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Controller Design with Regional
Pole Constraints

Wassim M. Haddad, Member, IEEE, and Dennis S. Bernstein, Member, IEEE

Abstract—A design procedure is developed that combines
linear-quadratic optimal control with regional pole placement.
Specifically, a static and dynamic output-feedback control prob-
lem is addressed in which the poles of the closed-loop system are
constrained to lie in specified regions of the complex plane.
These regional pole constraints are embedded within the opti-
mization process by replacing the covariance Lyapunov equa-
tion by a modified Lyapunov equation whose solution,
in certain cases, leads to an upper bound on the quadratic cost
functional. The results include necessary and sufficient condi-
tions for characterizing static output-feedback controllers with
bounded performance and regional pole constraints. Sufficient
conditions are also presented for the fixed-order (i.e., full- and
reduced-order) dynamic output-feedback problem with regional
pole constraints. The paper considers circular, elliptical, vertical
strip, parabolic, and sector regions.

1. INTRODUCTION

NE of the fundamental problems in control theory and

practice is the design of feedback laws that place
the closed-loop poles at desired locations. Much of the pole
placement literature focuses on the problem of exact pole
placement in which closed-loop poles are required to lie at
(or arbitrarily close to) prescribed locations. Of course, it is
well known that a feedback controller of a given structure
may offer design flexibility beyond pole placement alone.
Hence the designer may also specify other closed-loop char-
acteristics such as eigenvectors [1]. The present paper, how-
ever, is confined to the pole placement problem.

Several pole placement schemes exploit the properties of
linear-quadratic regulator theory to move poles to desired
locations. For example, by utilizing known relationships
between control weightings and asymptotic pole locations in
the limit of cheap control, it is possible to select control
weightings to achieve certain pole configurations [2]. A
different scheme, developed in [3], [4], uses the structure of
the Hamiltonian matrix to modify the cost weightings to
arbitrarily place the real parts of the closed-loop poles.

It is often the case in practice, however, that exact closed-
loop pole locations are not required. Rather, it may suffice to
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place the closed-loop eigenvalues within a prescribed region
in the left-half plane. Beyond the constraint that the poles lie
within the given region, the remaining design flexibility can
then be used to minimize a performance functional that is
relevant to the steady-state aspect of the design. Perhaps the
simplest illustration of this idea is the shift technique for
achieving a uniform stability margin [5]. By replacing the
open-loop dynamics matrix A by A4 + af, a >0, each
closed-loop pole is guaranteed to have real part less than
—a. The pole-constraint region for this problem is thus
{AeB: Re A< —a}.

More general pole constraint regions can also be consid-
ered. For the purpose of analysis, there is extensive litera-
ture concerning tests for determining root clustering, that is,
whether a given polynomial or matrix has all of its roots or
eigenvalues within a specified region [6]-[11]. For controller
synthesis, the regional pole placement problem thus involves
determining a feedback controller that minimizes a cost func-
tional subject to the requirement that the closed-loop poles lie
within a specified pole constraint region. In recent years this
problem has been considered for a variety of pole constraint
regions, including vertical and horizontal strips, sectors,
circles, and hyperbolas {12]-[22]. For each region the basic
idea involves constructing an analytic map that transforms the
constraint region into the open left-half plane. The structure
of this map, which takes the form of a modified Lyapunov
equation, then leads to algebraic equations for synthesizing
feedback gains for pole placement.

The contribution of the present paper is to extend the
regional pole placement approach of [12]-[22] in several
ways. First, for several different pole constraint regions we
provide an analysis of the modified Lyapunov equation that
characterizes the pole constraint regions. By showing that the
modified Lyapunov equation is both necessary and sufficient
for characterizing the pole constraint region, we provide a
more complete foundation for the regional pole placement
approach.

Next we show that, in certain cases, the modified Lya-
punov equation leads directly to an overbound on the cost
functional. By minimizing this ‘‘auxiliary cost’> we obtain
explicit feedback gain expressions for a controller that places
the closed-loop poles within the specified pole-constraint
region. By minimizing the auxiliary cost, the resulting con-
troller provides a guaranteed upper bound on the original
quadratic cost functional.

Finally, the present paper goes beyond earlier work
[12]-[22] by providing greater realism with respect to the
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availability of plant measurements and the types of con-
trollers that can be designed. Although the literature on exact
pole placement addresses the output feedback problem via
both static and dynamic controllers, the available regional
pole placement results are confined to static full-state feed-
back controllers. We remove this constraint by considering
the design of static output-feedback controllers as well
as both full- and reduced-order dynamic output-feedback
compensators.

To motivate the regional pole placement approach consider
the shifted and “‘clipped’” sector % (u, 8, 8) shown in Fig.
1. If the closed-loop poles are confined to this region, then
the system modes damp asymptotically at desired rates. Un-
fortunately, however, it is difficult to address this region
directly with current techniques. Hence, as in [12]-[22], we
consider a variety of regions that approximate % (u, 3, 8),
namely, circular, elliptic, parabolic, and vertical strip regions
as well as an ‘“‘unclipped’’ sector, that is, Z(m, B, 8) with
8 =0.

In this paper, we first consider the circular pole constraint
region since it is characterized by the simplest modified
Lyapunov equation, it leads to an upper bound for the cost,
and, in the full-order dynamic compensation case, separation
holds. The circular pole constraint region is also easy to treat
numerically since it is possible to exploit connections to
standard discrete-time design. Having established the ap-
proach, we extend the results of the first part of the paper by
substituting alternative regions for the circular region and
carrying through the steps of the development. It should be
noted, however, that the circular pole constraint region has
practical value for a variety of reasons. Besides placing an
upper bound on the damping ratio ¢{, it bounds the natural
frequency w, and damped natural frequency wy. Hence the
circular pole constraint region can be used to enforce a
variety of practical design specifications.

The content and scope of the paper are as follows. In
Section II, we state the static output feedback control prob-
lem with regional pole constraints. In Section 1II, we special-
ize to the circular pole constraint region and relate the
parameters of the circular region to system design parameters
such as damping ratio, natural frequency, and damped natu-
ral frequency. In Section IV, we show that a sufficient
condition involving Kronecker products implies the existence
of a unique nonnegative-definite solution to a modified
Lyapunov equation that guarantees pole placement within a
circular region in the open left-half plane. Section V presents
the first-order necessary conditions (Theorem 5.2) for the
Auxiliary Minimization Problem. These necessary conditions
are in the form of coupled Riccati/Lyapunov equations that
characterize static output-feedback controllers. As a special
case of Theorem 5.2, we show that in the full-state feedback
case our results include those obtained in [16-18]. A partial
converse of the necessary conditions shows that solutions of
these algebraic equations provide, by construction, a solution
to the original modified Lyapunov equation. This result is
combined in Theorem 5.3 with a disturbability assumption to
guarantee that the poles of the closed-loop system lie within a
circular region and that an optimized bound on the closed-loop
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Fig. 1. Sector region .7 (y, 8, 6).

performance is satisfied. Theorem 5.4 gives an existence
result for the Auxiliary Minimization Problem which shows
that our sufficient conditions are also necessary for the static
output-feedback problem with pole constraints. In Sections
VI and VII, we extend the results of the first part of this
paper to fixed-order (i.e., full- and reduced-order) dynamic
compensators with pole constraints. As in LQG theory, the
full-order control problem with pole constraints involves a
system of two separated Riccati equations which shows that
regulator /estimator separation holds. To illustrate the results
we develop a numerical algorithm for the design equations in
Section VIII and apply the algorithm to an illustrative exam-
ple. In Sections IX and X, we apply the results of the first
part of the paper to elliptic. parabolic, and vertical strip
regions via static and full-order dynamic output-feedback
controllers. In Sections XI, we represent an alternative de-
sign approach that captures pole placement within the sector
region .7 (u, B, 8). Finally, in Section XII we numerically
solve the design equations for the sector region and demon-
strate the approach on a lightly damped flexible beam
structure.

