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Abstract—This paper derives a parameterization of the set
of all stabilizing controllers for a given plant which leaves some
prespecified closed-loop transfer function fixed. This result is
motivated by the need to independently shape several different
disturbance transmission paths in vehicle active suspension
control. The result is studied in the context of quarter-, half-,
and full-car vehicle models, to derive appropriate controller
structures. A controller design is carried out for the full-car case
and simulated with a nonlinear vehicle dynamics model.

Index Terms—Active suspension, controller parameterization,
disturbance response decoupling, , loop-shaping, vehicle
dynamics.

I. INTRODUCTION

T HIS paper studies the problem of control system design
when there are independent performance goals for sev-

eral disturbance transmission paths. We are motivated by the
problem of vehicle active suspension control where a key fea-
ture is the need to insulate the vehicle body from both road ir-
regularities and load disturbances (e.g., inertial loads induced
by braking and cornering). It is well known that these are con-
flicting requirements when passive suspensions are used, but
the conflict may be removed when active control is employed
with appropriate hardware structure, e.g., choice of sensor lo-
cation, number, and type. Once a suitable hardware structure is
selected, there remains the problem of designing the controller
to achieve satisfactory responses for all of the disturbance trans-
mission paths. It is this latter problem that is the main subject of
this paper. To this end, we consider the problem of parameter-
izing the set of all stabilizing controllers for a given plant which
leaves the transfer function for a given disturbance transmission
path the same as when some nominal stabilizing controller is
employed. In this way, the design for each disturbance path can
be carried out successively, providing there is sufficient freedom
to adjust the responses independently.

A. Vehicle Active Suspension Control

The use of active suspension on road vehicles has been
considered for many years [8], [15], [17], [20], [26]. A large
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number of different arrangements from semiactive to fully
active schemes has been investigated [2], [16], [25], [27].
There has also been interest in characterizing the degrees of
freedom and constraints involved in active suspension design.
Constraints on the achievable response have been investigated
from “invariant point,” transfer-function, and energy/passivity
points of view in [7], [9], [10], [18], [19]. In [18], a complete
set of constraints was derived on the road and load disturbance
response transfer-functions and results on the choice of sensors
needed to achieve these degrees of freedom independently were
obtained for the quarter-car model (see [4] for generalization
of these results to half- and full-car models). In [19] it was
shown that the road and load disturbance responses could not
be adjusted independently for any passive suspension applied
to a quarter-car model.

The need to design the road and load disturbance responses
independently has been considered elsewhere in the active sus-
pension literature. For example, in [15] a hardware and sensing
arrangement was devised so that the feedback part of the scheme
would not affect the response to road disturbances, which were
designed to be suitably soft by means of passive elements in the
scheme. In [24], [25] the actuator was placed in series with a
spring and damper, which were chosen to give a suitably soft re-
sponse to road irregularities in the absence of a feedback signal.
A controller structure using a filtered combination of the sensor
measurements was then selected so that the road disturbance
responses were unaffected by the feedback. The present paper
represents a continuation of this idea by finding in general the
required controller structure to achieve this property for any set
of measurements.

In active suspension design for full-car models, it has been
found advantageous to decompose the motion into bounce, pitch
and roll components for the vehicle body and additionally warp
for the wheels in contact with the road [6], [12], [13], [19]. This
paper will also exploit such transformations, at least to a par-
tial extent. In the full-car case we will exploit symmetry to de-
compose into the bounce/pitch and roll/warp half-cars. In the
half-car case we will use our results to determine the feedback
structure to allow road and load disturbances to be shaped inde-
pendently and discuss the simplicity assumptions which allow
a further decomposition of the half-car into two quarter-cars.

B. Controller Parameterization

The idea of parameterizing all stabilizing controllers in
a linear feedback system is a standard one [28], [30]. The
extension of this idea to two-degree-of-freedom schemes
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(which allows the response to reference commands and the
return ratio of the feedback path to be optimized independently)
is also standard [21], [29]. The generalization to additional
degrees-of-freedom to include some exogenous disturbances
has also been considered [14]. The parameterization of all sta-
bilizing controllers which leaves some prespecified closed-loop
transfer function fixed, as considered in this paper, represents a
continuation of these ideas and techniques.

Our approach makes use of algebraic properties of the ring of
stable, proper rational functions [21]. To facilitate the parame-
terization at the required level of generality we will introduce
the idea of left and right normal rank factorizations of a rational
matrix (Definition 1).

