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ABSTRACT

[n reducing high order controller des~gns, such ns arise from }{m or LQG
techniques, to more practical low order ones, a re~onable objective is to pre-
serve the controller robustness fperforlna”ce properties. In this paper, stan-
dard balanced truncation or Hanke] norm model approximation methods are

applied toaugmentatimso fthec ontroller which emerge when characterizing
theclas.s ofallstabilizing controllersin ternwof an arbitrary pmpers table
transfer function.

In the method, scaling par.smeters are at the disposal of the engineer to
achieve an appropriate compromise b.etwee” prtxerving performance for the
nominal plant and a certain type of robustnes to plant variations. There
are a number of unique features of tbe approach of tbe paper. One feature
is that a straightforward re-optimiz ation of a reduced-order controller is
possibl ewithinth eframewor koftlmmetl]od. Asecond feature of the paper
is that for controllers designed for simultaneous stabilization of a number
of plants, the method seeks to preserve the performance/robustness of the
reduced order controller for each plant.

1. INTRODUCTION

Themodel reduction methods of[l]provldeapnon bounds on reduction

errors in terms of Lm measures. A simpler technique, termed balanced

.

realization, has guaranteed bounds which are not quite so good, see also [I],
~2,].Such techniques are then attractive to achieve controller reduction, but
without modification do not take into account the fact that the controller is
iu a control loop and needs to achieve performance and robustness properties,
[n the reduction, these techniques without modification weight all frequencies
equally.

The notion of a frequency-weighted model reduction bssed on the tech-
niques of [1], [2] has been explored in [3], [4], [5]. It is nnt clear from these re-
sults how best to use knowledge of the frequency characteristics of a plant, or
closed-loop, to frequency-weight the controller reduction. Special frequency.
weighings based on controller characteristics are studied in [5].

A technique for controller reduction for Imear quadratic gaussian designs
is given in [6]. This exploits the fact that the innovations process is white
(M in the techrlique.s of [7]) and reduces the subsystems of the controller
driven from this white noise, In efTect there is a particular coprime stable
factorization of the controller, and it is propmsed that reductions on these
be implemented using standard methods (balanced realizations without fre

quency shaping). A possible disadvantage for this approach is that stability
of the original controller dmign is not guaranteed in the reduction.

In this paper, a novel controller reduction approach is proposed, It is
based on the application of standard model reduction techniques to a system
calculated from both plant and controller. The method utilizes theory for the
clxss of all stabilizing controllers [8] based on the work of [9], Thus referring
to Figure 1,1 with plant G(s) @ &,, controller K(s) c ~, then the class of all
stabilizing controllers is given in terms of J(K, G) 6 ~ and arbitrary Q(s) c
RHm, where I+ denotes the class of rational proper transfer functions and
RIfm the class of stable rational proper transfer functions.

The selection of J(s) we consider is where the block .f11(9) is in fact
the controller K(s), and the other elements J{,(s) are appropriately scaled.
Using the circumflex to denote-a low order approximation, we propose that
J(s) first be approximated by J(s) using standard model ~eduction (possibly
frequency-weighted). Then the reduced order controller K(s) is taken ~ the
n-block of this. That is,

k(s) = [~(s)],l where 1{(s) = J1l(s) (1.1)
b

This contrasts the more direct application of model reduction where only
J,l(s) = 11(s) is approximated, so that i{(s) = J(s)l L,

AR extension of the approach proposed is to work with the class of con-
trollers of Figure 1. lb with Q(s) constrained M constant. Thus cotmder the
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Figure 1.1
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K(Q, s) = .fII(.) + .71z(s)Q[I - JZZ(8)Q]-1.7ZI(S), Q constant

and its reduced order versions

I:(Q, s) = [~(s)]II + [~(s) l12Q(~ - [4s)]22Q1-’ [~(s)]21

IIere i(s) of (1.1) is equal to R(Q = 0,8). Also note that

degree ~(Q ] Q = constant,.s) = degree ~(Q = 0,s)

(1.2)

(1.3)

(1.4)

In this paper one proposal is that I?(Q I Q = constant,s) be re-optimized
over constant Q in terms of the original (or related) controller robust-
ness/performance objectives.