NoTATION

R, R7,RT Real numbers, r X s real matrices,
Rrx 1
Complex numbers, r X s complex

matrices, 87"

@’ @I‘XS, Q"

E,tr, 0, Expectation, trace, r X s zero
matrix.

I, () r X r identity, transpose, complex
comjugate transpose.

®, &,U, Kronecker product, Kronecker sum,
n X n permutation matrix.

o(A),d, N Spectrum of A, boundary, complex

conjugate of A€ 8.

Positive integers; n + nJn.<n.
n,m, [, n,, fi-dimensional vectors;
¥ =[xTxI1"

n,m,l,n.d;#
xX,u,y, x., X
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w(*) d-dimensional standard white noise
process.

A,B,C,D,D,,D, nXn,n xm,lxn,nxd,

n X d,l X d matrices.
n.Xn.,n,xIl,mxn,mxl!
matrices; A + BKC.

A, B.C.K; A,

V.V, Vi, Vs DD, D,D}, D, D}, D, DJ;
V,>0.
v, V,- V,Bf - BV} + BJV,B,.
D I’} Dl V] I/I2Bc7
' B.D,|"|BVI B.V,B!
= DD".
R, R, n X n, m X m state and control
weightings; R, = 0, R, > 0.
R,, n X m cross weighting; R, —
R,R;'RT, = 0.
R, R, + R,KC + C'K"RY, +
C'K"R,KC.
R, R, + R,C. + CIRY, + CIR,C,.
o, q,r Nonnegative constant; positive
constants.
Ay Aggr Ae A+al, Ag+al, Ac+a1nv.
A, Ay A, - B.C, A, + BC,.
SO A  BC, i
A, A, R [BCC AC], + alj;
A, BC,
N [B(.C Aw]’
Rl R12Cc
[CZRS CZRZCJ'
II. Static OutpuT FEEDBACK CONTROL WITH POLE
CONSTRAINTS

In this section, we introduce a static output-feedback con-
trol problem in which the poles of the closed-loop system are
constrained to lie in a specified region in the open left-half
plane.

Static Output Feedback Control Problem with Pole
Constraints
For the nth-order system

x(1) = Ax(t) + Bu(t) + Dw(r),  r€l0,»), (2.1)

y(t) = Cx(1) (2.2)
design a static output-feedback control law
u(t) = Ky(1) (23)

that satisfies the following design criteria:

1) the poles of the closed-loop system are constrained to
lie within an open region # contained in the open left-half
plane; and

2) the performance functional

1 e
J(K) 2 lim E; [XT(¢)Ryx(1) + 2x7(£) Rypu(t)
{00 0
+uT () Ryu(r)) dr (2.4)

is minimized.

Note that the closed-loop system (2.1)-(2.3) is given by
x(t) = Agx(t) + Dw(t) (2.5)
where A, = A + BKC, and that (2.4) can be written as
J(K) = tlirgE[xT(t)Rox(t)]. (2.6)

As noted in 1), we focus on open regions # that are
subsets of the open left-half plane. Accordingly, we can
define the open set

¥, {K:0(A,) C Z}

of feedback gains K that place the closed-loop poles in R.
Note that if K€ .¥ ,, then A, is asymptotically stable.

Of course it is possible that for certain problems J'; is
empty, that is, there do not exist feedback gains that are able
to place the closed-loop poles in #. Thus it is desirable to
have necessary and sufficient conditions for determining
whether ¥, is not empty. In the least restrictive case in
which # is the open left-half plane, this is precisely the
output-feedback stabilization problem. Unfortunately, even in
this case a complete solution is not currently available,
although partial results can be found in [23], [24]. For
general regions #, results on exact pole placement can be
used to show that ¥, is not empty. Thus we shall assume
that ¥, is not empty and examine the consequences of
optimality. As will be seen, this approach is effective in
practice since if ¢, is not empty and the optimization
problem has a solution, then optimal feedback gains in A,
can be determined by solving the optimality conditions.

Finally, if .¥, is not empty and K€ ./, then, as noted
above, A, is asymptotically stable. In this case the perfor-
mance (2.4) is given by

J(K) =tr QyR, (2.7)
where the n X n nonnegative-definite steady-state covariance
defined by

Qo = lim E[ x(1) x"(1)]

[

(2.8)

satisfies the algebraic Lyapunov equation

0=A,0,+ QoAb+ V. (2.9)

III. THE CIRCULAR REGION

We now give a concrete form to the region Z. In the first
part of this paper, we consider the circular region %(q, r)
with center at —q and radius r < g (Fig. 2). Some observa-
tions concerning %(gq, r) are worth noting. For simplicity,
in the sector region % (u, 3,0) let u =0 so that o = 8.
Furthermore, let A = — {w, + jw, be a complex pole, where
¢ is the damping ratio, 0 < { < 1, w, = | | is the natural
(undamped) frequency, and w, 2 w,V1-— ¢? is the damped
natural frequency. Then if Ae #(q,r) it follows that {

= \/1—(r/q)z,wdsr,q—rSwnsq+r,andq—
r<f{w,=q+r.
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N Im(x)

Fig. 2. Circular region %(q, r).

In practice, however, design specifications are often given
in terms of ¢ = {,. and {w, = «. Such specifications will
be satisfied by ¢(g,r)if g — r= aand /1 — (r/q)2 >
{min OF, equivalently

rSmin{q—a,q 1-¢2 }

min

(3.1)

Specifications involving ¢ and o are usually expressed
in terms of the sector %(0, 8, 6), where 6 = cos™ ' ({,;,)
(Fig. 1). We note, however, that the disk %(q, r) will be
contained in the sector .¥(0, 3, ) and will be tangent to the

sector boundary at three points if

[

= — 3.2

a 1 —siné ( )
« sin @

r=——. (3.3)
1 —sinf

Hence different values of ¢ and r can be chosen to enforce
different bounds on the damping ratio, natural frequency, and
damped natural frequency of the closed-loop system. It is
also useful to note that the circular region can be obtained by
an affine map of the unit disk centered at the origin, that is, a
matrix A is discrete-time stable if and only if the eigenvalues
of 1/r(A + ql,) lie in %(q, r). Although this transforma-
tion could be utilized as in [16], [22] to obtain some of the
results in subsequent sections, the meaning of results ob-
tained in this manner is obscure because of the discrete-time
origin of the resulting continuous-time controllers.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR POLE
PLACEMENT WITHIN A CIRCULAR REGION

The key step in constraining the closed-loop poles to lie
within the circular region #(q, r) is to replace the Lyapunov
equation (2.9) by a modified Lyapunov equation whose solu-
tion overbounds the closed-loop steady-state covariance. Jus-
tification for this technique is provided by Theorem 4.1 and
Theorem 4.2, the main results of this section. However,
before stating these results, it is necessary to introduce the
following series of preliminary results.

Recall from [25] that Aea(A) is a B-controllable
eigenvalue of A if

rank [ 4 — N\, B] = n.

(4.1)

This definition is useful in obtaining an analytical characteri-
zation of stabilizability and controllability in terms of the
individual modes of A. We recall the following results.

Proposition 4.1: The pair (A, B) is stabilizable if and
only if every eigenvalue of A in the closed right-half plane is
B-controllable. Furthermore, the pair (A, B) is controllable
if and only if every eigenvalue of A is B-controllable.

Proof: See [25]. |

The following definition generalizes the notion of stabiliz-
ability to an arbitrary open region in the left-half plane.

Definition 4.1: The pair (A, B) is assignable with re-
spect to the region 7 if every eigenvalue of A that is not
in # is B-controllable.

As noted previously, necessary and sufficient conditions do
not currently exist for determining whether ¥, is nonempty
even if 7 is the entire open left-half plane. However, in the
full-state feedback case the problem is solved completely in
terms of the assignability of (A, B).

Proposition 4.2: Suppose C =1,. Then (A, B) is
assignable with respect to # if and only if ., is not
empty.