C. Outline of Paper

Section II sets up in generality the problem of parameter-
izing all stabilizing controllers which leave some prespecified
closed-loop transfer function fixed. Our basic results, which
characterize the required structure of the Youla-parameter,
are given in Theorems 1 and 2. Section III considers the
standard quarter-car model employing a “Sharp” actuator with
various choices of measured variables. The required controller
structures to leave the road disturbance responses the same as
in the passive case are derived using the results of Section II.
Section IV considers a simple half-car model with acceleration
and strut deflection measurements, and again derives the con-
trol structure required to keep the road disturbance responses
the same as in the passive case. “Simplicity” conditions which
allow the design to be carried out for two separate quarter-cars
are presented. Section V considers a simple linearized full-car
model and shows how this may be separated into two half-car
models under a mild symmetry assumption. Section VI presents
a design for the full-car model with acceleration and strut de-
flection measurements. The bounce/pitch half-car is treated
according to the theory in Section IV. The roll and warp modes
are each treated as quarter-cars with the warp mode being
handled in a special way. The controller design is simulated
with a nonlinear vehicle model using the multibody simulation
packageAutoSim.

II. CONTROLLER PARAMETRISATION RESULTS

We consider the LFT (linear fractional transformation) model
in Fig. 1, where the Laplace transfer function of the generalized
plant is partitioned as

and further partitioned conformably with the disturbance signals
as

(1)
where , , , , ,

at any time instant denotes the Laplace transform of
etc.Weconsidertheproblemofparameterizingallstabilizing

controllers which leave (the transfer function from to
) the sameas for somegiven stabilizing controller.
Let be the right and left coprime

factorizations of over . Then all stabilizing controllers
can be parameterized by

(2)

(3)

for where , , , are matrices with ele-
ments in which satisfy the Bezout identity

For our first result (Theorem 1) it is convenient if the factor-
izations are chosen so that corresponds to the desired
stabilizing controller, i.e., . (This as-
sumption will be relaxed in the corollary to Theorem 2.)

The results we will establish in this section make use of cer-
tain algebraic properties of the set , namely its ring struc-
ture. The reader is referred to [21] for the necessary background
on this topic. Here we will be content to recall a few facts. The
set has the property of being a Euclidean domain with de-
gree function defined by the total number of zeros of the element
in the closed right half plane and at infinity (counting multiplic-
ities). The invertible elements in are calledunits, and are
the elements with degree equal to zero. A matrix
is calledunimodularif it has an inverse whose elements belong
to , or equivalently, if its determinant is a unit in .
The normal rank of a matrix , denoted normal
rank , is the maximum rank of for any which
is not a pole. Equivalently, the normal rank is equal to the rank
for almost all . We now introduce a type of matrix factor-
ization which will be useful in proving the subsequent results.

Definition 1: Let be a matrix with elements in . is
said to have a left normal rank factorization (lnf) if there exist
matrices and over with of full column
normal rank and unimodular such that . is said
to have a right normal rank factorization (rnf) if there exist ma-
trices and over with of full row normal
rank and unimodular such that .

Lemma 1: For any , there exists an lnf and an rnf
of .

Proof: See the Appendix.
We return to the problem of parameterizing all stabilizing

controllers which leave the transfer function the same
as when the controller is applied. From
[5], the closed-loop transfer function in Fig. 1 can be expressed
as

(4)

where , , have elements in and are given by



SMITH AND WANG: CONTROLLER PARAMETERIZATION FOR DISTURBANCE RESPONSE DECOUPLING 395

Fig. 1. Generalized model in LFT form.

Thus the problem reduces to parameterizing all stabilizing con-
trollers which leave . These are characterized
by all such that ,
where and . We now introduce
an lnf of and an rnf of as follows:

(5)

(6)

where , , ,
, and are the normal rank of and re-

spectively. Note that and are also the normal rank of
and , respectively. Furthermore, we have the inequalities

, .
Theorem 1: Consider any stabilizable in the configuration

of Fig. 1. All stabilizing controllers such that the closed-loop
transfer function are given by expressed
in the form of (2) and (3) with

(7)

for and , and
defined from the lnf and rnf factorizations (5) and (6),,
are chosen such that and are unimodular, and

is a partition of

Proof: See the Appendix.
The control structure given in (7) is arrived at by completing

the matrix to a unimodular matrix and then extracting
from the resulting matrix inverse. Since and the completion
are not unique then neither is . It will be useful to characterize
this nonuniqueness in terms of the parameterization of the set

directly. This is done in the fol-
lowing lemma.

Lemma 2: Given two sets and

where , are full
row normal rank, then

1) if and only if is a left multiple of over
, i.e., there exists a such that
.

2) if and only if there exists a unimodular matrix
such that .

Proof: See the Appendix.
Throughout this paper the vehicle dynamics examples will

satisfy some special assumptions on the open-loop plant. This

allows the controller parameterization of Theorem 1 to take a
simplified form, and it turns out that a further useful structural
simplification can then be made. It will be convenient to summa-
rize these simplifications in the theorem below, which will then
be applied directly throughout the paper. (The first two special
assumptions on the open-loop plant arise because of some pas-
sive elements in the suspension system which ensure that the
road disturbance responses are satisfactory without any feed-
back control. The third assumption is a rather technical one
which says that the number of outputs to be left invariant is no
smaller than the number of actuators and that this transmission
path has full normal rank.)