To maintain performance which penalizes some internal variabies,or their
estimat= e, a refinement of the above method is to modify the J(s) or
K(Q, s) blocks in Figure 1.1 to have an additional output c. Denoting
these blocks as J,(s), K,(Q, s) we propose tbe reductiOn Of ~f(e) via J,(s)
or K.(Q, s) to maintain performance as weo - rObustne=. Again scaling
gives desired tradeoff between performance and robustness. J$rhen {i(s)
is designed to achieve simultaneous stabilization of a number of plants, it
is proposed to maintain its performance/robustness properties for each of
these plants by working with appropriate augmentations of J(s). Details
are given in the paper. A dual version of tbe method is where tbe role of
G(s) and K(s) are interchanged.

In the next Section 2, the controller reduction techniques for preserv-
ing robustness are given in details. A rationale for the proposed controller
reduction is given in Section 3, and examples are studied in Section4. Con-
clusions are drawn m SectIon 5.

2. DETAILS OF CONTROLLER REDUCTION

2.1 Dcfiuitions

Referring to Figure 1.1, let us first recall the formuiatiOn Of ~l!($) = 1((s)
bssed on the theory for tile claw of all stabilizing controllers [12]. Let us



denote t

[+1G(S) =C(S1-A)”l B+D= A B
CDT

(2.1)

Also, in the first instance let us consider that K(s) belongs to the sta-
bilizing controller class having the form of Figure 2,1 for the case Q(s) z 0,
Thus A’(s) is characterized in terms of F, H (see also Section 2.7) u

[+1K(s) = ‘“ ‘H E R,p,
F

A“=A+BF+HC+HDF
o=

(2.2)

[s1- (.4+ L?F’)]-’, [s1- (A+ HC)]-l E RHm (2.3)

where R,P denotes rational strictly proper.

Figure 2.1 Controller class

Clearly, the claas of LQG controllers is a subset of this controller class.
From [12], the class of all stabilizing controllers for G(s) has the form of
Figure 2.1, being parametrized in terms of Q(s) E Rffm. Mor-er J(s)

has the form

J(S)= [~]TJI,(S)=I(S, (24,

It should be clear that Figure 1.lb for this caxe takes the form of Figure 2.1
with the Q(s) nonzero.

Other relationships of interest are reviewed. Defining

then
.~(s)z(s) = ,1’(s),~(s) = I (double Bezout) (2.5c)

G(s) = N(s) Af(s)-’ = if(S) -’ii(S), K(s) = V(s)v(.)-’ = V(s) -’u(s)
(2.5d)

lilso

[ HJ1l(S) J1?(S)=
‘(s) = J,,(s) J,?(s)

K(s) V(S)-1

V(S)-1 -v(s) -lN(s) 1

[

K (s) -M(s) –-K(s)N(s)

1

(2.5,)

= fi(s) – N(s)K(s) –[M(s) – N(s)l<(s)]N(s)

and referring to Figure 1.lc,

T(s) = J,,(s)+ J2,(s)C(S)[1 – J11(s)G(s)]-’J,2 (s) = 0 (2.5f)

2.2 Scaling
Before applying any multivariable model reduction technique to J(s)

to yield a J(s), it makes sense to scale the inputs y(t), s(t)and outputs
u(t), r(t) in such a way that they are given appropriate significance. \Ve

t The top left, top right, bottom left and bottom right entries of the
partitioned matrix in (2.1) represent the system matnz, znput matrw, oulpul

mairiz and djrvcf-jcedihrough matr:r of a state-space realization of J(s). The
matrix subscript T indicates that this notatmn is beitlg used.

do not propose an optimcd scaling selection. Breed on experience we know

that scaling can be crucial to a good reduction, tn the examples st,jdicd
in this paper, we detern}inc the scalings of the variables y(f), ~(t), u(t) and
r(t) using their closed-loop autmcovariance responses to reallstlc stochcstlc
disturbances. This is achieved by solving a steady state Lyap”nov equatmn
associated with the closed-loop system. Thus co”s,der the Stoch=tlc ~lmed.
Icop system driven by the process noises w(t) and measurement noise u(t),

dz(t)
— = Az(t) + Bu(t)+ W(t)

dt

di(t)
— = Ai(t)+ B.(t) – Hr(l)

dl

(2.6)

(2.7)

where r(f) = y(t)–[Ci(t)+Du( t)], y(t) = Cz(t)+Du(t)+u(t), u(t) = f+(t)