Proof: (A, B) is assignable with respect to # if
and only if each eigenvalue of A that is not in # is
B-controllable. It follows from standard results that an eigen-
value of A is B-controllable if and only if it can be placed
arbitrarily, in which case there exists K such that o(A +
BK)YC 7. O

It is useful to provide the following alternative characteri-
zations of the circular region %(q, r).

Proposition 4.3: Let g = r > 0, define o £ q — r, and
let Ae 8. Then the following are equivalent:

Ne €(q,r), (4.2)

[N+ g <r, (4.3)
1

2Re(A+a) + — | A+ a2 <0, (4.4)
r

- 1, -
AN+ N+20+ =[N+ (A+Na+a®] <0, (4.5)
r

Remark 4.1: Note that if 0(A,) C #(q, r), then both
Ay and Ay, £ A + al, are asymptotically stable.

Next, we characterize matrices whose eigenvalues lie in
%(q, r) in terms of a modified Lyapunov equation. To do
this we first introduce the n? X n? matrix

A 1
A Ay, B Ao+~ Ay, ® 4, (4.6)

where o £ q — r, ® denotes Kronecker product [26], and
Agy ® Ay, 2 A, ®1,+1,®A,, is the Kronecker
sum. The following result relates the spectrum of A, to the
spectrum of /.
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Proposition 4.4: Let ¢ = r > 0 and define « =qg-r.
If .-, A, are the eigenvalues of A,, then the n’

eigenvalues of «/ are given by
N+ AN+ 2a

(4.7)

Proof: The result can be seen by transforming A4, into
its Jordan form. Alternatively, the result follows from a more
general result of Stephanos quoted in [9]. O

The following result shows that the stability of ./ is both
necessary and sufficient for determining whether the eigen-
values of A, lie in %(q,r). Recall that the condition
Ke X, , isequivalentto o(A,) C %(q,r).

Proposition 4.5: Let Ke ™', let g = r >0, and de-
fine & £ g — r. Then &/ is asymptotically stable if and only
if 0(Ay) C (g, 7).

Proof: Suppose ./ is asymptotically stable and let
Ned(Ap). Then, with N, = X and A; = X, it follows from
Proposition 4.4 that u = )\ + A+ 20 + 1/r(x + o)X + @)
is an eigenvalue of .«/. Since ./ is asymptotically stable, it
follows that p (which is real) is negative. Noting (4.5), it
follows from Proposition 4.3 that A€ % (q, r), as required.
Conversely, suppose each eigenvalue A,,---, N, of A, is
contained in %(q, r). Then by (4.3) of Proposition 4.3,
|\ +q| <r,i=1,"--, n Hence, with 6; = arg[(\ +
Q)(\; + @), it follows that

1
+;(>\,.+a)()\j+a), i,j=1,",n.

1
e NN+ 2a+ —=(N+a)(N +a)
r

=Re[(N+ )N +49)] -

IN+gl [N+ qlcost,;; —

.,

IA

IN+q||IN+q] |cost;| -

<r’fcosf,;| —r’=0

which shows that .=/ is asymptotically stable. (]

We now use &/ to construct a modified Lyapunov equation
for characterizing %(q, r). First, we consider existence,
uniqueness, and definiteness of its solution when .~/ is
asymptotically stable.

Theorem 4.1: Let Ke 8™/ let g = r > 0, and define
alg—r If o is asymptotically stable (or, equivalently,
(A, C %(q, r)), then there exists a unique n X n matrix
Q satisfying

0=A,,0+ QA + ;AONQAEQ +V (4.8)
and, furthermore, Q is nonnegative definite. If, in addition,
(Ay,, D) is controllable, then Q is positive definite.

Proof: Note that (4.8) is equivalent to

0=o vec Q + vecV (4.9)

where *‘vec’’ is the column-stacking operator [26]. Since ./
is invertible, (4.9) implies

Q= —-vec [+ vec V] (4.10)

so that existence and uniqueness hold. To show that Q is
nonnegative definite, note that (4.10) can be written as [26]

Q:/ vec ' [e " vec V] dt

— / -1 [e Age® Ag )t el F(AGRAp )t vec V] de
0

= /°° [e(AO(XQAO(x)I vec
0
S e asvasiion o

=0

= / e [Z k') Ak VARI(t/r) }e’q%’d[
0 k=0

= 0.

If (A,,,. D) is controllable, then (A, [(1/r) Ay, QAg, +
V'}'/?) is also controllable. Hence, it follows from Lemma
12.2 of [27] that Q is positive definite. O

Next, we state the converse of Theorem 4.1 which guaran-
tees that if (4.8) has a solution then the closed-loop poles lie
in #(q, r) along with a bound on the performance criterion.

Theorem 4.2: Let Ke ™' and suppose there exists
nonnegative-definite Q€ 8"*”" satisfying (4.8). Then the
following conditions are equivalent:

( Ay, D) is assignable with respect to #(q,r), (4.11)
o(Ay)C ¢(q.,r), (4.12)
./ is asymptotically stable. (4.13)

Furthermore, if (4.11)-(4.13) are satisfied, then the steady-
state covariance Q, given by (2.9) exists and satisfies

0 =0 (4.14)
and, consequently

J(K) = #(K) (4.15)
where

J(K) = tr OR,. (4.16)

Proof: First, we show that (4.11) implies (4.12). Sup-
pose (4.12) is false, that is, suppose there exists A€ a( Ay
such that \ ¢ %(q, r). Since Nea(AY), let ne8”, 7 £ 0,
be an eigenvector of AJ associated with X, that is, Ay =
M. Computing n*(4.8)77 yields

0= pr*Qn + n*Vn

where u = )\+)\+2a+1/r)\)\+()\+)\)a+a]
Since A¢ 7(q,r) it follows from Proposition 4.3 that
u = 0. Since, furthermore, 7*Qn =0 and #*Vn = 0, it

(4.17)

follows from (4.17) that #*V7y = 0 or, equivalently, 7*D =
0. Combining this fact with ATy = My yields
[ Ao — N,,D] =0 (4.18)
which implies
rank [ Ag — N, D] <n (4.19)
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Thus, A is not D-controllable. Since N ¢ (g, r), it follows
that (A,, D) is not assignable with respect to ¥¢(q,r),
which contradicts (4.11).

Conversely, if (4.12) is satisfied, then there are no eigen-
values of A, that are not in %(q, r). Hence 4.11) is
trivially satisfied. Finally, the equivalence of (4.12) and
(4.13) is a restatement of Proposition 4.5.

Next, to prove (4.14) subtract (2.9) from (4.8) to obtain

0 :AO(Q - Qo) + (Q - QO)AE +2aQ

1
+ —AO(XQAEC( (4'20)
r

which, since A, is asymptotically stable, is equivalent to
0-Q

8 1
= [ e"|20Q + —A, 04T |edr=0. (4.21
r Oa Oa
0

Finally, (4.15) follows immediately from (4.14). O

Remark 4.2: Note that (4.11) is a closed-loop disturbabil-
ity condition which guarantees that the system does not
possess any hidden undisturbed poles outside of %(g, r). Of
course, if V' is positive definite or (A4, D) is controllable,
then (4.11) and thus (4.12) and (4.13) are automatically
satisfied. If pole placement is of primary interest rather than
the performance bound (4.15), then one can set V = I, so
that (4.11) is satisfied.

V. THE AUXILIARY MINIMIZATION PROBLEM AND
NECESSARY AND SUFFICIENT CONDITIONS FOR
OPTIMALITY

As discussed in the previous section, replacing (2.9) by
(4.8) effectively constrains the closed-loop poles to lie within
#(q, r) while yielding an upper bound for the performance
criterion. That is, given a controller K for which there exists
a nonnegative-definite solution (4.8), the actual performance
J(K) is guaranteed to be no worse than the bound J(K).

Hence, #(K) can be viewed as an auxiliary cost which.

leads to the following optimization problem.

Auxiliary Minimization Problem

Determine KeJi’,/(q_,) that minimizes J(K) where Q
= 0 is given by (4.8).

