN2lIw = IlDlIm 



Thus the maximum singular value frequency response of a system is invariant to an all pass transfer 

matrix (and hence the 'FI, norm is invariant to a square inner transfer matrix). This invariance 

is the reason we are interested in these concepts. The p upper bound is based on computing the 

maximum singular value of a scaled matrix, and it will be seen later that the synthesis problem can 

be tackled by employing a scaled 'FI, norm optimization procedure, which will rely on the above 

invariance properties. 

The remainder of this paper will make use of the following notions. The term stable refers to 

a system (matrix) with all its poles (eigenvalues) in the open left half-plane, and marginally stable 

refers to a system (matrix) with all its poles (eigenvalues) in the closed left half-plane. The term 

antistable refers to a system (matrix) with all its poles (eigenvalues) in the open right half-plane. 

Additionally we will make use of some fairly standard notation and results regarding the solution 

and properties of Riccati equations. We refer the reader to [DGKF89] for a concise review of this 

area, and [ZDG] for a more detailed exposition. 

3.2 Coprime Factorization 

Now we wish to develop certain transfer matrix factorizations, the first of which is a coprime 

factorization. Essentially this a~nounts to splitting a transfer matrix into stable numerator and 
denominator matrices, without allowing stable common factors between them. We will use this 

concept to factor out the antistable part of the original transfer matrix. 

Definition 4 Suppose we have two transfer matrices N ,  M E RM. Then N, M are said to be 

right coprime (over R'FI,) if N ,  M E R'FI,, they have the same number of columns, and 

left invertible in  R'FI,. 

Given a transfer matrix D E RM, then a right coprime factorization of D (if it exists) consists 

of two right coprime transfer matrices N ,  M such that D = NM-I  (implicitly we have that M is 

square and invertible). The following theorem addresses the existence of such a factorization. 

Theorem 1 Suppose we have a transfer matrix D E RM, and (without loss of generality) that a 

minimal realization for D is given by 

where Al is marginally stable and A2 is antistable. Now defining 

we have that H E dom(Ric),  and so we can define 



Then we have that D = N M - l ,  with N marginally stable, M inner, and (12) a minimal realization 

of M .  Furthermore if D E R L ,  then N E RE,, and N, M are right coprime over R'H,. 

Proof: Note first that H clearly has no imaginary axis eigenvalues since A2 is antistable. Now 

our assumption of a minimal realization for D implies that (A2, B2) is controllable, and hence 

(A2, B2Bif) is controllable. Since B2Bif is positive semidefinite, these facts imply that H E 

dom(Ric), so X = Ric(H) is well defined, and is a real symmetric matrix satisfying the Riccati 

equation 

AifX + XA2 + XB2B:X = 0 (13) 

with A2 + B2B;X stable (see section 7.2 in [Fra87]). Rewriting this we obtain 

This is a Lyapunov equation, and so the fact that A2+B2B$X is stable and we have -XB2B,TX 5 0 
implies that X 5 0. By construction we have that N is marginally stable, and M E R'H, is square 

and invertible. Now we have 

Applying the state transformation 

we obtain 

and hence D = NM-l. Furthermore note that 

(where we made use of the state transformation T = (i  -:) and the Riccati equation (13)) so 

that M is inner. Now we know that (A2, B2) is controllable, A2 is antistable, and A2 + B2B,TX 



is stable. Applying the PBH tests to (12), and using these three facts, it is easy to show that 

(A2 + B2 BTX, B2) is controllable and (BifX, A2 + B2BFX) is observable, so that (12) is a minimal 
realization of M .  Finally we note that if D E RL, then Al is stable and hence N E RH,. The 

fact that N, M are then right coprime over RE, may be verified by choosing L such that A +LC 
is stable (which we can do since (C, A) is observa.ble) and checking that 

is a left inverse of (3. 
This theorem provides us with State Space formulae to construct a particular factorization, namely 

one where the denominator matrix M is inner. When D E RL, this is a right coprime factorization, 

and in fact it is easy to show that such a factorization exists if and only if D E RC,. Note from 

the proof that for D 4 RL, Al has imaginary axis eigenvalues and so N @ RH,. However we still 

have an inner M, and a marginally stable N ,  such that D = NM-l, with P E R'FI, (see (14)) a 

left inverse of (: ). 
The existence of a right coprime factorization for D E RL, is well known. What is new 

here is that the factorization in theorem 1 may be carried out for arbitrary D E RM and, more 

importantly, that we only solve a Riccati equation of the same size as A2, i.e., the number of 

antistable poles in D. Thus we only invert out the antistable part of D and hence obtain a minimal 

realization for M. This offers clear numerical advantages over implementing the standard formulae 

for coprime factorization (see [ZDG] for example), which would require solving a Riccati equation 

of the same dimension as A, and would result in iinobservable modes in the realization for M. The 

numerical advantages of the formulation presented here are particularly important when there is 

pole symmetry about the imaginary axis, which occurs, for example, when D is self-adjoint. In 

that case the Hamiltonian matrix from the standard formulae (see [ZDG, Fra871 for example) 

has every eigenvalue repeated. A standard approach to solving the Riccati equation relies on 

computing the eigenspaces of the Hamiltonian matrix H. It is well known that a non-trivial Jordan 

form can present severe problems for numerical computation of the eigenvalue decomposition, so 

that a straightforward implementation of the standard formulae for coprime factorization could run 

into numerical difficulties on this type of problem. 

The analogous definitions and results for left coprime factorizations follow by duality. 

Definition 5 Suppose we have two transfer matrices N ,  i@ E R M .  Then N, i@ are said to be left 

coprime (over RR,) i f  8, a E RH,, they have the same number of rows, and (a N ) is right 

invertible i n  RR,. 

Given a transfer matrix D E R M ,  then a left coprime factorization of D (if it exists) consists of 

two left coprime transfer matrices N, such that D = a-lfi. 



Theorem 2 Suppose we have a transfer matrix D E R M ,  and (without loss of generality) that a 

minimal realization for D is given by 

where Al is  marginally stable and A2 is antistable. Now defining 

we have that H E dom(Ric) ,  and so we can define 

Then we have that D = M - ~ N ,  with 8 marginally stable, &! inner, and (19) a minimal realization 

of k. Furthermore i f  D E RC, then fi E RE,, and 3, &! are left coprime over RE,. 

Proof: Apply theorem 1 to DT and the results follow. 