E[w(t)w=(r)] = Qwi(t - r), E[v(t).T(r)] = Q.6(t – r)

The state/state-& imate auto-covariance matrix P satisfies the following
Lyapunov equation,

PA:+ A#+[; _OH]Qn[: :}1]’=0

where

and

E[Y(~)YT(~)] = [c DF]P[C DF]T + [0 ~Qn[O /]T

E[u(t)uT(t)] = [0 F]PIo F]~

Err’] = [C - C]P[C – Clr + [0 I]Q”[o I]T

(2.8)

:“ 1

(2.9a)

(2.9b)

(2.9c)

It is not pce.sible to calculate a vafue for E[s(f)sT(t)], because it is dep,mdc”t
on the value of Q(s). Chocsing a value that it too large will place too much

emphasis on the s(t) input in the reduction. One suggested selection is to
choose E[s(t)sT (t)] = E[u(t)uT (t)]. t$’e propose that the square roots of

the diagonal elements of these matrices be used to generate scaling matrices
Dv, D., D,, D, to scale J(s) M follows

‘K’’(s)=[~]T ‘210)

In the system JU.M(S) the variances of the scaled input/output variables
in the closed-loop system will be unity.

Now model reduction techniques as in (1] can be applied to J..~,,.i(s) to
yield low-order models,

L.(.)=[*]T (2.11)

from which a reduced order controller is taken as

“(s)=[-lr=D”[’”’ied(s)]llD‘212)
More generally, F(Q, s) can be in terms reductions on J and constant Q u
in (1.3).

Other scafing possibilities can be envisaged. Observe that at the one
extreme with D. approaching zero, then [J(s)]ll -t Jll (s) and standard
controller reduction is achieved. At the other extreme with D. + O, main-
taining prediction quality is emphasized-this is linked to maintaining qual-

ity of the state estimate feedback. \lJhen the prediction errors are white and
state estimation is optimal, then with D. _ O these qualities are preserved
as much as possible.

Of course, a search procedure o~fer D., D, and Dv may achieve an
improved compromise between performance and robustness. Such brute
force optimization are not explored further in this paper, There is no proof
or rationale in this paper to suggest that a selection D“ # O is always better
than a selection D. = O. Iiowever, out experience has certainly shown that
it is sometimes better. One scaling technique has hccn presented above
based on certain intuitions which appear to work well. [t could be used w
the starting point for a search for an improved reduction.



2.3 Re-Optimization

Referring to (1,2)-(1,4), it is clear that a class of reduced order controllers
having the same dimension mu be dclincd in terms of the sub-blocks o{ i(s)
and Q(s), with Q(s) constrained to be constant. These are parameterlzed
in terms of a constant Q matrix having the dimensions of the plant transfer
function matrix. A search over ail constant Q can lead to improved reduced
order controllers over that of the simp\est case where Q = i) ~ i“ the
previous subsection.

Such a search over constant Q is relatively simple computationally comp-
ared to a search over the scale factors D., Du, Dv involving repeated

application Of the balanced realization algorithm.
The search over constant Q(s) can be simplified exploiting the fact that

all closed-loop transfer functions are tine in Q(s) when ~(s) = J(s), so are

“chxe” to affine in Q(s) when ~(s) is “clcae” to J(s),
2.4 Estimation. t?ased Reduction

Coutrol schemes based on state estimate feedback can be viewed as an
estimator/controller driven from both the plant inputs u(t) and outputs ~(f)
with an output u(t), As depicted in Figure 2.2a, we can think of an aug-
mented plant G%(s) = [@’(s) 1] with an augmented output [yT(f) uT(t)]~
driving a controller, denoted l{.(s). Now the corresponding K.(s) and Jo(s)
are given from

‘“(s)=rml,

(2.13)
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Figure 2.2 Estirnation-bxed reduction

Notice t~at J.(s) is stab[e so that reduced order approximations J.(s),
~a(s) = IJo(s)]ll are also stable. There appears to be no other a prrori
guideline in selecting between reducing this controller and the conventional
one. Clearly in any particular application one may be given a “better”
reduced order performance and robustness. A dual approach is to view tbe
plant as in Figure 2.2b, where the plant G}(s) = [G(s) ~ has an additional
input which is added to the output of G(s). The corresponding transfer
function for J*(.) is given by

,*(s,= [t], (2.14)