Theorem 2: Let (i) be (open-loop) stable, (ii) ,
(iii) .

1) There exists such that all stabilizing
controllers which give can be param-
eterized as

(8)

for .

2) A particular for which (8) param-
eterizes all stabilizing controllers such that

can be calculated as follows: choose ,
, , , , ,

and , define from the rnf (6), and cal-
culate , as in Theorem 1.

3) Consider any such that

parameterizes all stabilizing controllers which give
. Then there exist a unimodular matrix

such that , where is defined in 2).
4) Let be defined in 2) and let be any stabilizing con-

troller for . Then is a stabilizing controller
for for which .

5) Let be defined in 2) and consider any stabilizing con-
troller for for which . Then we
can write , where is a stabilizing controller
for .

Proof: See the Appendix.
Corollary 1: Let conditions (i) and (iii) of Theorem 2

hold and suppose that for some
. Then all stabilizing controllers which leave

the same as when is applied can be parameterized
as

(9)

for some and defined in Theorem 2 (2).
Proof: See the Appendix.

The controller structure given in (8), which is a special case
of the general parameterization given in Theorem 1, may be rep-
resented in the block diagram form shown in Fig. 2(a). Theorem
2(4, 5) shows that the essential feature in this controller struc-
ture is the presence of as the rightmost term in (8). This is
illustrated in the block diagram Fig. 2(b) where may be any
stabilizing controller for the transformed plant .



396 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002

(a) (b)

Fig. 2. (a) General controller structure. (b) Equivalent controller.

Fig. 3. The quarter-car model.

III. T HE QUARTER-CAR MODEL

A. The Quarter-Car With Two Measurements

We begin with the quarter-car model of Fig. 3 where the
sprung and unsprung masses areand and the tire is mod-
eled as a linear spring with constant. The suspension consists
of a passive damper of constantin parallel with a series com-
bination of an actuator and a spring of constant (sometimes
referred to as a “Sharp” actuator [27]). Following [16] the actu-
ator is modeled so that the relative displacement across the ac-
tuator will be a low-pass filtered version of the actuator’s com-
mand signal, i.e.,

(10)

As in [16], we use a second-order filter to represent the actuator
dynamics

(11)

The external disturbances are taken to be a loadand a road
displacement , and the measurements are taken to beand

. The dynamic equations of the model are given by

(12)

(13)

where

(14)

(15)

We wish to parameterize all controllers which leave the trans-
mission path from the road disturbance toand the same as
in the open-loop, i.e., with . This assumes that and
are chosen to give satisfactory responses for this transmission

path. In effect, this gives the choice of . We now write
the system in the form of Fig. 1 with , ,

, , equals the actuator command
signal as in (10) and omitted. The corresponding dimensions
are , , , . Equation
(1) then takes the form

with the transfer functions being given by

(16)

(17)

where and

(18)

As expected, all roots of are in left-half plane, which can
be confirmed by the Routh–Hurwitz criterion.

We now observe that , which has normal rank
equal to one, i.e., . Since is open-loop stable and

, the conditions of Theorem 2 are satisfied. We can
then apply Theorem 2(2) to find the matrix which defines the
required control structure. Following the definitions in Theorem
2(2) we first find

which has normal rank equal to one, i.e., . Hence we can
select

for any , to give arnf of . We can choose to
complete a unimodular matrix as follows:

which gives and

(19)

Thus, all stabilizing controllers which leave the
same as in the open-loop can then be expressed as shown in
Fig. 4 where

(20)

for or equivalently is any stabilizing controller
for (see Theorem 2).
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Fig. 4. Controller structure for the quarter-car with two feedbacks.

Example 1: We now apply the above result to a specific case
in which we make the suspension stiff to load disturbances but
soft to road disturbances. We select the following parameters
for the quarter-car model as in [19] which correspond roughly
to a small saloon car [3]: kg, kg,

kN/m. We choose rad/s and as
the parameters for the actuator dynamics. We also choose

kN/m, kNs/m as the spring-damper coefficients which
we consider to give a suitable “soft” response from the road
disturbances in the passive implementation. It is now required to
design the active controller to achieve desirable responses from
the load disturbances.

A simple approach is to take to be constant in (20) and to
minimize the steady-state response from load disturbances to
sprung mass position. A straightforward calculation shows that

which can be made to
equal zero when . The step responses
for the passive and active suspensions are shown in Fig. 5,
which clearly illustrates the zero steady-state response to loads
achieved by the active controller. The following closed-loop
eigenvalues were obtained:3.00, 3.95, ,

83.97, .
As a second approach we can employ the loop shaping

design procedure [11], [30] to the plant . We select a
weighting function , so that the
open-loop loop shape, , has a gain crossover fre-
quency at about 44 rad/s, somewhat below the actuator cutoff
frequency of 100 rad/s. The use of a lag compensator in
allows the gain to be increased relatively at low frequencies in
order to achieve a smaller value of . This choice of
weighting function gives a stability margin of 0.3864. The final
controller takes the form (see Fig. 4) where

which has been reduced to third order by balanced truncation.
For this controller the step response from to is shown
in Fig. 6, which exhibits an improved transient response in
comparison to Fig. 5 but inferior steady-state behavior. The
following closed-loop eigenvalues were obtained:3.95,

, , 83.97, ,
.