3.3 Inner-Outer Factorization 

In this section we will make use of the following notions. The term minimum phase refers to a 

system (matrix) with all its zeros (eigenvalues) in the open left half-plane, and marginally minimum 

phase refers to a system (matrix) with all its zeros (eigenvalues) in the closed left half-plane. The 

term anti minimum phase refers to a system (matrix) with all its zeros (eigenvalues) in the open 

right half-plane. 

We now wish to develop a factorization which will factor out the anti minimum phase part of 

a transfer matrix. It is useful to consider another special type of transfer matrix. 

Definition 6 Suppose we have a transfer matrix D E R M .  Then D is  outer if D E RE, and D 

is right invertible i n  RE,. 

It is easy to show that a square transfer matrix D E R M  is outer if and only if D, D-' E RX,. 

Thus an outer matrix is stable minimum phase, i.e., it has all its poles and zeros in the open 

left half-plane. Note that in an analogous fashion we can define a matrix D E R M  as co-outer if 

D E RX, and D is left invertible in RE,. It is clear that for square transfer matrices D is outer 

if and only if D is co-outer. 

If we can factor a matrix D E RA.1 as D = DiD,, with Di inner, and D? outer, then this 

is referred to as an inner-outer factorization of D. Clearly we must have D E RX, for such a 

factorization to exist, and in fact it can be shown that such a factorization exists for all D E RE, 

(see [ZDG, Fra871). Here we need only concern ourselves with a special case of this factorization, 

namely when D is square and invertible. 



Theorem 3 Suppose D E RM is square, invertible, and marginally stable. Further suppose (with- 

out loss of generality) that we have a minimal realization for D-' 

with Al marginally stable, and A2 anti-stable, so that defining 

we have that 

is a minimal realization for D .  Now defining 

we have that H E dom(Ric), and so we can define 

Then we have that D = DiDo with Di inner, and (25) a minimal realization for Di ,  and Do 

marginally stable, marginally minimum phase. Furthermore if D E R'H, then Do E R'H, and if 

D-l E RL, then Do is (right) invertible in RX,. 

Proof: Apply theorem 1 to factor D-' as D-' -- NM-I with 

where X = Ric (H)  5 0. Note that N is marginally stable, M is inner, and (28) is a minimal 
realization of M .  Note also that N is square and invertible (as is M ) .  Now define Di = A4 and 

Do = N-' ,  and we have 



with Di inner, (25) a minimal realization of Di, and Do marginally minimum phase (since Drl is 

marginally stable). Now by construction we have 

so that Do is marginally stable. Finally note that if D E RX, then A is stable so Do E RX,, and 
if D-l E RL, then N E RX,, so Do is (right) invertible in RX, (with DL' = N ) .  

In the case that D E RX,, D-I E RL, we have that Do is outer and hence this is exactly 

an inner-outer factorization. Note once again that although the inner-outer factorization is well 

known, we are here only solving a Riccati equation of the same dimension as Al ,  i. e., the anti 

minimum phase zeros of D. Thus by only factoring out the anti minimum phase part of D we 

obtain a minimal realization for Di. This offers numerical advantages over the standard approach, 

and similar comments to those made in section 3.2 apply. 

Once again we may define a dual version of this factorization, namely if we can factor a matrix 

D E R M  as D = DcODci, with Dci co-inner, and Dco co-outer, then this is referred to as a co- 

outer-co-inner factorization of D. Again the results follow easily by duality, and we do not include 

them here 

3.4 Combined Factorizations 

The machinery presented in the preceding subsections enables us to carry out a combined factor- 

ization, which splits off the anti-stable poles and anti minimum phase zeros of D using all pass 

functions. 

Theorem 4 Suppose we have a square invertible transfer matrix D E R M .  Then D may be 

factored as 

D = I)apaDapsDsmp (30) 

where Dapa is  anti stable all pass, D,, is stable all pass, and D,,, is marginally stable, marginally 

minimum phase. Furthermore i f  D E RL, then D,,, is stable, and i f  D-l E RL, then D,,, is 

minimum phase. 

Proof: Apply theorem 2 to obtain 
D = xi-lfi 

with 2 inner, and fi marginally stable. Define U,,, = i'6f-I and it is easy to check from (19) that 

i'6f-l is anti-stable. Now apply theorem 3 to obtain 

with D,,, inner and D,,, marginally stable, marginally minimum phase. The results now follow. 

Note that for D, D-l E RC, (which will be the case when this result is employed in the mixed p 

synthesis problem) this allows us to factor D such that 



where Dap = DapaDap8 is an all pass function, and D,,, is stable minimum phase. The State 
Space formulae to  perform this factorization are given in theorems 2 and 3. In order to compute 

this factorization we need to solve two Riccati equations. Note that these two Riccati equations 

have dimension equal to the number of anti-stable poles of D, and the number of anti minimum 

phase zeros of D respectively. 

3.5 Spectral Factorization 

Finally we consider spectral factorization, which is essentially a transfer matrix equivalent of the 

square root. We are concerned with a particular form of spectral factorization, that arises from the 

mixed p upper bound. 

Theorem 5 Suppose we have a square transfer matrix G E RM. Further suppose (without loss of 

generality) that a minimal realization for G is given by 

Now define the symmetric positive definite matrices R and Q as 

and define the Hamiltonian matriz 

Then liT E dom(Ric )  so we may define 

with GGh E RH, given by 

A - B R - l D T C  - B R - I B T X  

Proof: First we make the definitions 

BR-4 
R- 4 

Then we have that Gh E RH, and 

I 



It is easy to  show that (a,  B) is controllable and (e, a) is observable. But now we note that H 
has the form 

and hence we have that H E dom(Ric), so that X = Ric(H)  is well defined and X > 0 (see lemma 

3 in [DGKF89]) satisfies the Riccati equation 

with A - BR-lDTC - B R - l B T X  stable. Thus by construction Gh E R'H,, and Gh is square and 

and we have 

invertible. Now define 

Note we have made use of the Riccati equation (39) and the similarity transformation T = 

( -5 ) . Thus we have 

A 

= G ~ l  = [ R - + ( ~ T ~  + B T X )  

Finally we have that 

B1 1 

(where we have used the similarity transformation T = (i :)) and hence G G ~  E RH,. 



Essentially Gh is a stable realization of (I + G"G)-f. Note that we do not make any restrictions 

on the pole/zero locations of G for the existence of this factorization. In particular G may have 

poles and/or zeros on the imaginary axis, and we still obtain stable realizations for Gh and GGh. 
It will be seen later that this degree of generality is required for the mixed p synthesis problem. 