Comparison of (2.13), (2,14) with (2.5) reveafs that

This suggests the pc.ssibility of reducing ~ or X(v) as another method of
controller reduction. The fractional decomposition of the reduced order
controller would be found by applying standard model reduction methods
to j or .V(s).
2.5 Controller Reduction Maintaining Performance

Consider that a performance objective is to minimize the energy m some
internal variable, or its estimate, denoted e. For the controller class (2.2),
which can be interpreted m state estiln ate feedback, it is ,-Ommo” for ~ to
be a linear combination of the states of 1;(s). Thus here we assume that the

transfer function from u to e is E(sI – .4-) -1(-H). Now, the augmentation
of the J(s) block of (2.4) to incorporate this transfer function is

e(.)=[~;],,,($)=[<($)]L (26)

Scaling of this in terms of D,, D., D., D, a“d D, is “CM a “at”,al ~xten.

sion o-f the scaling in (2,10). Likewise generalizations of (2. 11) to ~,c=,ed(s)
and K(s) = D.[JKd4(S)]I,D~i are straightforward. The relative signifi-
cance of D< determines the emphasis on performance of the controller in the
reduction proce=, and can be fine tuned by a trial and error procedure.

2.6 Frequency SIlaped Reduction
Just as a frequency shaped reduction of K(s) can lead to improved re-

duced order controllers, so a frequency shaped reduction of f(s) Iendi\\g to a
reduced f;(s) can give improvement. It might be that we require robustness
in a frequency band only, That is, we require robustness to Q($) E RHW
in this frequency band. Under such circumstances it makes sense to insert
in Figure l.lb a stable band P=S filter between the residuals r(f) and the
input to Q(s), and require robustness to all Q(s) E RHrn rM before. The
band pass filter can be used aa a frequency shaped augmentation of J(s),
being in series with J21(8) (or JIz(s)) and JZ2(S). Again the augmented J(s)
can be reduced and the 1 l-block extracted as a freq”e”cy shaped reduced
controller K(s). The augmentation increaaea the degree of J(s), while the
following step reduces the degree of J(s). In many casea, the e~ect of the
errors introduced by incre=ing the degree of J(s) in the intermediate step
will be outweighed by the improved robustness of the closed Inop controller.

Of course general frequency shapings cm be employed based on the
cl-d-loop transfer functions. In fact, it is Wmetimes impmslb]e to ~btaln

a good reduction of J(s) unless frequency weighted reduction methods are
u$ed.

To avoid numerical difficulties when the combined order of J(s) and any
frequency shaping is high, it makes sense to first carry out a preliminary
unweigl! ted reduction of J(s) and any frequency shaping using balanced
truncation. Such a reduction allows a degree reduction with relatively small
error.

2.7 Generation of F, H

JVhen the plant and controller have the same degree, but a selection F,

If to satisfy (2.2) is not known a prmn, then such selections can be found
for generic Ii(s), G(s) [10]. klore precwely

LEMMA 2.1 Consider the plant/controller pair G($), I?(s) with
minimal nth-order state-space realizations

[+1
G(s) = A Q

[+1cDT’~(’)=::T
(2.17)

The controller can only be represented in the form (2.2) if and only
if there exists a real, nonsingular solution Z to the quadratic matrix
equatinn

AZ+ EC– ZfiCZ - Z(/i + ~DC) = O (2.18)

hforeover, when a real, nonsingular Z exists

F= CZ-~, if=--ZB (2.19)

Proof The controller J:(s) = 6(s1 – ~)-1 ~ has the same tramfer
function as K(8) = -F(s{ - A-)-]/f of (2.2) if and only if they

are related by a similarity transformation

z,.&l = ,4. , ZB=–H, CZ-’ = F (2.20)

Algebraic manipulation with (2.20) leads directly to (2.18). I

In tbe S1S0 caas xnlutions F, H always exist [11] under

[A, B], [A, D] controllable, [A, Cl, [A, q observable (2.21)

Remarks:

(i) Suf6cient conditions for multivariable G(s), 1{(s) are presently under
consideration.