At this point it is instructive to compare the control struc-
ture shown in Fig. 4 with a scheme presented by Williamset

Fig. 5. Passive suspension (Q = 0, solid) and active suspension (Q =

1:08, dashed).

Fig. 6. Passive suspension (solid) and active suspension usingH loop
shaping design (dashed).

Fig. 7. Controller structure of Williamset al.

al. in [25]. The stated aim of their controller is to provide a
rapid closed-loop levelling system which does not respond to
unwanted road disturbances, and this is achieved “by filtering
and summing the sprung mass acceleration and suspension
displacement signals to eliminate the effects of the road in-
puts.” A block diagram of the scheme in [25] is shown in
Fig. 7 where is a phase lead compensator. Although the
damper is placed in series with the actuator this is not an
essential difference. It may be observed that the ratio between
the two filters and is equal to so the
scheme operates in a similar way to that of Fig. 4. In fact it
can be shown that, if the denominators in and are both
replaced by , and is any stabilizing controller,
then the scheme parameterizes all controllers which leave the
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road disturbance responses the same as in the open loop.
Thus the scheme lacks full generality only by virtue of the
fact that the filters and have an extra order of roll-off
at high frequency, which is a minor difference since it may
be useful to provide some high-frequency roll-off in in
practice.

We point out that our chosen scheme, as well as the approach
of [25], assumes that the ride performance is satisfactory with

. If this is not the case, a controller may first
be design to give any other desired road disturbance responses.
Thereafter, Corollary 1 may be utilized to shape the load distur-
bance responses as well.

Finally, it is useful to comment on the full set of performance
requirements that are usually considered in suspension design.
In addition to the sprung mass position as a function of road
disturbances, which can be analyzed with regard to driver com-
fort, there are also issues such as tire normal loads (i.e., tire de-
flection) and rattle space (i.e., strut deflection). It was shown
in [7] that if the transfer function from to is determined,
then there is no additional freedom left in the road disturbance
transmission path, i.e., the transfer functions and

can be deduced directly. A similar fact was shown
in [18] for the load disturbance transmission path. Thus, in the
above approach to active suspension design, it is assumed that
for each disturbance transmission path that is being dealt with,
all the relevant factors (e.g., comfort, tire loads, suspension de-
flection) are taken account of together.

B. The Quarter-Car With Three Measurements

We continue to illustrate our basic theory by considering the
quarter-car model with the additional measurement. We now
write the system in the form of Fig. 1 with
and all other variables the same as in Section III-A. The general
plant of (1) then has , the same as (16), (17) and

where , are given in and before (18).
As before we wish to parameterize all controllers which leave

the transmission path from the road disturbance toand
the same as in the open-loop, i.e., with , which assumes
that and are chosen to give satisfactory responses for this
transmission path. We can check that the conditions of Theorem
2 again hold, so that we can follow the procedure to obtain the
required controller structure.

Following the definitions in Theorem 2(2) we find that

Fig. 8. Controller structure for the quarter-car with three feedbacks.

which gives . Hence we can select

where is any second-order Hurwitz polynomial, to give a
rnf of . We can choose to complete a

unimodular matrix to give with

(21)

Thus, all stabilizing controllers which leave the
same as in the open-loop can then be expressed as shown in
Fig. 8 where

(22)

for any or equivalently is any stabilizing con-
troller for (see Theorem 2).

1) Alternative Controller Structures:As pointed out in
Lemma 2 the exact form of in (21) is not unique. Let us
suppose that we prefer a structure with

where , are strictly proper, motivated by a prefer-
ence to use low-pass filters for the acceleration signalsand

while keeping the strut deflection unfiltered. For given by
(21) the identity implies that

and

We can see that fails to be unimodular as required
by Theorem 2(3). Moreover, it is straightforward to show
that the set is equal to the set

, i.e., the full parameter-
ization but with the first element in being strictly proper.
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TABLE I
THE U STRUCTURES AND THETRANSFORMEDPLANTS OF THE

QUARTER-CAR MODEL WITH VARIOUS MEASUREMENTS

Thus a controller parameterization with replaced by
does not give all possible stabilizing controllers which leave
the road disturbance responses the same as in the open-loop
(see Lemma 2 and Theorem 2). However, the restriction of the

-parameter amounts only to an increased roll-off requirement
of the controller at high frequency.

Referring to Fig. 8, let us consider another possible controller
structure

where , are strictly proper. The identity
now implies that

and

Since is unimodular, then can be replaced by in Fig. 8
to give a parameterization of all stabilizing controllers [Theorem
2(3)].