4 Controller Synthesis 

We now wish to  consider the problem of synthesising a controller to meet a certain robust perfor- 

mance requirement. First we place the problem in a standard framework as shown in figure 1. 

Figure 1: Feedback interconnection for p synthesis 

The transfer matrix P is assumed here to contain all the appropriate weights for the problem, as 

well as the interconnection structure pertaining to  the model of the physical plant. Note that we 

can define the transfer matrix M ( P ,  K),  by absorbing the controller K into P as shown in figure 1, 

and so place the problem in the standard robust performance p analysis framework (see [PD93]). 

We are interested in developing methods to  tackle the general p synthesis problem, namely that 

of finding a controller K achieving 

where Ks denotes all real rational proper controllers that nominally stabilize P (i. e. ,  render 

M ( P , K )  internally stable). The control engineering motivation for this problem is extensive, and 

may be found elsewhere (see [PD93, YND91, You931 and the references therein), together with 

the precise mathematical robustness interpretation of (41). Here we merely note that a solution 

to (41) gives us a controller achieving the best possible robust performance (in an 7-t, norm 

sense) with respect to a certain perturbation class. Note also that here we are explicitly including 

real uncertainties in the block structure, so that this synthesis procedure considers parametric 

uncertainty directly, rather than simply approximating the real uncertainties with complex ones, 

and applying standard complex p synthesis techniques. 



4.1 Complex ,I.L Synthesis and "D-I( Iteration" 

Prior to tackling the mixed p synthesis problem, we first include a very brief review of complex p 

synthesis (where rn, = 0). For a more detailed exposition see [Doy85, SD911. First note that the 

synthesis problem (41) is not tractable, and so we consider the problem given by replacing complex 

p by its upper bound in (41), namely (see [Doy85]) 

inf sup inf 'iir(D(w)M(P, K)(jw)D-'(w)) 
K E G  U € ] W  D(w)EVrc 

Note that if we fix K then the problem of finding D(w) is just the standard complex p upper bound 

problem (across frequency) which is a convex problem and can be efficiently solved. If we choose 

D(w) matrices at a set of frequency points (from the p upper bound) we can fit a real rational, 

stable, minimum-phase transfer matrix to them. If we fix this D transfer matrix then the problem 

of finding K reduces to a standard 3-1, problem, as follows. Consider the feedback interconnection 

Figure 2: Standard framework for a-I, optimal control 

in figure 2. Assume once again that we have collected all the relevant quantities in the nominal 

generalized plant P ,  and denote by T,, the closed loop transfer function from w to z. Then the 

problem of choosing a real rational proper controller K, so as to render this feedback interconnection 

internally stable, and minimize IIT,,II,, is the standard 3-1, optimal control problem. This problem 

is convex and a solution was obtained in [DGKF89], for which commercial software is now available 

[BPDS91]. 

The above approach leads to the following "D-K iteration" scheme, which attempts to find a 

complex p optimal controller (and hence the best achievable robust performance for problems with 

structured complex uncertainty): 

Procedure 1 (D-K I terat ion)  

1. Find an initial estimate of the scaling matrices D(w) pointwise across frequency. One possi- 

bility is to use the identity matrix at each point. 

2. Find a State Space realization, D ,  fitting the pointwise scaling matrices D(w) with a stable 

minimum phase system (so that D and D-l are stable). Augment this with an identity 

matrix of the appropriate size so that D is compatible with P. Construct the State Space 

system PD = DPD-l .  



3. Find the NFI, optimal controller I% minimizing IIM(PD, K)II, over all all stabilizing, proper, 

real rational controllers K .  

4. Find D(W) solving the minimization problem 

inf 5(D(w)M(P, K)(~w)D-'(w)) 
D ( w ) E V r  

pointwise across frequency. 

5. Compare ~ ( w )  with the previous estimate D(w). Stop i f  they are close, else replace D(w) 

with ~ ( w )  and return to step 2. 

This iteration (assuming perfect State Space realizations of D(w)) is monotonically nonincreasing, 

so that we are guaranteed convergence to  a local minimum of the problem. Having converged to 

such a point the controller K from step 3 is the resulting complex p synthesis controller. Note that 

although the individual problems (the p upper bound and 'FI, optimal control) are convex, the 

joint problem ( p  optimal control) is not convex (see [Doy85] for a counterexample to convexity). 

Thus the "D-A' iteration" described above is not guaranteed to  converge to the global optimum of 

the problem. However many designs have been performed using this technique in recent years (see 

[BCD89, BD901 for example), and it has usually been found to work well in practice. There are 

further subtleties to the above procedure, which we will not go into here (see [SD91, BDG+91] for 

more details). 

This "D-17; iteration" scheme is the basis of complex p synthesis controller design. The design 

process consists essentially of the following stages. 

P rocedure  2 (Complex  p Synthesis) 

1. Decide o n  an  appropriate interconnection structure to model the system, including the uncer- 

tainty structure against which robustness is desired. 

2. Choose appropriate weights to  reflect the desired performance specifications, and any infor- 

mation known about the uncertainties. 

3. Implement the above "D-17; iteration". Note that this involves deciding on an appropriate 

frequency range of interest, and selecting the order of the State Space fit in step 2. 

This procedure is by no means mechanical, and a great deal of engineering judgement is still 

required, particularly in steps 1 and 2. Also, as with any control design technique, the full design 

process may well involve an iterative application sf the above process, together with an evaluation 

of each resulting controller. 

4.2 Mixed p Synthesis 

As in the complex case we note that (41) is not tractable, and so we consider the problem given 

by replacing p by its upper bound in (41). Now for any matrix M E P X n  we have that (see 
[FTDSl, You931) 



Note that if we enforce the choice G = 0, then we recover the standard complex p upper bound. 
The additional degrees of freedom we have in choosing the G matrix enable us to  exploit the phase 

information we have about the real uncertainties to get a better bound. Note also that this problem 

may be rearranged into a quasi-convex optimization problem, for which efficient computational 

software exists (we refer the interested reader to [YND92] for details of the practical computation 

of the mixed p upper bound and associated scaling matrices). This leads us to consider the following 

synthesis problem. 

where 

inf inf inf {,O(w) : I' 5 1) 
K E K S  ttg D ( w ) € D r  ,G(w)EGr P(w)ER,P(w)>O 

The basic idea behind our approach to mixed p synthesis is evident from these equations (44,45). 