(ii) There are in general a chws of nonsingular solutlons of (2.18), gtv,ng
rise to a class of J(s), J(s) and l:(s). For each J(s) the bounds on
IIJ(s) - ~(s)[( w]]] in general be difrerent, and each appronmation will
have its own )ubcrent frequrncy sl):iplng, Clcnrly some selecl!ons of J(s)

will be better than olhers Tliis has+ b.en borne out with exanlplcs



studied, but as yet there is no elegant method to select the best J(s) to use.
2.8 Staged Reduction

So far the simplest situation has been studied—namely when the degrees
of G(s),K(s) are the same. Should K(s) be of a higher degree than G(s),
it makes sense to first perform a standard reduction of R(s) until it is
the same degree as G(s). Such preliminary reduction can usually be made
with negligible errors compared to subsequent reductions to achieve a lower
degree estimates ~(s), Tbe same holds mufatts mufandis when G(s) is of
a IIigber degree than K(s).

2.9 Simultaneous Stabilization
Cousider that R is designed to give acceptable performance/robustness

for a number of plants Cl, G2 ,. GN, Associated with each plant Gi there
is a correspo”di”g Ji with [Ji]li = K for each i. By bringing each J; to

the same cc-ordinate basis it is possible to detine a block j(s), Q(s) as in
Fieure 2.3 such that

(2.22)

By setting Qil = O for k,l # i, i = 1,2. , .N, the class of all stabilizing
controllers for Gi is characterized in terms of Q,i c RHm. This leads to the
following lemma.

LEMMA 2.2 \Vith (2.22) holding, tbe class of all stabilizing con-
trollers for Gi for i = 1,2 ... N is a subset of the CIUS of all con-
trollers of Figure 2.2 with arbitrary Q(s) 6 RHm.

To achieve a reduced order controller ~{(s) for K(s), we propose the reduc-
tion of .7(s) giving i = [~]11. \Vhen N = 1, this method reduces to that
presented previously. Scaling can be introduced to order the importance of
the various plants Gi.

Q(s)

mG(s)

HI
7 (s)

Q,

{

NN
I

L?,, ‘
Qii G RHM

~ Figure 2.3 New J and Q block
based on controller designed for
simultaneous stabdization of many
plants.

2.10 Rcduccct Order rlnnt
It may be that for simulation purposes a reduced order plant is required.

In the reduct~on technique described above it is pcssible to extract a reduced
order plant G(s) in addition to the reduced order controller as follows

where the estimates A< ,fi,~,c and b are obtained from j. One problem is
that there is no guarantee that ~ close to K will ensure that G will be close
to G, or indeed, that R or i< will stabilize G. Let us instead propnse that

a reduced order G be obtained from a dual procedure to that giving 1?, ao
that at least G is clese to G and is stabilized by K. In the dual procedure
the roles of K, G are merely interchanged.

3. RATIONALE

3.1 Preserving Robustness Properties
The class of all stabilizing controllers for a plant G(s) E ~ sllao be

denoted

,C~ s {K E & I ff(G, K) E RIfm ,det(I -GK) # 0} * (3.1)

where 11(G, A’) represents the closed loop transfer functions

Such classes have a parametrization in terms of an arbitrary Q 6 F?HM and
an abitrary factorization A’ = UV-l E KG

KC~ {KG(Q) =( U+ AfQ)(V+NQ)-’l QE f?Hm, det(V+LfQ) #O)
(3.3)

By duality, a controller Ii(s) G ~ stabiliz.= a cl- Of plants GK, and tbe

reduced order controller I? stabiiiz= a cla.w Of plants Gk.

DEFINITION: The robustness properties of a stabilizing controller Ii
with respect to a plant class G’ are said to be preserved in a controller
reduction, yielding I< when

G’ c GK,Kfi GKnGK (3.4)

Remarks:
(i) A dual dclinition of preservi],g robustness is w follows. \Vitb Kd the

class of all stabilizing controllers for a reduced order plant G, the ro-
bustness properties of a plant G with respect to a controller class 1{’ are
said to be preserved in a plant reduction yielding G when

K’ c K~,c fi KG n Kc (3.5)

The class of stabilizing controllers for a plant G can similarly be param
eterized in terms of Q E Rlirn.

Kd ~ { Kd(Q) = (~+ AiQ)(V+fiQ)-’ I Q c Rff”, det(V+fiQ) = O)
(3.6)

where 1/ = ~V-l is a stabilizing reduced order controller for tbe reduced

order plant G = fiJ4-1.
(ii) A controller or plant reduction that preserves the robustness properties

defined in (3.4), (3.5) should maintain GK,K cbse to GK and K~,C close

to KG. In other words, the reduction silould give ~ such that

AG $? GKAGK or AK ~ KG A KC is small t (3.7)

(iv) Tbe fractional maps (3.3), (36) can be depicted as in Figure 3.1.