C. Quarter-Car Control Structures and Design

For direct controller design using Theorem 2, it is instruc-
tive to compute for the given choice of measurements.
Table I shows for three different cases. It is interesting
that takes a particularly simple form, which is indepen-
dent of the sprung and unsprung masses, in the case when the
feedback signals and are used, which means that the
controller design would be rather simple in this case.

IV. THE HALF-CAR MODEL

In this section, we shall apply the controller parameteriza-
tion method to the half-car model shown in Fig. 9. As in the
quarter-car model, the actuators and are modeled so that
the relative displacement across each is equal to a low-pass fil-
tered version of the actuator’s command signal, i.e.,

(23)

(24)

Fig. 9. The half-car model.

where is defined as in (11). The linearized dynamic equa-
tions can be expressed as follows:

(25)

(26)

(27)

(28)

where the passive suspension forces, , and the tire forces
, are given by

We now write the system in the form of Fig. 1 with
, , ,

where ,
are strut deflections, as in

(23), (24) and omitted. As before we wish to parameterize
all controllers which leave the transmission path from the road
disturbances to the same as in the
open-loop, i.e., with , which assumes that ,

, and are chosen to give satisfactory responses for
these transmission paths. We can check that the conditions of
Theorem 2 again hold, so that we can follow the procedure to
obtain the required controller structure.

Following the definitions in Theorem 2(2) we can choose a
and

, where is any third-order
Hurwitz polynomial, to give arnf of , and complete this
to a unimodular matrix with to give

(29)

We observe that “constructs” two combinations of measure-
ments, each of which is a suspension deflection plus a low-pass
filtered version of a sum of the two acceleration signals. A block
diagram of this control structure is shown in Fig. 10.
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Fig. 10. Controller structure(U ) for the half-car model.

For direct controller design using the transformed plantin
Fig. 2(b), it is interesting to note that takes a particularly
simple form in the half-car case when is determined by (29),
namely

(30)

This fact will be exploited in the design example for the full-car
model in Section VI.

A. Decoupling by Simplicity

Under certain conditions, the half-car model can be struc-
turally decoupled into two quarter-cars, and in such cases it is
useful to exploit the simplified structure. In [19] and [22], as-
sumptions such askl-simplicitywere used, in a mechanical net-
work setting, to perform energy-preserving transformations of
the external disturbance variables to achieve decoupling. In our
setting we will need to use a similar transformation on all of the
system variables (but will not necessarily be able to respect the
energy-preserving property). For the half-car model shown in
Fig. 9, we define it assimpleif the following equation holds:

(31)

Note that half-car roll models are typically symmetric (i.e.,
, etc.) so that (31) holds automatically in this case.

Condition (31) may sometimes be satisfied also for half-car
pitch models. We introduce a transformation matrix as
follows:

(32)

and define

where may represent any of the following variables:, ,
, or , and the subscripts and represent the bounce and

rotation modes, respectively.
Under the assumption of simplicity, we can then rewrite

(23)–(28) as follows:

(33)

(34)

(35)

TABLE II
DECOUPLEDHALF-CAR BY SIMPLICITY

(36)

(37)

(38)

Comparing with (10), (12) and (13), we find that (33), (35)
and (37) represent abouncequarter-car, and (34), (36) and (38)
represent arotationquarter-car, which are decoupled from each
other. The relevant correspondences between variables is sum-
marized in Table II. Furthermore, we can show that, in order to
arrive at a decoupled form for (35) and (36) (e.g.,being ab-
sent from (35) etc), then we need both (31) to hold and for
to be defined by (32) up to scalar multiplication of each row.

V. THE FULL-CAR MODEL

In this section we shall introduce a standard full-car model
with a similar suspension strut arrangement at each wheel-sta-
tion to the quarter- and half-car cases in Figs. 3 and 9. We
assume aleft-right symmetrywhich allows a decoupling of
the full-car model into two half-cars, namely thebounce/pitch
and roll/warp half-cars. In preparation for a controller design
in Section VI we will highlight the special form of the warp
quarter-car, which has no “sprung mass dynamics.”

A. The Dynamic Equations

Referring to Fig. 11, the actuators are again
modeled so that the relative displacement of each is equal to a
low-pass filtered version of the actuator’s command signals,
i.e.,

where is defined as in (11). The linearized dynamics of the
full-car can be expressed as

(39)
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Fig. 11. The full-car model.