For fixed K then the problem of finding D(w), G(w),P(w) is just the mixed p upper bound prob- 

lem (across frequency), which is a convex problem and can be efficiently solved. Having chosen 

D(w), G(w), P(w) at a set of frequency points (from the p upper bound), we will fit real rational 

transfer matrices to them, in such a way that the interconnection is stable. For fixed D,  G ,  ,O 
transfer matrices then the problem of finding K will be reduced to a standard X, problem which 

again is convex and can be efficiently solved. This will lead to a "D,G-h' iteration" scheme, for the 

mixed p synthesis problem. 

Of course we will suffer from the same limitations as the "D-K iteration" procedure for complex 

p synthesis, namely that the joint problem of optimizing D , G  and K is not convex. Thus the 

scheme will not guarantee to find the global optimum of the problem, but rather only a local 

minimum. Nevertheless we will obtain a procedure which exploits the phase information in the 

real uncertainties, via the G scaling matrix, and so has the potential of greatly improving on the 

present approach, where one simply covers the real uncertainties with complex ones, and applies 

complex p synthesis. 

4.2.1 "D,G-K Iteration" 

Note that the problem statement in equations (44,45) is not quite in the form of a (scaled) singular 

value minimization, but rather a minimization subject to a (scaled) singular value constraint. In 

order to proceed we need to exploit some properties of the mixed p upper bound. 

Theorem 6 Suppose we have matrices M E ex", D E VK, G E S;c and a real scalar P > 0 such 

that 

Then for any real ,8 > P there exist matrices D E VK and G E Glc such that 



Proof: For convenience define M L DMD- l ,  and we have 

Thus defining D G D ,  G {G we have 

I ' M + j ( B k - M * G )  < I 
P ". 

---+ ( G )  ( j )  < I + G ~  - 3 ( (  - j )  I +  2 )  < 1  

Theorem 7 Suppose we have matrices M E CXn, D  E Dx,G  E G'K and real scalars p > 0 and 

0 < r < 1  such that 

Then there exists b E V K ,  G E GK such that 

D M D - l  and we have Proof: Now define M  7 

so that defining D D ,  G - f we have 

These two theorems tell us something about how the mixed p  upper bound scales. Note that 

both of these results are trivial in the complex case, where G  = 0,. For the mixed case however 

the results are not so obvious, and in particular it is important to note that theorem 7 applies only 

if r < 1. From this theorem we see that whenever we have the appropriate scaling matrices and 

r < 1, then r p  is an upper bound for p K ( M ) .  However when r > 1  we cannot conclude that r p  is an 

upper bound in the mixed case, even though this conclusion is obviously true in the complex case. 

In fact it is easy to construct mixed examples with r > 1 where r p  is strictly less than p K ( M ) .  

We now propose the following "D,G-K iteration" for the mixed p  synthesis problem: 



Procedure  3 (D,G-K Iteration) 

1. Find initial estimates of the scaling matrices D(w), G(w), and the real positive scalar P,. One 

possibility for the scalings D(w) is to  choose them as the identity matrix at each frequency 

point. If G(w) is  chosen to be the zero matrix at each frequency point, then p, is arbitrary 

(so choose say p, = I), otherwise it must satisfy 

for all w, for some stabilizing controller K. 

2. Fit State Space realizations D and G to the pointwise scaling matrices D(w) and jG(w), so 

that D(jw) approximates D(w), and G(jw) approximates jG(w). Now replace D and G with 

appropriate factors so that D, D-l, G h ,  and G G h  are all stable, where G h  is a spectral factor 

satisfying ( I  + GNG)-I = GhG;. Augment D and G h  with identity matrices, and G with 

a zero matrix, of appropriate dimensions so that D, G,  G h  are all compatible with P.  Form 

the State Space system PDG = (DPD-I - P,G)Gh. 

3. Find the 3t, optimal controller K minimizing IIM(PDG, K)II, over all all stabilizing, proper, 

real rational controllers K.  

4. Compute ,B, as 

P+ =I SUP inf inf {P(w) : I' 5 I} 
~ ( W ) E D K , G ( ~ ) E G K  P ( w ) E P , P ( w ) > O  

where 

r=n(( D(W)M(P, K)(~w)D-'(w) 
P ( 4  

5. Find ~ ( w ) ,  ~ ( w )  solving the minimization problem 

inf 
D(W)M(P, K)(jw)B-'(w) - je(w) (I + ~ 2 ( ~ ) ) - 4  

D ( W ) E D K  ,G(W)EPK P:c 

pointwise across frequency. 

6. Compure the new scaling matrices ~ ( w ) ,  ~ ( w )  with the previous estimates D(w), G(w). Stop 

i f  they are close, else replace D(w), G(w) with ~ ( w ) ,  &(w) respectively and return to  step 2. 

We will see that this iteration (assuming perfect State Space realizations of D(w) and G(w)) is 

monotonically nonincreasing, so that we are guaranteed convergence to a local minimum of the 

problem. Having converged to such a point then the controller K from step 3 is the resulting mixed 

p synthesis controller, and it satisfies 

Note that, as in the complex p case, we use the H, optimal control solution to synthesize the 

controller. By construction the scaled system PDG fits into the standard H, optimal control 

framework, as shown in figure 3. 



Figure 3: The "'K" iteration of the "D,G-K iteration" procedure 

The fact that this iteration is monotonically nonincreasing follows from theorems 6 and 7 in 

the following way. Suppose we have run through several cycles of the above procedure, and have 

arrived at step 3, where we wish to design a new controller. Since P, was defined in (the previous) 

step 4 as the maximum across frequency of the upper bound we have that P, 2 P(w) for all w, 

with p, = P(w) only for those frequency points whose upper bound achieves the maximum across 

frequency. Then theorem 6 guarantees us that in (the previous) step 5 we could achieve 

for all frequency points with P, > P(w) and 

for points with p, = P(w). Now our previous controller from step 3, K, stabilized the inter- 

connection M ( P ,  K), and hence, by our choice of factorizations for D and G h ,  & stabilizes 

M(PDG,  k) as well. Note that the above formulae imply that K achieved IIM(PDG, &)lj, = P,, 
so that we are guaranteed the existence of a stabilizing controller achieving at least this level for 

IIM(PDG, &,,,)II,. Thus our new H ,  optimal controller in step 3 will satisfy I/M(PDG, &,,,)ll, = 
rp, with r 5 1. But theorem 7 implies that rp, is now an upper bound for p across frequency, and 

so the new computation of P,,,, in step 4 will yield P,,,, 5 rp, 5 P,. Thus the iteration is mono- 

tonically nonincreasing, and furthermore if the new %,-optimal controller from step 3 achieves 

any improvement over the old one (i. e., r < 1) then the peak value of the p upper bound across 

frequency is strictly decreased. 