B
Q

J~s)

--=h

Figure 3.1 Linear fractional maps

3.2 Closeness Measures
Standard L2 or L- norms define me=ur= Of clOseness Of GK(Q) to

G~(Q) for any specific Q E RHm, with such norms highly Q dependent

functions. Tbe controller reduction method based on the reduction of .~(s)
or Jo(u) suggests convenient mea5ure9 of clown= of the cl-es GK ,Gi
being

llA~(s)ll or IIAJ.(s)II rmpectiveiy (3.8)

where AJa(s) = Jo(s) – ~a(s) etc.
The next lemma shows that a sufficient condition for the controller re-

duction objective that QK(Q) is close tOG~(Q) iS that llA.~(s)ll Or IIAJo(s)[I

in (3.8) be small. A dual argument can be developed for the corresponding
plant reduction.

LEMMA 3.1 }Vith the definition (3.8) and

llA~ll < c or IIAJOII < c (3.9)

then for generic Q E RHm, as c --00

llG~(Q) - Gti(Q)ll - fI with CKC) (3.10)

Proof: Observe that from (3.10)

~X(Q) –~K(Q) = (~ + VQ)(if +tiQ)-l – (N + VQ)(~f + uQ)-’

= {GK(Q)[A~f + AUQ] - [NJ + AVQ])[~f + tiQ]-’
(3.11)

t liere the binary set operator A is the symmetric ditTerence defined as

AA B=(An B)u(in B).



For generic Q and with \14,~ll < t, as ALf, AN, AfJ, AV -0,

llGR(Q)-GJ,(Q)\\ ~ O with O(A.lf, AN, AU, AV) and the resu~t (3.10)
follows. Since from (2.14) IIAJOII s c implies llA~ll < w’%, then llAJ~ll < c
implies (3.10) also. I

Remark:
By appropriate scaling, the controller reduction methods can be SP*
cialized to those of [13] involving only Au, A~. Clearly the methods
proposed take into the account both the plant and the controller dy-
namics.

4. EXAMPLES

Tbe method described in Sections 2,1-2.2 has been applied to the reduc-

tion of a 55th order LQG controller for an advanced active control research
aeroplane [14], [15]. Figure 4,1 shows the block diagram of a flutter sup-
pression and gust load alleviation design, The controls uzed are the elevator
and the outboard aileron surfaces, hleaxurements of pitch rate and wing tip
acceleration are used to estimate the aeroplane’s rigid and elaztic motion.
Also showu in parentheses in Figure 4.1 are the root-mean-square responses,
at various points in the control loop, to a 10fts-l vertical Dryden turbu-
lence. These values were used to scale J,Ca,,~(s) of (2.10), and Rankel norm

approxmlation was used to obtain the reduced order Jwd4(s). Reduced
order controllers of as low as fourth order could give a satisfactory closed
loop performance.

Table 4.1 summarizes the results for different controllers, ranging from
the original controller to the fourth order controller. Robustness properties
have been evaluated b~ed on single loop phaze and gain margins, and the
worst-cue stability margins have been recorded in the table. Note that
the margins of stability have been preserved in accordance with the design
requirements ( gain margins of 6dB and pbaze margins of 30”). Similarly,
the damping of the flutter mode always exceed the design requirement of
0.015. Further reduction leads to an unstable closed-loop system. \Vith
other controller reduction methods such as modal residualization, the min-

“imum order for the reduced order controller is ten. It is perceived that if
the options described in Sections 2.3, 2.5-2.6 were considered, then further
improvements in the controller reduction could be expected. This will be
left for future work.