(40)

(41)

(42)

(43)

(44)

(45)

where the passive suspension forces and the tire
forces are given by

(46)

(47)

for , , and the strut deflections are

B. Symmetric Transformation

Since the full-car model is symmetric, we can decouple it into
two half-car models. First, we introduce a transformation matrix

:

(48)

such that

(49)
where may represent any of the following variables:, ,

, strut deflection or actuator command signal, while the

TABLE III
DECOUPLED(SYMMETRIC) FULL-CAR

subscripts , represent the front and rear bounce components
, represent the front and rear roll components.
1) Bounce/Pitch Half-Car:After applying the trans-

formation, (39), (40), and (42)–(45) can be rearranged as
follows:

It can be observed that the above equations take the same form as
(25)–(28) under the transformations listed in the first column of
Table III. To decouple into two quarter-cars requires a simplicity
assumption

(50)
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TABLE IV
DECOUPLEDROLL AND WARP MODES OF THEFULL-CAR BY SIMPLICITY

2) Roll/Warp Half-Car: After applying the transforma-
tion, (41)–(45) can be rearranged as follows:

We observe that one equation is missing in this half-car com-
pared to (25)–(28). This is because the chassis is modeled as
being infinitely stiff under torsion, so that there is no dynamic
equation corresponding to warp dynamics of the car body.
However the above three equations do take a similar form to
(26)–(28) under the transformations listed in the second column
of Table III.

As in the half-car case, under the assumption of simplicity

(51)

and the transformation

(52)

such that

(53)

where can be , or , strut deflection or actuator com-
mand signal , the roll/warp half-car can be further decoupled
into roll and warp quarter-cars under the mapping illustrated in
Table IV.

VI. A D ESIGN EXAMPLE FOR THEFULL-CAR MODEL

In this section, we shall synthesize an active controller for a
specific full-car model. As in Section V, the model is chosen
to be left-right symmetricwhich allows a decoupling into the
bounce/pitchandroll/warp half-cars. Our design approach for

Fig. 12. Control scheme for the full-car model.

the bounce/pitch half-car will make use of the theory outlined
in Section IV. The approach for the roll/warp half-car will make
use of asimplicityassumption which allows it to be decoupled
into the two corresponding quarter-cars, namely theroll and
warp quarter-cars. The roll quarter-car will be treated in the
same way as the quarter-car of Section III-A. As pointed out
in Section V-B2, the warp quarter-car has a different form than
the standard quarter-car in that the “sprung mass” is effectively
infinite. Furthermore, in warp motion there is good reason to
use the active controller to make the road disturbance responses
even softer than they would be with the default passive param-
eter settings. Thus the warp mode will be handled in a different
way to the other three modes.

For the controller design the available measurements are as-
sumed to be , , , , , , and . The control struc-
ture will be chosen to have three independent loops, consisting
of the roll quarter-car, the warp quarter-car, and bounce/pitch
half-car controllers. This scheme is shown in Fig. 12, where the
signals are defined as follows:

(54)

(55)

and the subscripts , , , and are defined as in (49) and
(53).

The following parameters will be used for the full-car model
which are similar to typical parameters for a sports car [3]:

kg, kg m , kg m , m,
m, m, kN/m,

kNs/m, kg, kN/m. As in
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Fig. 13. Step responses ofT andT : passive (solid) and active
control (dashed).

the previous examples, the actuator dynamics is represented as
in (11) with rad/s and .

A. Bounce/Pitch Control

Referring to Table III, the bounce/pitch half-car corresponds
to the half-car of Section IV with the following coefficients:

kg, kg m , kg,
kN/m, kNs/m,

kN/m, m, m, which is notsimple
and cannot be decoupled into two quarter-cars. The loop
shaping controller design will be applied to this half-car model.
The essential controller structure is given by (29) as

(56)

Setting a weighting function as follows:

(57)

means that the weighted plant has a bandwidth
of about 60 rad/s and has an increased low-frequency gain
due to the lag compensator terms. By applying the loop
shaping controller design procedure a sixth-order controller
was obtained after balanced truncation as follows:

(58)

where

(59)

It is interesting to note that in (58) is a scalar matrix
due to the fact that is itself scalar (see (30)).
This controller gives the dc gains and
as 1.32 10 and 8.39 10 , respectively, compared with
1.36 10 and 8.64 10 using passive control. The step
responses using the two controllers are shown in Fig. 13.

B. Roll Control

Referring to Table IV, the roll mode of the full-car corre-
sponds to a quarter-car with the following coefficients:

kg, kg, kN/m, kNs/m,
kN/m. The required structure of takes the fol-

lowing form after using Table IV, (19), and (51)

(60)

Fig. 14. The warp quarter-car.

Given the weighting function

(61)

such that the weighted plant has a bandwidth of
about 60 rad/s, it is found that the loop shaping controller
after model reduction is given by

(62)

where is given by (59). (This controller is the same as the
diagonal terms in since the weighted plant
is the same as the diagonal elements in the scalar matrix

, see (30) and Table I.) This controller gives the
steady state gain of as 2.33 10 , compared to the
passive suspension with dc gain , a
similar result to Fig. 6.