Note also that the %, norm of the interconnection M(PDG,&)  (formed by closing the new 

interconnection PDG from step 2 with the previous controller K) is determined by those frequencies 



which have the maximum value for the mixed p upper bound. This places the emphasis for the 

'FI, norm minimization at the frequencies where mixed p is largest (which is just what we want). 

Furthermore the way we have constructed the interconnection PDG guarantees that if the new 

controller k,,, reduces the 'FI, norm of M(PDG,Knew),  then the peak value of the p upper 

bound across frequency is reduced. 

Note that in step 4 we compute scalings ~ ( w ) ,  6(w) which minimize the scalar P(w) at each 

frequency subject to  a (scaled) singular value constraint, and this is exactly the mixed p upper 

bound computation across frequency. A closely related problem is solved in step 5, where we 
compute scalings ~ ( w ) ,  ~ ( w )  to minimize a (scaled) singular value problem with P, fized across 

frequency. If we consider complex problems then the separate computation of B(w), &(w) in step 

4, and then ~ ( w ) ,  ~ ( w )  in step 5 is unnecessary, since it is easy to see that the two sets of optimal 

scalings may be taken to  be the same. For mixed problems however the two sets of scalings in steps 

4 and 5 can be quite different, and it is important to  use the scalings ~ ( w ) ,  ~ ( w )  from step 5 for 

fitting (in step 2). 

4.2.2 Forming The New Interconnection 

In order to  implement the "D,G-K iteration" described in the preceding subsection we need to 

be able to  carry out certain factorizations, required in step 2. These factorizations are used to 

ensure that if K stabilizes M(P,K), then K also stabilizes M((DPD-I - P,G)Gh, K), and vica 

versa (for the converse direction we need a slight technical assumption that we don't get right 

half-plane pole/zero cancellations when forming DPDw1Gh).  The fact that K stabilizes both these 

interconnections was used when showing that the "D,G-K iteration" is monotonically nonincreasing 

(and hence converges). 

The problem of fitting pointwise frequency data D(w),G(w) with State Space realizations D ,  G 

will be considered in the next subsection. For now let us assume that we can obtain such fits. We 

will see in section 4.2.3 that we may assume that D is square and invertible with D ,  D-I E RL, , 
but the only assumption we will make about G is that it is square. 

Given State Space realizations for D and G we want to  factor them as outlined in step 2 of 

the "D,G-K iteration," described in procedure 3, so that for the new D ,  G ,  G h  the interconnection 

M((DPD-I  - /3,G)Gh, fZ) is stable, and we would like to do this without affecting the value of 

for any frequency. This can be accomplished by using the machinery developed in section 3, applied 

to  each block of D and G .  

First of all suppose we have fitted D(w) with a transfer matrix D ,  but have not yet fitted G(w). 

Apply theorem 4 to each block of D to factor out an all pass function so that the resulting block 

of D is stable minimum phase (hence D and D-I are stable). Thus we have a new transfer matrix 

D,,, which is stable minimum phase, and at each frequency point we have 

where U(w) is a unitary block diagonal matrix (with the same block structure as D). Then denote 

D(jw), U(w) and D,,,(jw) by D,, U, and D,, respectively. Finally denote the pointwise frequency 



data G(w) (to be fitted) by G,, and we have the following equivalences: 

where G, = U;G,U,. Note that G, E &, so now choose the transfer matrix G so that G(jw) 

is a fit to j ~ ,  (rather than jG,). We may now apply tlzeorem 5 to each non-zero block of G to 

construct Gh,  with Gh and GGh stable, and Gh having the same block diagonal structure as G. 

Furthermore at each frequency Gh satisfies 

Now for convenience denote D , , M ( P , ~ ) ( ~ w ) D ; ~  by MDw, and Gh(jw) by Gh,. Then note that 

we have 
T~ ( ( M ~ ~  - j p * ~ , )  ( I  + G$)-4)  
- 

= A ( I  + ~ i ) - f  (Msw - P,G*(jw)) (MDw - P,G(jw)) ( I  + ~ i ) - f )  
= - A (MGw - P*G* ( j w ) )  ( M D ~  - P*G(jw)) ( I  + G;)-') - 
= - A ( ( M i w  - P*G*(jw)) (MD, - P*G(jw)) Gh,G;,) 

= A(G;, (Miw - p * G * ( j w ) ) ( M ~ ~  -P*G(jw))Ghw) 
= a2 ((MD, - P* G(jw)) Ghw ) 

so that this factorization does just what we require, and the appropriate State Space formulae for 

D,  Gh and GGh may be obtained by applying the results from section 3 to each block of D and 

G. 

Note that the final step of this process is to augment D and Gh with an identity matrix, and G 

with a zero matrix, of appropriate dimensions so that D,  G ,  Gh are all compatible with P, and then 

form the interconnection PDG = (DPD-I - P* G)Gh. Note that when forming GGh we were able 

to employ state cancellations to obtain a stable realization with the same number of states as Gh. 

It turns out that we may once again exploit the special structure of G and Gh to obtain further 

state cancellations when forming the interconnection PDG. This state reduction comes about by 

cancelling uncontrollable and/or unobservable modes in the interconnection, and is highly desirable 

from a numerical viewpoint since the 'H, optimal controller computed in step 3 of procedure 3 will 

have the same number of states as our realization for PDG. 

Note from theorem 5 that the State Space formulae for the blocks of Gh and GGh share the 

same "A" and "B" matrices. In other words we have realizations for each block of Gh and GGh 

which take the form 

Now that it is easy to show that since each block of Gh and GGh satisfies these relationships, we may 

choose the block diagonal system realizations of Gh and GGh to satisfy them as well. Furthermore 



we may scale GGh by a real scalar (namely - P , )  and still preserve these relationships, since one 

may easily check that for any P E R 

Thus we may choose our realizations for Gh and -P,GGh to be of the form 

Now suppose that our State Space realization for DPD-I is 

Then the interconnection PDG is given by 

where we have made use of the similarity transformation T = . Note that in the final 

formula for PDG we only have the states from DPD-I and Gh appearing once each. 