Table 4.1
Reduction of a 55th order Flutter Suppression and Gust Load

Alleviation Controller

Order Flutter Stability Bending Shear Torsion

node Margins iloment

Damping (in-lbs) (Ibs) (in-lbs)

55 0.074 14.0dB,58.6° 2.348 X 10s 854 4437 x 104

10 0.034 14.0dB,59.0° 2.593 X 105 890 4.200 X 104

9 0.039 5.8d B,70.0” 2.318 X 105 859 4.495 x lo~

8 0.032 10.0dB,69.0° 2.610 X 10s 930 4.821 X 104
/

7 0.032 15.0dB,38.0° 2.345 X 105 862 4.779 x lo~

6 0.027 7.0dB,2S.0° 2.362 X 105 871 4.968 X 104

5 0.016 15.0dB,81.0” 2.371 x 105 997 7.117 x lo~

4 0.016 7.5dB,70.0° 2.6S0 X 105 1102 7.877 x lo~

1 The bending moment, shear force, aud torsion are mot-mean-squ.we r~

sponses to a 10fts-l vertical Drydcil turbulence.

\\fe will now make snme remarks on a second example, one which is well
studied in tbe literature [5], [6]; [13]. Our am here is not to demonstrate the
superiority of our various methods, since the in built frequency wctglillng in
the reduction technique of [G]turns out to be bighiy suited to this example;
a simple application of our methods does not do aa well. Rather, our aim
is to be convinced that the methods here can be competitive, depending
on the engineering criteria for judging robustness/performance. Indeed, for
a frequency weighted version of our technique we claim equality with, and
perhaps marginal superiority to, some of the methods of [13].

An eighth-order controller is reduced to a fifth-order controller using
various controller reduction methods. The original plant and controller are

given in [5] (case q= 100). The plant has one rigid body mode and three
lightly damped structural modes (( = 0.02). The command response cor-
responding to the full order controller does not exhibit any lightly damped
structural modes. This is due to the fact that with precisely placed notch
filters in the feedback col)troller, the residues at the structural mode fre-
quencies are negligible. Reduction of the controller order alters the location
of the notch filter poles and zeros, and may introduce large reslduea at the
uncontrolled structural modes.

Reduction of a stable right coprime Factorization of the controller [6]
produces a good approximation in the low frequency region, and introduces
residual r~ponzea at the second structural mode frequency. Comparison of
the frequency weighted balanced truncation method of [5] with other reduc-
t ion methods is gtven in [6], [131. Frequent y weighted balanced truncation
is here applied to the controller structure J,(s) described in previously (see
Figure 4.2). The criterion function in the coxt function is appended to the
outputs of J,(s) to maintain performance Tbe scale factors applied at the
inputs and outputs of J,(s) are determined by evaluating the closed-loop
covariance responses. This reduction technique yields a reduced order con-
troller with good robustness/performance properties in a systematic faxhion,
with fewer Iterations than the method of [13]. (1]) [13], an augmented output
is afxo included in the reduction to improve perform ance, )

For comparative purpmes a reduced order controller, obtained by direct
optimization via the SANDY desgn algorithm [16], has also been studied.
The reduction was baaed on the same cost objective, process noise, and
xensor noise characteristics. The resulting step response agrees closely with
the original design. Tbe low order controller h,ax the advantage that it only
excites the plant at the first structural mode frequency.

5. CONCLUSIONS
A clrizs of controller reduction methods have km propcsed wl}ich pr~

serve the robustness and performance quali[ies of tile colltrollcr. Tile met h-
ods can be viewed as consisting of three steps, Tile first is organtzlng the
plant and controller informat!oll. The second is applyiug standard modei
reduction techniques, and the third is extracting and rc-optimizing (if nec-
essary) a reduced order controller from the second step results using a con-
stant stabilizing controller structure. Trade.olis between performance and
robustness cm be achieved by scalijjg. and i!ldecd by ccrtajn extreme scal-
!ngs, other methods in the literature can be recovered.

The proposed methods are, in the first instance, most appropriate for
controller designs organized m state estimate feedback schemes. lIowever all
stabilizing controller designs can be organized M SUCI1[12], and our methods
do extend of stabilizing controllers. Sinmlation studies have supported the
rationale for the methods proposed.

Turbulcwc (10 fds)
Dynamic Loads

Elevator (0.592 mmd)
(Bending Moment, Shear,

Outtxxud AiIwon
AEROEfASTIC
AEROPLA14E pi~ch Ra[c (0.864)6 rad/s~

(2.35 mrad) MODEL Wmg Tip Accelem!ion
(55-rh Order) (96.32 inJs/s)

1

Torsion)

I
8GmouER
(55-Ih Qrdcr) ~

Figure 4.1 Block diagram of the flutter suppression and
gust load alleviwion system.
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Figure 4.2 Frequency-weighting m the controller inputs.
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