C. Warp Control

For the warp quarter-car, we will take a slightly different ap-
proach for the design of the active controller. Since the sprung
mass cannot be twisted, i.e., it has no warp motion, there is no
corresponding role for the active controller to make the “sprung
mass” stiffer to the loads. On the other hand, even though the
passive road disturbance responses were designed to be rel-
atively soft, there is no reason why they should not be even
softer in the warp mode. We will therefore abandon the goal of
keeping the response to the road warp input invariant
under active control. We also note that there is no accelera-
tion measurement associated with warp and so there is only one
feedback signal available corresponding to the strut deflections:

. For this reason there is no block for
the warp quarter-car loop in Fig. 12.

Referring to Table IV, the warp quarter-car reduces to the
form illustrated in Fig. 14, with and the coefficients

kg, kN/m, kNs/m and
kN/m. The dynamic equation then takes the form, using

(13)–(15)

which reduces to, using (10) and (11)

(63)

with the correspondences given in Table IV.
We now claim that it is desirable to choose so that

the dc gain . We will now give some reasoning
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to justify this. If we consider the case where the full-car model
is in equilibrium with , then the (39)–(41)
are equivalent to

(64)

Evidently there is one degree of freedom available in the sus-
pension forces, and indeed we can check that

(65)

for some constant , completely characterizes that freedom.
From the point of view of reducing the amount of “twist” on the
vehicle chassis which the suspension forces impose, it would
be desirable to achieve a value of in the steady state.
The following result shows that the above mentioned condition
achieves this property.

Proposition 1: Suppose the (linearized) full-car model de-
fined in Section V-A is in equilibrium with
and arbitrary. Then the following equation holds:

(66)

if and only if .
Proof: Using (49) and (53), we notice that the warp vari-

able is a combination of variables at the four wheel-
stations

where can be or . Using (46) and
(47) we see that (66) is equivalent to

,
which is equivalent to

by (42)–(45), which in turn is
equivalent to by (65).

It can be observed that the proposition holds if (66) is replaced
by any equation of the form:

with , i.e., the particular ratios chosen in the definition
of the warp variable are not critical to the result.

Now let us return to the warp quarter-car represented in (63).
If we choose a simple constant controller and ignore temporarily
the actuator dynamics, i.e., set , then the choice of

achieves a damping ratio of one, a natural fre-
quency equal to 50 rad/s (which is lower than the bandwidth of
the actuator) and a steady-state gain of 2. As shown by Proposi-
tion 1 we would like to achieve the condition (66) in the steady-
state, which is equivalent to the dc gain . Setting

achieves in (63) a damping ratio
of one, a natural frequency equal to 70.71 rad/s (which is lower

Fig. 15. Final controller structure for the full-car model.

Fig. 16. Step responses using active (dashed) and passive (solid) suspensions.

than the bandwidth of the actuator) and a steady-state gain of
one. In order that the controller is proper, we can choose

(67)

The response does not change significantly with this modifica-
tion or when the actuator dynamics are included. The step re-
sponse with the final controller, with improved warp behavior
compared to the passive case, is shown in Fig. 16.

D. The Full-Car Control

As a final step we can redraw Fig. 12 in the form of Fig. 15
where is the full-car model represented by (39)–(45). In
Fig. 15 the measurementsand control signals are defined
as follows:

where and represent the strut deflection and control com-
mand signal at each wheel station. The blocks are
defined as follows:

where is defined in (48), is defined in (52) and
, ,
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Fig. 17. Response ofz to a step input of 1 cm atz for AutoSimmodel
using active (dashed) and passive (solid) suspension.

. Note that combines defined in
(56) and defined in (60), and the third row in reflects
the fact that there is only one measurement available for warp
control. The controller is defined as

where , and are given by (58), (62) and (67), re-
spectively. Compared with the passive suspension, the benefits
of using active controllers is shown in Fig. 16. The responses to
“bounce,” “pitch,” and “roll” road inputs are not shown since
these are the same in the passive and active cases.

E. Vehicle Dynamics Simulations

In this section we present some simulation results for the
controller designed in Section VI-D using the multibody sim-
ulation packageAutoSim. A nonlinear dynamical model of the
simple full-car shown in Fig. 11 was constructed with the sus-
pension struts constrained to move perpendicularly to the ve-
hicle body. To model a rolling wheel of inertia 1 kg mwith tire
the magic formula[1] was employed to calculate the acceler-
ating and braking forces. The control law given in Section VI-D
was implemented together with the actuator structure described
in Section V-A.

The model was first tested at zero velocity for various road
disturbance inputs and gave similar results, for small displace-
ments, to aMatlab simulation of the linearized model. As ex-
pected, the bounce, pitch and roll responses were the same in the
active and passive cases. Fig. 17 shows the effect of applying a
step input to theAutoSimmodel at the right front wheel in both
the passive and active cases. The difference in behavior is due
to the “warp” mode being treated differently in the active case,
as explained in Section VI-C.