4.2.3 Fitting D and G 

Finally we consider the problem of fitting State Space system realizations to frequency response 

data. Of course we will not attempt to exactly interpolate the data at each frequency point since 

that would require, in general, too many states. Rather we will attempt to obtain realizations that 

approximate the data over the frequency range of interest. Note that since we are concerned with 

the 3-1, norm of the resulting interconnection, we still require acceptable behavior from the State 

Space fits even outside the frequency range we are especially interested in. In particular we require 

that the fits behave reasonably as the frequency tends to zero or infinity. 



First of all consider the problem of fitting D(w). This problem is encountered when imple- 

menting a "D-K iteration" for complex p synthesis, and hence has already received a good deal 

of attention. Several methods have been developed to tackle this problem, and although there is 

certainly room for improvement, they often work quite well. 

In particular the p-Tools toolbox [BDGS91] contains two algorithms for fitting scalar magnitude 

data with a SISO system. One algorithm, fitmag, uses the complex-cepstrum (see [OS75]) to 

generate an appropriate phase, and then uses the algorithm invfreqs from the signal processing 

toolbox [LS88], which uses an equation error method to identify a system model from the frequency 

response data. Another p-Tools algorithm, fitmaglp, uses a linear programming technique to find 

a SISO system, which attempts to fit the magnitude data. In addition to these two algorithms for 

fitting magnitude data, there is the algorithm fitsys, which attempts to fit given scalar frequency 

response data in both magnitude and phase (with a SISO system). This algorithm is based heavily 

on the algorithm invfreqs (see [LS88] for more details). 

Now one may easily build a routine to fit D(w) by using the above algorithms to fit the (scalar) 

elements of D(w) with SISO systems. The diagonal elements can be fitted (in magnitude only) 

with fitmag or fitmaglp, and the non-zero off diagonal elements can be fitted with fitsys. Putting 

these systems together appropriately we can form D E RM fitting D(w). This is the procedure 

we will use here, and we will not go into any further details, since it is the same procedure one 

typically uses in the complex p synthesis case. Mote that since D is a State Space system, D(jw) 

tends to a real matrix as w goes to zero or infinity, and of course we have that M(P ,  k)(jw) also 

tends to a real matrix (for the same reason). The following theorem is easily shown from results in 

[You93]. 

Theorem 8 Given a matrix M E RnXn and a compatible block structure K then we have that 

inf inf {P :T (( DMD-I 

D € Z ) K , G € Q K  PEIW,P>O 6' - j ~ )  (I + G2)-* > 4 
- - inf inf {p : a ( (  DMD-I 

P 
- j ~ )  (I + G2)-* 

D € Z ) E , G € Q E  P€IW,P>O > .I} 

where Dz ,6: are defined as 

Proof: Follows immediately from the machinery of theorems 5.11 and 6.1 of [You93]. 

It follows from this result that the optimal scaling D(w), at zero or infinite frequency, may be taken 

to be real as well. Thus the lowlhigh frequency limits of D(w) are amenable to fitting with a State 

Space system D(jw). Note also that all blocks of D are square, and furthermore each block of 

D(jw) may be taken to be Hermitian positive definite. Thus we do not need to allow sign changes 

in the (eigenvalues of the) blocks of D(jw) and hence we do not need poles or zeros on the imaginary 

axis. Thus we may restrict our fitting routines to return ID E RM invertible, with D ,  D-I E RL, 
(which is typically done in the complex p synthesis case, for the same reasons) as we required in 

section 4.2.2. 

Now we turn our attention to the problem of fitting jG(w). Once again we will tackle this 
problem by fitting the (scalar) elements of jG(w) with SISO systems, and using these to build 



up G .  For the non-zero off diagonal elements we can once again fit them using fitsys. Note that 

at zero or infinite frequency theorem 8 implies that the optimal G ( w )  may be taken to be pure 

imaginary, so that jG(w) may be taken to be pure real, and hence amenable to fitting with a State 

Space system G ( j w ) .  For the diagonal elements of jG(w) we have additional constraints, which are 

explored in more detail below. 

Note that we need to fit jG(w) in both magnitude and phase. In particular we require that the 

phase of the diagonal elements of G is purely imaginary for all frequency. In order to see what 

constraints this places on G consider first the conditions under which a scalar transfer function 

g ( s )  is purely real for all frequency. 

Lemma 6 Consider a scalar transfer function g E RM. Then the following statements are equiv- 

alent 

1 .  g( jw)  is purely real for all w E R. 

3. g ( s )  has pole and zero symmetry about the imaginary axis, with the total number of poles and 

zeros at the origin being even. 

where z ( s 2 )  and p(s2)  are polynomials i n  s2 .  4. g ( s )  = p ( 8 a )  

Proof: We will prove that 1 - 2 - 3 ---+ 4 - 1. Suppose first g ( j w )  is purely real for all 

w E R. Then 

g( jw)  = g*( jw)  = g(-jw) 

and hence g ( s )  - g ( - s )  is zero for all s = jw. But since ( g ( s )  - g ( - s ) )  E RM i t  has finitely many 

zeros and hence we must have g ( s )  - g ( - s )  = 0, or in other words g N ( s )  g ( - s )  = g ( s ) .  Now 

g ( s )  = g ( - s )  gives that whenever so is a zero (pole) of g ( s ) ,  then -so is a zero (pole) of g ( s ) .  

Together with the fact that for g E RM the poles and zeros come in conjugate symmetric pairs, 

this implies that we have pole and zero symmetry about the imaginary axis. Since this implies that 

all the poles and zeros not at the origin must come in pairs (or fours), it is easy to check that we 

must also have the total number of poles and zeros at the origin being even. By collecting terms 

in pairs it is easy to check that, if we have pole and zero symmetry about the imaginary axis, and 

the total number of poles and zeros at the origin is even, then we may write g ( s )  = 3. Finally 

it is dear that if g ( s )  = $$ then g( jw)  is purely real for all w E R. 

A simple extension of these arguments gives us the conditions under which g ( s )  is purely imaginary 

for all frequency. 

Lemma 7 Consider a scalar transfer function g E RM. Then the following statements are equiv- 

alent 

1 .  g( jw)  is purely imaginary for all w E R. 