A question that arises immediately is whether or not the
Auxiliary Minimization Problem possesses a solution. Note
that this question is nontrivial since .# /(q.r) 1S an open set.
To this end we impose slightly stronger hypotheses to obtain
the following existence result.

Theorem 5.1: Assume R, >0, V>0 and suppose
H4(q.r 1 not empty. Then there exists a solution to the
Auxiliary Minimization Problem.

Proof: Let {K}72| be a sequence of gains with K;e
Hyq.r» and define A, £ A4 + BK,C. Furthermore, as-
sume that X, - 8.4, 4 - Hence, for each i there exists an
eigenvalue A€ o(Ay,) such that the sequence A, A,.- -,
approaches the boundary of %(gq, r).

Now define «/, 2 4,,, @ Agio + 1/144;, ® Ay,
where A, £ Ag; + al,, and let p;e0(/,) be the real,
negative eigenvalue given by u; = N\, + N, + 2 + 1/r(\
+ a)(\; + «). Clearly, p; — 0 since N, > 3%(q,r). Now,
repeating the development in the proof of Theorem 4.2, we
obtain, in analogy to (4.17)

0= pn Qm; + 7' Vo,
where 7; is a unit norm eigenvector of Aj; corresponding to
Ai» and Q; is the solution to (4.8) with X replaced by K.
Hence

1
QM= ——nVnp >  asioowm

since V' > 0 and x, — 0. Since R, > 0, we have thus shown
that #(K)— o as K approaches the boundary of Hfiam:
Now let >0 be sufficiently large that the closed set
Kg £ {Ke%,/(q_,): J(K) = B} is not empty. Since J(K)
= O(| K ||%), it follows that K 5 is bounded and hence com-
pact. Hence ¢ has a global minimum of kg and hence on
'X/’/r(q. e 0

The following result presents the necessary conditions for
optimality in the Auxiliary Minimization Problem. For con-
venience in stating this result define the notation

X 1 1
Ry, =R,+ —B'™PB, P,2B"P+ —B"PA_+ R,
r r

for arbitrary Pe R"*".

Theorem 5.2: Suppose K e ¥ #q.r Solves the Auxiliary
Minimization Problem and assume that CQC” > 0, where Q
satisfies (4.8). Then K is given by
1

K= -R,/P,0CT(CQCT)" (5.1

where the n X n nonnegative-definite matrices Q, P satisfy

0=(A4,-BR,'Py)Q + Q(A, - BR;}Py)"
1

+~(A, ~ BR;/Pp)O(A, - BR3Pp)' + V. (5.2)
0=A'P+PA_+R, + éAﬁPAa
— PR3P, + v PIR;\Py , (5.3)
v2OCT(CQCT) ', v B0 - (5.4)
Furthermore, the auxiliary cost is given by
J(K)=t[Q(R, - 2R ,R; Py
+v PIRIR,R:PY)]. (5.5)

Conversely, if there exist # X # nonnegative-definite matri-
ces Q, P satisfying (5.2) and (5.3), then Q satisfies (4.8)
with K given by (5.11), and, furthermore, F(K) is given
by (5.5).
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Proof: To optimize (4.16) over the open set X, ,,
subject to the constraint (4.8), form the Lagrangian

Y(K,Q) = tr[xQRo + (AOQQ+ QAL

1 .
+—A,,0A47, + V) P]
r

where the Lagrange multipliers A = 0 and P e R"™" are not
both zero. Setting d.¥ /3Q = 0, A = 0 implies P = 0 since
&/ is asymptotically stable. Hence, without loss of generality
set A = 1. Thus the stationarity conditions are given by

¥

1
50 = AP ¥ PAas t S AL PA + Ry = 0. (5.6)

07
- T T _
3K R, ,KCQC" + P,QC 0.
Since by assumption CQCT is invertible, (5.7) implies (5.1).
Finally, (5.2) and (5.3) are equivalent to (4.8) and (5.6) with
K given by (5.1). ]
Remark 5.1: The definiteness condition CQC™ > 0 holds
if C has full-row rank and Q is positive definite. Con-
versely, note that if CQCT > 0 then C must have full-row
rank but Q need not be positive definite. A sufficient condi-
tion for CQCT > 0 that is weaker than Q > 0is CVC™ > 0.
This can easily be seen by rewriting (2.9) as

(5.7)

(=]
Q = / e”o! Vit gt
<0

and expanding the exponentials. The first term of the series
expansion shows that CVCT > 0 implies CQ,C" > 0. Fi-
nally, since Q = Q,, it follows that CQCT = CQ,CT > 0.

Remark 5.2: The matrix v defined by (5.4) is idempotent
since »* = ». Note that » is an oblique projection since it is
not necessarily symmetric.

Remark 5.3: Theorem 5.2 is a direct generalization of
optimal static output feedback theory originally developed in
[28]. To recover the result of [28] let r = o and « — 0 so
that 4, — A and all terms premultiplied by 1/r disappear.

Remark 5.4 Several special cases can be recovered from
Theorem 5.2. For example, when the full state is available,
that is, C = I,, the projection » = I, so that » | = 0. In this
case (5.1) becomes

K= -R3P, (5.8)

and (5.2) and (5.3) specialize to
1
0=ATP+ PA_+ —ATPA_,+ R, - PJR;/P,. (5.9)
r

This corresponds to results obtained in [16]-{18]. Finally, to
recover the standard LQR result let r = o and « — 0 so that
(5.9) corresponds to the standard regulator Riccati equation.

We now combine Theorem 4.2 with the converse of
Theorem 5.1 to obtain our main result guaranteeing that the
closed-loop poles lie in #(q, r) along with an optimized
performance bound.

Theorem 5.3: Suppose there exist n X n nonnegative-
definite Q, P satisfying (5.2) and (5.3) and let K be given
by (5.1). Then ( A, D) is assignable with respect to %'(q, r)
if and only if the closed-loop poles lie in %(g, r). In this
case the performance criterion (2.4) satisfies the bound

J(K) < tr[Q(R| - 2R12R;alpa”
+v"PIR;/R,R3\Pp)]. (5.10)

Proof: The converse portion of Theorem 5.2 implies
that Q satisfies (4.8) with K given by (5.1) and the auxiliary
cost given by (5.5). It now follows from Theorem 4.2
that the assignability condition (4.11) is equivalent to the
pole constraint (4.12). Furthermore, the performance bound
(4.15), which is equivalent to (5.10), holds. O

In applying Theorem 5.3 the principal issue concerns
conditions on the problem data under which the coupled
Riccati /Lyapunov equations (5.2) and (5.3) possess nonnega-
tive-definite solutions. Next, we show that our sufficient
conditions are also necessary in the sense that if %, ,, is
not empty then (5.2) and (5.3) must have a solution.

Theorem 5.4: Assume R, >0, V' >0 and CVC™ > 0,
and suppose ¥, ,, is not empty. Then there exist nonneg-
ative-definite matrices Q, P satisfying (5.2) and (5.3).

Proof: The result is a direct consequence of Theorem
5.1 and Theorem 5.2. 0

VI. DynaMmic Output FEEDBACK CONTROL WITH POLE
CONSTRAINTS

In this section, we introduce the dynamic output-feedback
control problem with regional pole constraints. For simplicity
in this section we restrict our attention to controllers of order
n. = n, that is, controllers whose order is equal to the
dimension of the plant. This constraint is removed in Section
VII where controllers of reduced order are considered.