The AutoSimmodel was then tested under acceleration and
braking. For acceleration, a torque was applied at each front
wheel with the opposing reaction torques acting on the vehicle
body. A similar approach was taken for braking but with the
braking torques applied to the front and rear wheels in a 60:40
ratio. Fig. 18 shows the “squat” and “dive” of the model under
acceleration and deceleration, with the forward velocity given
in Fig. 18(a) and the pitch angle given in Fig. 18(c). The sim-
ulation shows that the active suspension significantly improves
the squat and dive performance.

Fig. 18. Antidive and antisquat effect inAutoSim model using active
suspension (dashed), compared with passive suspension (solid). (a) Forward
velocity. (b) Applied torque on front wheels. (c)z . (d) z .

VII. CONCLUDING REMARKS

This paper has considered the vehicle active suspension
design problem with particular regard for the potentially
conflicting performance requirements from two disturbance
sources: road irregularities and loads applied to the vehicle
body. General theorems (Theorems 1, 2) were derived to
parameterize all stabilizing controllers which leave some
prespecified closed-loop transfer function fixed. This allowed
a feedback controller to be designed taking account of only
the load disturbance path objective, given that the controller
structure ensured that the road disturbance responses remained
satisfactory.

The approach was illustrated for the quarter-car model with
various different choices of measurements. The required con-
trol structures were derived in parametric form. For a half-car
model, a parametric control structure was derived for a typ-
ical measurement set: vertical and angular accelerations of the
sprung mass and strut deflection measurements. The conditions
under which the model structure could be decomposed into two
quarter-cars was investigated. For the full-car model, decompo-
sition into two half-cars was exploited under a mild symmetry
assumption. This enabled the bounce/pitch half-car design to be
carried out with the half-car structure previously derived. For the
roll/warp half-car a further decomposition into two quarter-cars
was assumed. This allowed the warp quarter-car to be treated
in a distinct way, which is necessary since the load disturbance
path is absent here and it is also reasonable to change (i.e.,
soften) the road disturbance response from the passive case. A
controller was designed and demonstrated on a nonlinear ve-
hicle dynamics model and showed the effectiveness of the de-
sign for reduced dive and squat under acceleration and braking,
improved warp response and invariance of other road distur-
bance responses.
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A key step in the method described in this paper is the com-
putation of the matrix which determines the required con-
troller structure. Throughout the paper it was always possible to
calculate symbolically usingMaple. For more complicated
vehicle models this may not be feasible. In such a case a direct
numerical approach may be possible. Let us consider the case

, i.e., the matrix in (6) is square. (This condition
applied throughout this paper and seems quite typical in gen-
eral.) Then the following procedure can be taken: 1) partition

where is square; 2) find a minimal realiza-
tion of ; and 3) find a left coprime factorization

and set (e.g., see [30, Theorem
12.19]. Such an approach was taken in a trailing-arm vehicle
model in [23].

APPENDIX

Proof of Lemma 1: can be decomposed in terms of its
Smith formover [21]: , where ,

are unimodular, . Suppose that has
nonzero diagonal elements. Then we can write

(68)

(69)

where . We also partition and conformably:
, where ,

, , . We therefore
obtain

where , are full column normal rank
and full row normal rank, respectively.

Proof of Theorem 1:A stabilizing controller in
the form (3) leaves if and only if

. This is equivalent to
since (respectively, ) has full column (respec-

tively, row) normal rank. We now show that it requiresto
take the form given in (7). Clearly

(70)

for some . This gives

Next we see that

(71)

for some , which establishes (7).
Conversely, if (7) holds for some and

, then so does (71), from which follows
which again implies .

Proof of Lemma 2:

1) In this case , which
means any element of is also an element of .

Suppose , then for any there
exist some such that . Let
us now choose the first row of to be
(with the one in the th place), and all other rows to be
zero, and define to be the first row of the corresponding

. Then , from which we
conclude that where .

2) From 1) we know that if and only if
and for some , . Hence we
have which gives
. Since is full row normal rank, it is equivalent to

, which is equivalent to and being
unimodular and inverses of each other over .

Proof of Theorem 2:

1) 2) These conditions allow us to choose , ,
, , , , and

. Then (8) follows directly from (3) and (7).
3) Consider and such that all stabilizing

controllers can be parameterized as

,

and ,

, respectively. We can check that
if and only if . From Lemma

2, this means there exits a unimodular matrixsuch
that .

4) Since , have elements in , it follows from
[30, Corollary 5.5] that stabilizes if and only
if , which is
equivalent to
since is right invertible over , which is the
necessary and sufficient condition that stabi-
lizes . To complete the proof, let

and note that
. Therefore will

take the form of (8), from which the result follows.
5) Any stabilizing controller for which

takes the form of (8). We can then define a
controller for some

such that . It can
also be shown directly that

, which means that stabilizes
.

Proof of Corollary 1: Using the parameterization
of Theorem 2(2), it follows from (4) that the closed-loop
transfer function remains the same as when

is applied if and only if
, which is equiva-

lent to , which results in (9) by using
Theorem 1 where , are empty.
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