3. g ( s )  has pole and zero symmetry about the imaginary axis, with the total number of poles and 

zeros at the origin being odd. 



4. g(s) = s s  where z(s2) and p(s2) a n  polynomials in s2. 

Proof: Again we prove that 1 - 2 - 3 - 4 --+ 1. First suppose that g(jw) is purely 

imaginary for all w E R. Then 

and hence g(s) + g(-s) is zero for all s = jw. But since (g(s) + g(-s)) E RM it has finitely many 

zeros and hence we must have g(s) + g(-s) = 0,  or in other words gN(s) - g(-s) = -g(s). Now 

g(s) = -g(-s) gives that whenever s o  is a zero (pole) of g(s), then -so is a zero (pole) of g(s). 

Together with the fact that for g E E M  the poles and zeros come in conjugate symmetric pairs, 

this implies that we have pole and zero symmetry about the imaginary axis. Since this implies that 

all the poles and zeros not at the origin must come in pairs (or fours), it is easy to check that we 

must also have the total number of poles and zeros at the origin being odd. By collecting terms in 

pairs it is easy to check that, if we have pole and zero symmetry about the imaginary axis, and the 

total number of poles and zeros at the origin is odd, then we may write g(s) = s s .  Finally it is 

clear that if g(s) = s g  then g(jw) is purely imaginary for all w E R. 

Thus we see that a purely imaginary transfer function is obtained by adding a zero at the origin 

to a purely real transfer function. Our algorithm to fit purely imaginary SISO transfer functions, 

fitmagreal, which is used to fit the diagonal elements of jG(w), exploits this fact and is described 

briefly below. 

Suppose that g(w) is a diagonal element of G(w). Then we first fit h(w) + $$ with a purely 

real SISO transfer function, g. In order to do this we parametrize our allowable transfer functions 

for the fit as 

where the degree of p(s2) is chosen by the user, and the degree of z(s2) is chosen so that g(s) is 

strictly proper. Thus we are left with the problem of finding the coefficients of z and p so that 

g(jw) = best approximates h(w). Note that all the quantities concerned in this problem 
are real numbers. We tackle this problem using an algorithm realfit, which is a modification of 

the algorithm fitmaglp, and is based on a linear programming approach. Note that h(w) is not 

constrained in sign, so that we wish to allow sign changes in g(jw). Hence we do not place any 

restrictions on the pole/zero locations of g(s), and in particular it may have poles and/or zeros on 

the imaginary axis. 

Having obtained g(s) as a strictly proper transfer function, say 

then we form g as 

Thus we obtain g as a purely imaginary transfer function, with g(jw) approximating jg(w). Note 

from this construction that the transfer matrix G ,  built from these transfer functions, may contain 

poles and zeros located on the imaginary axis. For this reason the factorization of G used in section 

4.2.2 did not make any assumptions about the pole/zero locations of G.  



Note that lemma 7 implies that any non-zero purely imaginary (proper) transfer function g E 

RM is in fact strictly proper, and indeed our construction for g will yield a strictly proper transfer 

function. Thus g(jw) tends to zero as w tends to infinity. Furthermore, assuming g(s) has no poles 

at the origin, then g(s) has a zero at the origin, so that g(jw) also tends to zero as w tends to zero. 

Now by earlier arguments we know that theorem 8 implies that the optimal G(w) may be taken 

to be purely imaginary at zero or infinite frequency. But G(w) is Hermitian and so the diagonal 

elements are purely real, and hence the diagonal elements of the optimal G(w) may be taken to be 

zero at zero or infinite frequency. Thus the high and low frequency limits of g(jw) are compatible 

with the data it is attempting to fit (i. e., both jg(w) and g(jw) tend to zero at high/low frequency). 

Finally we note that since the routine fitsys can be used to fit a SISO transfer function in both 

magnitude and phase, we could apply this algorithm directly to the problem of fitting the diagonal 

elements of G(w), rather than the approach taken above. Note however that the above approach 

enforces the phase constraints for all frequency, and enforces the correct behavior at the high and 

low frequency limits. We would not obtain these guarantees by using fitsys. Furthermore by simply 

applying fitsys we would not be exploiting all the information that we have about the structure 

of g (as is done above), and in fact we found that the fitsys routine performed poorly for many 

problems when fitmagreal was able to obtain quite good fits. 

4.2.4 Some Practical Considerations 

These procedures have been implemented in software as Matlab functions (m-files) "rmufit" and 

"rmuflp." Together with the mixed p analysis software, "rmu" (see [UND92]), they allow the user 

to implement the "D,G-K iteration" described in the preceding subsections, and hence to design 

mixed p synthesis controllers. 

It should be noted that for complex p problems then the "D,G-K iteration" reduces exactly 

to the familiar "D-K iteration" for complex p synthesis. Thus many of the techniques required 

to obtain a practical design from a complex p synthesis procedure carry over into the mixed case 

as well. There are many issues to be considered, and we will not go into any of the details here, 

except to make the following comments. The procedures developed in this paper did not make any 

restrictions on the block structure, IC, of the uncertainties in the underlying robustness problem. In 

particular repeated scalar blocks (real or complex) were allowed. It should be noted however that 

for real or complex p problems the presence of repeated scalar uncertainty blocks gives rise to full 

blocks in the scaling matrices (D(w), G(w)). Since the present approach fits element by element, 

then this may well require a lot of of states, and this approach may become impractical. 

Fortunately for many problems we do not need repeated scalar uncertainty blocks, and so we 

only need diagonal scaling matrices. In fact the currently available software in the p-Tools toolbox 

(for complex p synthesis) only handles this case. For this reason most of the effort in our approach 

has been to develop a method which will work well for that case (hence the emphasis on developing 

good routines for fitting the diagonal elements of D(w) and jG(w)). A practical solution to the 

more general case is a subject of ongoing research. 

5 Examples and Applications 

Finally we conclude the paper with a look at two simple design problems involving real parametric 

uncertainty. In both cases it will be seen that a simple application of complex p synthesis techniques 



is not adequate, but the new mixed p synthesis procedure performs well. 

Optirnal Gain Margin Problem 

The problem of designing a controller to maximize the gain margin of a SISO plant can be solved 

analytically (see section 11.3 of [DFT92]). This question can (almost) be restated as a special case 

of a mixed p synthesis problem, so that it provides us with a simple benchmark test for the "D,G-K 

iteration" procedure. 