Dynamic Output Feedback Control with Pole Constraints
Given the nth-order stabilizable and detectable plant
x(t) = Ax(t) + Bu(t) + D,w(t),
y(1) = Cx(t) + Dyw(1)

(6.1)

(6.2)
determine an nth-order dynamic compensator

x (1) = A.x (1) + By(1), (6.3)

u(t) = C.x.(1) (6.4)

that satisfies design criteria 1) and 2), with J(K) denoted by

J(A,, B, C,).
As in Section II we define the open set

7,2 {(A. B, C): o(A) C 7}

of dynamic compensators that place the closed-loop poles in
4. Again, we focus on the circular region %(q, r) with
center —q and radius r. If ¥, ., is not empty and
(A, B.,C)e Xy, , then A is asymptotically stable. In
this case the performance is given by

j(AC’Bz'!Cr) ZU.QMOI‘é (65)
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where the 7i X 7 nonnegative-definite steady-state covariance
defined by

0, £ lim g[ 1) xT(1)] (6.6)
satisfies the algebraic Lyapunov equation
0=A0,+ Q, A" + V. (6.7)

Next, we proceed as in Section IV where we replace the
Lyapunov equation (6.7) for the dynamic problem with a
modified Lyapunov equation that guarantees that the closed-
loop poles lie within the circular region %(q, r) with an
optimized performance bound. Thus, for the dynamic output
feedback problem, Propositions 4.4 and 4.5 and Theorem 4.1
and 4.2 follow with A,, Ay, Ry, V replaced by A, A_,
R, V. For clarity we state the Auxiliary Mmlmlzation
Problem for the dynamic problem.

Dynamic Auxiliary Minimization Problem

Determine (A4, B,, C,) ele,(q.,) that minimizes

F(A,,B..C) 2R (6.8)
where Q = 0 satisfies
.~ A 1. . N
0=A, 0+ QA"+ —A QA" + V (6.9)
r

and such that (A, B,, C,) is controllable and observable.

By deriving necessary conditions for the Auxiliary Mini-
mization Problem as in Section V we can obtain sufficient
conditions for characterizing full-order dynamic output feed-
back controllers guaranteeing pole placement in %(q, r)
with an optimized performance bound. For convenience in
stating this result recall the definitions of R,, and P, and
define the additional notation

1

Vae 2V, + —CoC".  Q,20CT + %AQQCT + V)
for arbitrary Qe R"*".

Theorem 6.1: Suppose there exist n X n nonnegative-
definite matrices Q, P satisfying

1
0=A4,0+04T + Vv, + A 047 — o V5 'oT
(6.10)
1
0=ALP+PA,+ R + —A"PA, - PIR;}P, (6.11)
r

and let A, B, C. be given by

A.=A - BR3P, - QV;]C (6.12)
B = Qa 2a’ (613)
C.= -R;,P,. (6.14)

Then (A, ﬁ) is assignable with respect to #(q, r) if and
only if the closed-loop poles liec in #(q, r). In this case the
performance criterion (2.4) satisfies the bound

J(Ac B, C) = [QR, + PQV;,Q!]. (6.15)

Proof: The proof of this result follows as a special case
of the corresponding result for reduced-order dynamic com-
pensation given in Section VII. 0

Theorem 6.1 presents sufficient conditions for the LQG
control problem with the closed-loop poles constrained to lie
in €(q, r). These sufficient conditions comprise a system of
two decoupled modified Riccati equations similar to the
estimator and regulator Riccati equations of LQG theory with
additional terms arising due to the enforcement of pole
placement in the circular region. Note that since the Q and P
equations are decoupled they can be solved independently of
each other. Since regulator/estimator separation holds, the
certainty equivalence principle is valid for the LQG problem
with pole constraints in %(g, r). Finally, note that if we
sufficiently relax the pole constraint requirement, that is,
r— o and « — 0, then the standard LQG result is recov-
ered.

VII. REDUCED-ORDER DYNaMIc OuTPUT FEEDBACK
CoNTROL WITH POLE CONSTRAINTS

In this section, we extend Theorem 6.1 by expanding the
formulation of Section VI to allow the compensator to be of
fixed dimension 7, that may be less than the plant order n.
Hence, in this section define 7 = n + n,, where n_ < n. As
in [29] this constraint leads to an oblique projection that
introduces additional coupling in the design equations along
with an additional pair of design equations. This coupling
shows that regulator /estimator separation breaks down in the
reduced-order controller case. The following lemma is re-
quired for the statement of the main theorem.

Lemma 7.1: Let O, P be n X n nonnegative-definite
matrices and suppose that rank QP = n.. Then there exist
n.xnG,T,and n. X n_invertible M, unique except for a
change of basis in G’i&"‘, such that

OP = G™MT, (7.1)
rG"=1,. (7.2)

Furthermore, the n X n matrices

[[>3

7= G'T,

(7.3)

A (7.4)
are idempotent and have rank 7, and n — n_, respectively.
Proof: The result is a direct consequence of [30,
Theorem 6.2.5]. O
We now state the main result of this section concerning
reduced-order controllers.
Theorem 7.1: Let n.< n, suppose there exist n X n

nonnegative-definite matrices Q, P, Q, P satisfying

1
0=A,0+04,+V, + ~A.04, - Q.V3,/Q;

+o,v5) :]ﬂ , (1.5)
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1
0=ATP+PA,+ R, + ~ALPA, - PIR; P,
r
1 ~
+ 77 [_(Aa - QVilC) P(A, — QV2/C)
r

(7.6)

2a‘ a

+P,,TR-‘P]M,
0= (A, - BR;)P)0 + O(A, - BR;P,)

2a” a

i R
+ 7(,4& — BR;)P)O(A, - BR;'P,)’

1 “
+ QaVZ-alQ: Ty [7(’4& - BR;aIPa)Q(Aa
_ T _
- BR3P,) +QJQ;Qﬂrz,

0= (A, - QV;,C)'P+P(A,- Q,V:)C)

(1.7)

1 )
+ ;(Aa - QﬂVz—a]C)TP(Aﬂ - Q‘IV{(I]C)

o

1 .
+ PTR; P, - 1T [7(/1& - Q. V5lC) P(A

-Q. V5 C) + P}R;;Pa]n , (7.8)
rank Q = rank P = rank QP = n, (7.9)

and let A., B., C_ be given by
A,=T(A - BR3P, - Q,V;/C)G", (7.10)
B.=TQV:,, (7.11)
C.= —-R;/PG". (7.12)

Then (A~, 5) is assignable with respect to ¥(q, r) if and
only if the closed-loop poles lie in €(g, r). In this case the
performance criterion (2.4) satisfies the bound

J(A,, B, C)=<tu[QR, +P(Q,V;/0;
-7, QaVz_al ETE)] .

Proof: The proof follows as in the proof of Theorem
5.2 with additional terms arising due to the reduced-order
dynamic compensation structure. For details of a similar
proof see [29]. [
Remark 7.1: Tt is easy to see that Theorem 7.1 is a direct
generalization of Theorem 6.1. To recover Theorem 6.1, set
n.=nsothat r=G =T = [, and 7, = 0. In this case the
last term in each of (7.5)-(7.8) is zero and (7.7) and (7.8)
become superfluous. Furthermore,(7.5) and (7.6) now reduce
to (6.10) and (6.11) as expected. Alternatively, letting r — oo,
o = 0, and retaining the reduced-order constraint n.<n
yields the result of [29].

(7.13)

VIII. NuMeRricAL ResuLTs For THE CIRCULAR REGION

As noted in Section III, the circular region can be obtained
by means of a simple transformation of the unit disk. Hence,
by employing appropriate substitutions it is possible to recast
the continuous-time pole constraint design equations as dis-
crete-time design equations. To see this we note that the
full-order dynamic compensation design equations (6.10) and

(6.11) can be rewritten as (assuming ¥, = 0 and R, =0
for convenience)

Q= Aq,l‘QATq,I
-1
- A, ,0CN(V,+ C,QCT) 'c,04%, .+ V,,, (8.1)
P=AT PA,,

- AT PB(R,+ B'PB,) 'BIPA, ,+R, (82)

where
Aél(A+1) BL—p clt——c
ar=7 al,), v =76
(8.3)
AI Al
R\, = =Ry, Vi, ==V, (8~4)
r r

Hence, by employing (8.3) and (8.4), it is possible to solve
(6.10) and (6.11) by means of a standard discrete-time
Riccati solver. Similar transformations can be utilized for
static output feedback and reduced-order dynamic compensa-
tion. Since software for standard discrete-time Riccati equa-
tions is readily available, we shall focus on the full-order
dynamic compensation problem.

We consider the coupled disk problem originating in [31].
The problem data are as follows:

n=n,=38, m=Il=d=1,
[ —0.161 ] K W
-6.004 0
-0.5822 0.0064
-9.9835 I, 0.00235
A= ., B= ,
—0.4073 0.00713
—3.982 1.0002
0 0.1045
0 047 | [ 0.9955 |
C=[! 0,4}, V¥, =BB", V, =0, V,=1,
E, =107°[0,,, 055 11 1.32 18],
R,=EJE,, R,=0, R,=1.

Fig. 3 shows the closed-loop pole locations for LQG and the
case ¢ = 12, r = 11.98. Finally, Fig. 4 shows the impulse
response of the performance variable z = E, x for LQG and
the case ¢ = 12, r = 11.98.

IX. StaTic CONTROLLER SYNTHESIS FOR ELLIPTICAL,
VERTICAL STRIP, AND PARABOLIC REGIONS

In this section, the results of the first part of the paper are
rederived for alternative pole placement regions. Specifically,
we characterize static output feedback controllers that guaran-
tee closed-loop pole placement within elliptical, vertical strip,
and parabolic regions in the open left-half plane. We denote
the elliptical region with center at —g and semi-axes of
length r, and r, by &(q, r,, r,) (see Fig. 5). The vertical
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Fig. 3. Closed-loop pole locations for LQC and constrained design.
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Fig. 4. Impulse response of the performance variable.

strip region centered at — g with half width r is denoted by
¥(q, r). Finally, the parabolic region with vertex at —q
and parameter y > 0 is denoted by #(a, 7).

In order to facilitate the presentation we shall first consider
the elliptical region &(gq, ry, r,) and then consider the verti-
cal strip and parabolic regions. We now provide a characteri-
zation of the elliptical region.

Proposition 9.1: Let ¢ =r, >0, r, >0, define a £yq
~r, Yy 2 12r(0 + (r}/r}), and & £ 1/2r,(1 -
£/r3)), and let Ne 8. Then the following are equivalent:

(r
Neé(q,r,r,), (9.1)

2Re(M+a) +8Re (A + @)’ +y| A+ a|2<0. (9.2)

The circular region #(q, r) and the vertical strip region
7°(q, r) can be obtained as special cases of the elliptical
region ¢&(q, ry, r,). Specifically, setting r, = r, = r or,
equivalently, 6 = 0 and v = 1/r, we recover the circular
region, that is, #(q,r) = &(q,r, r). Alternatively, letting
ry =7, ry = o or, equivalently, & = v = 1/2r,, we obtain
the vertical strip region ¥(q,r), that is, Y(q,r) =
&(q,r, o). Although the parabolic region #(a,v) is not a
special case of the elliptical region, we note that P(a, )
can be characterized by replacing 6 by —+ in (9.2). Hence,
by setting 6 = 0, y, —+ the subsequent development yields

4 Im()

Re(2)

e (f —

i Im(2)

Re(»)

|
[
|
|
— — + -
|
|
|

4 Im(2)

—=  Re(n)

Y lmzm +Re(A) +a <0
©

Fig. 5. (a) Elliptical region, (b) vertical strip region, and (c) parabolic
region.

results for the circular, vertical strip, and parabolic regions,
respectively.

Next, we characterize matrices whose eigenvalues lie in
é(q,r;,ry) in terms of a modified Lyapunov equation.
First, we introduce the n% X n? matrix

6 8
')(JO 2 (AO(! + EA%)a) @ (A00< + EA(Z)Q)

+7A5, ® Ag,. (9.3)
The following result shows that the stability of oy s
necessary and sufficient for determining whether the eigen-
values of A, lie in the elliptical region &(q, r,, r,). Recall
that the condition K e Heiq,r.rp 1S equivalent to o(A,) C
(g, ry, ry).

Proposition 9.2: Let KeR™*'. Then &/, is asymptoti-
cally stable if and only if o(A,) C &(q, r,, ).

Proof: The proof is similar to the proof of Proposition

45. O

Next, we use &/, to construct a modified Lyapunov equa-
tion that characterizes &(q, r,, r,). First, we consider exis-
tence, uniqueness, and definiteness of its solution when 52
is asymptotically stable.

Theorem 9.1: Let KeR™ . If &/, is asymptotically
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stable, then there exists a unique n X n matrix Q satistying
6 )
0= A0 + QAD, + 5 A0 + 5 04T,

+ vA,, QA4 +V (9.4)

and, furthermore, Q is nonnegative definite.
Proof: The proof follows as a minor generalization of

the proof of Theorem 4.1. U

Finally, we state the converse of Theorem 9.1 which
guarantees that if (9.4) has a nonnegative-definite solution
then the closed-loop poles of the dynamic system lie in
(g, ry, ).

Theorem 9.2: Let KeR™*' and suppose there exists a
nonnegative-definite matrix Q € 8"*" satisfying (9.4). Then
the following are equivalent:

(A,. D) is assignable with respect to & (g, 7y, 72). (9.5)
a(Ag) Cé(q.r.m), (9.6)
&/, is asymptotically stable. (9.7)

Furthermore, if (9.5)-(9.7) are satisfied and

6 6
S 48,0 + 5 QAT + 740,045, 20 (93)

then the steady-state covariance O, given by (2.9) exists and
satisfies (4.14)—(4.16) with Q given by (9.4).
Proof: The proof is similar to the proof of Theorem
4.2. O
Now we proceed as in Section V where we replace the
Lyapunov equation (2.9) with the modified Lyapunov equa-
tion (9.4) which guarantees that the closed-loop poles lie
within the elliptical region. Furthermore, if (9.8) is satisfied
then the optimization procedure involves a bound on the
quadratic performance functional (2.4). We can thus present
sufficient conditions for characterizing static output feedback
controllers guaranteeing pole placement in & (g, ry, ;). For

convenience in stating this result define the notation
P,2B"P+RY, + yB"PA,, R, =R, +yB'PB,

5
AL COCT®R,, + 2 (CB® B"PQC")U,,

mi»

]
+ E(CQPB ® B'CT)U,
JaN 6 T 6 TT
Q2 POCT+ EBTAQPQCT + EBTPQAQC ,
for arbitrary Q, pe R"™".
Theorem 9.3: Suppose there exist n X n nonnegative-

definite matrices Q, P satisfying

6 6
0= 40,0 + QA7 + 7 ALQ + 5 0AR

+ ¥ A0, 045, + V. (9.9)
8 8
0= Ay, P+ PA,, + EAéﬂP + EPA%Q
+ yAL PA,, + Ry, (9.10)

and

detA#0 (9.11)

and let K be given by

K= —vec ' (A7 vec Q). (9.12)

Then ( A,, D) is assignable with respect to (g, ry, ry) if
and only if the closed-loop poles lie in &(q, ry, ry). If, in
addition, (9.8) is satisfied, then the performance criterion
(2.4) satisfies the bound

J(K) =t {Q(RI — 2R, vec™'[A " vec Q]C
+CTvec™'[A! vec Q]TR2

-vec ' [AT! vee Q]C)} (9.13)
Proof: The proof is an extension of the proof of
Theorem 5.2. il
Remark 9.1: As mentioned earlier, by modifying 6 and vy
in the design equations (9.9), (9.10), we also obtain pole
placement in the circular, vertical strip, and parabolic re-
gions. Specifically, letting « >0 and y > 6> 0 yields &' («
+1/(y +8),1/(y +8),1/Vy* = 8%), letting >0, v
>0, and 6 = Oyields ¥(a + 1/v,1/7), letting & > 0 and
vy =58>0 yields ¥ (a + 1/27,1/2%), and, finally, letting
a>0and y = —6 <0 yields Z(a,7).