Consider the feedback interconnection in figure 4. The perturbed plant P is given by 

where 6' E R is a real scalar uncertainty. This is a loopshaping set-up, and fits into the standard 

mixed p synthesis framework of figure 1. If we choose the performance weights for sensitivity and 

complementary sensitivity as 

then the performance requirements for this problem are negligible. Thus we find that this robust 

performance problem is effectively a robust stability problem, and is in fact (approximately) the 

optimal gain margin problem. 

Figure 4: Interconnection for mixed p synthesis examples 

Note that the nominal plant is non-minimum phase and unstable. It can be stabilized simply 

with unity negative feedback, and the Nyquist plot is shown in figure 5 (for S' = 0). In addition the 

mixed and complex p plots across frequency for the closed loop system are also shown. Note that 

in this example the mixed p upper and lower bounds were tight, so that only the upper bounds are 

shown. For a plant of the form 
s -o !  

p = -  
1 - as 



with cu > 1, then the optimal gain margin controller is given by [Doy92] 

where ,f3 1 i. The results for the optimal gain margin controller are shown in figure 6, and it can 

be seen that this controller flattens out the Nyquist curve so as to  substantially improve the gain 

margin. As a result the peak value across frequency of mixed p is substantially improved (from 6.0 
to 3.35) ,  at the expense of complex p. 

Figure 5:  Nyquist and p plots for unity (negative) feedback controller (gain margin problem) 

Nyquist Plot Mu Plots For Unity Feedbaflc 

Figure 6: Nyquist and p plots for optimal gain margin controller (gain margin problem) 
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The standard "D-K iteration" procedure for complex p synthesis was applied to  this problem, 

and the results are shown in figure 7 .  Note that this controller gives a slight improvement over 

unity feedback for both mixed and complex p (from 6.0 to 5.57).  However the Nyquist plot is not 

greatly modified (other than the roll off at high frequency), so that the gain margin is not greatly 

improved. Applying the mixed p synthesis procedure to  this problem results in the plots in figure 

8. Note that this controller achieves about the same level for mixed p as the optimal (gain margin) 

controller. Once again this is achieved by flattening out the Nyquist curve so as t o  improve the gain 

margin at the expense of complex p. For this simple example we see that the mixed p synthesis 
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procedure does exactly the required thing, and shapes the frequency response so as to minimize 

the peak value across frequency of mixed p. 

Nyquist Plot 

-1.5 -1 -0.5 0 

Mu Plots Fbr Complex Mu Controller 
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Figure 7: Nyquist and p plots for complex p synthesis controller (gain margin problem) 
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Figure 8: Nyquist and p plots for mixed p synthesis controller (gain margin problem) 

A Modal Example 

The previous example involved only one uncertain real parameter, so that it was possible to exploit 

our knowledge of the problem, and find a good controller design by another method for the purposes 

of comparison. We found that the mixed p synthesis routine was able to find a comparable design. 

Of course the main point in developing the mixed p synthesis machinery was to  have a systematic 

design procedure, capable of dealing with more complicated problems, where alternative approaches 

are no longer available. We conclude the paper with a synthesis example for a problem with two 

uncertain real parameters. 

Consider once again the interconnection in figure 4. As in the gain margin problem we make 

this essentially a robust stability problem by choosing the weights as 



so that the performance requirements are negligible. Now consider an uncertain plant of the form 

where ST, 6,' E R are uncertain real parameters. This is a second-order transfer function intended 

to represent a lightly damped mode in a flexible structure. This can be put in standard p synthesis 

form by rewriting as as in figure 9 where A = diag (GT, 6,') and 

For this example we choose w = 1 and C = 0.2, so that the mode is lightly damped, with a pair of 

Figure 9: Modal example uncertain plant 

complex conjugate poles at  -0.2 f 0.9798j and a pair of complex conjugate zeros at 0.2 f 0.9798j 

(for 6; = 6; = 0). 

Consider for a moment what happens to  these pole/zero locations as we start to  move 61, 6; 

away from zero. If we restrict ST, 6,' E R then we get the motion indicated by the arrows in figure 

10, so that initially the poles stay in the left half-plane and the zeros stay in the right half-plane. 

However if we allow ST, 6; E C then we get motion inside the indicated circles. In this case we find 

that the poles and zeros can cross the imaginary axis for much smaller values of the uncertainty. 

Thus we would expect to see a fairly large gap between mixed and complex p for this type of 

problem. 

A. complex p synthesis controller was designed for this problem and the complex and mixed p 

plots are shown in the right-hand plot of figure 11. Once again only the upper bounds are shown. 

This controller achieves a peak value for complex p of about 2.6, with mixed p being about the 

same. The results for the mixed p synthesis contlroller are shown in the left-hand plot of figure 11. 

This controller does not greatly affect the peak value of complex p, but reduces the peak value of 

mixed p to about 1.1. Thus we do indeed find that there is a large gap between mixed and complex 

p for this problem, and the mixed p synthesis procedure is able to exploit that fact to significantly 

improve on the complex p synthesis controller. 



Figure 10: Pole/zero motion for the modal example 
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Figure 11: Complex and mixed p plots for the modal example 

Of course the two designs presented here are only for simple example problems, where the 

controller is chosen to optimize the robust stability margin with respect to some uncertain real 

parameters. A practical control design for a real problem involves a great many other issues. In 

particular one would need to select weights so as to reflect a more suitable performance criterion, 

rather than merely optimizing the stability margin at  the expense of everything else (see [YW]). 
Nevertheless these examples do illustrate the workings of the new method, and the initial results 

are encouraging. A further example may be found in [YW], where this design technique is compared 

to classical methods for a robust performance problem with real parameter uncertainty. 

6 Conclusion 

The general mixed p synthesis problem has been considered, and a "DD,G-li iteration" procedure 

developed to tackle the problem. This procedure relies heavily on the theoretical properties of 

p and its bounds, and has guaranteed convergence to a local minimum of the problem (which is 

nonconvex). This yields a stabilizing controller which attempts to minimize the peak value across 

frequency of mixed p, and hence provide the best possible robust performance in the face of mixed 



(real and complex) uncertainties. The controller synthesis procedure is applicable to general mixed 

p robust performance problems, although further work is required to  develop a practical solution 

to the repeated parameter case. This procedure has been implemented in software and applied to a 

number of example problems involving real parametric uncertainty, where it was able to synthesize 

a controller yielding a lower value for mixed p (and hence better robust performance) than could 

be obtained with standard complex p synthesis techniques. 
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