X. Dynamic CONTROLLER SYNTHESIS FOR ELLIPTICAL,
VERTICAL STRIP, AND PARABOLIC REGIONS

In this section we present sufficient conditions that charac-
terize dynamic output feedback controllers that enforce re-
gional pole placement within elliptical, vertical strip, and
parabolic regions. As in Section VI, we consider the nth-order
stabilizable and detectable plant (6.1), (6.2) and determine an
nth-order dynamic compensator of the form (6.3), (6.4).
Although we could proceed exactly as we did in Section VI
for the circular region, it turns out that the additional terms
6/2 A2Q + §/2QA2 give rise to extremely complex opti-
mality conditions. The complexity of these conditions is due
to the matrix A, and thus appears to be directly related to
the lack of controller /estimator separation in the optimal
compensator. To simplify matters, we thus consider a minor
variation of the approach of Section VI wherein we now
enforce regulator/estimator separation in the compensator
structure. By separately designing a regulator and estimator
each of which has its poles in the desired constraint region,
the resulting closed-loop system has all of its poles in the
same region.

Thus, we consider dynamic compensators having the
structure

x,(1) = Ax () + Bu(t) + B[ y(t) — Cx.(1)], (10.1)
u(t) = C.x.(t) (10.2)

or, equivalently,
%.(t) = (A - B,C+ BC,)x(t) + B.y(t) (10.3)

which effectively constrains the compensator dynamics ma-
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trix A4 to be of the form

A.=A - B.C+ BC.. (10.4)

Now we specialize the results of Section IX to full-state
feedback so that K corresponds to C.,. Similarly, by intro-
ducing the error states e(r) £ x(1) — x.(t), where e(?) sat-
isfies

é(1) = (4 - BC)e(r) + (D, - B,D,)w(1) (10.5)

we can develop a dual estimation theory that constrains the
observer poles A — B,Ctolie in £(q, r,ry, ¥(q,r), or
2(a, 7).

For conciseness we omit the technical details and pres-
ent the main result. We note, however, that the necessary
conditions for the dual estimation problem with pole con-
straints are obtained by minimizing the error criterion
lim,_, ., E[e"(+)Ne()], where N is an n X n positive-defi-
nite weighting matrix. For arbitrary Q,, P,, Q,, PeR="
define the notation

SQCT+ VY, +94,0,CT, Vy,, 2V, +4CQ,CT,
B'P, + R, + yB'"P,A,, R,,, = R, + vB"P,B,

©
3
S

>

)
A2 (V,,,®P) + 5(c® P,Q.CTU,
6
+5(CQ9P8® chHu,,
A 6 T
A’ = (Q’®R2’a) + E(B®B PrQr)(]mn
8
+5(Q,P,B®BT)U,",,,

=]
I

1) ) . T
=PQ,, + EPeQeAIICT + EAQPQQL,C ,
, 6 6
=P,0 + EBTATXP,Q, + EBTP,Q,AL

Theorem 10.1: Suppose there exist n x 7 nonnegative-
definite matrices Q,, P,, Q,, P, satisfying

é 6
0= AeaQe + QeA-l;a + _Az’aQe + EQeAiZ

2
+ 7AeaQeA£u + V,, (10.6)
8 6
0=A} P, +PA, + EAE,ZPE + EPeAia
+yAL P, A, + N, (10.7)
T 6 2 6 2T
0=4,,0+0Q,A4], + 5@+ 52 A%
+74,,Q, 47, + V,, (10.8)
0=24" P é 2T 6 2
= Ara r Tt PrAra + EArczPr + EPrAra
+7AIaPIAra+Rr’ (109)

and such that

detA, # 0, detA, # 0. (10.10)
Furthermore, let 4., B,, C. be given by
A.=A - B.C+ BC,, (10.11)
.= vec ' [A] ! vec Q,], (10.12)
C.= —vec '[A; ! vec Q,]. (10.13)

Then (A,,, V') and (A4,,, V,'/?) are assignable with re-
spect to £(q, ry, ry) if and only if the observer poles and
regulator poles lie in &(q, r,, r,). In this case o(A) C
é(q,r, ry).

Remark 10.1: Equations (10.6) and (10.7) are used to
construct the Kalman gain B,., while (10.8) and (10.9) are
used to construct the regulator gain C.. Note that (10.6) and
(10.7) are decoupled from (10.8) and (10.9) in accordance
with the enforced separation.

Remark 10.2: As mentioned in Remark 9.1, special
choices of & and v yield the circular, vertical strip, and
parabolic regions.

Remark 10.3: An interesting generalization of Theorem
10.1 is to use the enforced regulator /estimator separation to
develop hybrid regional pole constraints. For example, one
can constrain the regulator poles to lie within an elliptical
region while constraining the observer poles to lie within a
parabolic region. Since the spectrum of the resulting closed-
loop system consists of the union of the regulator and ob-
server poles, this approach yields a “hybrid” design. A
potentially useful application of this idea involves placing the
regulator and estimator poles within disjoint vertical strips.
As shown in [32], separation of regulator and estimator poles
reduces closed-loop sensitivity to parameter uncertainty. The
robustness ramifications of this approach will be explored in
a future paper.

Remark 10.4: As with Theorem 6.1, Theorem 10.1 pro-
vides constructive sufficient conditions that yield feedback
gains for pole-constrained dynamic compensation. If the Aux-
iliary Minimization Problem has a solution, then, as shown in
Section V, these conditions are also necessary.

XI. DyNaMic OuTPUT FEEDBACK FOR THE SECTOR
REGION

In this section we develop a somewhat different approach
that characterizes dynamic output feedback controllers for
regional pole placement in the sector % (u, 0, 8) (see Fig. 6).
Specifically, we utilize the analysis results developed in
[33], [34] for controller synthesis. It is shown in [33], [34]

that if Ze R"*" then 0(Z) C .#(u,0, 8) if and only if the
Z,cos ¢ —Z,sin¢

2n X 2n matrix Z & is asymptotically

Z, sin¢

stable, where Z_ £7z+ al,.
Next, as in Section X we consider the nth-order stabiliz-
able and detectable plant (6.1), (6.2) and determine an
nth-order dynamic compensator of the form (6.3), (6.4).
Furthermore, as in Section X, we enforce regulator /estimator
separation so that the compensator dynamics satisfy (10.3)

Z, cos ¢
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Fig. 6. Sector region .¥'(u,0, 6).

and the error states satisfy (10.5). In order to exploit the
analysis results of [33], [34] we reformulate the dynamic
output feedback problem so as to form an augmented 27 X 2n
system.

Let x,(¢), X,(1)eR" and consider the 2nth-order

dynamic system
—A,sino || x,(1)
A cos ¢ || x,(2)

[)'cl(t)] _ [Aacos ¢
(1)

A sin ¢
e TR v SRS

.YI(t) = [In

(11.2)

with control inputs
u(t) = Ci(t), () = Cey,(1)

where Ww(f) eR?” is white noise with nonne; ative-definite
I g

intensity Ve R?"*?".
We now seek C, to minimize

(O [2, o©
x, (1) [0 2,

+uy (1) Ayuy (1) + w3(1) ?/?zuz(t)] (11.4)

(11.3)

xl(t):|

x,(t)

where #,, %,€R"*" are nonnegative definite and R,€
R™*™ is positive definite. It follows from (11. 1)-(11.3) that
X, X, satisfy

x(1)| | (A, + BC.)cos & -(A,+ BC,)sin ¢
x,(¢) (A, + BC,)sin¢ (A, + BC,)cos ¢

-["‘(’)] +w(). (11.5)

x,(1)

It now follows that if the above system is asymptotically
stable, then the regulator poles A + BC, lie in the sector

“(n,0,0). Similarly, using a dual approach we can define

error states e,(?), e,(f) e R" such that

[él(t)} _ {[Aacos¢ —Aasincb]
éz(t) A, sin¢

A,cos ¢
1,
“lo,
0 B[ Csi C
1, c[ sin ¢ cosd>]

el(t) ’@O_Bc92
’[ez(t)} * [91 - B 92]W(t)

<

BE[Ccoscb —Ccos d)]

—_—

(11.6)

where 7,, 7,€R"*¢ and 7, €R"*?. Using similar argu-
ments it follows that if the above system is asymptotically
stable then the observer poles 4 — B.C lie in & (g, 0, 0).

At this point we make the following observations. First,
the cost (11.4) is not directly related to the original problem
introduced in Section VI. Rather, J can be viewed as a
device for constructing feedback gains. Second, note that the
reformulation of the problem (11.2)-(11.4) has a decentral-
ized output feedback structure with two channels having the
same gain C,. Of course, similar remarks apply to the dual
problem.

Next, defining the notation

x (1
w2 | DN e e o)
x,(1) e (1)
e A cosp  —A,sing
A, sin A, cos ¢
B b Bcos ¢
! Bsin ¢
N — Bsin ¢ A A ;
Bz—[Bcosd)]’ C1=[CCOS¢' —C51n¢],
G, 2[Csin¢ Ceoso], M, =[I, 0,],
M, =[0, 1]
5eo|%- B
|7, -B.2,|
oo | Ao+ CIALC, 0
" 0 *@1+CCT‘@2CC

it follows from (11.5) and (11.6) that
#(1) = (A + B,C.M, + B,C M) %(1) + w(r), (11.7)
é(’) = (/i - MlTBcél - MzTBcéz)é(’)

+ Dw(t) (11.8)
where Dw(f) has 2n X 2n nonnegative-definite intensity
& | 7o+ B B! 0
vV, = . In what follows, we as-

0 ¥, + B, B]

sume #, and ¥, are positive definite and N is an arbitrary
2n x 2n positive definite matrix.
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Theorem 11.1: Suppose there exist 2n X 27 nonnega-
tive-definite matrices Q,, P,, Q,, P, satisfying

0= (AA - MlTBcél - MzTBcéz)Qe
+ Q. (A - MB.C, - MJB.C,)" + V,, (11.9)
0=(A-MBC - M'B,C,) P,

+P(A - M[B.C, - M]B.C,) + N, (11.10)
0=(A4+B,CM, +B,C.M,)0,
+Q.(A+BC.M +B,c.M) + 7V, (11.11)

0=(A+BCM, +B,C.M,) P,
+P,(A + B,C.M, + B,C.M,) + R,, (11.12)

and let
A.=A-B.C+BC., (11.13)
2 —1
B, = {Z M,P,MT [ZM,ﬁeQeéﬁ} 7', (11.14)
i=1 i=1
2 2 7!
C.=- @21[2 B,TP,Q,M,-T”Z M,QrM,T}
i=1 i=1
(11.15)

Then o(A) C (1,0, 6).

Remark 11.1: By setting & = ¢ = 0 in the design equa-
tions (11.9)-(11.12), one recovers the standard LQG result.
Specifically, for (11.11), (11.12) note that in this case

c_[4a o s _[B s _ [0
A [o A]’ B [0] B, [B]
so that
A+BCM, + By, - |4 TEC 0
1~c 1 2% 2~ 0 A+BCC'

Now using (11.11) and (11.12) it follows that Q, is super-

5 P .
fluous and P, = o p| Where P satisfies the standard

regulator Riccati equation. Furthermore, C, given by (11.15)
corresponds to the standard regulator gain C.= -4, 'BTP.
Similar remarks apply to (11.9), (11.10) which yield the
observer Riccati equation.

XII. NUMERICAL RESULTS FOR THE SECTOR REGION

In this section we present a numerical algorithm for solv-
ing the design equations (11.9)-(11.12) and consider an
illustrative numerical example.

Algorithm 12.1: To solve (11.9)-(11.12), carry out the
following steps:

Step 1: Set ¢ = 0.

Step 2: Initialize k = 1, B = filter gain, and CcP =
regulator gain.

Step 3: With B, = B®, C.= C® and ¢ given, solve
A1.9)-(11.12) for Q% = Q,, B® = B, O® = Q,. and
P® = p,

Step 4: If convergence of QX), P, O and P® hag
been attained, then evaluate A4, B, C. using
(11.13)-(11.15); increment ¢ if desired and return to Step 3
with k = 1, B{"’ = B. and C" = C,; else continue.

Step 5: Use 0, = Q, P, = P®. 0, = 0% and P,
= P% to evaluate B*+D = B. and C¥**V = C,. using
(11.14) and (11.15).

Step 6: Replace k by k + 1 and go to Step 3.

The above algorithm is a straightforward iterative scheme
in the spirit of [35] which is easy to implement. More
sophisticated algorithms can be developed by utilizing homo-
topic continuation techniques as in [36]. The development of
such numerical techniques and a proof of convergence re-
main areas for future research. For illustrative purposes
consider a simply supported Euler-Bernoulli beam. The par-
tial differential equation for the transverse deflection w(x, t)
is given by

BZW(X,Z) -9? v azw(x’ t)
m(x) 3.2 T ax? [E (X)T]
+f(x, 1), (12.1)
*w(x,t)
W(X’Z)IX=O,L=O’ EI(X)T x=0,L
=0, (12.2)

where m(x) is the mass per unit length and EI(x) is the
flexural rigidity with E denoting Young’s modulus of elastic-
ity and /(x) denoting the cross-sectional area moment of
inertia about an axis normal to the plane of vibration and
passing through the center of the cross-sectional area. Fi-
nally, f(x, t) is the force distribution due to a single control
actuator. Assuming uniform beam properties, the modal
decomposition of this system has the form

w0 = ¥ W(a ). (123
/LmW,Z(x)dx: 1, (12.4)
W,(x) = ,/% sin 'zx (12.5)

where, assuming uniform proportional damping, the modal
coordinates g, satisfy

4,(¢) + 2¢w,q,(¢) + wlq, (1)

= /Lf(x, DW,(x)dx,r=1,2,---. (12.6)

For simplicity assume L = 7 and m = EI = 2/7 so that
V/2/mL = 1. Furthermore, assume that Sf(x, t) arises from
a point force actuator located at x = 0.55Z and a position
sensor at x = 0.45L. Finally, modeling the first five modes
and defining the plant state as x = [q,, ¢,, -, gs, gs]™, the
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Fig. 7. Open-loop and LQG closed-loop poles.
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Fig. 10. Impulse response of LQG and constrained designs ¢ = 0.050,
0.070, 0.100.
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Fig. 8. Constrained closed-loop poles, { = 0.070.

-- ; constrained, zeta = 0.3
.. : constrained, zeta = 0.5
-. : constrained, zeta = 0.707

20 30 40 50 60 70 80 90 100

0 Fig. 11. Impulse response of LQG and constrained designs { = 0.300,
0.500, 0.707.

The 10 poles of the open-loop system are -0.005 £ /1,
—0.020 + j4, —0.045 £ j9, —0.080 = jl16, —0.125 +

30

20+

10-

220F

-30

e

s j25. Note that the open-loop damping ratio is ¢ = 0.005 for
all modes. Fig. 7 shows the 10 open-loop pole locations
along with the 20 closed-loop pole locations for the 10th-order
LQG design. Note that the worst-case ratio for the LQG
design is no better than the open-loop system. By applying
Algorithm 12.1, dynamic output-feedback compensators of
order n,. = 10 were designed for the sector region (0,0, 0)
with 8 chosen to correspond to { = 0.050, 0.070, 0.100,
0.300, 0.500 and 0.707. The resulting closed-loop pole loca-
tions for ¢ = 0.070, and 0.100 are shown in Figs. 8 and 9.

| Finally, Figs. 10 and 11 show the corresponding closed-loop

0

-4.5 -4 -3.5 -3’ 2.5

2 -15 -1 -0.5

Fig. 9. Constrained closed-loop poles, { = 0.100.

resulting state-space model and problem data are

0
A = block — diag[_w2 2t ] w; =i,

=17.‘.’57 §-=

i=1,-++,5
1

B=[0 09877 0
C=[09877 0 0.309 0

#,= %, =C"C,
%, = 100,

A A

N=7V=1IL,

1

¥, = ¥, = BB",
v, =0.1,
a=0.

impulse responses for the LQG and each pole constrained
design.
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